aboutsummaryrefslogtreecommitdiff
path: root/src/share
diff options
context:
space:
mode:
Diffstat (limited to 'src/share')
-rw-r--r--src/share/algebra/browse.daase1326
-rw-r--r--src/share/algebra/category.daase1130
-rw-r--r--src/share/algebra/compress.daase1284
-rw-r--r--src/share/algebra/interp.daase8368
-rw-r--r--src/share/algebra/operation.daase31525
5 files changed, 21816 insertions, 21817 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index ce13be77..bd4d97f6 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2241668 . 3425075211)
+(2241696 . 3427192338)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4259 . T) (-4258 . T) (-1405 . T))
+((-4260 . T) (-4259 . T) (-1456 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,23 +46,23 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4255 . T) (-4253 . T) (-4252 . T) ((-4260 "*") . T) (-4251 . T) (-4256 . T) (-4250 . T) (-1405 . T))
+((-4256 . T) (-4254 . T) (-4253 . T) ((-4261 "*") . T) (-4252 . T) (-4257 . T) (-4251 . T) (-1456 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
NIL
NIL
-(-31 R -3819)
+(-31 R -1834)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))
(-32 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4258)))
+((|HasAttribute| |#1| (QUOTE -4259)))
(-33)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
-((-1405 . T))
+((-1456 . T))
NIL
(-34)
((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}.")))
@@ -70,7 +70,7 @@ NIL
NIL
(-35 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4258 . T) (-4259 . T) (-1405 . T))
+((-4259 . T) (-4260 . T) (-1456 . T))
NIL
(-36 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
@@ -78,17 +78,17 @@ NIL
NIL
(-37 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
-((-4252 . T) (-4253 . T) (-4255 . T))
+((-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-38 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-39 -3819 UP UPUP -2152)
+(-39 -1834 UP UPUP -2287)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4251 |has| (-385 |#2|) (-341)) (-4256 |has| (-385 |#2|) (-341)) (-4250 |has| (-385 |#2|) (-341)) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| (-385 |#2|) (QUOTE (-136))) (|HasCategory| (-385 |#2|) (QUOTE (-138))) (|HasCategory| (-385 |#2|) (QUOTE (-327))) (-3254 (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-346))) (-3254 (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (-3254 (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-385 |#2|) (QUOTE (-327))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3254 (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))))
-(-40 R -3819)
+((-4252 |has| (-385 |#2|) (-341)) (-4257 |has| (-385 |#2|) (-341)) (-4251 |has| (-385 |#2|) (-341)) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| (-385 |#2|) (QUOTE (-136))) (|HasCategory| (-385 |#2|) (QUOTE (-138))) (|HasCategory| (-385 |#2|) (QUOTE (-327))) (-2067 (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-346))) (-2067 (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (-2067 (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-385 |#2|) (QUOTE (-327))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-2067 (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))))
+(-40 R -1834)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|)))))
@@ -102,23 +102,23 @@ NIL
((|HasCategory| |#1| (QUOTE (-286))))
(-43 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4255 |has| |#1| (-517)) (-4253 . T) (-4252 . T))
+((-4256 |has| |#1| (-517)) (-4254 . T) (-4253 . T))
((|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517))))
(-44 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4258 . T) (-4259 . T))
-((-3254 (-12 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3364) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4201) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3364) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4201) (|devaluate| |#2|))))))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3364) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4201) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-2067 (-12 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1556) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3448) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1556) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3448) (|devaluate| |#2|))))))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1556) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3448) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
(-45 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))))
(-46 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4252 . T) (-4253 . T) (-4255 . T))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-47)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
((|HasCategory| $ (QUOTE (-977))) (|HasCategory| $ (LIST (QUOTE -968) (QUOTE (-525)))))
(-48)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
@@ -126,7 +126,7 @@ NIL
NIL
(-49 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4255 . T))
+((-4256 . T))
NIL
(-50 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -140,7 +140,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-53 |Base| R -3819)
+(-53 |Base| R -1834)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -150,7 +150,7 @@ NIL
NIL
(-55 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4258 . T) (-4259 . T) (-1405 . T))
+((-4259 . T) (-4260 . T) (-1456 . T))
NIL
(-56 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
@@ -158,65 +158,65 @@ NIL
NIL
(-57 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4259 . T) (-4258 . T))
-((-3254 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3254 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4260 . T) (-4259 . T))
+((-2067 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-2067 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-58 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
-(-59 -3257)
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-59 -2411)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-60 -3257)
+(-60 -2411)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-61 -3257)
+(-61 -2411)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -3257)
+(-62 -2411)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-63 -3257)
+(-63 -2411)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -3257)
+(-64 -2411)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -3257)
+(-65 -2411)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -3257)
+(-66 -2411)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-67 -3257)
+(-67 -2411)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-68 -3257)
+(-68 -2411)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -3257)
+(-69 -2411)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-70 -3257)
+(-70 -2411)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-71 -3257)
+(-71 -2411)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-72 -3257)
+(-72 -2411)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -228,55 +228,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-75 -3257)
+(-75 -2411)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-76 -3257)
+(-76 -2411)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-77 -3257)
+(-77 -2411)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-78 -3257)
+(-78 -2411)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-79 -3257)
+(-79 -2411)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -3257)
+(-80 -2411)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -3257)
+(-81 -2411)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-82 -3257)
+(-82 -2411)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -3257)
+(-83 -2411)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -3257)
+(-84 -2411)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -3257)
+(-85 -2411)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -3257)
+(-86 -2411)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-87 -3257)
+(-87 -2411)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -286,8 +286,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-341))))
(-89 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-90 S)
((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}.")))
NIL
@@ -298,15 +298,15 @@ NIL
NIL
(-92)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4258 . T))
+((-4259 . T))
NIL
(-93)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4258 . T) ((-4260 "*") . T) (-4259 . T) (-4255 . T) (-4253 . T) (-4252 . T) (-4251 . T) (-4256 . T) (-4250 . T) (-4249 . T) (-4248 . T) (-4247 . T) (-4246 . T) (-4254 . T) (-4257 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4245 . T))
+((-4259 . T) ((-4261 "*") . T) (-4260 . T) (-4256 . T) (-4254 . T) (-4253 . T) (-4252 . T) (-4257 . T) (-4251 . T) (-4250 . T) (-4249 . T) (-4248 . T) (-4247 . T) (-4255 . T) (-4258 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4246 . T))
NIL
(-94 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4255 . T))
+((-4256 . T))
NIL
(-95 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -322,15 +322,15 @@ NIL
NIL
(-98 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-99 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4260 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4261 "*"))))
(-100)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4258 . T))
+((-4259 . T))
NIL
(-101 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -338,12 +338,12 @@ NIL
NIL
(-102 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4259 . T) (-1405 . T))
+((-4260 . T) (-1456 . T))
NIL
(-103)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-3254 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1068))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1092)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136)))))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-2067 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1068))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1092)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136)))))
(-104)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
@@ -354,11 +354,11 @@ NIL
NIL
(-106)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4259 . T) (-4258 . T))
+((-4260 . T) (-4259 . T))
((-12 (|HasCategory| (-108) (QUOTE (-1020))) (|HasCategory| (-108) (LIST (QUOTE -288) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-108) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-108) (QUOTE (-1020))) (|HasCategory| (-108) (LIST (QUOTE -566) (QUOTE (-798)))))
(-107 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4253 . T) (-4252 . T))
+((-4254 . T) (-4253 . T))
NIL
(-108)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (^ (($ $) "\\spad{^ n} returns the negation of \\spad{n}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
@@ -372,25 +372,25 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-111 -3819 UP)
+(-111 -1834 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-112 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-113 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| (-112 |#1|) (QUOTE (-844))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| (-112 |#1|) (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-138))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-112 |#1|) (QUOTE (-953))) (|HasCategory| (-112 |#1|) (QUOTE (-762))) (-3254 (|HasCategory| (-112 |#1|) (QUOTE (-762))) (|HasCategory| (-112 |#1|) (QUOTE (-789)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (QUOTE (-1068))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (QUOTE (-213))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -486) (QUOTE (-1092)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -288) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -265) (LIST (QUOTE -112) (|devaluate| |#1|)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (QUOTE (-286))) (|HasCategory| (-112 |#1|) (QUOTE (-510))) (|HasCategory| (-112 |#1|) (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-844)))) (|HasCategory| (-112 |#1|) (QUOTE (-136)))))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| (-112 |#1|) (QUOTE (-844))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| (-112 |#1|) (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-138))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-112 |#1|) (QUOTE (-953))) (|HasCategory| (-112 |#1|) (QUOTE (-762))) (-2067 (|HasCategory| (-112 |#1|) (QUOTE (-762))) (|HasCategory| (-112 |#1|) (QUOTE (-789)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (QUOTE (-1068))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (QUOTE (-213))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -486) (QUOTE (-1092)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -288) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -265) (LIST (QUOTE -112) (|devaluate| |#1|)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (QUOTE (-286))) (|HasCategory| (-112 |#1|) (QUOTE (-510))) (|HasCategory| (-112 |#1|) (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-844)))) (|HasCategory| (-112 |#1|) (QUOTE (-136)))))
(-114 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4259)))
+((|HasAttribute| |#1| (QUOTE -4260)))
(-115 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
-((-1405 . T))
+((-1456 . T))
NIL
(-116 UP)
((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive.")))
@@ -398,15 +398,15 @@ NIL
NIL
(-117 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-118 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-119)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4259 . T) (-4258 . T) (-1405 . T))
+((-4260 . T) (-4259 . T) (-1456 . T))
NIL
(-120 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -414,20 +414,20 @@ NIL
NIL
(-121 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4258 . T) (-4259 . T) (-1405 . T))
+((-4259 . T) (-4260 . T) (-1456 . T))
NIL
(-122 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-123 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-124)
((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes.")))
-((-4259 . T) (-4258 . T))
-((-3254 (-12 (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (-12 (|HasCategory| (-125) (QUOTE (-1020))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125)))))) (-3254 (-12 (|HasCategory| (-125) (QUOTE (-1020))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (|HasCategory| (-125) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-125) (LIST (QUOTE -567) (QUOTE (-501)))) (-3254 (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-125) (QUOTE (-1020)))) (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-125) (QUOTE (-1020))) (-12 (|HasCategory| (-125) (QUOTE (-1020))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (|HasCategory| (-125) (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4260 . T) (-4259 . T))
+((-2067 (-12 (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (-12 (|HasCategory| (-125) (QUOTE (-1020))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125)))))) (-2067 (-12 (|HasCategory| (-125) (QUOTE (-1020))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (|HasCategory| (-125) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-125) (LIST (QUOTE -567) (QUOTE (-501)))) (-2067 (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-125) (QUOTE (-1020)))) (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-125) (QUOTE (-1020))) (-12 (|HasCategory| (-125) (QUOTE (-1020))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (|HasCategory| (-125) (LIST (QUOTE -566) (QUOTE (-798)))))
(-125)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -442,13 +442,13 @@ NIL
NIL
(-128)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4260 "*") . T))
+(((-4261 "*") . T))
NIL
-(-129 |minix| -2122 S T$)
+(-129 |minix| -2041 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-130 |minix| -2122 R)
+(-130 |minix| -2041 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -458,8 +458,8 @@ NIL
NIL
(-132)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4258 . T) (-4248 . T) (-4259 . T))
-((-3254 (-12 (|HasCategory| (-135) (QUOTE (-346))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-135) (QUOTE (-346))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4249 . T) (-4260 . T))
+((-2067 (-12 (|HasCategory| (-135) (QUOTE (-346))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-135) (QUOTE (-346))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798)))))
(-133 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -474,7 +474,7 @@ NIL
NIL
(-136)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4255 . T))
+((-4256 . T))
NIL
(-137 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -482,9 +482,9 @@ NIL
NIL
(-138)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4255 . T))
+((-4256 . T))
NIL
-(-139 -3819 UP UPUP)
+(-139 -1834 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -495,14 +495,14 @@ NIL
(-141 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasAttribute| |#1| (QUOTE -4258)))
+((|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasAttribute| |#1| (QUOTE -4259)))
(-142 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
-((-1405 . T))
+((-1456 . T))
NIL
(-143 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4253 . T) (-4252 . T) (-4255 . T))
+((-4254 . T) (-4253 . T) (-4256 . T))
NIL
(-144)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -516,7 +516,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-147 R -3819)
+(-147 R -1834)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -543,10 +543,10 @@ NIL
(-153 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-1114))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-953))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasAttribute| |#2| (QUOTE -4254)) (|HasAttribute| |#2| (QUOTE -4257)) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-789))))
+((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-1114))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-953))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasAttribute| |#2| (QUOTE -4255)) (|HasAttribute| |#2| (QUOTE -4258)) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-789))))
(-154 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4251 -3254 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))) (-4256 |has| |#1| (-341)) (-4250 |has| |#1| (-341)) (-4254 |has| |#1| (-6 -4254)) (-4257 |has| |#1| (-6 -4257)) (-1466 . T) (-1405 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 -2067 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))) (-4257 |has| |#1| (-341)) (-4251 |has| |#1| (-341)) (-4255 |has| |#1| (-6 -4255)) (-4258 |has| |#1| (-6 -4258)) (-1496 . T) (-1456 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-155 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -558,8 +558,8 @@ NIL
NIL
(-157 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4251 -3254 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))) (-4256 |has| |#1| (-341)) (-4250 |has| |#1| (-341)) (-4254 |has| |#1| (-6 -4254)) (-4257 |has| |#1| (-6 -4257)) (-1466 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327))) (-3254 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3254 (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-213))) (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-346)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-770)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-953)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-844))))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-844))))) (-3254 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3254 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-517)))) (-3254 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-986))) (-12 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (QUOTE (-510))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341)))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-213))) (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasAttribute| |#1| (QUOTE -4254)) (|HasAttribute| |#1| (QUOTE -4257)) (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092))))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-327)))))
+((-4252 -2067 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))) (-4257 |has| |#1| (-341)) (-4251 |has| |#1| (-341)) (-4255 |has| |#1| (-6 -4255)) (-4258 |has| |#1| (-6 -4258)) (-1496 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327))) (-2067 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-2067 (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-213))) (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-346)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-770)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-953)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-844))))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-844))))) (-2067 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-2067 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-517)))) (-2067 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-986))) (-12 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (QUOTE (-510))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341)))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-213))) (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasAttribute| |#1| (QUOTE -4255)) (|HasAttribute| |#1| (QUOTE -4258)) (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092))))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-327)))))
(-158 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -570,11 +570,11 @@ NIL
NIL
(-160)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+(((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-161 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4260 "*") . T) (-4251 . T) (-4256 . T) (-4250 . T) (-4252 . T) (-4253 . T) (-4255 . T))
+(((-4261 "*") . T) (-4252 . T) (-4257 . T) (-4251 . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-162)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -608,7 +608,7 @@ NIL
((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor")))
NIL
NIL
-(-170 R -3819)
+(-170 R -1834)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -712,19 +712,19 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-196 -3819 UP UPUP R)
+(-196 -1834 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-197 -3819 FP)
+(-197 -1834 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-198)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-3254 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1068))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1092)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136)))))
-(-199 R -3819)
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-2067 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1068))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1092)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136)))))
+(-199 R -1834)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -738,19 +738,19 @@ NIL
NIL
(-202 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-203 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4255 . T))
+((-4256 . T))
NIL
-(-204 R -3819)
+(-204 R -1834)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-205)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-1454 . T) (-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-1485 . T) (-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-206)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
@@ -758,15 +758,15 @@ NIL
NIL
(-207 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4260 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4261 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-208 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-209 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4259 . T) (-1405 . T))
+((-4260 . T) (-1456 . T))
NIL
(-210 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
@@ -774,7 +774,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-213))))
(-211 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4255 . T))
+((-4256 . T))
NIL
(-212 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
@@ -782,36 +782,36 @@ NIL
NIL
(-213)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4255 . T))
+((-4256 . T))
NIL
(-214 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4258)))
+((|HasAttribute| |#1| (QUOTE -4259)))
(-215 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4259 . T) (-1405 . T))
+((-4260 . T) (-1456 . T))
NIL
(-216)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-217 S -2122 R)
+(-217 S -2041 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787))) (|HasAttribute| |#3| (QUOTE -4255)) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-1020))))
-(-218 -2122 R)
+((|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787))) (|HasAttribute| |#3| (QUOTE -4256)) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-1020))))
+(-218 -2041 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4252 |has| |#2| (-977)) (-4253 |has| |#2| (-977)) (-4255 |has| |#2| (-6 -4255)) ((-4260 "*") |has| |#2| (-160)) (-4258 . T) (-1405 . T))
+((-4253 |has| |#2| (-977)) (-4254 |has| |#2| (-977)) (-4256 |has| |#2| (-6 -4256)) ((-4261 "*") |has| |#2| (-160)) (-4259 . T) (-1456 . T))
NIL
-(-219 -2122 A B)
+(-219 -2041 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-220 -2122 R)
+(-220 -2041 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4252 |has| |#2| (-977)) (-4253 |has| |#2| (-977)) (-4255 |has| |#2| (-6 -4255)) ((-4260 "*") |has| |#2| (-160)) (-4258 . T))
-((-3254 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))))) (-3254 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (QUOTE (-341))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-735))) (-3254 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-160))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020))))) (-3254 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-3254 (|HasCategory| |#2| (QUOTE (-977))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasAttribute| |#2| (QUOTE -4255)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4253 |has| |#2| (-977)) (-4254 |has| |#2| (-977)) (-4256 |has| |#2| (-6 -4256)) ((-4261 "*") |has| |#2| (-160)) (-4259 . T))
+((-2067 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))))) (-2067 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (QUOTE (-341))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-735))) (-2067 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-160))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-1020)))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020))))) (-2067 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-2067 (|HasCategory| |#2| (QUOTE (-977))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasAttribute| |#2| (QUOTE -4256)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))
(-221)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -822,47 +822,47 @@ NIL
NIL
(-223)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4251 . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-224 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
-((-1405 . T))
+((-1456 . T))
NIL
(-225 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}")))
-((-4259 . T) (-4258 . T))
-((-3254 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3254 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4260 . T) (-4259 . T))
+((-2067 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-2067 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-226 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-227 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4260 "*") |has| |#2| (-160)) (-4251 |has| |#2| (-517)) (-4256 |has| |#2| (-6 -4256)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#2| (QUOTE (-844))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3254 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3254 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4256)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136)))))
+(((-4261 "*") |has| |#2| (-160)) (-4252 |has| |#2| (-517)) (-4257 |has| |#2| (-6 -4257)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#2| (QUOTE (-844))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-2067 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-2067 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4257)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136)))))
(-228)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")))
NIL
NIL
(-229 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4255 -3254 (-3762 (|has| |#4| (-977)) (|has| |#4| (-213))) (-3762 (|has| |#4| (-977)) (|has| |#4| (-835 (-1092)))) (|has| |#4| (-6 -4255)) (-3762 (|has| |#4| (-977)) (|has| |#4| (-588 (-525))))) (-4252 |has| |#4| (-977)) (-4253 |has| |#4| (-977)) ((-4260 "*") |has| |#4| (-160)) (-4258 . T))
-((-3254 (-12 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-669))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1092)))))) (|HasCategory| |#4| (QUOTE (-341))) (-3254 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (QUOTE (-977)))) (-3254 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-341)))) (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (QUOTE (-735))) (-3254 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (QUOTE (-787)))) (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (QUOTE (-669))) (|HasCategory| |#4| (QUOTE (-160))) (-3254 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-977)))) (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1092)))) (-3254 (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-160)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-213)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-341)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-346)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-669)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-735)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-787)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-977)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-1020))))) (-3254 (-12 (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-669))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (-3254 (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (|HasCategory| |#4| (QUOTE (-669))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1092)))))) (-3254 (|HasCategory| |#4| (QUOTE (-977))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-1020)))) (-3254 (|HasAttribute| |#4| (QUOTE -4255)) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1092)))))) (|HasCategory| |#4| (QUOTE (-126))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4256 -2067 (-3944 (|has| |#4| (-977)) (|has| |#4| (-213))) (-3944 (|has| |#4| (-977)) (|has| |#4| (-835 (-1092)))) (|has| |#4| (-6 -4256)) (-3944 (|has| |#4| (-977)) (|has| |#4| (-588 (-525))))) (-4253 |has| |#4| (-977)) (-4254 |has| |#4| (-977)) ((-4261 "*") |has| |#4| (-160)) (-4259 . T))
+((-2067 (-12 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-669))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1092)))))) (|HasCategory| |#4| (QUOTE (-341))) (-2067 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (QUOTE (-977)))) (-2067 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-341)))) (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (QUOTE (-735))) (-2067 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (QUOTE (-787)))) (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (QUOTE (-669))) (|HasCategory| |#4| (QUOTE (-160))) (-2067 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-977)))) (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1092)))) (-2067 (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-160)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-213)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-341)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-346)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-669)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-735)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-787)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-977)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-1020))))) (-2067 (-12 (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-669))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (-2067 (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (|HasCategory| |#4| (QUOTE (-669))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1092)))))) (-2067 (|HasCategory| |#4| (QUOTE (-977))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-1020)))) (-2067 (|HasAttribute| |#4| (QUOTE -4256)) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1092)))))) (|HasCategory| |#4| (QUOTE (-126))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-798)))))
(-230 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4255 -3254 (-3762 (|has| |#3| (-977)) (|has| |#3| (-213))) (-3762 (|has| |#3| (-977)) (|has| |#3| (-835 (-1092)))) (|has| |#3| (-6 -4255)) (-3762 (|has| |#3| (-977)) (|has| |#3| (-588 (-525))))) (-4252 |has| |#3| (-977)) (-4253 |has| |#3| (-977)) ((-4260 "*") |has| |#3| (-160)) (-4258 . T))
-((-3254 (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))))) (|HasCategory| |#3| (QUOTE (-341))) (-3254 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3254 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-735))) (-3254 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787)))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-160))) (-3254 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (-3254 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-160)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-213)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-341)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-346)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-669)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-735)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-787)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020))))) (-3254 (-12 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-3254 (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-669))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))))) (-3254 (|HasCategory| |#3| (QUOTE (-977))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020)))) (-3254 (|HasAttribute| |#3| (QUOTE -4255)) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4256 -2067 (-3944 (|has| |#3| (-977)) (|has| |#3| (-213))) (-3944 (|has| |#3| (-977)) (|has| |#3| (-835 (-1092)))) (|has| |#3| (-6 -4256)) (-3944 (|has| |#3| (-977)) (|has| |#3| (-588 (-525))))) (-4253 |has| |#3| (-977)) (-4254 |has| |#3| (-977)) ((-4261 "*") |has| |#3| (-160)) (-4259 . T))
+((-2067 (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))))) (|HasCategory| |#3| (QUOTE (-341))) (-2067 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-2067 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-735))) (-2067 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787)))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-160))) (-2067 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (-2067 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-160)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-213)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-341)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-346)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-669)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-735)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-787)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020))))) (-2067 (-12 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-2067 (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-669))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))))) (-2067 (|HasCategory| |#3| (QUOTE (-977))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020)))) (-2067 (|HasAttribute| |#3| (QUOTE -4256)) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798)))))
(-231 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-213))))
(-232 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-6 -4256)) (-4253 . T) (-4252 . T) (-4255 . T))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-6 -4257)) (-4254 . T) (-4253 . T) (-4256 . T))
NIL
(-233 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4258 . T) (-4259 . T) (-1405 . T))
+((-4259 . T) (-4260 . T) (-1456 . T))
NIL
(-234)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -902,8 +902,8 @@ NIL
NIL
(-243 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-6 -4256)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#1| (QUOTE (-844))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#3| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#3| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-6 -4257)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#3| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#3| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4257)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
(-244 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -948,11 +948,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-255 R -3819)
+(-255 R -1834)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-256 R -3819)
+(-256 R -1834)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -974,7 +974,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))))
(-261 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4259 . T) (-1405 . T))
+((-4260 . T) (-1456 . T))
NIL
(-262 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -995,18 +995,18 @@ NIL
(-266 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4259)))
+((|HasAttribute| |#1| (QUOTE -4260)))
(-267 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-268 S R |Mod| -2692 -1577 |exactQuo|)
+(-268 S R |Mod| -2600 -3212 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-269)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4251 . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-270)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -1022,21 +1022,21 @@ NIL
NIL
(-273 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4255 -3254 (|has| |#1| (-977)) (|has| |#1| (-450))) (-4252 |has| |#1| (-977)) (-4253 |has| |#1| (-977)))
-((|HasCategory| |#1| (QUOTE (-341))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-977)))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-977)))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-977)))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-977)))) (-3254 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669)))) (|HasCategory| |#1| (QUOTE (-450))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1020)))) (-3254 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-1032)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-281))) (-3254 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-450)))) (-3254 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669)))) (-3254 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-977)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))))
+((-4256 -2067 (|has| |#1| (-977)) (|has| |#1| (-450))) (-4253 |has| |#1| (-977)) (-4254 |has| |#1| (-977)))
+((|HasCategory| |#1| (QUOTE (-341))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-977)))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-977)))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-977)))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-977)))) (-2067 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669)))) (|HasCategory| |#1| (QUOTE (-450))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1020)))) (-2067 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-1032)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-281))) (-2067 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-450)))) (-2067 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669)))) (-2067 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-977)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))))
(-274 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3364) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4201) (|devaluate| |#2|)))))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1556) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3448) (|devaluate| |#2|)))))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
(-275)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-276 -3819 S)
+(-276 -1834 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-277 E -3819)
+(-277 E -1834)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
@@ -1074,7 +1074,7 @@ NIL
NIL
(-286)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-287 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1084,7 +1084,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-289 -3819)
+(-289 -1834)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1094,8 +1094,8 @@ NIL
NIL
(-291 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-953))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-762))) (-3254 (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-762))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-789)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-1068))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-213))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -486) (QUOTE (-1092)) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -288) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -265) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-286))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-510))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-789))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (|HasCategory| $ (QUOTE (-136)))) (-3254 (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (|HasCategory| $ (QUOTE (-136))))))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-953))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-762))) (-2067 (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-762))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-789)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-1068))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-213))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -486) (QUOTE (-1092)) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -288) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (LIST (QUOTE -265) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-286))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-510))) (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-789))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (|HasCategory| $ (QUOTE (-136)))) (-2067 (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (-12 (|HasCategory| (-1160 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (|HasCategory| $ (QUOTE (-136))))))
(-292 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1106,9 +1106,9 @@ NIL
NIL
(-294 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4255 -3254 (-3762 (|has| |#1| (-977)) (|has| |#1| (-588 (-525)))) (-12 (|has| |#1| (-517)) (-3254 (-3762 (|has| |#1| (-977)) (|has| |#1| (-588 (-525)))) (|has| |#1| (-977)) (|has| |#1| (-450)))) (|has| |#1| (-977)) (|has| |#1| (-450))) (-4253 |has| |#1| (-160)) (-4252 |has| |#1| (-160)) ((-4260 "*") |has| |#1| (-517)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-517)) (-4250 |has| |#1| (-517)))
-((-3254 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (-3254 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-3254 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-1032)))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517)))) (-3254 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-517)))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (-3254 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1032)))) (-3254 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))))) (-3254 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1032)))) (-3254 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))))) (-3254 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-977)))) (-3254 (-12 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| $ (QUOTE (-977))) (|HasCategory| $ (LIST (QUOTE -968) (QUOTE (-525)))))
-(-295 R -3819)
+((-4256 -2067 (-3944 (|has| |#1| (-977)) (|has| |#1| (-588 (-525)))) (-12 (|has| |#1| (-517)) (-2067 (-3944 (|has| |#1| (-977)) (|has| |#1| (-588 (-525)))) (|has| |#1| (-977)) (|has| |#1| (-450)))) (|has| |#1| (-977)) (|has| |#1| (-450))) (-4254 |has| |#1| (-160)) (-4253 |has| |#1| (-160)) ((-4261 "*") |has| |#1| (-517)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-517)) (-4251 |has| |#1| (-517)))
+((-2067 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (-2067 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-2067 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-1032)))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517)))) (-2067 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-517)))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (-2067 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1032)))) (-2067 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))))) (-2067 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1032)))) (-2067 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))))) (-2067 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-977)))) (-2067 (-12 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| $ (QUOTE (-977))) (|HasCategory| $ (LIST (QUOTE -968) (QUOTE (-525)))))
+(-295 R -1834)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
@@ -1118,8 +1118,8 @@ NIL
NIL
(-297 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-341)) (-4250 |has| |#1| (-341)) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3254 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1217) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3254 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1206) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -2897) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-341)) (-4251 |has| |#1| (-341)) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-2067 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -4100) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-2067 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2367) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -1296) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))))
(-298 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1130,7 +1130,7 @@ NIL
NIL
(-300 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4253 . T) (-4252 . T))
+((-4254 . T) (-4253 . T))
((|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-734))))
(-301 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
@@ -1146,19 +1146,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))))
(-304 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4252 . T) (-4253 . T) (-4255 . T))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-305 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4259 . T) (-4258 . T))
-((-3254 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3254 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
-(-306 S -3819)
+((-4260 . T) (-4259 . T))
+((-2067 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-2067 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-306 S -1834)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-346))))
-(-307 -3819)
+(-307 -1834)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-308)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm.")))
@@ -1176,15 +1176,15 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-312 S -3819 UP UPUP R)
+(-312 S -1834 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-313 -3819 UP UPUP R)
+(-313 -1834 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-314 -3819 UP UPUP R)
+(-314 -1834 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
@@ -1198,32 +1198,32 @@ NIL
NIL
(-317 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4252 . T) (-4253 . T) (-4255 . T))
+((-4253 . T) (-4254 . T) (-4256 . T))
((|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-357)))) (|HasCategory| $ (QUOTE (-977))) (|HasCategory| $ (LIST (QUOTE -968) (QUOTE (-525)))))
(-318 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-319 S -3819 UP UPUP)
+(-319 S -1834 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-341))))
-(-320 -3819 UP UPUP)
+(-320 -1834 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4251 |has| (-385 |#2|) (-341)) (-4256 |has| (-385 |#2|) (-341)) (-4250 |has| (-385 |#2|) (-341)) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 |has| (-385 |#2|) (-341)) (-4257 |has| (-385 |#2|) (-341)) (-4251 |has| (-385 |#2|) (-341)) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-321 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((-3254 (|HasCategory| (-845 |#1|) (QUOTE (-136))) (|HasCategory| (-845 |#1|) (QUOTE (-346)))) (|HasCategory| (-845 |#1|) (QUOTE (-138))) (|HasCategory| (-845 |#1|) (QUOTE (-346))) (|HasCategory| (-845 |#1|) (QUOTE (-136))))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((-2067 (|HasCategory| (-845 |#1|) (QUOTE (-136))) (|HasCategory| (-845 |#1|) (QUOTE (-346)))) (|HasCategory| (-845 |#1|) (QUOTE (-138))) (|HasCategory| (-845 |#1|) (QUOTE (-346))) (|HasCategory| (-845 |#1|) (QUOTE (-136))))
(-322 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((-3254 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((-2067 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
(-323 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((-3254 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((-2067 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
(-324 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1238,33 +1238,33 @@ NIL
NIL
(-327)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
-(-328 R UP -3819)
+(-328 R UP -1834)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-329 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((-3254 (|HasCategory| (-845 |#1|) (QUOTE (-136))) (|HasCategory| (-845 |#1|) (QUOTE (-346)))) (|HasCategory| (-845 |#1|) (QUOTE (-138))) (|HasCategory| (-845 |#1|) (QUOTE (-346))) (|HasCategory| (-845 |#1|) (QUOTE (-136))))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((-2067 (|HasCategory| (-845 |#1|) (QUOTE (-136))) (|HasCategory| (-845 |#1|) (QUOTE (-346)))) (|HasCategory| (-845 |#1|) (QUOTE (-138))) (|HasCategory| (-845 |#1|) (QUOTE (-346))) (|HasCategory| (-845 |#1|) (QUOTE (-136))))
(-330 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((-3254 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((-2067 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
(-331 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((-3254 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((-2067 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
(-332 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((-3254 (|HasCategory| (-845 |#1|) (QUOTE (-136))) (|HasCategory| (-845 |#1|) (QUOTE (-346)))) (|HasCategory| (-845 |#1|) (QUOTE (-138))) (|HasCategory| (-845 |#1|) (QUOTE (-346))) (|HasCategory| (-845 |#1|) (QUOTE (-136))))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((-2067 (|HasCategory| (-845 |#1|) (QUOTE (-136))) (|HasCategory| (-845 |#1|) (QUOTE (-346)))) (|HasCategory| (-845 |#1|) (QUOTE (-138))) (|HasCategory| (-845 |#1|) (QUOTE (-346))) (|HasCategory| (-845 |#1|) (QUOTE (-136))))
(-333 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((-3254 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
-(-334 -3819 GF)
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((-2067 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
+(-334 -1834 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1272,21 +1272,21 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-336 -3819 FP FPP)
+(-336 -1834 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-337 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((-3254 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((-2067 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
(-338 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-339 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4255 . T))
+((-4256 . T))
NIL
(-340 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1294,7 +1294,7 @@ NIL
NIL
(-341)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-342 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
@@ -1310,7 +1310,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-517))))
(-345 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4255 |has| |#1| (-517)) (-4253 . T) (-4252 . T))
+((-4256 |has| |#1| (-517)) (-4254 . T) (-4253 . T))
NIL
(-346)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1322,7 +1322,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-341))))
(-348 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4252 . T) (-4253 . T) (-4255 . T))
+((-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-349 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1331,14 +1331,14 @@ NIL
(-350 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4259)) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))))
+((|HasAttribute| |#1| (QUOTE -4260)) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))))
(-351 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4258 . T) (-1405 . T))
+((-4259 . T) (-1456 . T))
NIL
(-352 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4253 . T) (-4252 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4254 . T) (-4253 . T))
NIL
(-353 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1350,7 +1350,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))))
(-355 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4255 . T))
+((-4256 . T))
NIL
(-356 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1358,7 +1358,7 @@ NIL
NIL
(-357)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4241 . T) (-4249 . T) (-1454 . T) (-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4242 . T) (-4250 . T) (-1485 . T) (-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-358 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1366,23 +1366,23 @@ NIL
NIL
(-359 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4253 . T) (-4252 . T))
+((-4254 . T) (-4253 . T))
((|HasCategory| |#1| (QUOTE (-160))))
(-360 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4253 . T) (-4252 . T))
+((-4254 . T) (-4253 . T))
NIL
(-361)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-1405 . T))
+((-1456 . T))
NIL
(-362)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-1405 . T))
+((-1456 . T))
NIL
(-363 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4253 . T) (-4252 . T))
+((-4254 . T) (-4253 . T))
((|HasCategory| |#1| (QUOTE (-160))))
(-364 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
@@ -1390,7 +1390,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-789))))
(-365)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-366)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1402,13 +1402,13 @@ NIL
NIL
(-368 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4253 . T) (-4252 . T))
+((-4254 . T) (-4253 . T))
NIL
(-369)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-370 -3819 UP UPUP R)
+(-370 -1834 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1422,27 +1422,27 @@ NIL
NIL
(-373)
((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
-((-1405 . T))
+((-1456 . T))
NIL
(-374)
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-1405 . T))
+((-1456 . T))
NIL
(-375)
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
-(-376 -3257 |returnType| -1307 |symbols|)
+(-376 -2411 |returnType| -1701 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-377 -3819 UP)
+(-377 -1834 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
(-378 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
-((-1405 . T))
+((-1456 . T))
NIL
(-379 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
@@ -1450,15 +1450,15 @@ NIL
NIL
(-380)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-381 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4241)) (|HasAttribute| |#1| (QUOTE -4249)))
+((|HasAttribute| |#1| (QUOTE -4242)) (|HasAttribute| |#1| (QUOTE -4250)))
(-382)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-1454 . T) (-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-1485 . T) (-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-383 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
@@ -1470,15 +1470,15 @@ NIL
NIL
(-385 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4245 -12 (|has| |#1| (-6 -4256)) (|has| |#1| (-429)) (|has| |#1| (-6 -4245))) (-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-762))) (-3254 (|HasCategory| |#1| (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-789)))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1068))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770))))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-510))) (-12 (|HasAttribute| |#1| (QUOTE -4256)) (|HasAttribute| |#1| (QUOTE -4245)) (|HasCategory| |#1| (QUOTE (-429)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
+((-4246 -12 (|has| |#1| (-6 -4257)) (|has| |#1| (-429)) (|has| |#1| (-6 -4246))) (-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-762))) (-2067 (|HasCategory| |#1| (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-789)))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1068))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770))))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-510))) (-12 (|HasAttribute| |#1| (QUOTE -4257)) (|HasAttribute| |#1| (QUOTE -4246)) (|HasCategory| |#1| (QUOTE (-429)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
(-386 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
(-387 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4252 . T) (-4253 . T) (-4255 . T))
+((-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-388 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
@@ -1492,11 +1492,11 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-391 R -3819 UP A)
+(-391 R -1834 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4255 . T))
+((-4256 . T))
NIL
-(-392 R -3819 UP A |ibasis|)
+(-392 R -1834 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
((|HasCategory| |#4| (LIST (QUOTE -968) (|devaluate| |#2|))))
@@ -1510,12 +1510,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-341))))
(-395 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4255 |has| |#1| (-517)) (-4253 . T) (-4252 . T))
+((-4256 |has| |#1| (-517)) (-4254 . T) (-4253 . T))
NIL
(-396 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1092)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -288) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -265) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-1132))) (-3254 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-429))))
+((-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1092)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -288) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -265) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2067 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-429))))
(-397 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
@@ -1542,17 +1542,17 @@ NIL
((|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-346))))
(-403 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4258 . T) (-4248 . T) (-4259 . T) (-1405 . T))
+((-4259 . T) (-4249 . T) (-4260 . T) (-1456 . T))
NIL
-(-404 R -3819)
+(-404 R -1834)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-405 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4245 -12 (|has| |#1| (-6 -4245)) (|has| |#2| (-6 -4245))) (-4252 . T) (-4253 . T) (-4255 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4245)) (|HasAttribute| |#2| (QUOTE -4245))))
-(-406 R -3819)
+((-4246 -12 (|has| |#1| (-6 -4246)) (|has| |#2| (-6 -4246))) (-4253 . T) (-4254 . T) (-4256 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4246)) (|HasAttribute| |#2| (QUOTE -4246))))
+(-406 R -1834)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
@@ -1562,17 +1562,17 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-1032))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))))
(-408 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4255 -3254 (|has| |#1| (-977)) (|has| |#1| (-450))) (-4253 |has| |#1| (-160)) (-4252 |has| |#1| (-160)) ((-4260 "*") |has| |#1| (-517)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-517)) (-4250 |has| |#1| (-517)) (-1405 . T))
+((-4256 -2067 (|has| |#1| (-977)) (|has| |#1| (-450))) (-4254 |has| |#1| (-160)) (-4253 |has| |#1| (-160)) ((-4261 "*") |has| |#1| (-517)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-517)) (-4251 |has| |#1| (-517)) (-1456 . T))
NIL
-(-409 R -3819)
+(-409 R -1834)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-410 R -3819)
+(-410 R -1834)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-411 R -3819)
+(-411 R -1834)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1580,7 +1580,7 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-413 R -3819 UP)
+(-413 R -1834 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-47)))))
@@ -1598,17 +1598,17 @@ NIL
NIL
(-417)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-1405 . T))
+((-1456 . T))
NIL
(-418)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-1405 . T))
+((-1456 . T))
NIL
(-419 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-420 R UP -3819)
+(-420 R UP -1834)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1646,16 +1646,16 @@ NIL
NIL
(-429)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-430 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4255 |has| (-385 (-887 |#1|)) (-517)) (-4253 . T) (-4252 . T))
+((-4256 |has| (-385 (-887 |#1|)) (-517)) (-4254 . T) (-4253 . T))
((|HasCategory| (-385 (-887 |#1|)) (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| (-385 (-887 |#1|)) (QUOTE (-517))))
(-431 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4260 "*") |has| |#2| (-160)) (-4251 |has| |#2| (-517)) (-4256 |has| |#2| (-6 -4256)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#2| (QUOTE (-844))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3254 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3254 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4256)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136)))))
+(((-4261 "*") |has| |#2| (-160)) (-4252 |has| |#2| (-517)) (-4257 |has| |#2| (-6 -4257)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#2| (QUOTE (-844))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-2067 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-2067 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4257)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136)))))
(-432 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1682,7 +1682,7 @@ NIL
NIL
(-438 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4253 . T) (-4252 . T))
+((-4254 . T) (-4253 . T))
NIL
(-439 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1690,7 +1690,7 @@ NIL
NIL
(-440 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4259 . T) (-4258 . T))
+((-4260 . T) (-4259 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-798)))))
(-441 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
@@ -1720,7 +1720,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-448 |lv| -3819 R)
+(-448 |lv| -1834 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1730,45 +1730,45 @@ NIL
NIL
(-450)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4255 . T))
+((-4256 . T))
NIL
(-451 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-341)) (-4250 |has| |#1| (-341)) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3254 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1217) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3254 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1206) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -2897) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-341)) (-4251 |has| |#1| (-341)) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-2067 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -4100) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-2067 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2367) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -1296) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))))
(-452 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4259 . T))
-((-12 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3364) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4201) (|devaluate| |#2|)))))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-789))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4260 . T))
+((-12 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1556) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3448) (|devaluate| |#2|)))))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-789))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
(-453 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4259 . T) (-4258 . T))
+((-4260 . T) (-4259 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-798)))))
(-454)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-455 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3364) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4201) (|devaluate| |#2|)))))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1556) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3448) (|devaluate| |#2|)))))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
(-456)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-457 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4260 "*") |has| |#2| (-160)) (-4251 |has| |#2| (-517)) (-4256 |has| |#2| (-6 -4256)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#2| (QUOTE (-844))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3254 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3254 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4256)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136)))))
-(-458 -2122 S)
+(((-4261 "*") |has| |#2| (-160)) (-4252 |has| |#2| (-517)) (-4257 |has| |#2| (-6 -4257)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#2| (QUOTE (-844))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-2067 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-2067 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4257)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136)))))
+(-458 -2041 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4252 |has| |#2| (-977)) (-4253 |has| |#2| (-977)) (-4255 |has| |#2| (-6 -4255)) ((-4260 "*") |has| |#2| (-160)) (-4258 . T))
-((-3254 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))))) (-3254 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (QUOTE (-341))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-735))) (-3254 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-160))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020))))) (-3254 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-3254 (|HasCategory| |#2| (QUOTE (-977))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasAttribute| |#2| (QUOTE -4255)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4253 |has| |#2| (-977)) (-4254 |has| |#2| (-977)) (-4256 |has| |#2| (-6 -4256)) ((-4261 "*") |has| |#2| (-160)) (-4259 . T))
+((-2067 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))))) (-2067 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (QUOTE (-341))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-735))) (-2067 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-160))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-1020)))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020))))) (-2067 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-2067 (|HasCategory| |#2| (QUOTE (-977))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasAttribute| |#2| (QUOTE -4256)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))
(-459 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
-(-460 -3819 UP UPUP R)
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-460 -1834 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1778,15 +1778,15 @@ NIL
NIL
(-462)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-3254 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1068))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1092)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136)))))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-2067 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1068))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1092)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136)))))
(-463 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4258)) (|HasAttribute| |#1| (QUOTE -4259)) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))
+((|HasAttribute| |#1| (QUOTE -4259)) (|HasAttribute| |#1| (QUOTE -4260)) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))
(-464 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
-((-1405 . T))
+((-1456 . T))
NIL
(-465 S)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
@@ -1796,33 +1796,33 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-467 -3819 UP |AlExt| |AlPol|)
+(-467 -1834 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-468)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
((|HasCategory| $ (QUOTE (-977))) (|HasCategory| $ (LIST (QUOTE -968) (QUOTE (-525)))))
(-469 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4259 . T) (-4258 . T))
-((-3254 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3254 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4260 . T) (-4259 . T))
+((-2067 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-2067 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-470 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-471 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-472 R UP -3819)
+(-472 R UP -1834)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-473 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4259 . T) (-4258 . T))
+((-4260 . T) (-4259 . T))
((-12 (|HasCategory| (-108) (QUOTE (-1020))) (|HasCategory| (-108) (LIST (QUOTE -288) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-108) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-108) (QUOTE (-1020))) (|HasCategory| (-108) (LIST (QUOTE -566) (QUOTE (-798)))))
(-474 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
@@ -1836,7 +1836,7 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-477 -3819 |Expon| |VarSet| |DPoly|)
+(-477 -1834 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-1092)))))
@@ -1882,32 +1882,32 @@ NIL
((|HasCategory| |#2| (QUOTE (-734))))
(-488 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4259 . T) (-4258 . T))
-((-3254 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3254 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4260 . T) (-4259 . T))
+((-2067 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-2067 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-489 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((-3254 (|HasCategory| (-538 |#1|) (QUOTE (-136))) (|HasCategory| (-538 |#1|) (QUOTE (-346)))) (|HasCategory| (-538 |#1|) (QUOTE (-138))) (|HasCategory| (-538 |#1|) (QUOTE (-346))) (|HasCategory| (-538 |#1|) (QUOTE (-136))))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((-2067 (|HasCategory| (-538 |#1|) (QUOTE (-136))) (|HasCategory| (-538 |#1|) (QUOTE (-346)))) (|HasCategory| (-538 |#1|) (QUOTE (-138))) (|HasCategory| (-538 |#1|) (QUOTE (-346))) (|HasCategory| (-538 |#1|) (QUOTE (-136))))
(-490 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-491 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4259 . T) (-4258 . T))
-((-3254 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3254 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4260 . T) (-4259 . T))
+((-2067 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-2067 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-492 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4259)))
+((|HasAttribute| |#3| (QUOTE -4260)))
(-493 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4259)))
+((|HasAttribute| |#7| (QUOTE -4260)))
(-494 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4260 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4261 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-495 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
NIL
@@ -1920,7 +1920,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-498 K -3819 |Par|)
+(-498 K -1834 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -1940,7 +1940,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-503 K -3819 |Par|)
+(-503 K -1834 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -1970,17 +1970,17 @@ NIL
NIL
(-510)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4256 . T) (-4257 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4257 . T) (-4258 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-511 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3364) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4201) (|devaluate| |#2|)))))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
-(-512 R -3819)
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1556) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3448) (|devaluate| |#2|)))))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
+(-512 R -1834)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-513 R0 -3819 UP UPUP R)
+(-513 R0 -1834 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -1990,7 +1990,7 @@ NIL
NIL
(-515 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-1454 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-1485 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-516 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -1998,9 +1998,9 @@ NIL
NIL
(-517)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
-(-518 R -3819)
+(-518 R -1834)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
@@ -2012,7 +2012,7 @@ NIL
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-521 R -3819 L)
+(-521 R -1834 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -602) (|devaluate| |#2|))))
@@ -2020,31 +2020,31 @@ NIL
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-523 -3819 UP UPUP R)
+(-523 -1834 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-524 -3819 UP)
+(-524 -1834 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
(-525)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4240 . T) (-4246 . T) (-4250 . T) (-4245 . T) (-4256 . T) (-4257 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4241 . T) (-4247 . T) (-4251 . T) (-4246 . T) (-4257 . T) (-4258 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-526)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-527 R -3819 L)
+(-527 R -1834 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -602) (|devaluate| |#2|))))
-(-528 R -3819)
+(-528 R -1834)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1056)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-578)))))
-(-529 -3819 UP)
+(-529 -1834 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2052,53 +2052,53 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-531 -3819)
+(-531 -1834)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-532 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-1454 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-1485 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-533)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-534 R -3819)
+(-534 R -1834)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-263))) (|HasCategory| |#2| (QUOTE (-578))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-263)))) (|HasCategory| |#1| (QUOTE (-517))))
-(-535 -3819 UP)
+(-535 -1834 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-536 R -3819)
+(-536 R -1834)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
(-537 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-538 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
((|HasCategory| $ (QUOTE (-138))) (|HasCategory| $ (QUOTE (-136))) (|HasCategory| $ (QUOTE (-346))))
(-539)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-540 R -3819)
+(-540 R -1834)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-541 E -3819)
+(-541 E -1834)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-542 -3819)
+(-542 -1834)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4253 . T) (-4252 . T))
+((-4254 . T) (-4253 . T))
((|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-1092)))))
(-543 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
@@ -2122,19 +2122,19 @@ NIL
NIL
(-548 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4259 . T) (-4258 . T))
-((-3254 (-12 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (-3254 (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (-3254 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020)))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4260 . T) (-4259 . T))
+((-2067 (-12 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (-2067 (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (-2067 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020)))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798)))))
(-549 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-550 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))) (|HasCategory| (-525) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1217) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))) (|HasCategory| (-525) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -4100) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))))
(-551 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4253 |has| |#1| (-517)) (-4252 |has| |#1| (-517)) ((-4260 "*") |has| |#1| (-517)) (-4251 |has| |#1| (-517)) (-4255 . T))
+((-4254 |has| |#1| (-517)) (-4253 |has| |#1| (-517)) ((-4261 "*") |has| |#1| (-517)) (-4252 |has| |#1| (-517)) (-4256 . T))
((|HasCategory| |#1| (QUOTE (-517))))
(-552 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
@@ -2144,7 +2144,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-554 R -3819 FG)
+(-554 R -1834 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2154,15 +2154,15 @@ NIL
NIL
(-556 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4259 . T) (-4258 . T))
-((-3254 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3254 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4260 . T) (-4259 . T))
+((-2067 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-2067 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-557 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4259)) (|HasCategory| |#2| (QUOTE (-789))) (|HasAttribute| |#1| (QUOTE -4258)) (|HasCategory| |#3| (QUOTE (-1020))))
+((|HasAttribute| |#1| (QUOTE -4260)) (|HasCategory| |#2| (QUOTE (-789))) (|HasAttribute| |#1| (QUOTE -4259)) (|HasCategory| |#3| (QUOTE (-1020))))
(-558 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
-((-1405 . T))
+((-1456 . T))
NIL
(-559)
((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode.")))
@@ -2170,19 +2170,19 @@ NIL
NIL
(-560 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4255 -3254 (-3762 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))) (-4253 . T) (-4252 . T))
-((-3254 (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))))
+((-4256 -2067 (-3944 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))) (-4254 . T) (-4253 . T))
+((-2067 (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))))
(-561 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3364) (QUOTE (-1075))) (LIST (QUOTE |:|) (QUOTE -4201) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| (-1075) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1556) (QUOTE (-1075))) (LIST (QUOTE |:|) (QUOTE -3448) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| (-1075) (QUOTE (-789))) (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (LIST (QUOTE -566) (QUOTE (-798)))))
(-562 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-563 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4259 . T) (-1405 . T))
+((-4260 . T) (-1456 . T))
NIL
(-564 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
@@ -2200,7 +2200,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-568 -3819 UP)
+(-568 -1834 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2210,19 +2210,19 @@ NIL
NIL
(-570 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4255 . T))
+((-4256 . T))
NIL
(-571 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4252 . T) (-4253 . T) (-4255 . T))
+((-4253 . T) (-4254 . T) (-4256 . T))
((|HasCategory| |#1| (QUOTE (-787))))
-(-572 R -3819)
+(-572 R -1834)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
(-573 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4253 . T) (-4252 . T) ((-4260 "*") . T) (-4251 . T) (-4255 . T))
+((-4254 . T) (-4253 . T) ((-4261 "*") . T) (-4252 . T) (-4256 . T))
((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))
(-574 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
@@ -2234,7 +2234,7 @@ NIL
NIL
(-576 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4255 . T))
+((-4256 . T))
NIL
(-577 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
@@ -2244,30 +2244,30 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-579 R -3819)
+(-579 R -1834)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-580 |lv| -3819)
+(-580 |lv| -1834)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-581)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4259 . T))
-((-12 (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3364) (QUOTE (-1075))) (LIST (QUOTE |:|) (QUOTE -4201) (QUOTE (-51))))))) (-3254 (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (QUOTE (-1020))) (|HasCategory| (-51) (QUOTE (-1020)))) (-3254 (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-1075) (QUOTE (-789))) (-3254 (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4260 . T))
+((-12 (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1556) (QUOTE (-1075))) (LIST (QUOTE |:|) (QUOTE -3448) (QUOTE (-51))))))) (-2067 (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (QUOTE (-1020))) (|HasCategory| (-51) (QUOTE (-1020)))) (-2067 (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-1075) (QUOTE (-789))) (-2067 (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))))
(-582 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-341))))
(-583 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4253 . T) (-4252 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4254 . T) (-4253 . T))
NIL
(-584 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4255 -3254 (-3762 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))) (-4253 . T) (-4252 . T))
-((-3254 (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))))
+((-4256 -2067 (-3944 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))) (-4254 . T) (-4253 . T))
+((-2067 (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))))
(-585 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
@@ -2279,10 +2279,10 @@ NIL
(-587 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-1850 (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-341))))
+((-3272 (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-341))))
(-588 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4255 . T))
+((-4256 . T))
NIL
(-589 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
@@ -2298,12 +2298,12 @@ NIL
NIL
(-592 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4259 . T) (-4258 . T))
-((-3254 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3254 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-770))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4260 . T) (-4259 . T))
+((-2067 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-2067 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-770))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-593 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-594 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
@@ -2315,22 +2315,22 @@ NIL
(-596 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4259)))
+((|HasAttribute| |#1| (QUOTE -4260)))
(-597 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
-((-1405 . T))
+((-1456 . T))
NIL
-(-598 R -3819 L)
+(-598 R -1834 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
(-599 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4252 . T) (-4253 . T) (-4255 . T))
+((-4253 . T) (-4254 . T) (-4256 . T))
((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341))))
(-600 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4252 . T) (-4253 . T) (-4255 . T))
+((-4253 . T) (-4254 . T) (-4256 . T))
((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341))))
(-601 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
@@ -2338,15 +2338,15 @@ NIL
((|HasCategory| |#2| (QUOTE (-341))))
(-602 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4252 . T) (-4253 . T) (-4255 . T))
+((-4253 . T) (-4254 . T) (-4256 . T))
NIL
-(-603 -3819 UP)
+(-603 -1834 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-604 A -1718)
+(-604 A -3470)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4252 . T) (-4253 . T) (-4255 . T))
+((-4253 . T) (-4254 . T) (-4256 . T))
((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341))))
(-605 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
@@ -2362,7 +2362,7 @@ NIL
NIL
(-608 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4253 . T) (-4252 . T))
+((-4254 . T) (-4253 . T))
((|HasCategory| |#1| (QUOTE (-733))))
(-609 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
@@ -2370,7 +2370,7 @@ NIL
NIL
(-610 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4253 . T) (-4252 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4254 . T) (-4253 . T))
((|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-160))))
(-611 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
@@ -2378,13 +2378,13 @@ NIL
NIL
(-612 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4259 . T) (-4258 . T) (-1405 . T))
+((-4260 . T) (-4259 . T) (-1456 . T))
NIL
-(-613 -3819)
+(-613 -1834)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-614 -3819 |Row| |Col| M)
+(-614 -1834 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
@@ -2394,8 +2394,8 @@ NIL
NIL
(-616 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4255 . T) (-4258 . T) (-4252 . T) (-4253 . T))
-((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE (-4260 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (-3254 (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-517))) (-3254 (|HasAttribute| |#2| (QUOTE (-4260 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-160))))
+((-4256 . T) (-4259 . T) (-4253 . T) (-4254 . T))
+((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE (-4261 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (-2067 (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-517))) (-2067 (|HasAttribute| |#2| (QUOTE (-4261 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-160))))
(-617 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
@@ -2406,12 +2406,12 @@ NIL
NIL
(-619 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
-((-1405 . T))
+((-1456 . T))
NIL
(-620 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((-3254 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-2067 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-621 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
@@ -2447,10 +2447,10 @@ NIL
(-629 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4260 "*"))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-517))))
+((|HasAttribute| |#2| (QUOTE (-4261 "*"))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-517))))
(-630 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4258 . T) (-4259 . T) (-1405 . T))
+((-4259 . T) (-4260 . T) (-1456 . T))
NIL
(-631 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
@@ -2458,13 +2458,13 @@ NIL
((|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))))
(-632 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4258 . T) (-4259 . T))
-((-3254 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4260 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-2067 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4261 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-633 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-634 S -3819 FLAF FLAS)
+(-634 S -1834 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2474,11 +2474,11 @@ NIL
NIL
(-636)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4251 . T) (-4256 |has| (-641) (-341)) (-4250 |has| (-641) (-341)) (-1466 . T) (-4257 |has| (-641) (-6 -4257)) (-4254 |has| (-641) (-6 -4254)) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| (-641) (QUOTE (-138))) (|HasCategory| (-641) (QUOTE (-136))) (|HasCategory| (-641) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-641) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-641) (QUOTE (-346))) (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-641) (QUOTE (-213))) (-3254 (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-327)))) (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (LIST (QUOTE -265) (QUOTE (-641)) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -288) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -486) (QUOTE (-1092)) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-641) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-641) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-641) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (-3254 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-327)))) (|HasCategory| (-641) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-641) (QUOTE (-953))) (|HasCategory| (-641) (QUOTE (-1114))) (-12 (|HasCategory| (-641) (QUOTE (-934))) (|HasCategory| (-641) (QUOTE (-1114)))) (-3254 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-341))) (-12 (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (QUOTE (-844))))) (-3254 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (-12 (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-844)))) (-12 (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (QUOTE (-844))))) (|HasCategory| (-641) (QUOTE (-510))) (-12 (|HasCategory| (-641) (QUOTE (-986))) (|HasCategory| (-641) (QUOTE (-1114)))) (|HasCategory| (-641) (QUOTE (-986))) (-3254 (|HasCategory| (-641) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-641) (QUOTE (-341)))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844))) (-3254 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-341)))) (-3254 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-517)))) (-12 (|HasCategory| (-641) (QUOTE (-213))) (|HasCategory| (-641) (QUOTE (-341)))) (-12 (|HasCategory| (-641) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-641) (QUOTE (-341)))) (|HasCategory| (-641) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-641) (QUOTE (-789))) (|HasCategory| (-641) (QUOTE (-517))) (|HasAttribute| (-641) (QUOTE -4257)) (|HasAttribute| (-641) (QUOTE -4254)) (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-136)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-327)))))
+((-4252 . T) (-4257 |has| (-641) (-341)) (-4251 |has| (-641) (-341)) (-1496 . T) (-4258 |has| (-641) (-6 -4258)) (-4255 |has| (-641) (-6 -4255)) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| (-641) (QUOTE (-138))) (|HasCategory| (-641) (QUOTE (-136))) (|HasCategory| (-641) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-641) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-641) (QUOTE (-346))) (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-641) (QUOTE (-213))) (-2067 (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-327)))) (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (LIST (QUOTE -265) (QUOTE (-641)) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -288) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -486) (QUOTE (-1092)) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-641) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-641) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-641) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (-2067 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-327)))) (|HasCategory| (-641) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-641) (QUOTE (-953))) (|HasCategory| (-641) (QUOTE (-1114))) (-12 (|HasCategory| (-641) (QUOTE (-934))) (|HasCategory| (-641) (QUOTE (-1114)))) (-2067 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-341))) (-12 (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (QUOTE (-844))))) (-2067 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (-12 (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-844)))) (-12 (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (QUOTE (-844))))) (|HasCategory| (-641) (QUOTE (-510))) (-12 (|HasCategory| (-641) (QUOTE (-986))) (|HasCategory| (-641) (QUOTE (-1114)))) (|HasCategory| (-641) (QUOTE (-986))) (-2067 (|HasCategory| (-641) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-641) (QUOTE (-341)))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844))) (-2067 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-341)))) (-2067 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-517)))) (-12 (|HasCategory| (-641) (QUOTE (-213))) (|HasCategory| (-641) (QUOTE (-341)))) (-12 (|HasCategory| (-641) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-641) (QUOTE (-341)))) (|HasCategory| (-641) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-641) (QUOTE (-789))) (|HasCategory| (-641) (QUOTE (-517))) (|HasAttribute| (-641) (QUOTE -4258)) (|HasAttribute| (-641) (QUOTE -4255)) (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-136)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-327)))))
(-637 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4259 . T) (-1405 . T))
+((-4260 . T) (-1456 . T))
NIL
(-638 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
@@ -2488,13 +2488,13 @@ NIL
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-640 OV E -3819 PG)
+(-640 OV E -1834 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-641)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-1454 . T) (-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-1485 . T) (-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-642 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2502,7 +2502,7 @@ NIL
NIL
(-643)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4257 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4258 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-644 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
@@ -2524,7 +2524,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-649 S -2022 I)
+(-649 S -2401 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2534,7 +2534,7 @@ NIL
NIL
(-651 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4252 . T) (-4253 . T) (-4255 . T))
+((-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-652 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
@@ -2544,25 +2544,25 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-654 R |Mod| -2692 -1577 |exactQuo|)
+(-654 R |Mod| -2600 -3212 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-655 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4254 |has| |#1| (-341)) (-4256 |has| |#1| (-6 -4256)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-327))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4255 |has| |#1| (-341)) (-4257 |has| |#1| (-6 -4257)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-327))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4257)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
(-656 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
(-657 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4253 |has| |#1| (-160)) (-4252 |has| |#1| (-160)) (-4255 . T))
+((-4254 |has| |#1| (-160)) (-4253 |has| |#1| (-160)) (-4256 . T))
((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))))
-(-658 R |Mod| -2692 -1577 |exactQuo|)
+(-658 R |Mod| -2600 -3212 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4255 . T))
+((-4256 . T))
NIL
(-659 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
@@ -2570,11 +2570,11 @@ NIL
NIL
(-660 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4253 . T) (-4252 . T))
+((-4254 . T) (-4253 . T))
NIL
-(-661 -3819)
+(-661 -1834)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4255 . T))
+((-4256 . T))
NIL
(-662 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
@@ -2598,7 +2598,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-327))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))))
(-667 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4251 |has| |#1| (-341)) (-4256 |has| |#1| (-341)) (-4250 |has| |#1| (-341)) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 |has| |#1| (-341)) (-4257 |has| |#1| (-341)) (-4251 |has| |#1| (-341)) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-668 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
@@ -2608,7 +2608,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-670 -3819 UP)
+(-670 -1834 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2626,8 +2626,8 @@ NIL
NIL
(-674 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4260 "*") |has| |#2| (-160)) (-4251 |has| |#2| (-517)) (-4256 |has| |#2| (-6 -4256)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#2| (QUOTE (-844))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3254 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3254 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4256)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136)))))
+(((-4261 "*") |has| |#2| (-160)) (-4252 |has| |#2| (-517)) (-4257 |has| |#2| (-6 -4257)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#2| (QUOTE (-844))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-2067 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-2067 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4257)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136)))))
(-675 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2642,15 +2642,15 @@ NIL
NIL
(-678 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4253 |has| |#1| (-160)) (-4252 |has| |#1| (-160)) (-4255 . T))
+((-4254 |has| |#1| (-160)) (-4253 |has| |#1| (-160)) (-4256 . T))
((-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-789))))
(-679 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4248 . T) (-4259 . T) (-1405 . T))
+((-4249 . T) (-4260 . T) (-1456 . T))
NIL
(-680 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4258 . T) (-4248 . T) (-4259 . T))
+((-4259 . T) (-4249 . T) (-4260 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-681)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
@@ -2662,7 +2662,7 @@ NIL
NIL
(-683 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4253 . T) (-4252 . T) (-4255 . T))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4254 . T) (-4253 . T) (-4256 . T))
NIL
(-684 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2678,7 +2678,7 @@ NIL
NIL
(-687 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4253 . T) (-4252 . T))
+((-4254 . T) (-4253 . T))
NIL
(-688)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
@@ -2760,15 +2760,15 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-708 -3819)
+(-708 -1834)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-709 P -3819)
+(-709 P -1834)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-710 UP -3819)
+(-710 UP -1834)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -2782,9 +2782,9 @@ NIL
NIL
(-713)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4260 "*") . T))
+(((-4261 "*") . T))
NIL
-(-714 R -3819)
+(-714 R -1834)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
@@ -2804,7 +2804,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-719 -3819 |ExtF| |SUEx| |ExtP| |n|)
+(-719 -1834 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -2818,23 +2818,23 @@ NIL
NIL
(-722 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-6 -4256)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#1| (QUOTE (-844))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1092))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1092))))) (-3254 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1092)))) (-1850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1092)))))) (-3254 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1092)))) (-1850 (|HasCategory| |#1| (QUOTE (-510)))) (-1850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1092)))) (-1850 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525))))) (-1850 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1092)))) (-1850 (|HasCategory| |#1| (LIST (QUOTE -925) (QUOTE (-525))))))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-6 -4257)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1092))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1092))))) (-2067 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1092)))) (-3272 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1092)))))) (-2067 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1092)))) (-3272 (|HasCategory| |#1| (QUOTE (-510)))) (-3272 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1092)))) (-3272 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525))))) (-3272 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1092)))) (-3272 (|HasCategory| |#1| (LIST (QUOTE -925) (QUOTE (-525))))))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4257)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
(-723 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
(-724 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4254 |has| |#1| (-341)) (-4256 |has| |#1| (-6 -4256)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4255 |has| |#1| (-341)) (-4257 |has| |#1| (-6 -4257)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4257)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
(-725 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))
(-726 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4259 . T) (-4258 . T) (-1405 . T))
+((-4260 . T) (-4259 . T) (-1456 . T))
NIL
(-727 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
@@ -2886,25 +2886,25 @@ NIL
((|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-346))))
(-739 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4252 . T) (-4253 . T) (-4255 . T))
+((-4253 . T) (-4254 . T) (-4256 . T))
NIL
-(-740 -3254 R OS S)
+(-740 -2067 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
(-741 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (-3254 (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3254 (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))
+((-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (-2067 (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (-2067 (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))
(-742)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-743 R -3819 L)
+(-743 R -1834 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-744 R -3819)
+(-744 R -1834)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
@@ -2912,7 +2912,7 @@ NIL
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-746 R -3819)
+(-746 R -1834)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -2920,11 +2920,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-748 -3819 UP UPUP R)
+(-748 -1834 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-749 -3819 UP L LQ)
+(-749 -1834 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -2932,41 +2932,41 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-751 -3819 UP L LQ)
+(-751 -1834 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-752 -3819 UP)
+(-752 -1834 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-753 -3819 L UP A LO)
+(-753 -1834 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-754 -3819 UP)
+(-754 -1834 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-755 -3819 LO)
+(-755 -1834 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-756 -3819 LODO)
+(-756 -1834 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-757 -2122 S |f|)
+(-757 -2041 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4252 |has| |#2| (-977)) (-4253 |has| |#2| (-977)) (-4255 |has| |#2| (-6 -4255)) ((-4260 "*") |has| |#2| (-160)) (-4258 . T))
-((-3254 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))))) (-3254 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (QUOTE (-341))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-735))) (-3254 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-160))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020))))) (-3254 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-3254 (|HasCategory| |#2| (QUOTE (-977))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasAttribute| |#2| (QUOTE -4255)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4253 |has| |#2| (-977)) (-4254 |has| |#2| (-977)) (-4256 |has| |#2| (-6 -4256)) ((-4261 "*") |has| |#2| (-160)) (-4259 . T))
+((-2067 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))))) (-2067 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (QUOTE (-341))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-735))) (-2067 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-160))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-1020)))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020))))) (-2067 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-2067 (|HasCategory| |#2| (QUOTE (-977))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasAttribute| |#2| (QUOTE -4256)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))
(-758 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-6 -4256)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#1| (QUOTE (-844))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-760 (-1092)) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-760 (-1092)) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-760 (-1092)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-760 (-1092)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-760 (-1092)) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-6 -4257)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-760 (-1092)) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-760 (-1092)) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-760 (-1092)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-760 (-1092)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-760 (-1092)) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4257)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
(-759 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring.")))
-(((-4260 "*") |has| |#2| (-341)) (-4251 |has| |#2| (-341)) (-4256 |has| |#2| (-341)) (-4250 |has| |#2| (-341)) (-4255 . T) (-4253 . T) (-4252 . T))
+(((-4261 "*") |has| |#2| (-341)) (-4252 |has| |#2| (-341)) (-4257 |has| |#2| (-341)) (-4251 |has| |#2| (-341)) (-4256 . T) (-4254 . T) (-4253 . T))
((|HasCategory| |#2| (QUOTE (-341))))
(-760 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
@@ -2978,7 +2978,7 @@ NIL
NIL
(-762)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-763)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
@@ -3006,7 +3006,7 @@ NIL
NIL
(-769 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4252 . T) (-4253 . T) (-4255 . T))
+((-4253 . T) (-4254 . T) (-4256 . T))
((|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-213))))
(-770)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
@@ -3018,7 +3018,7 @@ NIL
NIL
(-772 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4258 . T) (-4248 . T) (-4259 . T) (-1405 . T))
+((-4259 . T) (-4249 . T) (-4260 . T) (-1456 . T))
NIL
(-773)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
@@ -3030,11 +3030,11 @@ NIL
NIL
(-775 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4255 |has| |#1| (-787)))
-((|HasCategory| |#1| (QUOTE (-787))) (-3254 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-787)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-510))) (-3254 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-21))))
+((-4256 |has| |#1| (-787)))
+((|HasCategory| |#1| (QUOTE (-787))) (-2067 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-787)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-510))) (-2067 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-21))))
(-776 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4253 |has| |#1| (-160)) (-4252 |has| |#1| (-160)) (-4255 . T))
+((-4254 |has| |#1| (-160)) (-4253 |has| |#1| (-160)) (-4256 . T))
((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))))
(-777)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
@@ -3058,13 +3058,13 @@ NIL
NIL
(-782 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4255 |has| |#1| (-787)))
-((|HasCategory| |#1| (QUOTE (-787))) (-3254 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-787)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-510))) (-3254 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-21))))
+((-4256 |has| |#1| (-787)))
+((|HasCategory| |#1| (QUOTE (-787))) (-2067 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-787)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-510))) (-2067 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-21))))
(-783)
((|constructor| (NIL "Ordered finite sets.")))
NIL
NIL
-(-784 -2122 S)
+(-784 -2041 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3078,7 +3078,7 @@ NIL
NIL
(-787)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4255 . T))
+((-4256 . T))
NIL
(-788 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
@@ -3094,19 +3094,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))))
(-791 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4252 . T) (-4253 . T) (-4255 . T))
+((-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-792 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517))))
-(-793 R |sigma| -2178)
+(-793 R |sigma| -2495)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4252 . T) (-4253 . T) (-4255 . T))
+((-4253 . T) (-4254 . T) (-4256 . T))
((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341))))
-(-794 |x| R |sigma| -2178)
+(-794 |x| R |sigma| -2495)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial.")))
-((-4252 . T) (-4253 . T) (-4255 . T))
+((-4253 . T) (-4254 . T) (-4256 . T))
((|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-341))))
(-795 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
@@ -3134,7 +3134,7 @@ NIL
NIL
(-801 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights")))
-((-4253 |has| |#1| (-160)) (-4252 |has| |#1| (-160)) (-4255 . T))
+((-4254 |has| |#1| (-160)) (-4253 |has| |#1| (-160)) (-4256 . T))
((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))))
(-802 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
@@ -3146,24 +3146,24 @@ NIL
NIL
(-804 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-805 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-806 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| (-805 |#1|) (QUOTE (-844))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| (-805 |#1|) (QUOTE (-136))) (|HasCategory| (-805 |#1|) (QUOTE (-138))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-805 |#1|) (QUOTE (-953))) (|HasCategory| (-805 |#1|) (QUOTE (-762))) (-3254 (|HasCategory| (-805 |#1|) (QUOTE (-762))) (|HasCategory| (-805 |#1|) (QUOTE (-789)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-805 |#1|) (QUOTE (-1068))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-805 |#1|) (QUOTE (-213))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -486) (QUOTE (-1092)) (LIST (QUOTE -805) (|devaluate| |#1|)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -288) (LIST (QUOTE -805) (|devaluate| |#1|)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -265) (LIST (QUOTE -805) (|devaluate| |#1|)) (LIST (QUOTE -805) (|devaluate| |#1|)))) (|HasCategory| (-805 |#1|) (QUOTE (-286))) (|HasCategory| (-805 |#1|) (QUOTE (-510))) (|HasCategory| (-805 |#1|) (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-805 |#1|) (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-805 |#1|) (QUOTE (-844)))) (|HasCategory| (-805 |#1|) (QUOTE (-136)))))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| (-805 |#1|) (QUOTE (-844))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| (-805 |#1|) (QUOTE (-136))) (|HasCategory| (-805 |#1|) (QUOTE (-138))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-805 |#1|) (QUOTE (-953))) (|HasCategory| (-805 |#1|) (QUOTE (-762))) (-2067 (|HasCategory| (-805 |#1|) (QUOTE (-762))) (|HasCategory| (-805 |#1|) (QUOTE (-789)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-805 |#1|) (QUOTE (-1068))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-805 |#1|) (QUOTE (-213))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -486) (QUOTE (-1092)) (LIST (QUOTE -805) (|devaluate| |#1|)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -288) (LIST (QUOTE -805) (|devaluate| |#1|)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -265) (LIST (QUOTE -805) (|devaluate| |#1|)) (LIST (QUOTE -805) (|devaluate| |#1|)))) (|HasCategory| (-805 |#1|) (QUOTE (-286))) (|HasCategory| (-805 |#1|) (QUOTE (-510))) (|HasCategory| (-805 |#1|) (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-805 |#1|) (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-805 |#1|) (QUOTE (-844)))) (|HasCategory| (-805 |#1|) (QUOTE (-136)))))
(-807 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-953))) (|HasCategory| |#2| (QUOTE (-762))) (-3254 (|HasCategory| |#2| (QUOTE (-762))) (|HasCategory| |#2| (QUOTE (-789)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136)))))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-953))) (|HasCategory| |#2| (QUOTE (-762))) (-2067 (|HasCategory| |#2| (QUOTE (-762))) (|HasCategory| |#2| (QUOTE (-789)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136)))))
(-808 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))))
(-809)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3219,7 +3219,7 @@ NIL
(-822 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-1850 (|HasCategory| |#2| (QUOTE (-977)))) (-1850 (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1092)))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (-1850 (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1092)))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1092)))))
+((-12 (-3272 (|HasCategory| |#2| (QUOTE (-977)))) (-3272 (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1092)))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (-3272 (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1092)))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1092)))))
(-823 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
@@ -3228,7 +3228,7 @@ NIL
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-825 R -2022)
+(-825 R -2401)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
@@ -3252,7 +3252,7 @@ NIL
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-831 UP -3819)
+(-831 UP -1834)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
@@ -3270,19 +3270,19 @@ NIL
NIL
(-835 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4255 . T))
+((-4256 . T))
NIL
(-836 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-837 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
(-838 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4255 . T))
+((-4256 . T))
NIL
(-839 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
@@ -3290,8 +3290,8 @@ NIL
NIL
(-840 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4255 . T))
-((-3254 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-789)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-789))))
+((-4256 . T))
+((-2067 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-789)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-789))))
(-841 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
@@ -3306,13 +3306,13 @@ NIL
((|HasCategory| |#1| (QUOTE (-136))))
(-844)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-845 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
((|HasCategory| $ (QUOTE (-138))) (|HasCategory| $ (QUOTE (-136))) (|HasCategory| $ (QUOTE (-346))))
-(-846 R0 -3819 UP UPUP R)
+(-846 R0 -1834 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
@@ -3326,7 +3326,7 @@ NIL
NIL
(-849 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-850 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
@@ -3340,7 +3340,7 @@ NIL
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-853 -3819)
+(-853 -1834)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
@@ -3350,17 +3350,17 @@ NIL
NIL
(-855)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-856)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4260 "*") . T))
+(((-4261 "*") . T))
NIL
-(-857 -3819 P)
+(-857 -1834 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-858 |xx| -3819)
+(-858 |xx| -1834)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
@@ -3384,7 +3384,7 @@ NIL
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-864 R -3819)
+(-864 R -1834)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
@@ -3396,7 +3396,7 @@ NIL
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-867 S R -3819)
+(-867 S R -1834)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
@@ -3416,11 +3416,11 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -821) (|devaluate| |#1|))))
-(-872 R -3819 -2022)
+(-872 R -1834 -2401)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-873 -2022)
+(-873 -2401)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
@@ -3442,8 +3442,8 @@ NIL
NIL
(-878 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4259 . T) (-4258 . T))
-((-3254 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3254 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4260 . T) (-4259 . T))
+((-2067 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-2067 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-879 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
@@ -3463,12 +3463,12 @@ NIL
(-883 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-844))) (|HasAttribute| |#2| (QUOTE -4256)) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#4| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#4| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-789))))
+((|HasCategory| |#2| (QUOTE (-844))) (|HasAttribute| |#2| (QUOTE -4257)) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#4| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#4| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-789))))
(-884 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-6 -4256)) (-4253 . T) (-4252 . T) (-4255 . T))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-6 -4257)) (-4254 . T) (-4253 . T) (-4256 . T))
NIL
-(-885 E V R P -3819)
+(-885 E V R P -1834)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
@@ -3478,9 +3478,9 @@ NIL
NIL
(-887 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-6 -4256)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#1| (QUOTE (-844))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1092) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1092) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1092) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1092) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1092) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
-(-888 E V R P -3819)
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-6 -4257)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1092) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1092) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1092) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1092) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1092) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4257)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(-888 E V R P -1834)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-429))))
@@ -3498,13 +3498,13 @@ NIL
NIL
(-892 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4259 . T) (-4258 . T))
-((-3254 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3254 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4260 . T) (-4259 . T))
+((-2067 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-2067 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-893)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-894 -3819)
+(-894 -1834)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
@@ -3518,12 +3518,12 @@ NIL
NIL
(-897 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-6 -4256)) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-126)))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4256)))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-6 -4257)) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-126)))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4257)))
(-898 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4255 -12 (|has| |#2| (-450)) (|has| |#1| (-450))))
-((-3254 (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735)))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669))))) (-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-346)))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))))
+((-4256 -12 (|has| |#2| (-450)) (|has| |#1| (-450))))
+((-2067 (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735)))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669))))) (-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-346)))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))))
(-899)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
@@ -3538,7 +3538,7 @@ NIL
NIL
(-902 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4258 . T) (-4259 . T) (-1405 . T))
+((-4259 . T) (-4260 . T) (-1456 . T))
NIL
(-903 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
@@ -3554,7 +3554,7 @@ NIL
NIL
(-906 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4252 . T) (-4253 . T) (-4255 . T))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-907)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
@@ -3566,7 +3566,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-517))))
(-909 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4258 . T) (-1405 . T))
+((-4259 . T) (-1456 . T))
NIL
(-910 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
@@ -3582,7 +3582,7 @@ NIL
NIL
(-913 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4259 . T) (-4258 . T) (-1405 . T))
+((-4260 . T) (-4259 . T) (-1456 . T))
NIL
(-914 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
@@ -3600,7 +3600,7 @@ NIL
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-918 K R UP -3819)
+(-918 K R UP -1834)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
@@ -3630,7 +3630,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-953))) (|HasCategory| |#2| (QUOTE (-762))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1068))))
(-925 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-1405 . T) (-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-1456 . T) (-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-926 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
@@ -3638,7 +3638,7 @@ NIL
NIL
(-927 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4258 . T) (-4259 . T) (-1405 . T))
+((-4259 . T) (-4260 . T) (-1456 . T))
NIL
(-928 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
@@ -3646,7 +3646,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-269))))
(-929 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4251 |has| |#1| (-269)) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 |has| |#1| (-269)) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-930 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
@@ -3654,12 +3654,12 @@ NIL
NIL
(-931 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4251 |has| |#1| (-269)) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341))) (-3254 (|HasCategory| |#1| (QUOTE (-269))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-269))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-510))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))))
+((-4252 |has| |#1| (-269)) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341))) (-2067 (|HasCategory| |#1| (QUOTE (-269))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-269))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-510))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))))
(-932 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-933 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
@@ -3668,14 +3668,14 @@ NIL
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-935 -3819 UP UPUP |radicnd| |n|)
+(-935 -1834 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4251 |has| (-385 |#2|) (-341)) (-4256 |has| (-385 |#2|) (-341)) (-4250 |has| (-385 |#2|) (-341)) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| (-385 |#2|) (QUOTE (-136))) (|HasCategory| (-385 |#2|) (QUOTE (-138))) (|HasCategory| (-385 |#2|) (QUOTE (-327))) (-3254 (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-346))) (-3254 (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (-3254 (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-385 |#2|) (QUOTE (-327))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3254 (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))))
+((-4252 |has| (-385 |#2|) (-341)) (-4257 |has| (-385 |#2|) (-341)) (-4251 |has| (-385 |#2|) (-341)) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| (-385 |#2|) (QUOTE (-136))) (|HasCategory| (-385 |#2|) (QUOTE (-138))) (|HasCategory| (-385 |#2|) (QUOTE (-327))) (-2067 (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-346))) (-2067 (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (-2067 (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-385 |#2|) (QUOTE (-327))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-2067 (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))))
(-936 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-3254 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1068))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1092)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136)))))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-2067 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1068))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1092)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136)))))
(-937)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
@@ -3695,10 +3695,10 @@ NIL
(-941 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4259)) (|HasCategory| |#2| (QUOTE (-1020))))
+((|HasAttribute| |#1| (QUOTE -4260)) (|HasCategory| |#2| (QUOTE (-1020))))
(-942 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
-((-1405 . T))
+((-1456 . T))
NIL
(-943 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
@@ -3706,21 +3706,21 @@ NIL
NIL
(-944)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4251 . T) (-4256 . T) (-4250 . T) (-4253 . T) (-4252 . T) ((-4260 "*") . T) (-4255 . T))
+((-4252 . T) (-4257 . T) (-4251 . T) (-4254 . T) (-4253 . T) ((-4261 "*") . T) (-4256 . T))
NIL
-(-945 R -3819)
+(-945 R -1834)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-946 R -3819)
+(-946 R -1834)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-947 -3819 UP)
+(-947 -1834 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-948 -3819 UP)
+(-948 -1834 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -3750,9 +3750,9 @@ NIL
NIL
(-955 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4251 . T) (-4256 . T) (-4250 . T) (-4253 . T) (-4252 . T) ((-4260 "*") . T) (-4255 . T))
-((-3254 (|HasCategory| (-385 (-525)) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-385 (-525)) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 (-525)) (LIST (QUOTE -968) (QUOTE (-525)))))
-(-956 -3819 L)
+((-4252 . T) (-4257 . T) (-4251 . T) (-4254 . T) (-4253 . T) ((-4261 "*") . T) (-4256 . T))
+((-2067 (|HasCategory| (-385 (-525)) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-385 (-525)) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 (-525)) (LIST (QUOTE -968) (QUOTE (-525)))))
+(-956 -1834 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
@@ -3762,12 +3762,12 @@ NIL
((|HasCategory| |#1| (QUOTE (-1020))))
(-958 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4259 . T) (-4258 . T))
+((-4260 . T) (-4259 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-798)))))
(-959 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4260 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4261 "*"))))
(-960 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
@@ -3788,14 +3788,14 @@ NIL
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-965 -3819 |Expon| |VarSet| |FPol| |LFPol|)
+(-965 -1834 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+(((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-966)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3364) (QUOTE (-1092))) (LIST (QUOTE |:|) (QUOTE -4201) (QUOTE (-51))))))) (-3254 (|HasCategory| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (QUOTE (-1020))) (|HasCategory| (-51) (QUOTE (-1020)))) (-3254 (|HasCategory| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (QUOTE (-1020))) (|HasCategory| (-1092) (QUOTE (-789))) (|HasCategory| (-51) (QUOTE (-1020))) (-3254 (|HasCategory| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1556) (QUOTE (-1092))) (LIST (QUOTE |:|) (QUOTE -3448) (QUOTE (-51))))))) (-2067 (|HasCategory| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (QUOTE (-1020))) (|HasCategory| (-51) (QUOTE (-1020)))) (-2067 (|HasCategory| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (QUOTE (-1020))) (|HasCategory| (-1092) (QUOTE (-789))) (|HasCategory| (-51) (QUOTE (-1020))) (-2067 (|HasCategory| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))))
(-967 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
@@ -3826,7 +3826,7 @@ NIL
NIL
(-974 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4259 . T) (-4258 . T))
+((-4260 . T) (-4259 . T))
((-12 (|HasCategory| (-722 |#1| (-800 |#2|)) (QUOTE (-1020))) (|HasCategory| (-722 |#1| (-800 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -722) (|devaluate| |#1|) (LIST (QUOTE -800) (|devaluate| |#2|)))))) (|HasCategory| (-722 |#1| (-800 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-722 |#1| (-800 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| (-800 |#2|) (QUOTE (-346))) (|HasCategory| (-722 |#1| (-800 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
(-975)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
@@ -3838,9 +3838,9 @@ NIL
NIL
(-977)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4255 . T))
+((-4256 . T))
NIL
-(-978 |xx| -3819)
+(-978 |xx| -1834)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
@@ -3850,12 +3850,12 @@ NIL
((|HasCategory| |#4| (QUOTE (-286))) (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (QUOTE (-517))) (|HasCategory| |#4| (QUOTE (-160))))
(-980 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4258 . T) (-1405 . T) (-4253 . T) (-4252 . T))
+((-4259 . T) (-1456 . T) (-4254 . T) (-4253 . T))
NIL
(-981 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4258 . T) (-4253 . T) (-4252 . T))
-((-3254 (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-501)))) (-3254 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (QUOTE (-286))) (|HasCategory| |#3| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))))
+((-4259 . T) (-4254 . T) (-4253 . T))
+((-2067 (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-501)))) (-2067 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (QUOTE (-286))) (|HasCategory| |#3| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))))
(-982 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
@@ -3874,7 +3874,7 @@ NIL
NIL
(-986)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-987 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
@@ -3882,19 +3882,19 @@ NIL
NIL
(-988)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4246 . T) (-4250 . T) (-4245 . T) (-4256 . T) (-4257 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4247 . T) (-4251 . T) (-4246 . T) (-4257 . T) (-4258 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-989)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3364) (QUOTE (-1092))) (LIST (QUOTE |:|) (QUOTE -4201) (QUOTE (-51))))))) (-3254 (|HasCategory| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (QUOTE (-1020))) (|HasCategory| (-51) (QUOTE (-1020)))) (-3254 (|HasCategory| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (QUOTE (-1020))) (|HasCategory| (-1092) (QUOTE (-789))) (|HasCategory| (-51) (QUOTE (-1020))) (-3254 (|HasCategory| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1556) (QUOTE (-1092))) (LIST (QUOTE |:|) (QUOTE -3448) (QUOTE (-51))))))) (-2067 (|HasCategory| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (QUOTE (-1020))) (|HasCategory| (-51) (QUOTE (-1020)))) (-2067 (|HasCategory| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (QUOTE (-1020))) (|HasCategory| (-1092) (QUOTE (-789))) (|HasCategory| (-51) (QUOTE (-1020))) (-2067 (|HasCategory| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))))
(-990 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -925) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-1092)))))
(-991 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-6 -4256)) (-4253 . T) (-4252 . T) (-4255 . T))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-6 -4257)) (-4254 . T) (-4253 . T) (-4256 . T))
NIL
(-992 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
@@ -3914,7 +3914,7 @@ NIL
NIL
(-996 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4259 . T) (-4258 . T) (-1405 . T))
+((-4260 . T) (-4259 . T) (-1456 . T))
NIL
(-997 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
@@ -3924,11 +3924,11 @@ NIL
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-999 |Base| R -3819)
+(-999 |Base| R -1834)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1000 |Base| R -3819)
+(-1000 |Base| R -1834)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
@@ -3942,8 +3942,8 @@ NIL
NIL
(-1003 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4251 |has| |#1| (-341)) (-4256 |has| |#1| (-341)) (-4250 |has| |#1| (-341)) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327))) (-3254 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-327)))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092))))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))))
+((-4252 |has| |#1| (-341)) (-4257 |has| |#1| (-341)) (-4251 |has| |#1| (-341)) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327))) (-2067 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-327)))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092))))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))))
(-1004 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
@@ -3966,8 +3966,8 @@ NIL
NIL
(-1009 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-6 -4256)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#1| (QUOTE (-844))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1010 (-1092)) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1010 (-1092)) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1010 (-1092)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1010 (-1092)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1010 (-1092)) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-6 -4257)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1010 (-1092)) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1010 (-1092)) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1010 (-1092)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1010 (-1092)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1010 (-1092)) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4257)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
(-1010 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
@@ -3986,7 +3986,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-1020))))
(-1014 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
-((-1405 . T))
+((-1456 . T))
NIL
(-1015 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
@@ -3994,15 +3994,15 @@ NIL
((|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (QUOTE (-1020))))
(-1016 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
-((-1405 . T))
+((-1456 . T))
NIL
(-1017 A S)
-((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
+((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
(-1018 S)
-((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4248 . T) (-1405 . T))
+((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
+((-4249 . T) (-1456 . T))
NIL
(-1019 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
@@ -4018,8 +4018,8 @@ NIL
NIL
(-1022 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4258 . T) (-4248 . T) (-4259 . T))
-((-3254 (-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4249 . T) (-4260 . T))
+((-2067 (-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-1023 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
@@ -4046,7 +4046,7 @@ NIL
NIL
(-1029 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4259 . T) (-4258 . T) (-1405 . T))
+((-4260 . T) (-4259 . T) (-1456 . T))
NIL
(-1030)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
@@ -4062,13 +4062,13 @@ NIL
NIL
(-1033 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4252 |has| |#3| (-977)) (-4253 |has| |#3| (-977)) (-4255 |has| |#3| (-6 -4255)) ((-4260 "*") |has| |#3| (-160)) (-4258 . T))
-((-3254 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))))) (-3254 (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#3| (QUOTE (-341))) (-3254 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3254 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-735))) (-3254 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787)))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-160))) (-3254 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (-3254 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-1020)))) (-3254 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3254 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3254 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3254 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-126)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-160)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-213)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-341)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-346)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-669)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-735)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-787)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020))))) (-3254 (-12 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-3254 (|HasCategory| |#3| (QUOTE (-977))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020)))) (|HasAttribute| |#3| (QUOTE -4255)) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4253 |has| |#3| (-977)) (-4254 |has| |#3| (-977)) (-4256 |has| |#3| (-6 -4256)) ((-4261 "*") |has| |#3| (-160)) (-4259 . T))
+((-2067 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))))) (-2067 (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#3| (QUOTE (-341))) (-2067 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-2067 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-735))) (-2067 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787)))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-160))) (-2067 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (-2067 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-1020)))) (-2067 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-2067 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-2067 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-2067 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-126)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-160)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-213)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-341)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-346)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-669)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-735)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-787)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020))))) (-2067 (-12 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1092))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-2067 (|HasCategory| |#3| (QUOTE (-977))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020)))) (|HasAttribute| |#3| (QUOTE -4256)) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798)))))
(-1034 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-429))))
-(-1035 R -3819)
+(-1035 R -1834)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
@@ -4086,19 +4086,19 @@ NIL
NIL
(-1039)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4246 . T) (-4250 . T) (-4245 . T) (-4256 . T) (-4257 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4247 . T) (-4251 . T) (-4246 . T) (-4257 . T) (-4258 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-1040 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4258 . T) (-4259 . T) (-1405 . T))
+((-4259 . T) (-4260 . T) (-1456 . T))
NIL
(-1041 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-341))) (|HasAttribute| |#3| (QUOTE (-4260 "*"))) (|HasCategory| |#3| (QUOTE (-160))))
+((|HasCategory| |#3| (QUOTE (-341))) (|HasAttribute| |#3| (QUOTE (-4261 "*"))) (|HasCategory| |#3| (QUOTE (-160))))
(-1042 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-1405 . T) (-4258 . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-1456 . T) (-4259 . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-1043 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
@@ -4106,17 +4106,17 @@ NIL
NIL
(-1044 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-6 -4256)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#1| (QUOTE (-844))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-6 -4257)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4257)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
(-1045 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341))))
(-1046 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4259 . T) (-4258 . T) (-1405 . T))
+((-4260 . T) (-4259 . T) (-1456 . T))
NIL
-(-1047 UP -3819)
+(-1047 UP -1834)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
@@ -4162,19 +4162,19 @@ NIL
NIL
(-1058 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| (-1057 |#1| |#2|) (LIST (QUOTE -288) (LIST (QUOTE -1057) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1057 |#1| |#2|) (QUOTE (-1020)))) (|HasCategory| (-1057 |#1| |#2|) (QUOTE (-1020))) (-3254 (|HasCategory| (-1057 |#1| |#2|) (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| (-1057 |#1| |#2|) (LIST (QUOTE -288) (LIST (QUOTE -1057) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1057 |#1| |#2|) (QUOTE (-1020))))) (|HasCategory| (-1057 |#1| |#2|) (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| (-1057 |#1| |#2|) (LIST (QUOTE -288) (LIST (QUOTE -1057) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1057 |#1| |#2|) (QUOTE (-1020)))) (|HasCategory| (-1057 |#1| |#2|) (QUOTE (-1020))) (-2067 (|HasCategory| (-1057 |#1| |#2|) (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| (-1057 |#1| |#2|) (LIST (QUOTE -288) (LIST (QUOTE -1057) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1057 |#1| |#2|) (QUOTE (-1020))))) (|HasCategory| (-1057 |#1| |#2|) (LIST (QUOTE -566) (QUOTE (-798)))))
(-1059 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")))
-((-4255 . T) (-4247 |has| |#2| (-6 (-4260 "*"))) (-4258 . T) (-4252 . T) (-4253 . T))
-((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE (-4260 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (-3254 (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-341))) (-3254 (|HasAttribute| |#2| (QUOTE (-4260 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-160))))
+((-4256 . T) (-4248 |has| |#2| (-6 (-4261 "*"))) (-4259 . T) (-4253 . T) (-4254 . T))
+((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE (-4261 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (-2067 (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-341))) (-2067 (|HasAttribute| |#2| (QUOTE (-4261 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-160))))
(-1060 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
(-1061)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4259 . T) (-4258 . T) (-1405 . T))
+((-4260 . T) (-4259 . T) (-1456 . T))
NIL
(-1062 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
@@ -4182,24 +4182,24 @@ NIL
NIL
(-1063 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4259 . T) (-4258 . T))
+((-4260 . T) (-4259 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-798)))))
(-1064 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-1065 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
(-1066 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
-((-1405 . T))
+((-1456 . T))
NIL
(-1067 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4259 . T))
-((-12 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3364) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4201) (|devaluate| |#2|)))))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-789))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4260 . T))
+((-12 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1556) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3448) (|devaluate| |#2|)))))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-789))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
(-1068)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
@@ -4222,20 +4222,20 @@ NIL
NIL
(-1073 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4259 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4260 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-1074)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4259 . T) (-4258 . T) (-1405 . T))
+((-4260 . T) (-4259 . T) (-1456 . T))
NIL
(-1075)
NIL
-((-4259 . T) (-4258 . T))
-((-3254 (-12 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4260 . T) (-4259 . T))
+((-2067 (-12 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798)))))
(-1076 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3364) (QUOTE (-1075))) (LIST (QUOTE |:|) (QUOTE -4201) (|devaluate| |#1|)))))) (-3254 (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-1020)))) (-3254 (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (QUOTE (-1020))) (|HasCategory| (-1075) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1556) (QUOTE (-1075))) (LIST (QUOTE |:|) (QUOTE -3448) (|devaluate| |#1|)))))) (-2067 (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-1020)))) (-2067 (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (QUOTE (-1020))) (|HasCategory| (-1075) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (LIST (QUOTE -566) (QUOTE (-798)))))
(-1077 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
@@ -4262,9 +4262,9 @@ NIL
NIL
(-1083 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4260 "*") -3254 (-3762 (|has| |#1| (-341)) (|has| (-1090 |#1| |#2| |#3|) (-762))) (|has| |#1| (-160)) (-3762 (|has| |#1| (-341)) (|has| (-1090 |#1| |#2| |#3|) (-844)))) (-4251 -3254 (-3762 (|has| |#1| (-341)) (|has| (-1090 |#1| |#2| |#3|) (-762))) (|has| |#1| (-517)) (-3762 (|has| |#1| (-341)) (|has| (-1090 |#1| |#2| |#3|) (-844)))) (-4256 |has| |#1| (-341)) (-4250 |has| |#1| (-341)) (-4252 . T) (-4253 . T) (-4255 . T))
-((-3254 (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1092)) (LIST (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3254 (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3254 (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-138)))) (-3254 (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))))) (-3254 (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1032))) (-3254 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-3254 (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341))))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1092)) (LIST (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1217) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3254 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1206) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -2897) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-136))) (-3254 (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-517)))) (-3254 (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3254 (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-160)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))))
-(-1084 R -3819)
+(((-4261 "*") -2067 (-3944 (|has| |#1| (-341)) (|has| (-1090 |#1| |#2| |#3|) (-762))) (|has| |#1| (-160)) (-3944 (|has| |#1| (-341)) (|has| (-1090 |#1| |#2| |#3|) (-844)))) (-4252 -2067 (-3944 (|has| |#1| (-341)) (|has| (-1090 |#1| |#2| |#3|) (-762))) (|has| |#1| (-517)) (-3944 (|has| |#1| (-341)) (|has| (-1090 |#1| |#2| |#3|) (-844)))) (-4257 |has| |#1| (-341)) (-4251 |has| |#1| (-341)) (-4253 . T) (-4254 . T) (-4256 . T))
+((-2067 (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1092)) (LIST (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-2067 (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))) (-2067 (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-138)))) (-2067 (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))))) (-2067 (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1032))) (-2067 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-2067 (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341))))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1092)) (LIST (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -4100) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-2067 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2367) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -1296) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-136))) (-2067 (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-517)))) (-2067 (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-2067 (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-160)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(-1084 R -1834)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
@@ -4282,16 +4282,16 @@ NIL
NIL
(-1088 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4254 |has| |#1| (-341)) (-4256 |has| |#1| (-6 -4256)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4255 |has| |#1| (-341)) (-4257 |has| |#1| (-6 -4257)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4257)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
(-1089 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-341)) (-4250 |has| |#1| (-341)) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3254 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1217) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3254 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1206) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -2897) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-341)) (-4251 |has| |#1| (-341)) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-2067 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -4100) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-2067 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2367) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -1296) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))))
(-1090 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|)))) (|HasCategory| (-713) (QUOTE (-1032))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasSignature| |#1| (LIST (QUOTE -1217) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasCategory| |#1| (QUOTE (-341))) (-3254 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1206) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -2897) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|)))) (|HasCategory| (-713) (QUOTE (-1032))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasSignature| |#1| (LIST (QUOTE -4100) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasCategory| |#1| (QUOTE (-341))) (-2067 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2367) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -1296) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))))
(-1091)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4306,8 +4306,8 @@ NIL
NIL
(-1094 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-6 -4256)) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| (-904) (QUOTE (-126))) (|HasCategory| |#1| (QUOTE (-517)))) (-3254 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4256)))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-6 -4257)) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| (-904) (QUOTE (-126))) (|HasCategory| |#1| (QUOTE (-517)))) (-2067 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4257)))
(-1095)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
@@ -4338,8 +4338,8 @@ NIL
NIL
(-1102 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4258 . T) (-4259 . T))
-((-12 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3364) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4201) (|devaluate| |#2|)))))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-3254 (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4259 . T) (-4260 . T))
+((-12 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1556) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3448) (|devaluate| |#2|)))))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-2067 (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
(-1103 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
@@ -4350,7 +4350,7 @@ NIL
NIL
(-1105 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4259 . T) (-1405 . T))
+((-4260 . T) (-1456 . T))
NIL
(-1106 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
@@ -4390,8 +4390,8 @@ NIL
NIL
(-1115 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4259 . T) (-4258 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4260 . T) (-4259 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-1116 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
@@ -4400,7 +4400,7 @@ NIL
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1118 R -3819)
+(-1118 R -1834)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -4408,7 +4408,7 @@ NIL
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1120 R -3819)
+(-1120 R -1834)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -821) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -821) (|devaluate| |#1|)))))
@@ -4418,12 +4418,12 @@ NIL
((|HasCategory| |#4| (QUOTE (-346))))
(-1122 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4259 . T) (-4258 . T) (-1405 . T))
+((-4260 . T) (-4259 . T) (-1456 . T))
NIL
(-1123 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341))))
(-1124 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
@@ -4436,13 +4436,13 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a")))
NIL
((|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
-(-1127 -3819)
+(-1127 -1834)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
(-1128)
((|constructor| (NIL "The fundamental Type.")))
-((-1405 . T))
+((-1456 . T))
NIL
(-1129 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
@@ -4458,7 +4458,7 @@ NIL
NIL
(-1132)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-1133 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
@@ -4466,7 +4466,7 @@ NIL
NIL
(-1134 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-341)) (-4250 |has| |#1| (-341)) (-4252 . T) (-4253 . T) (-4255 . T))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-341)) (-4251 |has| |#1| (-341)) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-1135 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
@@ -4474,16 +4474,16 @@ NIL
((|HasCategory| |#2| (QUOTE (-341))))
(-1136 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-341)) (-4250 |has| |#1| (-341)) (-1405 |has| |#1| (-341)) (-4252 . T) (-4253 . T) (-4255 . T))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-341)) (-4251 |has| |#1| (-341)) (-1456 |has| |#1| (-341)) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-1137 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-341)) (-4250 |has| |#1| (-341)) (-4252 . T) (-4253 . T) (-4255 . T))
-((-3254 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-953)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1092)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3254 (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-136))))) (-3254 (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-138))))) (-3254 (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-213)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1032))) (-3254 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-953)))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1217) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3254 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1206) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -2897) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789)))) (|HasCategory| |#2| (QUOTE (-844))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-286)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-136))))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-341)) (-4251 |has| |#1| (-341)) (-4253 . T) (-4254 . T) (-4256 . T))
+((-2067 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-953)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1092)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-2067 (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-136))))) (-2067 (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-138))))) (-2067 (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-213)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1032))) (-2067 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1092))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-953)))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1092)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -4100) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-2067 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2367) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -1296) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789)))) (|HasCategory| |#2| (QUOTE (-844))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-286)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-136))))))
(-1138 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4260 "*") -3254 (-3762 (|has| |#1| (-341)) (|has| (-1166 |#1| |#2| |#3|) (-762))) (|has| |#1| (-160)) (-3762 (|has| |#1| (-341)) (|has| (-1166 |#1| |#2| |#3|) (-844)))) (-4251 -3254 (-3762 (|has| |#1| (-341)) (|has| (-1166 |#1| |#2| |#3|) (-762))) (|has| |#1| (-517)) (-3762 (|has| |#1| (-341)) (|has| (-1166 |#1| |#2| |#3|) (-844)))) (-4256 |has| |#1| (-341)) (-4250 |has| |#1| (-341)) (-4252 . T) (-4253 . T) (-4255 . T))
-((-3254 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1092)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3254 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3254 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-138)))) (-3254 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))))) (-3254 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1032))) (-3254 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-3254 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341))))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1092)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1217) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3254 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1206) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -2897) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-136))) (-3254 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-517)))) (-3254 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3254 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-160)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(((-4261 "*") -2067 (-3944 (|has| |#1| (-341)) (|has| (-1166 |#1| |#2| |#3|) (-762))) (|has| |#1| (-160)) (-3944 (|has| |#1| (-341)) (|has| (-1166 |#1| |#2| |#3|) (-844)))) (-4252 -2067 (-3944 (|has| |#1| (-341)) (|has| (-1166 |#1| |#2| |#3|) (-762))) (|has| |#1| (-517)) (-3944 (|has| |#1| (-341)) (|has| (-1166 |#1| |#2| |#3|) (-844)))) (-4257 |has| |#1| (-341)) (-4251 |has| |#1| (-341)) (-4253 . T) (-4254 . T) (-4256 . T))
+((-2067 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1092)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-2067 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))) (-2067 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-138)))) (-2067 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))))) (-2067 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1032))) (-2067 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-2067 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341))))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1092)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -4100) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-2067 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2367) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -1296) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-136))) (-2067 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-517)))) (-2067 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-2067 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-160)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))))
(-1139 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
@@ -4518,8 +4518,8 @@ NIL
NIL
(-1147 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial.")))
-(((-4260 "*") |has| |#2| (-160)) (-4251 |has| |#2| (-517)) (-4254 |has| |#2| (-341)) (-4256 |has| |#2| (-6 -4256)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-3254 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3254 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3254 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (-3254 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE -4256)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3254 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136)))))
+(((-4261 "*") |has| |#2| (-160)) (-4252 |has| |#2| (-517)) (-4255 |has| |#2| (-341)) (-4257 |has| |#2| (-6 -4257)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-2067 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-2067 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-2067 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (-2067 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE -4257)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-2067 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136)))))
(-1148 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
@@ -4530,15 +4530,15 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-1068))))
(-1150 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4254 |has| |#1| (-341)) (-4256 |has| |#1| (-6 -4256)) (-4253 . T) (-4252 . T) (-4255 . T))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4255 |has| |#1| (-341)) (-4257 |has| |#1| (-6 -4257)) (-4254 . T) (-4253 . T) (-4256 . T))
NIL
(-1151 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1032))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1217) (LIST (|devaluate| |#2|) (QUOTE (-1092))))))
+((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1032))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4100) (LIST (|devaluate| |#2|) (QUOTE (-1092))))))
(-1152 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4252 . T) (-4253 . T) (-4255 . T))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-1153 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
@@ -4550,7 +4550,7 @@ NIL
NIL
(-1155 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-341)) (-4250 |has| |#1| (-341)) (-4252 . T) (-4253 . T) (-4255 . T))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-341)) (-4251 |has| |#1| (-341)) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-1156 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
@@ -4558,27 +4558,27 @@ NIL
NIL
(-1157 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-341)) (-4250 |has| |#1| (-341)) (-4252 . T) (-4253 . T) (-4255 . T))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-341)) (-4251 |has| |#1| (-341)) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-1158 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-341)) (-4250 |has| |#1| (-341)) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3254 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1217) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3254 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1206) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -2897) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-341)) (-4251 |has| |#1| (-341)) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-2067 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -4100) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-2067 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2367) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -1296) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))
(-1159 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4256 |has| |#1| (-341)) (-4250 |has| |#1| (-341)) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3254 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1217) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3254 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1206) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -2897) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4257 |has| |#1| (-341)) (-4251 |has| |#1| (-341)) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-2067 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -4100) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-2067 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2367) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -1296) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))))
(-1160 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4260 "*") |has| (-1159 |#2| |#3| |#4|) (-160)) (-4251 |has| (-1159 |#2| |#3| |#4|) (-517)) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| (-1159 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-160))) (|HasCategory| (-1159 |#2| |#3| |#4|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-341))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-429))) (-3254 (|HasCategory| (-1159 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-517))))
+(((-4261 "*") |has| (-1159 |#2| |#3| |#4|) (-160)) (-4252 |has| (-1159 |#2| |#3| |#4|) (-517)) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| (-1159 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-160))) (|HasCategory| (-1159 |#2| |#3| |#4|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-341))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-429))) (-2067 (|HasCategory| (-1159 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-517))))
(-1161 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4259)))
+((|HasAttribute| |#1| (QUOTE -4260)))
(-1162 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
-((-1405 . T))
+((-1456 . T))
NIL
(-1163 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
@@ -4587,26 +4587,26 @@ NIL
(-1164 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-893))) (|HasCategory| |#2| (QUOTE (-1114))) (|HasSignature| |#2| (LIST (QUOTE -2897) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1206) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1092))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))))
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-893))) (|HasCategory| |#2| (QUOTE (-1114))) (|HasSignature| |#2| (LIST (QUOTE -1296) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2367) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1092))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))))
(-1165 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4252 . T) (-4253 . T) (-4255 . T))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-1166 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4260 "*") |has| |#1| (-160)) (-4251 |has| |#1| (-517)) (-4252 . T) (-4253 . T) (-4255 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3254 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|)))) (|HasCategory| (-713) (QUOTE (-1032))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasSignature| |#1| (LIST (QUOTE -1217) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasCategory| |#1| (QUOTE (-341))) (-3254 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1206) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -2897) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))))
+(((-4261 "*") |has| |#1| (-160)) (-4252 |has| |#1| (-517)) (-4253 . T) (-4254 . T) (-4256 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-2067 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1092)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|)))) (|HasCategory| (-713) (QUOTE (-1032))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasSignature| |#1| (LIST (QUOTE -4100) (LIST (|devaluate| |#1|) (QUOTE (-1092)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasCategory| |#1| (QUOTE (-341))) (-2067 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2367) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1092))))) (|HasSignature| |#1| (LIST (QUOTE -1296) (LIST (LIST (QUOTE -592) (QUOTE (-1092))) (|devaluate| |#1|)))))))
(-1167 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1168 -3819 UP L UTS)
+(-1168 -1834 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-517))))
(-1169)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
-((-1405 . T))
+((-1456 . T))
NIL
(-1170 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
@@ -4618,7 +4618,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
(-1172 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4259 . T) (-4258 . T) (-1405 . T))
+((-4260 . T) (-4259 . T) (-1456 . T))
NIL
(-1173 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
@@ -4626,8 +4626,8 @@ NIL
NIL
(-1174 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4259 . T) (-4258 . T))
-((-3254 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3254 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3254 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+((-4260 . T) (-4259 . T))
+((-2067 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-2067 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-2067 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-1175)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
@@ -4654,68 +4654,68 @@ NIL
NIL
(-1181 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4253 . T) (-4252 . T))
+((-4254 . T) (-4253 . T))
NIL
(-1182 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1183 K R UP -3819)
+(-1183 K R UP -1834)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
(-1184 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights")))
-((-4253 |has| |#1| (-160)) (-4252 |has| |#1| (-160)) (-4255 . T))
+((-4254 |has| |#1| (-160)) (-4253 |has| |#1| (-160)) (-4256 . T))
((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))))
(-1185 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4259 . T) (-4258 . T))
+((-4260 . T) (-4259 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-798)))))
(-1186 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}.")))
-((-4252 . T) (-4253 . T) (-4255 . T))
+((-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-1187 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4255 . T) (-4251 |has| |#2| (-6 -4251)) (-4253 . T) (-4252 . T))
-((|HasCategory| |#2| (QUOTE (-160))) (|HasAttribute| |#2| (QUOTE -4251)))
+((-4256 . T) (-4252 |has| |#2| (-6 -4252)) (-4254 . T) (-4253 . T))
+((|HasCategory| |#2| (QUOTE (-160))) (|HasAttribute| |#2| (QUOTE -4252)))
(-1188 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
(-1189 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4251 |has| |#2| (-6 -4251)) (-4253 . T) (-4252 . T) (-4255 . T))
+((-4252 |has| |#2| (-6 -4252)) (-4254 . T) (-4253 . T) (-4256 . T))
NIL
-(-1190 S -3819)
+(-1190 S -1834)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))))
-(-1191 -3819)
+(-1191 -1834)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4250 . T) (-4256 . T) (-4251 . T) ((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+((-4251 . T) (-4257 . T) (-4252 . T) ((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
(-1192 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4251 |has| |#2| (-6 -4251)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -660) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasAttribute| |#2| (QUOTE -4251)))
+((-4252 |has| |#2| (-6 -4252)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -660) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasAttribute| |#2| (QUOTE -4252)))
(-1193 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4251 |has| |#2| (-6 -4251)) (-4253 . T) (-4252 . T) (-4255 . T))
+((-4252 |has| |#2| (-6 -4252)) (-4254 . T) (-4253 . T) (-4256 . T))
NIL
(-1194 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4251 |has| |#1| (-6 -4251)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#1| (QUOTE (-160))) (|HasAttribute| |#1| (QUOTE -4251)))
+((-4252 |has| |#1| (-6 -4252)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#1| (QUOTE (-160))) (|HasAttribute| |#1| (QUOTE -4252)))
(-1195 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4255 . T) (-4256 |has| |#1| (-6 -4256)) (-4251 |has| |#1| (-6 -4251)) (-4253 . T) (-4252 . T))
-((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasAttribute| |#1| (QUOTE -4255)) (|HasAttribute| |#1| (QUOTE -4256)) (|HasAttribute| |#1| (QUOTE -4251)))
+((-4256 . T) (-4257 |has| |#1| (-6 -4257)) (-4252 |has| |#1| (-6 -4252)) (-4254 . T) (-4253 . T))
+((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasAttribute| |#1| (QUOTE -4256)) (|HasAttribute| |#1| (QUOTE -4257)) (|HasAttribute| |#1| (QUOTE -4252)))
(-1196 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4251 |has| |#2| (-6 -4251)) (-4253 . T) (-4252 . T) (-4255 . T))
-((|HasCategory| |#2| (QUOTE (-160))) (|HasAttribute| |#2| (QUOTE -4251)))
+((-4252 |has| |#2| (-6 -4252)) (-4254 . T) (-4253 . T) (-4256 . T))
+((|HasCategory| |#2| (QUOTE (-160))) (|HasAttribute| |#2| (QUOTE -4252)))
(-1197 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
@@ -4730,7 +4730,7 @@ NIL
NIL
(-1200 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4260 "*") . T) (-4252 . T) (-4253 . T) (-4255 . T))
+(((-4261 "*") . T) (-4253 . T) (-4254 . T) (-4256 . T))
NIL
NIL
NIL
@@ -4748,4 +4748,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2241648 2241653 2241658 2241663) (-2 NIL 2241628 2241633 2241638 2241643) (-1 NIL 2241608 2241613 2241618 2241623) (0 NIL 2241588 2241593 2241598 2241603) (-1200 "ZMOD.spad" 2241397 2241410 2241526 2241583) (-1199 "ZLINDEP.spad" 2240441 2240452 2241387 2241392) (-1198 "ZDSOLVE.spad" 2230290 2230312 2240431 2240436) (-1197 "YSTREAM.spad" 2229783 2229794 2230280 2230285) (-1196 "XRPOLY.spad" 2229003 2229023 2229639 2229708) (-1195 "XPR.spad" 2226732 2226745 2228721 2228820) (-1194 "XPOLY.spad" 2226287 2226298 2226588 2226657) (-1193 "XPOLYC.spad" 2225604 2225620 2226213 2226282) (-1192 "XPBWPOLY.spad" 2224041 2224061 2225384 2225453) (-1191 "XF.spad" 2222502 2222517 2223943 2224036) (-1190 "XF.spad" 2220943 2220960 2222386 2222391) (-1189 "XFALG.spad" 2217967 2217983 2220869 2220938) (-1188 "XEXPPKG.spad" 2217218 2217244 2217957 2217962) (-1187 "XDPOLY.spad" 2216832 2216848 2217074 2217143) (-1186 "XALG.spad" 2216430 2216441 2216788 2216827) (-1185 "WUTSET.spad" 2212269 2212286 2216076 2216103) (-1184 "WP.spad" 2211283 2211327 2212127 2212194) (-1183 "WFFINTBS.spad" 2208846 2208868 2211273 2211278) (-1182 "WEIER.spad" 2207060 2207071 2208836 2208841) (-1181 "VSPACE.spad" 2206733 2206744 2207028 2207055) (-1180 "VSPACE.spad" 2206426 2206439 2206723 2206728) (-1179 "VOID.spad" 2206016 2206025 2206416 2206421) (-1178 "VIEW.spad" 2203638 2203647 2206006 2206011) (-1177 "VIEWDEF.spad" 2198835 2198844 2203628 2203633) (-1176 "VIEW3D.spad" 2182670 2182679 2198825 2198830) (-1175 "VIEW2D.spad" 2170407 2170416 2182660 2182665) (-1174 "VECTOR.spad" 2169084 2169095 2169335 2169362) (-1173 "VECTOR2.spad" 2167711 2167724 2169074 2169079) (-1172 "VECTCAT.spad" 2165599 2165610 2167667 2167706) (-1171 "VECTCAT.spad" 2163308 2163321 2165378 2165383) (-1170 "VARIABLE.spad" 2163088 2163103 2163298 2163303) (-1169 "UTYPE.spad" 2162722 2162731 2163068 2163083) (-1168 "UTSODETL.spad" 2162015 2162039 2162678 2162683) (-1167 "UTSODE.spad" 2160203 2160223 2162005 2162010) (-1166 "UTS.spad" 2154992 2155020 2158670 2158767) (-1165 "UTSCAT.spad" 2152443 2152459 2154890 2154987) (-1164 "UTSCAT.spad" 2149538 2149556 2151987 2151992) (-1163 "UTS2.spad" 2149131 2149166 2149528 2149533) (-1162 "URAGG.spad" 2143753 2143764 2149111 2149126) (-1161 "URAGG.spad" 2138349 2138362 2143709 2143714) (-1160 "UPXSSING.spad" 2135995 2136021 2137433 2137566) (-1159 "UPXS.spad" 2133022 2133050 2134127 2134276) (-1158 "UPXSCONS.spad" 2130779 2130799 2131154 2131303) (-1157 "UPXSCCA.spad" 2129237 2129257 2130625 2130774) (-1156 "UPXSCCA.spad" 2127837 2127859 2129227 2129232) (-1155 "UPXSCAT.spad" 2126418 2126434 2127683 2127832) (-1154 "UPXS2.spad" 2125959 2126012 2126408 2126413) (-1153 "UPSQFREE.spad" 2124371 2124385 2125949 2125954) (-1152 "UPSCAT.spad" 2121964 2121988 2124269 2124366) (-1151 "UPSCAT.spad" 2119263 2119289 2121570 2121575) (-1150 "UPOLYC.spad" 2114241 2114252 2119105 2119258) (-1149 "UPOLYC.spad" 2109111 2109124 2113977 2113982) (-1148 "UPOLYC2.spad" 2108580 2108599 2109101 2109106) (-1147 "UP.spad" 2105625 2105640 2106133 2106286) (-1146 "UPMP.spad" 2104515 2104528 2105615 2105620) (-1145 "UPDIVP.spad" 2104078 2104092 2104505 2104510) (-1144 "UPDECOMP.spad" 2102315 2102329 2104068 2104073) (-1143 "UPCDEN.spad" 2101522 2101538 2102305 2102310) (-1142 "UP2.spad" 2100884 2100905 2101512 2101517) (-1141 "UNISEG.spad" 2100237 2100248 2100803 2100808) (-1140 "UNISEG2.spad" 2099730 2099743 2100193 2100198) (-1139 "UNIFACT.spad" 2098831 2098843 2099720 2099725) (-1138 "ULS.spad" 2089390 2089418 2090483 2090912) (-1137 "ULSCONS.spad" 2083433 2083453 2083805 2083954) (-1136 "ULSCCAT.spad" 2081030 2081050 2083253 2083428) (-1135 "ULSCCAT.spad" 2078761 2078783 2080986 2080991) (-1134 "ULSCAT.spad" 2076977 2076993 2078607 2078756) (-1133 "ULS2.spad" 2076489 2076542 2076967 2076972) (-1132 "UFD.spad" 2075554 2075563 2076415 2076484) (-1131 "UFD.spad" 2074681 2074692 2075544 2075549) (-1130 "UDVO.spad" 2073528 2073537 2074671 2074676) (-1129 "UDPO.spad" 2070955 2070966 2073484 2073489) (-1128 "TYPE.spad" 2070877 2070886 2070935 2070950) (-1127 "TWOFACT.spad" 2069527 2069542 2070867 2070872) (-1126 "TUPLE.spad" 2068913 2068924 2069426 2069431) (-1125 "TUBETOOL.spad" 2065750 2065759 2068903 2068908) (-1124 "TUBE.spad" 2064391 2064408 2065740 2065745) (-1123 "TS.spad" 2062980 2062996 2063956 2064053) (-1122 "TSETCAT.spad" 2050095 2050112 2062936 2062975) (-1121 "TSETCAT.spad" 2037208 2037227 2050051 2050056) (-1120 "TRMANIP.spad" 2031574 2031591 2036914 2036919) (-1119 "TRIMAT.spad" 2030533 2030558 2031564 2031569) (-1118 "TRIGMNIP.spad" 2029050 2029067 2030523 2030528) (-1117 "TRIGCAT.spad" 2028562 2028571 2029040 2029045) (-1116 "TRIGCAT.spad" 2028072 2028083 2028552 2028557) (-1115 "TREE.spad" 2026643 2026654 2027679 2027706) (-1114 "TRANFUN.spad" 2026474 2026483 2026633 2026638) (-1113 "TRANFUN.spad" 2026303 2026314 2026464 2026469) (-1112 "TOPSP.spad" 2025977 2025986 2026293 2026298) (-1111 "TOOLSIGN.spad" 2025640 2025651 2025967 2025972) (-1110 "TEXTFILE.spad" 2024197 2024206 2025630 2025635) (-1109 "TEX.spad" 2021214 2021223 2024187 2024192) (-1108 "TEX1.spad" 2020770 2020781 2021204 2021209) (-1107 "TEMUTL.spad" 2020325 2020334 2020760 2020765) (-1106 "TBCMPPK.spad" 2018418 2018441 2020315 2020320) (-1105 "TBAGG.spad" 2017442 2017465 2018386 2018413) (-1104 "TBAGG.spad" 2016486 2016511 2017432 2017437) (-1103 "TANEXP.spad" 2015862 2015873 2016476 2016481) (-1102 "TABLE.spad" 2014273 2014296 2014543 2014570) (-1101 "TABLEAU.spad" 2013754 2013765 2014263 2014268) (-1100 "TABLBUMP.spad" 2010537 2010548 2013744 2013749) (-1099 "SYSTEM.spad" 2009811 2009820 2010527 2010532) (-1098 "SYSSOLP.spad" 2007284 2007295 2009801 2009806) (-1097 "SYNTAX.spad" 2003476 2003485 2007274 2007279) (-1096 "SYMTAB.spad" 2001532 2001541 2003466 2003471) (-1095 "SYMS.spad" 1997517 1997526 2001522 2001527) (-1094 "SYMPOLY.spad" 1996527 1996538 1996609 1996736) (-1093 "SYMFUNC.spad" 1996002 1996013 1996517 1996522) (-1092 "SYMBOL.spad" 1993338 1993347 1995992 1995997) (-1091 "SWITCH.spad" 1990095 1990104 1993328 1993333) (-1090 "SUTS.spad" 1986994 1987022 1988562 1988659) (-1089 "SUPXS.spad" 1984008 1984036 1985126 1985275) (-1088 "SUP.spad" 1980780 1980791 1981561 1981714) (-1087 "SUPFRACF.spad" 1979885 1979903 1980770 1980775) (-1086 "SUP2.spad" 1979275 1979288 1979875 1979880) (-1085 "SUMRF.spad" 1978241 1978252 1979265 1979270) (-1084 "SUMFS.spad" 1977874 1977891 1978231 1978236) (-1083 "SULS.spad" 1968420 1968448 1969526 1969955) (-1082 "SUCH.spad" 1968100 1968115 1968410 1968415) (-1081 "SUBSPACE.spad" 1960107 1960122 1968090 1968095) (-1080 "SUBRESP.spad" 1959267 1959281 1960063 1960068) (-1079 "STTF.spad" 1955366 1955382 1959257 1959262) (-1078 "STTFNC.spad" 1951834 1951850 1955356 1955361) (-1077 "STTAYLOR.spad" 1944232 1944243 1951715 1951720) (-1076 "STRTBL.spad" 1942737 1942754 1942886 1942913) (-1075 "STRING.spad" 1942146 1942155 1942160 1942187) (-1074 "STRICAT.spad" 1941922 1941931 1942102 1942141) (-1073 "STREAM.spad" 1938690 1938701 1941447 1941462) (-1072 "STREAM3.spad" 1938235 1938250 1938680 1938685) (-1071 "STREAM2.spad" 1937303 1937316 1938225 1938230) (-1070 "STREAM1.spad" 1937007 1937018 1937293 1937298) (-1069 "STINPROD.spad" 1935913 1935929 1936997 1937002) (-1068 "STEP.spad" 1935114 1935123 1935903 1935908) (-1067 "STBL.spad" 1933640 1933668 1933807 1933822) (-1066 "STAGG.spad" 1932705 1932716 1933620 1933635) (-1065 "STAGG.spad" 1931778 1931791 1932695 1932700) (-1064 "STACK.spad" 1931129 1931140 1931385 1931412) (-1063 "SREGSET.spad" 1928833 1928850 1930775 1930802) (-1062 "SRDCMPK.spad" 1927378 1927398 1928823 1928828) (-1061 "SRAGG.spad" 1922463 1922472 1927334 1927373) (-1060 "SRAGG.spad" 1917580 1917591 1922453 1922458) (-1059 "SQMATRIX.spad" 1915206 1915224 1916114 1916201) (-1058 "SPLTREE.spad" 1909758 1909771 1914642 1914669) (-1057 "SPLNODE.spad" 1906346 1906359 1909748 1909753) (-1056 "SPFCAT.spad" 1905123 1905132 1906336 1906341) (-1055 "SPECOUT.spad" 1903673 1903682 1905113 1905118) (-1054 "spad-parser.spad" 1903138 1903147 1903663 1903668) (-1053 "SPACEC.spad" 1887151 1887162 1903128 1903133) (-1052 "SPACE3.spad" 1886927 1886938 1887141 1887146) (-1051 "SORTPAK.spad" 1886472 1886485 1886883 1886888) (-1050 "SOLVETRA.spad" 1884229 1884240 1886462 1886467) (-1049 "SOLVESER.spad" 1882749 1882760 1884219 1884224) (-1048 "SOLVERAD.spad" 1878759 1878770 1882739 1882744) (-1047 "SOLVEFOR.spad" 1877179 1877197 1878749 1878754) (-1046 "SNTSCAT.spad" 1876767 1876784 1877135 1877174) (-1045 "SMTS.spad" 1875027 1875053 1876332 1876429) (-1044 "SMP.spad" 1872469 1872489 1872859 1872986) (-1043 "SMITH.spad" 1871312 1871337 1872459 1872464) (-1042 "SMATCAT.spad" 1869410 1869440 1871244 1871307) (-1041 "SMATCAT.spad" 1867452 1867484 1869288 1869293) (-1040 "SKAGG.spad" 1866401 1866412 1867408 1867447) (-1039 "SINT.spad" 1864709 1864718 1866267 1866396) (-1038 "SIMPAN.spad" 1864437 1864446 1864699 1864704) (-1037 "SIG.spad" 1864034 1864043 1864427 1864432) (-1036 "SIGNRF.spad" 1863142 1863153 1864024 1864029) (-1035 "SIGNEF.spad" 1862411 1862428 1863132 1863137) (-1034 "SHP.spad" 1860329 1860344 1862367 1862372) (-1033 "SHDP.spad" 1851365 1851392 1851874 1852003) (-1032 "SGROUP.spad" 1850831 1850840 1851355 1851360) (-1031 "SGROUP.spad" 1850295 1850306 1850821 1850826) (-1030 "SGCF.spad" 1843176 1843185 1850285 1850290) (-1029 "SFRTCAT.spad" 1842092 1842109 1843132 1843171) (-1028 "SFRGCD.spad" 1841155 1841175 1842082 1842087) (-1027 "SFQCMPK.spad" 1835792 1835812 1841145 1841150) (-1026 "SFORT.spad" 1835227 1835241 1835782 1835787) (-1025 "SEXOF.spad" 1835070 1835110 1835217 1835222) (-1024 "SEX.spad" 1834962 1834971 1835060 1835065) (-1023 "SEXCAT.spad" 1832066 1832106 1834952 1834957) (-1022 "SET.spad" 1830366 1830377 1831487 1831526) (-1021 "SETMN.spad" 1828800 1828817 1830356 1830361) (-1020 "SETCAT.spad" 1828285 1828294 1828790 1828795) (-1019 "SETCAT.spad" 1827768 1827779 1828275 1828280) (-1018 "SETAGG.spad" 1824291 1824302 1827736 1827763) (-1017 "SETAGG.spad" 1820834 1820847 1824281 1824286) (-1016 "SEGXCAT.spad" 1819946 1819959 1820814 1820829) (-1015 "SEG.spad" 1819759 1819770 1819865 1819870) (-1014 "SEGCAT.spad" 1818578 1818589 1819739 1819754) (-1013 "SEGBIND.spad" 1817650 1817661 1818533 1818538) (-1012 "SEGBIND2.spad" 1817346 1817359 1817640 1817645) (-1011 "SEG2.spad" 1816771 1816784 1817302 1817307) (-1010 "SDVAR.spad" 1816047 1816058 1816761 1816766) (-1009 "SDPOL.spad" 1813440 1813451 1813731 1813858) (-1008 "SCPKG.spad" 1811519 1811530 1813430 1813435) (-1007 "SCOPE.spad" 1810664 1810673 1811509 1811514) (-1006 "SCACHE.spad" 1809346 1809357 1810654 1810659) (-1005 "SAOS.spad" 1809218 1809227 1809336 1809341) (-1004 "SAERFFC.spad" 1808931 1808951 1809208 1809213) (-1003 "SAE.spad" 1807109 1807125 1807720 1807855) (-1002 "SAEFACT.spad" 1806810 1806830 1807099 1807104) (-1001 "RURPK.spad" 1804451 1804467 1806800 1806805) (-1000 "RULESET.spad" 1803892 1803916 1804441 1804446) (-999 "RULE.spad" 1802097 1802120 1803882 1803887) (-998 "RULECOLD.spad" 1801950 1801962 1802087 1802092) (-997 "RSETGCD.spad" 1798329 1798348 1801940 1801945) (-996 "RSETCAT.spad" 1788102 1788118 1798285 1798324) (-995 "RSETCAT.spad" 1777907 1777925 1788092 1788097) (-994 "RSDCMPK.spad" 1776360 1776379 1777897 1777902) (-993 "RRCC.spad" 1774745 1774774 1776350 1776355) (-992 "RRCC.spad" 1773128 1773159 1774735 1774740) (-991 "RPOLCAT.spad" 1752489 1752503 1772996 1773123) (-990 "RPOLCAT.spad" 1731565 1731581 1752074 1752079) (-989 "ROUTINE.spad" 1727429 1727437 1730212 1730239) (-988 "ROMAN.spad" 1726662 1726670 1727295 1727424) (-987 "ROIRC.spad" 1725743 1725774 1726652 1726657) (-986 "RNS.spad" 1724647 1724655 1725645 1725738) (-985 "RNS.spad" 1723637 1723647 1724637 1724642) (-984 "RNG.spad" 1723373 1723381 1723627 1723632) (-983 "RMODULE.spad" 1723012 1723022 1723363 1723368) (-982 "RMCAT2.spad" 1722421 1722477 1723002 1723007) (-981 "RMATRIX.spad" 1721101 1721119 1721588 1721627) (-980 "RMATCAT.spad" 1716623 1716653 1721045 1721096) (-979 "RMATCAT.spad" 1712047 1712079 1716471 1716476) (-978 "RINTERP.spad" 1711936 1711955 1712037 1712042) (-977 "RING.spad" 1711294 1711302 1711916 1711931) (-976 "RING.spad" 1710660 1710670 1711284 1711289) (-975 "RIDIST.spad" 1710045 1710053 1710650 1710655) (-974 "RGCHAIN.spad" 1708625 1708640 1709530 1709557) (-973 "RF.spad" 1706240 1706250 1708615 1708620) (-972 "RFFACTOR.spad" 1705703 1705713 1706230 1706235) (-971 "RFFACT.spad" 1705439 1705450 1705693 1705698) (-970 "RFDIST.spad" 1704428 1704436 1705429 1705434) (-969 "RETSOL.spad" 1703846 1703858 1704418 1704423) (-968 "RETRACT.spad" 1703196 1703206 1703836 1703841) (-967 "RETRACT.spad" 1702544 1702556 1703186 1703191) (-966 "RESULT.spad" 1700605 1700613 1701191 1701218) (-965 "RESRING.spad" 1699953 1699999 1700543 1700600) (-964 "RESLATC.spad" 1699278 1699288 1699943 1699948) (-963 "REPSQ.spad" 1699008 1699018 1699268 1699273) (-962 "REP.spad" 1696561 1696569 1698998 1699003) (-961 "REPDB.spad" 1696267 1696277 1696551 1696556) (-960 "REP2.spad" 1685840 1685850 1696109 1696114) (-959 "REP1.spad" 1679831 1679841 1685790 1685795) (-958 "REGSET.spad" 1677629 1677645 1679477 1679504) (-957 "REF.spad" 1676959 1676969 1677584 1677589) (-956 "REDORDER.spad" 1676136 1676152 1676949 1676954) (-955 "RECLOS.spad" 1674926 1674945 1675629 1675722) (-954 "REALSOLV.spad" 1674059 1674067 1674916 1674921) (-953 "REAL.spad" 1673932 1673940 1674049 1674054) (-952 "REAL0Q.spad" 1671215 1671229 1673922 1673927) (-951 "REAL0.spad" 1668044 1668058 1671205 1671210) (-950 "RDIV.spad" 1667696 1667720 1668034 1668039) (-949 "RDIST.spad" 1667260 1667270 1667686 1667691) (-948 "RDETRS.spad" 1666057 1666074 1667250 1667255) (-947 "RDETR.spad" 1664165 1664182 1666047 1666052) (-946 "RDEEFS.spad" 1663239 1663255 1664155 1664160) (-945 "RDEEF.spad" 1662236 1662252 1663229 1663234) (-944 "RCFIELD.spad" 1659423 1659431 1662138 1662231) (-943 "RCFIELD.spad" 1656696 1656706 1659413 1659418) (-942 "RCAGG.spad" 1654599 1654609 1656676 1656691) (-941 "RCAGG.spad" 1652439 1652451 1654518 1654523) (-940 "RATRET.spad" 1651800 1651810 1652429 1652434) (-939 "RATFACT.spad" 1651493 1651504 1651790 1651795) (-938 "RANDSRC.spad" 1650813 1650821 1651483 1651488) (-937 "RADUTIL.spad" 1650568 1650576 1650803 1650808) (-936 "RADIX.spad" 1647361 1647374 1649038 1649131) (-935 "RADFF.spad" 1645778 1645814 1645896 1646052) (-934 "RADCAT.spad" 1645372 1645380 1645768 1645773) (-933 "RADCAT.spad" 1644964 1644974 1645362 1645367) (-932 "QUEUE.spad" 1644307 1644317 1644571 1644598) (-931 "QUAT.spad" 1642893 1642903 1643235 1643300) (-930 "QUATCT2.spad" 1642512 1642530 1642883 1642888) (-929 "QUATCAT.spad" 1640677 1640687 1642442 1642507) (-928 "QUATCAT.spad" 1638594 1638606 1640361 1640366) (-927 "QUAGG.spad" 1637408 1637418 1638550 1638589) (-926 "QFORM.spad" 1636871 1636885 1637398 1637403) (-925 "QFCAT.spad" 1635562 1635572 1636761 1636866) (-924 "QFCAT.spad" 1633859 1633871 1635060 1635065) (-923 "QFCAT2.spad" 1633550 1633566 1633849 1633854) (-922 "QEQUAT.spad" 1633107 1633115 1633540 1633545) (-921 "QCMPACK.spad" 1627854 1627873 1633097 1633102) (-920 "QALGSET.spad" 1623929 1623961 1627768 1627773) (-919 "QALGSET2.spad" 1621925 1621943 1623919 1623924) (-918 "PWFFINTB.spad" 1619235 1619256 1621915 1621920) (-917 "PUSHVAR.spad" 1618564 1618583 1619225 1619230) (-916 "PTRANFN.spad" 1614690 1614700 1618554 1618559) (-915 "PTPACK.spad" 1611778 1611788 1614680 1614685) (-914 "PTFUNC2.spad" 1611599 1611613 1611768 1611773) (-913 "PTCAT.spad" 1610681 1610691 1611555 1611594) (-912 "PSQFR.spad" 1609988 1610012 1610671 1610676) (-911 "PSEUDLIN.spad" 1608846 1608856 1609978 1609983) (-910 "PSETPK.spad" 1594279 1594295 1608724 1608729) (-909 "PSETCAT.spad" 1588187 1588210 1594247 1594274) (-908 "PSETCAT.spad" 1582081 1582106 1588143 1588148) (-907 "PSCURVE.spad" 1581064 1581072 1582071 1582076) (-906 "PSCAT.spad" 1579831 1579860 1580962 1581059) (-905 "PSCAT.spad" 1578688 1578719 1579821 1579826) (-904 "PRTITION.spad" 1577531 1577539 1578678 1578683) (-903 "PRS.spad" 1567093 1567110 1577487 1577492) (-902 "PRQAGG.spad" 1566512 1566522 1567049 1567088) (-901 "PROPLOG.spad" 1565915 1565923 1566502 1566507) (-900 "PROPFRML.spad" 1563779 1563790 1565851 1565856) (-899 "PROPERTY.spad" 1563273 1563281 1563769 1563774) (-898 "PRODUCT.spad" 1560953 1560965 1561239 1561294) (-897 "PR.spad" 1559342 1559354 1560047 1560174) (-896 "PRINT.spad" 1559094 1559102 1559332 1559337) (-895 "PRIMES.spad" 1557345 1557355 1559084 1559089) (-894 "PRIMELT.spad" 1555326 1555340 1557335 1557340) (-893 "PRIMCAT.spad" 1554949 1554957 1555316 1555321) (-892 "PRIMARR.spad" 1553954 1553964 1554132 1554159) (-891 "PRIMARR2.spad" 1552677 1552689 1553944 1553949) (-890 "PREASSOC.spad" 1552049 1552061 1552667 1552672) (-889 "PPCURVE.spad" 1551186 1551194 1552039 1552044) (-888 "POLYROOT.spad" 1549958 1549980 1551142 1551147) (-887 "POLY.spad" 1547258 1547268 1547775 1547902) (-886 "POLYLIFT.spad" 1546519 1546542 1547248 1547253) (-885 "POLYCATQ.spad" 1544621 1544643 1546509 1546514) (-884 "POLYCAT.spad" 1538027 1538048 1544489 1544616) (-883 "POLYCAT.spad" 1530735 1530758 1537199 1537204) (-882 "POLY2UP.spad" 1530183 1530197 1530725 1530730) (-881 "POLY2.spad" 1529778 1529790 1530173 1530178) (-880 "POLUTIL.spad" 1528719 1528748 1529734 1529739) (-879 "POLTOPOL.spad" 1527467 1527482 1528709 1528714) (-878 "POINT.spad" 1526308 1526318 1526395 1526422) (-877 "PNTHEORY.spad" 1522974 1522982 1526298 1526303) (-876 "PMTOOLS.spad" 1521731 1521745 1522964 1522969) (-875 "PMSYM.spad" 1521276 1521286 1521721 1521726) (-874 "PMQFCAT.spad" 1520863 1520877 1521266 1521271) (-873 "PMPRED.spad" 1520332 1520346 1520853 1520858) (-872 "PMPREDFS.spad" 1519776 1519798 1520322 1520327) (-871 "PMPLCAT.spad" 1518846 1518864 1519708 1519713) (-870 "PMLSAGG.spad" 1518427 1518441 1518836 1518841) (-869 "PMKERNEL.spad" 1517994 1518006 1518417 1518422) (-868 "PMINS.spad" 1517570 1517580 1517984 1517989) (-867 "PMFS.spad" 1517143 1517161 1517560 1517565) (-866 "PMDOWN.spad" 1516429 1516443 1517133 1517138) (-865 "PMASS.spad" 1515441 1515449 1516419 1516424) (-864 "PMASSFS.spad" 1514410 1514426 1515431 1515436) (-863 "PLOTTOOL.spad" 1514190 1514198 1514400 1514405) (-862 "PLOT.spad" 1509021 1509029 1514180 1514185) (-861 "PLOT3D.spad" 1505441 1505449 1509011 1509016) (-860 "PLOT1.spad" 1504582 1504592 1505431 1505436) (-859 "PLEQN.spad" 1491798 1491825 1504572 1504577) (-858 "PINTERP.spad" 1491414 1491433 1491788 1491793) (-857 "PINTERPA.spad" 1491196 1491212 1491404 1491409) (-856 "PI.spad" 1490803 1490811 1491170 1491191) (-855 "PID.spad" 1489759 1489767 1490729 1490798) (-854 "PICOERCE.spad" 1489416 1489426 1489749 1489754) (-853 "PGROEB.spad" 1488013 1488027 1489406 1489411) (-852 "PGE.spad" 1479266 1479274 1488003 1488008) (-851 "PGCD.spad" 1478148 1478165 1479256 1479261) (-850 "PFRPAC.spad" 1477291 1477301 1478138 1478143) (-849 "PFR.spad" 1473948 1473958 1477193 1477286) (-848 "PFOTOOLS.spad" 1473206 1473222 1473938 1473943) (-847 "PFOQ.spad" 1472576 1472594 1473196 1473201) (-846 "PFO.spad" 1471995 1472022 1472566 1472571) (-845 "PF.spad" 1471569 1471581 1471800 1471893) (-844 "PFECAT.spad" 1469235 1469243 1471495 1471564) (-843 "PFECAT.spad" 1466929 1466939 1469191 1469196) (-842 "PFBRU.spad" 1464799 1464811 1466919 1466924) (-841 "PFBR.spad" 1462337 1462360 1464789 1464794) (-840 "PERM.spad" 1458018 1458028 1462167 1462182) (-839 "PERMGRP.spad" 1452754 1452764 1458008 1458013) (-838 "PERMCAT.spad" 1451306 1451316 1452734 1452749) (-837 "PERMAN.spad" 1449838 1449852 1451296 1451301) (-836 "PENDTREE.spad" 1449111 1449121 1449467 1449472) (-835 "PDRING.spad" 1447602 1447612 1449091 1449106) (-834 "PDRING.spad" 1446101 1446113 1447592 1447597) (-833 "PDEPROB.spad" 1445058 1445066 1446091 1446096) (-832 "PDEPACK.spad" 1439060 1439068 1445048 1445053) (-831 "PDECOMP.spad" 1438522 1438539 1439050 1439055) (-830 "PDECAT.spad" 1436876 1436884 1438512 1438517) (-829 "PCOMP.spad" 1436727 1436740 1436866 1436871) (-828 "PBWLB.spad" 1435309 1435326 1436717 1436722) (-827 "PATTERN.spad" 1429740 1429750 1435299 1435304) (-826 "PATTERN2.spad" 1429476 1429488 1429730 1429735) (-825 "PATTERN1.spad" 1427778 1427794 1429466 1429471) (-824 "PATRES.spad" 1425325 1425337 1427768 1427773) (-823 "PATRES2.spad" 1424987 1425001 1425315 1425320) (-822 "PATMATCH.spad" 1423149 1423180 1424700 1424705) (-821 "PATMAB.spad" 1422574 1422584 1423139 1423144) (-820 "PATLRES.spad" 1421658 1421672 1422564 1422569) (-819 "PATAB.spad" 1421422 1421432 1421648 1421653) (-818 "PARTPERM.spad" 1418784 1418792 1421412 1421417) (-817 "PARSURF.spad" 1418212 1418240 1418774 1418779) (-816 "PARSU2.spad" 1418007 1418023 1418202 1418207) (-815 "script-parser.spad" 1417527 1417535 1417997 1418002) (-814 "PARSCURV.spad" 1416955 1416983 1417517 1417522) (-813 "PARSC2.spad" 1416744 1416760 1416945 1416950) (-812 "PARPCURV.spad" 1416202 1416230 1416734 1416739) (-811 "PARPC2.spad" 1415991 1416007 1416192 1416197) (-810 "PAN2EXPR.spad" 1415403 1415411 1415981 1415986) (-809 "PALETTE.spad" 1414373 1414381 1415393 1415398) (-808 "PAIR.spad" 1413356 1413369 1413961 1413966) (-807 "PADICRC.spad" 1410689 1410707 1411864 1411957) (-806 "PADICRAT.spad" 1408707 1408719 1408928 1409021) (-805 "PADIC.spad" 1408402 1408414 1408633 1408702) (-804 "PADICCT.spad" 1406943 1406955 1408328 1408397) (-803 "PADEPAC.spad" 1405622 1405641 1406933 1406938) (-802 "PADE.spad" 1404362 1404378 1405612 1405617) (-801 "OWP.spad" 1403346 1403376 1404220 1404287) (-800 "OVAR.spad" 1403127 1403150 1403336 1403341) (-799 "OUT.spad" 1402211 1402219 1403117 1403122) (-798 "OUTFORM.spad" 1391625 1391633 1402201 1402206) (-797 "OSI.spad" 1391100 1391108 1391615 1391620) (-796 "OSGROUP.spad" 1391018 1391026 1391090 1391095) (-795 "ORTHPOL.spad" 1389479 1389489 1390935 1390940) (-794 "OREUP.spad" 1388839 1388867 1389161 1389200) (-793 "ORESUP.spad" 1388140 1388164 1388521 1388560) (-792 "OREPCTO.spad" 1385959 1385971 1388060 1388065) (-791 "OREPCAT.spad" 1380016 1380026 1385915 1385954) (-790 "OREPCAT.spad" 1373963 1373975 1379864 1379869) (-789 "ORDSET.spad" 1373129 1373137 1373953 1373958) (-788 "ORDSET.spad" 1372293 1372303 1373119 1373124) (-787 "ORDRING.spad" 1371683 1371691 1372273 1372288) (-786 "ORDRING.spad" 1371081 1371091 1371673 1371678) (-785 "ORDMON.spad" 1370936 1370944 1371071 1371076) (-784 "ORDFUNS.spad" 1370062 1370078 1370926 1370931) (-783 "ORDFIN.spad" 1369996 1370004 1370052 1370057) (-782 "ORDCOMP.spad" 1368464 1368474 1369546 1369575) (-781 "ORDCOMP2.spad" 1367749 1367761 1368454 1368459) (-780 "OPTPROB.spad" 1366329 1366337 1367739 1367744) (-779 "OPTPACK.spad" 1358714 1358722 1366319 1366324) (-778 "OPTCAT.spad" 1356389 1356397 1358704 1358709) (-777 "OPQUERY.spad" 1355938 1355946 1356379 1356384) (-776 "OP.spad" 1355680 1355690 1355760 1355827) (-775 "ONECOMP.spad" 1354428 1354438 1355230 1355259) (-774 "ONECOMP2.spad" 1353846 1353858 1354418 1354423) (-773 "OMSERVER.spad" 1352848 1352856 1353836 1353841) (-772 "OMSAGG.spad" 1352624 1352634 1352792 1352843) (-771 "OMPKG.spad" 1351236 1351244 1352614 1352619) (-770 "OM.spad" 1350201 1350209 1351226 1351231) (-769 "OMLO.spad" 1349626 1349638 1350087 1350126) (-768 "OMEXPR.spad" 1349460 1349470 1349616 1349621) (-767 "OMERR.spad" 1349003 1349011 1349450 1349455) (-766 "OMERRK.spad" 1348037 1348045 1348993 1348998) (-765 "OMENC.spad" 1347381 1347389 1348027 1348032) (-764 "OMDEV.spad" 1341670 1341678 1347371 1347376) (-763 "OMCONN.spad" 1341079 1341087 1341660 1341665) (-762 "OINTDOM.spad" 1340842 1340850 1341005 1341074) (-761 "OFMONOID.spad" 1337029 1337039 1340832 1340837) (-760 "ODVAR.spad" 1336290 1336300 1337019 1337024) (-759 "ODR.spad" 1335738 1335764 1336102 1336251) (-758 "ODPOL.spad" 1333087 1333097 1333427 1333554) (-757 "ODP.spad" 1324259 1324279 1324632 1324761) (-756 "ODETOOLS.spad" 1322842 1322861 1324249 1324254) (-755 "ODESYS.spad" 1320492 1320509 1322832 1322837) (-754 "ODERTRIC.spad" 1316433 1316450 1320449 1320454) (-753 "ODERED.spad" 1315820 1315844 1316423 1316428) (-752 "ODERAT.spad" 1313371 1313388 1315810 1315815) (-751 "ODEPRRIC.spad" 1310262 1310284 1313361 1313366) (-750 "ODEPROB.spad" 1309461 1309469 1310252 1310257) (-749 "ODEPRIM.spad" 1306735 1306757 1309451 1309456) (-748 "ODEPAL.spad" 1306111 1306135 1306725 1306730) (-747 "ODEPACK.spad" 1292713 1292721 1306101 1306106) (-746 "ODEINT.spad" 1292144 1292160 1292703 1292708) (-745 "ODEIFTBL.spad" 1289539 1289547 1292134 1292139) (-744 "ODEEF.spad" 1284906 1284922 1289529 1289534) (-743 "ODECONST.spad" 1284425 1284443 1284896 1284901) (-742 "ODECAT.spad" 1283021 1283029 1284415 1284420) (-741 "OCT.spad" 1281168 1281178 1281884 1281923) (-740 "OCTCT2.spad" 1280812 1280833 1281158 1281163) (-739 "OC.spad" 1278586 1278596 1280768 1280807) (-738 "OC.spad" 1276086 1276098 1278270 1278275) (-737 "OCAMON.spad" 1275934 1275942 1276076 1276081) (-736 "OASGP.spad" 1275749 1275757 1275924 1275929) (-735 "OAMONS.spad" 1275269 1275277 1275739 1275744) (-734 "OAMON.spad" 1275130 1275138 1275259 1275264) (-733 "OAGROUP.spad" 1274992 1275000 1275120 1275125) (-732 "NUMTUBE.spad" 1274579 1274595 1274982 1274987) (-731 "NUMQUAD.spad" 1262441 1262449 1274569 1274574) (-730 "NUMODE.spad" 1253577 1253585 1262431 1262436) (-729 "NUMINT.spad" 1251135 1251143 1253567 1253572) (-728 "NUMFMT.spad" 1249975 1249983 1251125 1251130) (-727 "NUMERIC.spad" 1242048 1242058 1249781 1249786) (-726 "NTSCAT.spad" 1240538 1240554 1242004 1242043) (-725 "NTPOLFN.spad" 1240083 1240093 1240455 1240460) (-724 "NSUP.spad" 1233096 1233106 1237636 1237789) (-723 "NSUP2.spad" 1232488 1232500 1233086 1233091) (-722 "NSMP.spad" 1228687 1228706 1228995 1229122) (-721 "NREP.spad" 1227059 1227073 1228677 1228682) (-720 "NPCOEF.spad" 1226305 1226325 1227049 1227054) (-719 "NORMRETR.spad" 1225903 1225942 1226295 1226300) (-718 "NORMPK.spad" 1223805 1223824 1225893 1225898) (-717 "NORMMA.spad" 1223493 1223519 1223795 1223800) (-716 "NONE.spad" 1223234 1223242 1223483 1223488) (-715 "NONE1.spad" 1222910 1222920 1223224 1223229) (-714 "NODE1.spad" 1222379 1222395 1222900 1222905) (-713 "NNI.spad" 1221266 1221274 1222353 1222374) (-712 "NLINSOL.spad" 1219888 1219898 1221256 1221261) (-711 "NIPROB.spad" 1218371 1218379 1219878 1219883) (-710 "NFINTBAS.spad" 1215831 1215848 1218361 1218366) (-709 "NCODIV.spad" 1214029 1214045 1215821 1215826) (-708 "NCNTFRAC.spad" 1213671 1213685 1214019 1214024) (-707 "NCEP.spad" 1211831 1211845 1213661 1213666) (-706 "NASRING.spad" 1211427 1211435 1211821 1211826) (-705 "NASRING.spad" 1211021 1211031 1211417 1211422) (-704 "NARNG.spad" 1210365 1210373 1211011 1211016) (-703 "NARNG.spad" 1209707 1209717 1210355 1210360) (-702 "NAGSP.spad" 1208780 1208788 1209697 1209702) (-701 "NAGS.spad" 1198305 1198313 1208770 1208775) (-700 "NAGF07.spad" 1196698 1196706 1198295 1198300) (-699 "NAGF04.spad" 1190930 1190938 1196688 1196693) (-698 "NAGF02.spad" 1184739 1184747 1190920 1190925) (-697 "NAGF01.spad" 1180342 1180350 1184729 1184734) (-696 "NAGE04.spad" 1173802 1173810 1180332 1180337) (-695 "NAGE02.spad" 1164144 1164152 1173792 1173797) (-694 "NAGE01.spad" 1160028 1160036 1164134 1164139) (-693 "NAGD03.spad" 1157948 1157956 1160018 1160023) (-692 "NAGD02.spad" 1150479 1150487 1157938 1157943) (-691 "NAGD01.spad" 1144592 1144600 1150469 1150474) (-690 "NAGC06.spad" 1140379 1140387 1144582 1144587) (-689 "NAGC05.spad" 1138848 1138856 1140369 1140374) (-688 "NAGC02.spad" 1138103 1138111 1138838 1138843) (-687 "NAALG.spad" 1137638 1137648 1138071 1138098) (-686 "NAALG.spad" 1137193 1137205 1137628 1137633) (-685 "MULTSQFR.spad" 1134151 1134168 1137183 1137188) (-684 "MULTFACT.spad" 1133534 1133551 1134141 1134146) (-683 "MTSCAT.spad" 1131568 1131589 1133432 1133529) (-682 "MTHING.spad" 1131225 1131235 1131558 1131563) (-681 "MSYSCMD.spad" 1130659 1130667 1131215 1131220) (-680 "MSET.spad" 1128601 1128611 1130365 1130404) (-679 "MSETAGG.spad" 1128434 1128444 1128557 1128596) (-678 "MRING.spad" 1125405 1125417 1128142 1128209) (-677 "MRF2.spad" 1124973 1124987 1125395 1125400) (-676 "MRATFAC.spad" 1124519 1124536 1124963 1124968) (-675 "MPRFF.spad" 1122549 1122568 1124509 1124514) (-674 "MPOLY.spad" 1119987 1120002 1120346 1120473) (-673 "MPCPF.spad" 1119251 1119270 1119977 1119982) (-672 "MPC3.spad" 1119066 1119106 1119241 1119246) (-671 "MPC2.spad" 1118708 1118741 1119056 1119061) (-670 "MONOTOOL.spad" 1117043 1117060 1118698 1118703) (-669 "MONOID.spad" 1116217 1116225 1117033 1117038) (-668 "MONOID.spad" 1115389 1115399 1116207 1116212) (-667 "MONOGEN.spad" 1114135 1114148 1115249 1115384) (-666 "MONOGEN.spad" 1112903 1112918 1114019 1114024) (-665 "MONADWU.spad" 1110917 1110925 1112893 1112898) (-664 "MONADWU.spad" 1108929 1108939 1110907 1110912) (-663 "MONAD.spad" 1108073 1108081 1108919 1108924) (-662 "MONAD.spad" 1107215 1107225 1108063 1108068) (-661 "MOEBIUS.spad" 1105901 1105915 1107195 1107210) (-660 "MODULE.spad" 1105771 1105781 1105869 1105896) (-659 "MODULE.spad" 1105661 1105673 1105761 1105766) (-658 "MODRING.spad" 1104992 1105031 1105641 1105656) (-657 "MODOP.spad" 1103651 1103663 1104814 1104881) (-656 "MODMONOM.spad" 1103183 1103201 1103641 1103646) (-655 "MODMON.spad" 1099888 1099904 1100664 1100817) (-654 "MODFIELD.spad" 1099246 1099285 1099790 1099883) (-653 "MMLFORM.spad" 1098106 1098114 1099236 1099241) (-652 "MMAP.spad" 1097846 1097880 1098096 1098101) (-651 "MLO.spad" 1096273 1096283 1097802 1097841) (-650 "MLIFT.spad" 1094845 1094862 1096263 1096268) (-649 "MKUCFUNC.spad" 1094378 1094396 1094835 1094840) (-648 "MKRECORD.spad" 1093980 1093993 1094368 1094373) (-647 "MKFUNC.spad" 1093361 1093371 1093970 1093975) (-646 "MKFLCFN.spad" 1092317 1092327 1093351 1093356) (-645 "MKCHSET.spad" 1092093 1092103 1092307 1092312) (-644 "MKBCFUNC.spad" 1091578 1091596 1092083 1092088) (-643 "MINT.spad" 1091017 1091025 1091480 1091573) (-642 "MHROWRED.spad" 1089518 1089528 1091007 1091012) (-641 "MFLOAT.spad" 1087963 1087971 1089408 1089513) (-640 "MFINFACT.spad" 1087363 1087385 1087953 1087958) (-639 "MESH.spad" 1085095 1085103 1087353 1087358) (-638 "MDDFACT.spad" 1083288 1083298 1085085 1085090) (-637 "MDAGG.spad" 1082563 1082573 1083256 1083283) (-636 "MCMPLX.spad" 1078543 1078551 1079157 1079358) (-635 "MCDEN.spad" 1077751 1077763 1078533 1078538) (-634 "MCALCFN.spad" 1074853 1074879 1077741 1077746) (-633 "MATSTOR.spad" 1072129 1072139 1074843 1074848) (-632 "MATRIX.spad" 1070833 1070843 1071317 1071344) (-631 "MATLIN.spad" 1068159 1068183 1070717 1070722) (-630 "MATCAT.spad" 1059732 1059754 1068115 1068154) (-629 "MATCAT.spad" 1051189 1051213 1059574 1059579) (-628 "MATCAT2.spad" 1050457 1050505 1051179 1051184) (-627 "MAPPKG3.spad" 1049356 1049370 1050447 1050452) (-626 "MAPPKG2.spad" 1048690 1048702 1049346 1049351) (-625 "MAPPKG1.spad" 1047508 1047518 1048680 1048685) (-624 "MAPHACK3.spad" 1047316 1047330 1047498 1047503) (-623 "MAPHACK2.spad" 1047081 1047093 1047306 1047311) (-622 "MAPHACK1.spad" 1046711 1046721 1047071 1047076) (-621 "MAGMA.spad" 1044501 1044518 1046701 1046706) (-620 "M3D.spad" 1042199 1042209 1043881 1043886) (-619 "LZSTAGG.spad" 1039417 1039427 1042179 1042194) (-618 "LZSTAGG.spad" 1036643 1036655 1039407 1039412) (-617 "LWORD.spad" 1033348 1033365 1036633 1036638) (-616 "LSQM.spad" 1031576 1031590 1031974 1032025) (-615 "LSPP.spad" 1031109 1031126 1031566 1031571) (-614 "LSMP.spad" 1029949 1029977 1031099 1031104) (-613 "LSMP1.spad" 1027753 1027767 1029939 1029944) (-612 "LSAGG.spad" 1027410 1027420 1027709 1027748) (-611 "LSAGG.spad" 1027099 1027111 1027400 1027405) (-610 "LPOLY.spad" 1026053 1026072 1026955 1027024) (-609 "LPEFRAC.spad" 1025310 1025320 1026043 1026048) (-608 "LO.spad" 1024711 1024725 1025244 1025271) (-607 "LOGIC.spad" 1024313 1024321 1024701 1024706) (-606 "LOGIC.spad" 1023913 1023923 1024303 1024308) (-605 "LODOOPS.spad" 1022831 1022843 1023903 1023908) (-604 "LODO.spad" 1022217 1022233 1022513 1022552) (-603 "LODOF.spad" 1021261 1021278 1022174 1022179) (-602 "LODOCAT.spad" 1019919 1019929 1021217 1021256) (-601 "LODOCAT.spad" 1018575 1018587 1019875 1019880) (-600 "LODO2.spad" 1017850 1017862 1018257 1018296) (-599 "LODO1.spad" 1017252 1017262 1017532 1017571) (-598 "LODEEF.spad" 1016024 1016042 1017242 1017247) (-597 "LNAGG.spad" 1011816 1011826 1016004 1016019) (-596 "LNAGG.spad" 1007582 1007594 1011772 1011777) (-595 "LMOPS.spad" 1004318 1004335 1007572 1007577) (-594 "LMODULE.spad" 1003960 1003970 1004308 1004313) (-593 "LMDICT.spad" 1003243 1003253 1003511 1003538) (-592 "LIST.spad" 1000961 1000971 1002390 1002417) (-591 "LIST3.spad" 1000252 1000266 1000951 1000956) (-590 "LIST2.spad" 998892 998904 1000242 1000247) (-589 "LIST2MAP.spad" 995769 995781 998882 998887) (-588 "LINEXP.spad" 995201 995211 995749 995764) (-587 "LINDEP.spad" 993978 993990 995113 995118) (-586 "LIMITRF.spad" 991892 991902 993968 993973) (-585 "LIMITPS.spad" 990775 990788 991882 991887) (-584 "LIE.spad" 988789 988801 990065 990210) (-583 "LIECAT.spad" 988265 988275 988715 988784) (-582 "LIECAT.spad" 987769 987781 988221 988226) (-581 "LIB.spad" 985817 985825 986428 986443) (-580 "LGROBP.spad" 983170 983189 985807 985812) (-579 "LF.spad" 982089 982105 983160 983165) (-578 "LFCAT.spad" 981108 981116 982079 982084) (-577 "LEXTRIPK.spad" 976611 976626 981098 981103) (-576 "LEXP.spad" 974614 974641 976591 976606) (-575 "LEADCDET.spad" 972998 973015 974604 974609) (-574 "LAZM3PK.spad" 971702 971724 972988 972993) (-573 "LAUPOL.spad" 970393 970406 971297 971366) (-572 "LAPLACE.spad" 969966 969982 970383 970388) (-571 "LA.spad" 969406 969420 969888 969927) (-570 "LALG.spad" 969182 969192 969386 969401) (-569 "LALG.spad" 968966 968978 969172 969177) (-568 "KOVACIC.spad" 967679 967696 968956 968961) (-567 "KONVERT.spad" 967401 967411 967669 967674) (-566 "KOERCE.spad" 967138 967148 967391 967396) (-565 "KERNEL.spad" 965673 965683 966922 966927) (-564 "KERNEL2.spad" 965376 965388 965663 965668) (-563 "KDAGG.spad" 964467 964489 965344 965371) (-562 "KDAGG.spad" 963578 963602 964457 964462) (-561 "KAFILE.spad" 962541 962557 962776 962803) (-560 "JORDAN.spad" 960368 960380 961831 961976) (-559 "JAVACODE.spad" 960134 960142 960358 960363) (-558 "IXAGG.spad" 958247 958271 960114 960129) (-557 "IXAGG.spad" 956225 956251 958094 958099) (-556 "IVECTOR.spad" 954998 955013 955153 955180) (-555 "ITUPLE.spad" 954143 954153 954988 954993) (-554 "ITRIGMNP.spad" 952954 952973 954133 954138) (-553 "ITFUN3.spad" 952448 952462 952944 952949) (-552 "ITFUN2.spad" 952178 952190 952438 952443) (-551 "ITAYLOR.spad" 949970 949985 952014 952139) (-550 "ISUPS.spad" 942381 942396 948944 949041) (-549 "ISUMP.spad" 941878 941894 942371 942376) (-548 "ISTRING.spad" 940881 940894 941047 941074) (-547 "IRURPK.spad" 939594 939613 940871 940876) (-546 "IRSN.spad" 937554 937562 939584 939589) (-545 "IRRF2F.spad" 936029 936039 937510 937515) (-544 "IRREDFFX.spad" 935630 935641 936019 936024) (-543 "IROOT.spad" 933961 933971 935620 935625) (-542 "IR.spad" 931751 931765 933817 933844) (-541 "IR2.spad" 930771 930787 931741 931746) (-540 "IR2F.spad" 929971 929987 930761 930766) (-539 "IPRNTPK.spad" 929731 929739 929961 929966) (-538 "IPF.spad" 929296 929308 929536 929629) (-537 "IPADIC.spad" 929057 929083 929222 929291) (-536 "INVLAPLA.spad" 928702 928718 929047 929052) (-535 "INTTR.spad" 921948 921965 928692 928697) (-534 "INTTOOLS.spad" 919660 919676 921523 921528) (-533 "INTSLPE.spad" 918966 918974 919650 919655) (-532 "INTRVL.spad" 918532 918542 918880 918961) (-531 "INTRF.spad" 916896 916910 918522 918527) (-530 "INTRET.spad" 916328 916338 916886 916891) (-529 "INTRAT.spad" 915003 915020 916318 916323) (-528 "INTPM.spad" 913366 913382 914646 914651) (-527 "INTPAF.spad" 911134 911152 913298 913303) (-526 "INTPACK.spad" 901444 901452 911124 911129) (-525 "INT.spad" 900805 900813 901298 901439) (-524 "INTHERTR.spad" 900071 900088 900795 900800) (-523 "INTHERAL.spad" 899737 899761 900061 900066) (-522 "INTHEORY.spad" 896150 896158 899727 899732) (-521 "INTG0.spad" 889613 889631 896082 896087) (-520 "INTFTBL.spad" 883642 883650 889603 889608) (-519 "INTFACT.spad" 882701 882711 883632 883637) (-518 "INTEF.spad" 881016 881032 882691 882696) (-517 "INTDOM.spad" 879631 879639 880942 881011) (-516 "INTDOM.spad" 878308 878318 879621 879626) (-515 "INTCAT.spad" 876561 876571 878222 878303) (-514 "INTBIT.spad" 876064 876072 876551 876556) (-513 "INTALG.spad" 875246 875273 876054 876059) (-512 "INTAF.spad" 874738 874754 875236 875241) (-511 "INTABL.spad" 873256 873287 873419 873446) (-510 "INS.spad" 870652 870660 873158 873251) (-509 "INS.spad" 868134 868144 870642 870647) (-508 "INPSIGN.spad" 867568 867581 868124 868129) (-507 "INPRODPF.spad" 866634 866653 867558 867563) (-506 "INPRODFF.spad" 865692 865716 866624 866629) (-505 "INNMFACT.spad" 864663 864680 865682 865687) (-504 "INMODGCD.spad" 864147 864177 864653 864658) (-503 "INFSP.spad" 862432 862454 864137 864142) (-502 "INFPROD0.spad" 861482 861501 862422 862427) (-501 "INFORM.spad" 858750 858758 861472 861477) (-500 "INFORM1.spad" 858375 858385 858740 858745) (-499 "INFINITY.spad" 857927 857935 858365 858370) (-498 "INEP.spad" 856459 856481 857917 857922) (-497 "INDE.spad" 856188 856205 856449 856454) (-496 "INCRMAPS.spad" 855609 855619 856178 856183) (-495 "INBFF.spad" 851379 851390 855599 855604) (-494 "IMATRIX.spad" 850324 850350 850836 850863) (-493 "IMATQF.spad" 849418 849462 850280 850285) (-492 "IMATLIN.spad" 848023 848047 849374 849379) (-491 "ILIST.spad" 846679 846694 847206 847233) (-490 "IIARRAY2.spad" 846067 846105 846286 846313) (-489 "IFF.spad" 845477 845493 845748 845841) (-488 "IFARRAY.spad" 842964 842979 844660 844687) (-487 "IFAMON.spad" 842826 842843 842920 842925) (-486 "IEVALAB.spad" 842215 842227 842816 842821) (-485 "IEVALAB.spad" 841602 841616 842205 842210) (-484 "IDPO.spad" 841400 841412 841592 841597) (-483 "IDPOAMS.spad" 841156 841168 841390 841395) (-482 "IDPOAM.spad" 840876 840888 841146 841151) (-481 "IDPC.spad" 839810 839822 840866 840871) (-480 "IDPAM.spad" 839555 839567 839800 839805) (-479 "IDPAG.spad" 839302 839314 839545 839550) (-478 "IDECOMP.spad" 836539 836557 839292 839297) (-477 "IDEAL.spad" 831462 831501 836474 836479) (-476 "ICDEN.spad" 830613 830629 831452 831457) (-475 "ICARD.spad" 829802 829810 830603 830608) (-474 "IBPTOOLS.spad" 828395 828412 829792 829797) (-473 "IBITS.spad" 827594 827607 828031 828058) (-472 "IBATOOL.spad" 824469 824488 827584 827589) (-471 "IBACHIN.spad" 822956 822971 824459 824464) (-470 "IARRAY2.spad" 821944 821970 822563 822590) (-469 "IARRAY1.spad" 820989 821004 821127 821154) (-468 "IAN.spad" 819204 819212 820807 820900) (-467 "IALGFACT.spad" 818805 818838 819194 819199) (-466 "HYPCAT.spad" 818229 818237 818795 818800) (-465 "HYPCAT.spad" 817651 817661 818219 818224) (-464 "HOAGG.spad" 814909 814919 817631 817646) (-463 "HOAGG.spad" 811952 811964 814676 814681) (-462 "HEXADEC.spad" 809824 809832 810422 810515) (-461 "HEUGCD.spad" 808839 808850 809814 809819) (-460 "HELLFDIV.spad" 808429 808453 808829 808834) (-459 "HEAP.spad" 807821 807831 808036 808063) (-458 "HDP.spad" 798989 799005 799366 799495) (-457 "HDMP.spad" 796168 796183 796786 796913) (-456 "HB.spad" 794405 794413 796158 796163) (-455 "HASHTBL.spad" 792875 792906 793086 793113) (-454 "HACKPI.spad" 792358 792366 792777 792870) (-453 "GTSET.spad" 791297 791313 792004 792031) (-452 "GSTBL.spad" 789816 789851 789990 790005) (-451 "GSERIES.spad" 786983 787010 787948 788097) (-450 "GROUP.spad" 786157 786165 786963 786978) (-449 "GROUP.spad" 785339 785349 786147 786152) (-448 "GROEBSOL.spad" 783827 783848 785329 785334) (-447 "GRMOD.spad" 782398 782410 783817 783822) (-446 "GRMOD.spad" 780967 780981 782388 782393) (-445 "GRIMAGE.spad" 773572 773580 780957 780962) (-444 "GRDEF.spad" 771951 771959 773562 773567) (-443 "GRAY.spad" 770410 770418 771941 771946) (-442 "GRALG.spad" 769457 769469 770400 770405) (-441 "GRALG.spad" 768502 768516 769447 769452) (-440 "GPOLSET.spad" 767956 767979 768184 768211) (-439 "GOSPER.spad" 767221 767239 767946 767951) (-438 "GMODPOL.spad" 766359 766386 767189 767216) (-437 "GHENSEL.spad" 765428 765442 766349 766354) (-436 "GENUPS.spad" 761529 761542 765418 765423) (-435 "GENUFACT.spad" 761106 761116 761519 761524) (-434 "GENPGCD.spad" 760690 760707 761096 761101) (-433 "GENMFACT.spad" 760142 760161 760680 760685) (-432 "GENEEZ.spad" 758081 758094 760132 760137) (-431 "GDMP.spad" 755102 755119 755878 756005) (-430 "GCNAALG.spad" 748997 749024 754896 754963) (-429 "GCDDOM.spad" 748169 748177 748923 748992) (-428 "GCDDOM.spad" 747403 747413 748159 748164) (-427 "GB.spad" 744921 744959 747359 747364) (-426 "GBINTERN.spad" 740941 740979 744911 744916) (-425 "GBF.spad" 736698 736736 740931 740936) (-424 "GBEUCLID.spad" 734572 734610 736688 736693) (-423 "GAUSSFAC.spad" 733869 733877 734562 734567) (-422 "GALUTIL.spad" 732191 732201 733825 733830) (-421 "GALPOLYU.spad" 730637 730650 732181 732186) (-420 "GALFACTU.spad" 728802 728821 730627 730632) (-419 "GALFACT.spad" 718935 718946 728792 728797) (-418 "FVFUN.spad" 715948 715956 718915 718930) (-417 "FVC.spad" 714990 714998 715928 715943) (-416 "FUNCTION.spad" 714839 714851 714980 714985) (-415 "FT.spad" 713051 713059 714829 714834) (-414 "FTEM.spad" 712214 712222 713041 713046) (-413 "FSUPFACT.spad" 711115 711134 712151 712156) (-412 "FST.spad" 709201 709209 711105 711110) (-411 "FSRED.spad" 708679 708695 709191 709196) (-410 "FSPRMELT.spad" 707503 707519 708636 708641) (-409 "FSPECF.spad" 705580 705596 707493 707498) (-408 "FS.spad" 699631 699641 705344 705575) (-407 "FS.spad" 693473 693485 699188 699193) (-406 "FSINT.spad" 693131 693147 693463 693468) (-405 "FSERIES.spad" 692318 692330 692951 693050) (-404 "FSCINT.spad" 691631 691647 692308 692313) (-403 "FSAGG.spad" 690736 690746 691575 691626) (-402 "FSAGG.spad" 689815 689827 690656 690661) (-401 "FSAGG2.spad" 688514 688530 689805 689810) (-400 "FS2UPS.spad" 682903 682937 688504 688509) (-399 "FS2.spad" 682548 682564 682893 682898) (-398 "FS2EXPXP.spad" 681671 681694 682538 682543) (-397 "FRUTIL.spad" 680613 680623 681661 681666) (-396 "FR.spad" 674310 674320 679640 679709) (-395 "FRNAALG.spad" 669397 669407 674252 674305) (-394 "FRNAALG.spad" 664496 664508 669353 669358) (-393 "FRNAAF2.spad" 663950 663968 664486 664491) (-392 "FRMOD.spad" 663345 663375 663882 663887) (-391 "FRIDEAL.spad" 662540 662561 663325 663340) (-390 "FRIDEAL2.spad" 662142 662174 662530 662535) (-389 "FRETRCT.spad" 661653 661663 662132 662137) (-388 "FRETRCT.spad" 661032 661044 661513 661518) (-387 "FRAMALG.spad" 659360 659373 660988 661027) (-386 "FRAMALG.spad" 657720 657735 659350 659355) (-385 "FRAC.spad" 654823 654833 655226 655399) (-384 "FRAC2.spad" 654426 654438 654813 654818) (-383 "FR2.spad" 653760 653772 654416 654421) (-382 "FPS.spad" 650569 650577 653650 653755) (-381 "FPS.spad" 647406 647416 650489 650494) (-380 "FPC.spad" 646448 646456 647308 647401) (-379 "FPC.spad" 645576 645586 646438 646443) (-378 "FPATMAB.spad" 645328 645338 645556 645571) (-377 "FPARFRAC.spad" 643801 643818 645318 645323) (-376 "FORTRAN.spad" 642307 642350 643791 643796) (-375 "FORT.spad" 641236 641244 642297 642302) (-374 "FORTFN.spad" 638396 638404 641216 641231) (-373 "FORTCAT.spad" 638070 638078 638376 638391) (-372 "FORMULA.spad" 635408 635416 638060 638065) (-371 "FORMULA1.spad" 634887 634897 635398 635403) (-370 "FORDER.spad" 634578 634602 634877 634882) (-369 "FOP.spad" 633779 633787 634568 634573) (-368 "FNLA.spad" 633203 633225 633747 633774) (-367 "FNCAT.spad" 631531 631539 633193 633198) (-366 "FNAME.spad" 631423 631431 631521 631526) (-365 "FMTC.spad" 631221 631229 631349 631418) (-364 "FMONOID.spad" 628276 628286 631177 631182) (-363 "FM.spad" 627971 627983 628210 628237) (-362 "FMFUN.spad" 624991 624999 627951 627966) (-361 "FMC.spad" 624033 624041 624971 624986) (-360 "FMCAT.spad" 621687 621705 624001 624028) (-359 "FM1.spad" 621044 621056 621621 621648) (-358 "FLOATRP.spad" 618765 618779 621034 621039) (-357 "FLOAT.spad" 611929 611937 618631 618760) (-356 "FLOATCP.spad" 609346 609360 611919 611924) (-355 "FLINEXP.spad" 609058 609068 609326 609341) (-354 "FLINEXP.spad" 608724 608736 608994 608999) (-353 "FLASORT.spad" 608044 608056 608714 608719) (-352 "FLALG.spad" 605690 605709 607970 608039) (-351 "FLAGG.spad" 602696 602706 605658 605685) (-350 "FLAGG.spad" 599615 599627 602579 602584) (-349 "FLAGG2.spad" 598296 598312 599605 599610) (-348 "FINRALG.spad" 596325 596338 598252 598291) (-347 "FINRALG.spad" 594280 594295 596209 596214) (-346 "FINITE.spad" 593432 593440 594270 594275) (-345 "FINAALG.spad" 582413 582423 593374 593427) (-344 "FINAALG.spad" 571406 571418 582369 582374) (-343 "FILE.spad" 570989 570999 571396 571401) (-342 "FILECAT.spad" 569507 569524 570979 570984) (-341 "FIELD.spad" 568913 568921 569409 569502) (-340 "FIELD.spad" 568405 568415 568903 568908) (-339 "FGROUP.spad" 567014 567024 568385 568400) (-338 "FGLMICPK.spad" 565801 565816 567004 567009) (-337 "FFX.spad" 565176 565191 565517 565610) (-336 "FFSLPE.spad" 564665 564686 565166 565171) (-335 "FFPOLY.spad" 555917 555928 564655 564660) (-334 "FFPOLY2.spad" 554977 554994 555907 555912) (-333 "FFP.spad" 554374 554394 554693 554786) (-332 "FF.spad" 553822 553838 554055 554148) (-331 "FFNBX.spad" 552334 552354 553538 553631) (-330 "FFNBP.spad" 550847 550864 552050 552143) (-329 "FFNB.spad" 549312 549333 550528 550621) (-328 "FFINTBAS.spad" 546726 546745 549302 549307) (-327 "FFIELDC.spad" 544301 544309 546628 546721) (-326 "FFIELDC.spad" 541962 541972 544291 544296) (-325 "FFHOM.spad" 540710 540727 541952 541957) (-324 "FFF.spad" 538145 538156 540700 540705) (-323 "FFCGX.spad" 536992 537012 537861 537954) (-322 "FFCGP.spad" 535881 535901 536708 536801) (-321 "FFCG.spad" 534673 534694 535562 535655) (-320 "FFCAT.spad" 527574 527596 534512 534668) (-319 "FFCAT.spad" 520554 520578 527494 527499) (-318 "FFCAT2.spad" 520299 520339 520544 520549) (-317 "FEXPR.spad" 512012 512058 520059 520098) (-316 "FEVALAB.spad" 511718 511728 512002 512007) (-315 "FEVALAB.spad" 511209 511221 511495 511500) (-314 "FDIV.spad" 510651 510675 511199 511204) (-313 "FDIVCAT.spad" 508693 508717 510641 510646) (-312 "FDIVCAT.spad" 506733 506759 508683 508688) (-311 "FDIV2.spad" 506387 506427 506723 506728) (-310 "FCPAK1.spad" 504940 504948 506377 506382) (-309 "FCOMP.spad" 504319 504329 504930 504935) (-308 "FC.spad" 494144 494152 504309 504314) (-307 "FAXF.spad" 487079 487093 494046 494139) (-306 "FAXF.spad" 480066 480082 487035 487040) (-305 "FARRAY.spad" 478212 478222 479249 479276) (-304 "FAMR.spad" 476332 476344 478110 478207) (-303 "FAMR.spad" 474436 474450 476216 476221) (-302 "FAMONOID.spad" 474086 474096 474390 474395) (-301 "FAMONC.spad" 472308 472320 474076 474081) (-300 "FAGROUP.spad" 471914 471924 472204 472231) (-299 "FACUTIL.spad" 470110 470127 471904 471909) (-298 "FACTFUNC.spad" 469286 469296 470100 470105) (-297 "EXPUPXS.spad" 466119 466142 467418 467567) (-296 "EXPRTUBE.spad" 463347 463355 466109 466114) (-295 "EXPRODE.spad" 460219 460235 463337 463342) (-294 "EXPR.spad" 455521 455531 456235 456638) (-293 "EXPR2UPS.spad" 451613 451626 455511 455516) (-292 "EXPR2.spad" 451316 451328 451603 451608) (-291 "EXPEXPAN.spad" 448257 448282 448891 448984) (-290 "EXIT.spad" 447928 447936 448247 448252) (-289 "EVALCYC.spad" 447386 447400 447918 447923) (-288 "EVALAB.spad" 446950 446960 447376 447381) (-287 "EVALAB.spad" 446512 446524 446940 446945) (-286 "EUCDOM.spad" 444054 444062 446438 446507) (-285 "EUCDOM.spad" 441658 441668 444044 444049) (-284 "ESTOOLS.spad" 433498 433506 441648 441653) (-283 "ESTOOLS2.spad" 433099 433113 433488 433493) (-282 "ESTOOLS1.spad" 432784 432795 433089 433094) (-281 "ES.spad" 425331 425339 432774 432779) (-280 "ES.spad" 417786 417796 425231 425236) (-279 "ESCONT.spad" 414559 414567 417776 417781) (-278 "ESCONT1.spad" 414308 414320 414549 414554) (-277 "ES2.spad" 413803 413819 414298 414303) (-276 "ES1.spad" 413369 413385 413793 413798) (-275 "ERROR.spad" 410690 410698 413359 413364) (-274 "EQTBL.spad" 409162 409184 409371 409398) (-273 "EQ.spad" 404046 404056 406845 406954) (-272 "EQ2.spad" 403762 403774 404036 404041) (-271 "EP.spad" 400076 400086 403752 403757) (-270 "ENV.spad" 398778 398786 400066 400071) (-269 "ENTIRER.spad" 398446 398454 398722 398773) (-268 "EMR.spad" 397647 397688 398372 398441) (-267 "ELTAGG.spad" 395887 395906 397637 397642) (-266 "ELTAGG.spad" 394091 394112 395843 395848) (-265 "ELTAB.spad" 393538 393556 394081 394086) (-264 "ELFUTS.spad" 392917 392936 393528 393533) (-263 "ELEMFUN.spad" 392606 392614 392907 392912) (-262 "ELEMFUN.spad" 392293 392303 392596 392601) (-261 "ELAGG.spad" 390224 390234 392261 392288) (-260 "ELAGG.spad" 388104 388116 390143 390148) (-259 "ELABEXPR.spad" 387035 387043 388094 388099) (-258 "EFUPXS.spad" 383811 383841 386991 386996) (-257 "EFULS.spad" 380647 380670 383767 383772) (-256 "EFSTRUC.spad" 378602 378618 380637 380642) (-255 "EF.spad" 373368 373384 378592 378597) (-254 "EAB.spad" 371644 371652 373358 373363) (-253 "E04UCFA.spad" 371180 371188 371634 371639) (-252 "E04NAFA.spad" 370757 370765 371170 371175) (-251 "E04MBFA.spad" 370337 370345 370747 370752) (-250 "E04JAFA.spad" 369873 369881 370327 370332) (-249 "E04GCFA.spad" 369409 369417 369863 369868) (-248 "E04FDFA.spad" 368945 368953 369399 369404) (-247 "E04DGFA.spad" 368481 368489 368935 368940) (-246 "E04AGNT.spad" 364323 364331 368471 368476) (-245 "DVARCAT.spad" 361008 361018 364313 364318) (-244 "DVARCAT.spad" 357691 357703 360998 361003) (-243 "DSMP.spad" 355125 355139 355430 355557) (-242 "DROPT.spad" 349070 349078 355115 355120) (-241 "DROPT1.spad" 348733 348743 349060 349065) (-240 "DROPT0.spad" 343560 343568 348723 348728) (-239 "DRAWPT.spad" 341715 341723 343550 343555) (-238 "DRAW.spad" 334315 334328 341705 341710) (-237 "DRAWHACK.spad" 333623 333633 334305 334310) (-236 "DRAWCX.spad" 331065 331073 333613 333618) (-235 "DRAWCURV.spad" 330602 330617 331055 331060) (-234 "DRAWCFUN.spad" 319774 319782 330592 330597) (-233 "DQAGG.spad" 317930 317940 319730 319769) (-232 "DPOLCAT.spad" 313271 313287 317798 317925) (-231 "DPOLCAT.spad" 308698 308716 313227 313232) (-230 "DPMO.spad" 302048 302064 302186 302482) (-229 "DPMM.spad" 295411 295429 295536 295832) (-228 "DOMAIN.spad" 294682 294690 295401 295406) (-227 "DMP.spad" 291907 291922 292479 292606) (-226 "DLP.spad" 291255 291265 291897 291902) (-225 "DLIST.spad" 289667 289677 290438 290465) (-224 "DLAGG.spad" 288068 288078 289647 289662) (-223 "DIVRING.spad" 287515 287523 288012 288063) (-222 "DIVRING.spad" 287006 287016 287505 287510) (-221 "DISPLAY.spad" 285186 285194 286996 287001) (-220 "DIRPROD.spad" 276091 276107 276731 276860) (-219 "DIRPROD2.spad" 274899 274917 276081 276086) (-218 "DIRPCAT.spad" 273831 273847 274753 274894) (-217 "DIRPCAT.spad" 272503 272521 273427 273432) (-216 "DIOSP.spad" 271328 271336 272493 272498) (-215 "DIOPS.spad" 270300 270310 271296 271323) (-214 "DIOPS.spad" 269258 269270 270256 270261) (-213 "DIFRING.spad" 268550 268558 269238 269253) (-212 "DIFRING.spad" 267850 267860 268540 268545) (-211 "DIFEXT.spad" 267009 267019 267830 267845) (-210 "DIFEXT.spad" 266085 266097 266908 266913) (-209 "DIAGG.spad" 265703 265713 266053 266080) (-208 "DIAGG.spad" 265341 265353 265693 265698) (-207 "DHMATRIX.spad" 263645 263655 264798 264825) (-206 "DFSFUN.spad" 257053 257061 263635 263640) (-205 "DFLOAT.spad" 253576 253584 256943 257048) (-204 "DFINTTLS.spad" 251785 251801 253566 253571) (-203 "DERHAM.spad" 249695 249727 251765 251780) (-202 "DEQUEUE.spad" 249013 249023 249302 249329) (-201 "DEGRED.spad" 248628 248642 249003 249008) (-200 "DEFINTRF.spad" 246153 246163 248618 248623) (-199 "DEFINTEF.spad" 244649 244665 246143 246148) (-198 "DECIMAL.spad" 242533 242541 243119 243212) (-197 "DDFACT.spad" 240332 240349 242523 242528) (-196 "DBLRESP.spad" 239930 239954 240322 240327) (-195 "DBASE.spad" 238502 238512 239920 239925) (-194 "D03FAFA.spad" 238330 238338 238492 238497) (-193 "D03EEFA.spad" 238150 238158 238320 238325) (-192 "D03AGNT.spad" 237230 237238 238140 238145) (-191 "D02EJFA.spad" 236692 236700 237220 237225) (-190 "D02CJFA.spad" 236170 236178 236682 236687) (-189 "D02BHFA.spad" 235660 235668 236160 236165) (-188 "D02BBFA.spad" 235150 235158 235650 235655) (-187 "D02AGNT.spad" 229954 229962 235140 235145) (-186 "D01WGTS.spad" 228273 228281 229944 229949) (-185 "D01TRNS.spad" 228250 228258 228263 228268) (-184 "D01GBFA.spad" 227772 227780 228240 228245) (-183 "D01FCFA.spad" 227294 227302 227762 227767) (-182 "D01ASFA.spad" 226762 226770 227284 227289) (-181 "D01AQFA.spad" 226208 226216 226752 226757) (-180 "D01APFA.spad" 225632 225640 226198 226203) (-179 "D01ANFA.spad" 225126 225134 225622 225627) (-178 "D01AMFA.spad" 224636 224644 225116 225121) (-177 "D01ALFA.spad" 224176 224184 224626 224631) (-176 "D01AKFA.spad" 223702 223710 224166 224171) (-175 "D01AJFA.spad" 223225 223233 223692 223697) (-174 "D01AGNT.spad" 219284 219292 223215 223220) (-173 "CYCLOTOM.spad" 218790 218798 219274 219279) (-172 "CYCLES.spad" 215622 215630 218780 218785) (-171 "CVMP.spad" 215039 215049 215612 215617) (-170 "CTRIGMNP.spad" 213529 213545 215029 215034) (-169 "CTORCALL.spad" 213117 213125 213519 213524) (-168 "CSTTOOLS.spad" 212360 212373 213107 213112) (-167 "CRFP.spad" 206064 206077 212350 212355) (-166 "CRAPACK.spad" 205107 205117 206054 206059) (-165 "CPMATCH.spad" 204607 204622 205032 205037) (-164 "CPIMA.spad" 204312 204331 204597 204602) (-163 "COORDSYS.spad" 199205 199215 204302 204307) (-162 "CONTOUR.spad" 198607 198615 199195 199200) (-161 "CONTFRAC.spad" 194219 194229 198509 198602) (-160 "COMRING.spad" 193893 193901 194157 194214) (-159 "COMPPROP.spad" 193407 193415 193883 193888) (-158 "COMPLPAT.spad" 193174 193189 193397 193402) (-157 "COMPLEX.spad" 187207 187217 187451 187712) (-156 "COMPLEX2.spad" 186920 186932 187197 187202) (-155 "COMPFACT.spad" 186522 186536 186910 186915) (-154 "COMPCAT.spad" 184578 184588 186244 186517) (-153 "COMPCAT.spad" 182341 182353 184009 184014) (-152 "COMMUPC.spad" 182087 182105 182331 182336) (-151 "COMMONOP.spad" 181620 181628 182077 182082) (-150 "COMM.spad" 181429 181437 181610 181615) (-149 "COMBOPC.spad" 180334 180342 181419 181424) (-148 "COMBINAT.spad" 179079 179089 180324 180329) (-147 "COMBF.spad" 176447 176463 179069 179074) (-146 "COLOR.spad" 175284 175292 176437 176442) (-145 "CMPLXRT.spad" 174993 175010 175274 175279) (-144 "CLIP.spad" 171085 171093 174983 174988) (-143 "CLIF.spad" 169724 169740 171041 171080) (-142 "CLAGG.spad" 166199 166209 169704 169719) (-141 "CLAGG.spad" 162555 162567 166062 166067) (-140 "CINTSLPE.spad" 161880 161893 162545 162550) (-139 "CHVAR.spad" 159958 159980 161870 161875) (-138 "CHARZ.spad" 159873 159881 159938 159953) (-137 "CHARPOL.spad" 159381 159391 159863 159868) (-136 "CHARNZ.spad" 159134 159142 159361 159376) (-135 "CHAR.spad" 157002 157010 159124 159129) (-134 "CFCAT.spad" 156318 156326 156992 156997) (-133 "CDEN.spad" 155476 155490 156308 156313) (-132 "CCLASS.spad" 153625 153633 154887 154926) (-131 "CATEGORY.spad" 153404 153412 153615 153620) (-130 "CARTEN.spad" 148507 148531 153394 153399) (-129 "CARTEN2.spad" 147893 147920 148497 148502) (-128 "CARD.spad" 145182 145190 147867 147888) (-127 "CACHSET.spad" 144804 144812 145172 145177) (-126 "CABMON.spad" 144357 144365 144794 144799) (-125 "BYTE.spad" 143751 143759 144347 144352) (-124 "BYTEARY.spad" 142826 142834 142920 142947) (-123 "BTREE.spad" 141895 141905 142433 142460) (-122 "BTOURN.spad" 140898 140908 141502 141529) (-121 "BTCAT.spad" 140274 140284 140854 140893) (-120 "BTCAT.spad" 139682 139694 140264 140269) (-119 "BTAGG.spad" 138698 138706 139638 139677) (-118 "BTAGG.spad" 137746 137756 138688 138693) (-117 "BSTREE.spad" 136481 136491 137353 137380) (-116 "BRILL.spad" 134676 134687 136471 136476) (-115 "BRAGG.spad" 133590 133600 134656 134671) (-114 "BRAGG.spad" 132478 132490 133546 133551) (-113 "BPADICRT.spad" 130462 130474 130717 130810) (-112 "BPADIC.spad" 130126 130138 130388 130457) (-111 "BOUNDZRO.spad" 129782 129799 130116 130121) (-110 "BOP.spad" 125246 125254 129772 129777) (-109 "BOP1.spad" 122632 122642 125202 125207) (-108 "BOOLEAN.spad" 121895 121903 122622 122627) (-107 "BMODULE.spad" 121607 121619 121863 121890) (-106 "BITS.spad" 121026 121034 121243 121270) (-105 "BINFILE.spad" 120369 120377 121016 121021) (-104 "BINDING.spad" 119788 119796 120359 120364) (-103 "BINARY.spad" 117681 117689 118258 118351) (-102 "BGAGG.spad" 116866 116876 117649 117676) (-101 "BGAGG.spad" 116071 116083 116856 116861) (-100 "BFUNCT.spad" 115635 115643 116051 116066) (-99 "BEZOUT.spad" 114770 114796 115585 115590) (-98 "BBTREE.spad" 111590 111599 114377 114404) (-97 "BASTYPE.spad" 111263 111270 111580 111585) (-96 "BASTYPE.spad" 110934 110943 111253 111258) (-95 "BALFACT.spad" 110374 110386 110924 110929) (-94 "AUTOMOR.spad" 109821 109830 110354 110369) (-93 "ATTREG.spad" 106540 106547 109573 109816) (-92 "ATTRBUT.spad" 102563 102570 106520 106535) (-91 "ATRIG.spad" 102033 102040 102553 102558) (-90 "ATRIG.spad" 101501 101510 102023 102028) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2241676 2241681 2241686 2241691) (-2 NIL 2241656 2241661 2241666 2241671) (-1 NIL 2241636 2241641 2241646 2241651) (0 NIL 2241616 2241621 2241626 2241631) (-1200 "ZMOD.spad" 2241425 2241438 2241554 2241611) (-1199 "ZLINDEP.spad" 2240469 2240480 2241415 2241420) (-1198 "ZDSOLVE.spad" 2230318 2230340 2240459 2240464) (-1197 "YSTREAM.spad" 2229811 2229822 2230308 2230313) (-1196 "XRPOLY.spad" 2229031 2229051 2229667 2229736) (-1195 "XPR.spad" 2226760 2226773 2228749 2228848) (-1194 "XPOLY.spad" 2226315 2226326 2226616 2226685) (-1193 "XPOLYC.spad" 2225632 2225648 2226241 2226310) (-1192 "XPBWPOLY.spad" 2224069 2224089 2225412 2225481) (-1191 "XF.spad" 2222530 2222545 2223971 2224064) (-1190 "XF.spad" 2220971 2220988 2222414 2222419) (-1189 "XFALG.spad" 2217995 2218011 2220897 2220966) (-1188 "XEXPPKG.spad" 2217246 2217272 2217985 2217990) (-1187 "XDPOLY.spad" 2216860 2216876 2217102 2217171) (-1186 "XALG.spad" 2216458 2216469 2216816 2216855) (-1185 "WUTSET.spad" 2212297 2212314 2216104 2216131) (-1184 "WP.spad" 2211311 2211355 2212155 2212222) (-1183 "WFFINTBS.spad" 2208874 2208896 2211301 2211306) (-1182 "WEIER.spad" 2207088 2207099 2208864 2208869) (-1181 "VSPACE.spad" 2206761 2206772 2207056 2207083) (-1180 "VSPACE.spad" 2206454 2206467 2206751 2206756) (-1179 "VOID.spad" 2206044 2206053 2206444 2206449) (-1178 "VIEW.spad" 2203666 2203675 2206034 2206039) (-1177 "VIEWDEF.spad" 2198863 2198872 2203656 2203661) (-1176 "VIEW3D.spad" 2182698 2182707 2198853 2198858) (-1175 "VIEW2D.spad" 2170435 2170444 2182688 2182693) (-1174 "VECTOR.spad" 2169112 2169123 2169363 2169390) (-1173 "VECTOR2.spad" 2167739 2167752 2169102 2169107) (-1172 "VECTCAT.spad" 2165627 2165638 2167695 2167734) (-1171 "VECTCAT.spad" 2163336 2163349 2165406 2165411) (-1170 "VARIABLE.spad" 2163116 2163131 2163326 2163331) (-1169 "UTYPE.spad" 2162750 2162759 2163096 2163111) (-1168 "UTSODETL.spad" 2162043 2162067 2162706 2162711) (-1167 "UTSODE.spad" 2160231 2160251 2162033 2162038) (-1166 "UTS.spad" 2155020 2155048 2158698 2158795) (-1165 "UTSCAT.spad" 2152471 2152487 2154918 2155015) (-1164 "UTSCAT.spad" 2149566 2149584 2152015 2152020) (-1163 "UTS2.spad" 2149159 2149194 2149556 2149561) (-1162 "URAGG.spad" 2143781 2143792 2149139 2149154) (-1161 "URAGG.spad" 2138377 2138390 2143737 2143742) (-1160 "UPXSSING.spad" 2136023 2136049 2137461 2137594) (-1159 "UPXS.spad" 2133050 2133078 2134155 2134304) (-1158 "UPXSCONS.spad" 2130807 2130827 2131182 2131331) (-1157 "UPXSCCA.spad" 2129265 2129285 2130653 2130802) (-1156 "UPXSCCA.spad" 2127865 2127887 2129255 2129260) (-1155 "UPXSCAT.spad" 2126446 2126462 2127711 2127860) (-1154 "UPXS2.spad" 2125987 2126040 2126436 2126441) (-1153 "UPSQFREE.spad" 2124399 2124413 2125977 2125982) (-1152 "UPSCAT.spad" 2121992 2122016 2124297 2124394) (-1151 "UPSCAT.spad" 2119291 2119317 2121598 2121603) (-1150 "UPOLYC.spad" 2114269 2114280 2119133 2119286) (-1149 "UPOLYC.spad" 2109139 2109152 2114005 2114010) (-1148 "UPOLYC2.spad" 2108608 2108627 2109129 2109134) (-1147 "UP.spad" 2105653 2105668 2106161 2106314) (-1146 "UPMP.spad" 2104543 2104556 2105643 2105648) (-1145 "UPDIVP.spad" 2104106 2104120 2104533 2104538) (-1144 "UPDECOMP.spad" 2102343 2102357 2104096 2104101) (-1143 "UPCDEN.spad" 2101550 2101566 2102333 2102338) (-1142 "UP2.spad" 2100912 2100933 2101540 2101545) (-1141 "UNISEG.spad" 2100265 2100276 2100831 2100836) (-1140 "UNISEG2.spad" 2099758 2099771 2100221 2100226) (-1139 "UNIFACT.spad" 2098859 2098871 2099748 2099753) (-1138 "ULS.spad" 2089418 2089446 2090511 2090940) (-1137 "ULSCONS.spad" 2083461 2083481 2083833 2083982) (-1136 "ULSCCAT.spad" 2081058 2081078 2083281 2083456) (-1135 "ULSCCAT.spad" 2078789 2078811 2081014 2081019) (-1134 "ULSCAT.spad" 2077005 2077021 2078635 2078784) (-1133 "ULS2.spad" 2076517 2076570 2076995 2077000) (-1132 "UFD.spad" 2075582 2075591 2076443 2076512) (-1131 "UFD.spad" 2074709 2074720 2075572 2075577) (-1130 "UDVO.spad" 2073556 2073565 2074699 2074704) (-1129 "UDPO.spad" 2070983 2070994 2073512 2073517) (-1128 "TYPE.spad" 2070905 2070914 2070963 2070978) (-1127 "TWOFACT.spad" 2069555 2069570 2070895 2070900) (-1126 "TUPLE.spad" 2068941 2068952 2069454 2069459) (-1125 "TUBETOOL.spad" 2065778 2065787 2068931 2068936) (-1124 "TUBE.spad" 2064419 2064436 2065768 2065773) (-1123 "TS.spad" 2063008 2063024 2063984 2064081) (-1122 "TSETCAT.spad" 2050123 2050140 2062964 2063003) (-1121 "TSETCAT.spad" 2037236 2037255 2050079 2050084) (-1120 "TRMANIP.spad" 2031602 2031619 2036942 2036947) (-1119 "TRIMAT.spad" 2030561 2030586 2031592 2031597) (-1118 "TRIGMNIP.spad" 2029078 2029095 2030551 2030556) (-1117 "TRIGCAT.spad" 2028590 2028599 2029068 2029073) (-1116 "TRIGCAT.spad" 2028100 2028111 2028580 2028585) (-1115 "TREE.spad" 2026671 2026682 2027707 2027734) (-1114 "TRANFUN.spad" 2026502 2026511 2026661 2026666) (-1113 "TRANFUN.spad" 2026331 2026342 2026492 2026497) (-1112 "TOPSP.spad" 2026005 2026014 2026321 2026326) (-1111 "TOOLSIGN.spad" 2025668 2025679 2025995 2026000) (-1110 "TEXTFILE.spad" 2024225 2024234 2025658 2025663) (-1109 "TEX.spad" 2021242 2021251 2024215 2024220) (-1108 "TEX1.spad" 2020798 2020809 2021232 2021237) (-1107 "TEMUTL.spad" 2020353 2020362 2020788 2020793) (-1106 "TBCMPPK.spad" 2018446 2018469 2020343 2020348) (-1105 "TBAGG.spad" 2017470 2017493 2018414 2018441) (-1104 "TBAGG.spad" 2016514 2016539 2017460 2017465) (-1103 "TANEXP.spad" 2015890 2015901 2016504 2016509) (-1102 "TABLE.spad" 2014301 2014324 2014571 2014598) (-1101 "TABLEAU.spad" 2013782 2013793 2014291 2014296) (-1100 "TABLBUMP.spad" 2010565 2010576 2013772 2013777) (-1099 "SYSTEM.spad" 2009839 2009848 2010555 2010560) (-1098 "SYSSOLP.spad" 2007312 2007323 2009829 2009834) (-1097 "SYNTAX.spad" 2003504 2003513 2007302 2007307) (-1096 "SYMTAB.spad" 2001560 2001569 2003494 2003499) (-1095 "SYMS.spad" 1997545 1997554 2001550 2001555) (-1094 "SYMPOLY.spad" 1996555 1996566 1996637 1996764) (-1093 "SYMFUNC.spad" 1996030 1996041 1996545 1996550) (-1092 "SYMBOL.spad" 1993366 1993375 1996020 1996025) (-1091 "SWITCH.spad" 1990123 1990132 1993356 1993361) (-1090 "SUTS.spad" 1987022 1987050 1988590 1988687) (-1089 "SUPXS.spad" 1984036 1984064 1985154 1985303) (-1088 "SUP.spad" 1980808 1980819 1981589 1981742) (-1087 "SUPFRACF.spad" 1979913 1979931 1980798 1980803) (-1086 "SUP2.spad" 1979303 1979316 1979903 1979908) (-1085 "SUMRF.spad" 1978269 1978280 1979293 1979298) (-1084 "SUMFS.spad" 1977902 1977919 1978259 1978264) (-1083 "SULS.spad" 1968448 1968476 1969554 1969983) (-1082 "SUCH.spad" 1968128 1968143 1968438 1968443) (-1081 "SUBSPACE.spad" 1960135 1960150 1968118 1968123) (-1080 "SUBRESP.spad" 1959295 1959309 1960091 1960096) (-1079 "STTF.spad" 1955394 1955410 1959285 1959290) (-1078 "STTFNC.spad" 1951862 1951878 1955384 1955389) (-1077 "STTAYLOR.spad" 1944260 1944271 1951743 1951748) (-1076 "STRTBL.spad" 1942765 1942782 1942914 1942941) (-1075 "STRING.spad" 1942174 1942183 1942188 1942215) (-1074 "STRICAT.spad" 1941950 1941959 1942130 1942169) (-1073 "STREAM.spad" 1938718 1938729 1941475 1941490) (-1072 "STREAM3.spad" 1938263 1938278 1938708 1938713) (-1071 "STREAM2.spad" 1937331 1937344 1938253 1938258) (-1070 "STREAM1.spad" 1937035 1937046 1937321 1937326) (-1069 "STINPROD.spad" 1935941 1935957 1937025 1937030) (-1068 "STEP.spad" 1935142 1935151 1935931 1935936) (-1067 "STBL.spad" 1933668 1933696 1933835 1933850) (-1066 "STAGG.spad" 1932733 1932744 1933648 1933663) (-1065 "STAGG.spad" 1931806 1931819 1932723 1932728) (-1064 "STACK.spad" 1931157 1931168 1931413 1931440) (-1063 "SREGSET.spad" 1928861 1928878 1930803 1930830) (-1062 "SRDCMPK.spad" 1927406 1927426 1928851 1928856) (-1061 "SRAGG.spad" 1922491 1922500 1927362 1927401) (-1060 "SRAGG.spad" 1917608 1917619 1922481 1922486) (-1059 "SQMATRIX.spad" 1915234 1915252 1916142 1916229) (-1058 "SPLTREE.spad" 1909786 1909799 1914670 1914697) (-1057 "SPLNODE.spad" 1906374 1906387 1909776 1909781) (-1056 "SPFCAT.spad" 1905151 1905160 1906364 1906369) (-1055 "SPECOUT.spad" 1903701 1903710 1905141 1905146) (-1054 "spad-parser.spad" 1903166 1903175 1903691 1903696) (-1053 "SPACEC.spad" 1887179 1887190 1903156 1903161) (-1052 "SPACE3.spad" 1886955 1886966 1887169 1887174) (-1051 "SORTPAK.spad" 1886500 1886513 1886911 1886916) (-1050 "SOLVETRA.spad" 1884257 1884268 1886490 1886495) (-1049 "SOLVESER.spad" 1882777 1882788 1884247 1884252) (-1048 "SOLVERAD.spad" 1878787 1878798 1882767 1882772) (-1047 "SOLVEFOR.spad" 1877207 1877225 1878777 1878782) (-1046 "SNTSCAT.spad" 1876795 1876812 1877163 1877202) (-1045 "SMTS.spad" 1875055 1875081 1876360 1876457) (-1044 "SMP.spad" 1872497 1872517 1872887 1873014) (-1043 "SMITH.spad" 1871340 1871365 1872487 1872492) (-1042 "SMATCAT.spad" 1869438 1869468 1871272 1871335) (-1041 "SMATCAT.spad" 1867480 1867512 1869316 1869321) (-1040 "SKAGG.spad" 1866429 1866440 1867436 1867475) (-1039 "SINT.spad" 1864737 1864746 1866295 1866424) (-1038 "SIMPAN.spad" 1864465 1864474 1864727 1864732) (-1037 "SIG.spad" 1864062 1864071 1864455 1864460) (-1036 "SIGNRF.spad" 1863170 1863181 1864052 1864057) (-1035 "SIGNEF.spad" 1862439 1862456 1863160 1863165) (-1034 "SHP.spad" 1860357 1860372 1862395 1862400) (-1033 "SHDP.spad" 1851393 1851420 1851902 1852031) (-1032 "SGROUP.spad" 1850859 1850868 1851383 1851388) (-1031 "SGROUP.spad" 1850323 1850334 1850849 1850854) (-1030 "SGCF.spad" 1843204 1843213 1850313 1850318) (-1029 "SFRTCAT.spad" 1842120 1842137 1843160 1843199) (-1028 "SFRGCD.spad" 1841183 1841203 1842110 1842115) (-1027 "SFQCMPK.spad" 1835820 1835840 1841173 1841178) (-1026 "SFORT.spad" 1835255 1835269 1835810 1835815) (-1025 "SEXOF.spad" 1835098 1835138 1835245 1835250) (-1024 "SEX.spad" 1834990 1834999 1835088 1835093) (-1023 "SEXCAT.spad" 1832094 1832134 1834980 1834985) (-1022 "SET.spad" 1830394 1830405 1831515 1831554) (-1021 "SETMN.spad" 1828828 1828845 1830384 1830389) (-1020 "SETCAT.spad" 1828313 1828322 1828818 1828823) (-1019 "SETCAT.spad" 1827796 1827807 1828303 1828308) (-1018 "SETAGG.spad" 1824305 1824316 1827764 1827791) (-1017 "SETAGG.spad" 1820834 1820847 1824295 1824300) (-1016 "SEGXCAT.spad" 1819946 1819959 1820814 1820829) (-1015 "SEG.spad" 1819759 1819770 1819865 1819870) (-1014 "SEGCAT.spad" 1818578 1818589 1819739 1819754) (-1013 "SEGBIND.spad" 1817650 1817661 1818533 1818538) (-1012 "SEGBIND2.spad" 1817346 1817359 1817640 1817645) (-1011 "SEG2.spad" 1816771 1816784 1817302 1817307) (-1010 "SDVAR.spad" 1816047 1816058 1816761 1816766) (-1009 "SDPOL.spad" 1813440 1813451 1813731 1813858) (-1008 "SCPKG.spad" 1811519 1811530 1813430 1813435) (-1007 "SCOPE.spad" 1810664 1810673 1811509 1811514) (-1006 "SCACHE.spad" 1809346 1809357 1810654 1810659) (-1005 "SAOS.spad" 1809218 1809227 1809336 1809341) (-1004 "SAERFFC.spad" 1808931 1808951 1809208 1809213) (-1003 "SAE.spad" 1807109 1807125 1807720 1807855) (-1002 "SAEFACT.spad" 1806810 1806830 1807099 1807104) (-1001 "RURPK.spad" 1804451 1804467 1806800 1806805) (-1000 "RULESET.spad" 1803892 1803916 1804441 1804446) (-999 "RULE.spad" 1802097 1802120 1803882 1803887) (-998 "RULECOLD.spad" 1801950 1801962 1802087 1802092) (-997 "RSETGCD.spad" 1798329 1798348 1801940 1801945) (-996 "RSETCAT.spad" 1788102 1788118 1798285 1798324) (-995 "RSETCAT.spad" 1777907 1777925 1788092 1788097) (-994 "RSDCMPK.spad" 1776360 1776379 1777897 1777902) (-993 "RRCC.spad" 1774745 1774774 1776350 1776355) (-992 "RRCC.spad" 1773128 1773159 1774735 1774740) (-991 "RPOLCAT.spad" 1752489 1752503 1772996 1773123) (-990 "RPOLCAT.spad" 1731565 1731581 1752074 1752079) (-989 "ROUTINE.spad" 1727429 1727437 1730212 1730239) (-988 "ROMAN.spad" 1726662 1726670 1727295 1727424) (-987 "ROIRC.spad" 1725743 1725774 1726652 1726657) (-986 "RNS.spad" 1724647 1724655 1725645 1725738) (-985 "RNS.spad" 1723637 1723647 1724637 1724642) (-984 "RNG.spad" 1723373 1723381 1723627 1723632) (-983 "RMODULE.spad" 1723012 1723022 1723363 1723368) (-982 "RMCAT2.spad" 1722421 1722477 1723002 1723007) (-981 "RMATRIX.spad" 1721101 1721119 1721588 1721627) (-980 "RMATCAT.spad" 1716623 1716653 1721045 1721096) (-979 "RMATCAT.spad" 1712047 1712079 1716471 1716476) (-978 "RINTERP.spad" 1711936 1711955 1712037 1712042) (-977 "RING.spad" 1711294 1711302 1711916 1711931) (-976 "RING.spad" 1710660 1710670 1711284 1711289) (-975 "RIDIST.spad" 1710045 1710053 1710650 1710655) (-974 "RGCHAIN.spad" 1708625 1708640 1709530 1709557) (-973 "RF.spad" 1706240 1706250 1708615 1708620) (-972 "RFFACTOR.spad" 1705703 1705713 1706230 1706235) (-971 "RFFACT.spad" 1705439 1705450 1705693 1705698) (-970 "RFDIST.spad" 1704428 1704436 1705429 1705434) (-969 "RETSOL.spad" 1703846 1703858 1704418 1704423) (-968 "RETRACT.spad" 1703196 1703206 1703836 1703841) (-967 "RETRACT.spad" 1702544 1702556 1703186 1703191) (-966 "RESULT.spad" 1700605 1700613 1701191 1701218) (-965 "RESRING.spad" 1699953 1699999 1700543 1700600) (-964 "RESLATC.spad" 1699278 1699288 1699943 1699948) (-963 "REPSQ.spad" 1699008 1699018 1699268 1699273) (-962 "REP.spad" 1696561 1696569 1698998 1699003) (-961 "REPDB.spad" 1696267 1696277 1696551 1696556) (-960 "REP2.spad" 1685840 1685850 1696109 1696114) (-959 "REP1.spad" 1679831 1679841 1685790 1685795) (-958 "REGSET.spad" 1677629 1677645 1679477 1679504) (-957 "REF.spad" 1676959 1676969 1677584 1677589) (-956 "REDORDER.spad" 1676136 1676152 1676949 1676954) (-955 "RECLOS.spad" 1674926 1674945 1675629 1675722) (-954 "REALSOLV.spad" 1674059 1674067 1674916 1674921) (-953 "REAL.spad" 1673932 1673940 1674049 1674054) (-952 "REAL0Q.spad" 1671215 1671229 1673922 1673927) (-951 "REAL0.spad" 1668044 1668058 1671205 1671210) (-950 "RDIV.spad" 1667696 1667720 1668034 1668039) (-949 "RDIST.spad" 1667260 1667270 1667686 1667691) (-948 "RDETRS.spad" 1666057 1666074 1667250 1667255) (-947 "RDETR.spad" 1664165 1664182 1666047 1666052) (-946 "RDEEFS.spad" 1663239 1663255 1664155 1664160) (-945 "RDEEF.spad" 1662236 1662252 1663229 1663234) (-944 "RCFIELD.spad" 1659423 1659431 1662138 1662231) (-943 "RCFIELD.spad" 1656696 1656706 1659413 1659418) (-942 "RCAGG.spad" 1654599 1654609 1656676 1656691) (-941 "RCAGG.spad" 1652439 1652451 1654518 1654523) (-940 "RATRET.spad" 1651800 1651810 1652429 1652434) (-939 "RATFACT.spad" 1651493 1651504 1651790 1651795) (-938 "RANDSRC.spad" 1650813 1650821 1651483 1651488) (-937 "RADUTIL.spad" 1650568 1650576 1650803 1650808) (-936 "RADIX.spad" 1647361 1647374 1649038 1649131) (-935 "RADFF.spad" 1645778 1645814 1645896 1646052) (-934 "RADCAT.spad" 1645372 1645380 1645768 1645773) (-933 "RADCAT.spad" 1644964 1644974 1645362 1645367) (-932 "QUEUE.spad" 1644307 1644317 1644571 1644598) (-931 "QUAT.spad" 1642893 1642903 1643235 1643300) (-930 "QUATCT2.spad" 1642512 1642530 1642883 1642888) (-929 "QUATCAT.spad" 1640677 1640687 1642442 1642507) (-928 "QUATCAT.spad" 1638594 1638606 1640361 1640366) (-927 "QUAGG.spad" 1637408 1637418 1638550 1638589) (-926 "QFORM.spad" 1636871 1636885 1637398 1637403) (-925 "QFCAT.spad" 1635562 1635572 1636761 1636866) (-924 "QFCAT.spad" 1633859 1633871 1635060 1635065) (-923 "QFCAT2.spad" 1633550 1633566 1633849 1633854) (-922 "QEQUAT.spad" 1633107 1633115 1633540 1633545) (-921 "QCMPACK.spad" 1627854 1627873 1633097 1633102) (-920 "QALGSET.spad" 1623929 1623961 1627768 1627773) (-919 "QALGSET2.spad" 1621925 1621943 1623919 1623924) (-918 "PWFFINTB.spad" 1619235 1619256 1621915 1621920) (-917 "PUSHVAR.spad" 1618564 1618583 1619225 1619230) (-916 "PTRANFN.spad" 1614690 1614700 1618554 1618559) (-915 "PTPACK.spad" 1611778 1611788 1614680 1614685) (-914 "PTFUNC2.spad" 1611599 1611613 1611768 1611773) (-913 "PTCAT.spad" 1610681 1610691 1611555 1611594) (-912 "PSQFR.spad" 1609988 1610012 1610671 1610676) (-911 "PSEUDLIN.spad" 1608846 1608856 1609978 1609983) (-910 "PSETPK.spad" 1594279 1594295 1608724 1608729) (-909 "PSETCAT.spad" 1588187 1588210 1594247 1594274) (-908 "PSETCAT.spad" 1582081 1582106 1588143 1588148) (-907 "PSCURVE.spad" 1581064 1581072 1582071 1582076) (-906 "PSCAT.spad" 1579831 1579860 1580962 1581059) (-905 "PSCAT.spad" 1578688 1578719 1579821 1579826) (-904 "PRTITION.spad" 1577531 1577539 1578678 1578683) (-903 "PRS.spad" 1567093 1567110 1577487 1577492) (-902 "PRQAGG.spad" 1566512 1566522 1567049 1567088) (-901 "PROPLOG.spad" 1565915 1565923 1566502 1566507) (-900 "PROPFRML.spad" 1563779 1563790 1565851 1565856) (-899 "PROPERTY.spad" 1563273 1563281 1563769 1563774) (-898 "PRODUCT.spad" 1560953 1560965 1561239 1561294) (-897 "PR.spad" 1559342 1559354 1560047 1560174) (-896 "PRINT.spad" 1559094 1559102 1559332 1559337) (-895 "PRIMES.spad" 1557345 1557355 1559084 1559089) (-894 "PRIMELT.spad" 1555326 1555340 1557335 1557340) (-893 "PRIMCAT.spad" 1554949 1554957 1555316 1555321) (-892 "PRIMARR.spad" 1553954 1553964 1554132 1554159) (-891 "PRIMARR2.spad" 1552677 1552689 1553944 1553949) (-890 "PREASSOC.spad" 1552049 1552061 1552667 1552672) (-889 "PPCURVE.spad" 1551186 1551194 1552039 1552044) (-888 "POLYROOT.spad" 1549958 1549980 1551142 1551147) (-887 "POLY.spad" 1547258 1547268 1547775 1547902) (-886 "POLYLIFT.spad" 1546519 1546542 1547248 1547253) (-885 "POLYCATQ.spad" 1544621 1544643 1546509 1546514) (-884 "POLYCAT.spad" 1538027 1538048 1544489 1544616) (-883 "POLYCAT.spad" 1530735 1530758 1537199 1537204) (-882 "POLY2UP.spad" 1530183 1530197 1530725 1530730) (-881 "POLY2.spad" 1529778 1529790 1530173 1530178) (-880 "POLUTIL.spad" 1528719 1528748 1529734 1529739) (-879 "POLTOPOL.spad" 1527467 1527482 1528709 1528714) (-878 "POINT.spad" 1526308 1526318 1526395 1526422) (-877 "PNTHEORY.spad" 1522974 1522982 1526298 1526303) (-876 "PMTOOLS.spad" 1521731 1521745 1522964 1522969) (-875 "PMSYM.spad" 1521276 1521286 1521721 1521726) (-874 "PMQFCAT.spad" 1520863 1520877 1521266 1521271) (-873 "PMPRED.spad" 1520332 1520346 1520853 1520858) (-872 "PMPREDFS.spad" 1519776 1519798 1520322 1520327) (-871 "PMPLCAT.spad" 1518846 1518864 1519708 1519713) (-870 "PMLSAGG.spad" 1518427 1518441 1518836 1518841) (-869 "PMKERNEL.spad" 1517994 1518006 1518417 1518422) (-868 "PMINS.spad" 1517570 1517580 1517984 1517989) (-867 "PMFS.spad" 1517143 1517161 1517560 1517565) (-866 "PMDOWN.spad" 1516429 1516443 1517133 1517138) (-865 "PMASS.spad" 1515441 1515449 1516419 1516424) (-864 "PMASSFS.spad" 1514410 1514426 1515431 1515436) (-863 "PLOTTOOL.spad" 1514190 1514198 1514400 1514405) (-862 "PLOT.spad" 1509021 1509029 1514180 1514185) (-861 "PLOT3D.spad" 1505441 1505449 1509011 1509016) (-860 "PLOT1.spad" 1504582 1504592 1505431 1505436) (-859 "PLEQN.spad" 1491798 1491825 1504572 1504577) (-858 "PINTERP.spad" 1491414 1491433 1491788 1491793) (-857 "PINTERPA.spad" 1491196 1491212 1491404 1491409) (-856 "PI.spad" 1490803 1490811 1491170 1491191) (-855 "PID.spad" 1489759 1489767 1490729 1490798) (-854 "PICOERCE.spad" 1489416 1489426 1489749 1489754) (-853 "PGROEB.spad" 1488013 1488027 1489406 1489411) (-852 "PGE.spad" 1479266 1479274 1488003 1488008) (-851 "PGCD.spad" 1478148 1478165 1479256 1479261) (-850 "PFRPAC.spad" 1477291 1477301 1478138 1478143) (-849 "PFR.spad" 1473948 1473958 1477193 1477286) (-848 "PFOTOOLS.spad" 1473206 1473222 1473938 1473943) (-847 "PFOQ.spad" 1472576 1472594 1473196 1473201) (-846 "PFO.spad" 1471995 1472022 1472566 1472571) (-845 "PF.spad" 1471569 1471581 1471800 1471893) (-844 "PFECAT.spad" 1469235 1469243 1471495 1471564) (-843 "PFECAT.spad" 1466929 1466939 1469191 1469196) (-842 "PFBRU.spad" 1464799 1464811 1466919 1466924) (-841 "PFBR.spad" 1462337 1462360 1464789 1464794) (-840 "PERM.spad" 1458018 1458028 1462167 1462182) (-839 "PERMGRP.spad" 1452754 1452764 1458008 1458013) (-838 "PERMCAT.spad" 1451306 1451316 1452734 1452749) (-837 "PERMAN.spad" 1449838 1449852 1451296 1451301) (-836 "PENDTREE.spad" 1449111 1449121 1449467 1449472) (-835 "PDRING.spad" 1447602 1447612 1449091 1449106) (-834 "PDRING.spad" 1446101 1446113 1447592 1447597) (-833 "PDEPROB.spad" 1445058 1445066 1446091 1446096) (-832 "PDEPACK.spad" 1439060 1439068 1445048 1445053) (-831 "PDECOMP.spad" 1438522 1438539 1439050 1439055) (-830 "PDECAT.spad" 1436876 1436884 1438512 1438517) (-829 "PCOMP.spad" 1436727 1436740 1436866 1436871) (-828 "PBWLB.spad" 1435309 1435326 1436717 1436722) (-827 "PATTERN.spad" 1429740 1429750 1435299 1435304) (-826 "PATTERN2.spad" 1429476 1429488 1429730 1429735) (-825 "PATTERN1.spad" 1427778 1427794 1429466 1429471) (-824 "PATRES.spad" 1425325 1425337 1427768 1427773) (-823 "PATRES2.spad" 1424987 1425001 1425315 1425320) (-822 "PATMATCH.spad" 1423149 1423180 1424700 1424705) (-821 "PATMAB.spad" 1422574 1422584 1423139 1423144) (-820 "PATLRES.spad" 1421658 1421672 1422564 1422569) (-819 "PATAB.spad" 1421422 1421432 1421648 1421653) (-818 "PARTPERM.spad" 1418784 1418792 1421412 1421417) (-817 "PARSURF.spad" 1418212 1418240 1418774 1418779) (-816 "PARSU2.spad" 1418007 1418023 1418202 1418207) (-815 "script-parser.spad" 1417527 1417535 1417997 1418002) (-814 "PARSCURV.spad" 1416955 1416983 1417517 1417522) (-813 "PARSC2.spad" 1416744 1416760 1416945 1416950) (-812 "PARPCURV.spad" 1416202 1416230 1416734 1416739) (-811 "PARPC2.spad" 1415991 1416007 1416192 1416197) (-810 "PAN2EXPR.spad" 1415403 1415411 1415981 1415986) (-809 "PALETTE.spad" 1414373 1414381 1415393 1415398) (-808 "PAIR.spad" 1413356 1413369 1413961 1413966) (-807 "PADICRC.spad" 1410689 1410707 1411864 1411957) (-806 "PADICRAT.spad" 1408707 1408719 1408928 1409021) (-805 "PADIC.spad" 1408402 1408414 1408633 1408702) (-804 "PADICCT.spad" 1406943 1406955 1408328 1408397) (-803 "PADEPAC.spad" 1405622 1405641 1406933 1406938) (-802 "PADE.spad" 1404362 1404378 1405612 1405617) (-801 "OWP.spad" 1403346 1403376 1404220 1404287) (-800 "OVAR.spad" 1403127 1403150 1403336 1403341) (-799 "OUT.spad" 1402211 1402219 1403117 1403122) (-798 "OUTFORM.spad" 1391625 1391633 1402201 1402206) (-797 "OSI.spad" 1391100 1391108 1391615 1391620) (-796 "OSGROUP.spad" 1391018 1391026 1391090 1391095) (-795 "ORTHPOL.spad" 1389479 1389489 1390935 1390940) (-794 "OREUP.spad" 1388839 1388867 1389161 1389200) (-793 "ORESUP.spad" 1388140 1388164 1388521 1388560) (-792 "OREPCTO.spad" 1385959 1385971 1388060 1388065) (-791 "OREPCAT.spad" 1380016 1380026 1385915 1385954) (-790 "OREPCAT.spad" 1373963 1373975 1379864 1379869) (-789 "ORDSET.spad" 1373129 1373137 1373953 1373958) (-788 "ORDSET.spad" 1372293 1372303 1373119 1373124) (-787 "ORDRING.spad" 1371683 1371691 1372273 1372288) (-786 "ORDRING.spad" 1371081 1371091 1371673 1371678) (-785 "ORDMON.spad" 1370936 1370944 1371071 1371076) (-784 "ORDFUNS.spad" 1370062 1370078 1370926 1370931) (-783 "ORDFIN.spad" 1369996 1370004 1370052 1370057) (-782 "ORDCOMP.spad" 1368464 1368474 1369546 1369575) (-781 "ORDCOMP2.spad" 1367749 1367761 1368454 1368459) (-780 "OPTPROB.spad" 1366329 1366337 1367739 1367744) (-779 "OPTPACK.spad" 1358714 1358722 1366319 1366324) (-778 "OPTCAT.spad" 1356389 1356397 1358704 1358709) (-777 "OPQUERY.spad" 1355938 1355946 1356379 1356384) (-776 "OP.spad" 1355680 1355690 1355760 1355827) (-775 "ONECOMP.spad" 1354428 1354438 1355230 1355259) (-774 "ONECOMP2.spad" 1353846 1353858 1354418 1354423) (-773 "OMSERVER.spad" 1352848 1352856 1353836 1353841) (-772 "OMSAGG.spad" 1352624 1352634 1352792 1352843) (-771 "OMPKG.spad" 1351236 1351244 1352614 1352619) (-770 "OM.spad" 1350201 1350209 1351226 1351231) (-769 "OMLO.spad" 1349626 1349638 1350087 1350126) (-768 "OMEXPR.spad" 1349460 1349470 1349616 1349621) (-767 "OMERR.spad" 1349003 1349011 1349450 1349455) (-766 "OMERRK.spad" 1348037 1348045 1348993 1348998) (-765 "OMENC.spad" 1347381 1347389 1348027 1348032) (-764 "OMDEV.spad" 1341670 1341678 1347371 1347376) (-763 "OMCONN.spad" 1341079 1341087 1341660 1341665) (-762 "OINTDOM.spad" 1340842 1340850 1341005 1341074) (-761 "OFMONOID.spad" 1337029 1337039 1340832 1340837) (-760 "ODVAR.spad" 1336290 1336300 1337019 1337024) (-759 "ODR.spad" 1335738 1335764 1336102 1336251) (-758 "ODPOL.spad" 1333087 1333097 1333427 1333554) (-757 "ODP.spad" 1324259 1324279 1324632 1324761) (-756 "ODETOOLS.spad" 1322842 1322861 1324249 1324254) (-755 "ODESYS.spad" 1320492 1320509 1322832 1322837) (-754 "ODERTRIC.spad" 1316433 1316450 1320449 1320454) (-753 "ODERED.spad" 1315820 1315844 1316423 1316428) (-752 "ODERAT.spad" 1313371 1313388 1315810 1315815) (-751 "ODEPRRIC.spad" 1310262 1310284 1313361 1313366) (-750 "ODEPROB.spad" 1309461 1309469 1310252 1310257) (-749 "ODEPRIM.spad" 1306735 1306757 1309451 1309456) (-748 "ODEPAL.spad" 1306111 1306135 1306725 1306730) (-747 "ODEPACK.spad" 1292713 1292721 1306101 1306106) (-746 "ODEINT.spad" 1292144 1292160 1292703 1292708) (-745 "ODEIFTBL.spad" 1289539 1289547 1292134 1292139) (-744 "ODEEF.spad" 1284906 1284922 1289529 1289534) (-743 "ODECONST.spad" 1284425 1284443 1284896 1284901) (-742 "ODECAT.spad" 1283021 1283029 1284415 1284420) (-741 "OCT.spad" 1281168 1281178 1281884 1281923) (-740 "OCTCT2.spad" 1280812 1280833 1281158 1281163) (-739 "OC.spad" 1278586 1278596 1280768 1280807) (-738 "OC.spad" 1276086 1276098 1278270 1278275) (-737 "OCAMON.spad" 1275934 1275942 1276076 1276081) (-736 "OASGP.spad" 1275749 1275757 1275924 1275929) (-735 "OAMONS.spad" 1275269 1275277 1275739 1275744) (-734 "OAMON.spad" 1275130 1275138 1275259 1275264) (-733 "OAGROUP.spad" 1274992 1275000 1275120 1275125) (-732 "NUMTUBE.spad" 1274579 1274595 1274982 1274987) (-731 "NUMQUAD.spad" 1262441 1262449 1274569 1274574) (-730 "NUMODE.spad" 1253577 1253585 1262431 1262436) (-729 "NUMINT.spad" 1251135 1251143 1253567 1253572) (-728 "NUMFMT.spad" 1249975 1249983 1251125 1251130) (-727 "NUMERIC.spad" 1242048 1242058 1249781 1249786) (-726 "NTSCAT.spad" 1240538 1240554 1242004 1242043) (-725 "NTPOLFN.spad" 1240083 1240093 1240455 1240460) (-724 "NSUP.spad" 1233096 1233106 1237636 1237789) (-723 "NSUP2.spad" 1232488 1232500 1233086 1233091) (-722 "NSMP.spad" 1228687 1228706 1228995 1229122) (-721 "NREP.spad" 1227059 1227073 1228677 1228682) (-720 "NPCOEF.spad" 1226305 1226325 1227049 1227054) (-719 "NORMRETR.spad" 1225903 1225942 1226295 1226300) (-718 "NORMPK.spad" 1223805 1223824 1225893 1225898) (-717 "NORMMA.spad" 1223493 1223519 1223795 1223800) (-716 "NONE.spad" 1223234 1223242 1223483 1223488) (-715 "NONE1.spad" 1222910 1222920 1223224 1223229) (-714 "NODE1.spad" 1222379 1222395 1222900 1222905) (-713 "NNI.spad" 1221266 1221274 1222353 1222374) (-712 "NLINSOL.spad" 1219888 1219898 1221256 1221261) (-711 "NIPROB.spad" 1218371 1218379 1219878 1219883) (-710 "NFINTBAS.spad" 1215831 1215848 1218361 1218366) (-709 "NCODIV.spad" 1214029 1214045 1215821 1215826) (-708 "NCNTFRAC.spad" 1213671 1213685 1214019 1214024) (-707 "NCEP.spad" 1211831 1211845 1213661 1213666) (-706 "NASRING.spad" 1211427 1211435 1211821 1211826) (-705 "NASRING.spad" 1211021 1211031 1211417 1211422) (-704 "NARNG.spad" 1210365 1210373 1211011 1211016) (-703 "NARNG.spad" 1209707 1209717 1210355 1210360) (-702 "NAGSP.spad" 1208780 1208788 1209697 1209702) (-701 "NAGS.spad" 1198305 1198313 1208770 1208775) (-700 "NAGF07.spad" 1196698 1196706 1198295 1198300) (-699 "NAGF04.spad" 1190930 1190938 1196688 1196693) (-698 "NAGF02.spad" 1184739 1184747 1190920 1190925) (-697 "NAGF01.spad" 1180342 1180350 1184729 1184734) (-696 "NAGE04.spad" 1173802 1173810 1180332 1180337) (-695 "NAGE02.spad" 1164144 1164152 1173792 1173797) (-694 "NAGE01.spad" 1160028 1160036 1164134 1164139) (-693 "NAGD03.spad" 1157948 1157956 1160018 1160023) (-692 "NAGD02.spad" 1150479 1150487 1157938 1157943) (-691 "NAGD01.spad" 1144592 1144600 1150469 1150474) (-690 "NAGC06.spad" 1140379 1140387 1144582 1144587) (-689 "NAGC05.spad" 1138848 1138856 1140369 1140374) (-688 "NAGC02.spad" 1138103 1138111 1138838 1138843) (-687 "NAALG.spad" 1137638 1137648 1138071 1138098) (-686 "NAALG.spad" 1137193 1137205 1137628 1137633) (-685 "MULTSQFR.spad" 1134151 1134168 1137183 1137188) (-684 "MULTFACT.spad" 1133534 1133551 1134141 1134146) (-683 "MTSCAT.spad" 1131568 1131589 1133432 1133529) (-682 "MTHING.spad" 1131225 1131235 1131558 1131563) (-681 "MSYSCMD.spad" 1130659 1130667 1131215 1131220) (-680 "MSET.spad" 1128601 1128611 1130365 1130404) (-679 "MSETAGG.spad" 1128434 1128444 1128557 1128596) (-678 "MRING.spad" 1125405 1125417 1128142 1128209) (-677 "MRF2.spad" 1124973 1124987 1125395 1125400) (-676 "MRATFAC.spad" 1124519 1124536 1124963 1124968) (-675 "MPRFF.spad" 1122549 1122568 1124509 1124514) (-674 "MPOLY.spad" 1119987 1120002 1120346 1120473) (-673 "MPCPF.spad" 1119251 1119270 1119977 1119982) (-672 "MPC3.spad" 1119066 1119106 1119241 1119246) (-671 "MPC2.spad" 1118708 1118741 1119056 1119061) (-670 "MONOTOOL.spad" 1117043 1117060 1118698 1118703) (-669 "MONOID.spad" 1116217 1116225 1117033 1117038) (-668 "MONOID.spad" 1115389 1115399 1116207 1116212) (-667 "MONOGEN.spad" 1114135 1114148 1115249 1115384) (-666 "MONOGEN.spad" 1112903 1112918 1114019 1114024) (-665 "MONADWU.spad" 1110917 1110925 1112893 1112898) (-664 "MONADWU.spad" 1108929 1108939 1110907 1110912) (-663 "MONAD.spad" 1108073 1108081 1108919 1108924) (-662 "MONAD.spad" 1107215 1107225 1108063 1108068) (-661 "MOEBIUS.spad" 1105901 1105915 1107195 1107210) (-660 "MODULE.spad" 1105771 1105781 1105869 1105896) (-659 "MODULE.spad" 1105661 1105673 1105761 1105766) (-658 "MODRING.spad" 1104992 1105031 1105641 1105656) (-657 "MODOP.spad" 1103651 1103663 1104814 1104881) (-656 "MODMONOM.spad" 1103183 1103201 1103641 1103646) (-655 "MODMON.spad" 1099888 1099904 1100664 1100817) (-654 "MODFIELD.spad" 1099246 1099285 1099790 1099883) (-653 "MMLFORM.spad" 1098106 1098114 1099236 1099241) (-652 "MMAP.spad" 1097846 1097880 1098096 1098101) (-651 "MLO.spad" 1096273 1096283 1097802 1097841) (-650 "MLIFT.spad" 1094845 1094862 1096263 1096268) (-649 "MKUCFUNC.spad" 1094378 1094396 1094835 1094840) (-648 "MKRECORD.spad" 1093980 1093993 1094368 1094373) (-647 "MKFUNC.spad" 1093361 1093371 1093970 1093975) (-646 "MKFLCFN.spad" 1092317 1092327 1093351 1093356) (-645 "MKCHSET.spad" 1092093 1092103 1092307 1092312) (-644 "MKBCFUNC.spad" 1091578 1091596 1092083 1092088) (-643 "MINT.spad" 1091017 1091025 1091480 1091573) (-642 "MHROWRED.spad" 1089518 1089528 1091007 1091012) (-641 "MFLOAT.spad" 1087963 1087971 1089408 1089513) (-640 "MFINFACT.spad" 1087363 1087385 1087953 1087958) (-639 "MESH.spad" 1085095 1085103 1087353 1087358) (-638 "MDDFACT.spad" 1083288 1083298 1085085 1085090) (-637 "MDAGG.spad" 1082563 1082573 1083256 1083283) (-636 "MCMPLX.spad" 1078543 1078551 1079157 1079358) (-635 "MCDEN.spad" 1077751 1077763 1078533 1078538) (-634 "MCALCFN.spad" 1074853 1074879 1077741 1077746) (-633 "MATSTOR.spad" 1072129 1072139 1074843 1074848) (-632 "MATRIX.spad" 1070833 1070843 1071317 1071344) (-631 "MATLIN.spad" 1068159 1068183 1070717 1070722) (-630 "MATCAT.spad" 1059732 1059754 1068115 1068154) (-629 "MATCAT.spad" 1051189 1051213 1059574 1059579) (-628 "MATCAT2.spad" 1050457 1050505 1051179 1051184) (-627 "MAPPKG3.spad" 1049356 1049370 1050447 1050452) (-626 "MAPPKG2.spad" 1048690 1048702 1049346 1049351) (-625 "MAPPKG1.spad" 1047508 1047518 1048680 1048685) (-624 "MAPHACK3.spad" 1047316 1047330 1047498 1047503) (-623 "MAPHACK2.spad" 1047081 1047093 1047306 1047311) (-622 "MAPHACK1.spad" 1046711 1046721 1047071 1047076) (-621 "MAGMA.spad" 1044501 1044518 1046701 1046706) (-620 "M3D.spad" 1042199 1042209 1043881 1043886) (-619 "LZSTAGG.spad" 1039417 1039427 1042179 1042194) (-618 "LZSTAGG.spad" 1036643 1036655 1039407 1039412) (-617 "LWORD.spad" 1033348 1033365 1036633 1036638) (-616 "LSQM.spad" 1031576 1031590 1031974 1032025) (-615 "LSPP.spad" 1031109 1031126 1031566 1031571) (-614 "LSMP.spad" 1029949 1029977 1031099 1031104) (-613 "LSMP1.spad" 1027753 1027767 1029939 1029944) (-612 "LSAGG.spad" 1027410 1027420 1027709 1027748) (-611 "LSAGG.spad" 1027099 1027111 1027400 1027405) (-610 "LPOLY.spad" 1026053 1026072 1026955 1027024) (-609 "LPEFRAC.spad" 1025310 1025320 1026043 1026048) (-608 "LO.spad" 1024711 1024725 1025244 1025271) (-607 "LOGIC.spad" 1024313 1024321 1024701 1024706) (-606 "LOGIC.spad" 1023913 1023923 1024303 1024308) (-605 "LODOOPS.spad" 1022831 1022843 1023903 1023908) (-604 "LODO.spad" 1022217 1022233 1022513 1022552) (-603 "LODOF.spad" 1021261 1021278 1022174 1022179) (-602 "LODOCAT.spad" 1019919 1019929 1021217 1021256) (-601 "LODOCAT.spad" 1018575 1018587 1019875 1019880) (-600 "LODO2.spad" 1017850 1017862 1018257 1018296) (-599 "LODO1.spad" 1017252 1017262 1017532 1017571) (-598 "LODEEF.spad" 1016024 1016042 1017242 1017247) (-597 "LNAGG.spad" 1011816 1011826 1016004 1016019) (-596 "LNAGG.spad" 1007582 1007594 1011772 1011777) (-595 "LMOPS.spad" 1004318 1004335 1007572 1007577) (-594 "LMODULE.spad" 1003960 1003970 1004308 1004313) (-593 "LMDICT.spad" 1003243 1003253 1003511 1003538) (-592 "LIST.spad" 1000961 1000971 1002390 1002417) (-591 "LIST3.spad" 1000252 1000266 1000951 1000956) (-590 "LIST2.spad" 998892 998904 1000242 1000247) (-589 "LIST2MAP.spad" 995769 995781 998882 998887) (-588 "LINEXP.spad" 995201 995211 995749 995764) (-587 "LINDEP.spad" 993978 993990 995113 995118) (-586 "LIMITRF.spad" 991892 991902 993968 993973) (-585 "LIMITPS.spad" 990775 990788 991882 991887) (-584 "LIE.spad" 988789 988801 990065 990210) (-583 "LIECAT.spad" 988265 988275 988715 988784) (-582 "LIECAT.spad" 987769 987781 988221 988226) (-581 "LIB.spad" 985817 985825 986428 986443) (-580 "LGROBP.spad" 983170 983189 985807 985812) (-579 "LF.spad" 982089 982105 983160 983165) (-578 "LFCAT.spad" 981108 981116 982079 982084) (-577 "LEXTRIPK.spad" 976611 976626 981098 981103) (-576 "LEXP.spad" 974614 974641 976591 976606) (-575 "LEADCDET.spad" 972998 973015 974604 974609) (-574 "LAZM3PK.spad" 971702 971724 972988 972993) (-573 "LAUPOL.spad" 970393 970406 971297 971366) (-572 "LAPLACE.spad" 969966 969982 970383 970388) (-571 "LA.spad" 969406 969420 969888 969927) (-570 "LALG.spad" 969182 969192 969386 969401) (-569 "LALG.spad" 968966 968978 969172 969177) (-568 "KOVACIC.spad" 967679 967696 968956 968961) (-567 "KONVERT.spad" 967401 967411 967669 967674) (-566 "KOERCE.spad" 967138 967148 967391 967396) (-565 "KERNEL.spad" 965673 965683 966922 966927) (-564 "KERNEL2.spad" 965376 965388 965663 965668) (-563 "KDAGG.spad" 964467 964489 965344 965371) (-562 "KDAGG.spad" 963578 963602 964457 964462) (-561 "KAFILE.spad" 962541 962557 962776 962803) (-560 "JORDAN.spad" 960368 960380 961831 961976) (-559 "JAVACODE.spad" 960134 960142 960358 960363) (-558 "IXAGG.spad" 958247 958271 960114 960129) (-557 "IXAGG.spad" 956225 956251 958094 958099) (-556 "IVECTOR.spad" 954998 955013 955153 955180) (-555 "ITUPLE.spad" 954143 954153 954988 954993) (-554 "ITRIGMNP.spad" 952954 952973 954133 954138) (-553 "ITFUN3.spad" 952448 952462 952944 952949) (-552 "ITFUN2.spad" 952178 952190 952438 952443) (-551 "ITAYLOR.spad" 949970 949985 952014 952139) (-550 "ISUPS.spad" 942381 942396 948944 949041) (-549 "ISUMP.spad" 941878 941894 942371 942376) (-548 "ISTRING.spad" 940881 940894 941047 941074) (-547 "IRURPK.spad" 939594 939613 940871 940876) (-546 "IRSN.spad" 937554 937562 939584 939589) (-545 "IRRF2F.spad" 936029 936039 937510 937515) (-544 "IRREDFFX.spad" 935630 935641 936019 936024) (-543 "IROOT.spad" 933961 933971 935620 935625) (-542 "IR.spad" 931751 931765 933817 933844) (-541 "IR2.spad" 930771 930787 931741 931746) (-540 "IR2F.spad" 929971 929987 930761 930766) (-539 "IPRNTPK.spad" 929731 929739 929961 929966) (-538 "IPF.spad" 929296 929308 929536 929629) (-537 "IPADIC.spad" 929057 929083 929222 929291) (-536 "INVLAPLA.spad" 928702 928718 929047 929052) (-535 "INTTR.spad" 921948 921965 928692 928697) (-534 "INTTOOLS.spad" 919660 919676 921523 921528) (-533 "INTSLPE.spad" 918966 918974 919650 919655) (-532 "INTRVL.spad" 918532 918542 918880 918961) (-531 "INTRF.spad" 916896 916910 918522 918527) (-530 "INTRET.spad" 916328 916338 916886 916891) (-529 "INTRAT.spad" 915003 915020 916318 916323) (-528 "INTPM.spad" 913366 913382 914646 914651) (-527 "INTPAF.spad" 911134 911152 913298 913303) (-526 "INTPACK.spad" 901444 901452 911124 911129) (-525 "INT.spad" 900805 900813 901298 901439) (-524 "INTHERTR.spad" 900071 900088 900795 900800) (-523 "INTHERAL.spad" 899737 899761 900061 900066) (-522 "INTHEORY.spad" 896150 896158 899727 899732) (-521 "INTG0.spad" 889613 889631 896082 896087) (-520 "INTFTBL.spad" 883642 883650 889603 889608) (-519 "INTFACT.spad" 882701 882711 883632 883637) (-518 "INTEF.spad" 881016 881032 882691 882696) (-517 "INTDOM.spad" 879631 879639 880942 881011) (-516 "INTDOM.spad" 878308 878318 879621 879626) (-515 "INTCAT.spad" 876561 876571 878222 878303) (-514 "INTBIT.spad" 876064 876072 876551 876556) (-513 "INTALG.spad" 875246 875273 876054 876059) (-512 "INTAF.spad" 874738 874754 875236 875241) (-511 "INTABL.spad" 873256 873287 873419 873446) (-510 "INS.spad" 870652 870660 873158 873251) (-509 "INS.spad" 868134 868144 870642 870647) (-508 "INPSIGN.spad" 867568 867581 868124 868129) (-507 "INPRODPF.spad" 866634 866653 867558 867563) (-506 "INPRODFF.spad" 865692 865716 866624 866629) (-505 "INNMFACT.spad" 864663 864680 865682 865687) (-504 "INMODGCD.spad" 864147 864177 864653 864658) (-503 "INFSP.spad" 862432 862454 864137 864142) (-502 "INFPROD0.spad" 861482 861501 862422 862427) (-501 "INFORM.spad" 858750 858758 861472 861477) (-500 "INFORM1.spad" 858375 858385 858740 858745) (-499 "INFINITY.spad" 857927 857935 858365 858370) (-498 "INEP.spad" 856459 856481 857917 857922) (-497 "INDE.spad" 856188 856205 856449 856454) (-496 "INCRMAPS.spad" 855609 855619 856178 856183) (-495 "INBFF.spad" 851379 851390 855599 855604) (-494 "IMATRIX.spad" 850324 850350 850836 850863) (-493 "IMATQF.spad" 849418 849462 850280 850285) (-492 "IMATLIN.spad" 848023 848047 849374 849379) (-491 "ILIST.spad" 846679 846694 847206 847233) (-490 "IIARRAY2.spad" 846067 846105 846286 846313) (-489 "IFF.spad" 845477 845493 845748 845841) (-488 "IFARRAY.spad" 842964 842979 844660 844687) (-487 "IFAMON.spad" 842826 842843 842920 842925) (-486 "IEVALAB.spad" 842215 842227 842816 842821) (-485 "IEVALAB.spad" 841602 841616 842205 842210) (-484 "IDPO.spad" 841400 841412 841592 841597) (-483 "IDPOAMS.spad" 841156 841168 841390 841395) (-482 "IDPOAM.spad" 840876 840888 841146 841151) (-481 "IDPC.spad" 839810 839822 840866 840871) (-480 "IDPAM.spad" 839555 839567 839800 839805) (-479 "IDPAG.spad" 839302 839314 839545 839550) (-478 "IDECOMP.spad" 836539 836557 839292 839297) (-477 "IDEAL.spad" 831462 831501 836474 836479) (-476 "ICDEN.spad" 830613 830629 831452 831457) (-475 "ICARD.spad" 829802 829810 830603 830608) (-474 "IBPTOOLS.spad" 828395 828412 829792 829797) (-473 "IBITS.spad" 827594 827607 828031 828058) (-472 "IBATOOL.spad" 824469 824488 827584 827589) (-471 "IBACHIN.spad" 822956 822971 824459 824464) (-470 "IARRAY2.spad" 821944 821970 822563 822590) (-469 "IARRAY1.spad" 820989 821004 821127 821154) (-468 "IAN.spad" 819204 819212 820807 820900) (-467 "IALGFACT.spad" 818805 818838 819194 819199) (-466 "HYPCAT.spad" 818229 818237 818795 818800) (-465 "HYPCAT.spad" 817651 817661 818219 818224) (-464 "HOAGG.spad" 814909 814919 817631 817646) (-463 "HOAGG.spad" 811952 811964 814676 814681) (-462 "HEXADEC.spad" 809824 809832 810422 810515) (-461 "HEUGCD.spad" 808839 808850 809814 809819) (-460 "HELLFDIV.spad" 808429 808453 808829 808834) (-459 "HEAP.spad" 807821 807831 808036 808063) (-458 "HDP.spad" 798989 799005 799366 799495) (-457 "HDMP.spad" 796168 796183 796786 796913) (-456 "HB.spad" 794405 794413 796158 796163) (-455 "HASHTBL.spad" 792875 792906 793086 793113) (-454 "HACKPI.spad" 792358 792366 792777 792870) (-453 "GTSET.spad" 791297 791313 792004 792031) (-452 "GSTBL.spad" 789816 789851 789990 790005) (-451 "GSERIES.spad" 786983 787010 787948 788097) (-450 "GROUP.spad" 786157 786165 786963 786978) (-449 "GROUP.spad" 785339 785349 786147 786152) (-448 "GROEBSOL.spad" 783827 783848 785329 785334) (-447 "GRMOD.spad" 782398 782410 783817 783822) (-446 "GRMOD.spad" 780967 780981 782388 782393) (-445 "GRIMAGE.spad" 773572 773580 780957 780962) (-444 "GRDEF.spad" 771951 771959 773562 773567) (-443 "GRAY.spad" 770410 770418 771941 771946) (-442 "GRALG.spad" 769457 769469 770400 770405) (-441 "GRALG.spad" 768502 768516 769447 769452) (-440 "GPOLSET.spad" 767956 767979 768184 768211) (-439 "GOSPER.spad" 767221 767239 767946 767951) (-438 "GMODPOL.spad" 766359 766386 767189 767216) (-437 "GHENSEL.spad" 765428 765442 766349 766354) (-436 "GENUPS.spad" 761529 761542 765418 765423) (-435 "GENUFACT.spad" 761106 761116 761519 761524) (-434 "GENPGCD.spad" 760690 760707 761096 761101) (-433 "GENMFACT.spad" 760142 760161 760680 760685) (-432 "GENEEZ.spad" 758081 758094 760132 760137) (-431 "GDMP.spad" 755102 755119 755878 756005) (-430 "GCNAALG.spad" 748997 749024 754896 754963) (-429 "GCDDOM.spad" 748169 748177 748923 748992) (-428 "GCDDOM.spad" 747403 747413 748159 748164) (-427 "GB.spad" 744921 744959 747359 747364) (-426 "GBINTERN.spad" 740941 740979 744911 744916) (-425 "GBF.spad" 736698 736736 740931 740936) (-424 "GBEUCLID.spad" 734572 734610 736688 736693) (-423 "GAUSSFAC.spad" 733869 733877 734562 734567) (-422 "GALUTIL.spad" 732191 732201 733825 733830) (-421 "GALPOLYU.spad" 730637 730650 732181 732186) (-420 "GALFACTU.spad" 728802 728821 730627 730632) (-419 "GALFACT.spad" 718935 718946 728792 728797) (-418 "FVFUN.spad" 715948 715956 718915 718930) (-417 "FVC.spad" 714990 714998 715928 715943) (-416 "FUNCTION.spad" 714839 714851 714980 714985) (-415 "FT.spad" 713051 713059 714829 714834) (-414 "FTEM.spad" 712214 712222 713041 713046) (-413 "FSUPFACT.spad" 711115 711134 712151 712156) (-412 "FST.spad" 709201 709209 711105 711110) (-411 "FSRED.spad" 708679 708695 709191 709196) (-410 "FSPRMELT.spad" 707503 707519 708636 708641) (-409 "FSPECF.spad" 705580 705596 707493 707498) (-408 "FS.spad" 699631 699641 705344 705575) (-407 "FS.spad" 693473 693485 699188 699193) (-406 "FSINT.spad" 693131 693147 693463 693468) (-405 "FSERIES.spad" 692318 692330 692951 693050) (-404 "FSCINT.spad" 691631 691647 692308 692313) (-403 "FSAGG.spad" 690736 690746 691575 691626) (-402 "FSAGG.spad" 689815 689827 690656 690661) (-401 "FSAGG2.spad" 688514 688530 689805 689810) (-400 "FS2UPS.spad" 682903 682937 688504 688509) (-399 "FS2.spad" 682548 682564 682893 682898) (-398 "FS2EXPXP.spad" 681671 681694 682538 682543) (-397 "FRUTIL.spad" 680613 680623 681661 681666) (-396 "FR.spad" 674310 674320 679640 679709) (-395 "FRNAALG.spad" 669397 669407 674252 674305) (-394 "FRNAALG.spad" 664496 664508 669353 669358) (-393 "FRNAAF2.spad" 663950 663968 664486 664491) (-392 "FRMOD.spad" 663345 663375 663882 663887) (-391 "FRIDEAL.spad" 662540 662561 663325 663340) (-390 "FRIDEAL2.spad" 662142 662174 662530 662535) (-389 "FRETRCT.spad" 661653 661663 662132 662137) (-388 "FRETRCT.spad" 661032 661044 661513 661518) (-387 "FRAMALG.spad" 659360 659373 660988 661027) (-386 "FRAMALG.spad" 657720 657735 659350 659355) (-385 "FRAC.spad" 654823 654833 655226 655399) (-384 "FRAC2.spad" 654426 654438 654813 654818) (-383 "FR2.spad" 653760 653772 654416 654421) (-382 "FPS.spad" 650569 650577 653650 653755) (-381 "FPS.spad" 647406 647416 650489 650494) (-380 "FPC.spad" 646448 646456 647308 647401) (-379 "FPC.spad" 645576 645586 646438 646443) (-378 "FPATMAB.spad" 645328 645338 645556 645571) (-377 "FPARFRAC.spad" 643801 643818 645318 645323) (-376 "FORTRAN.spad" 642307 642350 643791 643796) (-375 "FORT.spad" 641236 641244 642297 642302) (-374 "FORTFN.spad" 638396 638404 641216 641231) (-373 "FORTCAT.spad" 638070 638078 638376 638391) (-372 "FORMULA.spad" 635408 635416 638060 638065) (-371 "FORMULA1.spad" 634887 634897 635398 635403) (-370 "FORDER.spad" 634578 634602 634877 634882) (-369 "FOP.spad" 633779 633787 634568 634573) (-368 "FNLA.spad" 633203 633225 633747 633774) (-367 "FNCAT.spad" 631531 631539 633193 633198) (-366 "FNAME.spad" 631423 631431 631521 631526) (-365 "FMTC.spad" 631221 631229 631349 631418) (-364 "FMONOID.spad" 628276 628286 631177 631182) (-363 "FM.spad" 627971 627983 628210 628237) (-362 "FMFUN.spad" 624991 624999 627951 627966) (-361 "FMC.spad" 624033 624041 624971 624986) (-360 "FMCAT.spad" 621687 621705 624001 624028) (-359 "FM1.spad" 621044 621056 621621 621648) (-358 "FLOATRP.spad" 618765 618779 621034 621039) (-357 "FLOAT.spad" 611929 611937 618631 618760) (-356 "FLOATCP.spad" 609346 609360 611919 611924) (-355 "FLINEXP.spad" 609058 609068 609326 609341) (-354 "FLINEXP.spad" 608724 608736 608994 608999) (-353 "FLASORT.spad" 608044 608056 608714 608719) (-352 "FLALG.spad" 605690 605709 607970 608039) (-351 "FLAGG.spad" 602696 602706 605658 605685) (-350 "FLAGG.spad" 599615 599627 602579 602584) (-349 "FLAGG2.spad" 598296 598312 599605 599610) (-348 "FINRALG.spad" 596325 596338 598252 598291) (-347 "FINRALG.spad" 594280 594295 596209 596214) (-346 "FINITE.spad" 593432 593440 594270 594275) (-345 "FINAALG.spad" 582413 582423 593374 593427) (-344 "FINAALG.spad" 571406 571418 582369 582374) (-343 "FILE.spad" 570989 570999 571396 571401) (-342 "FILECAT.spad" 569507 569524 570979 570984) (-341 "FIELD.spad" 568913 568921 569409 569502) (-340 "FIELD.spad" 568405 568415 568903 568908) (-339 "FGROUP.spad" 567014 567024 568385 568400) (-338 "FGLMICPK.spad" 565801 565816 567004 567009) (-337 "FFX.spad" 565176 565191 565517 565610) (-336 "FFSLPE.spad" 564665 564686 565166 565171) (-335 "FFPOLY.spad" 555917 555928 564655 564660) (-334 "FFPOLY2.spad" 554977 554994 555907 555912) (-333 "FFP.spad" 554374 554394 554693 554786) (-332 "FF.spad" 553822 553838 554055 554148) (-331 "FFNBX.spad" 552334 552354 553538 553631) (-330 "FFNBP.spad" 550847 550864 552050 552143) (-329 "FFNB.spad" 549312 549333 550528 550621) (-328 "FFINTBAS.spad" 546726 546745 549302 549307) (-327 "FFIELDC.spad" 544301 544309 546628 546721) (-326 "FFIELDC.spad" 541962 541972 544291 544296) (-325 "FFHOM.spad" 540710 540727 541952 541957) (-324 "FFF.spad" 538145 538156 540700 540705) (-323 "FFCGX.spad" 536992 537012 537861 537954) (-322 "FFCGP.spad" 535881 535901 536708 536801) (-321 "FFCG.spad" 534673 534694 535562 535655) (-320 "FFCAT.spad" 527574 527596 534512 534668) (-319 "FFCAT.spad" 520554 520578 527494 527499) (-318 "FFCAT2.spad" 520299 520339 520544 520549) (-317 "FEXPR.spad" 512012 512058 520059 520098) (-316 "FEVALAB.spad" 511718 511728 512002 512007) (-315 "FEVALAB.spad" 511209 511221 511495 511500) (-314 "FDIV.spad" 510651 510675 511199 511204) (-313 "FDIVCAT.spad" 508693 508717 510641 510646) (-312 "FDIVCAT.spad" 506733 506759 508683 508688) (-311 "FDIV2.spad" 506387 506427 506723 506728) (-310 "FCPAK1.spad" 504940 504948 506377 506382) (-309 "FCOMP.spad" 504319 504329 504930 504935) (-308 "FC.spad" 494144 494152 504309 504314) (-307 "FAXF.spad" 487079 487093 494046 494139) (-306 "FAXF.spad" 480066 480082 487035 487040) (-305 "FARRAY.spad" 478212 478222 479249 479276) (-304 "FAMR.spad" 476332 476344 478110 478207) (-303 "FAMR.spad" 474436 474450 476216 476221) (-302 "FAMONOID.spad" 474086 474096 474390 474395) (-301 "FAMONC.spad" 472308 472320 474076 474081) (-300 "FAGROUP.spad" 471914 471924 472204 472231) (-299 "FACUTIL.spad" 470110 470127 471904 471909) (-298 "FACTFUNC.spad" 469286 469296 470100 470105) (-297 "EXPUPXS.spad" 466119 466142 467418 467567) (-296 "EXPRTUBE.spad" 463347 463355 466109 466114) (-295 "EXPRODE.spad" 460219 460235 463337 463342) (-294 "EXPR.spad" 455521 455531 456235 456638) (-293 "EXPR2UPS.spad" 451613 451626 455511 455516) (-292 "EXPR2.spad" 451316 451328 451603 451608) (-291 "EXPEXPAN.spad" 448257 448282 448891 448984) (-290 "EXIT.spad" 447928 447936 448247 448252) (-289 "EVALCYC.spad" 447386 447400 447918 447923) (-288 "EVALAB.spad" 446950 446960 447376 447381) (-287 "EVALAB.spad" 446512 446524 446940 446945) (-286 "EUCDOM.spad" 444054 444062 446438 446507) (-285 "EUCDOM.spad" 441658 441668 444044 444049) (-284 "ESTOOLS.spad" 433498 433506 441648 441653) (-283 "ESTOOLS2.spad" 433099 433113 433488 433493) (-282 "ESTOOLS1.spad" 432784 432795 433089 433094) (-281 "ES.spad" 425331 425339 432774 432779) (-280 "ES.spad" 417786 417796 425231 425236) (-279 "ESCONT.spad" 414559 414567 417776 417781) (-278 "ESCONT1.spad" 414308 414320 414549 414554) (-277 "ES2.spad" 413803 413819 414298 414303) (-276 "ES1.spad" 413369 413385 413793 413798) (-275 "ERROR.spad" 410690 410698 413359 413364) (-274 "EQTBL.spad" 409162 409184 409371 409398) (-273 "EQ.spad" 404046 404056 406845 406954) (-272 "EQ2.spad" 403762 403774 404036 404041) (-271 "EP.spad" 400076 400086 403752 403757) (-270 "ENV.spad" 398778 398786 400066 400071) (-269 "ENTIRER.spad" 398446 398454 398722 398773) (-268 "EMR.spad" 397647 397688 398372 398441) (-267 "ELTAGG.spad" 395887 395906 397637 397642) (-266 "ELTAGG.spad" 394091 394112 395843 395848) (-265 "ELTAB.spad" 393538 393556 394081 394086) (-264 "ELFUTS.spad" 392917 392936 393528 393533) (-263 "ELEMFUN.spad" 392606 392614 392907 392912) (-262 "ELEMFUN.spad" 392293 392303 392596 392601) (-261 "ELAGG.spad" 390224 390234 392261 392288) (-260 "ELAGG.spad" 388104 388116 390143 390148) (-259 "ELABEXPR.spad" 387035 387043 388094 388099) (-258 "EFUPXS.spad" 383811 383841 386991 386996) (-257 "EFULS.spad" 380647 380670 383767 383772) (-256 "EFSTRUC.spad" 378602 378618 380637 380642) (-255 "EF.spad" 373368 373384 378592 378597) (-254 "EAB.spad" 371644 371652 373358 373363) (-253 "E04UCFA.spad" 371180 371188 371634 371639) (-252 "E04NAFA.spad" 370757 370765 371170 371175) (-251 "E04MBFA.spad" 370337 370345 370747 370752) (-250 "E04JAFA.spad" 369873 369881 370327 370332) (-249 "E04GCFA.spad" 369409 369417 369863 369868) (-248 "E04FDFA.spad" 368945 368953 369399 369404) (-247 "E04DGFA.spad" 368481 368489 368935 368940) (-246 "E04AGNT.spad" 364323 364331 368471 368476) (-245 "DVARCAT.spad" 361008 361018 364313 364318) (-244 "DVARCAT.spad" 357691 357703 360998 361003) (-243 "DSMP.spad" 355125 355139 355430 355557) (-242 "DROPT.spad" 349070 349078 355115 355120) (-241 "DROPT1.spad" 348733 348743 349060 349065) (-240 "DROPT0.spad" 343560 343568 348723 348728) (-239 "DRAWPT.spad" 341715 341723 343550 343555) (-238 "DRAW.spad" 334315 334328 341705 341710) (-237 "DRAWHACK.spad" 333623 333633 334305 334310) (-236 "DRAWCX.spad" 331065 331073 333613 333618) (-235 "DRAWCURV.spad" 330602 330617 331055 331060) (-234 "DRAWCFUN.spad" 319774 319782 330592 330597) (-233 "DQAGG.spad" 317930 317940 319730 319769) (-232 "DPOLCAT.spad" 313271 313287 317798 317925) (-231 "DPOLCAT.spad" 308698 308716 313227 313232) (-230 "DPMO.spad" 302048 302064 302186 302482) (-229 "DPMM.spad" 295411 295429 295536 295832) (-228 "DOMAIN.spad" 294682 294690 295401 295406) (-227 "DMP.spad" 291907 291922 292479 292606) (-226 "DLP.spad" 291255 291265 291897 291902) (-225 "DLIST.spad" 289667 289677 290438 290465) (-224 "DLAGG.spad" 288068 288078 289647 289662) (-223 "DIVRING.spad" 287515 287523 288012 288063) (-222 "DIVRING.spad" 287006 287016 287505 287510) (-221 "DISPLAY.spad" 285186 285194 286996 287001) (-220 "DIRPROD.spad" 276091 276107 276731 276860) (-219 "DIRPROD2.spad" 274899 274917 276081 276086) (-218 "DIRPCAT.spad" 273831 273847 274753 274894) (-217 "DIRPCAT.spad" 272503 272521 273427 273432) (-216 "DIOSP.spad" 271328 271336 272493 272498) (-215 "DIOPS.spad" 270300 270310 271296 271323) (-214 "DIOPS.spad" 269258 269270 270256 270261) (-213 "DIFRING.spad" 268550 268558 269238 269253) (-212 "DIFRING.spad" 267850 267860 268540 268545) (-211 "DIFEXT.spad" 267009 267019 267830 267845) (-210 "DIFEXT.spad" 266085 266097 266908 266913) (-209 "DIAGG.spad" 265703 265713 266053 266080) (-208 "DIAGG.spad" 265341 265353 265693 265698) (-207 "DHMATRIX.spad" 263645 263655 264798 264825) (-206 "DFSFUN.spad" 257053 257061 263635 263640) (-205 "DFLOAT.spad" 253576 253584 256943 257048) (-204 "DFINTTLS.spad" 251785 251801 253566 253571) (-203 "DERHAM.spad" 249695 249727 251765 251780) (-202 "DEQUEUE.spad" 249013 249023 249302 249329) (-201 "DEGRED.spad" 248628 248642 249003 249008) (-200 "DEFINTRF.spad" 246153 246163 248618 248623) (-199 "DEFINTEF.spad" 244649 244665 246143 246148) (-198 "DECIMAL.spad" 242533 242541 243119 243212) (-197 "DDFACT.spad" 240332 240349 242523 242528) (-196 "DBLRESP.spad" 239930 239954 240322 240327) (-195 "DBASE.spad" 238502 238512 239920 239925) (-194 "D03FAFA.spad" 238330 238338 238492 238497) (-193 "D03EEFA.spad" 238150 238158 238320 238325) (-192 "D03AGNT.spad" 237230 237238 238140 238145) (-191 "D02EJFA.spad" 236692 236700 237220 237225) (-190 "D02CJFA.spad" 236170 236178 236682 236687) (-189 "D02BHFA.spad" 235660 235668 236160 236165) (-188 "D02BBFA.spad" 235150 235158 235650 235655) (-187 "D02AGNT.spad" 229954 229962 235140 235145) (-186 "D01WGTS.spad" 228273 228281 229944 229949) (-185 "D01TRNS.spad" 228250 228258 228263 228268) (-184 "D01GBFA.spad" 227772 227780 228240 228245) (-183 "D01FCFA.spad" 227294 227302 227762 227767) (-182 "D01ASFA.spad" 226762 226770 227284 227289) (-181 "D01AQFA.spad" 226208 226216 226752 226757) (-180 "D01APFA.spad" 225632 225640 226198 226203) (-179 "D01ANFA.spad" 225126 225134 225622 225627) (-178 "D01AMFA.spad" 224636 224644 225116 225121) (-177 "D01ALFA.spad" 224176 224184 224626 224631) (-176 "D01AKFA.spad" 223702 223710 224166 224171) (-175 "D01AJFA.spad" 223225 223233 223692 223697) (-174 "D01AGNT.spad" 219284 219292 223215 223220) (-173 "CYCLOTOM.spad" 218790 218798 219274 219279) (-172 "CYCLES.spad" 215622 215630 218780 218785) (-171 "CVMP.spad" 215039 215049 215612 215617) (-170 "CTRIGMNP.spad" 213529 213545 215029 215034) (-169 "CTORCALL.spad" 213117 213125 213519 213524) (-168 "CSTTOOLS.spad" 212360 212373 213107 213112) (-167 "CRFP.spad" 206064 206077 212350 212355) (-166 "CRAPACK.spad" 205107 205117 206054 206059) (-165 "CPMATCH.spad" 204607 204622 205032 205037) (-164 "CPIMA.spad" 204312 204331 204597 204602) (-163 "COORDSYS.spad" 199205 199215 204302 204307) (-162 "CONTOUR.spad" 198607 198615 199195 199200) (-161 "CONTFRAC.spad" 194219 194229 198509 198602) (-160 "COMRING.spad" 193893 193901 194157 194214) (-159 "COMPPROP.spad" 193407 193415 193883 193888) (-158 "COMPLPAT.spad" 193174 193189 193397 193402) (-157 "COMPLEX.spad" 187207 187217 187451 187712) (-156 "COMPLEX2.spad" 186920 186932 187197 187202) (-155 "COMPFACT.spad" 186522 186536 186910 186915) (-154 "COMPCAT.spad" 184578 184588 186244 186517) (-153 "COMPCAT.spad" 182341 182353 184009 184014) (-152 "COMMUPC.spad" 182087 182105 182331 182336) (-151 "COMMONOP.spad" 181620 181628 182077 182082) (-150 "COMM.spad" 181429 181437 181610 181615) (-149 "COMBOPC.spad" 180334 180342 181419 181424) (-148 "COMBINAT.spad" 179079 179089 180324 180329) (-147 "COMBF.spad" 176447 176463 179069 179074) (-146 "COLOR.spad" 175284 175292 176437 176442) (-145 "CMPLXRT.spad" 174993 175010 175274 175279) (-144 "CLIP.spad" 171085 171093 174983 174988) (-143 "CLIF.spad" 169724 169740 171041 171080) (-142 "CLAGG.spad" 166199 166209 169704 169719) (-141 "CLAGG.spad" 162555 162567 166062 166067) (-140 "CINTSLPE.spad" 161880 161893 162545 162550) (-139 "CHVAR.spad" 159958 159980 161870 161875) (-138 "CHARZ.spad" 159873 159881 159938 159953) (-137 "CHARPOL.spad" 159381 159391 159863 159868) (-136 "CHARNZ.spad" 159134 159142 159361 159376) (-135 "CHAR.spad" 157002 157010 159124 159129) (-134 "CFCAT.spad" 156318 156326 156992 156997) (-133 "CDEN.spad" 155476 155490 156308 156313) (-132 "CCLASS.spad" 153625 153633 154887 154926) (-131 "CATEGORY.spad" 153404 153412 153615 153620) (-130 "CARTEN.spad" 148507 148531 153394 153399) (-129 "CARTEN2.spad" 147893 147920 148497 148502) (-128 "CARD.spad" 145182 145190 147867 147888) (-127 "CACHSET.spad" 144804 144812 145172 145177) (-126 "CABMON.spad" 144357 144365 144794 144799) (-125 "BYTE.spad" 143751 143759 144347 144352) (-124 "BYTEARY.spad" 142826 142834 142920 142947) (-123 "BTREE.spad" 141895 141905 142433 142460) (-122 "BTOURN.spad" 140898 140908 141502 141529) (-121 "BTCAT.spad" 140274 140284 140854 140893) (-120 "BTCAT.spad" 139682 139694 140264 140269) (-119 "BTAGG.spad" 138698 138706 139638 139677) (-118 "BTAGG.spad" 137746 137756 138688 138693) (-117 "BSTREE.spad" 136481 136491 137353 137380) (-116 "BRILL.spad" 134676 134687 136471 136476) (-115 "BRAGG.spad" 133590 133600 134656 134671) (-114 "BRAGG.spad" 132478 132490 133546 133551) (-113 "BPADICRT.spad" 130462 130474 130717 130810) (-112 "BPADIC.spad" 130126 130138 130388 130457) (-111 "BOUNDZRO.spad" 129782 129799 130116 130121) (-110 "BOP.spad" 125246 125254 129772 129777) (-109 "BOP1.spad" 122632 122642 125202 125207) (-108 "BOOLEAN.spad" 121895 121903 122622 122627) (-107 "BMODULE.spad" 121607 121619 121863 121890) (-106 "BITS.spad" 121026 121034 121243 121270) (-105 "BINFILE.spad" 120369 120377 121016 121021) (-104 "BINDING.spad" 119788 119796 120359 120364) (-103 "BINARY.spad" 117681 117689 118258 118351) (-102 "BGAGG.spad" 116866 116876 117649 117676) (-101 "BGAGG.spad" 116071 116083 116856 116861) (-100 "BFUNCT.spad" 115635 115643 116051 116066) (-99 "BEZOUT.spad" 114770 114796 115585 115590) (-98 "BBTREE.spad" 111590 111599 114377 114404) (-97 "BASTYPE.spad" 111263 111270 111580 111585) (-96 "BASTYPE.spad" 110934 110943 111253 111258) (-95 "BALFACT.spad" 110374 110386 110924 110929) (-94 "AUTOMOR.spad" 109821 109830 110354 110369) (-93 "ATTREG.spad" 106540 106547 109573 109816) (-92 "ATTRBUT.spad" 102563 102570 106520 106535) (-91 "ATRIG.spad" 102033 102040 102553 102558) (-90 "ATRIG.spad" 101501 101510 102023 102028) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 894b5e47..ba964731 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,14 +1,14 @@
-(143295 . 3425075217)
-(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((#0=(-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) #0#) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))))
+(143295 . 3427192343)
+(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((#0=(-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) #0#) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))))
(((|#2| |#2|) . T))
((((-525)) . T))
-((($ $) -3254 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))) ((|#2| |#2|) . T) ((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))))
+((($ $) -2067 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))) ((|#2| |#2|) . T) ((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))))
((($) . T))
(((|#1|) . T))
((($) . T) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#2|) . T))
-((($) -3254 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))) ((|#2|) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))) ((|#2|) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))))
(|has| |#1| (-844))
((((-798)) . T))
((((-798)) . T))
@@ -23,28 +23,28 @@
((((-205)) . T) (((-798)) . T))
(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1|) . T))
-(-3254 (|has| |#1| (-21)) (|has| |#1| (-787)))
-((($ $) . T) ((#0=(-385 (-525)) #0#) -3254 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1| |#1|) . T))
-(-3254 (|has| |#1| (-762)) (|has| |#1| (-789)))
+(-2067 (|has| |#1| (-21)) (|has| |#1| (-787)))
+((($ $) . T) ((#0=(-385 (-525)) #0#) -2067 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1| |#1|) . T))
+(-2067 (|has| |#1| (-762)) (|has| |#1| (-789)))
((((-385 (-525))) |has| |#1| (-968 (-385 (-525)))) (((-525)) |has| |#1| (-968 (-525))) ((|#1|) . T))
((((-798)) . T))
((((-798)) . T))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-517)))
(|has| |#1| (-787))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1| |#2| |#3|) . T))
(((|#4|) . T))
-((($) . T) (((-385 (-525))) -3254 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
+((($) . T) (((-385 (-525))) -2067 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
((((-798)) . T))
((((-798)) |has| |#1| (-1020)))
(((|#1|) . T) ((|#2|) . T))
(((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) |has| |#1| (-968 (-385 (-525)))))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
-(((|#2| (-458 (-3522 |#1|) (-713))) . T))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(((|#2| (-458 (-2827 |#1|) (-713))) . T))
(((|#1| (-497 (-1092))) . T))
(((#0=(-805 |#1|) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
(|has| |#4| (-346))
(|has| |#3| (-346))
(((|#1|) . T))
@@ -54,10 +54,10 @@
(|has| |#1| (-136))
(|has| |#1| (-138))
(|has| |#1| (-517))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-517)))
((($) . T))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
((($) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T))
((($) . T))
@@ -66,59 +66,59 @@
((((-798)) . T))
((((-798)) . T))
((((-385 (-525))) . T) (($) . T))
-((((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1166 |#1| |#2| |#3|)) |has| |#1| (-341)) (($) . T) ((|#1|) . T))
+((((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1166 |#1| |#2| |#3|)) |has| |#1| (-341)) (($) . T) ((|#1|) . T))
((((-798)) . T))
((((-798)) . T))
((((-798)) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) . T))
+(((|#1|) . T) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) . T))
(((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) (($) . T))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(((|#1| |#2|) . T))
((((-798)) . T))
(((|#1|) . T))
-(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3254 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -2067 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
(((|#1|) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3254 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
-((($) -3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -2067 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((($) -2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
-(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
+(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
((($ $) . T))
(((|#2|) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3254 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
-((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3254 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -2067 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -2067 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
((($) . T))
(|has| |#1| (-346))
(((|#1|) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
((((-798)) . T))
((((-798)) . T))
(((|#1| |#2|) . T))
-(-3254 (|has| |#1| (-21)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)))
-(-3254 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)))
+(-2067 (|has| |#1| (-21)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)))
+(-2067 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)))
(((|#1| |#1|) . T))
(|has| |#1| (-517))
(((|#2| |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-288 |#2|))) (((-1092) |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-486 (-1092) |#2|))))
((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T))
-(-3254 (|has| |#1| (-21)) (|has| |#1| (-787)))
+(-2067 (|has| |#1| (-21)) (|has| |#1| (-787)))
((($ $) . T) ((#0=(-385 (-525)) #0#) . T))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(|has| |#1| (-1020))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(|has| |#1| (-1020))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(|has| |#1| (-787))
((($) . T) (((-385 (-525))) . T))
(((|#1|) . T))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-327)))
-(-3254 (|has| |#4| (-735)) (|has| |#4| (-787)))
-(-3254 (|has| |#4| (-735)) (|has| |#4| (-787)))
-(-3254 (|has| |#3| (-735)) (|has| |#3| (-787)))
-(-3254 (|has| |#3| (-735)) (|has| |#3| (-787)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-2067 (|has| |#4| (-735)) (|has| |#4| (-787)))
+(-2067 (|has| |#4| (-735)) (|has| |#4| (-787)))
+(-2067 (|has| |#3| (-735)) (|has| |#3| (-787)))
+(-2067 (|has| |#3| (-735)) (|has| |#3| (-787)))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-1020))
@@ -132,21 +132,21 @@
((((-525)) . T))
((((-525)) . T))
(((|#1|) . T))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-669)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-669)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(((|#1| (-713)) . T))
(|has| |#2| (-735))
-(-3254 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-2067 (|has| |#2| (-735)) (|has| |#2| (-787)))
(|has| |#2| (-787))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
((((-1075) |#1|) . T))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(((|#1|) . T))
(((|#3| (-713)) . T))
(|has| |#1| (-138))
(|has| |#1| (-136))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
(|has| |#1| (-1020))
((((-385 (-525))) . T) (((-525)) . T))
((((-1092) |#2|) |has| |#2| (-486 (-1092) |#2|)) ((|#2| |#2|) |has| |#2| (-288 |#2|)))
@@ -154,7 +154,7 @@
(((|#1|) . T) (($) . T))
((((-525)) . T))
((((-525)) . T))
-((($) -3254 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160)))
+((($) -2067 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160)))
((((-525)) . T))
((((-525)) . T))
(((#0=(-641) (-1088 #0#)) . T))
@@ -173,12 +173,12 @@
((((-798)) . T))
((((-798)) . T))
(((|#1| |#1|) . T))
-(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
-((($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
+((($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
(((|#1|) . T))
-((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3254 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
-((($) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-((($) -3254 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977))) ((|#2|) -3254 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))))
+((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -2067 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
+((($) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977))) ((|#2|) -2067 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))))
((((-798)) . T))
((((-798)) . T))
((((-798)) . T))
@@ -189,25 +189,25 @@
((((-798)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1|) . T))
-(-3254 (|has| |#1| (-21)) (|has| |#1| (-787)))
-(-3254 (|has| |#1| (-21)) (|has| |#1| (-787)))
-((((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3254 (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#2|) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
-(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3254 (|has| |#1| (-341)) (|has| |#1| (-517))))
+(-2067 (|has| |#1| (-21)) (|has| |#1| (-787)))
+(-2067 (|has| |#1| (-21)) (|has| |#1| (-787)))
+((((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -2067 (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#2|) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
+(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -2067 (|has| |#1| (-341)) (|has| |#1| (-517))))
(|has| |#1| (-341))
(-12 (|has| |#4| (-213)) (|has| |#4| (-977)))
(-12 (|has| |#3| (-213)) (|has| |#3| (-977)))
-(-3254 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-977)))
-(-3254 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+(-2067 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-977)))
+(-2067 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-977)))
((((-798)) . T))
(((|#1|) . T))
((((-385 (-525))) |has| |#1| (-968 (-385 (-525)))) (((-525)) |has| |#1| (-968 (-525))) ((|#1|) . T))
(((|#1|) . T) (((-525)) |has| |#1| (-588 (-525))))
-(((|#2|) . T) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) . T))
+(((|#2|) . T) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) . T))
(|has| |#1| (-517))
(|has| |#1| (-517))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(((|#1|) . T))
(|has| |#1| (-517))
(|has| |#1| (-517))
@@ -218,11 +218,11 @@
(((|#2|) . T) (($) . T) (((-385 (-525))) . T))
(-12 (|has| |#1| (-1020)) (|has| |#2| (-1020)))
((($) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T))
-((((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-341)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) . T))
+((((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-341)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) . T))
(((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) (($) . T))
-(((|#3| |#3|) -3254 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-977))) (($ $) |has| |#3| (-160)))
-(((|#4| |#4|) -3254 (|has| |#4| (-160)) (|has| |#4| (-341)) (|has| |#4| (-977))) (($ $) |has| |#4| (-160)))
+(((|#3| |#3|) -2067 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-977))) (($ $) |has| |#3| (-160)))
+(((|#4| |#4|) -2067 (|has| |#4| (-160)) (|has| |#4| (-341)) (|has| |#4| (-977))) (($ $) |has| |#4| (-160)))
(((|#1|) . T))
(((|#2|) . T))
((((-501)) |has| |#2| (-567 (-501))) (((-827 (-357))) |has| |#2| (-567 (-827 (-357)))) (((-827 (-525))) |has| |#2| (-567 (-827 (-525)))))
@@ -231,21 +231,21 @@
((((-798)) . T))
((((-501)) |has| |#1| (-567 (-501))) (((-827 (-357))) |has| |#1| (-567 (-827 (-357)))) (((-827 (-525))) |has| |#1| (-567 (-827 (-525)))))
((((-798)) . T))
-(((|#3|) -3254 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-977))) (($) |has| |#3| (-160)))
-(((|#4|) -3254 (|has| |#4| (-160)) (|has| |#4| (-341)) (|has| |#4| (-977))) (($) |has| |#4| (-160)))
+(((|#3|) -2067 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-977))) (($) |has| |#3| (-160)))
+(((|#4|) -2067 (|has| |#4| (-160)) (|has| |#4| (-341)) (|has| |#4| (-977))) (($) |has| |#4| (-160)))
((((-798)) . T))
((((-501)) . T) (((-525)) . T) (((-827 (-525))) . T) (((-357)) . T) (((-205)) . T))
(((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) |has| |#1| (-968 (-385 (-525)))))
((($) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T))
((((-385 $) (-385 $)) |has| |#2| (-517)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) . T))
+((((-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) . T))
(((|#1|) . T))
(|has| |#2| (-844))
((((-1075) (-51)) . T))
((((-525)) |has| #0=(-385 |#2|) (-588 (-525))) ((#0#) . T))
((((-501)) . T) (((-205)) . T) (((-357)) . T) (((-827 (-357))) . T))
((((-798)) . T))
-(-3254 (|has| |#1| (-21)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)))
+(-2067 (|has| |#1| (-21)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)))
(((|#1|) |has| |#1| (-160)))
(((|#1| $) |has| |#1| (-265 |#1| |#1|)))
((((-798)) . T))
@@ -256,15 +256,15 @@
(|has| |#1| (-789))
(|has| |#1| (-1020))
(((|#1|) . T))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
((((-125)) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3254 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -2067 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
((((-125)) . T))
-((($) -3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-((($) -3254 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(|has| |#1| (-213))
-((($) -3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#1| (-497 (-760 (-1092)))) . T))
(((|#1| (-904)) . T))
(((#0=(-805 |#1|) $) |has| #0# (-265 #0# #0#)))
@@ -273,7 +273,7 @@
(((|#1|) . T))
(((|#2| |#2|) . T))
(|has| |#1| (-1068))
-((((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) . T))
+((((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) . T))
(|has| (-1160 |#1| |#2| |#3| |#4|) (-136))
(|has| (-1160 |#1| |#2| |#3| |#4|) (-138))
(|has| |#1| (-136))
@@ -290,20 +290,20 @@
((($) . T) ((|#1|) . T))
(((|#2|) |has| |#2| (-977)))
((((-798)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((#0=(-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) #0#) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((#0=(-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) #0#) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))))
(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((#0=(-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) #0#) |has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-288 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((#0=(-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) #0#) |has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-288 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))))
((((-525) |#1|) . T))
((((-798)) . T))
((((-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#2| (-567 (-501)))) (((-827 (-357))) -12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357))))) (((-827 (-525))) -12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525))))))
((((-798)) . T))
((((-798)) . T))
((($) . T))
-((($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+((($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
((($) . T))
((($) . T))
((($) . T))
-((($) -3254 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
((((-798)) . T))
((((-798)) . T))
(|has| (-1159 |#2| |#3| |#4|) (-138))
@@ -314,16 +314,16 @@
((((-798)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3254 (|has| |#1| (-21)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)))
+(-2067 (|has| |#1| (-21)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)))
(((|#1|) . T))
((((-525) |#1|) . T))
(((|#2|) |has| |#2| (-160)))
(((|#1|) |has| |#1| (-160)))
(((|#1|) . T))
-(-3254 (|has| |#1| (-21)) (|has| |#1| (-787)))
+(-2067 (|has| |#1| (-21)) (|has| |#1| (-787)))
((((-798)) |has| |#1| (-1020)))
-(-3254 (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)) (|has| |#1| (-1032)))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-2067 (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)) (|has| |#1| (-1032)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-327)))
((((-845 |#1|)) . T))
((((-385 |#2|) |#3|) . T))
(|has| |#1| (-15 * (|#1| (-525) |#1|)))
@@ -335,7 +335,7 @@
(((|#1|) . T))
((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517)))
(|has| |#1| (-341))
-(-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))
+(-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))
(|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))
(|has| |#1| (-341))
((((-525)) . T))
@@ -347,31 +347,31 @@
(((|#1|) . T))
((((-525) |#1|) . T))
(((|#2|) . T))
-(-3254 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
-(-3254 (|has| |#2| (-735)) (|has| |#2| (-787)))
-(-3254 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-2067 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-2067 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-2067 (|has| |#2| (-735)) (|has| |#2| (-787)))
(((|#1|) . T))
((((-1092)) -12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977))))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(-12 (|has| |#1| (-341)) (|has| |#2| (-762)))
-(-3254 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517)))
-(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-517))))
+(-2067 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517)))
+(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-517))))
((($ $) |has| |#1| (-517)))
(((#0=(-641) (-1088 #0#)) . T))
((((-798)) . T))
((((-798)) . T) (((-1174 |#4|)) . T))
((((-798)) . T) (((-1174 |#3|)) . T))
-((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3254 (|has| |#1| (-160)) (|has| |#1| (-517))))
+((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -2067 (|has| |#1| (-160)) (|has| |#1| (-517))))
((($) |has| |#1| (-517)))
((((-798)) . T))
((($) . T))
-((($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((#1=(-1166 |#1| |#2| |#3|) #1#) |has| |#1| (-341)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
-((($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
-((($) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1166 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) . T))
-(((|#1|) . T) (($) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
+((($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((#1=(-1166 |#1| |#2| |#3|) #1#) |has| |#1| (-341)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
+((($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1166 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) . T))
+(((|#1|) . T) (($) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
(((|#3|) |has| |#3| (-977)))
-((($) -3254 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(|has| |#1| (-1020))
(((|#2| (-761 |#1|)) . T))
(((|#1|) . T))
@@ -383,37 +383,37 @@
((((-135)) . T))
(((|#3|) |has| |#3| (-1020)) (((-525)) -12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020))) (((-385 (-525))) -12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020))))
((((-798)) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
(((|#1|) . T))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
-((((-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) . T))
+((((-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) . T))
(|has| |#1| (-341))
-(-3254 (|has| |#1| (-21)) (|has| |#1| (-787)))
+(-2067 (|has| |#1| (-21)) (|has| |#1| (-787)))
((((-1092) |#1|) |has| |#1| (-486 (-1092) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|)))
(|has| |#2| (-762))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-787))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
((((-798)) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
((((-501)) |has| |#1| (-567 (-501))))
(((|#1| |#2|) . T))
((((-1092)) -12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092)))))
((((-1075) |#1|) . T))
(((|#1| |#2| |#3| (-497 |#3|)) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
(|has| |#1| (-346))
(|has| |#1| (-346))
(|has| |#1| (-346))
((((-798)) . T))
(((|#1|) . T))
-(-3254 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-2067 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
(|has| |#1| (-346))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
((((-525)) . T))
((((-525)) . T))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
((((-798)) . T))
((((-798)) . T))
(-12 (|has| |#2| (-213)) (|has| |#2| (-977)))
@@ -422,10 +422,10 @@
((((-525) |#4|) . T))
((((-525) |#3|) . T))
(((|#1|) . T) (((-525)) |has| |#1| (-588 (-525))))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977)))
((((-1160 |#1| |#2| |#3| |#4|)) . T))
((((-385 (-525))) . T) (((-525)) . T))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
@@ -454,38 +454,38 @@
((($) . T))
((($ $) . T) ((#0=(-1092) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-160)))
-((($) -3254 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))) ((|#2|) |has| |#2| (-160)) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))))
-(((|#2| |#2|) -3254 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))) (($ $) |has| |#2| (-160)))
+((($) -2067 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))) ((|#2|) |has| |#2| (-160)) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))))
+(((|#2| |#2|) -2067 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))) (($ $) |has| |#2| (-160)))
((((-135)) . T))
(((|#1|) . T))
(-12 (|has| |#1| (-346)) (|has| |#2| (-346)))
((((-798)) . T))
-(((|#2|) -3254 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))) (($) |has| |#2| (-160)))
+(((|#2|) -2067 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))) (($) |has| |#2| (-160)))
(((|#1|) . T))
((((-798)) . T))
(|has| |#1| (-1020))
(|has| $ (-138))
((((-525) |#1|) . T))
-((($) -3254 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517))) (((-385 (-525))) -3254 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
+((($) -2067 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517))) (((-385 (-525))) -2067 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
((((-1092)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092)))))
(|has| |#1| (-341))
-(-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))
+(-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))
(|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))
(|has| |#1| (-341))
(|has| |#1| (-15 * (|#1| (-713) |#1|)))
(((|#1|) . T))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
((((-798)) . T))
((((-525) (-125)) . T))
(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
(((|#2| (-497 (-800 |#1|))) . T))
((((-798)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1|) . T))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
((((-538 |#1|)) . T))
((($) . T))
(((|#1|) . T) (($) . T))
@@ -502,28 +502,28 @@
((((-798)) . T))
((((-798)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-517))))
-((($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((#1=(-1090 |#1| |#2| |#3|) #1#) |has| |#1| (-341)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
-((($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-517))))
+((($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((#1=(-1090 |#1| |#2| |#3|) #1#) |has| |#1| (-341)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
+((($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
(((|#2|) |has| |#2| (-977)))
(|has| |#1| (-1020))
-((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3254 (|has| |#1| (-160)) (|has| |#1| (-517))))
-((($) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) . T))
-(((|#1|) . T) (($) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
-((($) -3254 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -2067 (|has| |#1| (-160)) (|has| |#1| (-517))))
+((($) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) . T))
+(((|#1|) . T) (($) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
+((($) -2067 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#1|) |has| |#1| (-160)) (($) . T))
(((|#1|) . T))
-(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3254 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -2067 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
((((-798)) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3254 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -2067 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
+((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
(((#0=(-1005) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3254 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -2067 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
((($) . T))
(((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) (($) . T))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(((|#2|) |has| |#1| (-341)))
(((|#1|) . T))
(((|#2|) |has| |#2| (-1020)) (((-525)) -12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) (((-385 (-525))) -12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020))))
@@ -538,8 +538,8 @@
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-136))
(|has| |#1| (-138))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3254 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
-((($) -3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -2067 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((($) -2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
((((-385 (-525))) . T) (($) . T))
((((-385 (-525))) . T) (($) . T))
((((-385 (-525))) . T) (($) . T))
@@ -550,12 +550,12 @@
(((|#1| (-713) (-1005)) . T))
((((-385 (-525))) |has| |#2| (-341)) (($) . T))
(((|#1| (-497 (-1010 (-1092))) (-1010 (-1092))) . T))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(((|#1|) . T))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-669)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-669)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(|has| |#2| (-735))
-(-3254 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-2067 (|has| |#2| (-735)) (|has| |#2| (-787)))
(|has| |#1| (-346))
(|has| |#1| (-346))
(|has| |#1| (-346))
@@ -588,63 +588,63 @@
(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
(((|#2|) . T) (((-525)) |has| |#2| (-968 (-525))) (((-385 (-525))) |has| |#2| (-968 (-385 (-525)))))
(((|#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))
-(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
-(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))))
(((|#2|) . T))
-((((-798)) -3254 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-566 (-798))) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020))) (((-1174 |#2|)) . T))
+((((-798)) -2067 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-566 (-798))) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020))) (((-1174 |#2|)) . T))
(((|#1|) |has| |#1| (-160)))
((((-525)) . T))
-((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
-((($) -3254 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
+((($) -2067 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
((((-525) (-135)) . T))
-((($) -3254 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977))) ((|#2|) -3254 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))))
-(-3254 (|has| |#1| (-21)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977)))
+((($) -2067 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977))) ((|#2|) -2067 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))))
+(-2067 (|has| |#1| (-21)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977)))
(((|#1|) . T))
-(-3254 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977)))
+(-2067 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977)))
(((|#2|) |has| |#1| (-341)))
(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -3254 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160)))
+((($) -2067 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160)))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1| (-497 #0=(-1092)) #0#) . T))
(((|#1|) . T) (($) . T))
(|has| |#4| (-160))
(|has| |#3| (-160))
(((#0=(-385 (-887 |#1|)) #0#) . T))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(|has| |#1| (-1020))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(|has| |#1| (-1020))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(((|#1| |#1|) |has| |#1| (-160)))
-((($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+((($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1|) . T))
((((-385 (-887 |#1|))) . T))
((((-525) (-125)) . T))
(((|#1|) |has| |#1| (-160)))
((((-125)) . T))
-((($) -3254 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+((($) -2067 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
((((-798)) . T))
((((-1160 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) |has| |#1| (-977)) (((-525)) -12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))))
(((|#1| |#2|) . T))
-(-3254 (|has| |#3| (-160)) (|has| |#3| (-669)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+(-2067 (|has| |#3| (-160)) (|has| |#3| (-669)) (|has| |#3| (-787)) (|has| |#3| (-977)))
(|has| |#3| (-735))
-(-3254 (|has| |#3| (-735)) (|has| |#3| (-787)))
+(-2067 (|has| |#3| (-735)) (|has| |#3| (-787)))
(|has| |#3| (-787))
-((((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3254 (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#2|) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
-(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3254 (|has| |#1| (-341)) (|has| |#1| (-517))))
+((((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -2067 (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#2|) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
+(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -2067 (|has| |#1| (-341)) (|has| |#1| (-517))))
(((|#2|) . T))
((((-525) (-125)) . T))
((((-798)) . T))
@@ -660,22 +660,22 @@
(|has| |#1| (-1020))
(((|#2|) . T))
((((-501)) |has| |#2| (-567 (-501))) (((-827 (-357))) |has| |#2| (-567 (-827 (-357)))) (((-827 (-525))) |has| |#2| (-567 (-827 (-525)))))
-(((|#4|) -3254 (|has| |#4| (-160)) (|has| |#4| (-341))))
-(((|#3|) -3254 (|has| |#3| (-160)) (|has| |#3| (-341))))
+(((|#4|) -2067 (|has| |#4| (-160)) (|has| |#4| (-341))))
+(((|#3|) -2067 (|has| |#3| (-160)) (|has| |#3| (-341))))
((((-798)) . T))
(((|#1|) . T))
-(-3254 (|has| |#2| (-429)) (|has| |#2| (-844)))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-844)))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-844)))
+(-2067 (|has| |#2| (-429)) (|has| |#2| (-844)))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-844)))
((($ $) . T) ((#0=(-1092) $) |has| |#1| (-213)) ((#0# |#1|) |has| |#1| (-213)) ((#1=(-760 (-1092)) |#1|) . T) ((#1# $) . T))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-844)))
((((-525) |#2|) . T))
((((-798)) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
-((($) -3254 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-977))) ((|#3|) -3254 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-977))))
+((($) -2067 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-977))) ((|#3|) -2067 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-977))))
((((-525) |#1|) . T))
(|has| (-385 |#2|) (-138))
(|has| (-385 |#2|) (-136))
@@ -688,22 +688,22 @@
(|has| |#1| (-517))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
((((-798)) . T))
-((((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) . T))
+((((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) . T))
(|has| |#1| (-37 (-385 (-525))))
-((((-366) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) . T))
+((((-366) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) . T))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#2| (-1068))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-517)))
(((|#1|) . T))
((((-366) (-1075)) . T))
(|has| |#1| (-517))
((((-112 |#1|)) . T))
((((-125)) . T))
((((-525) |#1|) . T))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(((|#2|) . T))
((((-798)) . T))
((((-761 |#1|)) . T))
@@ -716,7 +716,7 @@
(((|#1|) |has| |#1| (-160)))
((((-798)) . T))
((((-501)) |has| |#1| (-567 (-501))))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(((|#2|) |has| |#2| (-288 |#2|)))
(((#0=(-525) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T))
(((|#1|) . T))
@@ -726,7 +726,7 @@
(((#0=(-525) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T))
((($) . T) (((-525)) . T) (((-385 (-525))) . T))
(|has| |#2| (-346))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
@@ -737,9 +737,9 @@
((((-1090 |#1| |#2| |#3|) $) -12 (|has| (-1090 |#1| |#2| |#3|) (-265 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-341))) (($ $) . T))
((((-798)) . T))
((((-798)) . T))
-((($) . T) (((-385 (-525))) -3254 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
+((($) . T) (((-385 (-525))) -2067 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
((((-501)) |has| |#1| (-567 (-501))))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
((($ $) . T))
((($ $) . T))
((((-798)) . T))
@@ -749,12 +749,12 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) -3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
((((-385 (-525))) . T) (((-525)) . T))
((((-525) (-135)) . T))
((((-135)) . T))
(((|#1|) . T))
-(-3254 (|has| |#1| (-21)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977)))
+(-2067 (|has| |#1| (-21)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977)))
((((-108)) . T))
(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
((((-108)) . T))
@@ -762,38 +762,38 @@
((((-501)) |has| |#1| (-567 (-501))) (((-205)) . #0=(|has| |#1| (-953))) (((-357)) . #0#))
((((-798)) . T))
(|has| |#1| (-762))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(|has| |#1| (-789))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-517)))
(|has| |#1| (-517))
(|has| |#1| (-844))
(((|#1|) . T))
(|has| |#1| (-1020))
((((-798)) . T))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-517)))
((((-798)) . T))
((((-798)) . T))
((((-798)) . T))
(((|#1| (-1174 |#1|) (-1174 |#1|)) . T))
((((-525) (-135)) . T))
((($) . T))
-(-3254 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-977)))
-(-3254 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+(-2067 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-977)))
+(-2067 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-977)))
((((-798)) . T))
(|has| |#1| (-1020))
(((|#1| (-904)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-3254 (|has| |#2| (-735)) (|has| |#2| (-787)))
-(-3254 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-2067 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-2067 (|has| |#2| (-735)) (|has| |#2| (-787)))
(-12 (|has| |#1| (-450)) (|has| |#2| (-450)))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-669)) (|has| |#2| (-787)) (|has| |#2| (-977)))
-(-3254 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-669)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))
(((|#1|) . T))
(|has| |#2| (-735))
-(-3254 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-2067 (|has| |#2| (-735)) (|has| |#2| (-787)))
(((|#1| |#2|) . T))
(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(|has| |#2| (-787))
@@ -808,7 +808,7 @@
(((|#1|) . T))
(((|#1|) . T))
((((-385 (-525))) . T) (($) . T))
-((($) . T) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) . T))
+((($) . T) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) . T))
(|has| |#1| (-770))
((((-385 (-525))) |has| |#1| (-968 (-385 (-525)))) (((-525)) |has| |#1| (-968 (-525))) ((|#1|) . T))
(|has| |#1| (-1020))
@@ -819,8 +819,8 @@
(((|#3|) |has| |#3| (-1020)))
(|has| |#3| (-346))
(((|#1|) . T) (((-798)) . T))
-((((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3254 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1166 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
-(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3254 (|has| |#1| (-341)) (|has| |#1| (-517))))
+((((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -2067 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1166 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
+(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -2067 (|has| |#1| (-341)) (|has| |#1| (-517))))
((((-798)) . T))
((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#2|) . T))
@@ -830,30 +830,30 @@
(((|#1|) . T))
(((|#1|) |has| |#1| (-160)))
((((-385 (-525))) . T) (((-525)) . T))
-((($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
-((($) -3254 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
((((-135)) . T))
(((|#1|) . T))
((((-135)) . T))
-((($) -3254 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977))) ((|#2|) -3254 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))))
+((($) -2067 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977))) ((|#2|) -2067 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))))
((((-135)) . T))
(((|#1| |#2| |#3|) . T))
-(-3254 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977)))
+(-2067 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977)))
(|has| $ (-138))
(|has| $ (-138))
(|has| |#1| (-1020))
((((-798)) . T))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
-(-3254 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-450)) (|has| |#1| (-517)) (|has| |#1| (-977)) (|has| |#1| (-1032)))
+(-2067 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-450)) (|has| |#1| (-517)) (|has| |#1| (-977)) (|has| |#1| (-1032)))
((($ $) |has| |#1| (-265 $ $)) ((|#1| $) |has| |#1| (-265 |#1| |#1|)))
(((|#1| (-385 (-525))) . T))
(((|#1|) . T))
((((-1092)) . T))
(|has| |#1| (-517))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-517)))
(|has| |#1| (-517))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
@@ -864,7 +864,7 @@
(|has| |#1| (-138))
(|has| |#1| (-136))
(|has| |#4| (-787))
-(((|#2| (-220 (-3522 |#1|) (-713)) (-800 |#1|)) . T))
+(((|#2| (-220 (-2827 |#1|) (-713)) (-800 |#1|)) . T))
(|has| |#3| (-787))
(((|#1| (-497 |#3|) |#3|) . T))
(|has| |#1| (-138))
@@ -878,21 +878,21 @@
(|has| |#1| (-136))
((((-385 (-525))) |has| |#2| (-341)) (($) . T))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
-(-3254 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
-(-3254 (|has| |#1| (-327)) (|has| |#1| (-346)))
+(-2067 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-2067 (|has| |#1| (-327)) (|has| |#1| (-346)))
((((-1059 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-160))
(((|#1| |#2|) . T))
(-12 (|has| |#2| (-213)) (|has| |#2| (-977)))
-(((|#2|) . T) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
-(-3254 (|has| |#3| (-735)) (|has| |#3| (-787)))
-(-3254 (|has| |#3| (-735)) (|has| |#3| (-787)))
+(((|#2|) . T) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
+(-2067 (|has| |#3| (-735)) (|has| |#3| (-787)))
+(-2067 (|has| |#3| (-735)) (|has| |#3| (-787)))
((((-798)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
(((|#1|) . T) (($) . T))
((((-641)) . T))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(|has| |#1| (-517))
(((|#1|) . T))
(((|#1|) . T))
@@ -914,10 +914,10 @@
(((|#1| (-385 (-525))) . T))
(((|#3|) . T) (((-565 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
((($ $) . T) ((|#2| $) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
(((#0=(-1090 |#1| |#2| |#3|) #0#) -12 (|has| (-1090 |#1| |#2| |#3|) (-288 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-341))) (((-1092) #0#) -12 (|has| (-1090 |#1| |#2| |#3|) (-486 (-1092) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-341))))
@@ -925,8 +925,8 @@
((((-798)) . T))
((((-798)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) (((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) |has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-288 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))))
+(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) (((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) |has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-288 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))))
((((-798)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
@@ -937,10 +937,10 @@
((($ $) . T) ((#0=(-800 |#1|) $) . T) ((#0# |#2|) . T))
(|has| |#1| (-770))
(|has| |#1| (-1020))
-(((|#2| |#2|) -3254 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))) (($ $) |has| |#2| (-160)))
-(((|#2|) -3254 (|has| |#2| (-160)) (|has| |#2| (-341))))
-((((-525) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -3254 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))) (($) |has| |#2| (-160)))
+(((|#2| |#2|) -2067 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))) (($ $) |has| |#2| (-160)))
+(((|#2|) -2067 (|has| |#2| (-160)) (|has| |#2| (-341))))
+((((-525) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -2067 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))) (($) |has| |#2| (-160)))
((((-713)) . T))
((((-525)) . T))
(|has| |#1| (-517))
@@ -953,29 +953,29 @@
((((-112 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-138))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-517)))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-517)))
((((-827 (-525))) . T) (((-827 (-357))) . T) (((-501)) . T) (((-1092)) . T))
((((-798)) . T))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
((($) . T))
((((-798)) . T))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
(((|#2|) |has| |#2| (-160)))
-((($) -3254 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))) ((|#2|) |has| |#2| (-160)) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))) ((|#2|) |has| |#2| (-160)) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))))
((((-805 |#1|)) . T))
-(-3254 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020)))
+(-2067 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020)))
(-12 (|has| |#3| (-213)) (|has| |#3| (-977)))
(|has| |#2| (-1068))
-(((#0=(-51)) . T) (((-2 (|:| -3364 (-1092)) (|:| -4201 #0#))) . T))
+(((#0=(-51)) . T) (((-2 (|:| -1556 (-1092)) (|:| -3448 #0#))) . T))
(((|#1| |#2|) . T))
-(-3254 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+(-2067 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-977)))
(((|#1| (-525) (-1005)) . T))
(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1| (-385 (-525)) (-1005)) . T))
-((($) -3254 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517))) (((-385 (-525))) -3254 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
+((($) -2067 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517))) (((-385 (-525))) -2067 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
((((-525) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
@@ -983,37 +983,37 @@
(-12 (|has| |#1| (-346)) (|has| |#2| (-346)))
((((-798)) . T))
((((-1092) |#1|) |has| |#1| (-486 (-1092) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|)))
-(-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))
-(-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))
-(-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))
(((|#1|) . T))
((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517)))
-((((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3254 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
-(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3254 (|has| |#1| (-341)) (|has| |#1| (-517))))
+((((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -2067 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
+(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -2067 (|has| |#1| (-341)) (|has| |#1| (-517))))
((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
((((-798)) . T))
(|has| |#1| (-327))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((#0=(-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) #0#) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((#0=(-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) #0#) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))))
(|has| |#1| (-517))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
((((-798)) . T))
(((|#1| |#2|) . T))
-(-3254 (|has| |#2| (-429)) (|has| |#2| (-844)))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-844)))
+(-2067 (|has| |#2| (-429)) (|has| |#2| (-844)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-844)))
((((-385 (-525))) . T) (((-525)) . T))
((((-525)) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3254 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -2067 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
((($) . T))
((((-798)) . T))
(((|#1|) . T))
((((-805 |#1|)) . T) (($) . T) (((-385 (-525))) . T))
((((-798)) . T))
-(((|#3| |#3|) -3254 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-977))) (($ $) |has| |#3| (-160)))
+(((|#3| |#3|) -2067 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-977))) (($ $) |has| |#3| (-160)))
(|has| |#1| (-953))
((((-798)) . T))
-(((|#3|) -3254 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-977))) (($) |has| |#3| (-160)))
+(((|#3|) -2067 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-977))) (($) |has| |#3| (-160)))
((((-525) (-108)) . T))
(((|#1|) |has| |#1| (-288 |#1|)))
(|has| |#1| (-346))
@@ -1021,31 +1021,31 @@
(|has| |#1| (-346))
((((-1092) $) |has| |#1| (-486 (-1092) $)) (($ $) |has| |#1| (-288 $)) ((|#1| |#1|) |has| |#1| (-288 |#1|)) (((-1092) |#1|) |has| |#1| (-486 (-1092) |#1|)))
((((-1092)) |has| |#1| (-835 (-1092))))
-(-3254 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))
+(-2067 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))
((((-366) (-1039)) . T))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
((((-366) |#1|) . T))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-327)))
(|has| |#1| (-1020))
((((-798)) . T))
((((-798)) . T))
((((-845 |#1|)) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3254 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
-((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -2067 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
(((|#1| |#2|) . T))
((($) . T))
(((|#1| |#1|) . T))
(((#0=(-805 |#1|)) |has| #0# (-288 #0#)))
(((|#1| |#2|) . T))
-(-3254 (|has| |#2| (-735)) (|has| |#2| (-787)))
-(-3254 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-2067 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-2067 (|has| |#2| (-735)) (|has| |#2| (-787)))
(-12 (|has| |#1| (-735)) (|has| |#2| (-735)))
(((|#1|) . T))
(-12 (|has| |#1| (-735)) (|has| |#2| (-735)))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
(|has| |#1| (-1114))
(((#0=(-525) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T))
((((-385 (-525))) . T) (($) . T))
@@ -1056,8 +1056,8 @@
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-385 (-525)) #0#) . T))
(|has| |#1| (-341))
((((-525)) . T) (((-385 (-525))) . T) (($) . T))
-((($ $) . T) ((#0=(-385 (-525)) #0#) -3254 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1| |#1|) . T))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((($ $) . T) ((#0=(-385 (-525)) #0#) -2067 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1| |#1|) . T))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(((|#1|) . T) (($) . T) (((-385 (-525))) . T))
((((-798)) . T))
((((-798)) . T))
@@ -1072,14 +1072,14 @@
(((|#1| |#2|) . T))
(|has| |#1| (-787))
(|has| |#1| (-787))
-((($) . T) (((-385 (-525))) -3254 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-517)))
-(((#0=(-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) #0#) |has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-288 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))))
+((($) . T) (((-385 (-525))) -2067 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-517)))
+(((#0=(-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) #0#) |has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-288 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))))
((($) . T))
(|has| |#2| (-789))
((($) . T))
(((|#2|) |has| |#2| (-1020)))
-((((-798)) -3254 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-566 (-798))) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020))) (((-1174 |#2|)) . T))
+((((-798)) -2067 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-566 (-798))) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020))) (((-1174 |#2|)) . T))
(|has| |#1| (-789))
(|has| |#1| (-789))
((((-1075) (-51)) . T))
@@ -1087,10 +1087,10 @@
((((-798)) . T))
((((-525)) |has| #0=(-385 |#2|) (-588 (-525))) ((#0#) . T))
((((-525) (-135)) . T))
-((((-525) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T) ((|#1| |#2|) . T))
+((((-525) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T) ((|#1| |#2|) . T))
((((-385 (-525))) . T) (($) . T))
(((|#1|) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
((((-798)) . T))
((((-845 |#1|)) . T))
(|has| |#1| (-341))
@@ -1115,31 +1115,31 @@
((($) . T))
(((|#2|) . T) (($) . T))
(((|#1|) |has| |#1| (-160)))
-((((-525) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T) ((|#1| |#2|) . T))
+((((-525) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-160)))
-((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
-((($) -3254 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
+((($) -2067 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#1|) . T))
(((|#1|) . T))
((((-501)) |has| |#1| (-567 (-501))) (((-827 (-357))) |has| |#1| (-567 (-827 (-357)))) (((-827 (-525))) |has| |#1| (-567 (-827 (-525)))))
((((-798)) . T))
-(((|#2|) . T) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
(|has| |#2| (-787))
(-12 (|has| |#2| (-213)) (|has| |#2| (-977)))
(|has| |#1| (-517))
(|has| |#1| (-1068))
((((-1075) |#1|) . T))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977)))
-(((#0=(-385 (-525)) #0#) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1| |#1|) . T))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(((#0=(-385 (-525)) #0#) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1| |#1|) . T))
((((-385 (-525))) |has| |#1| (-968 (-525))) (((-525)) |has| |#1| (-968 (-525))) (((-1092)) |has| |#1| (-968 (-1092))) ((|#1|) . T))
((((-525) |#2|) . T))
((((-385 (-525))) |has| |#1| (-968 (-385 (-525)))) (((-525)) |has| |#1| (-968 (-525))) ((|#1|) . T))
((((-525)) |has| |#1| (-821 (-525))) (((-357)) |has| |#1| (-821 (-357))))
-((((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1|) . T))
+((((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1|) . T))
(((|#1|) . T))
((((-592 |#4|)) . T) (((-798)) . T))
((((-501)) |has| |#4| (-567 (-501))))
@@ -1152,17 +1152,17 @@
(((|#1|) . T))
(((|#2|) . T))
((((-1092)) |has| (-385 |#2|) (-835 (-1092))))
-(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((#0=(-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) #0#) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((#0=(-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) #0#) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))))
((($) . T))
((($) . T))
(((|#2|) . T))
-((((-798)) -3254 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-566 (-798))) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-346)) (|has| |#3| (-669)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-977)) (|has| |#3| (-1020))) (((-1174 |#3|)) . T))
+((((-798)) -2067 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-566 (-798))) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-346)) (|has| |#3| (-669)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-977)) (|has| |#3| (-1020))) (((-1174 |#3|)) . T))
((((-525) |#2|) . T))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
-(((|#2| |#2|) -3254 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))) (($ $) |has| |#2| (-160)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(((|#2| |#2|) -2067 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))) (($ $) |has| |#2| (-160)))
((((-798)) . T))
((((-798)) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T) ((|#2|) . T))
((((-798)) . T))
((((-798)) . T))
((((-1075) (-1092) (-525) (-205) (-798)) . T))
@@ -1197,8 +1197,8 @@
(|has| |#1| (-37 (-385 (-525))))
((((-798)) . T))
((((-501)) |has| |#1| (-567 (-501))))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
-(((|#2|) -3254 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))) (($) |has| |#2| (-160)))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+(((|#2|) -2067 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))) (($) |has| |#2| (-160)))
(|has| $ (-138))
((((-385 |#2|)) . T))
((((-385 (-525))) |has| #0=(-385 |#2|) (-968 (-385 (-525)))) (((-525)) |has| #0# (-968 (-525))) ((#0#) . T))
@@ -1209,11 +1209,11 @@
(((|#3|) |has| |#3| (-160)))
(|has| |#1| (-138))
(|has| |#1| (-136))
-(-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))
(|has| |#1| (-138))
-(-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))
(|has| |#1| (-138))
-(-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))
(|has| |#1| (-138))
(((|#1|) . T))
(((|#2|) . T))
@@ -1244,7 +1244,7 @@
((((-931 |#1|)) . T) ((|#1|) . T))
((((-798)) . T))
((((-798)) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
((((-385 (-525))) . T) (((-385 |#1|)) . T) ((|#1|) . T) (($) . T))
(((|#1| (-1088 |#1|)) . T))
((((-525)) . T) (($) . T) (((-385 (-525))) . T))
@@ -1252,9 +1252,9 @@
(|has| |#1| (-789))
(((|#2|) . T))
((((-525)) . T) (($) . T) (((-385 (-525))) . T))
-((((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) . T))
+((((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) . T))
((((-525) |#2|) . T))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(((|#2|) . T))
((((-525) |#3|) . T))
(((|#2|) . T))
@@ -1269,7 +1269,7 @@
(((|#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))
(((|#2|) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((#0=(-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) #0#) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((#0=(-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) #0#) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))))
(((|#2| |#2|) . T))
(|has| |#2| (-341))
(((|#2|) . T) (((-525)) |has| |#2| (-968 (-525))) (((-385 (-525))) |has| |#2| (-968 (-385 (-525)))))
@@ -1299,19 +1299,19 @@
(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1| |#2|) . T))
((((-525) (-135)) . T))
-(((#0=(-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) #0#) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
-((($) -3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+(((#0=(-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) #0#) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
+((($) -2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(|has| |#1| (-789))
(((|#2| (-713) (-1005)) . T))
(((|#1| |#2|) . T))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-517)))
(|has| |#1| (-733))
(((|#1|) |has| |#1| (-160)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-3254 (|has| |#1| (-138)) (-12 (|has| |#1| (-341)) (|has| |#2| (-138))))
-(-3254 (|has| |#1| (-136)) (-12 (|has| |#1| (-341)) (|has| |#2| (-136))))
+(-2067 (|has| |#1| (-138)) (-12 (|has| |#1| (-341)) (|has| |#2| (-138))))
+(-2067 (|has| |#1| (-136)) (-12 (|has| |#1| (-341)) (|has| |#2| (-136))))
(((|#4|) . T))
(|has| |#1| (-136))
((((-1075) |#1|) . T))
@@ -1324,10 +1324,10 @@
(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#3|) . T))
((((-1166 |#1| |#2| |#3|)) |has| |#1| (-341)))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(((|#1|) . T))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))) (((-892 |#1|)) . T))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))) (((-892 |#1|)) . T))
(|has| |#1| (-787))
(|has| |#1| (-787))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
@@ -1340,8 +1340,8 @@
((($) . T))
((((-366) (-1075)) . T))
((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-((((-798)) -3254 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-566 (-798))) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020))) (((-1174 |#2|)) . T))
-(((#0=(-51)) . T) (((-2 (|:| -3364 (-1075)) (|:| -4201 #0#))) . T))
+((((-798)) -2067 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-566 (-798))) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020))) (((-1174 |#2|)) . T))
+(((#0=(-51)) . T) (((-2 (|:| -1556 (-1075)) (|:| -3448 #0#))) . T))
(((|#1|) . T))
((((-798)) . T))
(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
@@ -1349,7 +1349,7 @@
(|has| |#2| (-136))
(|has| |#2| (-138))
(|has| |#1| (-450))
-(-3254 (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)))
+(-2067 (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)))
(|has| |#1| (-341))
((((-798)) . T))
(|has| |#1| (-37 (-385 (-525))))
@@ -1358,8 +1358,8 @@
(|has| |#1| (-787))
(|has| |#1| (-787))
((((-798)) . T))
-((((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3254 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1166 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
-(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3254 (|has| |#1| (-341)) (|has| |#1| (-517))))
+((((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -2067 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1166 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
+(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -2067 (|has| |#1| (-341)) (|has| |#1| (-517))))
((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#1| |#2|) . T))
((((-1092)) |has| |#1| (-835 (-1092))))
@@ -1367,7 +1367,7 @@
((((-798)) . T))
((((-798)) . T))
(|has| |#1| (-1020))
-(((|#2| (-458 (-3522 |#1|) (-713)) (-800 |#1|)) . T))
+(((|#2| (-458 (-2827 |#1|) (-713)) (-800 |#1|)) . T))
((((-385 (-525))) . #0=(|has| |#2| (-341))) (($) . #0#))
(((|#1| (-497 (-1092)) (-1092)) . T))
(((|#1|) . T))
@@ -1387,16 +1387,16 @@
(|has| |#1| (-138))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
-((((-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) . T))
+(((|#1|) . T) (((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
+((((-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) . T))
((((-1090 |#1| |#2| |#3|)) |has| |#1| (-341)))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
((((-1092) (-51)) . T))
((($ $) . T))
(((|#1| (-525)) . T))
((((-845 |#1|)) . T))
-(((|#1|) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-977))) (($) -3254 (|has| |#1| (-835 (-1092))) (|has| |#1| (-977))))
+(((|#1|) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-977))) (($) -2067 (|has| |#1| (-835 (-1092))) (|has| |#1| (-977))))
(((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) |has| |#1| (-968 (-385 (-525)))))
(|has| |#1| (-789))
(|has| |#1| (-789))
@@ -1411,13 +1411,13 @@
(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
(((|#1|) |has| |#1| (-160)))
(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
-(((|#3|) -3254 (|has| |#3| (-160)) (|has| |#3| (-341))))
+(((|#3|) -2067 (|has| |#3| (-160)) (|has| |#3| (-341))))
(|has| |#2| (-789))
(|has| |#1| (-789))
-(-3254 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-844)))
+(-2067 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-844)))
((($ $) . T) ((#0=(-385 (-525)) #0#) . T))
((((-525) |#2|) . T))
-(((|#2|) -3254 (|has| |#2| (-160)) (|has| |#2| (-341))))
+(((|#2|) -2067 (|has| |#2| (-160)) (|has| |#2| (-341))))
(|has| |#1| (-327))
(((|#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))
((($) . T) (((-385 (-525))) . T))
@@ -1425,7 +1425,7 @@
(|has| |#1| (-762))
(|has| |#1| (-762))
(((|#1|) . T))
-(-3254 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-2067 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)))
(|has| |#1| (-787))
(|has| |#1| (-787))
(|has| |#1| (-787))
@@ -1434,13 +1434,13 @@
((((-525)) . T) (($) . T) (((-385 (-525))) . T))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-327)))
(|has| |#1| (-37 (-385 (-525))))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
((((-1092)) |has| |#1| (-835 (-1092))) (((-1005)) . T))
(((|#1|) . T))
(|has| |#1| (-787))
-(((#0=(-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) #0#) |has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-288 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))))))
+(((#0=(-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) #0#) |has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-288 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))))))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(|has| |#1| (-1020))
(((|#1|) . T))
@@ -1459,7 +1459,7 @@
(((|#1|) . T))
((((-135)) . T))
(((|#2|) |has| |#2| (-160)))
-(-3254 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020)))
+(-2067 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020)))
(((|#1|) . T))
(|has| |#1| (-136))
(|has| |#1| (-138))
@@ -1481,32 +1481,32 @@
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((#0=(-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) #0#) |has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-288 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))))
-(-3254 (|has| |#2| (-429)) (|has| |#2| (-844)))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-844)))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((#0=(-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) #0#) |has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-288 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))))
+(-2067 (|has| |#2| (-429)) (|has| |#2| (-844)))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-844)))
(((|#1|) . T) (($) . T))
(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -3254 (|has| |#3| (-160)) (|has| |#3| (-341))))
+(((|#3|) -2067 (|has| |#3| (-160)) (|has| |#3| (-341))))
(|has| |#1| (-789))
(|has| |#1| (-517))
((((-538 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-3254 (-12 (|has| |#1| (-341)) (|has| |#2| (-762))) (-12 (|has| |#1| (-341)) (|has| |#2| (-789))))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (-12 (|has| |#1| (-341)) (|has| |#2| (-762))) (-12 (|has| |#1| (-341)) (|has| |#2| (-789))))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-517)))
((((-845 |#1|)) . T))
(((|#1| (-469 |#1| |#3|) (-469 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
(((|#1| (-713)) . T))
((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517)))
-((((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3254 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
-(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3254 (|has| |#1| (-341)) (|has| |#1| (-517))))
+((((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -2067 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
+(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -2067 (|has| |#1| (-341)) (|has| |#1| (-517))))
((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-((((-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) . T))
+((((-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) . T))
((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T))
((((-617 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
@@ -1514,17 +1514,17 @@
((((-798)) . T))
(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
((((-798)) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3254 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -2067 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
((((-798)) . T))
((((-798)) . T))
((((-798)) . T))
(((|#2|) . T))
-(-3254 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-346)) (|has| |#3| (-669)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-977)) (|has| |#3| (-1020)))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-346)) (|has| |#3| (-669)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-977)) (|has| |#3| (-1020)))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977)))
((((-385 (-525))) |has| |#1| (-968 (-385 (-525)))) (((-525)) |has| |#1| (-968 (-525))) ((|#1|) . T))
(|has| |#1| (-1114))
(|has| |#1| (-1114))
-(-3254 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020)))
+(-2067 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020)))
(|has| |#1| (-1114))
(|has| |#1| (-1114))
(((|#3| |#3|) . T))
@@ -1537,43 +1537,43 @@
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
((((-1075) (-51)) . T))
(|has| |#1| (-1020))
-(-3254 (|has| |#2| (-762)) (|has| |#2| (-789)))
+(-2067 (|has| |#2| (-762)) (|has| |#2| (-789)))
(((|#1|) . T))
-((($) -3254 (|has| |#1| (-341)) (|has| |#1| (-327))) (((-385 (-525))) -3254 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
+((($) -2067 (|has| |#1| (-341)) (|has| |#1| (-327))) (((-385 (-525))) -2067 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
(((|#1|) |has| |#1| (-160)) (($) . T))
((($) . T))
((((-1090 |#1| |#2| |#3|)) -12 (|has| (-1090 |#1| |#2| |#3|) (-288 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-341))))
((((-798)) . T))
-(-3254 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-2067 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
((($) . T))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
((((-798)) . T))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-844)))
(|has| |#2| (-844))
(|has| |#1| (-341))
(((|#2|) |has| |#2| (-1020)))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
((($) . T) ((|#2|) . T))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-844)))
(|has| |#1| (-844))
(|has| |#1| (-844))
((((-501)) . T) (((-385 (-1088 (-525)))) . T) (((-205)) . T) (((-357)) . T))
((((-357)) . T) (((-205)) . T) (((-798)) . T))
(|has| |#1| (-844))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(((|#1|) . T))
(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
((($ $) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
((($ $) . T))
((((-525) (-108)) . T))
((($) . T))
(((|#1|) . T))
((((-525)) . T))
((((-108)) . T))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
(|has| |#1| (-37 (-385 (-525))))
(((|#1| (-525)) . T))
((($) . T))
@@ -1595,7 +1595,7 @@
(((|#1| (-1138 |#1| |#2| |#3|)) . T))
(((|#1| (-713)) . T))
(((|#1|) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
((((-798)) . T))
(|has| |#1| (-1020))
((((-1075) |#1|) . T))
@@ -1615,18 +1615,18 @@
(((|#1|) . T))
((((-525)) . T))
((((-798)) . T))
-(-3254 (|has| |#1| (-136)) (|has| |#1| (-327)))
+(-2067 (|has| |#1| (-136)) (|has| |#1| (-327)))
(|has| |#1| (-138))
((((-798)) . T))
(((|#3|) . T))
-(-3254 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+(-2067 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-977)))
((((-798)) . T))
((((-1159 |#2| |#3| |#4|)) . T) (((-1160 |#1| |#2| |#3| |#4|)) . T))
((((-798)) . T))
-((((-47)) -12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525)))) (((-565 $)) . T) ((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) -3254 (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525)))) (|has| |#1| (-968 (-385 (-525))))) (((-385 (-887 |#1|))) |has| |#1| (-517)) (((-887 |#1|)) |has| |#1| (-977)) (((-1092)) . T))
+((((-47)) -12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525)))) (((-565 $)) . T) ((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) -2067 (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525)))) (|has| |#1| (-968 (-385 (-525))))) (((-385 (-887 |#1|))) |has| |#1| (-517)) (((-887 |#1|)) |has| |#1| (-977)) (((-1092)) . T))
(((|#1|) . T) (($) . T))
(((|#1| (-713)) . T))
-((($) -3254 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160)))
+((($) -2067 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160)))
(((|#1|) |has| |#1| (-288 |#1|)))
((((-1160 |#1| |#2| |#3| |#4|)) . T))
((((-525)) |has| |#1| (-821 (-525))) (((-357)) |has| |#1| (-821 (-357))))
@@ -1634,14 +1634,14 @@
(|has| |#1| (-517))
(((|#1|) . T))
((((-798)) . T))
-(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))))
(((|#1|) |has| |#1| (-160)))
((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
(((|#1|) . T))
(((|#3|) |has| |#3| (-1020)))
-(((|#2|) -3254 (|has| |#2| (-160)) (|has| |#2| (-341))))
+(((|#2|) -2067 (|has| |#2| (-160)) (|has| |#2| (-341))))
((((-1159 |#2| |#3| |#4|)) . T))
((((-108)) . T))
(|has| |#1| (-762))
@@ -1651,8 +1651,8 @@
(|has| |#1| (-787))
(|has| |#1| (-787))
(((|#1| (-525) (-1005)) . T))
-(-3254 (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+(-2067 (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
(((|#1| (-385 (-525)) (-1005)) . T))
(((|#1| (-713) (-1005)) . T))
(|has| |#1| (-789))
@@ -1668,28 +1668,28 @@
(((|#1|) . T))
(|has| |#1| (-1020))
((((-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-588 (-525)))) ((|#2|) |has| |#1| (-341)))
-(-3254 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020)))
+(-2067 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020)))
(((|#2|) |has| |#2| (-160)))
(((|#1|) |has| |#1| (-160)))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
-((((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
+((((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) . T))
((((-798)) . T))
(|has| |#3| (-787))
((((-798)) . T))
((((-1159 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) . T))
((((-798)) . T))
-(((|#1| |#1|) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-977))))
+(((|#1| |#1|) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-977))))
(((|#1|) . T))
((((-525)) . T))
((((-525)) . T))
-(((|#1|) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-977))))
+(((|#1|) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-977))))
(((|#2|) |has| |#2| (-341)))
((($) . T) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-341)))
(|has| |#1| (-789))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
(((|#2|) . T))
-((((-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) |has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-288 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-844)))
+((((-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) |has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-288 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-844)))
(((|#2|) . T) (((-525)) |has| |#2| (-588 (-525))))
((((-798)) . T))
((((-798)) . T))
@@ -1724,18 +1724,18 @@
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
(((|#1|) . T))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) . T) (($ $) . T))
((((-798)) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
((($) . T) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(|has| |#1| (-341))
(|has| |#1| (-341))
(|has| (-385 |#2|) (-213))
(|has| |#1| (-844))
(((|#2|) |has| |#2| (-977)))
-(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))))
(|has| |#1| (-341))
(((|#1|) |has| |#1| (-160)))
(((|#1| |#1|) . T))
@@ -1760,7 +1760,7 @@
(((|#1| (-385 (-525)) (-1005)) . T))
(((|#1| (-713) (-1005)) . T))
(((#0=(-385 |#2|) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-525)) -3254 (|has| (-385 (-525)) (-968 (-525))) (|has| |#1| (-968 (-525)))) (((-385 (-525))) . T))
+(((|#1|) . T) (((-525)) -2067 (|has| (-385 (-525)) (-968 (-525))) (|has| |#1| (-968 (-525)))) (((-385 (-525))) . T))
(((|#1| (-556 |#1| |#3|) (-556 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-160)))
(((|#1|) . T))
@@ -1779,24 +1779,24 @@
((((-641)) . T))
(((|#2|) |has| |#2| (-160)))
(|has| |#2| (-787))
-((((-108)) |has| |#1| (-1020)) (((-798)) -3254 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)) (|has| |#1| (-1032)) (|has| |#1| (-1020))))
+((((-108)) |has| |#1| (-1020)) (((-798)) -2067 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)) (|has| |#1| (-1032)) (|has| |#1| (-1020))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) . T))
+((((-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) . T))
((((-798)) . T))
((((-525) |#1|) . T))
((((-641)) . T) (((-385 (-525))) . T) (((-525)) . T))
(((|#1| |#1|) |has| |#1| (-160)))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))))
((((-357)) . T))
((((-641)) . T))
((((-385 (-525))) . #0=(|has| |#2| (-341))) (($) . #0#))
(((|#1|) |has| |#1| (-160)))
((((-385 (-887 |#1|))) . T))
(((|#2| |#2|) . T))
-(-3254 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(((|#2|) . T))
(|has| |#2| (-789))
(((|#3|) |has| |#3| (-977)))
@@ -1806,14 +1806,14 @@
(|has| |#1| (-789))
((((-1092)) |has| |#2| (-835 (-1092))))
((((-798)) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
((((-385 (-525))) . T) (($) . T))
(|has| |#1| (-450))
(|has| |#1| (-346))
(|has| |#1| (-346))
(|has| |#1| (-346))
(|has| |#1| (-341))
-(-3254 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-450)) (|has| |#1| (-517)) (|has| |#1| (-977)) (|has| |#1| (-1032)))
+(-2067 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-450)) (|has| |#1| (-517)) (|has| |#1| (-977)) (|has| |#1| (-1032)))
(|has| |#1| (-37 (-385 (-525))))
((((-112 |#1|)) . T))
((((-112 |#1|)) . T))
@@ -1834,11 +1834,11 @@
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-789))
-((((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) . T))
+((((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-138))
(|has| |#1| (-136))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) ((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) ((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
(((|#2|) . T))
(((|#3|) . T))
((((-112 |#1|)) . T))
@@ -1856,11 +1856,11 @@
((((-501)) |has| |#1| (-567 (-501))) (((-827 (-525))) |has| |#1| (-567 (-827 (-525)))) (((-827 (-357))) |has| |#1| (-567 (-827 (-357)))) (((-357)) . #0=(|has| |#1| (-953))) (((-205)) . #0#))
(((|#1|) |has| |#1| (-341)))
((((-798)) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
((($ $) . T) (((-565 $) $) . T))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-517)))
((($) . T) (((-1160 |#1| |#2| |#3| |#4|)) . T) (((-385 (-525))) . T))
-((($) -3254 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-517)))
+((($) -2067 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-517)))
(|has| |#1| (-341))
(|has| |#1| (-341))
(|has| |#1| (-341))
@@ -1871,11 +1871,11 @@
((((-357)) . T))
(((|#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))
((((-798)) . T))
-(-3254 (|has| |#2| (-429)) (|has| |#2| (-844)))
+(-2067 (|has| |#2| (-429)) (|has| |#2| (-844)))
(((|#1|) . T))
(|has| |#1| (-789))
(|has| |#1| (-789))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
(|has| |#1| (-1020))
@@ -1884,13 +1884,13 @@
(|has| |#1| (-136))
(|has| |#1| (-138))
((((-525)) . T))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-517)))
(((#0=(-1159 |#2| |#3| |#4|)) . T) (((-385 (-525))) |has| #0# (-37 (-385 (-525)))) (($) . T))
((((-525)) . T))
(|has| |#1| (-341))
-(-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-138)) (|has| |#1| (-341))) (|has| |#1| (-138)))
-(-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136)))
+(-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-138)) (|has| |#1| (-341))) (|has| |#1| (-138)))
+(-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136)))
(|has| |#1| (-341))
(|has| |#1| (-136))
(|has| |#1| (-138))
@@ -1907,18 +1907,18 @@
(((|#1| |#2|) . T))
(((|#1|) . T) (((-525)) |has| |#1| (-588 (-525))))
(((|#3|) |has| |#3| (-160)))
-(-3254 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020)))
+(-2067 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020)))
((((-525)) . T))
(((|#1| $) |has| |#1| (-265 |#1| |#1|)))
((((-385 (-525))) . T) (($) . T) (((-385 |#1|)) . T) ((|#1|) . T))
((((-798)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -3254 (|has| |#1| (-269)) (|has| |#1| (-341))) ((#0=(-385 (-525)) #0#) |has| |#1| (-341)))
-((((-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) . T))
+(((|#1| |#1|) . T) (($ $) -2067 (|has| |#1| (-269)) (|has| |#1| (-341))) ((#0=(-385 (-525)) #0#) |has| |#1| (-341)))
+((((-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) . T))
((($) . T))
((((-525) |#1|) . T))
((((-1092)) |has| (-385 |#2|) (-835 (-1092))))
-(((|#1|) . T) (($) -3254 (|has| |#1| (-269)) (|has| |#1| (-341))) (((-385 (-525))) |has| |#1| (-341)))
+(((|#1|) . T) (($) -2067 (|has| |#1| (-269)) (|has| |#1| (-341))) (((-385 (-525))) |has| |#1| (-341)))
((((-501)) |has| |#2| (-567 (-501))))
((((-632 |#2|)) . T) (((-798)) . T))
(((|#1|) . T))
@@ -1926,8 +1926,8 @@
(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
((((-805 |#1|)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
-(-3254 (|has| |#4| (-735)) (|has| |#4| (-787)))
-(-3254 (|has| |#3| (-735)) (|has| |#3| (-787)))
+(-2067 (|has| |#4| (-735)) (|has| |#4| (-787)))
+(-2067 (|has| |#3| (-735)) (|has| |#3| (-787)))
((((-798)) . T))
((((-798)) . T))
(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
@@ -1943,17 +1943,17 @@
((((-385 (-525))) . T) (($) . T))
((((-385 (-525))) . T) (($) . T))
((((-385 (-525))) . T) (($) . T))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-1132)))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-1132)))
((($) . T))
((((-385 (-525))) |has| #0=(-385 |#2|) (-968 (-385 (-525)))) (((-525)) |has| #0# (-968 (-525))) ((#0#) . T))
(((|#2|) . T) (((-525)) |has| |#2| (-588 (-525))))
(((|#1| (-713)) . T))
(|has| |#1| (-789))
(((|#1|) . T) (((-525)) |has| |#1| (-588 (-525))))
-((($) -3254 (|has| |#1| (-341)) (|has| |#1| (-327))) (((-385 (-525))) -3254 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
+((($) -2067 (|has| |#1| (-341)) (|has| |#1| (-327))) (((-385 (-525))) -2067 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
((((-525)) . T))
(|has| |#1| (-37 (-385 (-525))))
-((((-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) |has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-288 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))))))
+((((-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) |has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-288 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))))))
(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(|has| |#1| (-787))
(|has| |#1| (-37 (-385 (-525))))
@@ -1978,24 +1978,24 @@
(((|#1| |#2|) . T))
((((-135)) . T))
((((-722 |#1| (-800 |#2|))) . T))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(|has| |#1| (-1114))
(((|#1|) . T))
-(-3254 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-346)) (|has| |#3| (-669)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-977)) (|has| |#3| (-1020)))
+(-2067 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-346)) (|has| |#3| (-669)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-977)) (|has| |#3| (-1020)))
((((-1092) |#1|) |has| |#1| (-486 (-1092) |#1|)))
(((|#2|) . T))
-((($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
-((($) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
((((-845 |#1|)) . T))
((($) . T))
((((-385 (-887 |#1|))) . T))
(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
((((-501)) |has| |#4| (-567 (-501))))
((((-798)) . T) (((-592 |#4|)) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
(((|#1|) . T))
(|has| |#1| (-787))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) (((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) |has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-288 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) (((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) |has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-288 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))))
(|has| |#1| (-1020))
(|has| |#1| (-341))
(|has| |#1| (-789))
@@ -2003,16 +2003,16 @@
(((|#1|) . T))
(((|#1|) . T))
((($) . T) (((-385 (-525))) . T))
-((($) -3254 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160)))
+((($) -2067 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160)))
(|has| |#1| (-136))
(|has| |#1| (-138))
-(-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-138)) (|has| |#1| (-341))) (|has| |#1| (-138)))
-(-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136)))
+(-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-138)) (|has| |#1| (-341))) (|has| |#1| (-138)))
+(-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136)))
(|has| |#1| (-136))
(|has| |#1| (-138))
(|has| |#1| (-138))
(|has| |#1| (-136))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
((((-1166 |#1| |#2| |#3|)) |has| |#1| (-341)))
(|has| |#1| (-787))
(((|#1| |#2|) . T))
@@ -2035,9 +2035,9 @@
((((-798)) . T))
((((-798)) . T))
((((-501)) |has| |#1| (-567 (-501))))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
((((-1092) |#1|) |has| |#1| (-486 (-1092) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|)))
-(((|#1|) -3254 (|has| |#1| (-160)) (|has| |#1| (-341))))
+(((|#1|) -2067 (|has| |#1| (-160)) (|has| |#1| (-341))))
((((-294 |#1|)) . T))
(((|#2|) |has| |#2| (-341)))
(((|#2|) . T))
@@ -2058,13 +2058,13 @@
(|has| |#1| (-136))
(|has| |#1| (-138))
((($ $) . T))
-(-3254 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)) (|has| |#1| (-1032)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)) (|has| |#1| (-1032)) (|has| |#1| (-1020)))
(|has| |#1| (-517))
(((|#2|) . T))
((((-525)) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
(((|#1|) . T))
-(-3254 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977)))
+(-2067 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977)))
((((-538 |#1|)) . T))
((($) . T))
(((|#1| (-57 |#1|) (-57 |#1|)) . T))
@@ -2073,7 +2073,7 @@
((($) . T))
(((|#1|) . T))
((((-798)) . T))
-(((|#2|) |has| |#2| (-6 (-4260 "*"))))
+(((|#2|) |has| |#2| (-6 (-4261 "*"))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2090,12 +2090,12 @@
(((|#1| |#2|) . T))
((((-1092) |#1|) . T))
(((|#4|) . T))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-327)))
((((-1092) (-51)) . T))
((((-1159 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) . T))
((((-385 (-525))) |has| |#1| (-968 (-385 (-525)))) (((-525)) |has| |#1| (-968 (-525))) ((|#1|) . T))
((((-798)) . T))
-(-3254 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020)))
+(-2067 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020)))
(((#0=(-1160 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T))
(((|#1| |#1|) |has| |#1| (-160)) ((#0=(-385 (-525)) #0#) |has| |#1| (-517)) (($ $) |has| |#1| (-517)))
(((|#1|) . T) (($) . T) (((-385 (-525))) . T))
@@ -2114,14 +2114,14 @@
(((|#1|) . T))
(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
(((|#2| |#3|) . T))
-(-3254 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-2067 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
(((|#1| (-497 |#2|)) . T))
(((|#1| (-713)) . T))
(((|#1| (-497 (-1010 (-1092)))) . T))
(((|#1|) |has| |#1| (-160)))
(((|#1|) . T))
(|has| |#2| (-844))
-(-3254 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-2067 (|has| |#2| (-735)) (|has| |#2| (-787)))
((((-798)) . T))
((($ $) . T) ((#0=(-1159 |#2| |#3| |#4|) #0#) . T) ((#1=(-385 (-525)) #1#) |has| #0# (-37 (-385 (-525)))))
((((-845 |#1|)) . T))
@@ -2130,13 +2130,13 @@
((($) . T))
((($) . T))
(|has| |#1| (-341))
-(-3254 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517)))
(|has| |#1| (-341))
((($) . T) ((#0=(-1159 |#2| |#3| |#4|)) . T) (((-385 (-525))) |has| #0# (-37 (-385 (-525)))))
(((|#1| |#2|) . T))
((((-1090 |#1| |#2| |#3|)) |has| |#1| (-341)))
-(-3254 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341)) (|has| |#1| (-327)))
-(-3254 (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)))
+(-2067 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-2067 (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)))
((((-525)) |has| |#1| (-588 (-525))) ((|#1|) . T))
(((|#1| |#2|) . T))
((((-798)) . T))
@@ -2168,27 +2168,27 @@
(((|#1|) |has| |#1| (-160)))
((((-798)) . T))
(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
-(((|#2|) -3254 (|has| |#2| (-6 (-4260 "*"))) (|has| |#2| (-160))))
-(-3254 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(((|#2|) -2067 (|has| |#2| (-6 (-4261 "*"))) (|has| |#2| (-160))))
+(-2067 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(|has| |#2| (-789))
(|has| |#2| (-844))
(|has| |#1| (-844))
(((|#2|) |has| |#2| (-160)))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
((((-1166 |#1| |#2| |#3|)) |has| |#1| (-341)))
((((-798)) . T))
((((-798)) . T))
((((-501)) . T) (((-525)) . T) (((-827 (-525))) . T) (((-357)) . T) (((-205)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
-((((-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
+((((-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) . T))
(((|#1|) . T))
((((-798)) . T))
(((|#1| |#2|) . T))
(((|#1| (-385 (-525))) . T))
(((|#1|) . T))
-(-3254 (|has| |#1| (-269)) (|has| |#1| (-341)))
+(-2067 (|has| |#1| (-269)) (|has| |#1| (-341)))
((((-135)) . T))
((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T))
(|has| |#1| (-787))
@@ -2203,7 +2203,7 @@
((((-385 (-525))) . T) (($) . T))
((((-798)) . T))
((((-798)) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
((((-798)) . T))
((((-798)) . T))
@@ -2214,7 +2214,7 @@
(((|#1|) . T))
((((-592 (-135))) . T) (((-1075)) . T))
((((-798)) . T))
-((((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) . T))
+((((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) . T))
((((-1092) |#1|) |has| |#1| (-486 (-1092) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|)))
(|has| |#1| (-789))
((((-798)) . T))
@@ -2226,16 +2226,16 @@
((((-798)) . T) (((-592 |#4|)) . T))
(((|#2|) . T))
((((-845 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
-(-3254 (|has| |#4| (-160)) (|has| |#4| (-669)) (|has| |#4| (-787)) (|has| |#4| (-977)))
-(-3254 (|has| |#3| (-160)) (|has| |#3| (-669)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+(-2067 (|has| |#4| (-160)) (|has| |#4| (-669)) (|has| |#4| (-787)) (|has| |#4| (-977)))
+(-2067 (|has| |#3| (-160)) (|has| |#3| (-669)) (|has| |#3| (-787)) (|has| |#3| (-977)))
((((-1092) (-51)) . T))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3254 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(|has| |#1| (-844))
(|has| |#1| (-844))
(((|#2|) . T))
@@ -2250,12 +2250,12 @@
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(|has| |#1| (-762))
(((#0=(-845 |#1|) #0#) . T) (($ $) . T) ((#1=(-385 (-525)) #1#) . T))
((((-385 |#2|)) . T))
(|has| |#1| (-787))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) . T) ((#1=(-525) #1#) . T) (($ $) . T))
((((-845 |#1|)) . T) (($) . T) (((-385 (-525))) . T))
(((|#2|) |has| |#2| (-977)) (((-525)) -12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977))))
@@ -2265,25 +2265,25 @@
(|has| |#1| (-136))
(((|#2|) . T))
((((-798)) . T))
-(-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))
-(-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))
-(-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))
-((((-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) . T))
-(((#0=(-51)) . T) (((-2 (|:| -3364 (-1092)) (|:| -4201 #0#))) . T))
+(-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))
+((((-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) . T))
+(((#0=(-51)) . T) (((-2 (|:| -1556 (-1092)) (|:| -3448 #0#))) . T))
(|has| |#1| (-327))
((((-525)) . T))
((((-798)) . T))
(((#0=(-1160 |#1| |#2| |#3| |#4|) $) |has| #0# (-265 #0# #0#)))
(|has| |#1| (-341))
(((#0=(-1005) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-327)))
(((#0=(-385 (-525)) #0#) . T) ((#1=(-641) #1#) . T) (($ $) . T))
((((-294 |#1|)) . T) (($) . T))
(((|#1|) . T) (((-385 (-525))) |has| |#1| (-341)))
(|has| |#1| (-1020))
(((|#1|) . T))
-(((|#1|) -3254 (|has| |#2| (-345 |#1|)) (|has| |#2| (-395 |#1|))))
-(((|#1|) -3254 (|has| |#2| (-345 |#1|)) (|has| |#2| (-395 |#1|))))
+(((|#1|) -2067 (|has| |#2| (-345 |#1|)) (|has| |#2| (-395 |#1|))))
+(((|#1|) -2067 (|has| |#2| (-345 |#1|)) (|has| |#2| (-395 |#1|))))
(((|#2|) . T))
((((-385 (-525))) . T) (((-641)) . T) (($) . T))
(((|#3| |#3|) . T))
@@ -2302,7 +2302,7 @@
(((|#2|) . T))
(((|#1|) . T))
((((-525)) . T))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(((|#2|) . T) (((-525)) |has| |#2| (-588 (-525))))
(((|#1| |#2|) . T))
((($) . T))
@@ -2339,7 +2339,7 @@
(|has| |#2| (-953))
((($) . T))
(|has| |#1| (-844))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
@@ -2347,24 +2347,24 @@
((($) . T))
(|has| |#1| (-341))
((((-845 |#1|)) . T))
-((($) -3254 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
((($ $) . T) ((#0=(-385 (-525)) #0#) . T))
-(-3254 (|has| |#1| (-346)) (|has| |#1| (-789)))
+(-2067 (|has| |#1| (-346)) (|has| |#1| (-789)))
(((|#1|) . T))
((((-798)) . T))
((((-1092)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092)))))
((((-385 |#2|) |#3|) . T))
((($) . T) (((-385 (-525))) . T))
((((-713) |#1|) . T))
-(((|#2| (-220 (-3522 |#1|) (-713))) . T))
+(((|#2| (-220 (-2827 |#1|) (-713))) . T))
(((|#1| (-497 |#3|)) . T))
((((-385 (-525))) . T))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
((((-798)) . T))
-(((#0=(-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) #0#) |has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-288 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))))
+(((#0=(-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) #0#) |has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-288 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))))
(|has| |#1| (-844))
(|has| |#2| (-341))
-(-3254 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
((((-157 (-357))) . T) (((-205)) . T) (((-357)) . T))
((((-798)) . T))
(((|#1|) . T))
@@ -2381,11 +2381,11 @@
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
-(-3254 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-2067 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)))
(|has| |#1| (-37 (-385 (-525))))
(-12 (|has| |#1| (-510)) (|has| |#1| (-770)))
((((-798)) . T))
-((((-1092)) -3254 (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))) (-12 (|has| |#1| (-341)) (|has| |#2| (-835 (-1092))))))
+((((-1092)) -2067 (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))) (-12 (|has| |#1| (-341)) (|has| |#2| (-835 (-1092))))))
(|has| |#1| (-341))
((((-1092)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092)))))
(|has| |#1| (-341))
@@ -2395,7 +2395,7 @@
(((|#1|) . T))
(((|#2|) |has| |#1| (-341)))
(((|#2|) |has| |#1| (-341)))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-160)))
(((|#1|) . T))
@@ -2418,31 +2418,31 @@
(((|#2|) |has| |#1| (-341)))
((((-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-821 (-357)))) (((-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-821 (-525)))))
(|has| |#1| (-341))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-517)))
(|has| |#1| (-341))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-517)))
(|has| |#1| (-341))
(|has| |#1| (-517))
(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
(((|#3|) . T))
(((|#1|) . T))
-(-3254 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(((|#2|) . T))
(((|#2|) . T))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-669)) (|has| |#2| (-787)) (|has| |#2| (-977)))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
-((((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-669)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
+((((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
(|has| |#1| (-37 (-385 (-525))))
(((|#1| |#2|) . T))
(|has| |#1| (-37 (-385 (-525))))
-(-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))
(|has| |#1| (-138))
((((-1075) |#1|) . T))
-(-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))
(|has| |#1| (-138))
-(-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))
(|has| |#1| (-138))
((((-538 |#1|)) . T))
((($) . T))
@@ -2450,7 +2450,7 @@
(|has| |#1| (-517))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
-(-3254 (|has| |#1| (-136)) (|has| |#1| (-327)))
+(-2067 (|has| |#1| (-136)) (|has| |#1| (-327)))
(|has| |#1| (-138))
((((-798)) . T))
((($) . T))
@@ -2475,7 +2475,7 @@
(|has| |#1| (-733))
(|has| |#1| (-733))
((((-501)) |has| |#1| (-567 (-501))))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-110)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2496,7 +2496,7 @@
((((-525)) . T))
((((-798)) . T))
((((-525)) . T))
-(-3254 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-2067 (|has| |#2| (-735)) (|has| |#2| (-787)))
((((-157 (-357))) . T) (((-205)) . T) (((-357)) . T))
((((-798)) . T))
((((-798)) . T))
@@ -2508,9 +2508,9 @@
(((|#1|) . T) (($) . T) (((-385 (-525))) . T))
(|has| |#1| (-341))
(|has| |#1| (-341))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
-(-3254 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)) (|has| |#1| (-1032)) (|has| |#1| (-1020)))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+(-2067 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-835 (-1092))) (|has| |#1| (-977)) (|has| |#1| (-1032)) (|has| |#1| (-1020)))
(|has| |#1| (-1068))
((((-525) |#1|) . T))
(((|#1|) . T))
@@ -2528,8 +2528,8 @@
(((|#1|) . T))
(|has| |#1| (-517))
((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-517)))
((((-357)) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2538,7 +2538,7 @@
(|has| |#1| (-517))
(|has| |#1| (-1020))
((((-722 |#1| (-800 |#2|))) |has| (-722 |#1| (-800 |#2|)) (-288 (-722 |#1| (-800 |#2|)))))
-(-3254 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-2067 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
(((|#1|) . T))
(((|#2| |#3|) . T))
(|has| |#2| (-844))
@@ -2548,12 +2548,12 @@
(|has| |#1| (-213))
(((|#1| (-497 (-1010 (-1092)))) . T))
(|has| |#2| (-341))
-((((-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) . T))
+((((-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) . T))
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
((((-798)) . T))
((((-798)) . T))
-(-3254 (|has| |#3| (-735)) (|has| |#3| (-787)))
+(-2067 (|has| |#3| (-735)) (|has| |#3| (-787)))
((((-798)) . T))
((((-798)) . T))
(((|#1|) . T))
@@ -2562,8 +2562,8 @@
((((-525)) . T))
(((|#3|) . T))
((((-798)) . T))
-(-3254 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)))
-(-3254 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977)))
+(-2067 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-2067 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977)))
(((#0=(-538 |#1|) #0#) . T) (($ $) . T) ((#1=(-385 (-525)) #1#) . T))
((($ $) . T) ((#0=(-385 (-525)) #0#) . T))
(((|#1|) |has| |#1| (-160)))
@@ -2571,12 +2571,12 @@
((((-538 |#1|)) . T) (($) . T) (((-385 (-525))) . T))
((($) . T) (((-385 (-525))) . T))
((($) . T) (((-385 (-525))) . T))
-(((|#2|) |has| |#2| (-6 (-4260 "*"))))
+(((|#2|) |has| |#2| (-6 (-4261 "*"))))
(((|#1|) . T))
(((|#1|) . T))
((((-798)) |has| |#1| (-566 (-798))))
((((-273 |#3|)) . T))
-(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3254 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -2067 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
((($) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T))
@@ -2584,20 +2584,20 @@
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
-((($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
-((($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+((($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+((($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
(((|#2|) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3254 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -2067 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+((($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
((((-798)) . T))
-((($) -3254 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-((($) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(|has| |#2| (-844))
(|has| |#1| (-844))
-((($) -3254 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#1|) . T))
-((((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) . T))
+((((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
@@ -2611,10 +2611,10 @@
(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
(((#0=(-385 (-525)) #0#) . T))
((((-385 (-525))) . T))
-(-3254 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(((|#1|) . T))
(((|#1|) . T))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-787)) (|has| |#2| (-977)))
((((-501)) . T))
((((-798)) . T))
((((-1092)) |has| |#2| (-835 (-1092))) (((-1005)) . T))
@@ -2629,12 +2629,12 @@
((($ $) . T) ((#0=(-385 (-525)) #0#) . T))
((((-1092)) |has| |#1| (-835 (-1092))))
((((-845 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
-((($) . T) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) . T))
-(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-517))))
+((($) . T) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) . T))
+(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-517))))
((($) . T) (((-385 (-525))) . T))
(((|#1|) . T) (((-385 (-525))) . T) (((-525)) . T) (($) . T))
(((|#2|) |has| |#2| (-977)) (((-525)) -12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977))))
-((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3254 (|has| |#1| (-160)) (|has| |#1| (-517))))
+((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -2067 (|has| |#1| (-160)) (|has| |#1| (-517))))
(|has| |#1| (-517))
(((|#1|) |has| |#1| (-341)))
((((-525)) . T))
@@ -2653,8 +2653,8 @@
((((-798)) . T))
(|has| |#2| (-762))
(|has| |#2| (-762))
-((((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#2|) |has| |#1| (-341)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) . T))
+((((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#2|) |has| |#1| (-341)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) . T))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) |has| |#1| (-968 (-385 (-525)))))
((((-525)) |has| |#1| (-821 (-525))) (((-357)) |has| |#1| (-821 (-357))))
@@ -2680,12 +2680,12 @@
(((|#2| (-713)) . T))
((((-1092)) . T))
((((-805 |#1|)) . T))
-(-3254 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-977)))
-(-3254 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+(-2067 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+(-2067 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-787)) (|has| |#3| (-977)))
((((-798)) . T))
(((|#1|) . T))
-(-3254 (|has| |#2| (-735)) (|has| |#2| (-787)))
-(-3254 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))
+(-2067 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-2067 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))
((((-805 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-346))
@@ -2711,7 +2711,7 @@
(((|#1|) . T))
((((-798)) . T))
(|has| |#2| (-844))
-((((-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) . T))
+((((-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) . T))
((((-501)) |has| |#2| (-567 (-501))) (((-827 (-357))) |has| |#2| (-567 (-827 (-357)))) (((-827 (-525))) |has| |#2| (-567 (-827 (-525)))))
((((-798)) . T))
((((-798)) . T))
@@ -2744,11 +2744,11 @@
((((-385 |#2|) |#3|) . T))
(((|#1|) . T))
(|has| |#1| (-1020))
-(((|#2| (-458 (-3522 |#1|) (-713))) . T))
+(((|#2| (-458 (-2827 |#1|) (-713))) . T))
((((-525) |#1|) . T))
(((|#2| |#2|) . T))
(((|#1| (-497 (-1092))) . T))
-(-3254 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
((((-525)) . T))
(((|#2|) . T))
(((|#2|) . T))
@@ -2758,9 +2758,9 @@
((($) . T) (((-385 (-525))) . T))
((($) . T))
((($) . T))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(((|#1|) . T))
-((($) -3254 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
((((-798)) . T))
((((-135)) . T))
(((|#1|) . T) (((-385 (-525))) . T))
@@ -2800,27 +2800,27 @@
(|has| |#1| (-213))
(((|#1| (-497 |#3|)) . T))
(|has| |#1| (-346))
-(((|#2| (-220 (-3522 |#1|) (-713))) . T))
+(((|#2| (-220 (-2827 |#1|) (-713))) . T))
(|has| |#1| (-346))
(|has| |#1| (-346))
(((|#1|) . T) (($) . T))
(((|#1| (-497 |#2|)) . T))
-(-3254 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(((|#1| (-713)) . T))
(|has| |#1| (-517))
-(-3254 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
((((-798)) . T))
-(-3254 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))
-(-3254 (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-977)))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-669)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))
+(-2067 (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-669)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(((|#1|) |has| |#1| (-160)))
(((|#4|) |has| |#4| (-977)))
(((|#3|) |has| |#3| (-977)))
(-12 (|has| |#1| (-341)) (|has| |#2| (-762)))
(-12 (|has| |#1| (-341)) (|has| |#2| (-762)))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T))
((($ $) . T) ((#0=(-385 (-525)) #0#) . T))
@@ -2833,14 +2833,14 @@
(((|#2|) |has| |#2| (-977)) (((-525)) -12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977))))
(((|#1|) . T))
(|has| |#2| (-341))
-(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3254 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
-((($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -2067 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-385 (-525)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-385 (-525)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-385 (-525)) #0#) . T))
(((|#2| |#2|) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3254 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
-((($) -3254 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -2067 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((($) -2067 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#1|) . T) (($) . T) (((-385 (-525))) . T))
(((|#1|) . T) (($) . T) (((-385 (-525))) . T))
(((|#1|) . T) (($) . T) (((-385 (-525))) . T))
@@ -2859,25 +2859,25 @@
(((|#1|) |has| |#2| (-395 |#1|)))
(((|#1|) |has| |#2| (-395 |#1|)))
((((-845 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
((((-798)) . T))
-((((-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) |has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-288 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))))
-(-3254 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+((((-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) |has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-288 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))))
+(-2067 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
((((-525) |#1|) . T))
((((-525) |#1|) . T))
((((-525) |#1|) . T))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
((((-525) |#1|) . T))
(((|#1|) . T))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
((((-1092)) |has| |#1| (-835 (-1092))) (((-760 (-1092))) . T))
-(-3254 (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+(-2067 (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-977)))
((((-761 |#1|)) . T))
(((|#1| |#2|) . T))
((((-798)) . T))
-(-3254 (|has| |#3| (-160)) (|has| |#3| (-669)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+(-2067 (|has| |#3| (-160)) (|has| |#3| (-669)) (|has| |#3| (-787)) (|has| |#3| (-977)))
(((|#1| |#2|) . T))
(|has| |#1| (-37 (-385 (-525))))
((((-798)) . T))
@@ -2885,15 +2885,15 @@
(((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517)) (((-385 (-525))) |has| |#1| (-517)))
(((|#2|) . T) (((-525)) |has| |#2| (-588 (-525))))
(|has| |#1| (-341))
-(-3254 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (-12 (|has| |#1| (-341)) (|has| |#2| (-213))))
+(-2067 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (-12 (|has| |#1| (-341)) (|has| |#2| (-213))))
(|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))
(|has| |#1| (-341))
(((|#1|) . T))
-(((#0=(-385 (-525)) #0#) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1| |#1|) . T))
+(((#0=(-385 (-525)) #0#) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1| |#1|) . T))
((((-525) |#1|) . T))
((((-294 |#1|)) . T))
(((#0=(-641) (-1088 #0#)) . T))
-((((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1|) . T))
+((((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-787))
((($ $) . T) ((#0=(-800 |#1|) $) . T) ((#0# |#2|) . T))
@@ -2910,12 +2910,12 @@
(((#0=(-1160 |#1| |#2| |#3| |#4|)) |has| #0# (-288 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#2| |#2|) |has| |#1| (-341)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
+((($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#2| |#2|) |has| |#1| (-341)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
(|has| |#2| (-213))
(|has| $ (-138))
((((-798)) . T))
-((($) . T) (((-385 (-525))) -3254 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
+((($) . T) (((-385 (-525))) -2067 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
((((-798)) . T))
(|has| |#1| (-787))
((((-1092)) -12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))
@@ -2927,23 +2927,23 @@
(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#4|) . T))
(|has| |#1| (-517))
-((($) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#2|) |has| |#1| (-341)) ((|#1|) . T))
-((((-1092)) -3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))))
-(((|#1|) . T) (($) -3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
+((($) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#2|) |has| |#1| (-341)) ((|#1|) . T))
+((((-1092)) -2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))))
+(((|#1|) . T) (($) -2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
((((-1092)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092)))))
((((-1092)) -12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092)))))
(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
((((-525) |#1|) . T))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
(((|#1|) . T))
(((|#1| (-497 (-760 (-1092)))) . T))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(((|#1|) . T))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(((|#1|) . T))
-(-3254 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
-(-3254 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))
+(-2067 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))
((((-1166 |#1| |#2| |#3|)) |has| |#1| (-341)))
((($) . T) (((-805 |#1|)) . T) (((-385 (-525))) . T))
((((-1166 |#1| |#2| |#3|)) |has| |#1| (-341)))
@@ -2952,15 +2952,15 @@
(((|#1|) . T))
(((|#1|) . T))
((((-385 |#2|)) . T))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-327)))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-327)))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(((|#1|) . T))
(((|#2| |#2|) . T) ((#0=(-385 (-525)) #0#) . T) (($ $) . T))
((((-525)) . T))
@@ -2989,32 +2989,32 @@
((((-1166 |#1| |#2| |#3|)) |has| |#1| (-341)))
((((-1092)) . T) (((-798)) . T))
(|has| |#1| (-341))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3254 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -2067 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
(((|#2|) . T) ((|#6|) . T))
((($) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T))
-((($) -3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
((((-1024)) . T))
((((-798)) . T))
-((($) -3254 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
((($) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T))
((($) . T))
-((($) -3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(|has| |#2| (-844))
(|has| |#1| (-844))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-160)))
((((-641)) . T))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(((|#1|) |has| |#1| (-160)))
(((|#1|) |has| |#1| (-160)))
((((-385 (-525))) . T) (($) . T))
(((|#1| (-525)) . T))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-327)))
(|has| |#1| (-341))
(|has| |#1| (-341))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-327)))
-(-3254 (|has| |#1| (-160)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-2067 (|has| |#1| (-160)) (|has| |#1| (-517)))
(((|#1| (-525)) . T))
(((|#1| (-385 (-525))) . T))
(((|#1| (-713)) . T))
@@ -3029,16 +3029,16 @@
((((-827 (-357))) . T) (((-827 (-525))) . T) (((-1092)) . T) (((-501)) . T))
(((|#1|) . T))
((((-798)) . T))
-(-3254 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
-(-3254 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))
+(-2067 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))
((((-525)) . T))
((((-525)) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-3254 (|has| |#2| (-160)) (|has| |#2| (-669)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-2067 (|has| |#2| (-160)) (|has| |#2| (-669)) (|has| |#2| (-787)) (|has| |#2| (-977)))
((((-1092)) -12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977))))
-(-3254 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))
+(-2067 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))
(|has| |#1| (-136))
(|has| |#1| (-138))
(|has| |#1| (-341))
@@ -3062,7 +3062,7 @@
((((-1075) (-1092) (-525) (-205) (-798)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-(-3254 (|has| |#1| (-327)) (|has| |#1| (-346)))
+(-2067 (|has| |#1| (-327)) (|has| |#1| (-346)))
(((|#1| |#2|) . T))
((($) . T) ((|#1|) . T))
((((-798)) . T))
@@ -3070,7 +3070,7 @@
((($) . T) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#2|) |has| |#2| (-1020)) (((-525)) -12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) (((-385 (-525))) -12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((($) . T) (((-385 (-525))) . T))
(|has| |#1| (-844))
(|has| |#1| (-844))
@@ -3079,14 +3079,14 @@
((((-798)) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-160)))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3254 (|has| |#1| (-21)) (|has| |#1| (-787)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-2067 (|has| |#1| (-21)) (|has| |#1| (-787)))
(((|#2|) . T))
-(-3254 (|has| |#1| (-21)) (|has| |#1| (-787)))
+(-2067 (|has| |#1| (-21)) (|has| |#1| (-787)))
(((|#1|) |has| |#1| (-160)))
(((|#1|) . T))
(((|#1|) . T))
-((((-798)) -3254 (-12 (|has| |#1| (-566 (-798))) (|has| |#2| (-566 (-798)))) (-12 (|has| |#1| (-1020)) (|has| |#2| (-1020)))))
+((((-798)) -2067 (-12 (|has| |#1| (-566 (-798))) (|has| |#2| (-566 (-798)))) (-12 (|has| |#1| (-1020)) (|has| |#2| (-1020)))))
((((-385 |#2|) |#3|) . T))
((((-385 (-525))) . T) (($) . T))
(|has| |#1| (-37 (-385 (-525))))
@@ -3098,17 +3098,17 @@
(((|#1|) . T) (((-385 (-525))) . T) (((-525)) . T) (($) . T))
(((#0=(-525) #0#) . T))
((($) . T) (((-385 (-525))) . T))
-(-3254 (|has| |#4| (-160)) (|has| |#4| (-669)) (|has| |#4| (-787)) (|has| |#4| (-977)))
-(-3254 (|has| |#3| (-160)) (|has| |#3| (-669)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+(-2067 (|has| |#4| (-160)) (|has| |#4| (-669)) (|has| |#4| (-787)) (|has| |#4| (-977)))
+(-2067 (|has| |#3| (-160)) (|has| |#3| (-669)) (|has| |#3| (-787)) (|has| |#3| (-977)))
(|has| |#4| (-735))
-(-3254 (|has| |#4| (-735)) (|has| |#4| (-787)))
+(-2067 (|has| |#4| (-735)) (|has| |#4| (-787)))
(|has| |#4| (-787))
(|has| |#3| (-735))
-(-3254 (|has| |#3| (-735)) (|has| |#3| (-787)))
+(-2067 (|has| |#3| (-735)) (|has| |#3| (-787)))
(|has| |#3| (-787))
((((-525)) . T))
(((|#2|) . T))
-((((-1092)) -3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))))
+((((-1092)) -2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))))
((((-1092)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092)))))
((((-1092)) -12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092)))))
(((|#1| |#1|) . T) (($ $) . T))
@@ -3123,11 +3123,11 @@
((((-1090 |#1| |#2| |#3|)) |has| |#1| (-341)))
((((-1057 |#1| |#2|)) . T))
((((-1090 |#1| |#2| |#3|)) |has| |#1| (-341)))
-(((|#2|) . T) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
-((((-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) . T))
+(((|#2|) . T) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
+((((-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) . T))
((($) . T))
(|has| |#1| (-953))
-(((|#2|) . T) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
((((-798)) . T))
((((-501)) |has| |#2| (-567 (-501))) (((-827 (-525))) |has| |#2| (-567 (-827 (-525)))) (((-827 (-357))) |has| |#2| (-567 (-827 (-357)))) (((-357)) . #0=(|has| |#2| (-953))) (((-205)) . #0#))
((((-1092) (-51)) . T))
@@ -3139,15 +3139,15 @@
((((-1090 |#1| |#2| |#3|)) . T))
((((-1090 |#1| |#2| |#3|)) . T) (((-1083 |#1| |#2| |#3|)) . T))
((((-798)) . T))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
((((-525) |#1|) . T))
((((-1090 |#1| |#2| |#3|)) |has| |#1| (-341)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-341))
-(((|#3|) . T) ((|#2|) . T) (($) -3254 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-977))) ((|#4|) -3254 (|has| |#4| (-160)) (|has| |#4| (-341)) (|has| |#4| (-977))))
-(((|#2|) . T) (($) -3254 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-977))) ((|#3|) -3254 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-977))))
+(((|#3|) . T) ((|#2|) . T) (($) -2067 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-977))) ((|#4|) -2067 (|has| |#4| (-160)) (|has| |#4| (-341)) (|has| |#4| (-977))))
+(((|#2|) . T) (($) -2067 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-977))) ((|#3|) -2067 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-977))))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-341))
@@ -3159,7 +3159,7 @@
((((-798)) . T))
((((-798)) . T))
(((|#1|) . T))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
((((-125)) . T) (((-798)) . T))
((((-525) |#1|) . T))
(((|#1|) . T))
@@ -3167,30 +3167,30 @@
(((|#1|) . T))
(((|#2| $) -12 (|has| |#1| (-341)) (|has| |#2| (-265 |#2| |#2|))) (($ $) . T))
((($ $) . T))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-844)))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-844)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
((((-798)) . T))
((((-798)) . T))
((((-798)) . T))
(((|#1| (-497 |#2|)) . T))
-((((-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) . T))
+((((-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) . T))
(((|#1| (-525)) . T))
(((|#1| (-385 (-525))) . T))
(((|#1| (-713)) . T))
((((-112 |#1|)) . T) (($) . T) (((-385 (-525))) . T))
-(-3254 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
-(-3254 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-2067 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-2067 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
((($) . T))
(((|#2| (-497 (-800 |#1|))) . T))
((((-525) |#1|) . T))
(((|#2|) . T))
(((|#2| (-713)) . T))
-((((-798)) -3254 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -2067 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((((-1075) |#1|) . T))
((((-385 |#2|)) . T))
-((((-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T))
+((((-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T))
(|has| |#1| (-517))
(|has| |#1| (-517))
((($) . T) ((|#2|) . T))
@@ -3198,12 +3198,12 @@
(((|#1| |#2|) . T))
(((|#2| $) |has| |#2| (-265 |#2| |#2|)))
(((|#1| (-592 |#1|)) |has| |#1| (-787)))
-(-3254 (|has| |#1| (-213)) (|has| |#1| (-327)))
-(-3254 (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-2067 (|has| |#1| (-213)) (|has| |#1| (-327)))
+(-2067 (|has| |#1| (-341)) (|has| |#1| (-327)))
(|has| |#1| (-1020))
(((|#1|) . T))
((((-385 (-525))) . T) (($) . T))
-((((-931 |#1|)) . T) ((|#1|) . T) (((-525)) -3254 (|has| (-931 |#1|) (-968 (-525))) (|has| |#1| (-968 (-525)))) (((-385 (-525))) -3254 (|has| (-931 |#1|) (-968 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))
+((((-931 |#1|)) . T) ((|#1|) . T) (((-525)) -2067 (|has| (-931 |#1|) (-968 (-525))) (|has| |#1| (-968 (-525)))) (((-385 (-525))) -2067 (|has| (-931 |#1|) (-968 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
@@ -3214,9 +3214,9 @@
(((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((#0=(-1057 |#1| |#2|) #0#) |has| (-1057 |#1| |#2|) (-288 (-1057 |#1| |#2|))))
-(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((#0=(-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) #0#) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((#0=(-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) #0#) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))))
(((#0=(-112 |#1|)) |has| #0# (-288 #0#)))
-(-3254 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-2067 (|has| |#1| (-789)) (|has| |#1| (-1020)))
((($ $) . T))
((($ $) . T) ((#0=(-800 |#1|) $) . T) ((#0# |#2|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-213)) ((|#2| |#1|) |has| |#1| (-213)) ((|#3| |#1|) . T) ((|#3| $) . T))
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 59e1c30f..3fc88430 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3425075210)
-(4261 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3427192336)
+(4262 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -460,647 +460,645 @@
|XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |position!| |integrate| |roughEqualIdeals?|
- |complexEigenvalues| |zero?| |OMencodingBinary| |leftFactor|
- |monomial?| |error| |f02agf| |colorFunction| |mdeg| |coerce|
- |associative?| |pushuconst| |insertRoot!| |algebraicVariables|
- |positive?| |cot2trig| |showClipRegion| |assert| |constant?|
- |absolutelyIrreducible?| |normInvertible?| |preprocess| |construct|
- |realRoots| |unrankImproperPartitions1| |exprToGenUPS| |maxint|
- |hasTopPredicate?| |cothIfCan| |minColIndex| |simplifyExp|
- |genericRightTrace| |UpTriBddDenomInv| |rootProduct|
- |linearPolynomials| |factorials| |pmComplexintegrate| |frobenius|
- |gcdPrimitive| |closedCurve| |csch2sinh| |controlPanel|
- |dihedralGroup| |removeSquaresIfCan| |commutative?| |unexpand|
- |ramified?| |findCycle| |iidprod| |d02bhf| |in?| |transcendent?|
- |split| |closed?| |insert!| |startTable!| |cAcot| |semicolonSeparate|
- |fortranReal| |exactQuotient!| |numerators| |lift| |f02bbf| |real?|
- |normalizeAtInfinity| |normalElement| |orbits| |incrementKthElement|
- |mirror| |forLoop| |setVariableOrder| |cotIfCan| |ode| |s18aef|
- |leftDivide| |linearAssociatedOrder| |reduce| |power!|
- |squareFreePart| |f07aef| |internalInfRittWu?| |supRittWu?|
- |evenlambert| |startPolynomial| |reflect| |polyPart| |gcdprim|
- |palgLODE| |pquo| |width| |lexico| |nor| |cyclotomic| |ScanRoman|
- |cAsinh| |f02aaf| |characteristicPolynomial| |symbol?| |OMputObject|
- |arguments| |returnTypeOf| |palginfieldint| |copy!|
- |getMultiplicationTable| |leftTrace| |tubePoints| |getIdentifier|
- |wronskianMatrix| |void| |nextLatticePermutation| |setchildren!|
- |prepareDecompose| |collectQuasiMonic| |debug3D| |cot2tan|
- |graphStates| |OMconnInDevice| |OMputError| |setRealSteps|
- |modularGcdPrimitive| |cAcsch| |internalDecompose| |readable?|
- |d01anf| |makeSUP| |linearlyDependentOverZ?| |isTimes| |localUnquote|
- |cyclicSubmodule| |univcase| |printInfo!| |cRationalPower| |center|
- |distdfact| |varselect| |d01aqf| |OMsupportsCD?| |makeUnit|
- |overlabel| |variable?| |permutationRepresentation|
- |indiceSubResultantEuclidean| |rewriteIdealWithQuasiMonicGenerators|
- |pdf2ef| |ref| |probablyZeroDim?| |cycleSplit!| |binaryTree| |delete!|
- |e02akf| |countRealRoots| |useEisensteinCriterion| |solveInField|
- |movedPoints| |selectNonFiniteRoutines| |outputAsScript| |read!|
- |legendreP| |btwFact| |groebnerIdeal| |optional| |stFunc1|
- |powerAssociative?| |tubeRadiusDefault| |OMputEndObject| |reset|
- |palgRDE| |clipSurface| |makeSeries| |choosemon| |f02aef| |d01alf|
- |splitNodeOf!| |box| |OMputEndBind| |fglmIfCan| |augment|
- |checkForZero| |s20adf| |complexExpand| |OMwrite| |nthExponent|
- |separateFactors| |topPredicate| |primPartElseUnitCanonical| |unary?|
- |completeHermite| |linearPart| |one?| |numberOfImproperPartitions|
- |hostPlatform| |integers| |removeCosSq| |bitLength| |adaptive3D?|
- |realZeros| |write| |nil| |OMopenFile| |back| |symmetricTensors|
- |integral?| |factorset| |algintegrate| |binaryFunction| |edf2df|
- |integralRepresents| |reorder| |saturate| |branchIfCan| |cycles|
- |generalizedInverse| |fill!| |groebgen| |mainCoefficients| |domainOf|
- |binaryTournament| |collectUnder| |airyBi| |outputGeneral| |simpson|
- |tanh2trigh| |setelt| |ellipticCylindrical| |conditionsForIdempotents|
- |save| |null?| |invmultisect| |nextPartition| |expPot| |f02akf|
- |postfix| |smith| |nary?| |contractSolve| |oneDimensionalArray| |red|
- |completeEval| |parametersOf| |csc| |squareFreePolynomial|
- |curveColor| |heap| |cAcos| |reducedDiscriminant| |overlap|
- |approximate| |exponential1| |RemainderList| |sparsityIF| |prologue|
- |resize| |mapCoef| |rightLcm| |copy|
- |zeroSetSplitIntoTriangularSystems| |integralAtInfinity?| |asin|
- |complex| |infiniteProduct| |internalZeroSetSplit| |rightRemainder|
- |getConstant| |inverseLaplace| |useSingleFactorBound?| |redPol| |qPot|
- |palgint| |cCos| |nextColeman| |numberOfComputedEntries| |acos|
- |graphState| |typeList| |enterPointData| |increase| |setMinPoints|
- |hdmpToP| |list?| |minus!| |e01bgf| |complete| |sqfree| |autoCoerce|
- |atan| |minPoints| |c06ecf| |univariatePolynomials| |monomRDE|
- |reducedContinuedFraction| |coshIfCan| |conjugate| |generalTwoFactor|
- |getProperties| |build| |s17dgf| |create| |hasPredicate?| |acot|
- |acoshIfCan| |sdf2lst| |/\\| |cycle| |gderiv| |close!| |f04mcf|
- |rationalIfCan| |stopTableGcd!| |radPoly| |log| |d01fcf| |high|
- |laurentIfCan| |conjug| |asec| |currentSubProgram| |cLog| |\\/|
- |create3Space| |normal?| |lowerCase| |inverse| |lquo|
- |parabolicCylindrical| |createNormalPrimitivePoly| |measure|
- |ReduceOrder| |difference| |signAround| |acsc| |f2st| |c06eaf|
- |leadingBasisTerm| |antiAssociative?| |degreeSubResultant| |sech2cosh|
- |outerProduct| |factorial| |reduceBasisAtInfinity| |e04fdf|
- |wholePart| |sinh| |maxPoints| |subResultantGcdEuclidean| |lex|
- |primintfldpoly| |shanksDiscLogAlgorithm| |cosIfCan|
- |identitySquareMatrix| |times!| |complex?| |solve1| |primes|
- |composite| |cosh| |traverse| |c06fuf| |exactQuotient| |critMonD1|
- |univariatePolynomialsGcds| |coefficient| |setImagSteps|
- |createPrimitiveNormalPoly| |scalarTypeOf| |retract| |lllp|
- |complement| |tanh| |primitivePart| |merge| |subtractIfCan|
- |sturmSequence| |eisensteinIrreducible?| |OMlistCDs| |iiacot|
- |exprToUPS| |nullary| |constantRight| |rightRecip| |coth| |palgLODE0|
- |zeroSetSplit| |formula| |hMonic| |c06gsf| |closedCurve?|
- |primextendedint| |f01qef| |overbar| |supersub| |mainVariables| |sech|
- |alphabetic?| |sumOfDivisors| |consnewpol| |basisOfLeftAnnihilator|
- |someBasis| |integerIfCan| |s19acf| |remainder| |lighting| |csch|
- |scanOneDimSubspaces| |setProperties!| |LagrangeInterpolation|
- |basisOfLeftNucloid| |rightUnits| |subscriptedVariables| |pow| |deref|
- |asimpson| ^ |setrest!| |f02fjf| |basicSet| |rootPoly| |rowEch|
- |sylvesterMatrix| |ldf2lst| |traceMatrix| |OMbindTCP| |palgextint|
- |asinh| |OMputEndError| |nrows| |dominantTerm| |reindex| |mkcomm|
- |physicalLength!| |bandedHessian| |f04axf| |acosh| |unitNormalize|
- |denomRicDE| |ratpart| |factorSFBRlcUnit| |ncols| |meshFun2Var|
- |f07fef| |s14aaf| |selectOptimizationRoutines| |atanh| |interpolate|
- |substring?| |neglist| |id| |cycleLength| |iipow| |trunc| |rightOne|
- |s13aaf| |acoth| |constantOpIfCan| |addPoint2| |s15aef| |cubic|
- |testModulus| |squareFreeLexTriangular| |addMatch| |f07fdf| |s18def|
- |asech| |cyclicEntries| |mightHaveRoots| |suffix?| |odd?| |makeprod|
- |table| |select!| |parent| |sturmVariationsOf| |qroot| |e02adf|
- |currentCategoryFrame| |selectOrPolynomials| |product| |coefficients|
- |insertBottom!| |prefix?| |isPower| |bivariatePolynomials| |SFunction|
- |realSolve| |radicalRoots| |allRootsOf| |revert| |OMgetFloat|
- |polCase| |stoseSquareFreePart| |nilFactor|
- |ScanFloatIgnoreSpacesIfCan| RF2UTS |exprex| |shiftRoots| |pushdown|
- |remove| |f01ref| |rur| |e02def| |axesColorDefault|
- |generalizedEigenvectors| |outputFixed| |lexGroebner| |linGenPos|
- |firstNumer| |rightNorm| |f04atf| |exquo| |matrix| |last| |diff|
- |ListOfTerms| |idealSimplify| |viewWriteAvailable| |f02axf|
- |commaSeparate| |div| |assoc| |nthFactor| |interReduce| |iFTable|
- |node?| |infix?| |OMputEndAtp| |transcendentalDecompose| |quo|
- |safeFloor| |makeYoungTableau| |curveColorPalette|
- |stoseInvertible?sqfreg| |mask| |deleteProperty!| |redpps|
- |basisOfCommutingElements| |prime| |numberOfNormalPoly| |birth|
- |normalize| |enterInCache| |rem| |isQuotient| |outputSpacing|
- |palglimint0| |OMcloseConn| |permutationGroup| |doubleRank| |d01bbf|
- |list| |d02gaf| |ScanFloatIgnoreSpaces| |ord| |cylindrical|
- |dictionary| |iiacoth| |car| |ideal| |setleaves!| |mainMonomial|
- |graphImage| |transform| |lfinfieldint| |depth| |drawCurves| |cdr|
- |square?| |ricDsolve| |extendedEuclidean| |powern| |countable?| |pile|
- |iicot| |primextintfrac| |iisech| |setDifference| |Nul| |ravel|
- |pointColorPalette| |cond| |quotientByP| |froot| |notOperand|
- |generalizedEigenvector| |setIntersection| |lazyIrreducibleFactors|
- |aQuartic| |groebnerFactorize| |height| |conical| |packageCall|
- |rowEchelonLocal| |reshape| |s17akf| |measure2Result| |unmakeSUP|
- |setUnion| |reseed| |socf2socdf| |elliptic| |headRemainder| |jacobi|
- |column| |e01bef| |mapSolve| |topFortranOutputStack| |OMgetObject|
- |fprindINFO| |apply| |divergence| |purelyTranscendental?|
- |OMgetEndAtp| |imagi| |cfirst| |light| |curve?| |common|
- |symbolTableOf| |duplicates?| |removeRedundantFactorsInPols|
- |lagrange| |crushedSet| |sincos| |tanh2coth| |cyclic| |principal?|
- |compactFraction| |refine| |size| |removeRoughlyRedundantFactorsInPol|
- |normalise| |partialNumerators| |var2Steps| |imagJ| |subPolSet?|
- |s21bbf| |expressIdealMember| |iiacos| |plot| |infieldIntegrate|
- |leftRegularRepresentation| |maxIndex| |printHeader| |nil?| |not|
- |partitions| |permutations| |zeroDimPrime?| |palglimint| |UnVectorise|
- |halfExtendedResultant2| |update| |matrixDimensions| |basisOfCenter|
- |leftMinimalPolynomial| |interval| |parametric?| |nextPrime|
- |returnType!| |constructorName| |fortranCompilerName| |denomLODE|
- |corrPoly| |externalList| |cyclicEqual?| |computePowers| |first|
- |airyAi| |solveLinearPolynomialEquationByFractions| |d01gaf|
- |getDatabase| |quasiComponent| |B1solve| |bat| |tree| |inR?|
- |LiePolyIfCan| |gcdPolynomial| |iisqrt2| |infinityNorm| |rest|
- |imaginary| |safetyMargin| |cCsch| |wordInGenerators|
- |monicRightDivide| |dequeue!| |internalIntegrate0|
- |unprotectedRemoveRedundantFactors| |stopTableInvSet!|
- |rationalApproximation| |substitute| |frst| |iflist2Result|
- |OMreadStr| |asecIfCan| |clearTheSymbolTable| |innerSolve| |label|
- |rewriteSetByReducingWithParticularGenerators| |regularRepresentation|
- |components| |simplifyPower| |specialTrigs| |removeDuplicates| |sn|
- |matrixConcat3D| |logGamma| |mantissa| |psolve| |medialSet| |cSin|
- |LowTriBddDenomInv| |totalDifferential| |upDateBranches| |cSech|
- |bumptab1| |mainKernel| |blankSeparate| |setColumn!| |sayLength|
- |determinant| |hermite| |insertTop!| |decreasePrecision| |unvectorise|
- |position| |KrullNumber| |fullDisplay| |addmod| |limit|
- |optAttributes| |d01apf| |hitherPlane| |conditionP| |expIfCan|
- |quatern| |tanIfCan| |lazyIntegrate| |s13acf| |f01maf| |tanintegrate|
- |ParCond| |exteriorDifferential| |rightAlternative?| |f02bjf|
- |polarCoordinates| |simplifyLog| |eigenvalues| |quasiAlgebraicSet|
- |bag| |rotatex| |constantIfCan| |genericLeftNorm| |belong?| |reduced?|
- |associatorDependence| |dimensionsOf| |primintegrate| |npcoef|
- |noLinearFactor?| |LyndonCoordinates| |complexEigenvectors| |f2df|
- |linearlyDependent?| |s17acf| |radix| |approximants| |option|
- |discriminant| |OMputInteger| |characteristicSet| |twist| |rk4qc|
- |orbit| |iitanh| |lllip| |find| |exponentialOrder| |tracePowMod|
- |constDsolve| |gcdcofact| |groebner| |scalarMatrix| |commutator|
- |subResultantsChain| |shuffle| |infLex?| |reducedSystem| |prem|
- |inHallBasis?| |bumptab| |indicialEquation| |move| |leftExtendedGcd|
- |isPlus| |rootSplit| |expenseOfEvaluationIF| |member?| |showSummary|
- |directSum| |diagonal?| |mapBivariate| |sinhIfCan| |s17dlf| |equation|
- |lhs| |edf2fi| |setPoly| |s17agf| |OMunhandledSymbol| |optimize|
- |semiResultantEuclideannaif| |radicalEigenvector| |stirling1|
- |HermiteIntegrate| D |bipolarCylindrical| |extractBottom!| |rhs|
- |noncommutativeJordanAlgebra?| |sumSquares| |symmetricRemainder|
- |mathieu23| |bezoutDiscriminant| |showAttributes| |f04arf| |prefix|
- |shrinkable| |imagI| |e02aef| |twoFactor| |concat| |prinshINFO|
- |normFactors| |splitLinear| |aLinear| |rightGcd| |space|
- |deleteRoutine!| |primitivePart!| |dot| |numericalOptimization|
- |e02bbf| |setsubMatrix!| |noKaratsuba| |finite?|
- |balancedFactorisation| |linearDependence| |bezoutResultant| |isMult|
- |curry| |OMParseError?| |operators| |leftUnit| |expandPower|
- |backOldPos| |kroneckerDelta| |represents| |coercePreimagesImages|
- |multiplyCoefficients| |acscIfCan| |drawStyle| |nullary?|
- |lieAlgebra?| |flexibleArray| |PollardSmallFactor| |vertConcat|
- |leadingTerm| |LyndonWordsList1| |byte| |OMputBVar| |listBranches|
- |minPol| |functionIsOscillatory| |algebraic?| |prindINFO| |OMgetError|
- |mainValue| |LyndonWordsList| |hasoln| |expt| |numberOfHues|
- |yCoordinates| |isOp| |horizConcat| |equiv?| |hash| |normDeriv2|
- |balancedBinaryTree| |semiIndiceSubResultantEuclidean| |harmonic|
- |printStatement| |intersect| |xn| |subNodeOf?| |tanNa|
- |algSplitSimple| |point?| |swapRows!| |approxNthRoot| |s01eaf|
- |s17aef| |lazyGintegrate| |count| |exprHasWeightCosWXorSinWX|
- |nonSingularModel| |fortranLiteral| |toseInvertibleSet| |ksec|
- |purelyAlgebraic?| |lazyResidueClass| |clikeUniv| |getZechTable|
- |f02awf| |isExpt| |dim| |triangularSystems| |screenResolution3D|
- UTS2UP |minimalPolynomial| |charpol| |clip| |identification|
- |extractProperty| |makeViewport2D| |c06fqf| |term| |sequences|
- |selectPolynomials| |mathieu22| |monomialIntPoly| |epilogue| |rotatez|
- |stoseLastSubResultant| |fortranTypeOf| |eulerPhi| |primlimintfrac|
- |bernoulli| |divisorCascade| |whileLoop| |lazyPseudoQuotient|
- |baseRDEsys| |Si| |solid| |buildSyntax| |modulus| |intensity| |f04adf|
- |constantKernel| |vspace| |nsqfree| |schema| |f02wef| |doubleDisc|
- |showScalarValues| |numberOfOperations| |diophantineSystem|
- |partialFraction| |sort!| |mapExpon| |entry?| |principalIdeal|
- |sample| |cyclotomicFactorization| |nthRoot| |mapExponents|
- |divideExponents| |jacobian| |expint| |charClass|
- |constantToUnaryFunction| |delta| |bezoutMatrix| |coord| |separate|
- |positiveSolve| |multiple| |karatsuba| |tablePow| |repSq| |trigs|
- |pomopo!| |untab| |mkIntegral| |pointLists| |skewSFunction|
- |sizeLess?| |applyQuote| |variationOfParameters| |interpret|
- |leastPower| |createLowComplexityNormalBasis| |subMatrix| |exQuo|
- |infinite?| |lowerCase?| |stiffnessAndStabilityFactor|
- |primPartElseUnitCanonical!| |tanhIfCan| |internalSubPolSet?|
- |realEigenvalues| FG2F |exptMod| |OMgetType| |compound?| |recolor|
- |deriv| |changeWeightLevel| |doubleResultant|
- |generalizedContinuumHypothesisAssumed| |f04jgf|
- |leadingCoefficientRicDE| |number?| |jordanAlgebra?| |e01saf| |qelt|
- |rangePascalTriangle| |lyndonIfCan| |bitCoef| |monomialIntegrate|
- |ruleset| |fixedPoints| |e01daf| |seed| |module| |gcdcofactprim|
- |shade| |insertMatch| |low| |Lazard2| |lfextlimint| |primlimitedint|
- |key?| |leftExactQuotient| |weakBiRank| |simplify| |basisOfNucleus|
- |createPrimitiveElement| |xRange| |newSubProgram| |zoom|
- |viewDefaults| |pmintegrate| |reverseLex| |rk4f| |minrank| |initial|
- |createNormalElement| |complementaryBasis| |leftAlternative?| |lambda|
- |yRange| |powers| |tan2cot| |primaryDecomp| |mainPrimitivePart|
- |suchThat| |uniform01| |nativeModuleExtension| |equality| |subset?|
- |cap| |rightMinimalPolynomial| |pushdterm| |zRange|
- |continuedFraction| |mapmult| GE |notelem| |tableau| |extractPoint|
- |mapDown!| |laurentRep| |seriesSolve| |distFact| |properties|
- |writable?| |map!| |d01ajf| GT |semiResultantEuclidean1| |tab| |open?|
- |problemPoints| |cAsec| |cosSinInfo| |lexTriangular| |match?| |init|
- |iExquo| |polyRDE| |makeSketch| |rootKerSimp| |simpleBounds?|
- |qsetelt!| |zeroMatrix| |string?| |cAcsc| LE |upperCase!| |redmat|
- |rombergo| |enumerate| |alphanumeric?| |setClipValue| |bandedJacobian|
- |nullity| LT |vectorise| |rename!| |makeGraphImage| |OMread|
- |nullSpace| |mesh| |conjugates| |viewport3D| |objectOf|
- |linearAssociatedExp| |stop| |OMgetAttr| |listConjugateBases|
- |wordsForStrongGenerators| |divisors| |mkPrim| |flagFactor| |iiatanh|
- |multiEuclideanTree| |extractTop!| |iibinom| |diagonalProduct|
- |factorSquareFreeByRecursion| |infRittWu?| |atanIfCan| |mpsode|
- |OMUnknownCD?| |rdHack1| |degree| |denominators| |ignore?|
- |changeName| |multiple?| |updatD| |d02ejf| GF2FG |curve| |printCode|
- |possiblyInfinite?| |iilog| |integralCoordinates| |keys|
- |factorGroebnerBasis| |nextsubResultant2| |acsch| |leadingIndex|
- |rowEchelon| |numberOfPrimitivePoly| |csubst| |cross| |cAcosh|
- |OMsupportsSymbol?| |numFunEvals3D| |repeatUntilLoop| |leftRank|
- |lastSubResultant| |s17adf| |generalLambert| |nextPrimitivePoly|
- |rule| |pop!| |e02ddf| |rischDEsys| |optpair|
- |leftCharacteristicPolynomial| |BumInSepFFE| |algint| |norm|
- |leftTraceMatrix| |zeroDim?| |totalfract| |subresultantSequence|
- |coordinates| |points| |solveLinearlyOverQ| |ratDsolve| |minRowIndex|
- |increment| |next| |s13adf| |symbol| |rangeIsFinite| |finiteBound|
- |pole?| |radicalSolve| |nlde| |mkAnswer| |Beta| |makeSin| |nand|
- |sortConstraints| |deepExpand| |dark| |basisOfMiddleNucleus| |se2rfi|
- |dflist| |integer| |hue| |monicModulo| |insertionSort!| |linear?|
- |rules| |front| |monicDivide| |setMaxPoints3D| |lazyPseudoDivide|
- |hyperelliptic| |cAcoth| |initiallyReduce| |bindings| |reducedQPowers|
- |bivariate?| |doublyTransitive?| |OMputAttr| |generalInfiniteProduct|
- |sinIfCan| |mainVariable| |phiCoord| |coleman| |replace| |htrigs|
- |leftRankPolynomial| |trivialIdeal?| |testDim| |coefChoose| |Lazard|
- |stoseInternalLastSubResultant| |maxPoints3D| |writeLine!| |cAtan|
- |d01gbf| |rootDirectory| |bsolve| |selectSumOfSquaresRoutines|
- |clearTable!| |rightZero| |head| |inrootof| |FormatRoman| |fractRadix|
- |lfunc| |coerceL| |eval| |sort| |function| |s19aaf| |setAdaptive|
- |basisOfCentroid| |repeating?| |sylvesterSequence| |expr|
- |numberOfDivisors| |aspFilename| |plusInfinity|
- |internalSubQuasiComponent?| |sorted?| |dmpToHdmp| |innerEigenvectors|
- |createThreeSpace| |symbolIfCan| |doubleComplex?| |invmod|
- |minusInfinity| |fortranCarriageReturn| |getOperator| |roughSubIdeal?|
- |eigenMatrix| |implies?| |character?| |s14baf| |generators|
- |characteristicSerie| |floor| |aCubic| |true| |polygon?| |lifting1|
- |supDimElseRittWu?| |printInfo| |assign| |stronglyReduce|
- |integralDerivationMatrix| |integralMatrixAtInfinity| |regime|
- |variable| |OMconnOutDevice| |OMputEndApp| |random| |branchPoint?|
- |scaleRoots| |OMconnectTCP| |nonQsign| |decomposeFunc| |lprop|
- |rightCharacteristicPolynomial| |messagePrint| |moebiusMu| |empty|
- |palgextint0| |viewZoomDefault| |systemCommand| |reduceLODE|
- |chebyshevU| |janko2| |stoseInvertible?| |obj| |karatsubaOnce| |type|
- |cAsin| |mainMonomials| |chvar| |weighted| |mapGen| |radicalSimplify|
- |cache| |sts2stst| |insert| |setprevious!| |s18aff| |lflimitedint|
- |OMgetEndObject| |maxrank| |deepestInitial| |predicate|
- |sumOfKthPowerDivisors| |alternatingGroup| |minPoly| |block|
- |setPosition| |semiDiscriminantEuclidean| |lazy?|
- |removeRoughlyRedundantFactorsInPols| |subscript|
- |inverseIntegralMatrixAtInfinity| |singularAtInfinity?|
- |complexIntegrate| |iisec| |printTypes| |meshPar2Var| |linears|
- |loopPoints| |lcm| |explogs2trigs| |color| |numberOfComposites|
- |oblateSpheroidal| |clearTheFTable| |getlo| |tower| |leader| |s21bdf|
- |coordinate| |useSingleFactorBound| |point| |resultantReduit| |llprop|
- |OMgetEndApp| |plotPolar| |normalDeriv| |primitiveElement| |ode1| **
- |linearAssociatedLog| |selectsecond| |rquo| |pointColor| |order|
- |unitNormal| |iiacsc| |outputMeasure| |inRadical?| |flatten|
- |dAndcExp| |chebyshevT| |gcd| |perspective| |search| |printingInfo?|
- |lyndon?| |getCode| |e04dgf| |e02bdf| |antiCommutator| |series|
- |startTableInvSet!| |union| |cos2sec| |idealiserMatrix| |setlast!| EQ
- |dom| |f01qdf| |OMgetBVar| |basisOfRightNucleus| |zero| |false|
- |alternating| |functionIsFracPolynomial?| |trapezoidalo| |eq?|
- |createRandomElement| |sumOfSquares| |symFunc| |callForm?| |latex|
- |closeComponent| |var2StepsDefault| |universe| |equivOperands|
- |fortranLinkerArgs| |ridHack1| |pdf2df| |And| |indices| |showAll?|
- |lifting| |row| |ptree| |normalized?| |identity| |factorSquareFree|
- |dn| |Or| |min| |merge!| |digamma| |integralBasis| |quickSort|
- |splitConstant| |e02ahf| |middle| |Not| |lepol| |intPatternMatch|
- |root| |deepestTail| |d03faf| |routines| |OMmakeConn| |atanhIfCan|
- |title| |setAttributeButtonStep| |mulmod| |subQuasiComponent?|
- |empty?| |escape| |addMatchRestricted| |freeOf?| |diagonalMatrix|
- |modularGcd| |kmax| |subCase?| |resetVariableOrder| |setMinPoints3D|
- |squareFree| |extension| |invertIfCan| |resetAttributeButtons| |sub|
- |genericRightMinimalPolynomial| |trueEqual| |rightTrim| |limitPlus|
- |e| |f02xef| |setTex!| |completeHensel| |qinterval| |symmetricProduct|
- |imagE| |OMopenString| |initiallyReduced?| |normal| |checkRur|
- |leftTrim| |safeCeiling| |contours| |reduction| |getProperty|
- |members| |algebraicSort| |headReduced?| |fixedPoint| |c06fpf| |log2|
- |reverse!| |createIrreduciblePoly| |d02raf| |inGroundField?| |s14abf|
- |resetBadValues| |complexRoots| |tryFunctionalDecomposition|
- |squareMatrix| |constant| |showFortranOutputStack|
- |mapUnivariateIfCan| |rewriteSetWithReduction| |hexDigit?| |diagonals|
- |irreducibleFactor| |outputArgs| |complexNumeric| |maximumExponent|
- |close| |c06gcf| |removeIrreducibleRedundantFactors| |toScale|
- |upperCase| |combineFeatureCompatibility| |derivationCoordinates|
- |varList| |OMgetBind| |dmp2rfi| |binarySearchTree| |cCoth| |acosIfCan|
- |cyclicParents| |erf| |kernels| |leadingIdeal| |display|
- |mainDefiningPolynomial| |halfExtendedSubResultantGcd2| |setStatus|
- |maxrow| |vedf2vef| |getSyntaxFormsFromFile| |rischDE| |univariate|
- |leviCivitaSymbol| |intcompBasis| |e02baf| |fracPart|
- |modifyPointData| |triangular?| |systemSizeIF| |leftQuotient| |Ei|
- |commutativeEquality| |terms| |definingPolynomial| |quasiRegular?|
- |df2fi| |OMputApp| |showArrayValues| |paraboloidal| |compdegd|
- |outputAsTex| |rightMult| |att2Result| |xCoord| |datalist| |dilog|
- |rightTrace| |factor| |argument| |thetaCoord| |compiledFunction|
- |normalizedAssociate| |setCondition!| |countRealRootsMultiple| |nthr|
- |scale| |input| |sin| |powmod| |sqrt| |mathieu11| |coth2trigh|
- |derivative| |normalDenom| |OMputFloat| |categoryFrame| |pack!|
- |e01sbf| |cyclicGroup| |mindegTerm| |output| |cos| |library| |real|
- |changeBase| |tail| |separateDegrees| |radicalEigenvectors|
- |changeThreshhold| |abs| |leaves| |tan| |Aleph| |imag| |compBound|
- |cSec| |randomR| |findBinding| |inverseColeman| |laplace| |e04mbf|
- |pseudoQuotient| |cot| |directProduct| |leftPower| |divide|
- |convergents| |numFunEvals| |polygamma| |makeVariable|
- |perfectSquare?| |e02agf| |setPredicates| |fortranDouble|
- |lfintegrate| |leftMult| |quotient| |tab1| |rightFactorIfCan|
- |setProperties| |appendPoint| |reduceByQuasiMonic|
- |halfExtendedSubResultantGcd1| |sec| |rightPower| |destruct| |set|
- |shufflein| |unit| |e01bff| |sPol| |multinomial| |makeTerm| |f07adf|
- |resultantReduitEuclidean| |d03eef| |presuper|
- |nextPrimitiveNormalPoly| |s18adf| |firstDenom| |plus| |f04asf|
- |OMputAtp| |setMaxPoints| |changeMeasure| |extensionDegree| |enqueue!|
- |baseRDE| |jordanAdmissible?| |quadraticForm| |extractIfCan|
- |nthFractionalTerm| |weights| |differentialVariables| |addiag|
- |localIntegralBasis| |splitSquarefree| |minimumDegree| |pleskenSplit|
- |s17dcf| |extractIndex| |eigenvectors| |lowerPolynomial| |monomial|
- |pattern| |listRepresentation| |pointData| |addPoint| |setErrorBound|
- |GospersMethod| |dimensionOfIrreducibleRepresentation| |delay|
- |alphanumeric| |critBonD| |multivariate| |gradient|
- |listYoungTableaus| |prinpolINFO| |badNum| |setButtonValue|
- |highCommonTerms| |initializeGroupForWordProblem| |factorOfDegree|
- |increasePrecision| |variables| |times| |anticoord| |e01bhf|
- |swapColumns!| |nthRootIfCan| |critM| |rotate| |cyclic?|
- |changeNameToObjf| |LyndonBasis| |diag| |multisect| |gethi| |s15adf|
- |less?| |wrregime| |viewPhiDefault| |ldf2vmf| |parabolic|
- |listOfMonoms| |firstUncouplingMatrix| |currentScope| |csc2sin|
- |randomLC| |scripted?| |getGraph| |triangSolve| |rationalFunction|
- |ipow| |LiePoly| |OMencodingXML| |readLineIfCan!| |show| |makeMulti|
- |e02ajf| |integralBasisAtInfinity| |SturmHabicht| |edf2ef|
- |brillhartTrials| |polynomialZeros| |monom| |leftScalarTimes!| |push!|
- |unaryFunction| |s17def| |physicalLength| |recur| |decrease|
- |zeroDimensional?| |musserTrials| |meshPar1Var| |and?| |taylor|
- |float?| |trace| |hdmpToDmp| |createGenericMatrix| |evaluateInverse|
- |minordet| |createPrimitivePoly| |OMsend| |seriesToOutputForm|
- |fortran| |halfExtendedResultant1| |laurent| |completeEchelonBasis|
- |rootOf| |mergeDifference| |mainCharacterization| |rightQuotient|
- |prefixRagits| |solveLinearPolynomialEquation| |separant|
- |tableForDiscreteLogarithm| |fortranLogical| |puiseux|
- |minimumExponent| |subHeight| |f02adf| |s20acf| |index?| |bright|
- |shiftRight| |showTypeInOutput| |computeCycleEntry| |call| |iiGamma|
- |vark| |string| |pdct| |f04mbf| |patternMatch| |presub| |monomRDEsys|
- |inspect| |clipBoolean| |iiexp| |lintgcd| |zeroDimPrimary?| |inv|
- |c05pbf| |ODESolve| |li| |iteratedInitials| |debug| |polar|
- |cycleTail| |lookup| |numberOfIrreduciblePoly| |ground?| |elColumn2!|
- |setref| |rectangularMatrix| |compose| |zag| |permanent| |arity|
- |computeInt| |elRow1!| |coerceP| |leftDiscriminant| |ground|
- |ScanArabic| |tubePointsDefault| |errorKind|
- |selectMultiDimensionalRoutines| |typeLists| |eq| |cartesian|
- |midpoints| |setRow!| |any?| |rename| |leadingMonomial|
- |internalLastSubResultant| |besselJ| |e01sef| |OMencodingSGML| |iter|
- |cardinality| |delete| |d02gbf| |swap| |adjoint| |stoseInvertible?reg|
- |leadingCoefficient| |extendIfCan| |failed?| |initTable!| |power|
- |condition| |iroot| |OMgetEndBind| |lyndon| |primitiveMonomials|
- |sec2cos| |monicRightFactorIfCan| |makeCos| |torsion?|
- |representationType| |prinb| |say| |rightTraceMatrix| |setProperty!|
- |dfRange| |reductum| |leadingSupport| |standardBasisOfCyclicSubmodule|
- |torsionIfCan| |complexForm| |dec| |selectIntegrationRoutines|
- |invertible?| |bombieriNorm| |critMTonD1| |approxSqrt| |ceiling|
- |unrankImproperPartitions0| |factorSquareFreePolynomial|
- |retractIfCan| |direction| |complexNormalize| |atom?| |reify|
- |rightRankPolynomial| |bubbleSort!| |nthExpon| |mapdiv|
- |extendedIntegrate| |bat1| |selectfirst| |script| |currentEnv|
- |ranges| |f02abf| |yCoord| |basis| |expintfldpoly| |exp|
- |lineColorDefault| |transcendenceDegree| |rischNormalize|
- |useEisensteinCriterion?| |pol| |outputList| |linkToFortran| |polygon|
- |iisin| |lSpaceBasis| |primeFactor| |print| |translate| |cExp|
- |cosh2sech| |cCsc| |s17ajf| |numer| |edf2efi| |besselI|
- |trigs2explogs| |tex| |iiabs| |lazyPseudoRemainder| |setright!|
- |rightDivide| |denom| |cons| |sizeMultiplication| |e04ycf| |Frobenius|
- |mapUp!| |virtualDegree| |e01baf| |is?| |iisinh| |log10|
- |LazardQuotient| |constantOperator| |antiCommutative?|
- |recoverAfterFail| |cyclicCopy| |magnitude| |pi| |bitand|
- |jacobiIdentity?| |symmetricPower| |nonLinearPart| |relerror|
- |elRow2!| |distribute| |quadraticNorm| |infinity| |bitior| |pastel|
- |youngGroup| |mvar| |s21baf| |minPoints3D| |contains?| |mainForm|
- |generalPosition| |initials| |f01bsf| |stopMusserTrials|
- |algebraicCoefficients?| |binomial| |selectODEIVPRoutines| |map|
- |cSinh| |sup| |pToDmp| |computeBasis| |monicDecomposeIfCan| |unit?|
- |relativeApprox| |kernel| |source| |OMgetEndAttr| |addPointLast|
- |component| |OMgetString| |resultantEuclideannaif| |iiasec|
- |getMeasure| |draw| |result| |sqfrFactor| |complexLimit| |diagonal|
- |level| |oddintegers| |getPickedPoints| |iicsch| |c05nbf| |style|
- |squareFreePrim| |super| SEGMENT |range| |critpOrder|
- |numberOfChildren| |zeroSquareMatrix| |t| |limitedint| |vconcat|
- |karatsubaDivide| |withPredicates| |integral| |univariateSolve|
- |symbolTable| |isList| |asinIfCan| |convert| |inf| |totalDegree|
- |genericPosition| |setvalue!| |tryFunctionalDecomposition?| |f01qcf|
- |contract| |or?| |makeObject| |target| |clearFortranOutputStack|
- |HenselLift| |chiSquare| |getExplanations| |complexZeros|
- |finiteBasis| |patternMatchTimes| |pushFortranOutputStack|
- |removeSuperfluousCases| |euclideanNormalForm| |kovacic|
- |knownInfBasis| |generalizedContinuumHypothesisAssumed?|
- |nextIrreduciblePoly| |directory| |popFortranOutputStack|
- |removeRedundantFactors| |cschIfCan| |moduleSum| |brace| |digit?|
- |status| NOT |coef| |OMreadFile| |semiResultantReduitEuclidean|
- |degreePartition| |genericRightNorm| |iomode| |rst| |goodnessOfFit|
- |outputAsFortran| |logIfCan| OR |abelianGroup| |negative?| |name|
- |getVariableOrder| |lazyPquo| |char| |term?| |decompose| |laplacian|
- |collectUpper| AND |body| |internalIntegrate| |dmpToP| |s17aff|
- |bfKeys| |remove!| |andOperands| |quotedOperators| |double|
- |predicates| |companionBlocks| |clipWithRanges| |setAdaptive3D|
- |rootNormalize| |property| |startTableGcd!| |nodeOf?|
- |semiSubResultantGcdEuclidean1| |value| |showIntensityFunctions|
- |OMputBind| |processTemplate| |dimensions| |realElementary| |bitTruth|
- |summation| |completeSmith| |bits| |octon| |nextSubsetGray| |fTable|
- |rarrow| |patternVariable| |float| |acschIfCan| |setOfMinN|
- |removeRedundantFactorsInContents| |rational| |OMgetInteger| |besselK|
- |units| |padicallyExpand| |calcRanges| |pascalTriangle|
- |expandTrigProducts| |subst| |beauzamyBound| |intermediateResultsIF|
- |sinh2csch| |cAsech| |child| |po| |removeZeroes| |heapSort| |subspace|
- |gbasis| |flexible?| |factor1| |morphism| |associates?|
- |multiplyExponents| |makeCrit| |coerceS| |null| |clipParametric|
- |atrapezoidal| |stiffnessAndStabilityOfODEIF|
- |rewriteIdealWithHeadRemainder| |multiset| |c02agf| |quoted?|
- |declare!| |case| |roughBase?| |distance| |entries| |declare| |rk4a|
- |sinhcosh| |ramifiedAtInfinity?| |hcrf| |credPol| * |Zero|
- |inverseIntegralMatrix| |child?| |eyeDistance| |code|
- |OMencodingUnknown| |viewDeltaXDefault| |cycleElt| |setTopPredicate|
- |iprint| |One| |toroidal| |alternative?| |toseSquareFreePart|
- |secIfCan| |key| |viewWriteDefault| |leadingExponent| |vector| |slex|
- |OMUnknownSymbol?| |objects| |curryLeft| |df2st| |LazardQuotient2|
- |options| |iicosh| |differentiate| |resultant| |getRef| |base|
- |polyRicDE| |oddInfiniteProduct| |pushNewContour|
- |drawComplexVectorField| |round| |basisOfRightNucloid| |applyRules|
- |factorsOfCyclicGroupSize| |stoseInvertibleSetreg| |Hausdorff|
- |central?| |filename| |stoseInvertibleSetsqfreg| |numberOfVariables|
- |exists?| |palgintegrate| |nodes| |imagk| |weight| |numberOfMonomials|
- |SturmHabichtSequence| |eigenvector| |moebius| |scopes| |idealiser|
- |henselFact| |elt| |mat| |symmetricSquare| |generator|
- |rightFactorCandidate| ~ |top| |Is| |not?| |mesh?| |new|
- |selectFiniteRoutines| Y |rootsOf| |rightRegularRepresentation|
- |getMultiplicationMatrix| |continue| |factorByRecursion|
- |certainlySubVariety?| |parse| |cTanh| |irreducibleFactors|
- |extendedint| |dequeue| |e02dff| |reverse| |setStatus!| |rootBound|
- |particularSolution| |minGbasis| |s18acf| |paren| |bracket|
- |RittWuCompare| |parts| |getMatch| |printStats!| |genericLeftTrace|
- |viewDeltaYDefault| |fortranCharacter| |maxRowIndex| |shallowCopy|
- |generic?| |makeFR| |implies| |comp| |strongGenerators| |elem?|
- |modifyPoint| |modTree| |swap!| |recip|
- |purelyAlgebraicLeadingMonomial?| |open| |ParCondList|
- |complexElementary| |tubePlot| |setScreenResolution|
- |reciprocalPolynomial| |infieldint| |listexp| |segment| |leftLcm|
- |xor| |raisePolynomial| |divideIfCan!| |OMputEndAttr|
- |replaceKthElement| |s19abf| |OMputVariable| |quasiMonicPolynomials|
- |Gamma| |bringDown| |coth2tanh| |leastAffineMultiple| |setEmpty!|
- |structuralConstants| |previous| |dihedral| |boundOfCauchy|
- |invertibleElseSplit?| |c02aff| |makeop| |ratPoly| |sin2csc| |tValues|
- |solveid| |fmecg| |roman| |createMultiplicationTable|
- |subResultantChain| |semiLastSubResultantEuclidean| |setOrder|
- |asechIfCan| |subSet| |iitan| |quote| |showRegion| |setFormula!|
- |showTheFTable| |shift| |left| |moreAlgebraic?| |sum| |ode2|
- |lowerCase!| |rk4| |anfactor| |symmetricGroup| |OMlistSymbols|
- |sncndn| |interpretString| |fixedPointExquo| |right| |check| |bumprow|
- |#| |leftOne| |tubeRadius| |sh| |pToHdmp| |roughBasicSet|
- |makeViewport3D| |write!| |definingEquations| |pureLex| |e04jaf|
- |validExponential| |complexSolve| |showTheSymbolTable| |OMgetSymbol|
- |internal?| |uncouplingMatrices| |branchPointAtInfinity?| |normalForm|
- |s19adf| |outputFloating| |quasiMonic?| |tanQ| |lieAdmissible?|
- |optional?| |genericRightDiscriminant| |hconcat| |hspace|
- |nextSublist| |OMgetEndError| |deepCopy| |getOrder|
- |singleFactorBound| |index| |e02dcf| |pointPlot| |updateStatus!|
- |chiSquare1| |genericLeftTraceForm| |OMputEndBVar| |addBadValue|
- |logpart| |lo| |atoms| |uniform| |d01amf| |subNode?| |mergeFactors|
- |second| |moduloP| |lazyVariations| |tanAn| |divideIfCan| |incr|
- |setLegalFortranSourceExtensions| |fractRagits| |iicoth|
- |createZechTable| |figureUnits| |third| |ffactor| |iiasin|
- |coerceImages| |pseudoRemainder| |hi| |plenaryPower| |OMgetVariable|
- |pair| |genus| |indicialEquations| |possiblyNewVariety?| |d03edf|
- |double?| |chainSubResultants| |oddlambert| |f02aff| |meatAxe|
- |bottom!| |leastMonomial| |s17dhf| |triangulate| |generic|
- |normalizedDivide| |screenResolution| |invertibleSet|
- |clearDenominator| |has?| |startStats!| |restorePrecision|
- |irreducibleRepresentation| |nthFlag| |matrixGcd| |lazyPrem|
- |relationsIdeal| |totolex| |connect| |mr| |outlineRender|
- |exponential| |mathieu12| |rank| |logical?| |const| |primeFrobenius|
- |innerSolve1| |d02cjf| |fractionPart| |quasiRegular| |BasicMethod|
- |ef2edf| |radicalOfLeftTraceForm| |cCosh| |hclf| |rootRadius|
- |positiveRemainder| |charthRoot| |largest| |clearCache|
- |squareFreeFactors| |parameters| |goto| |blue| |internalAugment|
- |definingInequation| |cn| |rationalPoint?| |e01sff|
- |removeConstantTerm| |makeResult| |c06ebf| |Ci| |e04naf| |cup|
- |argscript| |surface| |e02bef| |content| |sizePascalTriangle| |pushup|
- |e02bcf| |max| |iiatan| |constantCoefficientRicDE| |push| |minIndex|
- |readLine!| |fi2df| |message| |padicFraction| |explicitEntries?|
- |f04faf| |prime?| |hasSolution?| |c06gbf| |laguerre| |setClosed|
- |mapMatrixIfCan| |pr2dmp| |rotate!| |totalGroebner| |shiftLeft| |cCot|
- |euclideanSize| |lists| |removeSinSq| |e04gcf| |normal01| |queue|
- |genericRightTraceForm| |solveRetract| |axes| |palgRDE0|
- |viewPosDefault| |append| |pseudoDivide| |errorInfo|
- |selectPDERoutines| |even?| |adaptive?| |OMgetEndBVar| |tube|
- |symmetricDifference| |primitive?| |dimension| |perfectNthRoot|
- |e02gaf| |taylorQuoByVar| |zerosOf| |factorsOfDegree|
- |splitDenominator| |readIfCan!| |superHeight| |drawComplex| |generate|
- |binomThmExpt| |linearDependenceOverZ| |limitedIntegrate| |evaluate|
- |setleft!| |ddFact| |semiResultantEuclidean2| |satisfy?| |prod|
- |getOperands| |root?| |stoseIntegralLastSubResultant| |lfextendedint|
- |bipolar| |setPrologue!| |bit?| |hessian| |basisOfLeftNucleus|
- |drawToScale| |coHeight| |f01brf| |antisymmetric?| |homogeneous?|
- |incrementBy| |showTheIFTable| |fintegrate|
- |functionIsContinuousAtEndPoints| |indicialEquationAtInfinity| |top!|
- |e04ucf| |associator| |rspace| |eulerE| |or| |FormatArabic| |expand|
- BY |loadNativeModule| |numericIfCan| |colorDef| |localAbs|
- |maxColIndex| |digit| |iiacsch| F2FG |discriminantEuclidean| |and|
- |argumentListOf| |leftFactorIfCan| |filterWhile| |df2ef|
- |rewriteIdealWithRemainder| |rootPower| |makeEq| |shellSort|
- |createNormalPoly| |linSolve| |df2mf| |filterUntil|
- |nextNormalPrimitivePoly| |quartic| |rightDiscriminant|
- |prepareSubResAlgo| |fillPascalTriangle| |digits|
- |stosePrepareSubResAlgo| |f01mcf| |zCoord| |taylorRep| |select|
- |leaf?| |tensorProduct| |pointSizeDefault| |spherical|
- |rightScalarTimes!| |integerBound| |exprHasLogarithmicWeights|
- |children| |updatF| |omError| |unitsColorDefault| |bfEntry|
- |multiEuclidean| |badValues| |ratDenom| |minset| |redPo| |c06ekf|
- |PDESolve| |midpoint| |composites| |leftNorm|
- |createMultiplicationMatrix| |complexNumericIfCan| |OMgetAtp|
- |setFieldInfo| |over| |schwerpunkt| |SturmHabichtMultiple|
- |commonDenominator| |partition| |pointColorDefault| |f04maf| F
- |genericLeftMinimalPolynomial| |leftUnits| |defineProperty|
- |fixedDivisor| |impliesOperands| |yellow| |exprToXXP|
- |indiceSubResultant| |truncate| |resetNew| |qfactor| |monicLeftDivide|
- |wholeRagits| |computeCycleLength| |c06gqf| |lazyEvaluate| |precision|
- |wholeRadix| |subTriSet?| |getButtonValue| |operation| |integer?|
- |removeSuperfluousQuasiComponents| |factors| |nextItem|
- |expextendedint| |outputForm| |putGraph| |int|
- |monicCompleteDecompose| |localReal?| |makeRecord| |realEigenvectors|
- |listLoops| |stirling2| |sign| |makeFloatFunction|
- |semiDegreeSubResultantEuclidean| |numerator| |plus!| |droot| |iiperm|
- |s21bcf| |tan2trig| |unravel| |quadratic| |linear|
- |stoseInvertibleSet| |basisOfRightAnnihilator| |c06frf|
- |mainSquareFreePart| |minimize| |headReduce| |numberOfFactors|
- |graeffe| |getGoodPrime| |whatInfinity| |discreteLog| |maxdeg|
- |f01rdf| |SturmHabichtCoefficients| |unparse| |polynomial| |rCoord|
- |c05adf| |fortranLiteralLine| |stack| |clipPointsDefault| |groebner?|
- |dioSolve| |multMonom| |d02bbf| |monic?| |singRicDE| |mapUnivariate|
- |acotIfCan| |gramschmidt| |reopen!| |endOfFile?| |fortranInteger|
- |prolateSpheroidal| |removeZero| |sechIfCan| |repeating| |iisqrt3|
- |fibonacci| |brillhartIrreducible?| |algebraicOf| |An|
- |numericalIntegration| |ocf2ocdf| |lambert| |rightUnit| |region|
- |showTheRoutinesTable| |subresultantVector| |isobaric?|
- |characteristic| |laguerreL| |mainVariable?| |explicitlyFinite?|
- |euclideanGroebner| |solve| |slash| |more?| |groebSolve|
- |extendedSubResultantGcd| |leftRemainder| |trim| |setelt!| |operator|
- |extend| |comparison| |rational?| |singular?| |toseInvertible?|
- |lastSubResultantEuclidean| |getCurve| |hasHi| |perfectNthPower?|
- |wordInStrongGenerators| |checkPrecision| |partialQuotients|
- |radicalEigenvalues| |every?| |newTypeLists| |powerSum| |asinhIfCan|
- |userOrdered?| |external?| |stronglyReduced?| |antisymmetricTensors|
- |generalSqFr| |f01rcf| |numberOfComponents| = |any| |factorAndSplit|
- |trapezoidal| |rdregime| |iidsum| |fortranComplex| |mainContent|
- |generateIrredPoly| |stFuncN| |node| |transpose| |argumentList!|
- |leftGcd| |OMserve| |intChoose| |simpsono| |removeDuplicates!|
- |degreeSubResultantEuclidean| |leftZero| |integralLastSubResultant|
- |trailingCoefficient| |Vectorise| < |shallowExpand| |opeval| |d02kef|
- |putColorInfo| |associatedSystem| |permutation| |goodPoint| |binary| >
- |elliptic?| |d01asf| |decimal| |size?| |e02daf| |viewThetaDefault|
- |removeRoughlyRedundantFactorsInContents| |iCompose| |OMsetEncoding|
- |newLine| |explicitlyEmpty?| <= |OMclose| |subResultantGcd|
- |OMputSymbol| |exprHasAlgebraicWeight| |s17ahf| |extractClosed|
- |imagj| |iiacosh| |collect| |option?| |padecf| >= |prevPrime|
- |singularitiesOf| |setLabelValue| |zeroVector| |changeVar|
- |var1StepsDefault| |evenInfiniteProduct| |d01akf| |hermiteH| |iicos|
- |solveLinearPolynomialEquationByRecursion| |exponents| |quadratic?|
- |returns| |nextNormalPoly| |autoReduced?| |lastSubResultantElseSplit|
- |concat!| |expenseOfEvaluation| |element?| |polyred| |cPower|
- |stFunc2| |partialDenominators| |UP2ifCan| |accuracyIF| |f04qaf|
- |numberOfCycles| |tRange| |comment| |superscript| |weierstrass|
- |biRank| |elementary| |iiasinh| + |OMputString| |numeric|
- |linearMatrix| |resultantnaif| |palgint0| |bivariateSLPEBR|
- |rubiksGroup| |univariate?| |curryRight| |orOperands| |zeroOf|
- |solveLinear| |squareTop| - |radical| |retractable?| |green|
- |endSubProgram| |adaptive| |selectAndPolynomials| |viewSizeDefault|
- |geometric| |inc| |cycleRagits| |stripCommentsAndBlanks| |alphabetic|
- |numberOfFractionalTerms| / |cscIfCan| |graphCurves| |lp| |rightRank|
- |setProperty| |showAllElements| |removeSinhSq| |unitVector| |overset?|
- |rootSimp| |acothIfCan| |fortranDoubleComplex| |legendre|
- |roughUnitIdeal?| |besselY| |cyclotomicDecomposition| |cTan|
- |inconsistent?| |equiv| UP2UTS |setScreenResolution3D| |sin?|
- |copyInto!| |factorPolynomial| LODO2FUN |reducedForm| |normalizeIfCan|
- |associatedEquations| |myDegree| |wreath| |leftRecip|
- |isAbsolutelyIrreducible?| |qqq| |chineseRemainder| |arrayStack|
- |rightExactQuotient| |getStream| |duplicates| |arg1| |romberg|
- |upperCase?| |usingTable?| |newReduc| |cAtanh| |ran|
- |fractionFreeGauss!| |useNagFunctions| |factorFraction| |irreducible?|
- |explimitedint| |removeCoshSq| |extract!| |arg2| |makingStats?|
- |cyclePartition| |crest| |stopTable!| |orthonormalBasis| |compile|
- |iiasech| |perfectSqrt| |constantLeft| |expandLog| |rightExtendedGcd|
- |trace2PowMod| |innerint| |doubleFloatFormat| |denominator|
- |monomials| |setfirst!| |rationalPoints| |nthCoef| |expintegrate|
- |fixPredicate| |extendedResultant| |listOfLists| |divisor| |pushucoef|
- |pade| |conditions| |rootOfIrreduciblePoly| |factorList| |submod|
- |failed| |areEquivalent?| |elements| |pair?| |hexDigit| |rowEchLocal|
- |match| |toseLastSubResultant| |cycleEntry| |bernoulliB| |mix|
- |setEpilogue!| |lazyPremWithDefault| |mindeg|
- |createLowComplexityTable| |iicsc| |e02zaf| |algDsolve|
- |rationalPower| |length| |integralMatrix| |critB| |firstSubsetGray|
- |OMgetApp| |f02ajf| |coerceListOfPairs| |fullPartialFraction|
- |binding| |rotatey| |op| |getBadValues| |graphs| |scripts| |scan|
- |exponent| |solid?| |OMreceive| |poisson| |symmetric?| |infix|
- |hypergeometric0F1| |setnext!| |entry| |iifact| |var1Steps|
- |algebraicDecompose| |genericLeftDiscriminant| |hex| |aromberg|
- |setValue!| |taylorIfCan| |univariatePolynomial| |resultantEuclidean|
- |clearTheIFTable| |totalLex| |identityMatrix| |OMReadError?|
- |aQuadratic| |exp1| |unitCanonical| |ptFunc| |mathieu24| |rroot|
- |semiSubResultantGcdEuclidean2| |modularFactor| |quoByVar| |viewpoint|
- |copies| |nextsousResultant2| |tanSum| |s18dcf| |euler|
- |extractSplittingLeaf| |randnum| |viewport2D| |critT| |test| ~=
- |imagK| |split!| |nil| |infinite| |arbitraryExponent| |approximate|
+ |Record| |Union| |cAsec| |irreducibleFactors| |e02ajf| |stFunc2|
+ |functionIsFracPolynomial?| |gcdcofact| |exprToGenUPS| |drawToScale|
+ |companionBlocks| |node| |extendedint| |cosSinInfo|
+ |partialDenominators| |integralBasisAtInfinity| |groebner| |maxint|
+ |zero| |trapezoidalo| |coHeight| |clipWithRanges| |lquo| |dequeue|
+ |UP2ifCan| |lexTriangular| |SturmHabicht| |destruct| |eq?|
+ |scalarMatrix| |setelt| |f01brf| |hasTopPredicate?| |setAdaptive3D|
+ |parabolicCylindrical| |iExquo| |e02dff| |accuracyIF| |edf2ef|
+ |commutator| |And| |createRandomElement| |antisymmetric?|
+ |rootNormalize| |createNormalPrimitivePoly| |polyRDE| |setStatus!|
+ |brillhartTrials| |f04qaf| |Or| |homogeneous?| |sumOfSquares| |f07aef|
+ |startTableGcd!| |measure| |makeSketch| |rootBound| |polynomialZeros|
+ |numberOfCycles| |cyclicEqual?| |Not| |showTheIFTable| |symFunc|
+ |internalInfRittWu?| |nodeOf?| |rootKerSimp| |leftScalarTimes!|
+ |particularSolution| |tRange| |monomial| |computePowers| |callForm?|
+ |fintegrate| |semiSubResultantGcdEuclidean1| |supRittWu?|
+ |ReduceOrder| |simpleBounds?| |minGbasis| |compile| |push!|
+ |superscript| |multivariate| |tower| |next| |airyAi|
+ |functionIsContinuousAtEndPoints| |latex| |showIntensityFunctions|
+ |evenlambert| |difference| |comp| |unaryFunction| |weierstrass|
+ |variables| |solveLinearPolynomialEquationByFractions|
+ |indicialEquationAtInfinity| |closeComponent| |OMputBind| |signAround|
+ |fTable| |nthRoot| |biRank| |s17def| |d01gaf| |startPolynomial| |top!|
+ |var2StepsDefault| |processTemplate| |exquo| |showSummary| |f2st|
+ |mapExponents| |rarrow| |elementary| |physicalLength| |getDatabase|
+ |reflect| |universe| |e04ucf| |div| |dimensions| |c06eaf|
+ |patternVariable| |divideExponents| |iiasinh| |recur| |quasiComponent|
+ |realElementary| |polyPart| |quo| |showAttributes| |jacobian|
+ |acschIfCan| |decrease| |OMputString| |B1solve| |primeFrobenius|
+ |floor| |gcdprim| |declare| |bitTruth| ** |leadingBasisTerm| |expint|
+ |setOfMinN| |linearMatrix| |zeroDimensional?| |taylor| |bat|
+ |innerSolve1| |aCubic| |summation| |palgLODE| |rem| |charClass|
+ |removeRedundantFactorsInContents| |musserTrials| |resultantnaif|
+ |laurent| |inR?| |d02cjf| |polygon?| |completeSmith|
+ |constantToUnaryFunction| |rational| |puiseux| EQ |LiePolyIfCan|
+ |lifting1| |fractionPart| |bits| |pquo| |bezoutMatrix| |OMgetInteger|
+ |setelt!| |setPredicates| |gcdPolynomial| |supDimElseRittWu?|
+ |quasiRegular| |octon| |coord| |besselK| |fortranDouble| |operator|
+ |inv| |iisqrt2| |BasicMethod| |assign| |nextSubsetGray| |lfintegrate|
+ SEGMENT |tree| |padicallyExpand| |separate| |extend| |keys| |ground?|
+ |infinityNorm| |ef2edf| |stronglyReduce| |calcRanges| |positiveSolve|
+ |comparison| |leftMult| |ground| |radicalOfLeftTraceForm| |imaginary|
+ |integralDerivationMatrix| |collectQuasiMonic| |minPoints3D| |imagK|
+ |pascalTriangle| |karatsuba| |quotient| |rational?| |leadingMonomial|
+ |integralMatrixAtInfinity| |safetyMargin| |cCosh| |debug3D| |center|
+ |contains?| |split!| |tablePow| |expandTrigProducts| |singular?|
+ |tab1| |leadingCoefficient| |complexNumeric| |cCsch| |hclf| |regime|
+ |cot2tan| |mainForm| |beauzamyBound| |repSq| |toseInvertible?|
+ |rightFactorIfCan| |primitiveMonomials| |rootRadius|
+ |wordInGenerators| |OMconnOutDevice| |graphStates| |generalPosition|
+ |intermediateResultsIF| |trigs| |setProperties|
+ |lastSubResultantEuclidean| |reductum| |monicRightDivide|
+ |positiveRemainder| |OMputEndApp| |initials| |nil| |pomopo!|
+ |sinh2csch| |appendPoint| |getCurve| |branchPoint?| |dequeue!|
+ |charthRoot| |OMconnInDevice| |f01bsf| |id| |cAsech| |untab|
+ |reduceByQuasiMonic| |hasHi| |internalIntegrate0| |scaleRoots|
+ |largest| |OMputError| |stopMusserTrials| |mkIntegral| |child|
+ |perfectNthPower?| |halfExtendedSubResultantGcd1| |setRealSteps|
+ |unprotectedRemoveRedundantFactors| |OMconnectTCP| |squareFreeFactors|
+ |algebraicCoefficients?| |approximate| |pointLists| |po| |rightPower|
+ |wordInStrongGenerators| |goto| |stopTableInvSet!|
+ |modularGcdPrimitive| |nonQsign| |binomial| |property| |complex|
+ |skewSFunction| |removeZeroes| Y |partialQuotients| |shufflein| |blue|
+ |rationalApproximation| |cAcsch| |decomposeFunc|
+ |selectODEIVPRoutines| |sizeLess?| |heapSort| |unit|
+ |radicalEigenvalues| |frst| |lprop| |internalAugment| |cSinh| |search|
+ |variationOfParameters| |subspace| |every?| |e01bff| |iflist2Result|
+ |rightCharacteristicPolynomial| |list| |definingInequation|
+ |internalDecompose| |sup| |units| |gbasis| |leastPower| |sPol|
+ |newTypeLists| |rationalPoint?| |OMreadStr| |car| |op| |messagePrint|
+ |pToDmp| |eq| |createLowComplexityNormalBasis| |flexible?|
+ |multinomial| |powerSum| |arg1| |asecIfCan| |cdr| |moebiusMu| |e01sff|
+ |computeBasis| |iter| |factor1| |subMatrix| |makeTerm| |asinhIfCan|
+ |setDifference| |arg2| |clearTheSymbolTable| |key|
+ |removeConstantTerm| |empty| |monicDecomposeIfCan| |morphism| |exQuo|
+ |f07adf| |userOrdered?| |innerSolve| |setIntersection| |palgextint0|
+ |makeResult| |unit?| |antiAssociative?| |external?| |associates?|
+ |infinite?| |resultantReduitEuclidean| |reset| |filename| |conditions|
+ |setUnion| |rewriteSetByReducingWithParticularGenerators| |c06ebf|
+ |viewZoomDefault| |relativeApprox| |code| |degreeSubResultant|
+ |lowerCase?| |multiplyExponents| |d03eef| |stronglyReduced?|
+ |regularRepresentation| |match| |apply| |not?| |Ci| |reduceLODE|
+ |OMgetEndAttr| |sech2cosh| |stiffnessAndStabilityFactor| |makeCrit|
+ |presuper| |antisymmetricTensors| |components| |parse| |gcdPrimitive|
+ |e04naf| |chebyshevU| |addPointLast| |factorial| |coerceS|
+ |primPartElseUnitCanonical!| |max| |nextPrimitiveNormalPoly|
+ |generalSqFr| |simplifyPower| |size| |closedCurve| |cup| |janko2|
+ |component| |exp| |clipParametric| |f01rcf| |tanhIfCan| |rightTrim|
+ |s18adf| |write| |specialTrigs| |csch2sinh| |stoseInvertible?|
+ |argscript| |OMgetString| |reduceBasisAtInfinity| |atrapezoidal|
+ |internalSubPolSet?| |leftTrim| |firstDenom| |numberOfComponents| |sn|
+ |surface| |karatsubaOnce| |resultantEuclideannaif| |e04fdf| |fortran|
+ |stiffnessAndStabilityOfODEIF| |realEigenvalues| |factorAndSplit|
+ |f04asf| |matrixConcat3D| |first| |controlPanel| |cAsin| |e02bef|
+ |iiasec| |reverse| |wholePart| FG2F |rewriteIdealWithHeadRemainder|
+ |trapezoidal| |OMputAtp| |logGamma| |rest| |dihedralGroup| |content|
+ |mainMonomials| |getMeasure| |maxPoints| |exptMod| |multiset|
+ |rdregime| |setMaxPoints| |failed| |substitute| |psolve|
+ |removeSquaresIfCan| |chvar| |sizePascalTriangle| |sqfrFactor|
+ |subResultantGcdEuclidean| |c02agf| |OMgetType| |iidsum|
+ |changeMeasure| |removeDuplicates| |commutative?| |medialSet| |pushup|
+ |weighted| |complexLimit| |quoted?| |compound?| |fortranComplex|
+ |extensionDegree| |cSin| |unexpand| |mapGen| |e02bcf| |diagonal| |lex|
+ |recolor| |roughBase?| |enqueue!| |mainContent| |arguments| |iiatan|
+ |LowTriBddDenomInv| |radicalSimplify| |union| |oddintegers| |distance|
+ |deriv| |generateIrredPoly| |baseRDE| |totalDifferential| |ramified?|
+ |constantCoefficientRicDE| |sts2stst| |flatten| |getPickedPoints|
+ |entries| |changeWeightLevel| |jordanAdmissible?| |stFuncN| |push|
+ |index| |upDateBranches| |setprevious!| |movedPoints| |iicsch|
+ |doubleResultant| |rk4a| |quadraticForm| |transpose| |cSech|
+ |minIndex| |s18aff| |selectNonFiniteRoutines| |c05nbf|
+ |generalizedContinuumHypothesisAssumed| |sinhcosh| |argumentList!|
+ |extractIfCan| |lflimitedint| |mantissa| |bumptab1| |outputAsScript|
+ |readLine!| |style| |ramifiedAtInfinity?| |f04jgf| |acot| |leftGcd|
+ |nthFractionalTerm| |mainKernel| |fi2df| |pair| |read!|
+ |OMgetEndObject| |common| |squareFreePrim| |leadingCoefficientRicDE|
+ |hcrf| |asec| |weights| |OMserve| |blankSeparate| |padicFraction|
+ |maxrank| |super| |number?| |script| |credPol| |acsc|
+ |differentialVariables| |intChoose| |setColumn!| |explicitEntries?|
+ |legendreP| |deepestInitial| |range| |radPoly| |inverseIntegralMatrix|
+ |jordanAlgebra?| |sinh| |simpsono| |addiag| |sayLength| |btwFact|
+ |sumOfKthPowerDivisors| |f04faf| |critpOrder| |d01fcf| |e01saf|
+ |child?| |cosh| |removeDuplicates!| |localIntegralBasis|
+ |groebnerIdeal| |determinant| |alternatingGroup| |prime?|
+ |numberOfChildren| |rangePascalTriangle| |f02agf| |tex| |tanh|
+ |eyeDistance| |high| |splitSquarefree| |degreeSubResultantEuclidean|
+ |minPoly| |hermite| |hasSolution?| |stFunc1| |zeroSquareMatrix|
+ |colorFunction| |lyndonIfCan| |OMencodingUnknown| |coth|
+ |laurentIfCan| |leftZero| |minimumDegree| |insertTop!| |block|
+ |powerAssociative?| |c06gbf| |limitedint| |outerProduct| |bitCoef|
+ |mdeg| |sech| |viewDeltaXDefault| |conjug| |pleskenSplit|
+ |integralLastSubResultant| |decreasePrecision| F |setPosition|
+ |laguerre| |vconcat| |cycleElt| |associative?| |monomialIntegrate|
+ |csch| |sort| |trailingCoefficient| |s17dcf| |unvectorise|
+ |semiDiscriminantEuclidean| |setClosed| |tubeRadiusDefault|
+ |karatsubaDivide| |pushuconst| |setTopPredicate| |fixedPoints| |asinh|
+ |currentSubProgram| |Vectorise| |extractIndex| |KrullNumber|
+ |mapMatrixIfCan| |lazy?| |withPredicates| |insertRoot!| |result|
+ |iprint| |cLog| |e01daf| |acosh| |eigenvectors| |shallowExpand|
+ |inverseLaplace| |pr2dmp| |removeRoughlyRedundantFactorsInPols|
+ |integral| |toroidal| |algebraicVariables| |seed| |atanh|
+ |create3Space| |lowerPolynomial| |opeval| |stack| |column|
+ |useSingleFactorBound?| |rotate!| |subscript| |univariateSolve|
+ |alternative?| |erf| |module| |positive?| |normal?| |acoth| |d02kef|
+ |listRepresentation| |e01bef| |redPol|
+ |inverseIntegralMatrixAtInfinity| |totalGroebner| |isList|
+ |gcdcofactprim| |cot2trig| |toseSquareFreePart| |asech| |random|
+ |lowerCase| |putColorInfo| |pointData| |cn| |mapSolve| |qPot|
+ |singularAtInfinity?| |shiftLeft| |asinIfCan| |showClipRegion|
+ |associatedSystem| |addPoint| |topFortranOutputStack|
+ |complexIntegrate| |cCot| |inf| |toseInvertibleSet| |inverse|
+ |permutation| |setErrorBound| |OMgetObject| |palgint| |iisec|
+ |euclideanSize| |totalDegree| |ksec| |constant?| |goodPoint|
+ |GospersMethod| |fprindINFO| |retractIfCan| |cCos| |printTypes|
+ |removeSinSq| |genericPosition| |e| |absolutelyIrreducible?|
+ |purelyAlgebraic?| |binary| |dimensionOfIrreducibleRepresentation|
+ |identitySquareMatrix| |divergence| |nextColeman| |setvalue!|
+ |normInvertible?| |lazyResidueClass| |elliptic?| |delay| |bindings|
+ |times!| |purelyTranscendental?| |numberOfComputedEntries|
+ |OMputEndBVar| |tryFunctionalDecomposition?| |clikeUniv| |preprocess|
+ |alphanumeric| |d01asf| |reducedQPowers| |complex?| |graphState|
+ |OMgetEndAtp| |OMopenFile| |addBadValue| |f01qcf| |getZechTable|
+ |realRoots| |decimal| |critBonD| |solve1| |logpart| |imagi|
+ |bivariate?| |back| |contract| |f02awf| |doublyTransitive?| |typeList|
+ |cfirst| |atoms| |symmetricTensors| |or?| |isExpt|
+ |unrankImproperPartitions1| |minimize| |Ei| |save| |integral?| |light|
+ |OMputAttr| |uniform| |clearFortranOutputStack| |triangularSystems|
+ |commutativeEquality| |headReduce| |curve?| |d01amf|
+ |generalInfiniteProduct| |HenselLift| |screenResolution3D|
+ |numberOfFactors| |terms| |symbolTableOf| |factorset| |sinIfCan|
+ |subNode?| |leaves| UTS2UP |graeffe| |definingPolynomial|
+ |mergeFactors| |duplicates?| |map| |algintegrate| |mainVariable|
+ |e02zaf| |nthExpon| |minimalPolynomial| |getGoodPrime| |quasiRegular?|
+ |binaryFunction| |removeRedundantFactorsInPols| ~ |moduloP| |phiCoord|
+ |algDsolve| |mapdiv| |charpol| |df2fi| |whatInfinity| |edf2df|
+ |concat| |lagrange| |lazyVariations| |coleman| |extendedIntegrate|
+ |rationalPower| |dim| |clip| |discreteLog| |OMputApp|
+ |integralRepresents| |open| |crushedSet| |tanAn| |htrigs|
+ |integralMatrix| |bat1| |identification| |showArrayValues| |maxdeg|
+ NOT |leftRankPolynomial| |sincos| |replace| |divideIfCan| |critB|
+ |selectfirst| |extractProperty| |paraboloidal| |f01rdf|
+ |setLegalFortranSourceExtensions| |reorder| OR |tanh2coth| |convert|
+ |bright| |trivialIdeal?| |firstSubsetGray| |ranges| |compdegd|
+ |makeViewport2D| |SturmHabichtCoefficients| |status| AND |cyclic|
+ |testDim| |fractRagits| |f02abf| |OMgetApp| |checkPrecision| |test|
+ |c06fqf| |unparse| |outputAsTex| |obj| |iicoth| |principal?|
+ |coefChoose| |prefix| |f02ajf| |yCoord| |term| |rightMult| |rCoord|
+ |cache| |compactFraction| |createZechTable| |Lazard| |basis|
+ |coerceListOfPairs| |sequences| |att2Result| |c05adf| |label| |refine|
+ |figureUnits| |stoseInternalLastSubResultant| |fullPartialFraction|
+ |expintfldpoly| |primintfldpoly| |selectPolynomials|
+ |fortranLiteralLine| |xCoord| |removeRoughlyRedundantFactorsInPol|
+ |ffactor| |maxPoints3D| |binding| |lineColorDefault| |properties|
+ |shanksDiscLogAlgorithm| |mathieu22| |rightTrace| |clipPointsDefault|
+ |normalise| |iiasin| |writeLine!| |rotatey| |transcendenceDegree|
+ |translate| |monomialIntPoly| |groebner?| |argument|
+ |partialNumerators| |cAtan| |delete| |coerceImages| |rischNormalize|
+ |getBadValues| |cosIfCan| |epilogue| |dioSolve| |thetaCoord|
+ |var2Steps| |d01gbf| |pseudoRemainder| |useEisensteinCriterion?|
+ |graphs| |rotatez| |multMonom| |compiledFunction| |imagJ|
+ |plenaryPower| |rootDirectory| |pol| |scan| |stoseLastSubResultant|
+ |d02bbf| |normalizedAssociate| * |subPolSet?| |OMgetVariable| |bsolve|
+ |linkToFortran| |exponent| |currentEnv| |fortranTypeOf| |monic?|
+ |setCondition!| |genus| |s21bbf| |parts| |selectSumOfSquaresRoutines|
+ |solid?| |polygon| |eulerPhi| |brace| |singRicDE|
+ |countRealRootsMultiple| |expressIdealMember| |indicialEquations|
+ |clearTable!| |iisin| |OMreceive| |error| |primlimintfrac|
+ |mapUnivariate| |nthr| |iiacos| |enterPointData| |rightZero|
+ |possiblyNewVariety?| |lSpaceBasis| |poisson| |bernoulli| |assert|
+ |acotIfCan| |scale| |increase| |plot| |d03edf| |head| |primeFactor|
+ |symmetric?| |divisorCascade| |powmod| |gramschmidt| |option|
+ |infieldIntegrate| |setMinPoints| |inrootof| |double?| |cExp| |infix|
+ |whileLoop| |value| |reopen!| |mathieu11| |leftRegularRepresentation|
+ |hdmpToP| |FormatRoman| |chainSubResultants| |hypergeometric0F1|
+ |cosh2sech| |lazyPseudoQuotient| |endOfFile?| |coth2trigh| |maxIndex|
+ |list?| |fractRadix| |oddlambert| |setnext!| |cCsc| |second| |expPot|
+ |box| |baseRDEsys| |derivative| |fortranInteger| |log10| |lfunc|
+ |printHeader| |f02aff| |constant| |iifact| |s17ajf| |third|
+ |prolateSpheroidal| |outputList| |Si| |f02akf| |normalDenom|
+ |completeHermite| |bitand| |minus!| |nil?| |coerceL| |meatAxe|
+ |var1Steps| |edf2efi| |solid| |linearPart| |postfix| |OMputFloat|
+ |removeZero| |bitior| |partitions| |bottom!| |s19aaf| |besselI|
+ |algebraicDecompose| |categoryFrame| |smith| |buildSyntax| |one?|
+ |sechIfCan| |permutations| |setAdaptive| |leastMonomial|
+ |genericLeftDiscriminant| |trigs2explogs| |predicate| |pack!|
+ |modulus| |numberOfImproperPartitions| |repeating| |zeroDimPrime?|
+ |basisOfCentroid| |s17dhf| |iiabs| |hex| |nary?| |cothIfCan|
+ |intensity| |iisqrt3| |e01sbf| |palglimint| |triangulate| |repeating?|
+ |lazyPseudoRemainder| |aromberg| |fibonacci| |f04adf| |minColIndex|
+ |contractSolve| |cyclicGroup| |hostPlatform| |UnVectorise| |generic|
+ |sylvesterSequence| |setright!| |setValue!| |oneDimensionalArray|
+ |brillhartIrreducible?| |constantKernel| |simplifyExp| |integers|
+ |mindegTerm| |halfExtendedResultant2| |numberOfDivisors|
+ |normalizedDivide| |rightDivide| |taylorIfCan| |red|
+ |genericRightTrace| |vspace| |changeBase| |algebraicOf| |removeCosSq|
+ |sizeMultiplication| |matrixDimensions| |aspFilename|
+ |screenResolution| |level| |univariatePolynomial| |separateDegrees|
+ |completeEval| |nsqfree| |bitLength| |An| |basisOfCenter|
+ |incrementBy| |invertibleSet| |internalSubQuasiComponent?| |e04ycf|
+ |resultantEuclidean| |position!| |systemCommand| |UpTriBddDenomInv|
+ |schema| |numericalIntegration| |adaptive3D?| |radicalEigenvectors|
+ |leftMinimalPolynomial| |sorted?| |pattern| |clearDenominator|
+ |expand| |clearTheIFTable| |Frobenius| |rootProduct| |f02wef|
+ |parametersOf| |integrate| |ocf2ocdf| |changeThreshhold| |mapUp!|
+ |interval| |has?| |dmpToHdmp| |filterWhile| |totalLex| |parameters|
+ |linearPolynomials| |doubleDisc| |realZeros| |abs| |lambert|
+ |virtualDegree| |parametric?| |innerEigenvectors| |startStats!|
+ |identityMatrix| |filterUntil| |debug| |factorials|
+ |roughEqualIdeals?| |showScalarValues| |normal| |Aleph| |rightUnit|
+ |e01baf| |nextPrime| |restorePrecision| |createThreeSpace| |select|
+ |OMReadError?| D |numberOfOperations| |pmComplexintegrate|
+ |complexEigenvalues| |compBound| |region| |irreducibleRepresentation|
+ |message| |returnType!| |symbolIfCan| |name| |is?| |aQuadratic|
+ |zero?| |diophantineSystem| |cSec| |showTheRoutinesTable| |body|
+ |fortranCompilerName| |nthFlag| |doubleComplex?| |iisinh| |exp1|
+ |frobenius| |OMencodingBinary| |squareFreePolynomial|
+ |partialFraction| |randomR| |subresultantVector| |denomLODE|
+ |matrixGcd| |invmod| |unitCanonical| |LazardQuotient| |curveColor|
+ |sort!| |leftFactor| |isobaric?| |findBinding| |corrPoly|
+ |fortranCarriageReturn| |lazyPrem| |constantOperator| |ptFunc| |rules|
+ |heap| |mapExpon| |characteristic| |inverseColeman| |externalList|
+ |relationsIdeal| |getOperator| |antiCommutative?| |mathieu24| |cAcos|
+ |entry?| |monomial?| |laplace| |laguerreL| |totolex| |makeRecord|
+ |roughSubIdeal?| |rroot| |recoverAfterFail| |reducedDiscriminant|
+ |principalIdeal| |e04mbf| |mainVariable?| |deleteProperty!|
+ |eigenMatrix| |connect| |semiSubResultantGcdEuclidean2| |cyclicCopy|
+ |overlap| |sample| |explicitlyFinite?| |pseudoQuotient| |redpps|
+ |implies?| |outlineRender| |modularFactor| |magnitude|
+ |cyclotomicFactorization| |exponential1| |euclideanGroebner|
+ |leftPower| |basisOfCommutingElements| |character?| |exponential|
+ |jacobiIdentity?| |quoByVar| |print| |RemainderList| |divide| |delta|
+ |solve| |prime| |s14baf| |mathieu12| |symmetricPower| |viewpoint|
+ |isMult| |copy| |sparsityIF| |convergents| |slash|
+ |numberOfNormalPoly| |logical?| |generators| |copies| |nonLinearPart|
+ |curry| |implies| |prologue| |numFunEvals| |more?| |birth| |const|
+ |characteristicSerie| |relerror| |nextsousResultant2| |OMParseError?|
+ |autoCoerce| |precision| |resize| |groebSolve| |polygamma| |normalize|
+ |elRow2!| |tanSum| |operators| |xor| |log| |mapCoef| |makeVariable|
+ |extendedSubResultantGcd| |enterInCache| |asechIfCan| |csubst|
+ |distribute| |s18dcf| |leftUnit| |perfectSquare?| |leftRemainder|
+ |symbolTable| |outputSpacing| |subSet| |cross| |quadraticNorm| |euler|
+ |clearCache| |expandPower| |rightLcm| |e02agf| |trim| |palglimint0|
+ |iitan| |cAcosh| |pastel| |extractSplittingLeaf| |backOldPos|
+ |zeroSetSplitIntoTriangularSystems| |pushFortranOutputStack|
+ |OMcloseConn| |OMsupportsSymbol?| |quote| |youngGroup| |randnum|
+ |kroneckerDelta| |integralAtInfinity?| |checkRur| |OMgetAtp|
+ |popFortranOutputStack| |permutationGroup| |numFunEvals3D|
+ |showRegion| |mvar| BY |viewport2D| |represents| |safeCeiling|
+ |setFieldInfo| |infiniteProduct| |outputAsFortran| |doubleRank|
+ |repeatUntilLoop| |setFormula!| |critT| |s21baf| |over|
+ |coercePreimagesImages| |contours| |internalZeroSetSplit| |insert|
+ |d01bbf| |leftRank| |showTheFTable| |multiplyCoefficients|
+ |schwerpunkt| |reduction| |d02gaf| |lastSubResultant| |moreAlgebraic?|
+ |elRow1!| |duplicates| |getProperty| |acscIfCan|
+ |SturmHabichtMultiple| |rightRemainder| |ScanFloatIgnoreSpaces|
+ |s17adf| |ode2| |coerceP| |romberg| |numeric| |drawStyle| |members|
+ |commonDenominator| |ord| |lowerCase!| |generalLambert| |upperCase?|
+ |leftDiscriminant| |nullary?| |radical| |function| |partition|
+ |algebraicSort| |cylindrical| |nextPrimitivePoly| |rk4| |ScanArabic|
+ |usingTable?| |lieAlgebra?| |headReduced?| |pointColorDefault|
+ |dictionary| |anfactor| |pop!| |newReduc| |tubePointsDefault| |any|
+ |flexibleArray| |fixedPoint| |f04maf| |iiacoth| |e02ddf|
+ |symmetricGroup| |cAtanh| |errorKind| |PollardSmallFactor|
+ |genericLeftMinimalPolynomial| |c06fpf| |ideal| |OMlistSymbols|
+ |rischDEsys| |ran| |selectMultiDimensionalRoutines| |vertConcat|
+ |log2| |leftUnits| |makeObject| |setleaves!| |sncndn| |optpair|
+ |fractionFreeGauss!| |typeLists| |varList| |leadingTerm| |reverse!|
+ |defineProperty| |mainMonomial| |leftCharacteristicPolynomial|
+ |interpretString| |cartesian| |useNagFunctions|
+ |createIrreduciblePoly| |LyndonWordsList1| |formula| |fixedDivisor|
+ |coef| |close| |graphImage| |BumInSepFFE| |fixedPointExquo|
+ |midpoints| |factorFraction| |byte| |d02raf| |impliesOperands|
+ |vector| |transform| |algint| |check| |setRow!| |irreducible?|
+ |OMputBVar| |remove| |yellow| |inGroundField?| |display|
+ |differentiate| |lfinfieldint| |norm| |bumprow| |any?| |explimitedint|
+ |listBranches| |exprToXXP| |s14abf| |drawCurves| |leftOne|
+ |leftTraceMatrix| |rename| |removeCoshSq| |minPol| |resetBadValues|
+ |last| |indiceSubResultant| |nrows| |square?| |tubeRadius| |zeroDim?|
+ |extract!| |internalLastSubResultant| |substring?| |assoc|
+ |functionIsOscillatory| |complexRoots| |truncate| |ncols| |ricDsolve|
+ |totalfract| |sh| |besselJ| |makingStats?|
+ |tryFunctionalDecomposition| |algebraic?| |lcm| |resetNew|
+ |extendedEuclidean| |pToHdmp| |subresultantSequence| |e01sef|
+ |cyclePartition| |suffix?| |prindINFO| |qfactor| |squareMatrix|
+ |input| |pdf2ef| |powern| |roughBasicSet| |coordinates|
+ |OMencodingSGML| |crest| |showFortranOutputStack| |OMgetError|
+ |append| |monicLeftDivide| |library| |countable?| |cardinality|
+ |points| |makeViewport3D| |ref| |stopTable!| |prefix?|
+ |mapUnivariateIfCan| |mainValue| |wholeRagits| |gcd| |write!| |pile| =
+ |d02gbf| |solveLinearlyOverQ| |probablyZeroDim?| |orthonormalBasis|
+ |false| |LyndonWordsList| |computeCycleLength|
+ |rewriteSetWithReduction| |iicot| |iiasech| |ratDsolve|
+ |definingEquations| |swap| |cycleSplit!| |hexDigit?| |hasoln|
+ |getConstant| |c06gqf| |primextintfrac| < |pureLex| |minRowIndex|
+ |perfectSqrt| |adjoint| |plus| |expt| |lazyEvaluate| |diagonals|
+ |binaryTree| |set| |iisech| > |increment| |e04jaf| |constantLeft|
+ |stoseInvertible?reg| |numberOfHues| |irreducibleFactor| |wholeRadix|
+ |Nul| |validExponential| <= |delete!| |s13adf| |expandLog|
+ |extendIfCan| |call| |yCoordinates| |outputArgs| |eval| |subTriSet?|
+ |#| |rangeIsFinite| |pointColorPalette| >= |complexSolve| |e02akf|
+ |rightExtendedGcd| |failed?| |infix?| |isOp| |getButtonValue|
+ |maximumExponent| |trace2PowMod| |quotientByP| |finiteBound|
+ |showTheSymbolTable| |countRealRoots| |initTable!| |mask| |times|
+ |horizConcat| |c06gcf| |integer?| |innerint| |froot| |OMgetSymbol|
+ |pole?| |useEisensteinCriterion| |power| |equiv?|
+ |removeIrreducibleRedundantFactors| |removeSuperfluousQuasiComponents|
+ |notOperand| + |radicalSolve| |internal?| |iroot| |doubleFloatFormat|
+ |say| |normDeriv2| |toScale| |factors| |uncouplingMatrices|
+ |generalizedEigenvector| - |OMgetEndBind| |nlde| |denominator|
+ |solveInField| |balancedBinaryTree| |upperCase| |nextItem|
+ |lazyIrreducibleFactors| / |branchPointAtInfinity?| |mkAnswer|
+ |lyndon| |monomials| |monom| |semiIndiceSubResultantEuclidean|
+ |combineFeatureCompatibility| |expextendedint| |isQuotient| |aQuartic|
+ |normalForm| |Beta| |sec2cos| |setfirst!| |depth| |harmonic|
+ |derivationCoordinates| |outputForm| |groebnerFactorize| |makeSin|
+ |s19adf| |rationalPoints| |monicRightFactorIfCan| |printStatement|
+ |OMgetBind| |putGraph| |show| |conical| |nand| |outputFloating|
+ |nthCoef| |makeCos| |intersect| |dmp2rfi| |int| |packageCall|
+ |sortConstraints| |quasiMonic?| |expintegrate| |torsion?| |xn|
+ |binarySearchTree| |monicCompleteDecompose| |trace| |rowEchelonLocal|
+ |tanQ| |deepExpand| |representationType| |fixPredicate| |readable?|
+ |subNodeOf?| |localReal?| |cCoth| |height| |s17akf| |lieAdmissible?|
+ |dark| |prinb| |extendedResultant| |d01anf| |tanNa| |realEigenvectors|
+ |acosIfCan| |basisOfMiddleNucleus| |measure2Result| |rightTraceMatrix|
+ |optional?| |init| |listOfLists| |makeSUP| |algSplitSimple|
+ |cyclicParents| |listLoops| |unmakeSUP| |genericRightDiscriminant|
+ |se2rfi| |setProperty!| |divisor| |linearlyDependentOverZ?| |point?|
+ |stirling2| |leadingIdeal| |reseed| |dflist| |hconcat| |dfRange|
+ |pushucoef| |swapRows!| |optimize| |mainDefiningPolynomial| |sign|
+ |socf2socdf| |hspace| |hue| |leadingSupport| |pade| |isTimes|
+ |approxNthRoot| |makeFloatFunction| |halfExtendedSubResultantGcd2|
+ |elliptic| |nextSublist| |monicModulo| |rootOfIrreduciblePoly|
+ |standardBasisOfCyclicSubmodule| |localUnquote| |dom| |s01eaf|
+ |semiDegreeSubResultantEuclidean| |setStatus| |headRemainder|
+ |OMgetEndError| |insertionSort!| |factorList| |torsionIfCan| |series|
+ |cyclicSubmodule| |s17aef| |numerator| |maxrow| |jacobi| |linear?|
+ |deepCopy| |submod| |complexForm| |univcase| |lazyGintegrate|
+ |vedf2vef| |plus!| |front| |getOrder| |areEquivalent?|
+ |selectIntegrationRoutines| |printInfo!| |droot|
+ |exprHasWeightCosWXorSinWX| |qelt| |getSyntaxFormsFromFile|
+ |mightHaveRoots| |singleFactorBound| |monicDivide| |invertible?|
+ |elements| |nonSingularModel| |lp| |iiperm| |rischDE| |odd?| |e02dcf|
+ |setMaxPoints3D| |bombieriNorm| |pair?| |min| |leviCivitaSymbol|
+ |cRationalPower| |fortranLiteral| |title| |s21bcf| |xRange| |makeprod|
+ |condition| |pointPlot| |lazyPseudoDivide| |hexDigit| |critMTonD1|
+ |coshIfCan| |intcompBasis| |yRange| |tan2trig| |select!|
+ |hyperelliptic| |updateStatus!| |approxSqrt| |rowEchLocal| |conjugate|
+ |subResultantsChain| |unravel| |e02baf| |primes| |zRange| |parent|
+ |cAcoth| |chiSquare1| |ceiling| |toseLastSubResultant|
+ |generalTwoFactor| |shuffle| |fracPart| |map!| |composite| |quadratic|
+ |sturmVariationsOf| |genericLeftTraceForm| |li|
+ |unrankImproperPartitions0| |initiallyReduce| |cycleEntry| |lexico|
+ |getProperties| |infLex?| |qsetelt!| |traverse| |stoseInvertibleSet|
+ |modifyPointData| |rank| |qroot| |nor| |bernoulliB|
+ |factorSquareFreePolynomial| |reducedSystem| |basisOfRightAnnihilator|
+ |c06fuf| |triangular?| |e02adf| |zeroMatrix| |s18acf| |mix|
+ |direction| |cyclotomic| |build| |prem| |systemSizeIF| |c06frf|
+ |exactQuotient| |currentCategoryFrame| |paren| |string?|
+ |setEpilogue!| |complexNormalize| |ScanRoman| |inHallBasis?| |s17dgf|
+ |critMonD1| |leftQuotient| |mainSquareFreePart| |stop|
+ |selectOrPolynomials| |cAcsc| |bracket| |lazyPremWithDefault| |atom?|
+ |create| |bumptab| |univariatePolynomialsGcds| |product|
+ |RittWuCompare| |upperCase!| |reify| |cAsinh| |mindeg| |hasPredicate?|
+ |indicialEquation| |associator| |equivOperands| |acsch| |coefficient|
+ |coefficients| |getMatch| |redmat| |createLowComplexityTable|
+ |rightRankPolynomial| |f02aaf| |acoshIfCan| |move| |fortranLinkerArgs|
+ |rspace| |setImagSteps| |lists| |insertBottom!| |rombergo|
+ |printStats!| |iicsc| |characteristicPolynomial| |bubbleSort!|
+ |leftExtendedGcd| |eulerE| |ridHack1| |createPrimitiveNormalPoly|
+ |isPower| |genericLeftTrace| |enumerate| |symbol?| |sdf2lst| |shift|
+ |isPlus| |pdf2df| |FormatArabic| |scalarTypeOf| |bivariatePolynomials|
+ |findCycle| |alphanumeric?| |viewDeltaYDefault| |palgint0|
+ |meshPar1Var| |OMputObject| |rootSplit| |indices| |numericIfCan|
+ |lllp| |iidprod| |SFunction| |setClipValue| |fortranCharacter|
+ |bivariateSLPEBR| |and?| |expenseOfEvaluationIF| |showAll?| |colorDef|
+ |complement| |d02bhf| |cons| |realSolve| |bandedJacobian|
+ |maxRowIndex| |rubiksGroup| |float?| |returnTypeOf| |member?|
+ |localAbs| |lifting| |primitivePart| |in?| |radicalRoots| |nullity|
+ |shallowCopy| |hdmpToDmp| |univariate?| |directSum| |row|
+ |maxColIndex| |lambda| |merge| |allRootsOf| |transcendent?| |generic?|
+ |vectorise| |curryRight| |createGenericMatrix| |diagonal?| |digit|
+ |normalized?| |subtractIfCan| |revert| |split| |makeFR| |rename!|
+ |evaluateInverse| |orOperands| |mapBivariate| |identity| |iiacsch|
+ |sturmSequence| |makeGraphImage| |OMgetFloat| |closed?|
+ |strongGenerators| |equation| |zeroOf| |minordet| |sinhIfCan| |cycle|
+ F2FG |factorSquareFree| |eisensteinIrreducible?| |polCase| |insert!|
+ |elem?| |OMread| |createPrimitivePoly| |solveLinear| |s17dlf| |t|
+ |gderiv| |dn| |discriminantEuclidean| |OMlistCDs|
+ |stoseSquareFreePart| |source| |options| |startTable!| |nullSpace|
+ |modifyPoint| |squareTop| |OMsend| |iiacot| |edf2fi| |close!| |lhs|
+ |merge!| |argumentListOf| |palginfieldint| |not| |nilFactor| |cAcot|
+ |modTree| |mesh| |seriesToOutputForm| |retractable?| |exprToUPS| |inc|
+ |setPoly| |f04mcf| |rhs| |digamma| |leftFactorIfCan| |copy!|
+ |loadNativeModule| |ScanFloatIgnoreSpacesIfCan| |swap!| |conjugates|
+ |green| |halfExtendedResultant1| |s17agf| |df2ef| |integralBasis|
+ |getMultiplicationTable| |nullary| |string| RF2UTS |recip|
+ |viewport3D| |completeEchelonBasis| |endSubProgram| |quickSort|
+ |OMunhandledSymbol| |rationalIfCan| |or| |rewriteIdealWithRemainder|
+ |leftTrace| |constantRight| |table| |objectOf| |exprex| |adaptive|
+ |purelyAlgebraicLeadingMonomial?| |ptree| |rootOf|
+ |semiResultantEuclideannaif| |stopTableGcd!| |rootPower|
+ |splitConstant| |rightRecip| |linearAssociatedExp| |new| |shiftRoots|
+ |target| |width| |ParCondList| |mergeDifference|
+ |selectAndPolynomials| |radicalEigenvector| |makeEq| |e02ahf|
+ |tubePoints| |palgLODE0| |pushdown| |OMgetAttr| |complexElementary|
+ |mainCharacterization| |viewSizeDefault| |null| |stirling1| |initial|
+ |shellSort| |middle| |getIdentifier| |zeroSetSplit| |f01ref|
+ |tubePlot| |listConjugateBases| |rightQuotient| |geometric| |case|
+ |HermiteIntegrate| |createNormalPoly| |lepol| |hMonic|
+ |wronskianMatrix| |rur| |wordsForStrongGenerators|
+ |setScreenResolution| |cycleRagits| |prefixRagits| |Zero|
+ |bipolarCylindrical| |intPatternMatch| |linSolve| |c06gsf|
+ |nextLatticePermutation| |e02def| |reciprocalPolynomial| |divisors|
+ |solveLinearPolynomialEquation| |stripCommentsAndBlanks| |One|
+ |extractBottom!| |df2mf| |root| |setchildren!| |closedCurve?|
+ |axesColorDefault| |infieldint| |mkPrim| |alphabetic| |separant|
+ |datalist| |noncommutativeJordanAlgebra?| |nextNormalPrimitivePoly|
+ |deepestTail| |primextendedint| |generalizedEigenvectors| |flagFactor|
+ |listexp| |optional| |tableForDiscreteLogarithm|
+ |numberOfFractionalTerms| |saturate| |sumSquares| |d03faf| |quartic|
+ |f01qef| |prepareDecompose| |outputFixed| |iiatanh| |leftLcm|
+ |fortranLogical| |cscIfCan| |void| |branchIfCan| |symmetricRemainder|
+ |rightDiscriminant| |routines| |overbar| |lexGroebner|
+ |multiEuclideanTree| |raisePolynomial| |minimumExponent| |graphCurves|
+ |cycles| |mathieu23| |OMmakeConn| |prepareSubResAlgo| |expr|
+ |supersub| |linGenPos| |extractTop!| |divideIfCan!| |rightRank|
+ |subHeight| |generalizedInverse| |elt| |bezoutDiscriminant|
+ |fillPascalTriangle| |atanhIfCan| |mainVariables| |left| |firstNumer|
+ |iibinom| |OMputEndAttr| |setProperty| |f02adf| |f04arf|
+ |setAttributeButtonStep| |digits| |alphabetic?| |right| |rightNorm|
+ |entry| |replaceKthElement| |diagonalProduct| |s20acf|
+ |showAllElements| |fill!| |shrinkable| |mulmod|
+ |stosePrepareSubResAlgo| |sumOfDivisors| |f04atf| |s19abf|
+ |factorSquareFreeByRecursion| |index?| |removeSinhSq| |distdfact|
+ |groebgen| |imagI| |f01mcf| |subQuasiComponent?| |consnewpol|
+ |variable| |diff| |OMputVariable| |infRittWu?| |unitVector|
+ |shiftRight| |varselect| |mainCoefficients| |e02aef| |zCoord| |empty?|
+ |basisOfLeftAnnihilator| |leader| |ListOfTerms|
+ |quasiMonicPolynomials| |atanIfCan| |showTypeInOutput| |overset?|
+ |domainOf| |d01aqf| |escape| |top| |twoFactor| |lift| |char|
+ |taylorRep| |idealSimplify| |Gamma| |mpsode| |rootSimp|
+ |computeCycleEntry| |OMsupportsCD?| |binaryTournament| |continue|
+ |prinshINFO| |reduce| |addMatchRestricted| |leaf?|
+ |viewWriteAvailable| |bringDown| |OMUnknownCD?| |iiGamma| |acothIfCan|
+ |normFactors| |freeOf?| |tensorProduct| |f02axf| |match?| |rdHack1|
+ |coth2tanh| |fortranDoubleComplex| |vark| |makeUnit| |collectUnder|
+ |splitLinear| |comment| |diagonalMatrix| |pointSizeDefault|
+ |commaSeparate| |leastAffineMultiple| |degree| |legendre| |pdct|
+ |overlabel| |spherical| |aLinear| |modularGcd| |float| |denominators|
+ |nthFactor| |f04mbf| |setEmpty!| |airyBi| |roughUnitIdeal?|
+ |variable?| |linear| |rightGcd| |kmax| |rightScalarTimes!| |ignore?|
+ |interReduce| |outputGeneral| |structuralConstants| |patternMatch|
+ |besselY| |permutationRepresentation| |space| |integerBound|
+ |subCase?| |dihedral| |iFTable| |cyclotomicDecomposition| |changeName|
+ |simpson| |presub| |indiceSubResultantEuclidean| |polynomial|
+ |deleteRoutine!| |exprHasLogarithmicWeights| |resetVariableOrder|
+ |node?| |multiple?| |boundOfCauchy| |cTan| |monomRDEsys|
+ |primitivePart!| |setMinPoints3D| |children| |inspect| |OMputEndAtp|
+ |updatD| |invertibleElseSplit?| |tanh2trigh| |inconsistent?|
+ |rewriteIdealWithQuasiMonicGenerators| |dot| |updatF| |squareFree|
+ |ellipticCylindrical| |transcendentalDecompose| |c02aff| |d02ejf|
+ |clipBoolean| |equiv| |numericalOptimization| |extension| |omError|
+ |iiexp| |safeFloor| GF2FG |makeop| |conditionsForIdempotents| UP2UTS
+ |e02bbf| |invertIfCan| |unitsColorDefault| |augment| |ratPoly|
+ |makeYoungTableau| |lintgcd| |curve| |null?| |setScreenResolution3D|
+ |resetAttributeButtons| |bfEntry| |setsubMatrix!| |dilog| GE
+ |checkForZero| |curveColorPalette| |printCode| |sin?| |sin2csc|
+ |zeroDimPrimary?| |invmultisect| |multiEuclidean| |noKaratsuba| |sub|
+ GT |s20adf| |stoseInvertible?sqfreg| |tValues| |possiblyInfinite?|
+ |copyInto!| |c05pbf| |genericRightMinimalPolynomial| |finite?|
+ |badValues| LE |sin| |complexExpand| |iilog| |solveid| |nextPartition|
+ |ODESolve| |factorPolynomial| |ratDenom| |balancedFactorisation|
+ |trueEqual| LT |cos| |rule| |someBasis| |integralCoordinates| |fmecg|
+ |iteratedInitials| LODO2FUN |linearDependence| |minset| |limitPlus|
+ |tan| |OMwrite| |integerIfCan| |symbol| |factorGroebnerBasis| |roman|
+ |reducedForm| |polar| |bezoutResultant| |redPo| |f02xef| |nthExponent|
+ |s19acf| |createMultiplicationTable| |nextsubResultant2|
+ |normalizeIfCan| |cycleTail| |c06ekf| |setTex!| |cot|
+ |separateFactors| |integer| |remainder| |leadingIndex|
+ |subResultantChain| |associatedEquations| |lookup| |fullDisplay|
+ |completeHensel| |PDESolve| |topPredicate| |lighting|
+ |semiLastSubResultantEuclidean| |rowEchelon| |numberOfIrreduciblePoly|
+ |myDegree| |addmod| |qinterval| |midpoint| |sec|
+ |primPartElseUnitCanonical| |scanOneDimSubspaces| |wreath| |subst|
+ |numberOfPrimitivePoly| |setOrder| |elColumn2!| ^ |limit|
+ |symmetricProduct| |composites| |setProperties!| |leftRecip| |setref|
+ |optAttributes| |leftNorm| |imagE| |unary?| |LagrangeInterpolation|
+ |shade| |secIfCan| |isAbsolutelyIrreducible?| |rectangularMatrix|
+ |d01apf| |createMultiplicationMatrix| |OMopenString|
+ |basisOfLeftNucloid| |insertMatch| |viewWriteDefault| |compose| |qqq|
+ |hitherPlane| |complexNumericIfCan| |initiallyReduced?| |ravel|
+ |rightUnits| |leadingExponent| |low| |chineseRemainder| |zag|
+ |conditionP| |subscriptedVariables| |reshape| |Lazard2| |slex|
+ |arrayStack| |permanent| |digit?| |expIfCan| |meshPar2Var| |e04gcf|
+ |pow| |lfextlimint| |OMUnknownSymbol?| |arity| |rightExactQuotient|
+ |quatern| |linears| |normal01| |primlimitedint| |deref| |curryLeft|
+ |objects| |computeInt| |getStream| |sum| |tanIfCan| |queue|
+ |loopPoints| |df2st| |asimpson| |key?| |base| |OMputEndObject|
+ |lazyIntegrate| |genericRightTraceForm| |explogs2trigs| |setrest!|
+ |leftExactQuotient| |LazardQuotient2| |size?| |gradient| |double|
+ |printInfo| |palgRDE| |s13acf| |color| |solveRetract| |weakBiRank|
+ |f02fjf| |iicosh| |update| |e02daf| |listYoungTableaus| |directory|
+ |f01maf| |clipSurface| |numberOfComposites| |axes| |csc| |basicSet|
+ |simplify| |resultant| |prinpolINFO| |viewThetaDefault| |tanintegrate|
+ |makeSeries| |oblateSpheroidal| |palgRDE0| |asin| |rootPoly|
+ |basisOfNucleus| |getRef| |badNum|
+ |removeRoughlyRedundantFactorsInContents| |ParCond| |clearTheFTable|
+ |viewPosDefault| |generator| |chiSquare| |setButtonValue| |acos|
+ |cond| |rowEch| |createPrimitiveElement| |polyRicDE| |iCompose| |/\\|
+ |exteriorDifferential| |choosemon| |getlo| |pseudoDivide|
+ |getExplanations| |sylvesterMatrix| |highCommonTerms|
+ |oddInfiniteProduct| |newSubProgram| |\\/| |OMsetEncoding|
+ |rightAlternative?| |f02aef| |s21bdf| |errorInfo| |complexZeros|
+ |ldf2lst| |pushNewContour| |zoom| |newLine|
+ |initializeGroupForWordProblem| |d01alf| |f02bjf| |coordinate|
+ |selectPDERoutines| |finiteBasis| |atan| |drawComplexVectorField|
+ |traceMatrix| |position| |viewDefaults| |factorOfDegree|
+ |explicitlyEmpty?| |declare!| |polarCoordinates| |splitNodeOf!|
+ |useSingleFactorBound| |even?| |semicolonSeparate| |patternMatchTimes|
+ |OMbindTCP| |pmintegrate| |round| |increasePrecision| |OMclose|
+ |OMputEndBind| |simplifyLog| |adaptive?| |resultantReduit|
+ |fortranReal| |removeSuperfluousCases| |palgextint|
+ |basisOfRightNucloid| |reverseLex| |anticoord| |subResultantGcd|
+ |eigenvalues| |OMgetEndBVar| |llprop| |euclideanNormalForm|
+ |exactQuotient!| |applyRules| |OMputEndError| |previous| |rk4f|
+ |e01bhf| |OMputSymbol| |fglmIfCan| |quasiAlgebraicSet| |OMgetEndApp|
+ |tube| |numerators| |kovacic| |dominantTerm|
+ |factorsOfCyclicGroupSize| |minrank| |exprHasAlgebraicWeight|
+ |swapColumns!| |bag| |plotPolar| |symmetricDifference| |knownInfBasis|
+ |lo| |reindex| |createNormalElement| |e01bgf| |stoseInvertibleSetreg|
+ |s17ahf| |nthRootIfCan| |interpret|
+ |generalizedContinuumHypothesisAssumed?| |rotatex| |normalDeriv|
+ |primitive?| |f02bbf| |incr| |mkcomm| |complementaryBasis| |Hausdorff|
+ |complete| |critM| |extractClosed| |true| |nextIrreduciblePoly|
+ |constantIfCan| |primitiveElement| |dimension| |real?| |hi| |central?|
+ |physicalLength!| |leftAlternative?| |sqfree| |imagj| |rotate|
+ |genericLeftNorm| |perfectNthRoot| |and| |ode1| |normalizeAtInfinity|
+ |removeRedundantFactors| |bandedHessian| |powers|
+ |stoseInvertibleSetsqfreg| |minPoints| |iiacosh| |cyclic?| |belong?|
+ |linearAssociatedLog| |e02gaf| |normalElement| |cschIfCan| |f04axf|
+ |numberOfVariables| |tan2cot| |changeNameToObjf| |collect| |reduced?|
+ |taylorQuoByVar| |selectsecond| |moduleSum| |orbits| |unitNormalize|
+ |exists?| |primaryDecomp| |option?| |LyndonBasis|
+ |associatorDependence| |zerosOf| |rquo| |OMreadFile| |c06ecf| |tail|
+ |denomRicDE| |palgintegrate| |mainPrimitivePart| |diag| |padecf|
+ |pointColor| |dimensionsOf| |factorsOfDegree|
+ |semiResultantReduitEuclidean| |incrementKthElement| |output|
+ |ratpart| |univariatePolynomials| |hash| |nodes| |uniform01|
+ |prevPrime| |multisect| |primintegrate| |splitDenominator| |order|
+ |degreePartition| |count| |monomRDE| |factorSFBRlcUnit| |imagk|
+ |nativeModuleExtension| |singularitiesOf| |gethi| |segment| |npcoef|
+ |unitNormal| |readIfCan!| |genericRightNorm| |meshFun2Var| |equality|
+ |weight| |setLabelValue| |s15adf| |noLinearFactor?| |iiacsc|
+ |superHeight| |iomode| |reducedContinuedFraction| |f07fef|
+ |numberOfMonomials| |subset?| |zeroVector| |less?| |operation|
+ |LyndonCoordinates| |multiple| |drawComplex| |outputMeasure| |rst|
+ |s14aaf| |cap| |SturmHabichtSequence| |changeVar| |wrregime|
+ |applyQuote| |complexEigenvectors| |binomThmExpt| |inRadical?|
+ |goodnessOfFit| |selectOptimizationRoutines| |eigenvector|
+ |rightMinimalPolynomial| |viewPhiDefault| |var1StepsDefault| |f2df|
+ |dAndcExp| |linearDependenceOverZ| |logIfCan| |matrix| |interpolate|
+ |moebius| |pushdterm| |ldf2vmf| |evenInfiniteProduct|
+ |limitedIntegrate| |linearlyDependent?| |chebyshevT| |abelianGroup|
+ |mirror| |generate| |numer| |constructorName| |neglist| |scopes|
+ |continuedFraction| |parabolic| |d01akf| |mr| |s17acf| |ruleset|
+ |evaluate| |perspective| |forLoop| |negative?| |denom| |idealiser|
+ |cycleLength| |plusInfinity| |mapmult| |listOfMonoms| |hermiteH| ~=
+ |radix| |setleft!| |printingInfo?| |setVariableOrder|
+ |getVariableOrder| |iipow| |notelem| |minusInfinity| |henselFact|
+ |iicos| |firstUncouplingMatrix| |approximants| |coerce| |lyndon?|
+ |ddFact| |cotIfCan| |lazyPquo| |retract| |pi| |trunc| |mat| |tableau|
+ |solveLinearPolynomialEquationByRecursion| |currentScope| |point|
+ |suchThat| |construct| |discriminant| |getCode|
+ |semiResultantEuclidean2| |term?| |infinity| |rightOne|
+ |symmetricSquare| |extractPoint| |exponents| |csc2sin| |e04dgf|
+ |OMputInteger| |satisfy?| |length| |decompose| |ode| |s13aaf|
+ |mapDown!| |rightFactorCandidate| |quadratic?| |randomLC| |e02bdf|
+ |characteristicSet| |prod| |scripts| |laplacian| |s18aef|
+ |constantOpIfCan| |Is| |laurentRep| |returns| |scripted?| |twist|
+ |antiCommutator| |getOperands| |leftDivide| |collectUpper| |kernel|
+ |kernels| |addPoint2| |seriesSolve| |mesh?| |nextNormalPoly|
+ |getGraph| |rk4qc| |startTableInvSet!| |root?| |linearAssociatedOrder|
+ |internalIntegrate| |draw| |type| |distFact| |s15aef|
+ |selectFiniteRoutines| |univariate| |autoReduced?| |triangSolve|
+ |orbit| |stoseIntegralLastSubResultant| |cos2sec| |power!| |dmpToP|
+ |cubic| |rootsOf| |writable?| |lastSubResultantElseSplit|
+ |rationalFunction| |iitanh| |idealiserMatrix| |lfextendedint| |s17aff|
+ |testModulus| |rightRegularRepresentation| |d01ajf| |ipow| |concat!|
+ |lllip| |bipolar| |setlast!| |bfKeys| |squareFreePart|
+ |expenseOfEvaluation| |squareFreeLexTriangular|
+ |getMultiplicationMatrix| |semiResultantEuclidean1| |LiePoly| |factor|
+ |find| |f01qdf| |setPrologue!| |remove!| |element?| |part?| |addMatch|
+ |factorByRecursion| |tab| |sqrt| |OMencodingXML| |exponentialOrder|
+ |bit?| |OMgetBVar| |andOperands| |f07fdf| |certainlySubVariety?|
+ |open?| |real| |polyred| |readLineIfCan!| |dec| |tracePowMod|
+ |basisOfRightNucleus| |hessian| |quotedOperators| |problemPoints|
+ |s18def| |cTanh| |cPower| |makeMulti| |imag| |constDsolve|
+ |basisOfLeftNucleus| |alternating| |predicates| |directProduct|
+ |cyclicEntries| |nil| |infinite| |arbitraryExponent| |approximate|
|complex| |shallowMutable| |canonical| |noetherian| |central|
|partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed|
|noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation|
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 6cb601e7..a8e34635 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,4920 +1,4920 @@
-(3148834 . 3425075231)
-((-2470 (((-108) (-1 (-108) |#2| |#2|) $) 63) (((-108) $) NIL)) (-2165 (($ (-1 (-108) |#2| |#2|) $) 18) (($ $) NIL)) (-1430 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-1141 (-525)) |#2|) 34)) (-2700 (($ $) 59)) (-1284 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1932 (((-525) (-1 (-108) |#2|) $) 22) (((-525) |#2| $) NIL) (((-525) |#2| $ (-525)) 73)) (-3440 (((-592 |#2|) $) 13)) (-1577 (($ (-1 (-108) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2284 (($ (-1 |#2| |#2|) $) 29)) (-3165 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2531 (($ |#2| $ (-525)) NIL) (($ $ $ (-525)) 50)) (-1983 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 24)) (-3944 (((-108) (-1 (-108) |#2|) $) 21)) (-3406 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) NIL) (($ $ (-1141 (-525))) 49)) (-3038 (($ $ (-525)) 56) (($ $ (-1141 (-525))) 55)) (-2110 (((-713) (-1 (-108) |#2|) $) 26) (((-713) |#2| $) NIL)) (-4098 (($ $ $ (-525)) 52)) (-1462 (($ $) 51)) (-1230 (($ (-592 |#2|)) 53)) (-2038 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-592 $)) 62)) (-1217 (((-798) $) 69)) (-3029 (((-108) (-1 (-108) |#2|) $) 20)) (-3955 (((-108) $ $) 72)) (-3978 (((-108) $ $) 75)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -3955 ((-108) |#1| |#1|)) (-15 -1217 ((-798) |#1|)) (-15 -3978 ((-108) |#1| |#1|)) (-15 -2165 (|#1| |#1|)) (-15 -2165 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2700 (|#1| |#1|)) (-15 -4098 (|#1| |#1| |#1| (-525))) (-15 -2470 ((-108) |#1|)) (-15 -1577 (|#1| |#1| |#1|)) (-15 -1932 ((-525) |#2| |#1| (-525))) (-15 -1932 ((-525) |#2| |#1|)) (-15 -1932 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -2470 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1577 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1430 (|#2| |#1| (-1141 (-525)) |#2|)) (-15 -2531 (|#1| |#1| |#1| (-525))) (-15 -2531 (|#1| |#2| |#1| (-525))) (-15 -3038 (|#1| |#1| (-1141 (-525)))) (-15 -3038 (|#1| |#1| (-525))) (-15 -3406 (|#1| |#1| (-1141 (-525)))) (-15 -3165 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2038 (|#1| (-592 |#1|))) (-15 -2038 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#2| |#1|)) (-15 -2038 (|#1| |#1| |#2|)) (-15 -1230 (|#1| (-592 |#2|))) (-15 -1983 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -1284 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1284 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1284 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3406 (|#2| |#1| (-525))) (-15 -3406 (|#2| |#1| (-525) |#2|)) (-15 -1430 (|#2| |#1| (-525) |#2|)) (-15 -2110 ((-713) |#2| |#1|)) (-15 -3440 ((-592 |#2|) |#1|)) (-15 -2110 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3944 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3029 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2284 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1462 (|#1| |#1|))) (-19 |#2|) (-1128)) (T -18))
+(3148834 . 3427192362)
+((-2358 (((-108) (-1 (-108) |#2| |#2|) $) 63) (((-108) $) NIL)) (-2436 (($ (-1 (-108) |#2| |#2|) $) 18) (($ $) NIL)) (-1233 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-1141 (-525)) |#2|) 34)) (-2670 (($ $) 59)) (-3504 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3856 (((-525) (-1 (-108) |#2|) $) 22) (((-525) |#2| $) NIL) (((-525) |#2| $ (-525)) 73)) (-2175 (((-592 |#2|) $) 13)) (-3212 (($ (-1 (-108) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-3069 (($ (-1 |#2| |#2|) $) 29)) (-2016 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2594 (($ |#2| $ (-525)) NIL) (($ $ $ (-525)) 50)) (-4202 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 24)) (-1518 (((-108) (-1 (-108) |#2|) $) 21)) (-3431 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) NIL) (($ $ (-1141 (-525))) 49)) (-2139 (($ $ (-525)) 56) (($ $ (-1141 (-525))) 55)) (-4002 (((-713) (-1 (-108) |#2|) $) 26) (((-713) |#2| $) NIL)) (-3632 (($ $ $ (-525)) 52)) (-2503 (($ $) 51)) (-4114 (($ (-592 |#2|)) 53)) (-2035 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-592 $)) 62)) (-4100 (((-798) $) 69)) (-2706 (((-108) (-1 (-108) |#2|) $) 20)) (-2775 (((-108) $ $) 72)) (-2795 (((-108) $ $) 75)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -2775 ((-108) |#1| |#1|)) (-15 -4100 ((-798) |#1|)) (-15 -2795 ((-108) |#1| |#1|)) (-15 -2436 (|#1| |#1|)) (-15 -2436 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2670 (|#1| |#1|)) (-15 -3632 (|#1| |#1| |#1| (-525))) (-15 -2358 ((-108) |#1|)) (-15 -3212 (|#1| |#1| |#1|)) (-15 -3856 ((-525) |#2| |#1| (-525))) (-15 -3856 ((-525) |#2| |#1|)) (-15 -3856 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -2358 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3212 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1233 (|#2| |#1| (-1141 (-525)) |#2|)) (-15 -2594 (|#1| |#1| |#1| (-525))) (-15 -2594 (|#1| |#2| |#1| (-525))) (-15 -2139 (|#1| |#1| (-1141 (-525)))) (-15 -2139 (|#1| |#1| (-525))) (-15 -3431 (|#1| |#1| (-1141 (-525)))) (-15 -2016 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2035 (|#1| (-592 |#1|))) (-15 -2035 (|#1| |#1| |#1|)) (-15 -2035 (|#1| |#2| |#1|)) (-15 -2035 (|#1| |#1| |#2|)) (-15 -4114 (|#1| (-592 |#2|))) (-15 -4202 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3504 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3504 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3504 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3431 (|#2| |#1| (-525))) (-15 -3431 (|#2| |#1| (-525) |#2|)) (-15 -1233 (|#2| |#1| (-525) |#2|)) (-15 -4002 ((-713) |#2| |#1|)) (-15 -2175 ((-592 |#2|) |#1|)) (-15 -4002 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -1518 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2706 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3069 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2016 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2503 (|#1| |#1|))) (-19 |#2|) (-1128)) (T -18))
NIL
-(-10 -8 (-15 -3955 ((-108) |#1| |#1|)) (-15 -1217 ((-798) |#1|)) (-15 -3978 ((-108) |#1| |#1|)) (-15 -2165 (|#1| |#1|)) (-15 -2165 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2700 (|#1| |#1|)) (-15 -4098 (|#1| |#1| |#1| (-525))) (-15 -2470 ((-108) |#1|)) (-15 -1577 (|#1| |#1| |#1|)) (-15 -1932 ((-525) |#2| |#1| (-525))) (-15 -1932 ((-525) |#2| |#1|)) (-15 -1932 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -2470 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1577 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1430 (|#2| |#1| (-1141 (-525)) |#2|)) (-15 -2531 (|#1| |#1| |#1| (-525))) (-15 -2531 (|#1| |#2| |#1| (-525))) (-15 -3038 (|#1| |#1| (-1141 (-525)))) (-15 -3038 (|#1| |#1| (-525))) (-15 -3406 (|#1| |#1| (-1141 (-525)))) (-15 -3165 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2038 (|#1| (-592 |#1|))) (-15 -2038 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#2| |#1|)) (-15 -2038 (|#1| |#1| |#2|)) (-15 -1230 (|#1| (-592 |#2|))) (-15 -1983 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -1284 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1284 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1284 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3406 (|#2| |#1| (-525))) (-15 -3406 (|#2| |#1| (-525) |#2|)) (-15 -1430 (|#2| |#1| (-525) |#2|)) (-15 -2110 ((-713) |#2| |#1|)) (-15 -3440 ((-592 |#2|) |#1|)) (-15 -2110 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3944 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3029 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2284 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1462 (|#1| |#1|)))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3456 (((-1179) $ (-525) (-525)) 40 (|has| $ (-6 -4259)))) (-2470 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-2165 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4259))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4259))))) (-2458 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-3991 (((-108) $ (-713)) 8)) (-1430 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) 58 (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4258)))) (-2169 (($) 7 T CONST)) (-2700 (($ $) 90 (|has| $ (-6 -4259)))) (-3431 (($ $) 100)) (-1910 (($ $) 78 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1703 (($ |#1| $) 77 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4258)))) (-2301 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) 51)) (-1932 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1020)))) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3416 (($ (-713) |#1|) 69)) (-3924 (((-108) $ (-713)) 9)) (-3666 (((-525) $) 43 (|has| (-525) (-789)))) (-2638 (($ $ $) 87 (|has| |#1| (-789)))) (-1577 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1847 (((-525) $) 44 (|has| (-525) (-789)))) (-3662 (($ $ $) 86 (|has| |#1| (-789)))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2531 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-2628 (((-592 (-525)) $) 46)) (-2978 (((-108) (-525) $) 47)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1872 ((|#1| $) 42 (|has| (-525) (-789)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1420 (($ $ |#1|) 41 (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2167 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) 48)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1141 (-525))) 63)) (-3038 (($ $ (-525)) 62) (($ $ (-1141 (-525))) 61)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-4098 (($ $ $ (-525)) 91 (|has| $ (-6 -4259)))) (-1462 (($ $) 13)) (-3210 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 70)) (-2038 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) 84 (|has| |#1| (-789)))) (-3987 (((-108) $ $) 83 (|has| |#1| (-789)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3999 (((-108) $ $) 85 (|has| |#1| (-789)))) (-3978 (((-108) $ $) 82 (|has| |#1| (-789)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+(-10 -8 (-15 -2775 ((-108) |#1| |#1|)) (-15 -4100 ((-798) |#1|)) (-15 -2795 ((-108) |#1| |#1|)) (-15 -2436 (|#1| |#1|)) (-15 -2436 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2670 (|#1| |#1|)) (-15 -3632 (|#1| |#1| |#1| (-525))) (-15 -2358 ((-108) |#1|)) (-15 -3212 (|#1| |#1| |#1|)) (-15 -3856 ((-525) |#2| |#1| (-525))) (-15 -3856 ((-525) |#2| |#1|)) (-15 -3856 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -2358 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3212 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1233 (|#2| |#1| (-1141 (-525)) |#2|)) (-15 -2594 (|#1| |#1| |#1| (-525))) (-15 -2594 (|#1| |#2| |#1| (-525))) (-15 -2139 (|#1| |#1| (-1141 (-525)))) (-15 -2139 (|#1| |#1| (-525))) (-15 -3431 (|#1| |#1| (-1141 (-525)))) (-15 -2016 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2035 (|#1| (-592 |#1|))) (-15 -2035 (|#1| |#1| |#1|)) (-15 -2035 (|#1| |#2| |#1|)) (-15 -2035 (|#1| |#1| |#2|)) (-15 -4114 (|#1| (-592 |#2|))) (-15 -4202 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3504 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3504 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3504 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3431 (|#2| |#1| (-525))) (-15 -3431 (|#2| |#1| (-525) |#2|)) (-15 -1233 (|#2| |#1| (-525) |#2|)) (-15 -4002 ((-713) |#2| |#1|)) (-15 -2175 ((-592 |#2|) |#1|)) (-15 -4002 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -1518 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2706 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3069 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2016 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2503 (|#1| |#1|)))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3289 (((-1179) $ (-525) (-525)) 40 (|has| $ (-6 -4260)))) (-2358 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-2436 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4260))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4260))))) (-1842 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-3779 (((-108) $ (-713)) 8)) (-1233 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) 58 (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4259)))) (-2475 (($) 7 T CONST)) (-2670 (($ $) 90 (|has| $ (-6 -4260)))) (-1652 (($ $) 100)) (-1681 (($ $) 78 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2698 (($ |#1| $) 77 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4259)))) (-3081 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) 51)) (-3856 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1020)))) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-3324 (($ (-713) |#1|) 69)) (-2516 (((-108) $ (-713)) 9)) (-1732 (((-525) $) 43 (|has| (-525) (-789)))) (-3033 (($ $ $) 87 (|has| |#1| (-789)))) (-3212 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2231 (((-525) $) 44 (|has| (-525) (-789)))) (-1609 (($ $ $) 86 (|has| |#1| (-789)))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2594 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-3177 (((-592 (-525)) $) 46)) (-3461 (((-108) (-525) $) 47)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1647 ((|#1| $) 42 (|has| (-525) (-789)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-3453 (($ $ |#1|) 41 (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-2456 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) 48)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1141 (-525))) 63)) (-2139 (($ $ (-525)) 62) (($ $ (-1141 (-525))) 61)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3632 (($ $ $ (-525)) 91 (|has| $ (-6 -4260)))) (-2503 (($ $) 13)) (-2069 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 70)) (-2035 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) 84 (|has| |#1| (-789)))) (-2807 (((-108) $ $) 83 (|has| |#1| (-789)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2817 (((-108) $ $) 85 (|has| |#1| (-789)))) (-2795 (((-108) $ $) 82 (|has| |#1| (-789)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-19 |#1|) (-131) (-1128)) (T -19))
NIL
-(-13 (-351 |t#1|) (-10 -7 (-6 -4259)))
-(((-33) . T) ((-97) -3254 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-789)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1020) -3254 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-1128) . T))
-((-1578 (((-3 $ "failed") $ $) 12)) (-4061 (($ $) NIL) (($ $ $) 9)) (* (($ (-856) $) NIL) (($ (-713) $) 16) (($ (-525) $) 21)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-525) |#1|)) (-15 -4061 (|#1| |#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 -1578 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|))) (-21)) (T -20))
+(-13 (-351 |t#1|) (-10 -7 (-6 -4260)))
+(((-33) . T) ((-97) -2067 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-789)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1020) -2067 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-1128) . T))
+((-3222 (((-3 $ "failed") $ $) 12)) (-2871 (($ $) NIL) (($ $ $) 9)) (* (($ (-856) $) NIL) (($ (-713) $) 16) (($ (-525) $) 21)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-525) |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 -3222 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 * (|#1| (-525) |#1|)) (-15 -4061 (|#1| |#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 -1578 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3349 (($) 18 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20)))
+(-10 -8 (-15 * (|#1| (-525) |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 -3222 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3364 (($) 18 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20)))
(((-21) (-131)) (T -21))
-((-4061 (*1 *1 *1) (-4 *1 (-21))) (-4061 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-525)))))
-(-13 (-126) (-10 -8 (-15 -4061 ($ $)) (-15 -4061 ($ $ $)) (-15 * ($ (-525) $))))
+((-2871 (*1 *1 *1) (-4 *1 (-21))) (-2871 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-525)))))
+(-13 (-126) (-10 -8 (-15 -2871 ($ $)) (-15 -2871 ($ $ $)) (-15 * ($ (-525) $))))
(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-1209 (((-108) $) 10)) (-2169 (($) 15)) (* (($ (-856) $) 14) (($ (-713) $) 18)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-713) |#1|)) (-15 -1209 ((-108) |#1|)) (-15 -2169 (|#1|)) (-15 * (|#1| (-856) |#1|))) (-23)) (T -22))
+((-2414 (((-108) $) 10)) (-2475 (($) 15)) (* (($ (-856) $) 14) (($ (-713) $) 18)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-713) |#1|)) (-15 -2414 ((-108) |#1|)) (-15 -2475 (|#1|)) (-15 * (|#1| (-856) |#1|))) (-23)) (T -22))
NIL
-(-10 -8 (-15 * (|#1| (-713) |#1|)) (-15 -1209 ((-108) |#1|)) (-15 -2169 (|#1|)) (-15 * (|#1| (-856) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2169 (($) 17 T CONST)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3349 (($) 18 T CONST)) (-3955 (((-108) $ $) 6)) (-4047 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15)))
+(-10 -8 (-15 * (|#1| (-713) |#1|)) (-15 -2414 ((-108) |#1|)) (-15 -2475 (|#1|)) (-15 * (|#1| (-856) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-2475 (($) 17 T CONST)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3364 (($) 18 T CONST)) (-2775 (((-108) $ $) 6)) (-2860 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15)))
(((-23) (-131)) (T -23))
-((-3349 (*1 *1) (-4 *1 (-23))) (-2169 (*1 *1) (-4 *1 (-23))) (-1209 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-713)))))
-(-13 (-25) (-10 -8 (-15 (-3349) ($) -2709) (-15 -2169 ($) -2709) (-15 -1209 ((-108) $)) (-15 * ($ (-713) $))))
+((-3364 (*1 *1) (-4 *1 (-23))) (-2475 (*1 *1) (-4 *1 (-23))) (-2414 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-713)))))
+(-13 (-25) (-10 -8 (-15 (-3364) ($) -2247) (-15 -2475 ($) -2247) (-15 -2414 ((-108) $)) (-15 * ($ (-713) $))))
(((-25) . T) ((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
((* (($ (-856) $) 10)))
(((-24 |#1|) (-10 -8 (-15 * (|#1| (-856) |#1|))) (-25)) (T -24))
NIL
(-10 -8 (-15 * (|#1| (-856) |#1|)))
-((-4236 (((-108) $ $) 7)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3955 (((-108) $ $) 6)) (-4047 (($ $ $) 14)) (* (($ (-856) $) 13)))
+((-4087 (((-108) $ $) 7)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-2775 (((-108) $ $) 6)) (-2860 (($ $ $) 14)) (* (($ (-856) $) 13)))
(((-25) (-131)) (T -25))
-((-4047 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-856)))))
-(-13 (-1020) (-10 -8 (-15 -4047 ($ $ $)) (-15 * ($ (-856) $))))
+((-2860 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-856)))))
+(-13 (-1020) (-10 -8 (-15 -2860 ($ $ $)) (-15 * ($ (-856) $))))
(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-3709 (((-592 $) (-887 $)) 29) (((-592 $) (-1088 $)) 16) (((-592 $) (-1088 $) (-1092)) 20)) (-4058 (($ (-887 $)) 27) (($ (-1088 $)) 11) (($ (-1088 $) (-1092)) 54)) (-3419 (((-592 $) (-887 $)) 30) (((-592 $) (-1088 $)) 18) (((-592 $) (-1088 $) (-1092)) 19)) (-2964 (($ (-887 $)) 28) (($ (-1088 $)) 13) (($ (-1088 $) (-1092)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -3709 ((-592 |#1|) (-1088 |#1|) (-1092))) (-15 -3709 ((-592 |#1|) (-1088 |#1|))) (-15 -3709 ((-592 |#1|) (-887 |#1|))) (-15 -4058 (|#1| (-1088 |#1|) (-1092))) (-15 -4058 (|#1| (-1088 |#1|))) (-15 -4058 (|#1| (-887 |#1|))) (-15 -3419 ((-592 |#1|) (-1088 |#1|) (-1092))) (-15 -3419 ((-592 |#1|) (-1088 |#1|))) (-15 -3419 ((-592 |#1|) (-887 |#1|))) (-15 -2964 (|#1| (-1088 |#1|) (-1092))) (-15 -2964 (|#1| (-1088 |#1|))) (-15 -2964 (|#1| (-887 |#1|)))) (-27)) (T -26))
+((-3975 (((-592 $) (-887 $)) 29) (((-592 $) (-1088 $)) 16) (((-592 $) (-1088 $) (-1092)) 20)) (-3238 (($ (-887 $)) 27) (($ (-1088 $)) 11) (($ (-1088 $) (-1092)) 54)) (-4178 (((-592 $) (-887 $)) 30) (((-592 $) (-1088 $)) 18) (((-592 $) (-1088 $) (-1092)) 19)) (-3317 (($ (-887 $)) 28) (($ (-1088 $)) 13) (($ (-1088 $) (-1092)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -3975 ((-592 |#1|) (-1088 |#1|) (-1092))) (-15 -3975 ((-592 |#1|) (-1088 |#1|))) (-15 -3975 ((-592 |#1|) (-887 |#1|))) (-15 -3238 (|#1| (-1088 |#1|) (-1092))) (-15 -3238 (|#1| (-1088 |#1|))) (-15 -3238 (|#1| (-887 |#1|))) (-15 -4178 ((-592 |#1|) (-1088 |#1|) (-1092))) (-15 -4178 ((-592 |#1|) (-1088 |#1|))) (-15 -4178 ((-592 |#1|) (-887 |#1|))) (-15 -3317 (|#1| (-1088 |#1|) (-1092))) (-15 -3317 (|#1| (-1088 |#1|))) (-15 -3317 (|#1| (-887 |#1|)))) (-27)) (T -26))
NIL
-(-10 -8 (-15 -3709 ((-592 |#1|) (-1088 |#1|) (-1092))) (-15 -3709 ((-592 |#1|) (-1088 |#1|))) (-15 -3709 ((-592 |#1|) (-887 |#1|))) (-15 -4058 (|#1| (-1088 |#1|) (-1092))) (-15 -4058 (|#1| (-1088 |#1|))) (-15 -4058 (|#1| (-887 |#1|))) (-15 -3419 ((-592 |#1|) (-1088 |#1|) (-1092))) (-15 -3419 ((-592 |#1|) (-1088 |#1|))) (-15 -3419 ((-592 |#1|) (-887 |#1|))) (-15 -2964 (|#1| (-1088 |#1|) (-1092))) (-15 -2964 (|#1| (-1088 |#1|))) (-15 -2964 (|#1| (-887 |#1|))))
-((-4236 (((-108) $ $) 7)) (-3709 (((-592 $) (-887 $)) 80) (((-592 $) (-1088 $)) 79) (((-592 $) (-1088 $) (-1092)) 78)) (-4058 (($ (-887 $)) 83) (($ (-1088 $)) 82) (($ (-1088 $) (-1092)) 81)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-1578 (((-3 $ "failed") $ $) 19)) (-1286 (($ $) 73)) (-2669 (((-396 $) $) 72)) (-2782 (($ $) 92)) (-2193 (((-108) $ $) 59)) (-2169 (($) 17 T CONST)) (-3419 (((-592 $) (-887 $)) 86) (((-592 $) (-1088 $)) 85) (((-592 $) (-1088 $) (-1092)) 84)) (-2964 (($ (-887 $)) 89) (($ (-1088 $)) 88) (($ (-1088 $) (-1092)) 87)) (-1747 (($ $ $) 55)) (-3457 (((-3 $ "failed") $) 34)) (-1733 (($ $ $) 56)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 51)) (-3673 (((-108) $) 71)) (-1396 (((-108) $) 31)) (-2171 (($ $ (-525)) 91)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2556 (($ $ $) 46) (($ (-592 $)) 45)) (-2619 (((-1075) $) 9)) (-2997 (($ $) 70)) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2589 (($ $ $) 48) (($ (-592 $)) 47)) (-2770 (((-396 $) $) 74)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1715 (((-3 $ "failed") $ $) 42)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-3684 (((-713) $) 58)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 57)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-3917 (((-713)) 29)) (-3325 (((-108) $ $) 39)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4075 (($ $ $) 64)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 90)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
+(-10 -8 (-15 -3975 ((-592 |#1|) (-1088 |#1|) (-1092))) (-15 -3975 ((-592 |#1|) (-1088 |#1|))) (-15 -3975 ((-592 |#1|) (-887 |#1|))) (-15 -3238 (|#1| (-1088 |#1|) (-1092))) (-15 -3238 (|#1| (-1088 |#1|))) (-15 -3238 (|#1| (-887 |#1|))) (-15 -4178 ((-592 |#1|) (-1088 |#1|) (-1092))) (-15 -4178 ((-592 |#1|) (-1088 |#1|))) (-15 -4178 ((-592 |#1|) (-887 |#1|))) (-15 -3317 (|#1| (-1088 |#1|) (-1092))) (-15 -3317 (|#1| (-1088 |#1|))) (-15 -3317 (|#1| (-887 |#1|))))
+((-4087 (((-108) $ $) 7)) (-3975 (((-592 $) (-887 $)) 80) (((-592 $) (-1088 $)) 79) (((-592 $) (-1088 $) (-1092)) 78)) (-3238 (($ (-887 $)) 83) (($ (-1088 $)) 82) (($ (-1088 $) (-1092)) 81)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-3222 (((-3 $ "failed") $ $) 19)) (-4195 (($ $) 73)) (-3586 (((-396 $) $) 72)) (-4211 (($ $) 92)) (-1507 (((-108) $ $) 59)) (-2475 (($) 17 T CONST)) (-4178 (((-592 $) (-887 $)) 86) (((-592 $) (-1088 $)) 85) (((-592 $) (-1088 $) (-1092)) 84)) (-3317 (($ (-887 $)) 89) (($ (-1088 $)) 88) (($ (-1088 $) (-1092)) 87)) (-1356 (($ $ $) 55)) (-3300 (((-3 $ "failed") $) 34)) (-1332 (($ $ $) 56)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 51)) (-1798 (((-108) $) 71)) (-2278 (((-108) $) 31)) (-1303 (($ $ (-525)) 91)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2739 (($ $ $) 46) (($ (-592 $)) 45)) (-1289 (((-1075) $) 9)) (-1387 (($ $) 70)) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2772 (($ $ $) 48) (($ (-592 $)) 47)) (-4201 (((-396 $) $) 74)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1311 (((-3 $ "failed") $ $) 42)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1927 (((-713) $) 58)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 57)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-2448 (((-713)) 29)) (-1571 (((-108) $ $) 39)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2880 (($ $ $) 64)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 90)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
(((-27) (-131)) (T -27))
-((-2964 (*1 *1 *2) (-12 (-5 *2 (-887 *1)) (-4 *1 (-27)))) (-2964 (*1 *1 *2) (-12 (-5 *2 (-1088 *1)) (-4 *1 (-27)))) (-2964 (*1 *1 *2 *3) (-12 (-5 *2 (-1088 *1)) (-5 *3 (-1092)) (-4 *1 (-27)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-1088 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *3 (-1088 *1)) (-5 *4 (-1092)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-4058 (*1 *1 *2) (-12 (-5 *2 (-887 *1)) (-4 *1 (-27)))) (-4058 (*1 *1 *2) (-12 (-5 *2 (-1088 *1)) (-4 *1 (-27)))) (-4058 (*1 *1 *2 *3) (-12 (-5 *2 (-1088 *1)) (-5 *3 (-1092)) (-4 *1 (-27)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-1088 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-3709 (*1 *2 *3 *4) (-12 (-5 *3 (-1088 *1)) (-5 *4 (-1092)) (-4 *1 (-27)) (-5 *2 (-592 *1)))))
-(-13 (-341) (-934) (-10 -8 (-15 -2964 ($ (-887 $))) (-15 -2964 ($ (-1088 $))) (-15 -2964 ($ (-1088 $) (-1092))) (-15 -3419 ((-592 $) (-887 $))) (-15 -3419 ((-592 $) (-1088 $))) (-15 -3419 ((-592 $) (-1088 $) (-1092))) (-15 -4058 ($ (-887 $))) (-15 -4058 ($ (-1088 $))) (-15 -4058 ($ (-1088 $) (-1092))) (-15 -3709 ((-592 $) (-887 $))) (-15 -3709 ((-592 $) (-1088 $))) (-15 -3709 ((-592 $) (-1088 $) (-1092)))))
+((-3317 (*1 *1 *2) (-12 (-5 *2 (-887 *1)) (-4 *1 (-27)))) (-3317 (*1 *1 *2) (-12 (-5 *2 (-1088 *1)) (-4 *1 (-27)))) (-3317 (*1 *1 *2 *3) (-12 (-5 *2 (-1088 *1)) (-5 *3 (-1092)) (-4 *1 (-27)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-1088 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-1088 *1)) (-5 *4 (-1092)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-3238 (*1 *1 *2) (-12 (-5 *2 (-887 *1)) (-4 *1 (-27)))) (-3238 (*1 *1 *2) (-12 (-5 *2 (-1088 *1)) (-4 *1 (-27)))) (-3238 (*1 *1 *2 *3) (-12 (-5 *2 (-1088 *1)) (-5 *3 (-1092)) (-4 *1 (-27)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-1088 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-3975 (*1 *2 *3 *4) (-12 (-5 *3 (-1088 *1)) (-5 *4 (-1092)) (-4 *1 (-27)) (-5 *2 (-592 *1)))))
+(-13 (-341) (-934) (-10 -8 (-15 -3317 ($ (-887 $))) (-15 -3317 ($ (-1088 $))) (-15 -3317 ($ (-1088 $) (-1092))) (-15 -4178 ((-592 $) (-887 $))) (-15 -4178 ((-592 $) (-1088 $))) (-15 -4178 ((-592 $) (-1088 $) (-1092))) (-15 -3238 ($ (-887 $))) (-15 -3238 ($ (-1088 $))) (-15 -3238 ($ (-1088 $) (-1092))) (-15 -3975 ((-592 $) (-887 $))) (-15 -3975 ((-592 $) (-1088 $))) (-15 -3975 ((-592 $) (-1088 $) (-1092)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-855) . T) ((-934) . T) ((-983 #0#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1132) . T))
-((-3709 (((-592 $) (-887 $)) NIL) (((-592 $) (-1088 $)) NIL) (((-592 $) (-1088 $) (-1092)) 50) (((-592 $) $) 19) (((-592 $) $ (-1092)) 41)) (-4058 (($ (-887 $)) NIL) (($ (-1088 $)) NIL) (($ (-1088 $) (-1092)) 52) (($ $) 17) (($ $ (-1092)) 37)) (-3419 (((-592 $) (-887 $)) NIL) (((-592 $) (-1088 $)) NIL) (((-592 $) (-1088 $) (-1092)) 48) (((-592 $) $) 15) (((-592 $) $ (-1092)) 43)) (-2964 (($ (-887 $)) NIL) (($ (-1088 $)) NIL) (($ (-1088 $) (-1092)) NIL) (($ $) 12) (($ $ (-1092)) 39)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -3709 ((-592 |#1|) |#1| (-1092))) (-15 -4058 (|#1| |#1| (-1092))) (-15 -3709 ((-592 |#1|) |#1|)) (-15 -4058 (|#1| |#1|)) (-15 -3419 ((-592 |#1|) |#1| (-1092))) (-15 -2964 (|#1| |#1| (-1092))) (-15 -3419 ((-592 |#1|) |#1|)) (-15 -2964 (|#1| |#1|)) (-15 -3709 ((-592 |#1|) (-1088 |#1|) (-1092))) (-15 -3709 ((-592 |#1|) (-1088 |#1|))) (-15 -3709 ((-592 |#1|) (-887 |#1|))) (-15 -4058 (|#1| (-1088 |#1|) (-1092))) (-15 -4058 (|#1| (-1088 |#1|))) (-15 -4058 (|#1| (-887 |#1|))) (-15 -3419 ((-592 |#1|) (-1088 |#1|) (-1092))) (-15 -3419 ((-592 |#1|) (-1088 |#1|))) (-15 -3419 ((-592 |#1|) (-887 |#1|))) (-15 -2964 (|#1| (-1088 |#1|) (-1092))) (-15 -2964 (|#1| (-1088 |#1|))) (-15 -2964 (|#1| (-887 |#1|)))) (-29 |#2|) (-13 (-789) (-517))) (T -28))
+((-3975 (((-592 $) (-887 $)) NIL) (((-592 $) (-1088 $)) NIL) (((-592 $) (-1088 $) (-1092)) 50) (((-592 $) $) 19) (((-592 $) $ (-1092)) 41)) (-3238 (($ (-887 $)) NIL) (($ (-1088 $)) NIL) (($ (-1088 $) (-1092)) 52) (($ $) 17) (($ $ (-1092)) 37)) (-4178 (((-592 $) (-887 $)) NIL) (((-592 $) (-1088 $)) NIL) (((-592 $) (-1088 $) (-1092)) 48) (((-592 $) $) 15) (((-592 $) $ (-1092)) 43)) (-3317 (($ (-887 $)) NIL) (($ (-1088 $)) NIL) (($ (-1088 $) (-1092)) NIL) (($ $) 12) (($ $ (-1092)) 39)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -3975 ((-592 |#1|) |#1| (-1092))) (-15 -3238 (|#1| |#1| (-1092))) (-15 -3975 ((-592 |#1|) |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -4178 ((-592 |#1|) |#1| (-1092))) (-15 -3317 (|#1| |#1| (-1092))) (-15 -4178 ((-592 |#1|) |#1|)) (-15 -3317 (|#1| |#1|)) (-15 -3975 ((-592 |#1|) (-1088 |#1|) (-1092))) (-15 -3975 ((-592 |#1|) (-1088 |#1|))) (-15 -3975 ((-592 |#1|) (-887 |#1|))) (-15 -3238 (|#1| (-1088 |#1|) (-1092))) (-15 -3238 (|#1| (-1088 |#1|))) (-15 -3238 (|#1| (-887 |#1|))) (-15 -4178 ((-592 |#1|) (-1088 |#1|) (-1092))) (-15 -4178 ((-592 |#1|) (-1088 |#1|))) (-15 -4178 ((-592 |#1|) (-887 |#1|))) (-15 -3317 (|#1| (-1088 |#1|) (-1092))) (-15 -3317 (|#1| (-1088 |#1|))) (-15 -3317 (|#1| (-887 |#1|)))) (-29 |#2|) (-13 (-789) (-517))) (T -28))
NIL
-(-10 -8 (-15 -3709 ((-592 |#1|) |#1| (-1092))) (-15 -4058 (|#1| |#1| (-1092))) (-15 -3709 ((-592 |#1|) |#1|)) (-15 -4058 (|#1| |#1|)) (-15 -3419 ((-592 |#1|) |#1| (-1092))) (-15 -2964 (|#1| |#1| (-1092))) (-15 -3419 ((-592 |#1|) |#1|)) (-15 -2964 (|#1| |#1|)) (-15 -3709 ((-592 |#1|) (-1088 |#1|) (-1092))) (-15 -3709 ((-592 |#1|) (-1088 |#1|))) (-15 -3709 ((-592 |#1|) (-887 |#1|))) (-15 -4058 (|#1| (-1088 |#1|) (-1092))) (-15 -4058 (|#1| (-1088 |#1|))) (-15 -4058 (|#1| (-887 |#1|))) (-15 -3419 ((-592 |#1|) (-1088 |#1|) (-1092))) (-15 -3419 ((-592 |#1|) (-1088 |#1|))) (-15 -3419 ((-592 |#1|) (-887 |#1|))) (-15 -2964 (|#1| (-1088 |#1|) (-1092))) (-15 -2964 (|#1| (-1088 |#1|))) (-15 -2964 (|#1| (-887 |#1|))))
-((-4236 (((-108) $ $) 7)) (-3709 (((-592 $) (-887 $)) 80) (((-592 $) (-1088 $)) 79) (((-592 $) (-1088 $) (-1092)) 78) (((-592 $) $) 126) (((-592 $) $ (-1092)) 124)) (-4058 (($ (-887 $)) 83) (($ (-1088 $)) 82) (($ (-1088 $) (-1092)) 81) (($ $) 127) (($ $ (-1092)) 125)) (-1209 (((-108) $) 16)) (-2897 (((-592 (-1092)) $) 201)) (-2744 (((-385 (-1088 $)) $ (-565 $)) 233 (|has| |#1| (-517)))) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-2563 (((-592 (-565 $)) $) 164)) (-1578 (((-3 $ "failed") $ $) 19)) (-3311 (($ $ (-592 (-565 $)) (-592 $)) 154) (($ $ (-592 (-273 $))) 153) (($ $ (-273 $)) 152)) (-1286 (($ $) 73)) (-2669 (((-396 $) $) 72)) (-2782 (($ $) 92)) (-2193 (((-108) $ $) 59)) (-2169 (($) 17 T CONST)) (-3419 (((-592 $) (-887 $)) 86) (((-592 $) (-1088 $)) 85) (((-592 $) (-1088 $) (-1092)) 84) (((-592 $) $) 130) (((-592 $) $ (-1092)) 128)) (-2964 (($ (-887 $)) 89) (($ (-1088 $)) 88) (($ (-1088 $) (-1092)) 87) (($ $) 131) (($ $ (-1092)) 129)) (-3077 (((-3 (-887 |#1|) "failed") $) 251 (|has| |#1| (-977))) (((-3 (-385 (-887 |#1|)) "failed") $) 235 (|has| |#1| (-517))) (((-3 |#1| "failed") $) 197) (((-3 (-525) "failed") $) 195 (|has| |#1| (-968 (-525)))) (((-3 (-1092) "failed") $) 188) (((-3 (-565 $) "failed") $) 139) (((-3 (-385 (-525)) "failed") $) 123 (-3254 (-12 (|has| |#1| (-968 (-525))) (|has| |#1| (-517))) (|has| |#1| (-968 (-385 (-525))))))) (-1572 (((-887 |#1|) $) 252 (|has| |#1| (-977))) (((-385 (-887 |#1|)) $) 236 (|has| |#1| (-517))) ((|#1| $) 198) (((-525) $) 194 (|has| |#1| (-968 (-525)))) (((-1092) $) 189) (((-565 $) $) 140) (((-385 (-525)) $) 122 (-3254 (-12 (|has| |#1| (-968 (-525))) (|has| |#1| (-517))) (|has| |#1| (-968 (-385 (-525))))))) (-1747 (($ $ $) 55)) (-1994 (((-632 |#1|) (-632 $)) 241 (|has| |#1| (-977))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 240 (|has| |#1| (-977))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 121 (-3254 (-3762 (|has| |#1| (-977)) (|has| |#1| (-588 (-525)))) (-3762 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))))) (((-632 (-525)) (-632 $)) 120 (-3254 (-3762 (|has| |#1| (-977)) (|has| |#1| (-588 (-525)))) (-3762 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))))) (-3457 (((-3 $ "failed") $) 34)) (-1733 (($ $ $) 56)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 51)) (-3673 (((-108) $) 71)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 193 (|has| |#1| (-821 (-357)))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 192 (|has| |#1| (-821 (-525))))) (-3437 (($ (-592 $)) 158) (($ $) 157)) (-2059 (((-592 (-110)) $) 165)) (-3930 (((-110) (-110)) 166)) (-1396 (((-108) $) 31)) (-1673 (((-108) $) 186 (|has| $ (-968 (-525))))) (-3858 (($ $) 218 (|has| |#1| (-977)))) (-3114 (((-1044 |#1| (-565 $)) $) 217 (|has| |#1| (-977)))) (-2171 (($ $ (-525)) 91)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2541 (((-1088 $) (-565 $)) 183 (|has| $ (-977)))) (-2638 (($ $ $) 137)) (-3662 (($ $ $) 136)) (-3165 (($ (-1 $ $) (-565 $)) 172)) (-1923 (((-3 (-565 $) "failed") $) 162)) (-2556 (($ $ $) 46) (($ (-592 $)) 45)) (-2619 (((-1075) $) 9)) (-2734 (((-592 (-565 $)) $) 163)) (-3173 (($ (-110) (-592 $)) 171) (($ (-110) $) 170)) (-1334 (((-3 (-592 $) "failed") $) 212 (|has| |#1| (-1032)))) (-1687 (((-3 (-2 (|:| |val| $) (|:| -4193 (-525))) "failed") $) 221 (|has| |#1| (-977)))) (-2001 (((-3 (-592 $) "failed") $) 214 (|has| |#1| (-25)))) (-2056 (((-3 (-2 (|:| -3244 (-525)) (|:| |var| (-565 $))) "failed") $) 215 (|has| |#1| (-25)))) (-2121 (((-3 (-2 (|:| |var| (-565 $)) (|:| -4193 (-525))) "failed") $ (-1092)) 220 (|has| |#1| (-977))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -4193 (-525))) "failed") $ (-110)) 219 (|has| |#1| (-977))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -4193 (-525))) "failed") $) 213 (|has| |#1| (-1032)))) (-3131 (((-108) $ (-1092)) 169) (((-108) $ (-110)) 168)) (-2997 (($ $) 70)) (-1794 (((-713) $) 161)) (-2093 (((-1039) $) 10)) (-3007 (((-108) $) 199)) (-3019 ((|#1| $) 200)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2589 (($ $ $) 48) (($ (-592 $)) 47)) (-2662 (((-108) $ (-1092)) 174) (((-108) $ $) 173)) (-2770 (((-396 $) $) 74)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1715 (((-3 $ "failed") $ $) 42)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-3699 (((-108) $) 185 (|has| $ (-968 (-525))))) (-2457 (($ $ (-1092) (-713) (-1 $ $)) 225 (|has| |#1| (-977))) (($ $ (-1092) (-713) (-1 $ (-592 $))) 224 (|has| |#1| (-977))) (($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ (-592 $)))) 223 (|has| |#1| (-977))) (($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ $))) 222 (|has| |#1| (-977))) (($ $ (-592 (-110)) (-592 $) (-1092)) 211 (|has| |#1| (-567 (-501)))) (($ $ (-110) $ (-1092)) 210 (|has| |#1| (-567 (-501)))) (($ $) 209 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1092))) 208 (|has| |#1| (-567 (-501)))) (($ $ (-1092)) 207 (|has| |#1| (-567 (-501)))) (($ $ (-110) (-1 $ $)) 182) (($ $ (-110) (-1 $ (-592 $))) 181) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 180) (($ $ (-592 (-110)) (-592 (-1 $ $))) 179) (($ $ (-1092) (-1 $ $)) 178) (($ $ (-1092) (-1 $ (-592 $))) 177) (($ $ (-592 (-1092)) (-592 (-1 $ (-592 $)))) 176) (($ $ (-592 (-1092)) (-592 (-1 $ $))) 175) (($ $ (-592 $) (-592 $)) 146) (($ $ $ $) 145) (($ $ (-273 $)) 144) (($ $ (-592 (-273 $))) 143) (($ $ (-592 (-565 $)) (-592 $)) 142) (($ $ (-565 $) $) 141)) (-3684 (((-713) $) 58)) (-3406 (($ (-110) (-592 $)) 151) (($ (-110) $ $ $ $) 150) (($ (-110) $ $ $) 149) (($ (-110) $ $) 148) (($ (-110) $) 147)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 57)) (-3147 (($ $ $) 160) (($ $) 159)) (-3376 (($ $ (-1092)) 249 (|has| |#1| (-977))) (($ $ (-592 (-1092))) 248 (|has| |#1| (-977))) (($ $ (-1092) (-713)) 247 (|has| |#1| (-977))) (($ $ (-592 (-1092)) (-592 (-713))) 246 (|has| |#1| (-977)))) (-4143 (($ $) 228 (|has| |#1| (-517)))) (-3123 (((-1044 |#1| (-565 $)) $) 227 (|has| |#1| (-517)))) (-2756 (($ $) 184 (|has| $ (-977)))) (-3210 (((-501) $) 255 (|has| |#1| (-567 (-501)))) (($ (-396 $)) 226 (|has| |#1| (-517))) (((-827 (-357)) $) 191 (|has| |#1| (-567 (-827 (-357))))) (((-827 (-525)) $) 190 (|has| |#1| (-567 (-827 (-525)))))) (-1499 (($ $ $) 254 (|has| |#1| (-450)))) (-1990 (($ $ $) 253 (|has| |#1| (-450)))) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ (-887 |#1|)) 250 (|has| |#1| (-977))) (($ (-385 (-887 |#1|))) 234 (|has| |#1| (-517))) (($ (-385 (-887 (-385 |#1|)))) 232 (|has| |#1| (-517))) (($ (-887 (-385 |#1|))) 231 (|has| |#1| (-517))) (($ (-385 |#1|)) 230 (|has| |#1| (-517))) (($ (-1044 |#1| (-565 $))) 216 (|has| |#1| (-977))) (($ |#1|) 196) (($ (-1092)) 187) (($ (-565 $)) 138)) (-3637 (((-3 $ "failed") $) 239 (|has| |#1| (-136)))) (-3917 (((-713)) 29)) (-1381 (($ (-592 $)) 156) (($ $) 155)) (-1960 (((-108) (-110)) 167)) (-3325 (((-108) $ $) 39)) (-2194 (($ (-1092) (-592 $)) 206) (($ (-1092) $ $ $ $) 205) (($ (-1092) $ $ $) 204) (($ (-1092) $ $) 203) (($ (-1092) $) 202)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $ (-1092)) 245 (|has| |#1| (-977))) (($ $ (-592 (-1092))) 244 (|has| |#1| (-977))) (($ $ (-1092) (-713)) 243 (|has| |#1| (-977))) (($ $ (-592 (-1092)) (-592 (-713))) 242 (|has| |#1| (-977)))) (-4011 (((-108) $ $) 134)) (-3987 (((-108) $ $) 133)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 135)) (-3978 (((-108) $ $) 132)) (-4075 (($ $ $) 64) (($ (-1044 |#1| (-565 $)) (-1044 |#1| (-565 $))) 229 (|has| |#1| (-517)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 90)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-160))) (($ |#1| $) 237 (|has| |#1| (-160)))))
+(-10 -8 (-15 -3975 ((-592 |#1|) |#1| (-1092))) (-15 -3238 (|#1| |#1| (-1092))) (-15 -3975 ((-592 |#1|) |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -4178 ((-592 |#1|) |#1| (-1092))) (-15 -3317 (|#1| |#1| (-1092))) (-15 -4178 ((-592 |#1|) |#1|)) (-15 -3317 (|#1| |#1|)) (-15 -3975 ((-592 |#1|) (-1088 |#1|) (-1092))) (-15 -3975 ((-592 |#1|) (-1088 |#1|))) (-15 -3975 ((-592 |#1|) (-887 |#1|))) (-15 -3238 (|#1| (-1088 |#1|) (-1092))) (-15 -3238 (|#1| (-1088 |#1|))) (-15 -3238 (|#1| (-887 |#1|))) (-15 -4178 ((-592 |#1|) (-1088 |#1|) (-1092))) (-15 -4178 ((-592 |#1|) (-1088 |#1|))) (-15 -4178 ((-592 |#1|) (-887 |#1|))) (-15 -3317 (|#1| (-1088 |#1|) (-1092))) (-15 -3317 (|#1| (-1088 |#1|))) (-15 -3317 (|#1| (-887 |#1|))))
+((-4087 (((-108) $ $) 7)) (-3975 (((-592 $) (-887 $)) 80) (((-592 $) (-1088 $)) 79) (((-592 $) (-1088 $) (-1092)) 78) (((-592 $) $) 126) (((-592 $) $ (-1092)) 124)) (-3238 (($ (-887 $)) 83) (($ (-1088 $)) 82) (($ (-1088 $) (-1092)) 81) (($ $) 127) (($ $ (-1092)) 125)) (-2414 (((-108) $) 16)) (-1296 (((-592 (-1092)) $) 201)) (-4169 (((-385 (-1088 $)) $ (-565 $)) 233 (|has| |#1| (-517)))) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-1285 (((-592 (-565 $)) $) 164)) (-3222 (((-3 $ "failed") $ $) 19)) (-3702 (($ $ (-592 (-565 $)) (-592 $)) 154) (($ $ (-592 (-273 $))) 153) (($ $ (-273 $)) 152)) (-4195 (($ $) 73)) (-3586 (((-396 $) $) 72)) (-4211 (($ $) 92)) (-1507 (((-108) $ $) 59)) (-2475 (($) 17 T CONST)) (-4178 (((-592 $) (-887 $)) 86) (((-592 $) (-1088 $)) 85) (((-592 $) (-1088 $) (-1092)) 84) (((-592 $) $) 130) (((-592 $) $ (-1092)) 128)) (-3317 (($ (-887 $)) 89) (($ (-1088 $)) 88) (($ (-1088 $) (-1092)) 87) (($ $) 131) (($ $ (-1092)) 129)) (-1934 (((-3 (-887 |#1|) "failed") $) 251 (|has| |#1| (-977))) (((-3 (-385 (-887 |#1|)) "failed") $) 235 (|has| |#1| (-517))) (((-3 |#1| "failed") $) 197) (((-3 (-525) "failed") $) 195 (|has| |#1| (-968 (-525)))) (((-3 (-1092) "failed") $) 188) (((-3 (-565 $) "failed") $) 139) (((-3 (-385 (-525)) "failed") $) 123 (-2067 (-12 (|has| |#1| (-968 (-525))) (|has| |#1| (-517))) (|has| |#1| (-968 (-385 (-525))))))) (-4105 (((-887 |#1|) $) 252 (|has| |#1| (-977))) (((-385 (-887 |#1|)) $) 236 (|has| |#1| (-517))) ((|#1| $) 198) (((-525) $) 194 (|has| |#1| (-968 (-525)))) (((-1092) $) 189) (((-565 $) $) 140) (((-385 (-525)) $) 122 (-2067 (-12 (|has| |#1| (-968 (-525))) (|has| |#1| (-517))) (|has| |#1| (-968 (-385 (-525))))))) (-1356 (($ $ $) 55)) (-3090 (((-632 |#1|) (-632 $)) 241 (|has| |#1| (-977))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 240 (|has| |#1| (-977))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 121 (-2067 (-3944 (|has| |#1| (-977)) (|has| |#1| (-588 (-525)))) (-3944 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))))) (((-632 (-525)) (-632 $)) 120 (-2067 (-3944 (|has| |#1| (-977)) (|has| |#1| (-588 (-525)))) (-3944 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))))) (-3300 (((-3 $ "failed") $) 34)) (-1332 (($ $ $) 56)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 51)) (-1798 (((-108) $) 71)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 193 (|has| |#1| (-821 (-357)))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 192 (|has| |#1| (-821 (-525))))) (-3106 (($ (-592 $)) 158) (($ $) 157)) (-2531 (((-592 (-110)) $) 165)) (-1386 (((-110) (-110)) 166)) (-2278 (((-108) $) 31)) (-3028 (((-108) $) 186 (|has| $ (-968 (-525))))) (-2999 (($ $) 218 (|has| |#1| (-977)))) (-4066 (((-1044 |#1| (-565 $)) $) 217 (|has| |#1| (-977)))) (-1303 (($ $ (-525)) 91)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-1808 (((-1088 $) (-565 $)) 183 (|has| $ (-977)))) (-3033 (($ $ $) 137)) (-1609 (($ $ $) 136)) (-2016 (($ (-1 $ $) (-565 $)) 172)) (-1751 (((-3 (-565 $) "failed") $) 162)) (-2739 (($ $ $) 46) (($ (-592 $)) 45)) (-1289 (((-1075) $) 9)) (-4153 (((-592 (-565 $)) $) 163)) (-4152 (($ (-110) (-592 $)) 171) (($ (-110) $) 170)) (-2977 (((-3 (-592 $) "failed") $) 212 (|has| |#1| (-1032)))) (-3159 (((-3 (-2 (|:| |val| $) (|:| -2168 (-525))) "failed") $) 221 (|has| |#1| (-977)))) (-3165 (((-3 (-592 $) "failed") $) 214 (|has| |#1| (-25)))) (-2502 (((-3 (-2 (|:| -2681 (-525)) (|:| |var| (-565 $))) "failed") $) 215 (|has| |#1| (-25)))) (-1986 (((-3 (-2 (|:| |var| (-565 $)) (|:| -2168 (-525))) "failed") $ (-1092)) 220 (|has| |#1| (-977))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -2168 (-525))) "failed") $ (-110)) 219 (|has| |#1| (-977))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -2168 (-525))) "failed") $) 213 (|has| |#1| (-1032)))) (-2412 (((-108) $ (-1092)) 169) (((-108) $ (-110)) 168)) (-1387 (($ $) 70)) (-2934 (((-713) $) 161)) (-3993 (((-1039) $) 10)) (-1399 (((-108) $) 199)) (-1407 ((|#1| $) 200)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2772 (($ $ $) 48) (($ (-592 $)) 47)) (-3513 (((-108) $ (-1092)) 174) (((-108) $ $) 173)) (-4201 (((-396 $) $) 74)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1311 (((-3 $ "failed") $ $) 42)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-3864 (((-108) $) 185 (|has| $ (-968 (-525))))) (-2825 (($ $ (-1092) (-713) (-1 $ $)) 225 (|has| |#1| (-977))) (($ $ (-1092) (-713) (-1 $ (-592 $))) 224 (|has| |#1| (-977))) (($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ (-592 $)))) 223 (|has| |#1| (-977))) (($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ $))) 222 (|has| |#1| (-977))) (($ $ (-592 (-110)) (-592 $) (-1092)) 211 (|has| |#1| (-567 (-501)))) (($ $ (-110) $ (-1092)) 210 (|has| |#1| (-567 (-501)))) (($ $) 209 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1092))) 208 (|has| |#1| (-567 (-501)))) (($ $ (-1092)) 207 (|has| |#1| (-567 (-501)))) (($ $ (-110) (-1 $ $)) 182) (($ $ (-110) (-1 $ (-592 $))) 181) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 180) (($ $ (-592 (-110)) (-592 (-1 $ $))) 179) (($ $ (-1092) (-1 $ $)) 178) (($ $ (-1092) (-1 $ (-592 $))) 177) (($ $ (-592 (-1092)) (-592 (-1 $ (-592 $)))) 176) (($ $ (-592 (-1092)) (-592 (-1 $ $))) 175) (($ $ (-592 $) (-592 $)) 146) (($ $ $ $) 145) (($ $ (-273 $)) 144) (($ $ (-592 (-273 $))) 143) (($ $ (-592 (-565 $)) (-592 $)) 142) (($ $ (-565 $) $) 141)) (-1927 (((-713) $) 58)) (-3431 (($ (-110) (-592 $)) 151) (($ (-110) $ $ $ $) 150) (($ (-110) $ $ $) 149) (($ (-110) $ $) 148) (($ (-110) $) 147)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 57)) (-2540 (($ $ $) 160) (($ $) 159)) (-2702 (($ $ (-1092)) 249 (|has| |#1| (-977))) (($ $ (-592 (-1092))) 248 (|has| |#1| (-977))) (($ $ (-1092) (-713)) 247 (|has| |#1| (-977))) (($ $ (-592 (-1092)) (-592 (-713))) 246 (|has| |#1| (-977)))) (-2874 (($ $) 228 (|has| |#1| (-517)))) (-4080 (((-1044 |#1| (-565 $)) $) 227 (|has| |#1| (-517)))) (-2013 (($ $) 184 (|has| $ (-977)))) (-2069 (((-501) $) 255 (|has| |#1| (-567 (-501)))) (($ (-396 $)) 226 (|has| |#1| (-517))) (((-827 (-357)) $) 191 (|has| |#1| (-567 (-827 (-357))))) (((-827 (-525)) $) 190 (|has| |#1| (-567 (-827 (-525)))))) (-3055 (($ $ $) 254 (|has| |#1| (-450)))) (-1242 (($ $ $) 253 (|has| |#1| (-450)))) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ (-887 |#1|)) 250 (|has| |#1| (-977))) (($ (-385 (-887 |#1|))) 234 (|has| |#1| (-517))) (($ (-385 (-887 (-385 |#1|)))) 232 (|has| |#1| (-517))) (($ (-887 (-385 |#1|))) 231 (|has| |#1| (-517))) (($ (-385 |#1|)) 230 (|has| |#1| (-517))) (($ (-1044 |#1| (-565 $))) 216 (|has| |#1| (-977))) (($ |#1|) 196) (($ (-1092)) 187) (($ (-565 $)) 138)) (-1463 (((-3 $ "failed") $) 239 (|has| |#1| (-136)))) (-2448 (((-713)) 29)) (-2239 (($ (-592 $)) 156) (($ $) 155)) (-3954 (((-108) (-110)) 167)) (-1571 (((-108) $ $) 39)) (-4040 (($ (-1092) (-592 $)) 206) (($ (-1092) $ $ $ $) 205) (($ (-1092) $ $ $) 204) (($ (-1092) $ $) 203) (($ (-1092) $) 202)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $ (-1092)) 245 (|has| |#1| (-977))) (($ $ (-592 (-1092))) 244 (|has| |#1| (-977))) (($ $ (-1092) (-713)) 243 (|has| |#1| (-977))) (($ $ (-592 (-1092)) (-592 (-713))) 242 (|has| |#1| (-977)))) (-2830 (((-108) $ $) 134)) (-2807 (((-108) $ $) 133)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 135)) (-2795 (((-108) $ $) 132)) (-2880 (($ $ $) 64) (($ (-1044 |#1| (-565 $)) (-1044 |#1| (-565 $))) 229 (|has| |#1| (-517)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 90)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-160))) (($ |#1| $) 237 (|has| |#1| (-160)))))
(((-29 |#1|) (-131) (-13 (-789) (-517))) (T -29))
-((-2964 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517))))) (-3419 (*1 *2 *1) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3)))) (-2964 (*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517))))) (-3419 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *4)))) (-4058 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517))))) (-3709 (*1 *2 *1) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3)))) (-4058 (*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517))))) (-3709 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-408 |t#1|) (-10 -8 (-15 -2964 ($ $)) (-15 -3419 ((-592 $) $)) (-15 -2964 ($ $ (-1092))) (-15 -3419 ((-592 $) $ (-1092))) (-15 -4058 ($ $)) (-15 -3709 ((-592 $) $)) (-15 -4058 ($ $ (-1092))) (-15 -3709 ((-592 $) $ (-1092)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) |has| |#1| (-160)) ((-107 $ $) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-827 (-357))) |has| |#1| (-567 (-827 (-357)))) ((-567 (-827 (-525))) |has| |#1| (-567 (-827 (-525)))) ((-223) . T) ((-269) . T) ((-286) . T) ((-288 $) . T) ((-281) . T) ((-341) . T) ((-355 |#1|) |has| |#1| (-977)) ((-378 |#1|) . T) ((-389 |#1|) . T) ((-408 |#1|) . T) ((-429) . T) ((-450) |has| |#1| (-450)) ((-486 (-565 $) $) . T) ((-486 $ $) . T) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) |has| |#1| (-160)) ((-594 $) . T) ((-588 (-525)) -12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) ((-588 |#1|) |has| |#1| (-977)) ((-660 #0#) . T) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) . T) ((-669) . T) ((-789) . T) ((-835 (-1092)) |has| |#1| (-977)) ((-821 (-357)) |has| |#1| (-821 (-357))) ((-821 (-525)) |has| |#1| (-821 (-525))) ((-819 |#1|) . T) ((-855) . T) ((-934) . T) ((-968 (-385 (-525))) -3254 (|has| |#1| (-968 (-385 (-525)))) (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525))))) ((-968 (-385 (-887 |#1|))) |has| |#1| (-517)) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 (-565 $)) . T) ((-968 (-887 |#1|)) |has| |#1| (-977)) ((-968 (-1092)) . T) ((-968 |#1|) . T) ((-983 #0#) . T) ((-983 |#1|) |has| |#1| (-160)) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1128) . T) ((-1132) . T))
-((-2258 (((-1015 (-205)) $) NIL)) (-2245 (((-1015 (-205)) $) NIL)) (-1833 (($ $ (-205)) 123)) (-2298 (($ (-887 (-525)) (-1092) (-1092) (-1015 (-385 (-525))) (-1015 (-385 (-525)))) 85)) (-2078 (((-592 (-592 (-878 (-205)))) $) 135)) (-1217 (((-798) $) 147)))
-(((-30) (-13 (-889) (-10 -8 (-15 -2298 ($ (-887 (-525)) (-1092) (-1092) (-1015 (-385 (-525))) (-1015 (-385 (-525))))) (-15 -1833 ($ $ (-205)))))) (T -30))
-((-2298 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-887 (-525))) (-5 *3 (-1092)) (-5 *4 (-1015 (-385 (-525)))) (-5 *1 (-30)))) (-1833 (*1 *1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-30)))))
-(-13 (-889) (-10 -8 (-15 -2298 ($ (-887 (-525)) (-1092) (-1092) (-1015 (-385 (-525))) (-1015 (-385 (-525))))) (-15 -1833 ($ $ (-205)))))
-((-2964 ((|#2| (-1088 |#2|) (-1092)) 43)) (-3930 (((-110) (-110)) 56)) (-2541 (((-1088 |#2|) (-565 |#2|)) 133 (|has| |#1| (-968 (-525))))) (-3049 ((|#2| |#1| (-525)) 122 (|has| |#1| (-968 (-525))))) (-2452 ((|#2| (-1088 |#2|) |#2|) 30)) (-3860 (((-798) (-592 |#2|)) 85)) (-2756 ((|#2| |#2|) 129 (|has| |#1| (-968 (-525))))) (-1960 (((-108) (-110)) 18)) (** ((|#2| |#2| (-385 (-525))) 96 (|has| |#1| (-968 (-525))))))
-(((-31 |#1| |#2|) (-10 -7 (-15 -2964 (|#2| (-1088 |#2|) (-1092))) (-15 -3930 ((-110) (-110))) (-15 -1960 ((-108) (-110))) (-15 -2452 (|#2| (-1088 |#2|) |#2|)) (-15 -3860 ((-798) (-592 |#2|))) (IF (|has| |#1| (-968 (-525))) (PROGN (-15 ** (|#2| |#2| (-385 (-525)))) (-15 -2541 ((-1088 |#2|) (-565 |#2|))) (-15 -2756 (|#2| |#2|)) (-15 -3049 (|#2| |#1| (-525)))) |%noBranch|)) (-13 (-789) (-517)) (-408 |#1|)) (T -31))
-((-3049 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-4 *2 (-408 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-968 *4)) (-4 *3 (-13 (-789) (-517))))) (-2756 (*1 *2 *2) (-12 (-4 *3 (-968 (-525))) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-31 *3 *2)) (-4 *2 (-408 *3)))) (-2541 (*1 *2 *3) (-12 (-5 *3 (-565 *5)) (-4 *5 (-408 *4)) (-4 *4 (-968 (-525))) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-1088 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-968 (-525))) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-31 *4 *2)) (-4 *2 (-408 *4)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-798)) (-5 *1 (-31 *4 *5)))) (-2452 (*1 *2 *3 *2) (-12 (-5 *3 (-1088 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-31 *4 *2)))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-31 *4 *5)) (-4 *5 (-408 *4)))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-31 *3 *4)) (-4 *4 (-408 *3)))) (-2964 (*1 *2 *3 *4) (-12 (-5 *3 (-1088 *2)) (-5 *4 (-1092)) (-4 *2 (-408 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-789) (-517))))))
-(-10 -7 (-15 -2964 (|#2| (-1088 |#2|) (-1092))) (-15 -3930 ((-110) (-110))) (-15 -1960 ((-108) (-110))) (-15 -2452 (|#2| (-1088 |#2|) |#2|)) (-15 -3860 ((-798) (-592 |#2|))) (IF (|has| |#1| (-968 (-525))) (PROGN (-15 ** (|#2| |#2| (-385 (-525)))) (-15 -2541 ((-1088 |#2|) (-565 |#2|))) (-15 -2756 (|#2| |#2|)) (-15 -3049 (|#2| |#1| (-525)))) |%noBranch|))
-((-3991 (((-108) $ (-713)) 16)) (-2169 (($) 10)) (-3924 (((-108) $ (-713)) 15)) (-2912 (((-108) $ (-713)) 14)) (-2614 (((-108) $ $) 8)) (-2659 (((-108) $) 13)))
-(((-32 |#1|) (-10 -8 (-15 -2169 (|#1|)) (-15 -3991 ((-108) |#1| (-713))) (-15 -3924 ((-108) |#1| (-713))) (-15 -2912 ((-108) |#1| (-713))) (-15 -2659 ((-108) |#1|)) (-15 -2614 ((-108) |#1| |#1|))) (-33)) (T -32))
-NIL
-(-10 -8 (-15 -2169 (|#1|)) (-15 -3991 ((-108) |#1| (-713))) (-15 -3924 ((-108) |#1| (-713))) (-15 -2912 ((-108) |#1| (-713))) (-15 -2659 ((-108) |#1|)) (-15 -2614 ((-108) |#1| |#1|)))
-((-3991 (((-108) $ (-713)) 8)) (-2169 (($) 7 T CONST)) (-3924 (((-108) $ (-713)) 9)) (-2912 (((-108) $ (-713)) 10)) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-1462 (($ $) 13)) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-3317 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517))))) (-4178 (*1 *2 *1) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3)))) (-3317 (*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517))))) (-4178 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *4)))) (-3238 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517))))) (-3975 (*1 *2 *1) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3)))) (-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517))))) (-3975 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-408 |t#1|) (-10 -8 (-15 -3317 ($ $)) (-15 -4178 ((-592 $) $)) (-15 -3317 ($ $ (-1092))) (-15 -4178 ((-592 $) $ (-1092))) (-15 -3238 ($ $)) (-15 -3975 ((-592 $) $)) (-15 -3238 ($ $ (-1092))) (-15 -3975 ((-592 $) $ (-1092)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) |has| |#1| (-160)) ((-107 $ $) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-827 (-357))) |has| |#1| (-567 (-827 (-357)))) ((-567 (-827 (-525))) |has| |#1| (-567 (-827 (-525)))) ((-223) . T) ((-269) . T) ((-286) . T) ((-288 $) . T) ((-281) . T) ((-341) . T) ((-355 |#1|) |has| |#1| (-977)) ((-378 |#1|) . T) ((-389 |#1|) . T) ((-408 |#1|) . T) ((-429) . T) ((-450) |has| |#1| (-450)) ((-486 (-565 $) $) . T) ((-486 $ $) . T) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) |has| |#1| (-160)) ((-594 $) . T) ((-588 (-525)) -12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) ((-588 |#1|) |has| |#1| (-977)) ((-660 #0#) . T) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) . T) ((-669) . T) ((-789) . T) ((-835 (-1092)) |has| |#1| (-977)) ((-821 (-357)) |has| |#1| (-821 (-357))) ((-821 (-525)) |has| |#1| (-821 (-525))) ((-819 |#1|) . T) ((-855) . T) ((-934) . T) ((-968 (-385 (-525))) -2067 (|has| |#1| (-968 (-385 (-525)))) (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525))))) ((-968 (-385 (-887 |#1|))) |has| |#1| (-517)) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 (-565 $)) . T) ((-968 (-887 |#1|)) |has| |#1| (-977)) ((-968 (-1092)) . T) ((-968 |#1|) . T) ((-983 #0#) . T) ((-983 |#1|) |has| |#1| (-160)) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1128) . T) ((-1132) . T))
+((-3048 (((-1015 (-205)) $) NIL)) (-3039 (((-1015 (-205)) $) NIL)) (-2109 (($ $ (-205)) 123)) (-1258 (($ (-887 (-525)) (-1092) (-1092) (-1015 (-385 (-525))) (-1015 (-385 (-525)))) 85)) (-2708 (((-592 (-592 (-878 (-205)))) $) 135)) (-4100 (((-798) $) 147)))
+(((-30) (-13 (-889) (-10 -8 (-15 -1258 ($ (-887 (-525)) (-1092) (-1092) (-1015 (-385 (-525))) (-1015 (-385 (-525))))) (-15 -2109 ($ $ (-205)))))) (T -30))
+((-1258 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-887 (-525))) (-5 *3 (-1092)) (-5 *4 (-1015 (-385 (-525)))) (-5 *1 (-30)))) (-2109 (*1 *1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-30)))))
+(-13 (-889) (-10 -8 (-15 -1258 ($ (-887 (-525)) (-1092) (-1092) (-1015 (-385 (-525))) (-1015 (-385 (-525))))) (-15 -2109 ($ $ (-205)))))
+((-3317 ((|#2| (-1088 |#2|) (-1092)) 43)) (-1386 (((-110) (-110)) 56)) (-1808 (((-1088 |#2|) (-565 |#2|)) 133 (|has| |#1| (-968 (-525))))) (-2863 ((|#2| |#1| (-525)) 122 (|has| |#1| (-968 (-525))))) (-2214 ((|#2| (-1088 |#2|) |#2|) 30)) (-3015 (((-798) (-592 |#2|)) 85)) (-2013 ((|#2| |#2|) 129 (|has| |#1| (-968 (-525))))) (-3954 (((-108) (-110)) 18)) (** ((|#2| |#2| (-385 (-525))) 96 (|has| |#1| (-968 (-525))))))
+(((-31 |#1| |#2|) (-10 -7 (-15 -3317 (|#2| (-1088 |#2|) (-1092))) (-15 -1386 ((-110) (-110))) (-15 -3954 ((-108) (-110))) (-15 -2214 (|#2| (-1088 |#2|) |#2|)) (-15 -3015 ((-798) (-592 |#2|))) (IF (|has| |#1| (-968 (-525))) (PROGN (-15 ** (|#2| |#2| (-385 (-525)))) (-15 -1808 ((-1088 |#2|) (-565 |#2|))) (-15 -2013 (|#2| |#2|)) (-15 -2863 (|#2| |#1| (-525)))) |%noBranch|)) (-13 (-789) (-517)) (-408 |#1|)) (T -31))
+((-2863 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-4 *2 (-408 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-968 *4)) (-4 *3 (-13 (-789) (-517))))) (-2013 (*1 *2 *2) (-12 (-4 *3 (-968 (-525))) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-31 *3 *2)) (-4 *2 (-408 *3)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-565 *5)) (-4 *5 (-408 *4)) (-4 *4 (-968 (-525))) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-1088 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-968 (-525))) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-31 *4 *2)) (-4 *2 (-408 *4)))) (-3015 (*1 *2 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-798)) (-5 *1 (-31 *4 *5)))) (-2214 (*1 *2 *3 *2) (-12 (-5 *3 (-1088 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-31 *4 *2)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-31 *4 *5)) (-4 *5 (-408 *4)))) (-1386 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-31 *3 *4)) (-4 *4 (-408 *3)))) (-3317 (*1 *2 *3 *4) (-12 (-5 *3 (-1088 *2)) (-5 *4 (-1092)) (-4 *2 (-408 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-789) (-517))))))
+(-10 -7 (-15 -3317 (|#2| (-1088 |#2|) (-1092))) (-15 -1386 ((-110) (-110))) (-15 -3954 ((-108) (-110))) (-15 -2214 (|#2| (-1088 |#2|) |#2|)) (-15 -3015 ((-798) (-592 |#2|))) (IF (|has| |#1| (-968 (-525))) (PROGN (-15 ** (|#2| |#2| (-385 (-525)))) (-15 -1808 ((-1088 |#2|) (-565 |#2|))) (-15 -2013 (|#2| |#2|)) (-15 -2863 (|#2| |#1| (-525)))) |%noBranch|))
+((-3779 (((-108) $ (-713)) 16)) (-2475 (($) 10)) (-2516 (((-108) $ (-713)) 15)) (-4028 (((-108) $ (-713)) 14)) (-1231 (((-108) $ $) 8)) (-3479 (((-108) $) 13)))
+(((-32 |#1|) (-10 -8 (-15 -2475 (|#1|)) (-15 -3779 ((-108) |#1| (-713))) (-15 -2516 ((-108) |#1| (-713))) (-15 -4028 ((-108) |#1| (-713))) (-15 -3479 ((-108) |#1|)) (-15 -1231 ((-108) |#1| |#1|))) (-33)) (T -32))
+NIL
+(-10 -8 (-15 -2475 (|#1|)) (-15 -3779 ((-108) |#1| (-713))) (-15 -2516 ((-108) |#1| (-713))) (-15 -4028 ((-108) |#1| (-713))) (-15 -3479 ((-108) |#1|)) (-15 -1231 ((-108) |#1| |#1|)))
+((-3779 (((-108) $ (-713)) 8)) (-2475 (($) 7 T CONST)) (-2516 (((-108) $ (-713)) 9)) (-4028 (((-108) $ (-713)) 10)) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-2503 (($ $) 13)) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-33) (-131)) (T -33))
-((-2614 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-1462 (*1 *1 *1) (-4 *1 (-33))) (-2512 (*1 *1) (-4 *1 (-33))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-2912 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))) (-3991 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))) (-2169 (*1 *1) (-4 *1 (-33))) (-3522 (*1 *2 *1) (-12 (|has| *1 (-6 -4258)) (-4 *1 (-33)) (-5 *2 (-713)))))
-(-13 (-1128) (-10 -8 (-15 -2614 ((-108) $ $)) (-15 -1462 ($ $)) (-15 -2512 ($)) (-15 -2659 ((-108) $)) (-15 -2912 ((-108) $ (-713))) (-15 -3924 ((-108) $ (-713))) (-15 -3991 ((-108) $ (-713))) (-15 -2169 ($) -2709) (IF (|has| $ (-6 -4258)) (-15 -3522 ((-713) $)) |%noBranch|)))
+((-1231 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-2503 (*1 *1 *1) (-4 *1 (-33))) (-1558 (*1 *1) (-4 *1 (-33))) (-3479 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-4028 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))) (-2516 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))) (-3779 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))) (-2475 (*1 *1) (-4 *1 (-33))) (-2827 (*1 *2 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-33)) (-5 *2 (-713)))))
+(-13 (-1128) (-10 -8 (-15 -1231 ((-108) $ $)) (-15 -2503 ($ $)) (-15 -1558 ($)) (-15 -3479 ((-108) $)) (-15 -4028 ((-108) $ (-713))) (-15 -2516 ((-108) $ (-713))) (-15 -3779 ((-108) $ (-713))) (-15 -2475 ($) -2247) (IF (|has| $ (-6 -4259)) (-15 -2827 ((-713) $)) |%noBranch|)))
(((-1128) . T))
-((-1649 (($ $) 11)) (-1630 (($ $) 10)) (-1669 (($ $) 9)) (-2359 (($ $) 8)) (-1659 (($ $) 7)) (-1639 (($ $) 6)))
+((-1876 (($ $) 11)) (-1853 (($ $) 10)) (-1902 (($ $) 9)) (-3135 (($ $) 8)) (-1891 (($ $) 7)) (-1866 (($ $) 6)))
(((-34) (-131)) (T -34))
-((-1649 (*1 *1 *1) (-4 *1 (-34))) (-1630 (*1 *1 *1) (-4 *1 (-34))) (-1669 (*1 *1 *1) (-4 *1 (-34))) (-2359 (*1 *1 *1) (-4 *1 (-34))) (-1659 (*1 *1 *1) (-4 *1 (-34))) (-1639 (*1 *1 *1) (-4 *1 (-34))))
-(-13 (-10 -8 (-15 -1639 ($ $)) (-15 -1659 ($ $)) (-15 -2359 ($ $)) (-15 -1669 ($ $)) (-15 -1630 ($ $)) (-15 -1649 ($ $))))
-((-4236 (((-108) $ $) 19 (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-3284 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 125)) (-3581 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 148)) (-2798 (($ $) 146)) (-1675 (($) 72) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 71)) (-3456 (((-1179) $ |#1| |#1|) 99 (|has| $ (-6 -4259))) (((-1179) $ (-525) (-525)) 178 (|has| $ (-6 -4259)))) (-4238 (($ $ (-525)) 159 (|has| $ (-6 -4259)))) (-2470 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 209) (((-108) $) 203 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-2165 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 200 (|has| $ (-6 -4259))) (($ $) 199 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)) (|has| $ (-6 -4259))))) (-2458 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-3991 (((-108) $ (-713)) 8)) (-3214 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 134 (|has| $ (-6 -4259)))) (-1620 (($ $ $) 155 (|has| $ (-6 -4259)))) (-2603 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 157 (|has| $ (-6 -4259)))) (-4145 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 153 (|has| $ (-6 -4259)))) (-1430 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-525) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 189 (|has| $ (-6 -4259))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-1141 (-525)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 160 (|has| $ (-6 -4259))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ "last" (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 158 (|has| $ (-6 -4259))) (($ $ "rest" $) 156 (|has| $ (-6 -4259))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ "first" (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 154 (|has| $ (-6 -4259))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ "value" (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 133 (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) 132 (|has| $ (-6 -4259)))) (-1676 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 45 (|has| $ (-6 -4258))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 216)) (-3785 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 55 (|has| $ (-6 -4258))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 175 (|has| $ (-6 -4258)))) (-3570 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 147)) (-2591 (((-3 |#2| "failed") |#1| $) 61)) (-2169 (($) 7 T CONST)) (-2700 (($ $) 201 (|has| $ (-6 -4259)))) (-3431 (($ $) 211)) (-1886 (($ $ (-713)) 142) (($ $) 140)) (-3972 (($ $) 214 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (-1910 (($ $) 58 (-3254 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258))) (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258)))))) (-3271 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 47 (|has| $ (-6 -4258))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 46 (|has| $ (-6 -4258))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 220) (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 215 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (-1703 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 54 (|has| $ (-6 -4258))) (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 174 (|has| $ (-6 -4258)))) (-1284 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 56 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258)))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 53 (|has| $ (-6 -4258))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 52 (|has| $ (-6 -4258))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 176 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258)))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 173 (|has| $ (-6 -4258))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 172 (|has| $ (-6 -4258)))) (-2301 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4259))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-525) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 190 (|has| $ (-6 -4259)))) (-2222 ((|#2| $ |#1|) 88) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-525)) 188)) (-2353 (((-108) $) 192)) (-1932 (((-525) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 208) (((-525) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 207 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))) (((-525) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-525)) 206 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (-3440 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 30 (|has| $ (-6 -4258))) (((-592 |#2|) $) 79 (|has| $ (-6 -4258))) (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 114 (|has| $ (-6 -4258)))) (-3396 (((-592 $) $) 123)) (-1729 (((-108) $ $) 131 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (-3416 (($ (-713) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 169)) (-3924 (((-108) $ (-713)) 9)) (-3666 ((|#1| $) 96 (|has| |#1| (-789))) (((-525) $) 180 (|has| (-525) (-789)))) (-2638 (($ $ $) 198 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-2639 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-1577 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-2694 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 29 (|has| $ (-6 -4258))) (((-592 |#2|) $) 80 (|has| $ (-6 -4258))) (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 115 (|has| $ (-6 -4258)))) (-2004 (((-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4258)))) (((-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258))))) (-1847 ((|#1| $) 95 (|has| |#1| (-789))) (((-525) $) 181 (|has| (-525) (-789)))) (-3662 (($ $ $) 197 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-2284 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 34 (|has| $ (-6 -4259))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4259))) (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 110 (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 109)) (-1755 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 225)) (-2912 (((-108) $ (-713)) 10)) (-2803 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 128)) (-3786 (((-108) $) 124)) (-2619 (((-1075) $) 22 (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-1717 (($ $ (-713)) 145) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 143)) (-2356 (((-592 |#1|) $) 63)) (-2239 (((-108) |#1| $) 64)) (-2992 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 39)) (-1262 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 40) (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-525)) 219) (($ $ $ (-525)) 218)) (-2531 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-525)) 162) (($ $ $ (-525)) 161)) (-2628 (((-592 |#1|) $) 93) (((-592 (-525)) $) 183)) (-2978 (((-108) |#1| $) 92) (((-108) (-525) $) 184)) (-2093 (((-1039) $) 21 (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-1872 ((|#2| $) 97 (|has| |#1| (-789))) (($ $ (-713)) 139) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 137)) (-1983 (((-3 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) "failed") (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 51) (((-3 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) "failed") (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 171)) (-1420 (($ $ |#2|) 98 (|has| $ (-6 -4259))) (($ $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 179 (|has| $ (-6 -4259)))) (-4127 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 41)) (-3920 (((-108) $) 191)) (-3944 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 32 (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4258))) (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 112 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))))) 26 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 25 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 24 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 23 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) 86 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) 84 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) 83 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 121 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 120 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 119 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))))) 118 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-2614 (((-108) $ $) 14)) (-2167 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020)))) (((-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 182 (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-3341 (((-592 |#2|) $) 91) (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 185)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-525) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 187) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-525)) 186) (($ $ (-1141 (-525))) 165) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ "first") 138) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ "value") 126)) (-3340 (((-525) $ $) 129)) (-1760 (($) 49) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 48)) (-1356 (($ $ (-525)) 222) (($ $ (-1141 (-525))) 221)) (-3038 (($ $ (-525)) 164) (($ $ (-1141 (-525))) 163)) (-2905 (((-108) $) 127)) (-3004 (($ $) 151)) (-1354 (($ $) 152 (|has| $ (-6 -4259)))) (-1654 (((-713) $) 150)) (-4167 (($ $) 149)) (-2110 (((-713) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 31 (|has| $ (-6 -4258))) (((-713) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258)))) (((-713) |#2| $) 81 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4258)))) (((-713) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4258))) (((-713) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258)))) (((-713) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 113 (|has| $ (-6 -4258)))) (-4098 (($ $ $ (-525)) 202 (|has| $ (-6 -4259)))) (-1462 (($ $) 13)) (-3210 (((-501) $) 59 (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-567 (-501))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-567 (-501)))))) (-1230 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 50) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 170)) (-4029 (($ $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 224) (($ $ $) 223)) (-2038 (($ $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 168) (($ (-592 $)) 167) (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 136) (($ $ $) 135)) (-1217 (((-798) $) 18 (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-566 (-798)))))) (-3793 (((-592 $) $) 122)) (-3351 (((-108) $ $) 130 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (-1956 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 42)) (-1725 (((-3 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) "failed") |#1| $) 108)) (-3029 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 33 (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4258))) (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 111 (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) 195 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-3987 (((-108) $ $) 194 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-3955 (((-108) $ $) 20 (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-3999 (((-108) $ $) 196 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-3978 (((-108) $ $) 193 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-1876 (*1 *1 *1) (-4 *1 (-34))) (-1853 (*1 *1 *1) (-4 *1 (-34))) (-1902 (*1 *1 *1) (-4 *1 (-34))) (-3135 (*1 *1 *1) (-4 *1 (-34))) (-1891 (*1 *1 *1) (-4 *1 (-34))) (-1866 (*1 *1 *1) (-4 *1 (-34))))
+(-13 (-10 -8 (-15 -1866 ($ $)) (-15 -1891 ($ $)) (-15 -3135 ($ $)) (-15 -1902 ($ $)) (-15 -1853 ($ $)) (-15 -1876 ($ $))))
+((-4087 (((-108) $ $) 19 (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-2219 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 125)) (-2250 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 148)) (-3979 (($ $) 146)) (-3311 (($) 72) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 71)) (-3289 (((-1179) $ |#1| |#1|) 99 (|has| $ (-6 -4260))) (((-1179) $ (-525) (-525)) 178 (|has| $ (-6 -4260)))) (-1425 (($ $ (-525)) 159 (|has| $ (-6 -4260)))) (-2358 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 209) (((-108) $) 203 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-2436 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 200 (|has| $ (-6 -4260))) (($ $) 199 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)) (|has| $ (-6 -4260))))) (-1842 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-3779 (((-108) $ (-713)) 8)) (-1947 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 134 (|has| $ (-6 -4260)))) (-3776 (($ $ $) 155 (|has| $ (-6 -4260)))) (-4193 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 157 (|has| $ (-6 -4260)))) (-2894 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 153 (|has| $ (-6 -4260)))) (-1233 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-525) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 189 (|has| $ (-6 -4260))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-1141 (-525)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 160 (|has| $ (-6 -4260))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ "last" (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 158 (|has| $ (-6 -4260))) (($ $ "rest" $) 156 (|has| $ (-6 -4260))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ "first" (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 154 (|has| $ (-6 -4260))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ "value" (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 133 (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) 132 (|has| $ (-6 -4260)))) (-3050 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 45 (|has| $ (-6 -4259))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 216)) (-2399 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 55 (|has| $ (-6 -4259))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 175 (|has| $ (-6 -4259)))) (-2237 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 147)) (-1515 (((-3 |#2| "failed") |#1| $) 61)) (-2475 (($) 7 T CONST)) (-2670 (($ $) 201 (|has| $ (-6 -4260)))) (-1652 (($ $) 211)) (-1659 (($ $ (-713)) 142) (($ $) 140)) (-1793 (($ $) 214 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (-1681 (($ $) 58 (-2067 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259))) (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259)))))) (-4205 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 47 (|has| $ (-6 -4259))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 46 (|has| $ (-6 -4259))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 220) (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 215 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (-2698 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 57 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 54 (|has| $ (-6 -4259))) (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 177 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 174 (|has| $ (-6 -4259)))) (-3504 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 56 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259)))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 53 (|has| $ (-6 -4259))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 52 (|has| $ (-6 -4259))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 176 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259)))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 173 (|has| $ (-6 -4259))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 172 (|has| $ (-6 -4259)))) (-3081 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4260))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-525) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 190 (|has| $ (-6 -4260)))) (-3017 ((|#2| $ |#1|) 88) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-525)) 188)) (-3631 (((-108) $) 192)) (-3856 (((-525) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 208) (((-525) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 207 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))) (((-525) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-525)) 206 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (-2175 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 30 (|has| $ (-6 -4259))) (((-592 |#2|) $) 79 (|has| $ (-6 -4259))) (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 114 (|has| $ (-6 -4259)))) (-3994 (((-592 $) $) 123)) (-3569 (((-108) $ $) 131 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (-3324 (($ (-713) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 169)) (-2516 (((-108) $ (-713)) 9)) (-1732 ((|#1| $) 96 (|has| |#1| (-789))) (((-525) $) 180 (|has| (-525) (-789)))) (-3033 (($ $ $) 198 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-3269 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-3212 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-2617 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 29 (|has| $ (-6 -4259))) (((-592 |#2|) $) 80 (|has| $ (-6 -4259))) (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 115 (|has| $ (-6 -4259)))) (-3198 (((-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 27 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4259)))) (((-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 117 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259))))) (-2231 ((|#1| $) 95 (|has| |#1| (-789))) (((-525) $) 181 (|has| (-525) (-789)))) (-1609 (($ $ $) 197 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-3069 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 34 (|has| $ (-6 -4260))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4260))) (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 110 (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 109)) (-1522 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 225)) (-4028 (((-108) $ (-713)) 10)) (-2010 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 128)) (-3506 (((-108) $) 124)) (-1289 (((-1075) $) 22 (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-2718 (($ $ (-713)) 145) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 143)) (-1398 (((-592 |#1|) $) 63)) (-3770 (((-108) |#1| $) 64)) (-3577 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 39)) (-3246 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 40) (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-525)) 219) (($ $ $ (-525)) 218)) (-2594 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-525)) 162) (($ $ $ (-525)) 161)) (-3177 (((-592 |#1|) $) 93) (((-592 (-525)) $) 183)) (-3461 (((-108) |#1| $) 92) (((-108) (-525) $) 184)) (-3993 (((-1039) $) 21 (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-1647 ((|#2| $) 97 (|has| |#1| (-789))) (($ $ (-713)) 139) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 137)) (-4202 (((-3 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) "failed") (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 51) (((-3 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) "failed") (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 171)) (-3453 (($ $ |#2|) 98 (|has| $ (-6 -4260))) (($ $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 179 (|has| $ (-6 -4260)))) (-2724 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 41)) (-2476 (((-108) $) 191)) (-1518 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 32 (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4259))) (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 112 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))))) 26 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 25 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 24 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 23 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) 86 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) 84 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) 83 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 121 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 120 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 119 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))))) 118 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-1231 (((-108) $ $) 14)) (-2456 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020)))) (((-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 182 (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-1717 (((-592 |#2|) $) 91) (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 185)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-525) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 187) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-525)) 186) (($ $ (-1141 (-525))) 165) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ "first") 138) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ "value") 126)) (-1707 (((-525) $ $) 129)) (-2637 (($) 49) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 48)) (-2818 (($ $ (-525)) 222) (($ $ (-1141 (-525))) 221)) (-2139 (($ $ (-525)) 164) (($ $ (-1141 (-525))) 163)) (-3953 (((-108) $) 127)) (-3675 (($ $) 151)) (-2789 (($ $) 152 (|has| $ (-6 -4260)))) (-4082 (((-713) $) 150)) (-3077 (($ $) 149)) (-4002 (((-713) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 31 (|has| $ (-6 -4259))) (((-713) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259)))) (((-713) |#2| $) 81 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4259)))) (((-713) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4259))) (((-713) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 116 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259)))) (((-713) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 113 (|has| $ (-6 -4259)))) (-3632 (($ $ $ (-525)) 202 (|has| $ (-6 -4260)))) (-2503 (($ $) 13)) (-2069 (((-501) $) 59 (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-567 (-501))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-567 (-501)))))) (-4114 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 50) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 170)) (-4190 (($ $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 224) (($ $ $) 223)) (-2035 (($ $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 168) (($ (-592 $)) 167) (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 136) (($ $ $) 135)) (-4100 (((-798) $) 18 (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-566 (-798)))))) (-3576 (((-592 $) $) 122)) (-1791 (((-108) $ $) 130 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (-3905 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 42)) (-2727 (((-3 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) "failed") |#1| $) 108)) (-2706 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 33 (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4259))) (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 111 (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) 195 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-2807 (((-108) $ $) 194 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-2775 (((-108) $ $) 20 (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-2817 (((-108) $ $) 196 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-2795 (((-108) $ $) 193 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-35 |#1| |#2|) (-131) (-1020) (-1020)) (T -35))
-((-1725 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-5 *2 (-2 (|:| -3364 *3) (|:| -4201 *4))))))
-(-13 (-1105 |t#1| |t#2|) (-612 (-2 (|:| -3364 |t#1|) (|:| -4201 |t#2|))) (-10 -8 (-15 -1725 ((-3 (-2 (|:| -3364 |t#1|) (|:| -4201 |t#2|)) "failed") |t#1| $))))
-(((-33) . T) ((-102 #0=(-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T) ((-97) -3254 (|has| |#2| (-1020)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789))) ((-566 (-798)) -3254 (|has| |#2| (-1020)) (|has| |#2| (-566 (-798))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-566 (-798)))) ((-142 #1=(-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T) ((-567 (-501)) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-567 (-501))) ((-209 #0#) . T) ((-215 #0#) . T) ((-265 #2=(-525) #1#) . T) ((-265 |#1| |#2|) . T) ((-267 #2# #1#) . T) ((-267 |#1| |#2|) . T) ((-288 #1#) -12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-261 #1#) . T) ((-351 #1#) . T) ((-464 #1#) . T) ((-464 |#2|) . T) ((-558 #2# #1#) . T) ((-558 |#1| |#2|) . T) ((-486 #1# #1#) -12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-563 |#1| |#2|) . T) ((-597 #1#) . T) ((-612 #1#) . T) ((-789) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)) ((-942 #1#) . T) ((-1020) -3254 (|has| |#2| (-1020)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789))) ((-1066 #1#) . T) ((-1105 |#1| |#2|) . T) ((-1128) . T) ((-1162 #1#) . T))
-((-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) 10)))
-(((-36 |#1| |#2|) (-10 -8 (-15 -1217 (|#1| |#2|)) (-15 -1217 (|#1| (-525))) (-15 -1217 ((-798) |#1|))) (-37 |#2|) (-160)) (T -36))
-NIL
-(-10 -8 (-15 -1217 (|#1| |#2|)) (-15 -1217 (|#1| (-525))) (-15 -1217 ((-798) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37)) (-3917 (((-713)) 29)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+((-2727 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-5 *2 (-2 (|:| -1556 *3) (|:| -3448 *4))))))
+(-13 (-1105 |t#1| |t#2|) (-612 (-2 (|:| -1556 |t#1|) (|:| -3448 |t#2|))) (-10 -8 (-15 -2727 ((-3 (-2 (|:| -1556 |t#1|) (|:| -3448 |t#2|)) "failed") |t#1| $))))
+(((-33) . T) ((-102 #0=(-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T) ((-97) -2067 (|has| |#2| (-1020)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789))) ((-566 (-798)) -2067 (|has| |#2| (-1020)) (|has| |#2| (-566 (-798))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-566 (-798)))) ((-142 #1=(-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T) ((-567 (-501)) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-567 (-501))) ((-209 #0#) . T) ((-215 #0#) . T) ((-265 #2=(-525) #1#) . T) ((-265 |#1| |#2|) . T) ((-267 #2# #1#) . T) ((-267 |#1| |#2|) . T) ((-288 #1#) -12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-261 #1#) . T) ((-351 #1#) . T) ((-464 #1#) . T) ((-464 |#2|) . T) ((-558 #2# #1#) . T) ((-558 |#1| |#2|) . T) ((-486 #1# #1#) -12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-563 |#1| |#2|) . T) ((-597 #1#) . T) ((-612 #1#) . T) ((-789) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)) ((-942 #1#) . T) ((-1020) -2067 (|has| |#2| (-1020)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789))) ((-1066 #1#) . T) ((-1105 |#1| |#2|) . T) ((-1128) . T) ((-1162 #1#) . T))
+((-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) 10)))
+(((-36 |#1| |#2|) (-10 -8 (-15 -4100 (|#1| |#2|)) (-15 -4100 (|#1| (-525))) (-15 -4100 ((-798) |#1|))) (-37 |#2|) (-160)) (T -36))
+NIL
+(-10 -8 (-15 -4100 (|#1| |#2|)) (-15 -4100 (|#1| (-525))) (-15 -4100 ((-798) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37)) (-2448 (((-713)) 29)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
(((-37 |#1|) (-131) (-160)) (T -37))
-((-1217 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-160)))))
-(-13 (-977) (-660 |t#1|) (-10 -8 (-15 -1217 ($ |t#1|))))
+((-4100 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-160)))))
+(-13 (-977) (-660 |t#1|) (-10 -8 (-15 -4100 ($ |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) . T) ((-669) . T) ((-983 |#1|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-1260 (((-396 |#1|) |#1|) 41)) (-2770 (((-396 |#1|) |#1|) 30) (((-396 |#1|) |#1| (-592 (-47))) 33)) (-2427 (((-108) |#1|) 56)))
-(((-38 |#1|) (-10 -7 (-15 -2770 ((-396 |#1|) |#1| (-592 (-47)))) (-15 -2770 ((-396 |#1|) |#1|)) (-15 -1260 ((-396 |#1|) |#1|)) (-15 -2427 ((-108) |#1|))) (-1150 (-47))) (T -38))
-((-2427 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1150 (-47))))) (-1260 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1150 (-47))))) (-2770 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1150 (-47))))) (-2770 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-47))) (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1150 (-47))))))
-(-10 -7 (-15 -2770 ((-396 |#1|) |#1| (-592 (-47)))) (-15 -2770 ((-396 |#1|) |#1|)) (-15 -1260 ((-396 |#1|) |#1|)) (-15 -2427 ((-108) |#1|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2089 (((-2 (|:| |num| (-1174 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| (-385 |#2|) (-341)))) (-4218 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3171 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-1627 (((-632 (-385 |#2|)) (-1174 $)) NIL) (((-632 (-385 |#2|))) NIL)) (-2952 (((-385 |#2|) $) NIL)) (-2971 (((-1102 (-856) (-713)) (-525)) NIL (|has| (-385 |#2|) (-327)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-2669 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2193 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1834 (((-713)) NIL (|has| (-385 |#2|) (-346)))) (-2549 (((-108)) NIL)) (-3934 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL (|has| (-385 |#2|) (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-385 |#2|) (-968 (-385 (-525))))) (((-3 (-385 |#2|) "failed") $) NIL)) (-1572 (((-525) $) NIL (|has| (-385 |#2|) (-968 (-525)))) (((-385 (-525)) $) NIL (|has| (-385 |#2|) (-968 (-385 (-525))))) (((-385 |#2|) $) NIL)) (-2064 (($ (-1174 (-385 |#2|)) (-1174 $)) NIL) (($ (-1174 (-385 |#2|))) 57) (($ (-1174 |#2|) |#2|) 125)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-385 |#2|) (-327)))) (-1747 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-1906 (((-632 (-385 |#2|)) $ (-1174 $)) NIL) (((-632 (-385 |#2|)) $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-385 |#2|))) (|:| |vec| (-1174 (-385 |#2|)))) (-632 $) (-1174 $)) NIL) (((-632 (-385 |#2|)) (-632 $)) NIL)) (-1546 (((-1174 $) (-1174 $)) NIL)) (-1284 (($ |#3|) NIL) (((-3 $ "failed") (-385 |#3|)) NIL (|has| (-385 |#2|) (-341)))) (-3457 (((-3 $ "failed") $) NIL)) (-4146 (((-592 (-592 |#1|))) NIL (|has| |#1| (-346)))) (-3647 (((-108) |#1| |#1|) NIL)) (-3622 (((-856)) NIL)) (-2502 (($) NIL (|has| (-385 |#2|) (-346)))) (-3345 (((-108)) NIL)) (-1254 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-1733 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| (-385 |#2|) (-341)))) (-1576 (($ $) NIL)) (-2574 (($) NIL (|has| (-385 |#2|) (-327)))) (-3704 (((-108) $) NIL (|has| (-385 |#2|) (-327)))) (-3625 (($ $ (-713)) NIL (|has| (-385 |#2|) (-327))) (($ $) NIL (|has| (-385 |#2|) (-327)))) (-3673 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-2581 (((-856) $) NIL (|has| (-385 |#2|) (-327))) (((-775 (-856)) $) NIL (|has| (-385 |#2|) (-327)))) (-1396 (((-108) $) NIL)) (-3954 (((-713)) NIL)) (-1272 (((-1174 $) (-1174 $)) 102)) (-2382 (((-385 |#2|) $) NIL)) (-2112 (((-592 (-887 |#1|)) (-1092)) NIL (|has| |#1| (-341)))) (-3844 (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-327)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2126 ((|#3| $) NIL (|has| (-385 |#2|) (-341)))) (-3005 (((-856) $) NIL (|has| (-385 |#2|) (-346)))) (-1269 ((|#3| $) NIL)) (-2556 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2619 (((-1075) $) NIL)) (-3232 (((-1179) (-713)) 79)) (-2548 (((-632 (-385 |#2|))) 51)) (-3350 (((-632 (-385 |#2|))) 44)) (-2997 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-1414 (($ (-1174 |#2|) |#2|) 126)) (-2497 (((-632 (-385 |#2|))) 45)) (-4179 (((-632 (-385 |#2|))) 43)) (-2496 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-2355 (((-2 (|:| |num| (-1174 |#2|)) (|:| |den| |#2|)) $) 64)) (-2933 (((-1174 $)) 42)) (-2641 (((-1174 $)) 41)) (-1464 (((-108) $) NIL)) (-1409 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-2295 (($) NIL (|has| (-385 |#2|) (-327)) CONST)) (-3555 (($ (-856)) NIL (|has| (-385 |#2|) (-346)))) (-2421 (((-3 |#2| "failed")) NIL)) (-2093 (((-1039) $) NIL)) (-3590 (((-713)) NIL)) (-3409 (($) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| (-385 |#2|) (-341)))) (-2589 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) NIL (|has| (-385 |#2|) (-327)))) (-2770 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-385 |#2|) (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1715 (((-3 $ "failed") $ $) NIL (|has| (-385 |#2|) (-341)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-3684 (((-713) $) NIL (|has| (-385 |#2|) (-341)))) (-3406 ((|#1| $ |#1| |#1|) NIL)) (-1805 (((-3 |#2| "failed")) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1975 (((-385 |#2|) (-1174 $)) NIL) (((-385 |#2|)) 39)) (-3877 (((-713) $) NIL (|has| (-385 |#2|) (-327))) (((-3 (-713) "failed") $ $) NIL (|has| (-385 |#2|) (-327)))) (-3376 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-713)) NIL (-3254 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3254 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-2725 (((-632 (-385 |#2|)) (-1174 $) (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341)))) (-2756 ((|#3|) 50)) (-2244 (($) NIL (|has| (-385 |#2|) (-327)))) (-2387 (((-1174 (-385 |#2|)) $ (-1174 $)) NIL) (((-632 (-385 |#2|)) (-1174 $) (-1174 $)) NIL) (((-1174 (-385 |#2|)) $) 58) (((-632 (-385 |#2|)) (-1174 $)) 103)) (-3210 (((-1174 (-385 |#2|)) $) NIL) (($ (-1174 (-385 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| (-385 |#2|) (-327)))) (-2255 (((-1174 $) (-1174 $)) NIL)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 |#2|)) NIL) (($ (-385 (-525))) NIL (-3254 (|has| (-385 |#2|) (-968 (-385 (-525)))) (|has| (-385 |#2|) (-341)))) (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3637 (($ $) NIL (|has| (-385 |#2|) (-327))) (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-136)))) (-1304 ((|#3| $) NIL)) (-3917 (((-713)) NIL)) (-3539 (((-108)) 37)) (-2503 (((-108) |#1|) 49) (((-108) |#2|) 132)) (-3094 (((-1174 $)) 93)) (-3325 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-2103 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1227 (((-108)) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (-3349 (($) 16 T CONST)) (-3359 (($) 26 T CONST)) (-2022 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-713)) NIL (-3254 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3254 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 |#2|)) NIL) (($ (-385 |#2|) $) NIL) (($ (-385 (-525)) $) NIL (|has| (-385 |#2|) (-341))) (($ $ (-385 (-525))) NIL (|has| (-385 |#2|) (-341)))))
-(((-39 |#1| |#2| |#3| |#4|) (-13 (-320 |#1| |#2| |#3|) (-10 -7 (-15 -3232 ((-1179) (-713))))) (-341) (-1150 |#1|) (-1150 (-385 |#2|)) |#3|) (T -39))
-((-3232 (*1 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-4 *5 (-1150 *4)) (-5 *2 (-1179)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1150 (-385 *5))) (-14 *7 *6))))
-(-13 (-320 |#1| |#2| |#3|) (-10 -7 (-15 -3232 ((-1179) (-713)))))
-((-2002 ((|#2| |#2|) 48)) (-4085 ((|#2| |#2|) 120 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-968 (-525)))))) (-1241 ((|#2| |#2|) 87 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-968 (-525)))))) (-3768 ((|#2| |#2|) 88 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-968 (-525)))))) (-2299 ((|#2| (-110) |#2| (-713)) 116 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-968 (-525)))))) (-3489 (((-1088 |#2|) |#2|) 45)) (-3800 ((|#2| |#2| (-592 (-565 |#2|))) 18) ((|#2| |#2| (-592 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-40 |#1| |#2|) (-10 -7 (-15 -2002 (|#2| |#2|)) (-15 -3800 (|#2| |#2|)) (-15 -3800 (|#2| |#2| |#2|)) (-15 -3800 (|#2| |#2| (-592 |#2|))) (-15 -3800 (|#2| |#2| (-592 (-565 |#2|)))) (-15 -3489 ((-1088 |#2|) |#2|)) (IF (|has| |#1| (-789)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-968 (-525))) (IF (|has| |#2| (-408 |#1|)) (PROGN (-15 -3768 (|#2| |#2|)) (-15 -1241 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -2299 (|#2| (-110) |#2| (-713)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-517) (-13 (-341) (-281) (-10 -8 (-15 -3114 ((-1044 |#1| (-565 $)) $)) (-15 -3123 ((-1044 |#1| (-565 $)) $)) (-15 -1217 ($ (-1044 |#1| (-565 $))))))) (T -40))
-((-2299 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-110)) (-5 *4 (-713)) (-4 *5 (-429)) (-4 *5 (-789)) (-4 *5 (-968 (-525))) (-4 *5 (-517)) (-5 *1 (-40 *5 *2)) (-4 *2 (-408 *5)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -3114 ((-1044 *5 (-565 $)) $)) (-15 -3123 ((-1044 *5 (-565 $)) $)) (-15 -1217 ($ (-1044 *5 (-565 $))))))))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-968 (-525))) (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -3114 ((-1044 *3 (-565 $)) $)) (-15 -3123 ((-1044 *3 (-565 $)) $)) (-15 -1217 ($ (-1044 *3 (-565 $))))))))) (-1241 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-968 (-525))) (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -3114 ((-1044 *3 (-565 $)) $)) (-15 -3123 ((-1044 *3 (-565 $)) $)) (-15 -1217 ($ (-1044 *3 (-565 $))))))))) (-3768 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-968 (-525))) (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -3114 ((-1044 *3 (-565 $)) $)) (-15 -3123 ((-1044 *3 (-565 $)) $)) (-15 -1217 ($ (-1044 *3 (-565 $))))))))) (-3489 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-1088 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-341) (-281) (-10 -8 (-15 -3114 ((-1044 *4 (-565 $)) $)) (-15 -3123 ((-1044 *4 (-565 $)) $)) (-15 -1217 ($ (-1044 *4 (-565 $))))))))) (-3800 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-565 *2))) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -3114 ((-1044 *4 (-565 $)) $)) (-15 -3123 ((-1044 *4 (-565 $)) $)) (-15 -1217 ($ (-1044 *4 (-565 $))))))) (-4 *4 (-517)) (-5 *1 (-40 *4 *2)))) (-3800 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -3114 ((-1044 *4 (-565 $)) $)) (-15 -3123 ((-1044 *4 (-565 $)) $)) (-15 -1217 ($ (-1044 *4 (-565 $))))))) (-4 *4 (-517)) (-5 *1 (-40 *4 *2)))) (-3800 (*1 *2 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -3114 ((-1044 *3 (-565 $)) $)) (-15 -3123 ((-1044 *3 (-565 $)) $)) (-15 -1217 ($ (-1044 *3 (-565 $))))))))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -3114 ((-1044 *3 (-565 $)) $)) (-15 -3123 ((-1044 *3 (-565 $)) $)) (-15 -1217 ($ (-1044 *3 (-565 $))))))))) (-2002 (*1 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -3114 ((-1044 *3 (-565 $)) $)) (-15 -3123 ((-1044 *3 (-565 $)) $)) (-15 -1217 ($ (-1044 *3 (-565 $))))))))))
-(-10 -7 (-15 -2002 (|#2| |#2|)) (-15 -3800 (|#2| |#2|)) (-15 -3800 (|#2| |#2| |#2|)) (-15 -3800 (|#2| |#2| (-592 |#2|))) (-15 -3800 (|#2| |#2| (-592 (-565 |#2|)))) (-15 -3489 ((-1088 |#2|) |#2|)) (IF (|has| |#1| (-789)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-968 (-525))) (IF (|has| |#2| (-408 |#1|)) (PROGN (-15 -3768 (|#2| |#2|)) (-15 -1241 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -2299 (|#2| (-110) |#2| (-713)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2770 (((-396 (-1088 |#3|)) (-1088 |#3|) (-592 (-47))) 23) (((-396 |#3|) |#3| (-592 (-47))) 19)))
-(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -2770 ((-396 |#3|) |#3| (-592 (-47)))) (-15 -2770 ((-396 (-1088 |#3|)) (-1088 |#3|) (-592 (-47))))) (-789) (-735) (-884 (-47) |#2| |#1|)) (T -41))
-((-2770 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *7 (-884 (-47) *6 *5)) (-5 *2 (-396 (-1088 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1088 *7)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735)) (-5 *2 (-396 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-884 (-47) *6 *5)))))
-(-10 -7 (-15 -2770 ((-396 |#3|) |#3| (-592 (-47)))) (-15 -2770 ((-396 (-1088 |#3|)) (-1088 |#3|) (-592 (-47)))))
-((-2241 (((-713) |#2|) 65)) (-4079 (((-713) |#2|) 68)) (-3632 (((-592 |#2|)) 33)) (-2369 (((-713) |#2|) 67)) (-1753 (((-713) |#2|) 64)) (-4044 (((-713) |#2|) 66)) (-3385 (((-592 (-632 |#1|))) 60)) (-2608 (((-592 |#2|)) 55)) (-3868 (((-592 |#2|) |#2|) 43)) (-2243 (((-592 |#2|)) 57)) (-2408 (((-592 |#2|)) 56)) (-1613 (((-592 (-632 |#1|))) 48)) (-3733 (((-592 |#2|)) 54)) (-1603 (((-592 |#2|) |#2|) 42)) (-1741 (((-592 |#2|)) 50)) (-2462 (((-592 (-632 |#1|))) 61)) (-1859 (((-592 |#2|)) 59)) (-3094 (((-1174 |#2|) (-1174 |#2|)) 84 (|has| |#1| (-286)))))
-(((-42 |#1| |#2|) (-10 -7 (-15 -2369 ((-713) |#2|)) (-15 -4079 ((-713) |#2|)) (-15 -1753 ((-713) |#2|)) (-15 -2241 ((-713) |#2|)) (-15 -4044 ((-713) |#2|)) (-15 -1741 ((-592 |#2|))) (-15 -1603 ((-592 |#2|) |#2|)) (-15 -3868 ((-592 |#2|) |#2|)) (-15 -3733 ((-592 |#2|))) (-15 -2608 ((-592 |#2|))) (-15 -2408 ((-592 |#2|))) (-15 -2243 ((-592 |#2|))) (-15 -1859 ((-592 |#2|))) (-15 -1613 ((-592 (-632 |#1|)))) (-15 -3385 ((-592 (-632 |#1|)))) (-15 -2462 ((-592 (-632 |#1|)))) (-15 -3632 ((-592 |#2|))) (IF (|has| |#1| (-286)) (-15 -3094 ((-1174 |#2|) (-1174 |#2|))) |%noBranch|)) (-517) (-395 |#1|)) (T -42))
-((-3094 (*1 *2 *2) (-12 (-5 *2 (-1174 *4)) (-4 *4 (-395 *3)) (-4 *3 (-286)) (-4 *3 (-517)) (-5 *1 (-42 *3 *4)))) (-3632 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2462 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3385 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-1613 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-1859 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2243 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2408 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2608 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3733 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3868 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-1603 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-1741 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-4044 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-2241 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-1753 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-4079 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-2369 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))))
-(-10 -7 (-15 -2369 ((-713) |#2|)) (-15 -4079 ((-713) |#2|)) (-15 -1753 ((-713) |#2|)) (-15 -2241 ((-713) |#2|)) (-15 -4044 ((-713) |#2|)) (-15 -1741 ((-592 |#2|))) (-15 -1603 ((-592 |#2|) |#2|)) (-15 -3868 ((-592 |#2|) |#2|)) (-15 -3733 ((-592 |#2|))) (-15 -2608 ((-592 |#2|))) (-15 -2408 ((-592 |#2|))) (-15 -2243 ((-592 |#2|))) (-15 -1859 ((-592 |#2|))) (-15 -1613 ((-592 (-632 |#1|)))) (-15 -3385 ((-592 (-632 |#1|)))) (-15 -2462 ((-592 (-632 |#1|)))) (-15 -3632 ((-592 |#2|))) (IF (|has| |#1| (-286)) (-15 -3094 ((-1174 |#2|) (-1174 |#2|))) |%noBranch|))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2841 (((-3 $ "failed")) NIL (|has| |#1| (-517)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-3482 (((-1174 (-632 |#1|)) (-1174 $)) NIL) (((-1174 (-632 |#1|))) 24)) (-1604 (((-1174 $)) 51)) (-2169 (($) NIL T CONST)) (-1614 (((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed")) NIL (|has| |#1| (-517)))) (-3912 (((-3 $ "failed")) NIL (|has| |#1| (-517)))) (-3060 (((-632 |#1|) (-1174 $)) NIL) (((-632 |#1|)) NIL)) (-2769 ((|#1| $) NIL)) (-3420 (((-632 |#1|) $ (-1174 $)) NIL) (((-632 |#1|) $) NIL)) (-1586 (((-3 $ "failed") $) NIL (|has| |#1| (-517)))) (-3082 (((-1088 (-887 |#1|))) NIL (|has| |#1| (-341)))) (-2837 (($ $ (-856)) NIL)) (-1713 ((|#1| $) NIL)) (-2269 (((-1088 |#1|) $) NIL (|has| |#1| (-517)))) (-3777 ((|#1| (-1174 $)) NIL) ((|#1|) NIL)) (-2509 (((-1088 |#1|) $) NIL)) (-1950 (((-108)) 87)) (-2064 (($ (-1174 |#1|) (-1174 $)) NIL) (($ (-1174 |#1|)) NIL)) (-3457 (((-3 $ "failed") $) 14 (|has| |#1| (-517)))) (-3622 (((-856)) 52)) (-1370 (((-108)) NIL)) (-3587 (($ $ (-856)) NIL)) (-2026 (((-108)) NIL)) (-2070 (((-108)) NIL)) (-3545 (((-108)) 89)) (-3821 (((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed")) NIL (|has| |#1| (-517)))) (-2060 (((-3 $ "failed")) NIL (|has| |#1| (-517)))) (-2383 (((-632 |#1|) (-1174 $)) NIL) (((-632 |#1|)) NIL)) (-1312 ((|#1| $) NIL)) (-1846 (((-632 |#1|) $ (-1174 $)) NIL) (((-632 |#1|) $) NIL)) (-4106 (((-3 $ "failed") $) NIL (|has| |#1| (-517)))) (-2436 (((-1088 (-887 |#1|))) NIL (|has| |#1| (-341)))) (-2817 (($ $ (-856)) NIL)) (-3807 ((|#1| $) NIL)) (-1860 (((-1088 |#1|) $) NIL (|has| |#1| (-517)))) (-3018 ((|#1| (-1174 $)) NIL) ((|#1|) NIL)) (-2379 (((-1088 |#1|) $) NIL)) (-2256 (((-108)) 86)) (-2619 (((-1075) $) NIL)) (-2220 (((-108)) 93)) (-2861 (((-108)) 92)) (-3142 (((-108)) 94)) (-2093 (((-1039) $) NIL)) (-3322 (((-108)) 88)) (-3406 ((|#1| $ (-525)) 54)) (-2387 (((-1174 |#1|) $ (-1174 $)) 48) (((-632 |#1|) (-1174 $) (-1174 $)) NIL) (((-1174 |#1|) $) 28) (((-632 |#1|) (-1174 $)) NIL)) (-3210 (((-1174 |#1|) $) NIL) (($ (-1174 |#1|)) NIL)) (-1432 (((-592 (-887 |#1|)) (-1174 $)) NIL) (((-592 (-887 |#1|))) NIL)) (-1990 (($ $ $) NIL)) (-1252 (((-108)) 84)) (-1217 (((-798) $) 69) (($ (-1174 |#1|)) 22)) (-3094 (((-1174 $)) 45)) (-1962 (((-592 (-1174 |#1|))) NIL (|has| |#1| (-517)))) (-3746 (($ $ $ $) NIL)) (-1218 (((-108)) 82)) (-1814 (($ (-632 |#1|) $) 18)) (-2597 (($ $ $) NIL)) (-3136 (((-108)) 85)) (-1541 (((-108)) 83)) (-3361 (((-108)) 81)) (-3349 (($) NIL T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1059 |#2| |#1|) $) 19)))
-(((-43 |#1| |#2| |#3| |#4|) (-13 (-395 |#1|) (-594 (-1059 |#2| |#1|)) (-10 -8 (-15 -1217 ($ (-1174 |#1|))))) (-341) (-856) (-592 (-1092)) (-1174 (-632 |#1|))) (T -43))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-341)) (-14 *6 (-1174 (-632 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))))))
-(-13 (-395 |#1|) (-594 (-1059 |#2| |#1|)) (-10 -8 (-15 -1217 ($ (-1174 |#1|)))))
-((-4236 (((-108) $ $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3284 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-3581 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-2798 (($ $) NIL)) (-1675 (($) NIL) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-3456 (((-1179) $ |#1| |#1|) NIL (|has| $ (-6 -4259))) (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-4238 (($ $ (-525)) NIL (|has| $ (-6 -4259)))) (-2470 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL) (((-108) $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-2165 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4259))) (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789))))) (-2458 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-3991 (((-108) $ (-713)) NIL)) (-3214 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (|has| $ (-6 -4259)))) (-1620 (($ $ $) 27 (|has| $ (-6 -4259)))) (-2603 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (|has| $ (-6 -4259)))) (-4145 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 29 (|has| $ (-6 -4259)))) (-1430 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-525) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (|has| $ (-6 -4259))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-1141 (-525)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (|has| $ (-6 -4259))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ "last" (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (|has| $ (-6 -4259))) (($ $ "rest" $) NIL (|has| $ (-6 -4259))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ "first" (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (|has| $ (-6 -4259))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ "value" (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) NIL (|has| $ (-6 -4259)))) (-1676 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL)) (-3785 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-3570 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-2591 (((-3 |#2| "failed") |#1| $) 37)) (-2169 (($) NIL T CONST)) (-2700 (($ $) NIL (|has| $ (-6 -4259)))) (-3431 (($ $) NIL)) (-1886 (($ $ (-713)) NIL) (($ $) 24)) (-3972 (($ $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-3271 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (|has| $ (-6 -4258))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL) (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (-1703 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-1284 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (|has| $ (-6 -4258))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (|has| $ (-6 -4258))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-2301 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4259))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-525) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (|has| $ (-6 -4259)))) (-2222 ((|#2| $ |#1|) NIL) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-525)) NIL)) (-2353 (((-108) $) NIL)) (-1932 (((-525) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL) (((-525) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))) (((-525) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-525)) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (-3440 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 18 (|has| $ (-6 -4258))) (((-592 |#2|) $) NIL (|has| $ (-6 -4258))) (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 18 (|has| $ (-6 -4258)))) (-3396 (((-592 $) $) NIL)) (-1729 (((-108) $ $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (-3416 (($ (-713) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-3666 ((|#1| $) NIL (|has| |#1| (-789))) (((-525) $) 32 (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-2639 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-1577 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-2694 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-592 |#2|) $) NIL (|has| $ (-6 -4258))) (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020)))) (((-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-1847 ((|#1| $) NIL (|has| |#1| (-789))) (((-525) $) 34 (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-2284 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4259))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4259))) (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL)) (-1755 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2803 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL)) (-3786 (((-108) $) NIL)) (-2619 (((-1075) $) 42 (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1717 (($ $ (-713)) NIL) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-2356 (((-592 |#1|) $) 20)) (-2239 (((-108) |#1| $) NIL)) (-2992 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-1262 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL) (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2531 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2628 (((-592 |#1|) $) NIL) (((-592 (-525)) $) NIL)) (-2978 (((-108) |#1| $) NIL) (((-108) (-525) $) NIL)) (-2093 (((-1039) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1872 ((|#2| $) NIL (|has| |#1| (-789))) (($ $ (-713)) NIL) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 23)) (-1983 (((-3 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) "failed") (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL) (((-3 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) "failed") (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL)) (-1420 (($ $ |#2|) NIL (|has| $ (-6 -4259))) (($ $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (|has| $ (-6 -4259)))) (-4127 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-3920 (((-108) $) NIL)) (-3944 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020)))) (((-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-3341 (((-592 |#2|) $) NIL) (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 17)) (-2659 (((-108) $) 16)) (-2512 (($) 13)) (-3406 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-525) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ (-525)) NIL) (($ $ (-1141 (-525))) NIL) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ "first") NIL) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $ "value") NIL)) (-3340 (((-525) $ $) NIL)) (-1760 (($) 12) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-1356 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-3038 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2905 (((-108) $) NIL)) (-3004 (($ $) NIL)) (-1354 (($ $) NIL (|has| $ (-6 -4259)))) (-1654 (((-713) $) NIL)) (-4167 (($ $) NIL)) (-2110 (((-713) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-713) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258))) (((-713) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-713) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-4098 (($ $ $ (-525)) NIL (|has| $ (-6 -4259)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-567 (-501))))) (-1230 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-4029 (($ $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL) (($ $ $) NIL)) (-2038 (($ $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL) (($ (-592 $)) NIL) (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 25) (($ $ $) NIL)) (-1217 (((-798) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-3793 (((-592 $) $) NIL)) (-3351 (((-108) $ $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (-1956 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-1725 (((-3 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) "failed") |#1| $) 44)) (-3029 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-3987 (((-108) $ $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-3955 (((-108) $ $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3999 (((-108) $ $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-3978 (((-108) $ $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-789)))) (-3522 (((-713) $) 22 (|has| $ (-6 -4258)))))
+((-3224 (((-396 |#1|) |#1|) 41)) (-4201 (((-396 |#1|) |#1|) 30) (((-396 |#1|) |#1| (-592 (-47))) 33)) (-1980 (((-108) |#1|) 56)))
+(((-38 |#1|) (-10 -7 (-15 -4201 ((-396 |#1|) |#1| (-592 (-47)))) (-15 -4201 ((-396 |#1|) |#1|)) (-15 -3224 ((-396 |#1|) |#1|)) (-15 -1980 ((-108) |#1|))) (-1150 (-47))) (T -38))
+((-1980 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1150 (-47))))) (-3224 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1150 (-47))))) (-4201 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1150 (-47))))) (-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-47))) (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1150 (-47))))))
+(-10 -7 (-15 -4201 ((-396 |#1|) |#1| (-592 (-47)))) (-15 -4201 ((-396 |#1|) |#1|)) (-15 -3224 ((-396 |#1|) |#1|)) (-15 -1980 ((-108) |#1|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-2823 (((-2 (|:| |num| (-1174 |#2|)) (|:| |den| |#2|)) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| (-385 |#2|) (-341)))) (-2433 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-1568 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-3855 (((-632 (-385 |#2|)) (-1174 $)) NIL) (((-632 (-385 |#2|))) NIL)) (-2924 (((-385 |#2|) $) NIL)) (-3395 (((-1102 (-856) (-713)) (-525)) NIL (|has| (-385 |#2|) (-327)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3586 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-1507 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1613 (((-713)) NIL (|has| (-385 |#2|) (-346)))) (-1910 (((-108)) NIL)) (-1428 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL (|has| (-385 |#2|) (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-385 |#2|) (-968 (-385 (-525))))) (((-3 (-385 |#2|) "failed") $) NIL)) (-4105 (((-525) $) NIL (|has| (-385 |#2|) (-968 (-525)))) (((-385 (-525)) $) NIL (|has| (-385 |#2|) (-968 (-385 (-525))))) (((-385 |#2|) $) NIL)) (-2580 (($ (-1174 (-385 |#2|)) (-1174 $)) NIL) (($ (-1174 (-385 |#2|))) 57) (($ (-1174 |#2|) |#2|) 125)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-385 |#2|) (-327)))) (-1356 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-1588 (((-632 (-385 |#2|)) $ (-1174 $)) NIL) (((-632 (-385 |#2|)) $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-385 |#2|))) (|:| |vec| (-1174 (-385 |#2|)))) (-632 $) (-1174 $)) NIL) (((-632 (-385 |#2|)) (-632 $)) NIL)) (-1630 (((-1174 $) (-1174 $)) NIL)) (-3504 (($ |#3|) NIL) (((-3 $ "failed") (-385 |#3|)) NIL (|has| (-385 |#2|) (-341)))) (-3300 (((-3 $ "failed") $) NIL)) (-2902 (((-592 (-592 |#1|))) NIL (|has| |#1| (-346)))) (-1531 (((-108) |#1| |#1|) NIL)) (-3085 (((-856)) NIL)) (-1903 (($) NIL (|has| (-385 |#2|) (-346)))) (-1746 (((-108)) NIL)) (-1712 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-1332 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| (-385 |#2|) (-341)))) (-3201 (($ $) NIL)) (-3932 (($) NIL (|has| (-385 |#2|) (-327)))) (-3920 (((-108) $) NIL (|has| (-385 |#2|) (-327)))) (-1339 (($ $ (-713)) NIL (|has| (-385 |#2|) (-327))) (($ $) NIL (|has| (-385 |#2|) (-327)))) (-1798 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-4000 (((-856) $) NIL (|has| (-385 |#2|) (-327))) (((-775 (-856)) $) NIL (|has| (-385 |#2|) (-327)))) (-2278 (((-108) $) NIL)) (-1635 (((-713)) NIL)) (-3946 (((-1174 $) (-1174 $)) 102)) (-2704 (((-385 |#2|) $) NIL)) (-3024 (((-592 (-887 |#1|)) (-1092)) NIL (|has| |#1| (-341)))) (-2878 (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-327)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2021 ((|#3| $) NIL (|has| (-385 |#2|) (-341)))) (-3685 (((-856) $) NIL (|has| (-385 |#2|) (-346)))) (-3492 ((|#3| $) NIL)) (-2739 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-1289 (((-1075) $) NIL)) (-3908 (((-1179) (-713)) 79)) (-1896 (((-632 (-385 |#2|))) 51)) (-1779 (((-632 (-385 |#2|))) 44)) (-1387 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-2045 (($ (-1174 |#2|) |#2|) 126)) (-1419 (((-632 (-385 |#2|))) 45)) (-2050 (((-632 (-385 |#2|))) 43)) (-1410 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-3652 (((-2 (|:| |num| (-1174 |#2|)) (|:| |den| |#2|)) $) 64)) (-1218 (((-1174 $)) 42)) (-3295 (((-1174 $)) 41)) (-2570 (((-108) $) NIL)) (-1991 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-2948 (($) NIL (|has| (-385 |#2|) (-327)) CONST)) (-1722 (($ (-856)) NIL (|has| (-385 |#2|) (-346)))) (-3051 (((-3 |#2| "failed")) NIL)) (-3993 (((-1039) $) NIL)) (-2173 (((-713)) NIL)) (-3817 (($) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| (-385 |#2|) (-341)))) (-2772 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) NIL (|has| (-385 |#2|) (-327)))) (-4201 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-385 |#2|) (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1311 (((-3 $ "failed") $ $) NIL (|has| (-385 |#2|) (-341)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-1927 (((-713) $) NIL (|has| (-385 |#2|) (-341)))) (-3431 ((|#1| $ |#1| |#1|) NIL)) (-2981 (((-3 |#2| "failed")) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-4115 (((-385 |#2|) (-1174 $)) NIL) (((-385 |#2|)) 39)) (-2043 (((-713) $) NIL (|has| (-385 |#2|) (-327))) (((-3 (-713) "failed") $ $) NIL (|has| (-385 |#2|) (-327)))) (-2702 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-713)) NIL (-2067 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-2067 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-2897 (((-632 (-385 |#2|)) (-1174 $) (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341)))) (-2013 ((|#3|) 50)) (-3823 (($) NIL (|has| (-385 |#2|) (-327)))) (-2754 (((-1174 (-385 |#2|)) $ (-1174 $)) NIL) (((-632 (-385 |#2|)) (-1174 $) (-1174 $)) NIL) (((-1174 (-385 |#2|)) $) 58) (((-632 (-385 |#2|)) (-1174 $)) 103)) (-2069 (((-1174 (-385 |#2|)) $) NIL) (($ (-1174 (-385 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| (-385 |#2|) (-327)))) (-3924 (((-1174 $) (-1174 $)) NIL)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 |#2|)) NIL) (($ (-385 (-525))) NIL (-2067 (|has| (-385 |#2|) (-968 (-385 (-525)))) (|has| (-385 |#2|) (-341)))) (($ $) NIL (|has| (-385 |#2|) (-341)))) (-1463 (($ $) NIL (|has| (-385 |#2|) (-327))) (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-136)))) (-3153 ((|#3| $) NIL)) (-2448 (((-713)) NIL)) (-2881 (((-108)) 37)) (-1461 (((-108) |#1|) 49) (((-108) |#2|) 132)) (-2103 (((-1174 $)) 93)) (-1571 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-2951 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1940 (((-108)) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (-3364 (($) 16 T CONST)) (-3375 (($) 26 T CONST)) (-2401 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-713)) NIL (-2067 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-2067 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 |#2|)) NIL) (($ (-385 |#2|) $) NIL) (($ (-385 (-525)) $) NIL (|has| (-385 |#2|) (-341))) (($ $ (-385 (-525))) NIL (|has| (-385 |#2|) (-341)))))
+(((-39 |#1| |#2| |#3| |#4|) (-13 (-320 |#1| |#2| |#3|) (-10 -7 (-15 -3908 ((-1179) (-713))))) (-341) (-1150 |#1|) (-1150 (-385 |#2|)) |#3|) (T -39))
+((-3908 (*1 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-4 *5 (-1150 *4)) (-5 *2 (-1179)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1150 (-385 *5))) (-14 *7 *6))))
+(-13 (-320 |#1| |#2| |#3|) (-10 -7 (-15 -3908 ((-1179) (-713)))))
+((-3176 ((|#2| |#2|) 48)) (-3498 ((|#2| |#2|) 120 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-968 (-525)))))) (-2364 ((|#2| |#2|) 87 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-968 (-525)))))) (-3320 ((|#2| |#2|) 88 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-968 (-525)))))) (-1268 ((|#2| (-110) |#2| (-713)) 116 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-968 (-525)))))) (-3606 (((-1088 |#2|) |#2|) 45)) (-3645 ((|#2| |#2| (-592 (-565 |#2|))) 18) ((|#2| |#2| (-592 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-40 |#1| |#2|) (-10 -7 (-15 -3176 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3645 (|#2| |#2| |#2|)) (-15 -3645 (|#2| |#2| (-592 |#2|))) (-15 -3645 (|#2| |#2| (-592 (-565 |#2|)))) (-15 -3606 ((-1088 |#2|) |#2|)) (IF (|has| |#1| (-789)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-968 (-525))) (IF (|has| |#2| (-408 |#1|)) (PROGN (-15 -3320 (|#2| |#2|)) (-15 -2364 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -1268 (|#2| (-110) |#2| (-713)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-517) (-13 (-341) (-281) (-10 -8 (-15 -4066 ((-1044 |#1| (-565 $)) $)) (-15 -4080 ((-1044 |#1| (-565 $)) $)) (-15 -4100 ($ (-1044 |#1| (-565 $))))))) (T -40))
+((-1268 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-110)) (-5 *4 (-713)) (-4 *5 (-429)) (-4 *5 (-789)) (-4 *5 (-968 (-525))) (-4 *5 (-517)) (-5 *1 (-40 *5 *2)) (-4 *2 (-408 *5)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -4066 ((-1044 *5 (-565 $)) $)) (-15 -4080 ((-1044 *5 (-565 $)) $)) (-15 -4100 ($ (-1044 *5 (-565 $))))))))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-968 (-525))) (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -4066 ((-1044 *3 (-565 $)) $)) (-15 -4080 ((-1044 *3 (-565 $)) $)) (-15 -4100 ($ (-1044 *3 (-565 $))))))))) (-2364 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-968 (-525))) (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -4066 ((-1044 *3 (-565 $)) $)) (-15 -4080 ((-1044 *3 (-565 $)) $)) (-15 -4100 ($ (-1044 *3 (-565 $))))))))) (-3320 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-968 (-525))) (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -4066 ((-1044 *3 (-565 $)) $)) (-15 -4080 ((-1044 *3 (-565 $)) $)) (-15 -4100 ($ (-1044 *3 (-565 $))))))))) (-3606 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-1088 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-341) (-281) (-10 -8 (-15 -4066 ((-1044 *4 (-565 $)) $)) (-15 -4080 ((-1044 *4 (-565 $)) $)) (-15 -4100 ($ (-1044 *4 (-565 $))))))))) (-3645 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-565 *2))) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -4066 ((-1044 *4 (-565 $)) $)) (-15 -4080 ((-1044 *4 (-565 $)) $)) (-15 -4100 ($ (-1044 *4 (-565 $))))))) (-4 *4 (-517)) (-5 *1 (-40 *4 *2)))) (-3645 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -4066 ((-1044 *4 (-565 $)) $)) (-15 -4080 ((-1044 *4 (-565 $)) $)) (-15 -4100 ($ (-1044 *4 (-565 $))))))) (-4 *4 (-517)) (-5 *1 (-40 *4 *2)))) (-3645 (*1 *2 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -4066 ((-1044 *3 (-565 $)) $)) (-15 -4080 ((-1044 *3 (-565 $)) $)) (-15 -4100 ($ (-1044 *3 (-565 $))))))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -4066 ((-1044 *3 (-565 $)) $)) (-15 -4080 ((-1044 *3 (-565 $)) $)) (-15 -4100 ($ (-1044 *3 (-565 $))))))))) (-3176 (*1 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -4066 ((-1044 *3 (-565 $)) $)) (-15 -4080 ((-1044 *3 (-565 $)) $)) (-15 -4100 ($ (-1044 *3 (-565 $))))))))))
+(-10 -7 (-15 -3176 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3645 (|#2| |#2| |#2|)) (-15 -3645 (|#2| |#2| (-592 |#2|))) (-15 -3645 (|#2| |#2| (-592 (-565 |#2|)))) (-15 -3606 ((-1088 |#2|) |#2|)) (IF (|has| |#1| (-789)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-968 (-525))) (IF (|has| |#2| (-408 |#1|)) (PROGN (-15 -3320 (|#2| |#2|)) (-15 -2364 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -1268 (|#2| (-110) |#2| (-713)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-4201 (((-396 (-1088 |#3|)) (-1088 |#3|) (-592 (-47))) 23) (((-396 |#3|) |#3| (-592 (-47))) 19)))
+(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -4201 ((-396 |#3|) |#3| (-592 (-47)))) (-15 -4201 ((-396 (-1088 |#3|)) (-1088 |#3|) (-592 (-47))))) (-789) (-735) (-884 (-47) |#2| |#1|)) (T -41))
+((-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *7 (-884 (-47) *6 *5)) (-5 *2 (-396 (-1088 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1088 *7)))) (-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735)) (-5 *2 (-396 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-884 (-47) *6 *5)))))
+(-10 -7 (-15 -4201 ((-396 |#3|) |#3| (-592 (-47)))) (-15 -4201 ((-396 (-1088 |#3|)) (-1088 |#3|) (-592 (-47)))))
+((-3787 (((-713) |#2|) 65)) (-3428 (((-713) |#2|) 68)) (-1408 (((-592 |#2|)) 33)) (-2596 (((-713) |#2|) 67)) (-2585 (((-713) |#2|) 64)) (-1304 (((-713) |#2|) 66)) (-3879 (((-592 (-632 |#1|))) 60)) (-4225 (((-592 |#2|)) 55)) (-3091 (((-592 |#2|) |#2|) 43)) (-3810 (((-592 |#2|)) 57)) (-2944 (((-592 |#2|)) 56)) (-3725 (((-592 (-632 |#1|))) 48)) (-4235 (((-592 |#2|)) 54)) (-3480 (((-592 |#2|) |#2|) 42)) (-2487 (((-592 |#2|)) 50)) (-2291 (((-592 (-632 |#1|))) 61)) (-2344 (((-592 |#2|)) 59)) (-2103 (((-1174 |#2|) (-1174 |#2|)) 84 (|has| |#1| (-286)))))
+(((-42 |#1| |#2|) (-10 -7 (-15 -2596 ((-713) |#2|)) (-15 -3428 ((-713) |#2|)) (-15 -2585 ((-713) |#2|)) (-15 -3787 ((-713) |#2|)) (-15 -1304 ((-713) |#2|)) (-15 -2487 ((-592 |#2|))) (-15 -3480 ((-592 |#2|) |#2|)) (-15 -3091 ((-592 |#2|) |#2|)) (-15 -4235 ((-592 |#2|))) (-15 -4225 ((-592 |#2|))) (-15 -2944 ((-592 |#2|))) (-15 -3810 ((-592 |#2|))) (-15 -2344 ((-592 |#2|))) (-15 -3725 ((-592 (-632 |#1|)))) (-15 -3879 ((-592 (-632 |#1|)))) (-15 -2291 ((-592 (-632 |#1|)))) (-15 -1408 ((-592 |#2|))) (IF (|has| |#1| (-286)) (-15 -2103 ((-1174 |#2|) (-1174 |#2|))) |%noBranch|)) (-517) (-395 |#1|)) (T -42))
+((-2103 (*1 *2 *2) (-12 (-5 *2 (-1174 *4)) (-4 *4 (-395 *3)) (-4 *3 (-286)) (-4 *3 (-517)) (-5 *1 (-42 *3 *4)))) (-1408 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2291 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3879 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3725 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2344 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3810 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2944 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-4225 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-4235 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3091 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-3480 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-2487 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-1304 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-3787 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-2585 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-3428 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-2596 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))))
+(-10 -7 (-15 -2596 ((-713) |#2|)) (-15 -3428 ((-713) |#2|)) (-15 -2585 ((-713) |#2|)) (-15 -3787 ((-713) |#2|)) (-15 -1304 ((-713) |#2|)) (-15 -2487 ((-592 |#2|))) (-15 -3480 ((-592 |#2|) |#2|)) (-15 -3091 ((-592 |#2|) |#2|)) (-15 -4235 ((-592 |#2|))) (-15 -4225 ((-592 |#2|))) (-15 -2944 ((-592 |#2|))) (-15 -3810 ((-592 |#2|))) (-15 -2344 ((-592 |#2|))) (-15 -3725 ((-592 (-632 |#1|)))) (-15 -3879 ((-592 (-632 |#1|)))) (-15 -2291 ((-592 (-632 |#1|)))) (-15 -1408 ((-592 |#2|))) (IF (|has| |#1| (-286)) (-15 -2103 ((-1174 |#2|) (-1174 |#2|))) |%noBranch|))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1509 (((-3 $ "failed")) NIL (|has| |#1| (-517)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-3551 (((-1174 (-632 |#1|)) (-1174 $)) NIL) (((-1174 (-632 |#1|))) 24)) (-3651 (((-1174 $)) 51)) (-2475 (($) NIL T CONST)) (-3734 (((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed")) NIL (|has| |#1| (-517)))) (-2394 (((-3 $ "failed")) NIL (|has| |#1| (-517)))) (-2946 (((-632 |#1|) (-1174 $)) NIL) (((-632 |#1|)) NIL)) (-2126 ((|#1| $) NIL)) (-4187 (((-632 |#1|) $ (-1174 $)) NIL) (((-632 |#1|) $) NIL)) (-3322 (((-3 $ "failed") $) NIL (|has| |#1| (-517)))) (-3141 (((-1088 (-887 |#1|))) NIL (|has| |#1| (-341)))) (-1488 (($ $ (-856)) NIL)) (-3447 ((|#1| $) NIL)) (-4047 (((-1088 |#1|) $) NIL (|has| |#1| (-517)))) (-3411 ((|#1| (-1174 $)) NIL) ((|#1|) NIL)) (-1521 (((-1088 |#1|) $) NIL)) (-3838 (((-108)) 87)) (-2580 (($ (-1174 |#1|) (-1174 $)) NIL) (($ (-1174 |#1|)) NIL)) (-3300 (((-3 $ "failed") $) 14 (|has| |#1| (-517)))) (-3085 (((-856)) 52)) (-1822 (((-108)) NIL)) (-2156 (($ $ (-856)) NIL)) (-3387 (((-108)) NIL)) (-2634 (((-108)) NIL)) (-2936 (((-108)) 89)) (-2661 (((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed")) NIL (|has| |#1| (-517)))) (-2542 (((-3 $ "failed")) NIL (|has| |#1| (-517)))) (-2713 (((-632 |#1|) (-1174 $)) NIL) (((-632 |#1|)) NIL)) (-3309 ((|#1| $) NIL)) (-2222 (((-632 |#1|) $ (-1174 $)) NIL) (((-632 |#1|) $) NIL)) (-3711 (((-3 $ "failed") $) NIL (|has| |#1| (-517)))) (-2056 (((-1088 (-887 |#1|))) NIL (|has| |#1| (-341)))) (-2486 (($ $ (-856)) NIL)) (-3714 ((|#1| $) NIL)) (-2357 (((-1088 |#1|) $) NIL (|has| |#1| (-517)))) (-2623 ((|#1| (-1174 $)) NIL) ((|#1|) NIL)) (-2673 (((-1088 |#1|) $) NIL)) (-3938 (((-108)) 86)) (-1289 (((-1075) $) NIL)) (-1780 (((-108)) 93)) (-1719 (((-108)) 92)) (-2490 (((-108)) 94)) (-3993 (((-1039) $) NIL)) (-1539 (((-108)) 88)) (-3431 ((|#1| $ (-525)) 54)) (-2754 (((-1174 |#1|) $ (-1174 $)) 48) (((-632 |#1|) (-1174 $) (-1174 $)) NIL) (((-1174 |#1|) $) 28) (((-632 |#1|) (-1174 $)) NIL)) (-2069 (((-1174 |#1|) $) NIL) (($ (-1174 |#1|)) NIL)) (-3600 (((-592 (-887 |#1|)) (-1174 $)) NIL) (((-592 (-887 |#1|))) NIL)) (-1242 (($ $ $) NIL)) (-1682 (((-108)) 84)) (-4100 (((-798) $) 69) (($ (-1174 |#1|)) 22)) (-2103 (((-1174 $)) 45)) (-3974 (((-592 (-1174 |#1|))) NIL (|has| |#1| (-517)))) (-3133 (($ $ $ $) NIL)) (-1839 (((-108)) 82)) (-1590 (($ (-632 |#1|) $) 18)) (-4148 (($ $ $) NIL)) (-2453 (((-108)) 85)) (-1569 (((-108)) 83)) (-1886 (((-108)) 81)) (-3364 (($) NIL T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1059 |#2| |#1|) $) 19)))
+(((-43 |#1| |#2| |#3| |#4|) (-13 (-395 |#1|) (-594 (-1059 |#2| |#1|)) (-10 -8 (-15 -4100 ($ (-1174 |#1|))))) (-341) (-856) (-592 (-1092)) (-1174 (-632 |#1|))) (T -43))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-341)) (-14 *6 (-1174 (-632 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))))))
+(-13 (-395 |#1|) (-594 (-1059 |#2| |#1|)) (-10 -8 (-15 -4100 ($ (-1174 |#1|)))))
+((-4087 (((-108) $ $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-2219 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-2250 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-3979 (($ $) NIL)) (-3311 (($) NIL) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-3289 (((-1179) $ |#1| |#1|) NIL (|has| $ (-6 -4260))) (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-1425 (($ $ (-525)) NIL (|has| $ (-6 -4260)))) (-2358 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL) (((-108) $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-2436 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4260))) (($ $) NIL (-12 (|has| $ (-6 -4260)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789))))) (-1842 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-3779 (((-108) $ (-713)) NIL)) (-1947 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (|has| $ (-6 -4260)))) (-3776 (($ $ $) 27 (|has| $ (-6 -4260)))) (-4193 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (|has| $ (-6 -4260)))) (-2894 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 29 (|has| $ (-6 -4260)))) (-1233 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-525) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (|has| $ (-6 -4260))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-1141 (-525)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (|has| $ (-6 -4260))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ "last" (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (|has| $ (-6 -4260))) (($ $ "rest" $) NIL (|has| $ (-6 -4260))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ "first" (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (|has| $ (-6 -4260))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ "value" (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) NIL (|has| $ (-6 -4260)))) (-3050 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL)) (-2399 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-2237 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-1515 (((-3 |#2| "failed") |#1| $) 37)) (-2475 (($) NIL T CONST)) (-2670 (($ $) NIL (|has| $ (-6 -4260)))) (-1652 (($ $) NIL)) (-1659 (($ $ (-713)) NIL) (($ $) 24)) (-1793 (($ $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-4205 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (|has| $ (-6 -4259))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL) (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (-2698 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3504 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (|has| $ (-6 -4259))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (|has| $ (-6 -4259))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3081 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4260))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-525) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (|has| $ (-6 -4260)))) (-3017 ((|#2| $ |#1|) NIL) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-525)) NIL)) (-3631 (((-108) $) NIL)) (-3856 (((-525) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL) (((-525) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))) (((-525) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-525)) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (-2175 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 18 (|has| $ (-6 -4259))) (((-592 |#2|) $) NIL (|has| $ (-6 -4259))) (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 18 (|has| $ (-6 -4259)))) (-3994 (((-592 $) $) NIL)) (-3569 (((-108) $ $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (-3324 (($ (-713) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-1732 ((|#1| $) NIL (|has| |#1| (-789))) (((-525) $) 32 (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-3269 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-3212 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-2617 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-592 |#2|) $) NIL (|has| $ (-6 -4259))) (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020)))) (((-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-2231 ((|#1| $) NIL (|has| |#1| (-789))) (((-525) $) 34 (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-3069 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4260))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4260))) (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL)) (-1522 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-2010 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL)) (-3506 (((-108) $) NIL)) (-1289 (((-1075) $) 42 (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-2718 (($ $ (-713)) NIL) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-1398 (((-592 |#1|) $) 20)) (-3770 (((-108) |#1| $) NIL)) (-3577 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-3246 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL) (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2594 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3177 (((-592 |#1|) $) NIL) (((-592 (-525)) $) NIL)) (-3461 (((-108) |#1| $) NIL) (((-108) (-525) $) NIL)) (-3993 (((-1039) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1647 ((|#2| $) NIL (|has| |#1| (-789))) (($ $ (-713)) NIL) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 23)) (-4202 (((-3 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) "failed") (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL) (((-3 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) "failed") (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL)) (-3453 (($ $ |#2|) NIL (|has| $ (-6 -4260))) (($ $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (|has| $ (-6 -4260)))) (-2724 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-2476 (((-108) $) NIL)) (-1518 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020)))) (((-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-1717 (((-592 |#2|) $) NIL) (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 17)) (-3479 (((-108) $) 16)) (-1558 (($) 13)) (-3431 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-525) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ (-525)) NIL) (($ $ (-1141 (-525))) NIL) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ "first") NIL) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $ "value") NIL)) (-1707 (((-525) $ $) NIL)) (-2637 (($) 12) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-2818 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2139 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-3953 (((-108) $) NIL)) (-3675 (($ $) NIL)) (-2789 (($ $) NIL (|has| $ (-6 -4260)))) (-4082 (((-713) $) NIL)) (-3077 (($ $) NIL)) (-4002 (((-713) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-713) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259))) (((-713) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-713) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3632 (($ $ $ (-525)) NIL (|has| $ (-6 -4260)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-567 (-501))))) (-4114 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-4190 (($ $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL) (($ $ $) NIL)) (-2035 (($ $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL) (($ (-592 $)) NIL) (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 25) (($ $ $) NIL)) (-4100 (((-798) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-3576 (((-592 $) $) NIL)) (-1791 (((-108) $ $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (-3905 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-2727 (((-3 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) "failed") |#1| $) 44)) (-2706 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-2807 (((-108) $ $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-2775 (((-108) $ $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-2817 (((-108) $ $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-2795 (((-108) $ $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-789)))) (-2827 (((-713) $) 22 (|has| $ (-6 -4259)))))
(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1020) (-1020)) (T -44))
NIL
(-35 |#1| |#2|)
-((-1212 (((-108) $) 12)) (-3165 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-385 (-525)) $) 25) (($ $ (-385 (-525))) NIL)))
-(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -1212 ((-108) |#1|)) (-15 -3165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|))) (-46 |#2| |#3|) (-977) (-734)) (T -45))
+((-2457 (((-108) $) 12)) (-2016 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-385 (-525)) $) 25) (($ $ (-385 (-525))) NIL)))
+(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -2457 ((-108) |#1|)) (-15 -2016 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|))) (-46 |#2| |#3|) (-977) (-734)) (T -45))
NIL
-(-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -1212 ((-108) |#1|)) (-15 -3165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-4218 (($ $) 52 (|has| |#1| (-517)))) (-3171 (((-108) $) 54 (|has| |#1| (-517)))) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3063 (($ $) 60)) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-1212 (((-108) $) 62)) (-2876 (($ |#1| |#2|) 61)) (-3165 (($ (-1 |#1| |#1|) $) 63)) (-3031 (($ $) 65)) (-3043 ((|#1| $) 66)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1715 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2343 ((|#2| $) 64)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-1568 ((|#1| $ |#2|) 59)) (-3637 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-3917 (((-713)) 29)) (-3325 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4075 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
+(-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -2457 ((-108) |#1|)) (-15 -2016 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-2433 (($ $) 52 (|has| |#1| (-517)))) (-1568 (((-108) $) 54 (|has| |#1| (-517)))) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1451 (($ $) 60)) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-2457 (((-108) $) 62)) (-1272 (($ |#1| |#2|) 61)) (-2016 (($ (-1 |#1| |#1|) $) 63)) (-1418 (($ $) 65)) (-1430 ((|#1| $) 66)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1311 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-3529 ((|#2| $) 64)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-3136 ((|#1| $ |#2|) 59)) (-1463 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2448 (((-713)) 29)) (-1571 (((-108) $ $) 53 (|has| |#1| (-517)))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2880 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
(((-46 |#1| |#2|) (-131) (-977) (-734)) (T -46))
-((-3043 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)))) (-3031 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-3165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)))) (-1212 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-5 *2 (-108)))) (-2876 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)))) (-3063 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)))) (-1568 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)))) (-4075 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)) (-4 *2 (-341)))))
-(-13 (-977) (-107 |t#1| |t#1|) (-10 -8 (-15 -3043 (|t#1| $)) (-15 -3031 ($ $)) (-15 -2343 (|t#2| $)) (-15 -3165 ($ (-1 |t#1| |t#1|) $)) (-15 -1212 ((-108) $)) (-15 -2876 ($ |t#1| |t#2|)) (-15 -3063 ($ $)) (-15 -1568 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-341)) (-15 -4075 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-160)) (PROGN (-6 (-160)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-517)) (-6 (-517)) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (-6 (-37 (-385 (-525)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3254 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3254 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-269) |has| |#1| (-517)) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-3709 (((-592 $) (-1088 $) (-1092)) NIL) (((-592 $) (-1088 $)) NIL) (((-592 $) (-887 $)) NIL)) (-4058 (($ (-1088 $) (-1092)) NIL) (($ (-1088 $)) NIL) (($ (-887 $)) NIL)) (-1209 (((-108) $) 11)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-2563 (((-592 (-565 $)) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-3311 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2782 (($ $) NIL)) (-2193 (((-108) $ $) NIL)) (-2169 (($) NIL T CONST)) (-3419 (((-592 $) (-1088 $) (-1092)) NIL) (((-592 $) (-1088 $)) NIL) (((-592 $) (-887 $)) NIL)) (-2964 (($ (-1088 $) (-1092)) NIL) (($ (-1088 $)) NIL) (($ (-887 $)) NIL)) (-3077 (((-3 (-565 $) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL)) (-1572 (((-565 $) $) NIL) (((-525) $) NIL) (((-385 (-525)) $) NIL)) (-1747 (($ $ $) NIL)) (-1994 (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3407 (-632 (-385 (-525)))) (|:| |vec| (-1174 (-385 (-525))))) (-632 $) (-1174 $)) NIL) (((-632 (-385 (-525))) (-632 $)) NIL)) (-1284 (($ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-3437 (($ $) NIL) (($ (-592 $)) NIL)) (-2059 (((-592 (-110)) $) NIL)) (-3930 (((-110) (-110)) NIL)) (-1396 (((-108) $) 14)) (-1673 (((-108) $) NIL (|has| $ (-968 (-525))))) (-3114 (((-1044 (-525) (-565 $)) $) NIL)) (-2171 (($ $ (-525)) NIL)) (-2382 (((-1088 $) (-1088 $) (-565 $)) NIL) (((-1088 $) (-1088 $) (-592 (-565 $))) NIL) (($ $ (-565 $)) NIL) (($ $ (-592 (-565 $))) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2541 (((-1088 $) (-565 $)) NIL (|has| $ (-977)))) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-3165 (($ (-1 $ $) (-565 $)) NIL)) (-1923 (((-3 (-565 $) "failed") $) NIL)) (-2556 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2734 (((-592 (-565 $)) $) NIL)) (-3173 (($ (-110) $) NIL) (($ (-110) (-592 $)) NIL)) (-3131 (((-108) $ (-110)) NIL) (((-108) $ (-1092)) NIL)) (-2997 (($ $) NIL)) (-1794 (((-713) $) NIL)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2662 (((-108) $ $) NIL) (((-108) $ (-1092)) NIL)) (-2770 (((-396 $) $) NIL)) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3699 (((-108) $) NIL (|has| $ (-968 (-525))))) (-2457 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1092) (-1 $ (-592 $))) NIL) (($ $ (-1092) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3684 (((-713) $) NIL)) (-3406 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3147 (($ $) NIL) (($ $ $) NIL)) (-3376 (($ $ (-713)) NIL) (($ $) NIL)) (-3123 (((-1044 (-525) (-565 $)) $) NIL)) (-2756 (($ $) NIL (|has| $ (-977)))) (-3210 (((-357) $) NIL) (((-205) $) NIL) (((-157 (-357)) $) NIL)) (-1217 (((-798) $) NIL) (($ (-565 $)) NIL) (($ (-385 (-525))) NIL) (($ $) NIL) (($ (-525)) NIL) (($ (-1044 (-525) (-565 $))) NIL)) (-3917 (((-713)) NIL)) (-1381 (($ $) NIL) (($ (-592 $)) NIL)) (-1960 (((-108) (-110)) NIL)) (-3325 (((-108) $ $) NIL)) (-1619 (($ $ (-525)) NIL) (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3349 (($) 7 T CONST)) (-3359 (($) 12 T CONST)) (-2022 (($ $ (-713)) NIL) (($ $) NIL)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 16)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL)) (-4061 (($ $ $) 15) (($ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-385 (-525))) NIL) (($ $ (-525)) NIL) (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (* (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ $ $) NIL) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-856) $) NIL)))
-(((-47) (-13 (-281) (-27) (-968 (-525)) (-968 (-385 (-525))) (-588 (-525)) (-953) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -1217 ($ (-1044 (-525) (-565 $)))) (-15 -3114 ((-1044 (-525) (-565 $)) $)) (-15 -3123 ((-1044 (-525) (-565 $)) $)) (-15 -1284 ($ $)) (-15 -2382 ((-1088 $) (-1088 $) (-565 $))) (-15 -2382 ((-1088 $) (-1088 $) (-592 (-565 $)))) (-15 -2382 ($ $ (-565 $))) (-15 -2382 ($ $ (-592 (-565 $))))))) (T -47))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1044 (-525) (-565 (-47)))) (-5 *1 (-47)))) (-3114 (*1 *2 *1) (-12 (-5 *2 (-1044 (-525) (-565 (-47)))) (-5 *1 (-47)))) (-3123 (*1 *2 *1) (-12 (-5 *2 (-1044 (-525) (-565 (-47)))) (-5 *1 (-47)))) (-1284 (*1 *1 *1) (-5 *1 (-47))) (-2382 (*1 *2 *2 *3) (-12 (-5 *2 (-1088 (-47))) (-5 *3 (-565 (-47))) (-5 *1 (-47)))) (-2382 (*1 *2 *2 *3) (-12 (-5 *2 (-1088 (-47))) (-5 *3 (-592 (-565 (-47)))) (-5 *1 (-47)))) (-2382 (*1 *1 *1 *2) (-12 (-5 *2 (-565 (-47))) (-5 *1 (-47)))) (-2382 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-565 (-47)))) (-5 *1 (-47)))))
-(-13 (-281) (-27) (-968 (-525)) (-968 (-385 (-525))) (-588 (-525)) (-953) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -1217 ($ (-1044 (-525) (-565 $)))) (-15 -3114 ((-1044 (-525) (-565 $)) $)) (-15 -3123 ((-1044 (-525) (-565 $)) $)) (-15 -1284 ($ $)) (-15 -2382 ((-1088 $) (-1088 $) (-565 $))) (-15 -2382 ((-1088 $) (-1088 $) (-592 (-565 $)))) (-15 -2382 ($ $ (-565 $))) (-15 -2382 ($ $ (-592 (-565 $))))))
-((-4236 (((-108) $ $) NIL)) (-3641 (((-592 (-1092)) $) 17)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 7)) (-3266 (((-1097) $) 18)) (-3955 (((-108) $ $) NIL)))
-(((-48) (-13 (-1020) (-10 -8 (-15 -3641 ((-592 (-1092)) $)) (-15 -3266 ((-1097) $))))) (T -48))
-((-3641 (*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-48)))) (-3266 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-48)))))
-(-13 (-1020) (-10 -8 (-15 -3641 ((-592 (-1092)) $)) (-15 -3266 ((-1097) $))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 61)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-4063 (((-108) $) 20)) (-3077 (((-3 |#1| "failed") $) 23)) (-1572 ((|#1| $) 24)) (-3063 (($ $) 28)) (-3457 (((-3 $ "failed") $) NIL)) (-1396 (((-108) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-3043 ((|#1| $) 21)) (-1540 (($ $) 50)) (-2619 (((-1075) $) NIL)) (-3738 (((-108) $) 30)) (-2093 (((-1039) $) NIL)) (-3409 (($ (-713)) 48)) (-3096 (($ (-592 (-525))) 49)) (-2343 (((-713) $) 31)) (-1217 (((-798) $) 64) (($ (-525)) 45) (($ |#1|) 43)) (-1568 ((|#1| $ $) 19)) (-3917 (((-713)) 47)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 32 T CONST)) (-3359 (($) 14 T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) 40)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
-(((-49 |#1| |#2|) (-13 (-570 |#1|) (-968 |#1|) (-10 -8 (-15 -3043 (|#1| $)) (-15 -1540 ($ $)) (-15 -3063 ($ $)) (-15 -1568 (|#1| $ $)) (-15 -3409 ($ (-713))) (-15 -3096 ($ (-592 (-525)))) (-15 -3738 ((-108) $)) (-15 -4063 ((-108) $)) (-15 -2343 ((-713) $)) (-15 -3165 ($ (-1 |#1| |#1|) $)))) (-977) (-592 (-1092))) (T -49))
-((-3043 (*1 *2 *1) (-12 (-4 *2 (-977)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1092))))) (-1540 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-977)) (-14 *3 (-592 (-1092))))) (-3063 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-977)) (-14 *3 (-592 (-1092))))) (-1568 (*1 *2 *1 *1) (-12 (-4 *2 (-977)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1092))))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977)) (-14 *4 (-592 (-1092))))) (-3096 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-49 *3 *4)) (-4 *3 (-977)) (-14 *4 (-592 (-1092))))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977)) (-14 *4 (-592 (-1092))))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977)) (-14 *4 (-592 (-1092))))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977)) (-14 *4 (-592 (-1092))))) (-3165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-49 *3 *4)) (-14 *4 (-592 (-1092))))))
-(-13 (-570 |#1|) (-968 |#1|) (-10 -8 (-15 -3043 (|#1| $)) (-15 -1540 ($ $)) (-15 -3063 ($ $)) (-15 -1568 (|#1| $ $)) (-15 -3409 ($ (-713))) (-15 -3096 ($ (-592 (-525)))) (-15 -3738 ((-108) $)) (-15 -4063 ((-108) $)) (-15 -2343 ((-713) $)) (-15 -3165 ($ (-1 |#1| |#1|) $))))
-((-4063 (((-108) (-51)) 13)) (-3077 (((-3 |#1| "failed") (-51)) 21)) (-1572 ((|#1| (-51)) 22)) (-1217 (((-51) |#1|) 18)))
-(((-50 |#1|) (-10 -7 (-15 -1217 ((-51) |#1|)) (-15 -3077 ((-3 |#1| "failed") (-51))) (-15 -4063 ((-108) (-51))) (-15 -1572 (|#1| (-51)))) (-1128)) (T -50))
-((-1572 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1128)))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1128)))) (-3077 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1128)))) (-1217 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1128)))))
-(-10 -7 (-15 -1217 ((-51) |#1|)) (-15 -3077 ((-3 |#1| "failed") (-51))) (-15 -4063 ((-108) (-51))) (-15 -1572 (|#1| (-51))))
-((-4236 (((-108) $ $) NIL)) (-2981 (((-1075) (-108)) 25)) (-2323 (((-798) $) 24)) (-2520 (((-716) $) 12)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1423 (((-798) $) 16)) (-2605 (((-1024) $) 14)) (-1217 (((-798) $) 32)) (-3956 (($ (-1024) (-716)) 33)) (-3955 (((-108) $ $) 18)))
-(((-51) (-13 (-1020) (-10 -8 (-15 -3956 ($ (-1024) (-716))) (-15 -1423 ((-798) $)) (-15 -2323 ((-798) $)) (-15 -2605 ((-1024) $)) (-15 -2520 ((-716) $)) (-15 -2981 ((-1075) (-108)))))) (T -51))
-((-3956 (*1 *1 *2 *3) (-12 (-5 *2 (-1024)) (-5 *3 (-716)) (-5 *1 (-51)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-51)))) (-2323 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-51)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-51)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-716)) (-5 *1 (-51)))) (-2981 (*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1075)) (-5 *1 (-51)))))
-(-13 (-1020) (-10 -8 (-15 -3956 ($ (-1024) (-716))) (-15 -1423 ((-798) $)) (-15 -2323 ((-798) $)) (-15 -2605 ((-1024) $)) (-15 -2520 ((-716) $)) (-15 -2981 ((-1075) (-108)))))
-((-1814 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -1814 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-977) (-594 |#1|) (-791 |#1|)) (T -52))
-((-1814 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-594 *5)) (-4 *5 (-977)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-791 *5)))))
-(-10 -7 (-15 -1814 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-1335 ((|#3| |#3| (-592 (-1092))) 35)) (-3386 ((|#3| (-592 (-999 |#1| |#2| |#3|)) |#3| (-856)) 22) ((|#3| (-592 (-999 |#1| |#2| |#3|)) |#3|) 20)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3386 (|#3| (-592 (-999 |#1| |#2| |#3|)) |#3|)) (-15 -3386 (|#3| (-592 (-999 |#1| |#2| |#3|)) |#3| (-856))) (-15 -1335 (|#3| |#3| (-592 (-1092))))) (-1020) (-13 (-977) (-821 |#1|) (-789) (-567 (-827 |#1|))) (-13 (-408 |#2|) (-821 |#1|) (-567 (-827 |#1|)))) (T -53))
-((-1335 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-1092))) (-4 *4 (-1020)) (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))))) (-3386 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-592 (-999 *5 *6 *2))) (-5 *4 (-856)) (-4 *5 (-1020)) (-4 *6 (-13 (-977) (-821 *5) (-789) (-567 (-827 *5)))) (-4 *2 (-13 (-408 *6) (-821 *5) (-567 (-827 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-3386 (*1 *2 *3 *2) (-12 (-5 *3 (-592 (-999 *4 *5 *2))) (-4 *4 (-1020)) (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4)))) (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))) (-5 *1 (-53 *4 *5 *2)))))
-(-10 -7 (-15 -3386 (|#3| (-592 (-999 |#1| |#2| |#3|)) |#3|)) (-15 -3386 (|#3| (-592 (-999 |#1| |#2| |#3|)) |#3| (-856))) (-15 -1335 (|#3| |#3| (-592 (-1092)))))
-((-3991 (((-108) $ (-713)) 23)) (-3028 (($ $ (-525) |#3|) 46)) (-1925 (($ $ (-525) |#4|) 50)) (-2631 ((|#3| $ (-525)) 59)) (-3440 (((-592 |#2|) $) 30)) (-3924 (((-108) $ (-713)) 25)) (-2004 (((-108) |#2| $) 54)) (-2284 (($ (-1 |#2| |#2|) $) 37)) (-3165 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-2912 (((-108) $ (-713)) 24)) (-1420 (($ $ |#2|) 34)) (-3944 (((-108) (-1 (-108) |#2|) $) 19)) (-3406 ((|#2| $ (-525) (-525)) NIL) ((|#2| $ (-525) (-525) |#2|) 27)) (-2110 (((-713) (-1 (-108) |#2|) $) 28) (((-713) |#2| $) 56)) (-1462 (($ $) 33)) (-1808 ((|#4| $ (-525)) 62)) (-1217 (((-798) $) 68)) (-3029 (((-108) (-1 (-108) |#2|) $) 18)) (-3955 (((-108) $ $) 53)) (-3522 (((-713) $) 26)))
-(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1217 ((-798) |#1|)) (-15 -3165 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3165 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2284 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1925 (|#1| |#1| (-525) |#4|)) (-15 -3028 (|#1| |#1| (-525) |#3|)) (-15 -3440 ((-592 |#2|) |#1|)) (-15 -1808 (|#4| |#1| (-525))) (-15 -2631 (|#3| |#1| (-525))) (-15 -3406 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3406 (|#2| |#1| (-525) (-525))) (-15 -1420 (|#1| |#1| |#2|)) (-15 -3955 ((-108) |#1| |#1|)) (-15 -2004 ((-108) |#2| |#1|)) (-15 -2110 ((-713) |#2| |#1|)) (-15 -2110 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3944 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3029 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3522 ((-713) |#1|)) (-15 -3991 ((-108) |#1| (-713))) (-15 -3924 ((-108) |#1| (-713))) (-15 -2912 ((-108) |#1| (-713))) (-15 -1462 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1128) (-351 |#2|) (-351 |#2|)) (T -54))
-NIL
-(-10 -8 (-15 -1217 ((-798) |#1|)) (-15 -3165 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3165 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2284 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1925 (|#1| |#1| (-525) |#4|)) (-15 -3028 (|#1| |#1| (-525) |#3|)) (-15 -3440 ((-592 |#2|) |#1|)) (-15 -1808 (|#4| |#1| (-525))) (-15 -2631 (|#3| |#1| (-525))) (-15 -3406 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3406 (|#2| |#1| (-525) (-525))) (-15 -1420 (|#1| |#1| |#2|)) (-15 -3955 ((-108) |#1| |#1|)) (-15 -2004 ((-108) |#2| |#1|)) (-15 -2110 ((-713) |#2| |#1|)) (-15 -2110 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3944 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3029 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3522 ((-713) |#1|)) (-15 -3991 ((-108) |#1| (-713))) (-15 -3924 ((-108) |#1| (-713))) (-15 -2912 ((-108) |#1| (-713))) (-15 -1462 (|#1| |#1|)))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3991 (((-108) $ (-713)) 8)) (-1430 ((|#1| $ (-525) (-525) |#1|) 44)) (-3028 (($ $ (-525) |#2|) 42)) (-1925 (($ $ (-525) |#3|) 41)) (-2169 (($) 7 T CONST)) (-2631 ((|#2| $ (-525)) 46)) (-2301 ((|#1| $ (-525) (-525) |#1|) 43)) (-2222 ((|#1| $ (-525) (-525)) 48)) (-3440 (((-592 |#1|) $) 30)) (-1632 (((-713) $) 51)) (-3416 (($ (-713) (-713) |#1|) 57)) (-1644 (((-713) $) 50)) (-3924 (((-108) $ (-713)) 9)) (-2391 (((-525) $) 55)) (-1237 (((-525) $) 53)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-3446 (((-525) $) 54)) (-3757 (((-525) $) 52)) (-2284 (($ (-1 |#1| |#1|) $) 34)) (-3165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1420 (($ $ |#1|) 56)) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#1| $ (-525) (-525)) 49) ((|#1| $ (-525) (-525) |#1|) 47)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-1808 ((|#3| $ (-525)) 45)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-1430 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)))) (-1418 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-2016 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)))) (-2457 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-5 *2 (-108)))) (-1272 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)))) (-1451 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)))) (-3136 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)))) (-2880 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)) (-4 *2 (-341)))))
+(-13 (-977) (-107 |t#1| |t#1|) (-10 -8 (-15 -1430 (|t#1| $)) (-15 -1418 ($ $)) (-15 -3529 (|t#2| $)) (-15 -2016 ($ (-1 |t#1| |t#1|) $)) (-15 -2457 ((-108) $)) (-15 -1272 ($ |t#1| |t#2|)) (-15 -1451 ($ $)) (-15 -3136 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-341)) (-15 -2880 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-160)) (PROGN (-6 (-160)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-517)) (-6 (-517)) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (-6 (-37 (-385 (-525)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -2067 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -2067 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-269) |has| |#1| (-517)) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-4087 (((-108) $ $) NIL)) (-3975 (((-592 $) (-1088 $) (-1092)) NIL) (((-592 $) (-1088 $)) NIL) (((-592 $) (-887 $)) NIL)) (-3238 (($ (-1088 $) (-1092)) NIL) (($ (-1088 $)) NIL) (($ (-887 $)) NIL)) (-2414 (((-108) $) 11)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-1285 (((-592 (-565 $)) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-3702 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-4211 (($ $) NIL)) (-1507 (((-108) $ $) NIL)) (-2475 (($) NIL T CONST)) (-4178 (((-592 $) (-1088 $) (-1092)) NIL) (((-592 $) (-1088 $)) NIL) (((-592 $) (-887 $)) NIL)) (-3317 (($ (-1088 $) (-1092)) NIL) (($ (-1088 $)) NIL) (($ (-887 $)) NIL)) (-1934 (((-3 (-565 $) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL)) (-4105 (((-565 $) $) NIL) (((-525) $) NIL) (((-385 (-525)) $) NIL)) (-1356 (($ $ $) NIL)) (-3090 (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -4108 (-632 (-385 (-525)))) (|:| |vec| (-1174 (-385 (-525))))) (-632 $) (-1174 $)) NIL) (((-632 (-385 (-525))) (-632 $)) NIL)) (-3504 (($ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-3106 (($ $) NIL) (($ (-592 $)) NIL)) (-2531 (((-592 (-110)) $) NIL)) (-1386 (((-110) (-110)) NIL)) (-2278 (((-108) $) 14)) (-3028 (((-108) $) NIL (|has| $ (-968 (-525))))) (-4066 (((-1044 (-525) (-565 $)) $) NIL)) (-1303 (($ $ (-525)) NIL)) (-2704 (((-1088 $) (-1088 $) (-565 $)) NIL) (((-1088 $) (-1088 $) (-592 (-565 $))) NIL) (($ $ (-565 $)) NIL) (($ $ (-592 (-565 $))) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1808 (((-1088 $) (-565 $)) NIL (|has| $ (-977)))) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-2016 (($ (-1 $ $) (-565 $)) NIL)) (-1751 (((-3 (-565 $) "failed") $) NIL)) (-2739 (($ (-592 $)) NIL) (($ $ $) NIL)) (-1289 (((-1075) $) NIL)) (-4153 (((-592 (-565 $)) $) NIL)) (-4152 (($ (-110) $) NIL) (($ (-110) (-592 $)) NIL)) (-2412 (((-108) $ (-110)) NIL) (((-108) $ (-1092)) NIL)) (-1387 (($ $) NIL)) (-2934 (((-713) $) NIL)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ (-592 $)) NIL) (($ $ $) NIL)) (-3513 (((-108) $ $) NIL) (((-108) $ (-1092)) NIL)) (-4201 (((-396 $) $) NIL)) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3864 (((-108) $) NIL (|has| $ (-968 (-525))))) (-2825 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1092) (-1 $ (-592 $))) NIL) (($ $ (-1092) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-1927 (((-713) $) NIL)) (-3431 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2540 (($ $) NIL) (($ $ $) NIL)) (-2702 (($ $ (-713)) NIL) (($ $) NIL)) (-4080 (((-1044 (-525) (-565 $)) $) NIL)) (-2013 (($ $) NIL (|has| $ (-977)))) (-2069 (((-357) $) NIL) (((-205) $) NIL) (((-157 (-357)) $) NIL)) (-4100 (((-798) $) NIL) (($ (-565 $)) NIL) (($ (-385 (-525))) NIL) (($ $) NIL) (($ (-525)) NIL) (($ (-1044 (-525) (-565 $))) NIL)) (-2448 (((-713)) NIL)) (-2239 (($ $) NIL) (($ (-592 $)) NIL)) (-3954 (((-108) (-110)) NIL)) (-1571 (((-108) $ $) NIL)) (-3706 (($ $ (-525)) NIL) (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3364 (($) 7 T CONST)) (-3375 (($) 12 T CONST)) (-2401 (($ $ (-713)) NIL) (($ $) NIL)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 16)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) NIL)) (-2880 (($ $ $) NIL)) (-2871 (($ $ $) 15) (($ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-385 (-525))) NIL) (($ $ (-525)) NIL) (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (* (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ $ $) NIL) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-856) $) NIL)))
+(((-47) (-13 (-281) (-27) (-968 (-525)) (-968 (-385 (-525))) (-588 (-525)) (-953) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -4100 ($ (-1044 (-525) (-565 $)))) (-15 -4066 ((-1044 (-525) (-565 $)) $)) (-15 -4080 ((-1044 (-525) (-565 $)) $)) (-15 -3504 ($ $)) (-15 -2704 ((-1088 $) (-1088 $) (-565 $))) (-15 -2704 ((-1088 $) (-1088 $) (-592 (-565 $)))) (-15 -2704 ($ $ (-565 $))) (-15 -2704 ($ $ (-592 (-565 $))))))) (T -47))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1044 (-525) (-565 (-47)))) (-5 *1 (-47)))) (-4066 (*1 *2 *1) (-12 (-5 *2 (-1044 (-525) (-565 (-47)))) (-5 *1 (-47)))) (-4080 (*1 *2 *1) (-12 (-5 *2 (-1044 (-525) (-565 (-47)))) (-5 *1 (-47)))) (-3504 (*1 *1 *1) (-5 *1 (-47))) (-2704 (*1 *2 *2 *3) (-12 (-5 *2 (-1088 (-47))) (-5 *3 (-565 (-47))) (-5 *1 (-47)))) (-2704 (*1 *2 *2 *3) (-12 (-5 *2 (-1088 (-47))) (-5 *3 (-592 (-565 (-47)))) (-5 *1 (-47)))) (-2704 (*1 *1 *1 *2) (-12 (-5 *2 (-565 (-47))) (-5 *1 (-47)))) (-2704 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-565 (-47)))) (-5 *1 (-47)))))
+(-13 (-281) (-27) (-968 (-525)) (-968 (-385 (-525))) (-588 (-525)) (-953) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -4100 ($ (-1044 (-525) (-565 $)))) (-15 -4066 ((-1044 (-525) (-565 $)) $)) (-15 -4080 ((-1044 (-525) (-565 $)) $)) (-15 -3504 ($ $)) (-15 -2704 ((-1088 $) (-1088 $) (-565 $))) (-15 -2704 ((-1088 $) (-1088 $) (-592 (-565 $)))) (-15 -2704 ($ $ (-565 $))) (-15 -2704 ($ $ (-592 (-565 $))))))
+((-4087 (((-108) $ $) NIL)) (-2376 (((-592 (-1092)) $) 17)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 7)) (-2418 (((-1097) $) 18)) (-2775 (((-108) $ $) NIL)))
+(((-48) (-13 (-1020) (-10 -8 (-15 -2376 ((-592 (-1092)) $)) (-15 -2418 ((-1097) $))))) (T -48))
+((-2376 (*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-48)))) (-2418 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-48)))))
+(-13 (-1020) (-10 -8 (-15 -2376 ((-592 (-1092)) $)) (-15 -2418 ((-1097) $))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 61)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-3278 (((-108) $) 20)) (-1934 (((-3 |#1| "failed") $) 23)) (-4105 ((|#1| $) 24)) (-1451 (($ $) 28)) (-3300 (((-3 $ "failed") $) NIL)) (-2278 (((-108) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-1430 ((|#1| $) 21)) (-1345 (($ $) 50)) (-1289 (((-1075) $) NIL)) (-1253 (((-108) $) 30)) (-3993 (((-1039) $) NIL)) (-3817 (($ (-713)) 48)) (-1618 (($ (-592 (-525))) 49)) (-3529 (((-713) $) 31)) (-4100 (((-798) $) 64) (($ (-525)) 45) (($ |#1|) 43)) (-3136 ((|#1| $ $) 19)) (-2448 (((-713)) 47)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 32 T CONST)) (-3375 (($) 14 T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) 40)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
+(((-49 |#1| |#2|) (-13 (-570 |#1|) (-968 |#1|) (-10 -8 (-15 -1430 (|#1| $)) (-15 -1345 ($ $)) (-15 -1451 ($ $)) (-15 -3136 (|#1| $ $)) (-15 -3817 ($ (-713))) (-15 -1618 ($ (-592 (-525)))) (-15 -1253 ((-108) $)) (-15 -3278 ((-108) $)) (-15 -3529 ((-713) $)) (-15 -2016 ($ (-1 |#1| |#1|) $)))) (-977) (-592 (-1092))) (T -49))
+((-1430 (*1 *2 *1) (-12 (-4 *2 (-977)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1092))))) (-1345 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-977)) (-14 *3 (-592 (-1092))))) (-1451 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-977)) (-14 *3 (-592 (-1092))))) (-3136 (*1 *2 *1 *1) (-12 (-4 *2 (-977)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1092))))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977)) (-14 *4 (-592 (-1092))))) (-1618 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-49 *3 *4)) (-4 *3 (-977)) (-14 *4 (-592 (-1092))))) (-1253 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977)) (-14 *4 (-592 (-1092))))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977)) (-14 *4 (-592 (-1092))))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977)) (-14 *4 (-592 (-1092))))) (-2016 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-49 *3 *4)) (-14 *4 (-592 (-1092))))))
+(-13 (-570 |#1|) (-968 |#1|) (-10 -8 (-15 -1430 (|#1| $)) (-15 -1345 ($ $)) (-15 -1451 ($ $)) (-15 -3136 (|#1| $ $)) (-15 -3817 ($ (-713))) (-15 -1618 ($ (-592 (-525)))) (-15 -1253 ((-108) $)) (-15 -3278 ((-108) $)) (-15 -3529 ((-713) $)) (-15 -2016 ($ (-1 |#1| |#1|) $))))
+((-3278 (((-108) (-51)) 13)) (-1934 (((-3 |#1| "failed") (-51)) 21)) (-4105 ((|#1| (-51)) 22)) (-4100 (((-51) |#1|) 18)))
+(((-50 |#1|) (-10 -7 (-15 -4100 ((-51) |#1|)) (-15 -1934 ((-3 |#1| "failed") (-51))) (-15 -3278 ((-108) (-51))) (-15 -4105 (|#1| (-51)))) (-1128)) (T -50))
+((-4105 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1128)))) (-3278 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1128)))) (-1934 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1128)))) (-4100 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1128)))))
+(-10 -7 (-15 -4100 ((-51) |#1|)) (-15 -1934 ((-3 |#1| "failed") (-51))) (-15 -3278 ((-108) (-51))) (-15 -4105 (|#1| (-51))))
+((-4087 (((-108) $ $) NIL)) (-3485 (((-1075) (-108)) 25)) (-3312 (((-798) $) 24)) (-2089 (((-716) $) 12)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-3487 (((-798) $) 16)) (-2987 (((-1024) $) 14)) (-4100 (((-798) $) 32)) (-2642 (($ (-1024) (-716)) 33)) (-2775 (((-108) $ $) 18)))
+(((-51) (-13 (-1020) (-10 -8 (-15 -2642 ($ (-1024) (-716))) (-15 -3487 ((-798) $)) (-15 -3312 ((-798) $)) (-15 -2987 ((-1024) $)) (-15 -2089 ((-716) $)) (-15 -3485 ((-1075) (-108)))))) (T -51))
+((-2642 (*1 *1 *2 *3) (-12 (-5 *2 (-1024)) (-5 *3 (-716)) (-5 *1 (-51)))) (-3487 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-51)))) (-3312 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-51)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-51)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-716)) (-5 *1 (-51)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1075)) (-5 *1 (-51)))))
+(-13 (-1020) (-10 -8 (-15 -2642 ($ (-1024) (-716))) (-15 -3487 ((-798) $)) (-15 -3312 ((-798) $)) (-15 -2987 ((-1024) $)) (-15 -2089 ((-716) $)) (-15 -3485 ((-1075) (-108)))))
+((-1590 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -1590 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-977) (-594 |#1|) (-791 |#1|)) (T -52))
+((-1590 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-594 *5)) (-4 *5 (-977)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-791 *5)))))
+(-10 -7 (-15 -1590 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-2986 ((|#3| |#3| (-592 (-1092))) 35)) (-3888 ((|#3| (-592 (-999 |#1| |#2| |#3|)) |#3| (-856)) 22) ((|#3| (-592 (-999 |#1| |#2| |#3|)) |#3|) 20)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3888 (|#3| (-592 (-999 |#1| |#2| |#3|)) |#3|)) (-15 -3888 (|#3| (-592 (-999 |#1| |#2| |#3|)) |#3| (-856))) (-15 -2986 (|#3| |#3| (-592 (-1092))))) (-1020) (-13 (-977) (-821 |#1|) (-789) (-567 (-827 |#1|))) (-13 (-408 |#2|) (-821 |#1|) (-567 (-827 |#1|)))) (T -53))
+((-2986 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-1092))) (-4 *4 (-1020)) (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))))) (-3888 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-592 (-999 *5 *6 *2))) (-5 *4 (-856)) (-4 *5 (-1020)) (-4 *6 (-13 (-977) (-821 *5) (-789) (-567 (-827 *5)))) (-4 *2 (-13 (-408 *6) (-821 *5) (-567 (-827 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-3888 (*1 *2 *3 *2) (-12 (-5 *3 (-592 (-999 *4 *5 *2))) (-4 *4 (-1020)) (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4)))) (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))) (-5 *1 (-53 *4 *5 *2)))))
+(-10 -7 (-15 -3888 (|#3| (-592 (-999 |#1| |#2| |#3|)) |#3|)) (-15 -3888 (|#3| (-592 (-999 |#1| |#2| |#3|)) |#3| (-856))) (-15 -2986 (|#3| |#3| (-592 (-1092)))))
+((-3779 (((-108) $ (-713)) 23)) (-2695 (($ $ (-525) |#3|) 46)) (-1773 (($ $ (-525) |#4|) 50)) (-3209 ((|#3| $ (-525)) 59)) (-2175 (((-592 |#2|) $) 30)) (-2516 (((-108) $ (-713)) 25)) (-3198 (((-108) |#2| $) 54)) (-3069 (($ (-1 |#2| |#2|) $) 37)) (-2016 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-4028 (((-108) $ (-713)) 24)) (-3453 (($ $ |#2|) 34)) (-1518 (((-108) (-1 (-108) |#2|) $) 19)) (-3431 ((|#2| $ (-525) (-525)) NIL) ((|#2| $ (-525) (-525) |#2|) 27)) (-4002 (((-713) (-1 (-108) |#2|) $) 28) (((-713) |#2| $) 56)) (-2503 (($ $) 33)) (-1881 ((|#4| $ (-525)) 62)) (-4100 (((-798) $) 68)) (-2706 (((-108) (-1 (-108) |#2|) $) 18)) (-2775 (((-108) $ $) 53)) (-2827 (((-713) $) 26)))
+(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4100 ((-798) |#1|)) (-15 -2016 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2016 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3069 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1773 (|#1| |#1| (-525) |#4|)) (-15 -2695 (|#1| |#1| (-525) |#3|)) (-15 -2175 ((-592 |#2|) |#1|)) (-15 -1881 (|#4| |#1| (-525))) (-15 -3209 (|#3| |#1| (-525))) (-15 -3431 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3431 (|#2| |#1| (-525) (-525))) (-15 -3453 (|#1| |#1| |#2|)) (-15 -2775 ((-108) |#1| |#1|)) (-15 -3198 ((-108) |#2| |#1|)) (-15 -4002 ((-713) |#2| |#1|)) (-15 -4002 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -1518 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2706 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2016 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2827 ((-713) |#1|)) (-15 -3779 ((-108) |#1| (-713))) (-15 -2516 ((-108) |#1| (-713))) (-15 -4028 ((-108) |#1| (-713))) (-15 -2503 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1128) (-351 |#2|) (-351 |#2|)) (T -54))
+NIL
+(-10 -8 (-15 -4100 ((-798) |#1|)) (-15 -2016 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2016 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3069 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1773 (|#1| |#1| (-525) |#4|)) (-15 -2695 (|#1| |#1| (-525) |#3|)) (-15 -2175 ((-592 |#2|) |#1|)) (-15 -1881 (|#4| |#1| (-525))) (-15 -3209 (|#3| |#1| (-525))) (-15 -3431 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3431 (|#2| |#1| (-525) (-525))) (-15 -3453 (|#1| |#1| |#2|)) (-15 -2775 ((-108) |#1| |#1|)) (-15 -3198 ((-108) |#2| |#1|)) (-15 -4002 ((-713) |#2| |#1|)) (-15 -4002 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -1518 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2706 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2016 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2827 ((-713) |#1|)) (-15 -3779 ((-108) |#1| (-713))) (-15 -2516 ((-108) |#1| (-713))) (-15 -4028 ((-108) |#1| (-713))) (-15 -2503 (|#1| |#1|)))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3779 (((-108) $ (-713)) 8)) (-1233 ((|#1| $ (-525) (-525) |#1|) 44)) (-2695 (($ $ (-525) |#2|) 42)) (-1773 (($ $ (-525) |#3|) 41)) (-2475 (($) 7 T CONST)) (-3209 ((|#2| $ (-525)) 46)) (-3081 ((|#1| $ (-525) (-525) |#1|) 43)) (-3017 ((|#1| $ (-525) (-525)) 48)) (-2175 (((-592 |#1|) $) 30)) (-2720 (((-713) $) 51)) (-3324 (($ (-713) (-713) |#1|) 57)) (-2731 (((-713) $) 50)) (-2516 (((-108) $ (-713)) 9)) (-2797 (((-525) $) 55)) (-2307 (((-525) $) 53)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3194 (((-525) $) 54)) (-3210 (((-525) $) 52)) (-3069 (($ (-1 |#1| |#1|) $) 34)) (-2016 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-3453 (($ $ |#1|) 56)) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#1| $ (-525) (-525)) 49) ((|#1| $ (-525) (-525) |#1|) 47)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-1881 ((|#3| $ (-525)) 45)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-55 |#1| |#2| |#3|) (-131) (-1128) (-351 |t#1|) (-351 |t#1|)) (T -55))
-((-3165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3416 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-713)) (-4 *3 (-1128)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1420 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1128)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-2391 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-3446 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-1237 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-1632 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-713)))) (-1644 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-713)))) (-3406 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-1128)))) (-2222 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-1128)))) (-3406 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) (-2631 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1128)) (-4 *5 (-351 *4)) (-4 *2 (-351 *4)))) (-1808 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1128)) (-4 *5 (-351 *4)) (-4 *2 (-351 *4)))) (-3440 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-592 *3)))) (-1430 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) (-2301 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) (-3028 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1128)) (-4 *3 (-351 *4)) (-4 *5 (-351 *4)))) (-1925 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1128)) (-4 *5 (-351 *4)) (-4 *3 (-351 *4)))) (-2284 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3165 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3165 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
-(-13 (-464 |t#1|) (-10 -8 (-6 -4259) (-6 -4258) (-15 -3416 ($ (-713) (-713) |t#1|)) (-15 -1420 ($ $ |t#1|)) (-15 -2391 ((-525) $)) (-15 -3446 ((-525) $)) (-15 -1237 ((-525) $)) (-15 -3757 ((-525) $)) (-15 -1632 ((-713) $)) (-15 -1644 ((-713) $)) (-15 -3406 (|t#1| $ (-525) (-525))) (-15 -2222 (|t#1| $ (-525) (-525))) (-15 -3406 (|t#1| $ (-525) (-525) |t#1|)) (-15 -2631 (|t#2| $ (-525))) (-15 -1808 (|t#3| $ (-525))) (-15 -3440 ((-592 |t#1|) $)) (-15 -1430 (|t#1| $ (-525) (-525) |t#1|)) (-15 -2301 (|t#1| $ (-525) (-525) |t#1|)) (-15 -3028 ($ $ (-525) |t#2|)) (-15 -1925 ($ $ (-525) |t#3|)) (-15 -3165 ($ (-1 |t#1| |t#1|) $)) (-15 -2284 ($ (-1 |t#1| |t#1|) $)) (-15 -3165 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3165 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
-((-4192 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-1284 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-3165 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
-(((-56 |#1| |#2|) (-10 -7 (-15 -4192 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1284 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3165 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1128) (-1128)) (T -56))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-1284 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-56 *5 *2)))) (-4192 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
-(-10 -7 (-15 -4192 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1284 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3165 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-2470 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2165 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4259))) (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-789))))) (-2458 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 ((|#1| $ (-525) |#1|) 11 (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2169 (($) NIL T CONST)) (-2700 (($ $) NIL (|has| $ (-6 -4259)))) (-3431 (($ $) NIL)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1703 (($ |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4258)))) (-2301 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) NIL)) (-1932 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-1443 (($ (-592 |#1|)) 13) (($ (-713) |#1|) 14)) (-3416 (($ (-713) |#1|) 9)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) NIL (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-1577 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2531 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1872 ((|#1| $) NIL (|has| (-525) (-789)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1420 (($ $ |#1|) NIL (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) 7)) (-3406 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-3038 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-4098 (($ $ $ (-525)) NIL (|has| $ (-6 -4259)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) NIL)) (-2038 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1443 ($ (-592 |#1|))) (-15 -1443 ($ (-713) |#1|)))) (-1128)) (T -57))
-((-1443 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-57 *3)))) (-1443 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-57 *3)) (-4 *3 (-1128)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -1443 ($ (-592 |#1|))) (-15 -1443 ($ (-713) |#1|))))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 ((|#1| $ (-525) (-525) |#1|) NIL)) (-3028 (($ $ (-525) (-57 |#1|)) NIL)) (-1925 (($ $ (-525) (-57 |#1|)) NIL)) (-2169 (($) NIL T CONST)) (-2631 (((-57 |#1|) $ (-525)) NIL)) (-2301 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2222 ((|#1| $ (-525) (-525)) NIL)) (-3440 (((-592 |#1|) $) NIL)) (-1632 (((-713) $) NIL)) (-3416 (($ (-713) (-713) |#1|) NIL)) (-1644 (((-713) $) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-2391 (((-525) $) NIL)) (-1237 (((-525) $) NIL)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3446 (((-525) $) NIL)) (-3757 (((-525) $) NIL)) (-2284 (($ (-1 |#1| |#1|) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1420 (($ $ |#1|) NIL)) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) NIL)) (-1808 (((-57 |#1|) $ (-525)) NIL)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4259))) (-1128)) (T -58))
-NIL
-(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4259)))
-((-3077 (((-3 $ "failed") (-1174 (-294 (-357)))) 74) (((-3 $ "failed") (-1174 (-294 (-525)))) 63) (((-3 $ "failed") (-1174 (-887 (-357)))) 94) (((-3 $ "failed") (-1174 (-887 (-525)))) 84) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 52) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 39)) (-1572 (($ (-1174 (-294 (-357)))) 70) (($ (-1174 (-294 (-525)))) 59) (($ (-1174 (-887 (-357)))) 90) (($ (-1174 (-887 (-525)))) 80) (($ (-1174 (-385 (-887 (-357))))) 48) (($ (-1174 (-385 (-887 (-525))))) 32)) (-3252 (((-1179) $) 120)) (-1217 (((-798) $) 113) (($ (-592 (-308))) 103) (($ (-308)) 97) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 101) (($ (-1174 (-317 (-1230 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1230) (-641)))) 31)))
-(((-59 |#1|) (-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1230) (-641))))))) (-1092)) (T -59))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-1230 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1230) (-641)))) (-5 *1 (-59 *3)) (-14 *3 (-1092)))))
-(-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1230) (-641)))))))
-((-3252 (((-1179) $) 53) (((-1179)) 54)) (-1217 (((-798) $) 50)))
-(((-60 |#1|) (-13 (-373) (-10 -7 (-15 -3252 ((-1179))))) (-1092)) (T -60))
-((-3252 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-60 *3)) (-14 *3 (-1092)))))
-(-13 (-373) (-10 -7 (-15 -3252 ((-1179)))))
-((-3077 (((-3 $ "failed") (-1174 (-294 (-357)))) 144) (((-3 $ "failed") (-1174 (-294 (-525)))) 134) (((-3 $ "failed") (-1174 (-887 (-357)))) 164) (((-3 $ "failed") (-1174 (-887 (-525)))) 154) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 123) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 111)) (-1572 (($ (-1174 (-294 (-357)))) 140) (($ (-1174 (-294 (-525)))) 130) (($ (-1174 (-887 (-357)))) 160) (($ (-1174 (-887 (-525)))) 150) (($ (-1174 (-385 (-887 (-357))))) 119) (($ (-1174 (-385 (-887 (-525))))) 104)) (-3252 (((-1179) $) 97)) (-1217 (((-798) $) 91) (($ (-592 (-308))) 29) (($ (-308)) 34) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 32) (($ (-1174 (-317 (-1230) (-1230 (QUOTE XC)) (-641)))) 89)))
-(((-61 |#1|) (-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230) (-1230 (QUOTE XC)) (-641))))))) (-1092)) (T -61))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-1230) (-1230 (QUOTE XC)) (-641)))) (-5 *1 (-61 *3)) (-14 *3 (-1092)))))
-(-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230) (-1230 (QUOTE XC)) (-641)))))))
-((-3077 (((-3 $ "failed") (-294 (-357))) 41) (((-3 $ "failed") (-294 (-525))) 46) (((-3 $ "failed") (-887 (-357))) 50) (((-3 $ "failed") (-887 (-525))) 54) (((-3 $ "failed") (-385 (-887 (-357)))) 36) (((-3 $ "failed") (-385 (-887 (-525)))) 29)) (-1572 (($ (-294 (-357))) 39) (($ (-294 (-525))) 44) (($ (-887 (-357))) 48) (($ (-887 (-525))) 52) (($ (-385 (-887 (-357)))) 34) (($ (-385 (-887 (-525)))) 26)) (-3252 (((-1179) $) 76)) (-1217 (((-798) $) 69) (($ (-592 (-308))) 61) (($ (-308)) 66) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 64) (($ (-317 (-1230 (QUOTE X)) (-1230) (-641))) 25)))
-(((-62 |#1|) (-13 (-374) (-10 -8 (-15 -1217 ($ (-317 (-1230 (QUOTE X)) (-1230) (-641)))))) (-1092)) (T -62))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-317 (-1230 (QUOTE X)) (-1230) (-641))) (-5 *1 (-62 *3)) (-14 *3 (-1092)))))
-(-13 (-374) (-10 -8 (-15 -1217 ($ (-317 (-1230 (QUOTE X)) (-1230) (-641))))))
-((-3077 (((-3 $ "failed") (-632 (-294 (-357)))) 109) (((-3 $ "failed") (-632 (-294 (-525)))) 97) (((-3 $ "failed") (-632 (-887 (-357)))) 131) (((-3 $ "failed") (-632 (-887 (-525)))) 120) (((-3 $ "failed") (-632 (-385 (-887 (-357))))) 85) (((-3 $ "failed") (-632 (-385 (-887 (-525))))) 71)) (-1572 (($ (-632 (-294 (-357)))) 105) (($ (-632 (-294 (-525)))) 93) (($ (-632 (-887 (-357)))) 127) (($ (-632 (-887 (-525)))) 116) (($ (-632 (-385 (-887 (-357))))) 81) (($ (-632 (-385 (-887 (-525))))) 64)) (-3252 (((-1179) $) 139)) (-1217 (((-798) $) 133) (($ (-592 (-308))) 28) (($ (-308)) 33) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 31) (($ (-632 (-317 (-1230) (-1230 (QUOTE X) (QUOTE HESS)) (-641)))) 54)))
-(((-63 |#1|) (-13 (-362) (-10 -8 (-15 -1217 ($ (-632 (-317 (-1230) (-1230 (QUOTE X) (QUOTE HESS)) (-641))))))) (-1092)) (T -63))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-1230) (-1230 (QUOTE X) (QUOTE HESS)) (-641)))) (-5 *1 (-63 *3)) (-14 *3 (-1092)))))
-(-13 (-362) (-10 -8 (-15 -1217 ($ (-632 (-317 (-1230) (-1230 (QUOTE X) (QUOTE HESS)) (-641)))))))
-((-3077 (((-3 $ "failed") (-294 (-357))) 59) (((-3 $ "failed") (-294 (-525))) 64) (((-3 $ "failed") (-887 (-357))) 68) (((-3 $ "failed") (-887 (-525))) 72) (((-3 $ "failed") (-385 (-887 (-357)))) 54) (((-3 $ "failed") (-385 (-887 (-525)))) 47)) (-1572 (($ (-294 (-357))) 57) (($ (-294 (-525))) 62) (($ (-887 (-357))) 66) (($ (-887 (-525))) 70) (($ (-385 (-887 (-357)))) 52) (($ (-385 (-887 (-525)))) 44)) (-3252 (((-1179) $) 81)) (-1217 (((-798) $) 75) (($ (-592 (-308))) 28) (($ (-308)) 33) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 31) (($ (-317 (-1230) (-1230 (QUOTE XC)) (-641))) 39)))
-(((-64 |#1|) (-13 (-374) (-10 -8 (-15 -1217 ($ (-317 (-1230) (-1230 (QUOTE XC)) (-641)))))) (-1092)) (T -64))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-317 (-1230) (-1230 (QUOTE XC)) (-641))) (-5 *1 (-64 *3)) (-14 *3 (-1092)))))
-(-13 (-374) (-10 -8 (-15 -1217 ($ (-317 (-1230) (-1230 (QUOTE XC)) (-641))))))
-((-3252 (((-1179) $) 63)) (-1217 (((-798) $) 57) (($ (-632 (-641))) 49) (($ (-592 (-308))) 48) (($ (-308)) 55) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 53)))
+((-2016 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3324 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-713)) (-4 *3 (-1128)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3453 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1128)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-2797 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-3194 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-2307 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-3210 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-2720 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-713)))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-713)))) (-3431 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-1128)))) (-3017 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-1128)))) (-3431 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) (-3209 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1128)) (-4 *5 (-351 *4)) (-4 *2 (-351 *4)))) (-1881 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1128)) (-4 *5 (-351 *4)) (-4 *2 (-351 *4)))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-592 *3)))) (-1233 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) (-3081 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) (-2695 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1128)) (-4 *3 (-351 *4)) (-4 *5 (-351 *4)))) (-1773 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1128)) (-4 *5 (-351 *4)) (-4 *3 (-351 *4)))) (-3069 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2016 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2016 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
+(-13 (-464 |t#1|) (-10 -8 (-6 -4260) (-6 -4259) (-15 -3324 ($ (-713) (-713) |t#1|)) (-15 -3453 ($ $ |t#1|)) (-15 -2797 ((-525) $)) (-15 -3194 ((-525) $)) (-15 -2307 ((-525) $)) (-15 -3210 ((-525) $)) (-15 -2720 ((-713) $)) (-15 -2731 ((-713) $)) (-15 -3431 (|t#1| $ (-525) (-525))) (-15 -3017 (|t#1| $ (-525) (-525))) (-15 -3431 (|t#1| $ (-525) (-525) |t#1|)) (-15 -3209 (|t#2| $ (-525))) (-15 -1881 (|t#3| $ (-525))) (-15 -2175 ((-592 |t#1|) $)) (-15 -1233 (|t#1| $ (-525) (-525) |t#1|)) (-15 -3081 (|t#1| $ (-525) (-525) |t#1|)) (-15 -2695 ($ $ (-525) |t#2|)) (-15 -1773 ($ $ (-525) |t#3|)) (-15 -2016 ($ (-1 |t#1| |t#1|) $)) (-15 -3069 ($ (-1 |t#1| |t#1|) $)) (-15 -2016 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2016 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
+((-2159 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-3504 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-2016 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
+(((-56 |#1| |#2|) (-10 -7 (-15 -2159 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3504 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2016 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1128) (-1128)) (T -56))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-3504 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-56 *5 *2)))) (-2159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
+(-10 -7 (-15 -2159 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3504 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2016 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-2358 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2436 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4260))) (($ $) NIL (-12 (|has| $ (-6 -4260)) (|has| |#1| (-789))))) (-1842 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 ((|#1| $ (-525) |#1|) 11 (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2475 (($) NIL T CONST)) (-2670 (($ $) NIL (|has| $ (-6 -4260)))) (-1652 (($ $) NIL)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3081 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) NIL)) (-3856 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-2316 (($ (-592 |#1|)) 13) (($ (-713) |#1|) 14)) (-3324 (($ (-713) |#1|) 9)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) NIL (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-3212 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2594 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1647 ((|#1| $) NIL (|has| (-525) (-789)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3453 (($ $ |#1|) NIL (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) 7)) (-3431 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2139 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3632 (($ $ $ (-525)) NIL (|has| $ (-6 -4260)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) NIL)) (-2035 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2316 ($ (-592 |#1|))) (-15 -2316 ($ (-713) |#1|)))) (-1128)) (T -57))
+((-2316 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-57 *3)))) (-2316 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-57 *3)) (-4 *3 (-1128)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -2316 ($ (-592 |#1|))) (-15 -2316 ($ (-713) |#1|))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2695 (($ $ (-525) (-57 |#1|)) NIL)) (-1773 (($ $ (-525) (-57 |#1|)) NIL)) (-2475 (($) NIL T CONST)) (-3209 (((-57 |#1|) $ (-525)) NIL)) (-3081 ((|#1| $ (-525) (-525) |#1|) NIL)) (-3017 ((|#1| $ (-525) (-525)) NIL)) (-2175 (((-592 |#1|) $) NIL)) (-2720 (((-713) $) NIL)) (-3324 (($ (-713) (-713) |#1|) NIL)) (-2731 (((-713) $) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-2797 (((-525) $) NIL)) (-2307 (((-525) $) NIL)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3194 (((-525) $) NIL)) (-3210 (((-525) $) NIL)) (-3069 (($ (-1 |#1| |#1|) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3453 (($ $ |#1|) NIL)) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) NIL)) (-1881 (((-57 |#1|) $ (-525)) NIL)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4260))) (-1128)) (T -58))
+NIL
+(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4260)))
+((-1934 (((-3 $ "failed") (-1174 (-294 (-357)))) 74) (((-3 $ "failed") (-1174 (-294 (-525)))) 63) (((-3 $ "failed") (-1174 (-887 (-357)))) 94) (((-3 $ "failed") (-1174 (-887 (-525)))) 84) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 52) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 39)) (-4105 (($ (-1174 (-294 (-357)))) 70) (($ (-1174 (-294 (-525)))) 59) (($ (-1174 (-887 (-357)))) 90) (($ (-1174 (-887 (-525)))) 80) (($ (-1174 (-385 (-887 (-357))))) 48) (($ (-1174 (-385 (-887 (-525))))) 32)) (-2584 (((-1179) $) 120)) (-4100 (((-798) $) 113) (($ (-592 (-308))) 103) (($ (-308)) 97) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 101) (($ (-1174 (-317 (-4114 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4114) (-641)))) 31)))
+(((-59 |#1|) (-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4114) (-641))))))) (-1092)) (T -59))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-4114 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4114) (-641)))) (-5 *1 (-59 *3)) (-14 *3 (-1092)))))
+(-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4114) (-641)))))))
+((-2584 (((-1179) $) 53) (((-1179)) 54)) (-4100 (((-798) $) 50)))
+(((-60 |#1|) (-13 (-373) (-10 -7 (-15 -2584 ((-1179))))) (-1092)) (T -60))
+((-2584 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-60 *3)) (-14 *3 (-1092)))))
+(-13 (-373) (-10 -7 (-15 -2584 ((-1179)))))
+((-1934 (((-3 $ "failed") (-1174 (-294 (-357)))) 144) (((-3 $ "failed") (-1174 (-294 (-525)))) 134) (((-3 $ "failed") (-1174 (-887 (-357)))) 164) (((-3 $ "failed") (-1174 (-887 (-525)))) 154) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 123) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 111)) (-4105 (($ (-1174 (-294 (-357)))) 140) (($ (-1174 (-294 (-525)))) 130) (($ (-1174 (-887 (-357)))) 160) (($ (-1174 (-887 (-525)))) 150) (($ (-1174 (-385 (-887 (-357))))) 119) (($ (-1174 (-385 (-887 (-525))))) 104)) (-2584 (((-1179) $) 97)) (-4100 (((-798) $) 91) (($ (-592 (-308))) 29) (($ (-308)) 34) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 32) (($ (-1174 (-317 (-4114) (-4114 (QUOTE XC)) (-641)))) 89)))
+(((-61 |#1|) (-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114) (-4114 (QUOTE XC)) (-641))))))) (-1092)) (T -61))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-4114) (-4114 (QUOTE XC)) (-641)))) (-5 *1 (-61 *3)) (-14 *3 (-1092)))))
+(-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114) (-4114 (QUOTE XC)) (-641)))))))
+((-1934 (((-3 $ "failed") (-294 (-357))) 41) (((-3 $ "failed") (-294 (-525))) 46) (((-3 $ "failed") (-887 (-357))) 50) (((-3 $ "failed") (-887 (-525))) 54) (((-3 $ "failed") (-385 (-887 (-357)))) 36) (((-3 $ "failed") (-385 (-887 (-525)))) 29)) (-4105 (($ (-294 (-357))) 39) (($ (-294 (-525))) 44) (($ (-887 (-357))) 48) (($ (-887 (-525))) 52) (($ (-385 (-887 (-357)))) 34) (($ (-385 (-887 (-525)))) 26)) (-2584 (((-1179) $) 76)) (-4100 (((-798) $) 69) (($ (-592 (-308))) 61) (($ (-308)) 66) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 64) (($ (-317 (-4114 (QUOTE X)) (-4114) (-641))) 25)))
+(((-62 |#1|) (-13 (-374) (-10 -8 (-15 -4100 ($ (-317 (-4114 (QUOTE X)) (-4114) (-641)))))) (-1092)) (T -62))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-317 (-4114 (QUOTE X)) (-4114) (-641))) (-5 *1 (-62 *3)) (-14 *3 (-1092)))))
+(-13 (-374) (-10 -8 (-15 -4100 ($ (-317 (-4114 (QUOTE X)) (-4114) (-641))))))
+((-1934 (((-3 $ "failed") (-632 (-294 (-357)))) 109) (((-3 $ "failed") (-632 (-294 (-525)))) 97) (((-3 $ "failed") (-632 (-887 (-357)))) 131) (((-3 $ "failed") (-632 (-887 (-525)))) 120) (((-3 $ "failed") (-632 (-385 (-887 (-357))))) 85) (((-3 $ "failed") (-632 (-385 (-887 (-525))))) 71)) (-4105 (($ (-632 (-294 (-357)))) 105) (($ (-632 (-294 (-525)))) 93) (($ (-632 (-887 (-357)))) 127) (($ (-632 (-887 (-525)))) 116) (($ (-632 (-385 (-887 (-357))))) 81) (($ (-632 (-385 (-887 (-525))))) 64)) (-2584 (((-1179) $) 139)) (-4100 (((-798) $) 133) (($ (-592 (-308))) 28) (($ (-308)) 33) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 31) (($ (-632 (-317 (-4114) (-4114 (QUOTE X) (QUOTE HESS)) (-641)))) 54)))
+(((-63 |#1|) (-13 (-362) (-10 -8 (-15 -4100 ($ (-632 (-317 (-4114) (-4114 (QUOTE X) (QUOTE HESS)) (-641))))))) (-1092)) (T -63))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-4114) (-4114 (QUOTE X) (QUOTE HESS)) (-641)))) (-5 *1 (-63 *3)) (-14 *3 (-1092)))))
+(-13 (-362) (-10 -8 (-15 -4100 ($ (-632 (-317 (-4114) (-4114 (QUOTE X) (QUOTE HESS)) (-641)))))))
+((-1934 (((-3 $ "failed") (-294 (-357))) 59) (((-3 $ "failed") (-294 (-525))) 64) (((-3 $ "failed") (-887 (-357))) 68) (((-3 $ "failed") (-887 (-525))) 72) (((-3 $ "failed") (-385 (-887 (-357)))) 54) (((-3 $ "failed") (-385 (-887 (-525)))) 47)) (-4105 (($ (-294 (-357))) 57) (($ (-294 (-525))) 62) (($ (-887 (-357))) 66) (($ (-887 (-525))) 70) (($ (-385 (-887 (-357)))) 52) (($ (-385 (-887 (-525)))) 44)) (-2584 (((-1179) $) 81)) (-4100 (((-798) $) 75) (($ (-592 (-308))) 28) (($ (-308)) 33) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 31) (($ (-317 (-4114) (-4114 (QUOTE XC)) (-641))) 39)))
+(((-64 |#1|) (-13 (-374) (-10 -8 (-15 -4100 ($ (-317 (-4114) (-4114 (QUOTE XC)) (-641)))))) (-1092)) (T -64))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-317 (-4114) (-4114 (QUOTE XC)) (-641))) (-5 *1 (-64 *3)) (-14 *3 (-1092)))))
+(-13 (-374) (-10 -8 (-15 -4100 ($ (-317 (-4114) (-4114 (QUOTE XC)) (-641))))))
+((-2584 (((-1179) $) 63)) (-4100 (((-798) $) 57) (($ (-632 (-641))) 49) (($ (-592 (-308))) 48) (($ (-308)) 55) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 53)))
(((-65 |#1|) (-361) (-1092)) (T -65))
NIL
(-361)
-((-3252 (((-1179) $) 64)) (-1217 (((-798) $) 58) (($ (-632 (-641))) 50) (($ (-592 (-308))) 49) (($ (-308)) 52) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 55)))
+((-2584 (((-1179) $) 64)) (-4100 (((-798) $) 58) (($ (-632 (-641))) 50) (($ (-592 (-308))) 49) (($ (-308)) 52) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 55)))
(((-66 |#1|) (-361) (-1092)) (T -66))
NIL
(-361)
-((-3252 (((-1179) $) NIL) (((-1179)) 32)) (-1217 (((-798) $) NIL)))
-(((-67 |#1|) (-13 (-373) (-10 -7 (-15 -3252 ((-1179))))) (-1092)) (T -67))
-((-3252 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-67 *3)) (-14 *3 (-1092)))))
-(-13 (-373) (-10 -7 (-15 -3252 ((-1179)))))
-((-3252 (((-1179) $) 73)) (-1217 (((-798) $) 67) (($ (-632 (-641))) 59) (($ (-592 (-308))) 61) (($ (-308)) 64) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 58)))
+((-2584 (((-1179) $) NIL) (((-1179)) 32)) (-4100 (((-798) $) NIL)))
+(((-67 |#1|) (-13 (-373) (-10 -7 (-15 -2584 ((-1179))))) (-1092)) (T -67))
+((-2584 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-67 *3)) (-14 *3 (-1092)))))
+(-13 (-373) (-10 -7 (-15 -2584 ((-1179)))))
+((-2584 (((-1179) $) 73)) (-4100 (((-798) $) 67) (($ (-632 (-641))) 59) (($ (-592 (-308))) 61) (($ (-308)) 64) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 58)))
(((-68 |#1|) (-361) (-1092)) (T -68))
NIL
(-361)
-((-3077 (((-3 $ "failed") (-1174 (-294 (-357)))) 103) (((-3 $ "failed") (-1174 (-294 (-525)))) 92) (((-3 $ "failed") (-1174 (-887 (-357)))) 123) (((-3 $ "failed") (-1174 (-887 (-525)))) 113) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 81) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 68)) (-1572 (($ (-1174 (-294 (-357)))) 99) (($ (-1174 (-294 (-525)))) 88) (($ (-1174 (-887 (-357)))) 119) (($ (-1174 (-887 (-525)))) 109) (($ (-1174 (-385 (-887 (-357))))) 77) (($ (-1174 (-385 (-887 (-525))))) 61)) (-3252 (((-1179) $) 136)) (-1217 (((-798) $) 130) (($ (-592 (-308))) 125) (($ (-308)) 128) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 53) (($ (-1174 (-317 (-1230 (QUOTE X)) (-1230 (QUOTE -3418)) (-641)))) 54)))
-(((-69 |#1|) (-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230 (QUOTE X)) (-1230 (QUOTE -3418)) (-641))))))) (-1092)) (T -69))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-1230 (QUOTE X)) (-1230 (QUOTE -3418)) (-641)))) (-5 *1 (-69 *3)) (-14 *3 (-1092)))))
-(-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230 (QUOTE X)) (-1230 (QUOTE -3418)) (-641)))))))
-((-3252 (((-1179) $) 32) (((-1179)) 31)) (-1217 (((-798) $) 35)))
-(((-70 |#1|) (-13 (-373) (-10 -7 (-15 -3252 ((-1179))))) (-1092)) (T -70))
-((-3252 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-70 *3)) (-14 *3 (-1092)))))
-(-13 (-373) (-10 -7 (-15 -3252 ((-1179)))))
-((-3252 (((-1179) $) 63)) (-1217 (((-798) $) 57) (($ (-632 (-641))) 49) (($ (-592 (-308))) 51) (($ (-308)) 54) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 48)))
+((-1934 (((-3 $ "failed") (-1174 (-294 (-357)))) 103) (((-3 $ "failed") (-1174 (-294 (-525)))) 92) (((-3 $ "failed") (-1174 (-887 (-357)))) 123) (((-3 $ "failed") (-1174 (-887 (-525)))) 113) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 81) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 68)) (-4105 (($ (-1174 (-294 (-357)))) 99) (($ (-1174 (-294 (-525)))) 88) (($ (-1174 (-887 (-357)))) 119) (($ (-1174 (-887 (-525)))) 109) (($ (-1174 (-385 (-887 (-357))))) 77) (($ (-1174 (-385 (-887 (-525))))) 61)) (-2584 (((-1179) $) 136)) (-4100 (((-798) $) 130) (($ (-592 (-308))) 125) (($ (-308)) 128) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 53) (($ (-1174 (-317 (-4114 (QUOTE X)) (-4114 (QUOTE -1499)) (-641)))) 54)))
+(((-69 |#1|) (-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114 (QUOTE X)) (-4114 (QUOTE -1499)) (-641))))))) (-1092)) (T -69))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-4114 (QUOTE X)) (-4114 (QUOTE -1499)) (-641)))) (-5 *1 (-69 *3)) (-14 *3 (-1092)))))
+(-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114 (QUOTE X)) (-4114 (QUOTE -1499)) (-641)))))))
+((-2584 (((-1179) $) 32) (((-1179)) 31)) (-4100 (((-798) $) 35)))
+(((-70 |#1|) (-13 (-373) (-10 -7 (-15 -2584 ((-1179))))) (-1092)) (T -70))
+((-2584 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-70 *3)) (-14 *3 (-1092)))))
+(-13 (-373) (-10 -7 (-15 -2584 ((-1179)))))
+((-2584 (((-1179) $) 63)) (-4100 (((-798) $) 57) (($ (-632 (-641))) 49) (($ (-592 (-308))) 51) (($ (-308)) 54) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 48)))
(((-71 |#1|) (-361) (-1092)) (T -71))
NIL
(-361)
-((-3077 (((-3 $ "failed") (-1174 (-294 (-357)))) 125) (((-3 $ "failed") (-1174 (-294 (-525)))) 115) (((-3 $ "failed") (-1174 (-887 (-357)))) 145) (((-3 $ "failed") (-1174 (-887 (-525)))) 135) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 105) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 93)) (-1572 (($ (-1174 (-294 (-357)))) 121) (($ (-1174 (-294 (-525)))) 111) (($ (-1174 (-887 (-357)))) 141) (($ (-1174 (-887 (-525)))) 131) (($ (-1174 (-385 (-887 (-357))))) 101) (($ (-1174 (-385 (-887 (-525))))) 86)) (-3252 (((-1179) $) 78)) (-1217 (((-798) $) 27) (($ (-592 (-308))) 68) (($ (-308)) 64) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 71) (($ (-1174 (-317 (-1230) (-1230 (QUOTE X)) (-641)))) 65)))
-(((-72 |#1|) (-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230) (-1230 (QUOTE X)) (-641))))))) (-1092)) (T -72))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-1230) (-1230 (QUOTE X)) (-641)))) (-5 *1 (-72 *3)) (-14 *3 (-1092)))))
-(-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230) (-1230 (QUOTE X)) (-641)))))))
-((-3077 (((-3 $ "failed") (-1174 (-294 (-357)))) 130) (((-3 $ "failed") (-1174 (-294 (-525)))) 119) (((-3 $ "failed") (-1174 (-887 (-357)))) 150) (((-3 $ "failed") (-1174 (-887 (-525)))) 140) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 108) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 95)) (-1572 (($ (-1174 (-294 (-357)))) 126) (($ (-1174 (-294 (-525)))) 115) (($ (-1174 (-887 (-357)))) 146) (($ (-1174 (-887 (-525)))) 136) (($ (-1174 (-385 (-887 (-357))))) 104) (($ (-1174 (-385 (-887 (-525))))) 88)) (-3252 (((-1179) $) 79)) (-1217 (((-798) $) 71) (($ (-592 (-308))) NIL) (($ (-308)) NIL) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) NIL) (($ (-1174 (-317 (-1230 (QUOTE X) (QUOTE EPS)) (-1230 (QUOTE -3418)) (-641)))) 66)))
-(((-73 |#1| |#2| |#3|) (-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230 (QUOTE X) (QUOTE EPS)) (-1230 (QUOTE -3418)) (-641))))))) (-1092) (-1092) (-1092)) (T -73))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-1230 (QUOTE X) (QUOTE EPS)) (-1230 (QUOTE -3418)) (-641)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1092)) (-14 *4 (-1092)) (-14 *5 (-1092)))))
-(-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230 (QUOTE X) (QUOTE EPS)) (-1230 (QUOTE -3418)) (-641)))))))
-((-3077 (((-3 $ "failed") (-1174 (-294 (-357)))) 134) (((-3 $ "failed") (-1174 (-294 (-525)))) 123) (((-3 $ "failed") (-1174 (-887 (-357)))) 154) (((-3 $ "failed") (-1174 (-887 (-525)))) 144) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 112) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 99)) (-1572 (($ (-1174 (-294 (-357)))) 130) (($ (-1174 (-294 (-525)))) 119) (($ (-1174 (-887 (-357)))) 150) (($ (-1174 (-887 (-525)))) 140) (($ (-1174 (-385 (-887 (-357))))) 108) (($ (-1174 (-385 (-887 (-525))))) 92)) (-3252 (((-1179) $) 83)) (-1217 (((-798) $) 75) (($ (-592 (-308))) NIL) (($ (-308)) NIL) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) NIL) (($ (-1174 (-317 (-1230 (QUOTE EPS)) (-1230 (QUOTE YA) (QUOTE YB)) (-641)))) 70)))
-(((-74 |#1| |#2| |#3|) (-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230 (QUOTE EPS)) (-1230 (QUOTE YA) (QUOTE YB)) (-641))))))) (-1092) (-1092) (-1092)) (T -74))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-1230 (QUOTE EPS)) (-1230 (QUOTE YA) (QUOTE YB)) (-641)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1092)) (-14 *4 (-1092)) (-14 *5 (-1092)))))
-(-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230 (QUOTE EPS)) (-1230 (QUOTE YA) (QUOTE YB)) (-641)))))))
-((-3077 (((-3 $ "failed") (-294 (-357))) 82) (((-3 $ "failed") (-294 (-525))) 87) (((-3 $ "failed") (-887 (-357))) 91) (((-3 $ "failed") (-887 (-525))) 95) (((-3 $ "failed") (-385 (-887 (-357)))) 77) (((-3 $ "failed") (-385 (-887 (-525)))) 70)) (-1572 (($ (-294 (-357))) 80) (($ (-294 (-525))) 85) (($ (-887 (-357))) 89) (($ (-887 (-525))) 93) (($ (-385 (-887 (-357)))) 75) (($ (-385 (-887 (-525)))) 67)) (-3252 (((-1179) $) 62)) (-1217 (((-798) $) 50) (($ (-592 (-308))) 46) (($ (-308)) 56) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 54) (($ (-317 (-1230) (-1230 (QUOTE X)) (-641))) 47)))
-(((-75 |#1|) (-13 (-374) (-10 -8 (-15 -1217 ($ (-317 (-1230) (-1230 (QUOTE X)) (-641)))))) (-1092)) (T -75))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-317 (-1230) (-1230 (QUOTE X)) (-641))) (-5 *1 (-75 *3)) (-14 *3 (-1092)))))
-(-13 (-374) (-10 -8 (-15 -1217 ($ (-317 (-1230) (-1230 (QUOTE X)) (-641))))))
-((-3077 (((-3 $ "failed") (-294 (-357))) 46) (((-3 $ "failed") (-294 (-525))) 51) (((-3 $ "failed") (-887 (-357))) 55) (((-3 $ "failed") (-887 (-525))) 59) (((-3 $ "failed") (-385 (-887 (-357)))) 41) (((-3 $ "failed") (-385 (-887 (-525)))) 34)) (-1572 (($ (-294 (-357))) 44) (($ (-294 (-525))) 49) (($ (-887 (-357))) 53) (($ (-887 (-525))) 57) (($ (-385 (-887 (-357)))) 39) (($ (-385 (-887 (-525)))) 31)) (-3252 (((-1179) $) 80)) (-1217 (((-798) $) 74) (($ (-592 (-308))) 66) (($ (-308)) 71) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 69) (($ (-317 (-1230) (-1230 (QUOTE X)) (-641))) 30)))
-(((-76 |#1|) (-13 (-374) (-10 -8 (-15 -1217 ($ (-317 (-1230) (-1230 (QUOTE X)) (-641)))))) (-1092)) (T -76))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-317 (-1230) (-1230 (QUOTE X)) (-641))) (-5 *1 (-76 *3)) (-14 *3 (-1092)))))
-(-13 (-374) (-10 -8 (-15 -1217 ($ (-317 (-1230) (-1230 (QUOTE X)) (-641))))))
-((-3077 (((-3 $ "failed") (-1174 (-294 (-357)))) 89) (((-3 $ "failed") (-1174 (-294 (-525)))) 78) (((-3 $ "failed") (-1174 (-887 (-357)))) 109) (((-3 $ "failed") (-1174 (-887 (-525)))) 99) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 67) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 54)) (-1572 (($ (-1174 (-294 (-357)))) 85) (($ (-1174 (-294 (-525)))) 74) (($ (-1174 (-887 (-357)))) 105) (($ (-1174 (-887 (-525)))) 95) (($ (-1174 (-385 (-887 (-357))))) 63) (($ (-1174 (-385 (-887 (-525))))) 47)) (-3252 (((-1179) $) 125)) (-1217 (((-798) $) 119) (($ (-592 (-308))) 112) (($ (-308)) 37) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 115) (($ (-1174 (-317 (-1230) (-1230 (QUOTE XC)) (-641)))) 38)))
-(((-77 |#1|) (-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230) (-1230 (QUOTE XC)) (-641))))))) (-1092)) (T -77))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-1230) (-1230 (QUOTE XC)) (-641)))) (-5 *1 (-77 *3)) (-14 *3 (-1092)))))
-(-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230) (-1230 (QUOTE XC)) (-641)))))))
-((-3077 (((-3 $ "failed") (-1174 (-294 (-357)))) 142) (((-3 $ "failed") (-1174 (-294 (-525)))) 132) (((-3 $ "failed") (-1174 (-887 (-357)))) 162) (((-3 $ "failed") (-1174 (-887 (-525)))) 152) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 122) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 110)) (-1572 (($ (-1174 (-294 (-357)))) 138) (($ (-1174 (-294 (-525)))) 128) (($ (-1174 (-887 (-357)))) 158) (($ (-1174 (-887 (-525)))) 148) (($ (-1174 (-385 (-887 (-357))))) 118) (($ (-1174 (-385 (-887 (-525))))) 103)) (-3252 (((-1179) $) 96)) (-1217 (((-798) $) 90) (($ (-592 (-308))) 81) (($ (-308)) 88) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 86) (($ (-1174 (-317 (-1230) (-1230 (QUOTE X)) (-641)))) 82)))
-(((-78 |#1|) (-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230) (-1230 (QUOTE X)) (-641))))))) (-1092)) (T -78))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-1230) (-1230 (QUOTE X)) (-641)))) (-5 *1 (-78 *3)) (-14 *3 (-1092)))))
-(-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230) (-1230 (QUOTE X)) (-641)))))))
-((-3077 (((-3 $ "failed") (-1174 (-294 (-357)))) 78) (((-3 $ "failed") (-1174 (-294 (-525)))) 67) (((-3 $ "failed") (-1174 (-887 (-357)))) 98) (((-3 $ "failed") (-1174 (-887 (-525)))) 88) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 56) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 43)) (-1572 (($ (-1174 (-294 (-357)))) 74) (($ (-1174 (-294 (-525)))) 63) (($ (-1174 (-887 (-357)))) 94) (($ (-1174 (-887 (-525)))) 84) (($ (-1174 (-385 (-887 (-357))))) 52) (($ (-1174 (-385 (-887 (-525))))) 36)) (-3252 (((-1179) $) 124)) (-1217 (((-798) $) 118) (($ (-592 (-308))) 109) (($ (-308)) 115) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 113) (($ (-1174 (-317 (-1230) (-1230 (QUOTE X)) (-641)))) 35)))
-(((-79 |#1|) (-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230) (-1230 (QUOTE X)) (-641))))))) (-1092)) (T -79))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-1230) (-1230 (QUOTE X)) (-641)))) (-5 *1 (-79 *3)) (-14 *3 (-1092)))))
-(-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230) (-1230 (QUOTE X)) (-641)))))))
-((-3077 (((-3 $ "failed") (-1174 (-294 (-357)))) 95) (((-3 $ "failed") (-1174 (-294 (-525)))) 84) (((-3 $ "failed") (-1174 (-887 (-357)))) 115) (((-3 $ "failed") (-1174 (-887 (-525)))) 105) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 73) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 60)) (-1572 (($ (-1174 (-294 (-357)))) 91) (($ (-1174 (-294 (-525)))) 80) (($ (-1174 (-887 (-357)))) 111) (($ (-1174 (-887 (-525)))) 101) (($ (-1174 (-385 (-887 (-357))))) 69) (($ (-1174 (-385 (-887 (-525))))) 53)) (-3252 (((-1179) $) 45)) (-1217 (((-798) $) 39) (($ (-592 (-308))) 29) (($ (-308)) 32) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 35) (($ (-1174 (-317 (-1230 (QUOTE X) (QUOTE -3418)) (-1230) (-641)))) 30)))
-(((-80 |#1|) (-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230 (QUOTE X) (QUOTE -3418)) (-1230) (-641))))))) (-1092)) (T -80))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-1230 (QUOTE X) (QUOTE -3418)) (-1230) (-641)))) (-5 *1 (-80 *3)) (-14 *3 (-1092)))))
-(-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230 (QUOTE X) (QUOTE -3418)) (-1230) (-641)))))))
-((-3077 (((-3 $ "failed") (-632 (-294 (-357)))) 115) (((-3 $ "failed") (-632 (-294 (-525)))) 104) (((-3 $ "failed") (-632 (-887 (-357)))) 137) (((-3 $ "failed") (-632 (-887 (-525)))) 126) (((-3 $ "failed") (-632 (-385 (-887 (-357))))) 93) (((-3 $ "failed") (-632 (-385 (-887 (-525))))) 80)) (-1572 (($ (-632 (-294 (-357)))) 111) (($ (-632 (-294 (-525)))) 100) (($ (-632 (-887 (-357)))) 133) (($ (-632 (-887 (-525)))) 122) (($ (-632 (-385 (-887 (-357))))) 89) (($ (-632 (-385 (-887 (-525))))) 73)) (-3252 (((-1179) $) 63)) (-1217 (((-798) $) 50) (($ (-592 (-308))) 57) (($ (-308)) 46) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 55) (($ (-632 (-317 (-1230 (QUOTE X) (QUOTE -3418)) (-1230) (-641)))) 47)))
-(((-81 |#1|) (-13 (-362) (-10 -8 (-15 -1217 ($ (-632 (-317 (-1230 (QUOTE X) (QUOTE -3418)) (-1230) (-641))))))) (-1092)) (T -81))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-1230 (QUOTE X) (QUOTE -3418)) (-1230) (-641)))) (-5 *1 (-81 *3)) (-14 *3 (-1092)))))
-(-13 (-362) (-10 -8 (-15 -1217 ($ (-632 (-317 (-1230 (QUOTE X) (QUOTE -3418)) (-1230) (-641)))))))
-((-3077 (((-3 $ "failed") (-632 (-294 (-357)))) 112) (((-3 $ "failed") (-632 (-294 (-525)))) 100) (((-3 $ "failed") (-632 (-887 (-357)))) 134) (((-3 $ "failed") (-632 (-887 (-525)))) 123) (((-3 $ "failed") (-632 (-385 (-887 (-357))))) 88) (((-3 $ "failed") (-632 (-385 (-887 (-525))))) 74)) (-1572 (($ (-632 (-294 (-357)))) 108) (($ (-632 (-294 (-525)))) 96) (($ (-632 (-887 (-357)))) 130) (($ (-632 (-887 (-525)))) 119) (($ (-632 (-385 (-887 (-357))))) 84) (($ (-632 (-385 (-887 (-525))))) 67)) (-3252 (((-1179) $) 59)) (-1217 (((-798) $) 53) (($ (-592 (-308))) 47) (($ (-308)) 50) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 44) (($ (-632 (-317 (-1230 (QUOTE X)) (-1230) (-641)))) 45)))
-(((-82 |#1|) (-13 (-362) (-10 -8 (-15 -1217 ($ (-632 (-317 (-1230 (QUOTE X)) (-1230) (-641))))))) (-1092)) (T -82))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-1230 (QUOTE X)) (-1230) (-641)))) (-5 *1 (-82 *3)) (-14 *3 (-1092)))))
-(-13 (-362) (-10 -8 (-15 -1217 ($ (-632 (-317 (-1230 (QUOTE X)) (-1230) (-641)))))))
-((-3077 (((-3 $ "failed") (-1174 (-294 (-357)))) 104) (((-3 $ "failed") (-1174 (-294 (-525)))) 93) (((-3 $ "failed") (-1174 (-887 (-357)))) 124) (((-3 $ "failed") (-1174 (-887 (-525)))) 114) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 82) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 69)) (-1572 (($ (-1174 (-294 (-357)))) 100) (($ (-1174 (-294 (-525)))) 89) (($ (-1174 (-887 (-357)))) 120) (($ (-1174 (-887 (-525)))) 110) (($ (-1174 (-385 (-887 (-357))))) 78) (($ (-1174 (-385 (-887 (-525))))) 62)) (-3252 (((-1179) $) 46)) (-1217 (((-798) $) 40) (($ (-592 (-308))) 49) (($ (-308)) 36) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 52) (($ (-1174 (-317 (-1230 (QUOTE X)) (-1230) (-641)))) 37)))
-(((-83 |#1|) (-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230 (QUOTE X)) (-1230) (-641))))))) (-1092)) (T -83))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-1230 (QUOTE X)) (-1230) (-641)))) (-5 *1 (-83 *3)) (-14 *3 (-1092)))))
-(-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230 (QUOTE X)) (-1230) (-641)))))))
-((-3077 (((-3 $ "failed") (-1174 (-294 (-357)))) 79) (((-3 $ "failed") (-1174 (-294 (-525)))) 68) (((-3 $ "failed") (-1174 (-887 (-357)))) 99) (((-3 $ "failed") (-1174 (-887 (-525)))) 89) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 57) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 44)) (-1572 (($ (-1174 (-294 (-357)))) 75) (($ (-1174 (-294 (-525)))) 64) (($ (-1174 (-887 (-357)))) 95) (($ (-1174 (-887 (-525)))) 85) (($ (-1174 (-385 (-887 (-357))))) 53) (($ (-1174 (-385 (-887 (-525))))) 37)) (-3252 (((-1179) $) 125)) (-1217 (((-798) $) 119) (($ (-592 (-308))) 110) (($ (-308)) 116) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 114) (($ (-1174 (-317 (-1230 (QUOTE X)) (-1230 (QUOTE -3418)) (-641)))) 36)))
-(((-84 |#1|) (-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230 (QUOTE X)) (-1230 (QUOTE -3418)) (-641))))))) (-1092)) (T -84))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-1230 (QUOTE X)) (-1230 (QUOTE -3418)) (-641)))) (-5 *1 (-84 *3)) (-14 *3 (-1092)))))
-(-13 (-418) (-10 -8 (-15 -1217 ($ (-1174 (-317 (-1230 (QUOTE X)) (-1230 (QUOTE -3418)) (-641)))))))
-((-3077 (((-3 $ "failed") (-632 (-294 (-357)))) 113) (((-3 $ "failed") (-632 (-294 (-525)))) 101) (((-3 $ "failed") (-632 (-887 (-357)))) 135) (((-3 $ "failed") (-632 (-887 (-525)))) 124) (((-3 $ "failed") (-632 (-385 (-887 (-357))))) 89) (((-3 $ "failed") (-632 (-385 (-887 (-525))))) 75)) (-1572 (($ (-632 (-294 (-357)))) 109) (($ (-632 (-294 (-525)))) 97) (($ (-632 (-887 (-357)))) 131) (($ (-632 (-887 (-525)))) 120) (($ (-632 (-385 (-887 (-357))))) 85) (($ (-632 (-385 (-887 (-525))))) 68)) (-3252 (((-1179) $) 59)) (-1217 (((-798) $) 53) (($ (-592 (-308))) 43) (($ (-308)) 50) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 48) (($ (-632 (-317 (-1230 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1230) (-641)))) 44)))
-(((-85 |#1|) (-13 (-362) (-10 -8 (-15 -1217 ($ (-632 (-317 (-1230 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1230) (-641))))))) (-1092)) (T -85))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-1230 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1230) (-641)))) (-5 *1 (-85 *3)) (-14 *3 (-1092)))))
-(-13 (-362) (-10 -8 (-15 -1217 ($ (-632 (-317 (-1230 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1230) (-641)))))))
-((-3252 (((-1179) $) 44)) (-1217 (((-798) $) 38) (($ (-1174 (-641))) 92) (($ (-592 (-308))) 30) (($ (-308)) 35) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 33)))
+((-1934 (((-3 $ "failed") (-1174 (-294 (-357)))) 125) (((-3 $ "failed") (-1174 (-294 (-525)))) 115) (((-3 $ "failed") (-1174 (-887 (-357)))) 145) (((-3 $ "failed") (-1174 (-887 (-525)))) 135) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 105) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 93)) (-4105 (($ (-1174 (-294 (-357)))) 121) (($ (-1174 (-294 (-525)))) 111) (($ (-1174 (-887 (-357)))) 141) (($ (-1174 (-887 (-525)))) 131) (($ (-1174 (-385 (-887 (-357))))) 101) (($ (-1174 (-385 (-887 (-525))))) 86)) (-2584 (((-1179) $) 78)) (-4100 (((-798) $) 27) (($ (-592 (-308))) 68) (($ (-308)) 64) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 71) (($ (-1174 (-317 (-4114) (-4114 (QUOTE X)) (-641)))) 65)))
+(((-72 |#1|) (-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114) (-4114 (QUOTE X)) (-641))))))) (-1092)) (T -72))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-4114) (-4114 (QUOTE X)) (-641)))) (-5 *1 (-72 *3)) (-14 *3 (-1092)))))
+(-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114) (-4114 (QUOTE X)) (-641)))))))
+((-1934 (((-3 $ "failed") (-1174 (-294 (-357)))) 130) (((-3 $ "failed") (-1174 (-294 (-525)))) 119) (((-3 $ "failed") (-1174 (-887 (-357)))) 150) (((-3 $ "failed") (-1174 (-887 (-525)))) 140) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 108) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 95)) (-4105 (($ (-1174 (-294 (-357)))) 126) (($ (-1174 (-294 (-525)))) 115) (($ (-1174 (-887 (-357)))) 146) (($ (-1174 (-887 (-525)))) 136) (($ (-1174 (-385 (-887 (-357))))) 104) (($ (-1174 (-385 (-887 (-525))))) 88)) (-2584 (((-1179) $) 79)) (-4100 (((-798) $) 71) (($ (-592 (-308))) NIL) (($ (-308)) NIL) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) NIL) (($ (-1174 (-317 (-4114 (QUOTE X) (QUOTE EPS)) (-4114 (QUOTE -1499)) (-641)))) 66)))
+(((-73 |#1| |#2| |#3|) (-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114 (QUOTE X) (QUOTE EPS)) (-4114 (QUOTE -1499)) (-641))))))) (-1092) (-1092) (-1092)) (T -73))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-4114 (QUOTE X) (QUOTE EPS)) (-4114 (QUOTE -1499)) (-641)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1092)) (-14 *4 (-1092)) (-14 *5 (-1092)))))
+(-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114 (QUOTE X) (QUOTE EPS)) (-4114 (QUOTE -1499)) (-641)))))))
+((-1934 (((-3 $ "failed") (-1174 (-294 (-357)))) 134) (((-3 $ "failed") (-1174 (-294 (-525)))) 123) (((-3 $ "failed") (-1174 (-887 (-357)))) 154) (((-3 $ "failed") (-1174 (-887 (-525)))) 144) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 112) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 99)) (-4105 (($ (-1174 (-294 (-357)))) 130) (($ (-1174 (-294 (-525)))) 119) (($ (-1174 (-887 (-357)))) 150) (($ (-1174 (-887 (-525)))) 140) (($ (-1174 (-385 (-887 (-357))))) 108) (($ (-1174 (-385 (-887 (-525))))) 92)) (-2584 (((-1179) $) 83)) (-4100 (((-798) $) 75) (($ (-592 (-308))) NIL) (($ (-308)) NIL) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) NIL) (($ (-1174 (-317 (-4114 (QUOTE EPS)) (-4114 (QUOTE YA) (QUOTE YB)) (-641)))) 70)))
+(((-74 |#1| |#2| |#3|) (-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114 (QUOTE EPS)) (-4114 (QUOTE YA) (QUOTE YB)) (-641))))))) (-1092) (-1092) (-1092)) (T -74))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-4114 (QUOTE EPS)) (-4114 (QUOTE YA) (QUOTE YB)) (-641)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1092)) (-14 *4 (-1092)) (-14 *5 (-1092)))))
+(-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114 (QUOTE EPS)) (-4114 (QUOTE YA) (QUOTE YB)) (-641)))))))
+((-1934 (((-3 $ "failed") (-294 (-357))) 82) (((-3 $ "failed") (-294 (-525))) 87) (((-3 $ "failed") (-887 (-357))) 91) (((-3 $ "failed") (-887 (-525))) 95) (((-3 $ "failed") (-385 (-887 (-357)))) 77) (((-3 $ "failed") (-385 (-887 (-525)))) 70)) (-4105 (($ (-294 (-357))) 80) (($ (-294 (-525))) 85) (($ (-887 (-357))) 89) (($ (-887 (-525))) 93) (($ (-385 (-887 (-357)))) 75) (($ (-385 (-887 (-525)))) 67)) (-2584 (((-1179) $) 62)) (-4100 (((-798) $) 50) (($ (-592 (-308))) 46) (($ (-308)) 56) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 54) (($ (-317 (-4114) (-4114 (QUOTE X)) (-641))) 47)))
+(((-75 |#1|) (-13 (-374) (-10 -8 (-15 -4100 ($ (-317 (-4114) (-4114 (QUOTE X)) (-641)))))) (-1092)) (T -75))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-317 (-4114) (-4114 (QUOTE X)) (-641))) (-5 *1 (-75 *3)) (-14 *3 (-1092)))))
+(-13 (-374) (-10 -8 (-15 -4100 ($ (-317 (-4114) (-4114 (QUOTE X)) (-641))))))
+((-1934 (((-3 $ "failed") (-294 (-357))) 46) (((-3 $ "failed") (-294 (-525))) 51) (((-3 $ "failed") (-887 (-357))) 55) (((-3 $ "failed") (-887 (-525))) 59) (((-3 $ "failed") (-385 (-887 (-357)))) 41) (((-3 $ "failed") (-385 (-887 (-525)))) 34)) (-4105 (($ (-294 (-357))) 44) (($ (-294 (-525))) 49) (($ (-887 (-357))) 53) (($ (-887 (-525))) 57) (($ (-385 (-887 (-357)))) 39) (($ (-385 (-887 (-525)))) 31)) (-2584 (((-1179) $) 80)) (-4100 (((-798) $) 74) (($ (-592 (-308))) 66) (($ (-308)) 71) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 69) (($ (-317 (-4114) (-4114 (QUOTE X)) (-641))) 30)))
+(((-76 |#1|) (-13 (-374) (-10 -8 (-15 -4100 ($ (-317 (-4114) (-4114 (QUOTE X)) (-641)))))) (-1092)) (T -76))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-317 (-4114) (-4114 (QUOTE X)) (-641))) (-5 *1 (-76 *3)) (-14 *3 (-1092)))))
+(-13 (-374) (-10 -8 (-15 -4100 ($ (-317 (-4114) (-4114 (QUOTE X)) (-641))))))
+((-1934 (((-3 $ "failed") (-1174 (-294 (-357)))) 89) (((-3 $ "failed") (-1174 (-294 (-525)))) 78) (((-3 $ "failed") (-1174 (-887 (-357)))) 109) (((-3 $ "failed") (-1174 (-887 (-525)))) 99) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 67) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 54)) (-4105 (($ (-1174 (-294 (-357)))) 85) (($ (-1174 (-294 (-525)))) 74) (($ (-1174 (-887 (-357)))) 105) (($ (-1174 (-887 (-525)))) 95) (($ (-1174 (-385 (-887 (-357))))) 63) (($ (-1174 (-385 (-887 (-525))))) 47)) (-2584 (((-1179) $) 125)) (-4100 (((-798) $) 119) (($ (-592 (-308))) 112) (($ (-308)) 37) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 115) (($ (-1174 (-317 (-4114) (-4114 (QUOTE XC)) (-641)))) 38)))
+(((-77 |#1|) (-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114) (-4114 (QUOTE XC)) (-641))))))) (-1092)) (T -77))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-4114) (-4114 (QUOTE XC)) (-641)))) (-5 *1 (-77 *3)) (-14 *3 (-1092)))))
+(-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114) (-4114 (QUOTE XC)) (-641)))))))
+((-1934 (((-3 $ "failed") (-1174 (-294 (-357)))) 142) (((-3 $ "failed") (-1174 (-294 (-525)))) 132) (((-3 $ "failed") (-1174 (-887 (-357)))) 162) (((-3 $ "failed") (-1174 (-887 (-525)))) 152) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 122) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 110)) (-4105 (($ (-1174 (-294 (-357)))) 138) (($ (-1174 (-294 (-525)))) 128) (($ (-1174 (-887 (-357)))) 158) (($ (-1174 (-887 (-525)))) 148) (($ (-1174 (-385 (-887 (-357))))) 118) (($ (-1174 (-385 (-887 (-525))))) 103)) (-2584 (((-1179) $) 96)) (-4100 (((-798) $) 90) (($ (-592 (-308))) 81) (($ (-308)) 88) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 86) (($ (-1174 (-317 (-4114) (-4114 (QUOTE X)) (-641)))) 82)))
+(((-78 |#1|) (-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114) (-4114 (QUOTE X)) (-641))))))) (-1092)) (T -78))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-4114) (-4114 (QUOTE X)) (-641)))) (-5 *1 (-78 *3)) (-14 *3 (-1092)))))
+(-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114) (-4114 (QUOTE X)) (-641)))))))
+((-1934 (((-3 $ "failed") (-1174 (-294 (-357)))) 78) (((-3 $ "failed") (-1174 (-294 (-525)))) 67) (((-3 $ "failed") (-1174 (-887 (-357)))) 98) (((-3 $ "failed") (-1174 (-887 (-525)))) 88) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 56) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 43)) (-4105 (($ (-1174 (-294 (-357)))) 74) (($ (-1174 (-294 (-525)))) 63) (($ (-1174 (-887 (-357)))) 94) (($ (-1174 (-887 (-525)))) 84) (($ (-1174 (-385 (-887 (-357))))) 52) (($ (-1174 (-385 (-887 (-525))))) 36)) (-2584 (((-1179) $) 124)) (-4100 (((-798) $) 118) (($ (-592 (-308))) 109) (($ (-308)) 115) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 113) (($ (-1174 (-317 (-4114) (-4114 (QUOTE X)) (-641)))) 35)))
+(((-79 |#1|) (-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114) (-4114 (QUOTE X)) (-641))))))) (-1092)) (T -79))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-4114) (-4114 (QUOTE X)) (-641)))) (-5 *1 (-79 *3)) (-14 *3 (-1092)))))
+(-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114) (-4114 (QUOTE X)) (-641)))))))
+((-1934 (((-3 $ "failed") (-1174 (-294 (-357)))) 95) (((-3 $ "failed") (-1174 (-294 (-525)))) 84) (((-3 $ "failed") (-1174 (-887 (-357)))) 115) (((-3 $ "failed") (-1174 (-887 (-525)))) 105) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 73) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 60)) (-4105 (($ (-1174 (-294 (-357)))) 91) (($ (-1174 (-294 (-525)))) 80) (($ (-1174 (-887 (-357)))) 111) (($ (-1174 (-887 (-525)))) 101) (($ (-1174 (-385 (-887 (-357))))) 69) (($ (-1174 (-385 (-887 (-525))))) 53)) (-2584 (((-1179) $) 45)) (-4100 (((-798) $) 39) (($ (-592 (-308))) 29) (($ (-308)) 32) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 35) (($ (-1174 (-317 (-4114 (QUOTE X) (QUOTE -1499)) (-4114) (-641)))) 30)))
+(((-80 |#1|) (-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114 (QUOTE X) (QUOTE -1499)) (-4114) (-641))))))) (-1092)) (T -80))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-4114 (QUOTE X) (QUOTE -1499)) (-4114) (-641)))) (-5 *1 (-80 *3)) (-14 *3 (-1092)))))
+(-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114 (QUOTE X) (QUOTE -1499)) (-4114) (-641)))))))
+((-1934 (((-3 $ "failed") (-632 (-294 (-357)))) 115) (((-3 $ "failed") (-632 (-294 (-525)))) 104) (((-3 $ "failed") (-632 (-887 (-357)))) 137) (((-3 $ "failed") (-632 (-887 (-525)))) 126) (((-3 $ "failed") (-632 (-385 (-887 (-357))))) 93) (((-3 $ "failed") (-632 (-385 (-887 (-525))))) 80)) (-4105 (($ (-632 (-294 (-357)))) 111) (($ (-632 (-294 (-525)))) 100) (($ (-632 (-887 (-357)))) 133) (($ (-632 (-887 (-525)))) 122) (($ (-632 (-385 (-887 (-357))))) 89) (($ (-632 (-385 (-887 (-525))))) 73)) (-2584 (((-1179) $) 63)) (-4100 (((-798) $) 50) (($ (-592 (-308))) 57) (($ (-308)) 46) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 55) (($ (-632 (-317 (-4114 (QUOTE X) (QUOTE -1499)) (-4114) (-641)))) 47)))
+(((-81 |#1|) (-13 (-362) (-10 -8 (-15 -4100 ($ (-632 (-317 (-4114 (QUOTE X) (QUOTE -1499)) (-4114) (-641))))))) (-1092)) (T -81))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-4114 (QUOTE X) (QUOTE -1499)) (-4114) (-641)))) (-5 *1 (-81 *3)) (-14 *3 (-1092)))))
+(-13 (-362) (-10 -8 (-15 -4100 ($ (-632 (-317 (-4114 (QUOTE X) (QUOTE -1499)) (-4114) (-641)))))))
+((-1934 (((-3 $ "failed") (-632 (-294 (-357)))) 112) (((-3 $ "failed") (-632 (-294 (-525)))) 100) (((-3 $ "failed") (-632 (-887 (-357)))) 134) (((-3 $ "failed") (-632 (-887 (-525)))) 123) (((-3 $ "failed") (-632 (-385 (-887 (-357))))) 88) (((-3 $ "failed") (-632 (-385 (-887 (-525))))) 74)) (-4105 (($ (-632 (-294 (-357)))) 108) (($ (-632 (-294 (-525)))) 96) (($ (-632 (-887 (-357)))) 130) (($ (-632 (-887 (-525)))) 119) (($ (-632 (-385 (-887 (-357))))) 84) (($ (-632 (-385 (-887 (-525))))) 67)) (-2584 (((-1179) $) 59)) (-4100 (((-798) $) 53) (($ (-592 (-308))) 47) (($ (-308)) 50) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 44) (($ (-632 (-317 (-4114 (QUOTE X)) (-4114) (-641)))) 45)))
+(((-82 |#1|) (-13 (-362) (-10 -8 (-15 -4100 ($ (-632 (-317 (-4114 (QUOTE X)) (-4114) (-641))))))) (-1092)) (T -82))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-4114 (QUOTE X)) (-4114) (-641)))) (-5 *1 (-82 *3)) (-14 *3 (-1092)))))
+(-13 (-362) (-10 -8 (-15 -4100 ($ (-632 (-317 (-4114 (QUOTE X)) (-4114) (-641)))))))
+((-1934 (((-3 $ "failed") (-1174 (-294 (-357)))) 104) (((-3 $ "failed") (-1174 (-294 (-525)))) 93) (((-3 $ "failed") (-1174 (-887 (-357)))) 124) (((-3 $ "failed") (-1174 (-887 (-525)))) 114) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 82) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 69)) (-4105 (($ (-1174 (-294 (-357)))) 100) (($ (-1174 (-294 (-525)))) 89) (($ (-1174 (-887 (-357)))) 120) (($ (-1174 (-887 (-525)))) 110) (($ (-1174 (-385 (-887 (-357))))) 78) (($ (-1174 (-385 (-887 (-525))))) 62)) (-2584 (((-1179) $) 46)) (-4100 (((-798) $) 40) (($ (-592 (-308))) 49) (($ (-308)) 36) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 52) (($ (-1174 (-317 (-4114 (QUOTE X)) (-4114) (-641)))) 37)))
+(((-83 |#1|) (-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114 (QUOTE X)) (-4114) (-641))))))) (-1092)) (T -83))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-4114 (QUOTE X)) (-4114) (-641)))) (-5 *1 (-83 *3)) (-14 *3 (-1092)))))
+(-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114 (QUOTE X)) (-4114) (-641)))))))
+((-1934 (((-3 $ "failed") (-1174 (-294 (-357)))) 79) (((-3 $ "failed") (-1174 (-294 (-525)))) 68) (((-3 $ "failed") (-1174 (-887 (-357)))) 99) (((-3 $ "failed") (-1174 (-887 (-525)))) 89) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 57) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 44)) (-4105 (($ (-1174 (-294 (-357)))) 75) (($ (-1174 (-294 (-525)))) 64) (($ (-1174 (-887 (-357)))) 95) (($ (-1174 (-887 (-525)))) 85) (($ (-1174 (-385 (-887 (-357))))) 53) (($ (-1174 (-385 (-887 (-525))))) 37)) (-2584 (((-1179) $) 125)) (-4100 (((-798) $) 119) (($ (-592 (-308))) 110) (($ (-308)) 116) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 114) (($ (-1174 (-317 (-4114 (QUOTE X)) (-4114 (QUOTE -1499)) (-641)))) 36)))
+(((-84 |#1|) (-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114 (QUOTE X)) (-4114 (QUOTE -1499)) (-641))))))) (-1092)) (T -84))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1174 (-317 (-4114 (QUOTE X)) (-4114 (QUOTE -1499)) (-641)))) (-5 *1 (-84 *3)) (-14 *3 (-1092)))))
+(-13 (-418) (-10 -8 (-15 -4100 ($ (-1174 (-317 (-4114 (QUOTE X)) (-4114 (QUOTE -1499)) (-641)))))))
+((-1934 (((-3 $ "failed") (-632 (-294 (-357)))) 113) (((-3 $ "failed") (-632 (-294 (-525)))) 101) (((-3 $ "failed") (-632 (-887 (-357)))) 135) (((-3 $ "failed") (-632 (-887 (-525)))) 124) (((-3 $ "failed") (-632 (-385 (-887 (-357))))) 89) (((-3 $ "failed") (-632 (-385 (-887 (-525))))) 75)) (-4105 (($ (-632 (-294 (-357)))) 109) (($ (-632 (-294 (-525)))) 97) (($ (-632 (-887 (-357)))) 131) (($ (-632 (-887 (-525)))) 120) (($ (-632 (-385 (-887 (-357))))) 85) (($ (-632 (-385 (-887 (-525))))) 68)) (-2584 (((-1179) $) 59)) (-4100 (((-798) $) 53) (($ (-592 (-308))) 43) (($ (-308)) 50) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 48) (($ (-632 (-317 (-4114 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4114) (-641)))) 44)))
+(((-85 |#1|) (-13 (-362) (-10 -8 (-15 -4100 ($ (-632 (-317 (-4114 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4114) (-641))))))) (-1092)) (T -85))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-4114 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4114) (-641)))) (-5 *1 (-85 *3)) (-14 *3 (-1092)))))
+(-13 (-362) (-10 -8 (-15 -4100 ($ (-632 (-317 (-4114 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4114) (-641)))))))
+((-2584 (((-1179) $) 44)) (-4100 (((-798) $) 38) (($ (-1174 (-641))) 92) (($ (-592 (-308))) 30) (($ (-308)) 35) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 33)))
(((-86 |#1|) (-417) (-1092)) (T -86))
NIL
(-417)
-((-3077 (((-3 $ "failed") (-294 (-357))) 47) (((-3 $ "failed") (-294 (-525))) 52) (((-3 $ "failed") (-887 (-357))) 56) (((-3 $ "failed") (-887 (-525))) 60) (((-3 $ "failed") (-385 (-887 (-357)))) 42) (((-3 $ "failed") (-385 (-887 (-525)))) 35)) (-1572 (($ (-294 (-357))) 45) (($ (-294 (-525))) 50) (($ (-887 (-357))) 54) (($ (-887 (-525))) 58) (($ (-385 (-887 (-357)))) 40) (($ (-385 (-887 (-525)))) 32)) (-3252 (((-1179) $) 90)) (-1217 (((-798) $) 84) (($ (-592 (-308))) 78) (($ (-308)) 81) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 76) (($ (-317 (-1230 (QUOTE X)) (-1230 (QUOTE -3418)) (-641))) 31)))
-(((-87 |#1|) (-13 (-374) (-10 -8 (-15 -1217 ($ (-317 (-1230 (QUOTE X)) (-1230 (QUOTE -3418)) (-641)))))) (-1092)) (T -87))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-317 (-1230 (QUOTE X)) (-1230 (QUOTE -3418)) (-641))) (-5 *1 (-87 *3)) (-14 *3 (-1092)))))
-(-13 (-374) (-10 -8 (-15 -1217 ($ (-317 (-1230 (QUOTE X)) (-1230 (QUOTE -3418)) (-641))))))
-((-3538 (((-1174 (-632 |#1|)) (-632 |#1|)) 54)) (-3983 (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 (-592 (-856))))) |#2| (-856)) 44)) (-4103 (((-2 (|:| |minor| (-592 (-856))) (|:| -3025 |#2|) (|:| |minors| (-592 (-592 (-856)))) (|:| |ops| (-592 |#2|))) |#2| (-856)) 65 (|has| |#1| (-341)))))
-(((-88 |#1| |#2|) (-10 -7 (-15 -3983 ((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 (-592 (-856))))) |#2| (-856))) (-15 -3538 ((-1174 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-341)) (-15 -4103 ((-2 (|:| |minor| (-592 (-856))) (|:| -3025 |#2|) (|:| |minors| (-592 (-592 (-856)))) (|:| |ops| (-592 |#2|))) |#2| (-856))) |%noBranch|)) (-517) (-602 |#1|)) (T -88))
-((-4103 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |minor| (-592 (-856))) (|:| -3025 *3) (|:| |minors| (-592 (-592 (-856)))) (|:| |ops| (-592 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-856)) (-4 *3 (-602 *5)))) (-3538 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-1174 (-632 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-632 *4)) (-4 *5 (-602 *4)))) (-3983 (*1 *2 *3 *4) (-12 (-4 *5 (-517)) (-5 *2 (-2 (|:| -3407 (-632 *5)) (|:| |vec| (-1174 (-592 (-856)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-856)) (-4 *3 (-602 *5)))))
-(-10 -7 (-15 -3983 ((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 (-592 (-856))))) |#2| (-856))) (-15 -3538 ((-1174 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-341)) (-15 -4103 ((-2 (|:| |minor| (-592 (-856))) (|:| -3025 |#2|) (|:| |minors| (-592 (-592 (-856)))) (|:| |ops| (-592 |#2|))) |#2| (-856))) |%noBranch|))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3412 ((|#1| $) 35)) (-3991 (((-108) $ (-713)) NIL)) (-2169 (($) NIL T CONST)) (-2940 ((|#1| |#1| $) 30)) (-2375 ((|#1| $) 28)) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2992 ((|#1| $) NIL)) (-1262 (($ |#1| $) 31)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-4127 ((|#1| $) 29)) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) 16)) (-2512 (($) 39)) (-1769 (((-713) $) 26)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) 15)) (-1217 (((-798) $) 25 (|has| |#1| (-566 (-798))))) (-1956 (($ (-592 |#1|)) NIL)) (-4110 (($ (-592 |#1|)) 37)) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 13 (|has| |#1| (-1020)))) (-3522 (((-713) $) 10 (|has| $ (-6 -4258)))))
-(((-89 |#1|) (-13 (-1040 |#1|) (-10 -8 (-15 -4110 ($ (-592 |#1|))))) (-1020)) (T -89))
-((-4110 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-89 *3)))))
-(-13 (-1040 |#1|) (-10 -8 (-15 -4110 ($ (-592 |#1|)))))
-((-1522 (($ $) 10)) (-1537 (($ $) 12)))
-(((-90 |#1|) (-10 -8 (-15 -1537 (|#1| |#1|)) (-15 -1522 (|#1| |#1|))) (-91)) (T -90))
-NIL
-(-10 -8 (-15 -1537 (|#1| |#1|)) (-15 -1522 (|#1| |#1|)))
-((-1492 (($ $) 11)) (-1465 (($ $) 10)) (-1522 (($ $) 9)) (-1537 (($ $) 8)) (-1506 (($ $) 7)) (-1479 (($ $) 6)))
+((-1934 (((-3 $ "failed") (-294 (-357))) 47) (((-3 $ "failed") (-294 (-525))) 52) (((-3 $ "failed") (-887 (-357))) 56) (((-3 $ "failed") (-887 (-525))) 60) (((-3 $ "failed") (-385 (-887 (-357)))) 42) (((-3 $ "failed") (-385 (-887 (-525)))) 35)) (-4105 (($ (-294 (-357))) 45) (($ (-294 (-525))) 50) (($ (-887 (-357))) 54) (($ (-887 (-525))) 58) (($ (-385 (-887 (-357)))) 40) (($ (-385 (-887 (-525)))) 32)) (-2584 (((-1179) $) 90)) (-4100 (((-798) $) 84) (($ (-592 (-308))) 78) (($ (-308)) 81) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 76) (($ (-317 (-4114 (QUOTE X)) (-4114 (QUOTE -1499)) (-641))) 31)))
+(((-87 |#1|) (-13 (-374) (-10 -8 (-15 -4100 ($ (-317 (-4114 (QUOTE X)) (-4114 (QUOTE -1499)) (-641)))))) (-1092)) (T -87))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-317 (-4114 (QUOTE X)) (-4114 (QUOTE -1499)) (-641))) (-5 *1 (-87 *3)) (-14 *3 (-1092)))))
+(-13 (-374) (-10 -8 (-15 -4100 ($ (-317 (-4114 (QUOTE X)) (-4114 (QUOTE -1499)) (-641))))))
+((-2869 (((-1174 (-632 |#1|)) (-632 |#1|)) 54)) (-1914 (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 (-592 (-856))))) |#2| (-856)) 44)) (-3684 (((-2 (|:| |minor| (-592 (-856))) (|:| -1537 |#2|) (|:| |minors| (-592 (-592 (-856)))) (|:| |ops| (-592 |#2|))) |#2| (-856)) 65 (|has| |#1| (-341)))))
+(((-88 |#1| |#2|) (-10 -7 (-15 -1914 ((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 (-592 (-856))))) |#2| (-856))) (-15 -2869 ((-1174 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-341)) (-15 -3684 ((-2 (|:| |minor| (-592 (-856))) (|:| -1537 |#2|) (|:| |minors| (-592 (-592 (-856)))) (|:| |ops| (-592 |#2|))) |#2| (-856))) |%noBranch|)) (-517) (-602 |#1|)) (T -88))
+((-3684 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |minor| (-592 (-856))) (|:| -1537 *3) (|:| |minors| (-592 (-592 (-856)))) (|:| |ops| (-592 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-856)) (-4 *3 (-602 *5)))) (-2869 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-1174 (-632 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-632 *4)) (-4 *5 (-602 *4)))) (-1914 (*1 *2 *3 *4) (-12 (-4 *5 (-517)) (-5 *2 (-2 (|:| -4108 (-632 *5)) (|:| |vec| (-1174 (-592 (-856)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-856)) (-4 *3 (-602 *5)))))
+(-10 -7 (-15 -1914 ((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 (-592 (-856))))) |#2| (-856))) (-15 -2869 ((-1174 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-341)) (-15 -3684 ((-2 (|:| |minor| (-592 (-856))) (|:| -1537 |#2|) (|:| |minors| (-592 (-592 (-856)))) (|:| |ops| (-592 |#2|))) |#2| (-856))) |%noBranch|))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3490 ((|#1| $) 35)) (-3779 (((-108) $ (-713)) NIL)) (-2475 (($) NIL T CONST)) (-1282 ((|#1| |#1| $) 30)) (-2639 ((|#1| $) 28)) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3577 ((|#1| $) NIL)) (-3246 (($ |#1| $) 31)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-2724 ((|#1| $) 29)) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) 16)) (-1558 (($) 39)) (-2895 (((-713) $) 26)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) 15)) (-4100 (((-798) $) 25 (|has| |#1| (-566 (-798))))) (-3905 (($ (-592 |#1|)) NIL)) (-3744 (($ (-592 |#1|)) 37)) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 13 (|has| |#1| (-1020)))) (-2827 (((-713) $) 10 (|has| $ (-6 -4259)))))
+(((-89 |#1|) (-13 (-1040 |#1|) (-10 -8 (-15 -3744 ($ (-592 |#1|))))) (-1020)) (T -89))
+((-3744 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-89 *3)))))
+(-13 (-1040 |#1|) (-10 -8 (-15 -3744 ($ (-592 |#1|)))))
+((-1760 (($ $) 10)) (-1770 (($ $) 12)))
+(((-90 |#1|) (-10 -8 (-15 -1770 (|#1| |#1|)) (-15 -1760 (|#1| |#1|))) (-91)) (T -90))
+NIL
+(-10 -8 (-15 -1770 (|#1| |#1|)) (-15 -1760 (|#1| |#1|)))
+((-3853 (($ $) 11)) (-3808 (($ $) 10)) (-1760 (($ $) 9)) (-1770 (($ $) 8)) (-1748 (($ $) 7)) (-3820 (($ $) 6)))
(((-91) (-131)) (T -91))
-((-1492 (*1 *1 *1) (-4 *1 (-91))) (-1465 (*1 *1 *1) (-4 *1 (-91))) (-1522 (*1 *1 *1) (-4 *1 (-91))) (-1537 (*1 *1 *1) (-4 *1 (-91))) (-1506 (*1 *1 *1) (-4 *1 (-91))) (-1479 (*1 *1 *1) (-4 *1 (-91))))
-(-13 (-10 -8 (-15 -1479 ($ $)) (-15 -1506 ($ $)) (-15 -1537 ($ $)) (-15 -1522 ($ $)) (-15 -1465 ($ $)) (-15 -1492 ($ $))))
-((-4236 (((-108) $ $) NIL)) (-2892 (((-357) (-1075) (-357)) 42) (((-357) (-1075) (-1075) (-357)) 41)) (-2656 (((-357) (-357)) 33)) (-2672 (((-1179)) 36)) (-2619 (((-1075) $) NIL)) (-1483 (((-357) (-1075) (-1075)) 46) (((-357) (-1075)) 48)) (-2093 (((-1039) $) NIL)) (-3839 (((-357) (-1075) (-1075)) 47)) (-2945 (((-357) (-1075) (-1075)) 49) (((-357) (-1075)) 50)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
-(((-92) (-13 (-1020) (-10 -7 (-15 -1483 ((-357) (-1075) (-1075))) (-15 -1483 ((-357) (-1075))) (-15 -2945 ((-357) (-1075) (-1075))) (-15 -2945 ((-357) (-1075))) (-15 -3839 ((-357) (-1075) (-1075))) (-15 -2672 ((-1179))) (-15 -2656 ((-357) (-357))) (-15 -2892 ((-357) (-1075) (-357))) (-15 -2892 ((-357) (-1075) (-1075) (-357))) (-6 -4258)))) (T -92))
-((-1483 (*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92)))) (-2945 (*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92)))) (-2945 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92)))) (-3839 (*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92)))) (-2672 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-92)))) (-2656 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-92)))) (-2892 (*1 *2 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1075)) (-5 *1 (-92)))) (-2892 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1075)) (-5 *1 (-92)))))
-(-13 (-1020) (-10 -7 (-15 -1483 ((-357) (-1075) (-1075))) (-15 -1483 ((-357) (-1075))) (-15 -2945 ((-357) (-1075) (-1075))) (-15 -2945 ((-357) (-1075))) (-15 -3839 ((-357) (-1075) (-1075))) (-15 -2672 ((-1179))) (-15 -2656 ((-357) (-357))) (-15 -2892 ((-357) (-1075) (-357))) (-15 -2892 ((-357) (-1075) (-1075) (-357))) (-6 -4258)))
+((-3853 (*1 *1 *1) (-4 *1 (-91))) (-3808 (*1 *1 *1) (-4 *1 (-91))) (-1760 (*1 *1 *1) (-4 *1 (-91))) (-1770 (*1 *1 *1) (-4 *1 (-91))) (-1748 (*1 *1 *1) (-4 *1 (-91))) (-3820 (*1 *1 *1) (-4 *1 (-91))))
+(-13 (-10 -8 (-15 -3820 ($ $)) (-15 -1748 ($ $)) (-15 -1770 ($ $)) (-15 -1760 ($ $)) (-15 -3808 ($ $)) (-15 -3853 ($ $))))
+((-4087 (((-108) $ $) NIL)) (-3819 (((-357) (-1075) (-357)) 42) (((-357) (-1075) (-1075) (-357)) 41)) (-3443 (((-357) (-357)) 33)) (-3612 (((-1179)) 36)) (-1289 (((-1075) $) NIL)) (-2202 (((-357) (-1075) (-1075)) 46) (((-357) (-1075)) 48)) (-3993 (((-1039) $) NIL)) (-2837 (((-357) (-1075) (-1075)) 47)) (-1336 (((-357) (-1075) (-1075)) 49) (((-357) (-1075)) 50)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
+(((-92) (-13 (-1020) (-10 -7 (-15 -2202 ((-357) (-1075) (-1075))) (-15 -2202 ((-357) (-1075))) (-15 -1336 ((-357) (-1075) (-1075))) (-15 -1336 ((-357) (-1075))) (-15 -2837 ((-357) (-1075) (-1075))) (-15 -3612 ((-1179))) (-15 -3443 ((-357) (-357))) (-15 -3819 ((-357) (-1075) (-357))) (-15 -3819 ((-357) (-1075) (-1075) (-357))) (-6 -4259)))) (T -92))
+((-2202 (*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92)))) (-1336 (*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92)))) (-1336 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92)))) (-2837 (*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92)))) (-3612 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-92)))) (-3443 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-92)))) (-3819 (*1 *2 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1075)) (-5 *1 (-92)))) (-3819 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1075)) (-5 *1 (-92)))))
+(-13 (-1020) (-10 -7 (-15 -2202 ((-357) (-1075) (-1075))) (-15 -2202 ((-357) (-1075))) (-15 -1336 ((-357) (-1075) (-1075))) (-15 -1336 ((-357) (-1075))) (-15 -2837 ((-357) (-1075) (-1075))) (-15 -3612 ((-1179))) (-15 -3443 ((-357) (-357))) (-15 -3819 ((-357) (-1075) (-357))) (-15 -3819 ((-357) (-1075) (-1075) (-357))) (-6 -4259)))
NIL
(((-93) (-131)) (T -93))
NIL
-(-13 (-10 -7 (-6 -4258) (-6 (-4260 "*")) (-6 -4259) (-6 -4255) (-6 -4253) (-6 -4252) (-6 -4251) (-6 -4256) (-6 -4250) (-6 -4249) (-6 -4248) (-6 -4247) (-6 -4246) (-6 -4254) (-6 -4257) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4245)))
-((-4236 (((-108) $ $) NIL)) (-2169 (($) NIL T CONST)) (-3457 (((-3 $ "failed") $) NIL)) (-1396 (((-108) $) NIL)) (-3324 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-525))) 22)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) 14)) (-2093 (((-1039) $) NIL)) (-3406 ((|#1| $ |#1|) 11)) (-1499 (($ $ $) NIL)) (-1990 (($ $ $) NIL)) (-1217 (((-798) $) 20)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3359 (($) 8 T CONST)) (-3955 (((-108) $ $) 10)) (-4075 (($ $ $) NIL)) (** (($ $ (-856)) 28) (($ $ (-713)) NIL) (($ $ (-525)) 16)) (* (($ $ $) 29)))
-(((-94 |#1|) (-13 (-450) (-265 |#1| |#1|) (-10 -8 (-15 -3324 ($ (-1 |#1| |#1|))) (-15 -3324 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3324 ($ (-1 |#1| |#1| (-525)))))) (-977)) (T -94))
-((-3324 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-94 *3)))) (-3324 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-94 *3)))) (-3324 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-525))) (-4 *3 (-977)) (-5 *1 (-94 *3)))))
-(-13 (-450) (-265 |#1| |#1|) (-10 -8 (-15 -3324 ($ (-1 |#1| |#1|))) (-15 -3324 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3324 ($ (-1 |#1| |#1| (-525))))))
-((-2053 (((-396 |#2|) |#2| (-592 |#2|)) 10) (((-396 |#2|) |#2| |#2|) 11)))
-(((-95 |#1| |#2|) (-10 -7 (-15 -2053 ((-396 |#2|) |#2| |#2|)) (-15 -2053 ((-396 |#2|) |#2| (-592 |#2|)))) (-13 (-429) (-138)) (-1150 |#1|)) (T -95))
-((-2053 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-13 (-429) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-95 *5 *3)))) (-2053 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-429) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1150 *4)))))
-(-10 -7 (-15 -2053 ((-396 |#2|) |#2| |#2|)) (-15 -2053 ((-396 |#2|) |#2| (-592 |#2|))))
-((-4236 (((-108) $ $) 10)))
-(((-96 |#1|) (-10 -8 (-15 -4236 ((-108) |#1| |#1|))) (-97)) (T -96))
-NIL
-(-10 -8 (-15 -4236 ((-108) |#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-3955 (((-108) $ $) 6)))
+(-13 (-10 -7 (-6 -4259) (-6 (-4261 "*")) (-6 -4260) (-6 -4256) (-6 -4254) (-6 -4253) (-6 -4252) (-6 -4257) (-6 -4251) (-6 -4250) (-6 -4249) (-6 -4248) (-6 -4247) (-6 -4255) (-6 -4258) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4246)))
+((-4087 (((-108) $ $) NIL)) (-2475 (($) NIL T CONST)) (-3300 (((-3 $ "failed") $) NIL)) (-2278 (((-108) $) NIL)) (-1560 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-525))) 22)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) 14)) (-3993 (((-1039) $) NIL)) (-3431 ((|#1| $ |#1|) 11)) (-3055 (($ $ $) NIL)) (-1242 (($ $ $) NIL)) (-4100 (((-798) $) 20)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3375 (($) 8 T CONST)) (-2775 (((-108) $ $) 10)) (-2880 (($ $ $) NIL)) (** (($ $ (-856)) 28) (($ $ (-713)) NIL) (($ $ (-525)) 16)) (* (($ $ $) 29)))
+(((-94 |#1|) (-13 (-450) (-265 |#1| |#1|) (-10 -8 (-15 -1560 ($ (-1 |#1| |#1|))) (-15 -1560 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1560 ($ (-1 |#1| |#1| (-525)))))) (-977)) (T -94))
+((-1560 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-94 *3)))) (-1560 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-94 *3)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-525))) (-4 *3 (-977)) (-5 *1 (-94 *3)))))
+(-13 (-450) (-265 |#1| |#1|) (-10 -8 (-15 -1560 ($ (-1 |#1| |#1|))) (-15 -1560 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1560 ($ (-1 |#1| |#1| (-525))))))
+((-3646 (((-396 |#2|) |#2| (-592 |#2|)) 10) (((-396 |#2|) |#2| |#2|) 11)))
+(((-95 |#1| |#2|) (-10 -7 (-15 -3646 ((-396 |#2|) |#2| |#2|)) (-15 -3646 ((-396 |#2|) |#2| (-592 |#2|)))) (-13 (-429) (-138)) (-1150 |#1|)) (T -95))
+((-3646 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-13 (-429) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-95 *5 *3)))) (-3646 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-429) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1150 *4)))))
+(-10 -7 (-15 -3646 ((-396 |#2|) |#2| |#2|)) (-15 -3646 ((-396 |#2|) |#2| (-592 |#2|))))
+((-4087 (((-108) $ $) 10)))
+(((-96 |#1|) (-10 -8 (-15 -4087 ((-108) |#1| |#1|))) (-97)) (T -96))
+NIL
+(-10 -8 (-15 -4087 ((-108) |#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-2775 (((-108) $ $) 6)))
(((-97) (-131)) (T -97))
-((-4236 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) (-3955 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))))
-(-13 (-10 -8 (-15 -3955 ((-108) $ $)) (-15 -4236 ((-108) $ $))))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3284 ((|#1| $) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-3214 ((|#1| $ |#1|) 13 (|has| $ (-6 -4259)))) (-3121 (($ $ $) NIL (|has| $ (-6 -4259)))) (-3720 (($ $ $) NIL (|has| $ (-6 -4259)))) (-1764 (($ $ (-592 |#1|)) 15)) (-1430 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4259))) (($ $ "left" $) NIL (|has| $ (-6 -4259))) (($ $ "right" $) NIL (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) NIL (|has| $ (-6 -4259)))) (-2169 (($) NIL T CONST)) (-3519 (($ $) 11)) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-3396 (((-592 $) $) NIL)) (-1729 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3965 (($ $ |#1| $) 17)) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3128 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-2278 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-592 |#1|) |#1| |#1| |#1|)) 35)) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-3507 (($ $) 10)) (-2803 (((-592 |#1|) $) NIL)) (-3786 (((-108) $) 12)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) 9)) (-2512 (($) 16)) (-3406 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3340 (((-525) $ $) NIL)) (-2905 (((-108) $) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) NIL)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3793 (((-592 $) $) NIL)) (-3351 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2095 (($ (-713) |#1|) 19)) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-98 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4258) (-6 -4259) (-15 -2095 ($ (-713) |#1|)) (-15 -1764 ($ $ (-592 |#1|))) (-15 -3128 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3128 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2278 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2278 ($ $ |#1| (-1 (-592 |#1|) |#1| |#1| |#1|))))) (-1020)) (T -98))
-((-2095 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-98 *3)) (-4 *3 (-1020)))) (-1764 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-98 *3)))) (-3128 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1020)))) (-3128 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-98 *3)))) (-2278 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1020)) (-5 *1 (-98 *2)))) (-2278 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-592 *2) *2 *2 *2)) (-4 *2 (-1020)) (-5 *1 (-98 *2)))))
-(-13 (-121 |#1|) (-10 -8 (-6 -4258) (-6 -4259) (-15 -2095 ($ (-713) |#1|)) (-15 -1764 ($ $ (-592 |#1|))) (-15 -3128 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3128 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2278 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2278 ($ $ |#1| (-1 (-592 |#1|) |#1| |#1| |#1|)))))
-((-1625 ((|#3| |#2| |#2|) 29)) (-2055 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4260 "*"))))) (-2179 ((|#3| |#2| |#2|) 30)) (-2030 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4260 "*"))))))
-(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1625 (|#3| |#2| |#2|)) (-15 -2179 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4260 "*"))) (PROGN (-15 -2055 (|#1| |#2| |#2|)) (-15 -2030 (|#1| |#2|))) |%noBranch|)) (-977) (-1150 |#1|) (-630 |#1| |#4| |#5|) (-351 |#1|) (-351 |#1|)) (T -99))
-((-2030 (*1 *2 *3) (-12 (|has| *2 (-6 (-4260 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2)) (-4 *2 (-977)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1150 *2)) (-4 *4 (-630 *2 *5 *6)))) (-2055 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4260 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2)) (-4 *2 (-977)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1150 *2)) (-4 *4 (-630 *2 *5 *6)))) (-2179 (*1 *2 *3 *3) (-12 (-4 *4 (-977)) (-4 *2 (-630 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1150 *4)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)))) (-1625 (*1 *2 *3 *3) (-12 (-4 *4 (-977)) (-4 *2 (-630 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1150 *4)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)))))
-(-10 -7 (-15 -1625 (|#3| |#2| |#2|)) (-15 -2179 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4260 "*"))) (PROGN (-15 -2055 (|#1| |#2| |#2|)) (-15 -2030 (|#1| |#2|))) |%noBranch|))
-((-4236 (((-108) $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3270 (((-592 (-1092))) 33)) (-3797 (((-2 (|:| |zeros| (-1073 (-205))) (|:| |ones| (-1073 (-205))) (|:| |singularities| (-1073 (-205)))) (-1092)) 35)) (-3955 (((-108) $ $) NIL)))
-(((-100) (-13 (-1020) (-10 -7 (-15 -3270 ((-592 (-1092)))) (-15 -3797 ((-2 (|:| |zeros| (-1073 (-205))) (|:| |ones| (-1073 (-205))) (|:| |singularities| (-1073 (-205)))) (-1092))) (-6 -4258)))) (T -100))
-((-3270 (*1 *2) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-100)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-2 (|:| |zeros| (-1073 (-205))) (|:| |ones| (-1073 (-205))) (|:| |singularities| (-1073 (-205))))) (-5 *1 (-100)))))
-(-13 (-1020) (-10 -7 (-15 -3270 ((-592 (-1092)))) (-15 -3797 ((-2 (|:| |zeros| (-1073 (-205))) (|:| |ones| (-1073 (-205))) (|:| |singularities| (-1073 (-205)))) (-1092))) (-6 -4258)))
-((-1956 (($ (-592 |#2|)) 11)))
-(((-101 |#1| |#2|) (-10 -8 (-15 -1956 (|#1| (-592 |#2|)))) (-102 |#2|) (-1128)) (T -101))
-NIL
-(-10 -8 (-15 -1956 (|#1| (-592 |#2|))))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3991 (((-108) $ (-713)) 8)) (-2169 (($) 7 T CONST)) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) 9)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2992 ((|#1| $) 39)) (-1262 (($ |#1| $) 40)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-4127 ((|#1| $) 41)) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-1956 (($ (-592 |#1|)) 42)) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-4087 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) (-2775 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))))
+(-13 (-10 -8 (-15 -2775 ((-108) $ $)) (-15 -4087 ((-108) $ $))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2219 ((|#1| $) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-1947 ((|#1| $ |#1|) 13 (|has| $ (-6 -4260)))) (-2314 (($ $ $) NIL (|has| $ (-6 -4260)))) (-4089 (($ $ $) NIL (|has| $ (-6 -4260)))) (-2663 (($ $ (-592 |#1|)) 15)) (-1233 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4260))) (($ $ "left" $) NIL (|has| $ (-6 -4260))) (($ $ "right" $) NIL (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) NIL (|has| $ (-6 -4260)))) (-2475 (($) NIL T CONST)) (-3446 (($ $) 11)) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3994 (((-592 $) $) NIL)) (-3569 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1214 (($ $ |#1| $) 17)) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2370 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-4132 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-592 |#1|) |#1| |#1| |#1|)) 35)) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-3436 (($ $) 10)) (-2010 (((-592 |#1|) $) NIL)) (-3506 (((-108) $) 12)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) 9)) (-1558 (($) 16)) (-3431 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1707 (((-525) $ $) NIL)) (-3953 (((-108) $) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) NIL)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3576 (((-592 $) $) NIL)) (-1791 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2876 (($ (-713) |#1|) 19)) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-98 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4259) (-6 -4260) (-15 -2876 ($ (-713) |#1|)) (-15 -2663 ($ $ (-592 |#1|))) (-15 -2370 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2370 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4132 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4132 ($ $ |#1| (-1 (-592 |#1|) |#1| |#1| |#1|))))) (-1020)) (T -98))
+((-2876 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-98 *3)) (-4 *3 (-1020)))) (-2663 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-98 *3)))) (-2370 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1020)))) (-2370 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-98 *3)))) (-4132 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1020)) (-5 *1 (-98 *2)))) (-4132 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-592 *2) *2 *2 *2)) (-4 *2 (-1020)) (-5 *1 (-98 *2)))))
+(-13 (-121 |#1|) (-10 -8 (-6 -4259) (-6 -4260) (-15 -2876 ($ (-713) |#1|)) (-15 -2663 ($ $ (-592 |#1|))) (-15 -2370 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2370 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4132 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4132 ($ $ |#1| (-1 (-592 |#1|) |#1| |#1| |#1|)))))
+((-3832 ((|#3| |#2| |#2|) 29)) (-3667 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4261 "*"))))) (-1375 ((|#3| |#2| |#2|) 30)) (-3432 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4261 "*"))))))
+(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3832 (|#3| |#2| |#2|)) (-15 -1375 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4261 "*"))) (PROGN (-15 -3667 (|#1| |#2| |#2|)) (-15 -3432 (|#1| |#2|))) |%noBranch|)) (-977) (-1150 |#1|) (-630 |#1| |#4| |#5|) (-351 |#1|) (-351 |#1|)) (T -99))
+((-3432 (*1 *2 *3) (-12 (|has| *2 (-6 (-4261 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2)) (-4 *2 (-977)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1150 *2)) (-4 *4 (-630 *2 *5 *6)))) (-3667 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4261 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2)) (-4 *2 (-977)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1150 *2)) (-4 *4 (-630 *2 *5 *6)))) (-1375 (*1 *2 *3 *3) (-12 (-4 *4 (-977)) (-4 *2 (-630 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1150 *4)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)))) (-3832 (*1 *2 *3 *3) (-12 (-4 *4 (-977)) (-4 *2 (-630 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1150 *4)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)))))
+(-10 -7 (-15 -3832 (|#3| |#2| |#2|)) (-15 -1375 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4261 "*"))) (PROGN (-15 -3667 (|#1| |#2| |#2|)) (-15 -3432 (|#1| |#2|))) |%noBranch|))
+((-4087 (((-108) $ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-4194 (((-592 (-1092))) 33)) (-3613 (((-2 (|:| |zeros| (-1073 (-205))) (|:| |ones| (-1073 (-205))) (|:| |singularities| (-1073 (-205)))) (-1092)) 35)) (-2775 (((-108) $ $) NIL)))
+(((-100) (-13 (-1020) (-10 -7 (-15 -4194 ((-592 (-1092)))) (-15 -3613 ((-2 (|:| |zeros| (-1073 (-205))) (|:| |ones| (-1073 (-205))) (|:| |singularities| (-1073 (-205)))) (-1092))) (-6 -4259)))) (T -100))
+((-4194 (*1 *2) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-100)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-2 (|:| |zeros| (-1073 (-205))) (|:| |ones| (-1073 (-205))) (|:| |singularities| (-1073 (-205))))) (-5 *1 (-100)))))
+(-13 (-1020) (-10 -7 (-15 -4194 ((-592 (-1092)))) (-15 -3613 ((-2 (|:| |zeros| (-1073 (-205))) (|:| |ones| (-1073 (-205))) (|:| |singularities| (-1073 (-205)))) (-1092))) (-6 -4259)))
+((-3905 (($ (-592 |#2|)) 11)))
+(((-101 |#1| |#2|) (-10 -8 (-15 -3905 (|#1| (-592 |#2|)))) (-102 |#2|) (-1128)) (T -101))
+NIL
+(-10 -8 (-15 -3905 (|#1| (-592 |#2|))))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3779 (((-108) $ (-713)) 8)) (-2475 (($) 7 T CONST)) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) 9)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-3577 ((|#1| $) 39)) (-3246 (($ |#1| $) 40)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-2724 ((|#1| $) 41)) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3905 (($ (-592 |#1|)) 42)) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-102 |#1|) (-131) (-1128)) (T -102))
-((-1956 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-4 *1 (-102 *3)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1128)))) (-1262 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1128)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1128)))))
-(-13 (-464 |t#1|) (-10 -8 (-6 -4259) (-15 -1956 ($ (-592 |t#1|))) (-15 -4127 (|t#1| $)) (-15 -1262 ($ |t#1| $)) (-15 -2992 (|t#1| $))))
-(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1548 (((-525) $) NIL (|has| (-525) (-286)))) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-2193 (((-108) $ $) NIL)) (-3855 (((-525) $) NIL (|has| (-525) (-762)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL) (((-3 (-1092) "failed") $) NIL (|has| (-525) (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-525) (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-525) (-968 (-525))))) (-1572 (((-525) $) NIL) (((-1092) $) NIL (|has| (-525) (-968 (-1092)))) (((-385 (-525)) $) NIL (|has| (-525) (-968 (-525)))) (((-525) $) NIL (|has| (-525) (-968 (-525))))) (-1747 (($ $ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($) NIL (|has| (-525) (-510)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-1222 (((-108) $) NIL (|has| (-525) (-762)))) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-525) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-525) (-821 (-357))))) (-1396 (((-108) $) NIL)) (-3858 (($ $) NIL)) (-3114 (((-525) $) NIL)) (-3844 (((-3 $ "failed") $) NIL (|has| (-525) (-1068)))) (-3256 (((-108) $) NIL (|has| (-525) (-762)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2638 (($ $ $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| (-525) (-789)))) (-3165 (($ (-1 (-525) (-525)) $) NIL)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2295 (($) NIL (|has| (-525) (-1068)) CONST)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3628 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) NIL)) (-2487 (((-525) $) NIL (|has| (-525) (-510)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-2770 (((-396 $) $) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2457 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1092)) (-592 (-525))) NIL (|has| (-525) (-486 (-1092) (-525)))) (($ $ (-1092) (-525)) NIL (|has| (-525) (-486 (-1092) (-525))))) (-3684 (((-713) $) NIL)) (-3406 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3376 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1092)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4143 (($ $) NIL)) (-3123 (((-525) $) NIL)) (-3210 (((-827 (-525)) $) NIL (|has| (-525) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-525) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-953))) (((-205) $) NIL (|has| (-525) (-953)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-844))))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 8) (($ (-525)) NIL) (($ (-1092)) NIL (|has| (-525) (-968 (-1092)))) (((-385 (-525)) $) NIL) (((-936 2) $) 10)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| (-525) (-844))) (|has| (-525) (-136))))) (-3917 (((-713)) NIL)) (-3074 (((-525) $) NIL (|has| (-525) (-510)))) (-3986 (($ (-385 (-525))) 9)) (-3325 (((-108) $ $) NIL)) (-2802 (($ $) NIL (|has| (-525) (-762)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1092)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4011 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3987 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3978 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4075 (($ $ $) NIL) (($ (-525) (-525)) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL)))
-(((-103) (-13 (-925 (-525)) (-10 -8 (-15 -1217 ((-385 (-525)) $)) (-15 -1217 ((-936 2) $)) (-15 -3628 ((-385 (-525)) $)) (-15 -3986 ($ (-385 (-525))))))) (T -103))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-936 2)) (-5 *1 (-103)))) (-3628 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))) (-3986 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))))
-(-13 (-925 (-525)) (-10 -8 (-15 -1217 ((-385 (-525)) $)) (-15 -1217 ((-936 2) $)) (-15 -3628 ((-385 (-525)) $)) (-15 -3986 ($ (-385 (-525))))))
-((-2282 (((-592 (-899)) $) 14)) (-3257 (((-1092) $) 10)) (-1217 (((-798) $) 23)) (-4186 (($ (-1092) (-592 (-899))) 15)))
-(((-104) (-13 (-566 (-798)) (-10 -8 (-15 -3257 ((-1092) $)) (-15 -2282 ((-592 (-899)) $)) (-15 -4186 ($ (-1092) (-592 (-899))))))) (T -104))
-((-3257 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-104)))) (-2282 (*1 *2 *1) (-12 (-5 *2 (-592 (-899))) (-5 *1 (-104)))) (-4186 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-899))) (-5 *1 (-104)))))
-(-13 (-566 (-798)) (-10 -8 (-15 -3257 ((-1092) $)) (-15 -2282 ((-592 (-899)) $)) (-15 -4186 ($ (-1092) (-592 (-899))))))
-((-4236 (((-108) $ $) NIL)) (-3529 (((-1039) $ (-1039)) 24)) (-3897 (($ $ (-1075)) 17)) (-3712 (((-3 (-1039) "failed") $) 23)) (-1364 (((-1039) $) 21)) (-1205 (((-1039) $ (-1039)) 26)) (-1932 (((-1039) $) 25)) (-3459 (($ (-366)) NIL) (($ (-366) (-1075)) 16)) (-3257 (((-366) $) NIL)) (-2619 (((-1075) $) NIL)) (-3249 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-1512 (($ $) 18)) (-3955 (((-108) $ $) NIL)))
-(((-105) (-13 (-342 (-366) (-1039)) (-10 -8 (-15 -3712 ((-3 (-1039) "failed") $)) (-15 -1932 ((-1039) $)) (-15 -1205 ((-1039) $ (-1039)))))) (T -105))
-((-3712 (*1 *2 *1) (|partial| -12 (-5 *2 (-1039)) (-5 *1 (-105)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-105)))) (-1205 (*1 *2 *1 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-105)))))
-(-13 (-342 (-366) (-1039)) (-10 -8 (-15 -3712 ((-3 (-1039) "failed") $)) (-15 -1932 ((-1039) $)) (-15 -1205 ((-1039) $ (-1039)))))
-((-4236 (((-108) $ $) NIL)) (-3411 (($ $) NIL)) (-3469 (($ $ $) NIL)) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-2470 (((-108) $) NIL (|has| (-108) (-789))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-2165 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-108) (-789)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4259)))) (-2458 (($ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-1430 (((-108) $ (-1141 (-525)) (-108)) NIL (|has| $ (-6 -4259))) (((-108) $ (-525) (-108)) NIL (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4258)))) (-2169 (($) NIL T CONST)) (-2700 (($ $) NIL (|has| $ (-6 -4259)))) (-3431 (($ $) NIL)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-108) (-1020))))) (-1703 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4258))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-108) (-1020))))) (-1284 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4258)) (|has| (-108) (-1020))))) (-2301 (((-108) $ (-525) (-108)) NIL (|has| $ (-6 -4259)))) (-2222 (((-108) $ (-525)) NIL)) (-1932 (((-525) (-108) $ (-525)) NIL (|has| (-108) (-1020))) (((-525) (-108) $) NIL (|has| (-108) (-1020))) (((-525) (-1 (-108) (-108)) $) NIL)) (-3440 (((-592 (-108)) $) NIL (|has| $ (-6 -4258)))) (-3749 (($ $ $) NIL)) (-1850 (($ $) NIL)) (-1299 (($ $ $) NIL)) (-3416 (($ (-713) (-108)) 8)) (-2404 (($ $ $) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) NIL (|has| (-525) (-789)))) (-2638 (($ $ $) NIL)) (-1577 (($ $ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-2694 (((-592 (-108)) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-108) (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL)) (-2284 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-108) (-108) (-108)) $ $) NIL) (($ (-1 (-108) (-108)) $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL)) (-2531 (($ $ $ (-525)) NIL) (($ (-108) $ (-525)) NIL)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-2093 (((-1039) $) NIL)) (-1872 (((-108) $) NIL (|has| (-525) (-789)))) (-1983 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-1420 (($ $ (-108)) NIL (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-108)) (-592 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-273 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-592 (-273 (-108)))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-108) (-1020))))) (-3341 (((-592 (-108)) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 (($ $ (-1141 (-525))) NIL) (((-108) $ (-525)) NIL) (((-108) $ (-525) (-108)) NIL)) (-3038 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-2110 (((-713) (-108) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-108) (-1020)))) (((-713) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4258)))) (-4098 (($ $ $ (-525)) NIL (|has| $ (-6 -4259)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| (-108) (-567 (-501))))) (-1230 (($ (-592 (-108))) NIL)) (-2038 (($ (-592 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-1217 (((-798) $) NIL)) (-3293 (($ (-713) (-108)) 9)) (-3029 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4258)))) (-3762 (($ $ $) NIL)) (-1619 (($ $) NIL)) (-1525 (($ $ $) NIL)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) NIL)) (-1509 (($ $ $) NIL)) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-106) (-13 (-119) (-10 -8 (-15 -3293 ($ (-713) (-108)))))) (T -106))
-((-3293 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-108)) (-5 *1 (-106)))))
-(-13 (-119) (-10 -8 (-15 -3293 ($ (-713) (-108)))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3349 (($) 18 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+((-3905 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-4 *1 (-102 *3)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1128)))) (-3246 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1128)))) (-3577 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1128)))))
+(-13 (-464 |t#1|) (-10 -8 (-6 -4260) (-15 -3905 ($ (-592 |t#1|))) (-15 -2724 (|t#1| $)) (-15 -3246 ($ |t#1| $)) (-15 -3577 (|t#1| $))))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1653 (((-525) $) NIL (|has| (-525) (-286)))) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-1507 (((-108) $ $) NIL)) (-2971 (((-525) $) NIL (|has| (-525) (-762)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL) (((-3 (-1092) "failed") $) NIL (|has| (-525) (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-525) (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-525) (-968 (-525))))) (-4105 (((-525) $) NIL) (((-1092) $) NIL (|has| (-525) (-968 (-1092)))) (((-385 (-525)) $) NIL (|has| (-525) (-968 (-525)))) (((-525) $) NIL (|has| (-525) (-968 (-525))))) (-1356 (($ $ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($) NIL (|has| (-525) (-510)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-1889 (((-108) $) NIL (|has| (-525) (-762)))) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-525) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-525) (-821 (-357))))) (-2278 (((-108) $) NIL)) (-2999 (($ $) NIL)) (-4066 (((-525) $) NIL)) (-2878 (((-3 $ "failed") $) NIL (|has| (-525) (-1068)))) (-4079 (((-108) $) NIL (|has| (-525) (-762)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3033 (($ $ $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| (-525) (-789)))) (-2016 (($ (-1 (-525) (-525)) $) NIL)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-2948 (($) NIL (|has| (-525) (-1068)) CONST)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1372 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) NIL)) (-1340 (((-525) $) NIL (|has| (-525) (-510)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-4201 (((-396 $) $) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2825 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1092)) (-592 (-525))) NIL (|has| (-525) (-486 (-1092) (-525)))) (($ $ (-1092) (-525)) NIL (|has| (-525) (-486 (-1092) (-525))))) (-1927 (((-713) $) NIL)) (-3431 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2702 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1092)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-2874 (($ $) NIL)) (-4080 (((-525) $) NIL)) (-2069 (((-827 (-525)) $) NIL (|has| (-525) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-525) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-953))) (((-205) $) NIL (|has| (-525) (-953)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-844))))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 8) (($ (-525)) NIL) (($ (-1092)) NIL (|has| (-525) (-968 (-1092)))) (((-385 (-525)) $) NIL) (((-936 2) $) 10)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| (-525) (-844))) (|has| (-525) (-136))))) (-2448 (((-713)) NIL)) (-3064 (((-525) $) NIL (|has| (-525) (-510)))) (-1942 (($ (-385 (-525))) 9)) (-1571 (((-108) $ $) NIL)) (-2380 (($ $) NIL (|has| (-525) (-762)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1092)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-2830 (((-108) $ $) NIL (|has| (-525) (-789)))) (-2807 (((-108) $ $) NIL (|has| (-525) (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| (-525) (-789)))) (-2795 (((-108) $ $) NIL (|has| (-525) (-789)))) (-2880 (($ $ $) NIL) (($ (-525) (-525)) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL)))
+(((-103) (-13 (-925 (-525)) (-10 -8 (-15 -4100 ((-385 (-525)) $)) (-15 -4100 ((-936 2) $)) (-15 -1372 ((-385 (-525)) $)) (-15 -1942 ($ (-385 (-525))))))) (T -103))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-936 2)) (-5 *1 (-103)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))) (-1942 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))))
+(-13 (-925 (-525)) (-10 -8 (-15 -4100 ((-385 (-525)) $)) (-15 -4100 ((-936 2) $)) (-15 -1372 ((-385 (-525)) $)) (-15 -1942 ($ (-385 (-525))))))
+((-2123 (((-592 (-899)) $) 14)) (-2411 (((-1092) $) 10)) (-4100 (((-798) $) 23)) (-2121 (($ (-1092) (-592 (-899))) 15)))
+(((-104) (-13 (-566 (-798)) (-10 -8 (-15 -2411 ((-1092) $)) (-15 -2123 ((-592 (-899)) $)) (-15 -2121 ($ (-1092) (-592 (-899))))))) (T -104))
+((-2411 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-104)))) (-2123 (*1 *2 *1) (-12 (-5 *2 (-592 (-899))) (-5 *1 (-104)))) (-2121 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-899))) (-5 *1 (-104)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -2411 ((-1092) $)) (-15 -2123 ((-592 (-899)) $)) (-15 -2121 ($ (-1092) (-592 (-899))))))
+((-4087 (((-108) $ $) NIL)) (-2773 (((-1039) $ (-1039)) 24)) (-2220 (($ $ (-1075)) 17)) (-4012 (((-3 (-1039) "failed") $) 23)) (-1754 (((-1039) $) 21)) (-2350 (((-1039) $ (-1039)) 26)) (-3856 (((-1039) $) 25)) (-2046 (($ (-366)) NIL) (($ (-366) (-1075)) 16)) (-2411 (((-366) $) NIL)) (-1289 (((-1075) $) NIL)) (-4022 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-3267 (($ $) 18)) (-2775 (((-108) $ $) NIL)))
+(((-105) (-13 (-342 (-366) (-1039)) (-10 -8 (-15 -4012 ((-3 (-1039) "failed") $)) (-15 -3856 ((-1039) $)) (-15 -2350 ((-1039) $ (-1039)))))) (T -105))
+((-4012 (*1 *2 *1) (|partial| -12 (-5 *2 (-1039)) (-5 *1 (-105)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-105)))) (-2350 (*1 *2 *1 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-105)))))
+(-13 (-342 (-366) (-1039)) (-10 -8 (-15 -4012 ((-3 (-1039) "failed") $)) (-15 -3856 ((-1039) $)) (-15 -2350 ((-1039) $ (-1039)))))
+((-4087 (((-108) $ $) NIL)) (-2026 (($ $) NIL)) (-2532 (($ $ $) NIL)) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-2358 (((-108) $) NIL (|has| (-108) (-789))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-2436 (($ $) NIL (-12 (|has| $ (-6 -4260)) (|has| (-108) (-789)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4260)))) (-1842 (($ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-1233 (((-108) $ (-1141 (-525)) (-108)) NIL (|has| $ (-6 -4260))) (((-108) $ (-525) (-108)) NIL (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4259)))) (-2475 (($) NIL T CONST)) (-2670 (($ $) NIL (|has| $ (-6 -4260)))) (-1652 (($ $) NIL)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-108) (-1020))))) (-2698 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4259))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-108) (-1020))))) (-3504 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4259)) (|has| (-108) (-1020))))) (-3081 (((-108) $ (-525) (-108)) NIL (|has| $ (-6 -4260)))) (-3017 (((-108) $ (-525)) NIL)) (-3856 (((-525) (-108) $ (-525)) NIL (|has| (-108) (-1020))) (((-525) (-108) $) NIL (|has| (-108) (-1020))) (((-525) (-1 (-108) (-108)) $) NIL)) (-2175 (((-592 (-108)) $) NIL (|has| $ (-6 -4259)))) (-3307 (($ $ $) NIL)) (-3272 (($ $) NIL)) (-3087 (($ $ $) NIL)) (-3324 (($ (-713) (-108)) 8)) (-2909 (($ $ $) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) NIL (|has| (-525) (-789)))) (-3033 (($ $ $) NIL)) (-3212 (($ $ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-2617 (((-592 (-108)) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-108) (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL)) (-3069 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-108) (-108) (-108)) $ $) NIL) (($ (-1 (-108) (-108)) $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL)) (-2594 (($ $ $ (-525)) NIL) (($ (-108) $ (-525)) NIL)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-3993 (((-1039) $) NIL)) (-1647 (((-108) $) NIL (|has| (-525) (-789)))) (-4202 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-3453 (($ $ (-108)) NIL (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-108)) (-592 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-273 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-592 (-273 (-108)))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-108) (-1020))))) (-1717 (((-592 (-108)) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 (($ $ (-1141 (-525))) NIL) (((-108) $ (-525)) NIL) (((-108) $ (-525) (-108)) NIL)) (-2139 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-4002 (((-713) (-108) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-108) (-1020)))) (((-713) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4259)))) (-3632 (($ $ $ (-525)) NIL (|has| $ (-6 -4260)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| (-108) (-567 (-501))))) (-4114 (($ (-592 (-108))) NIL)) (-2035 (($ (-592 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-4100 (((-798) $) NIL)) (-1373 (($ (-713) (-108)) 9)) (-2706 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4259)))) (-3944 (($ $ $) NIL)) (-3706 (($ $) NIL)) (-3836 (($ $ $) NIL)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) NIL)) (-3826 (($ $ $) NIL)) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-106) (-13 (-119) (-10 -8 (-15 -1373 ($ (-713) (-108)))))) (T -106))
+((-1373 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-108)) (-5 *1 (-106)))))
+(-13 (-119) (-10 -8 (-15 -1373 ($ (-713) (-108)))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3364 (($) 18 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
(((-107 |#1| |#2|) (-131) (-977) (-977)) (T -107))
NIL
-(-13 (-594 |t#1|) (-983 |t#2|) (-10 -7 (-6 -4253) (-6 -4252)))
+(-13 (-594 |t#1|) (-983 |t#2|) (-10 -7 (-6 -4254) (-6 -4253)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-983 |#2|) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-3411 (($ $) 11)) (-3469 (($ $ $) 16)) (-2489 (($) 7 T CONST)) (-4235 (($ $) 6)) (-1834 (((-713)) 25)) (-2502 (($) 31)) (-3749 (($ $ $) 14)) (-1850 (($ $) 9)) (-1299 (($ $ $) 17)) (-2404 (($ $ $) 18)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-3005 (((-856) $) 30)) (-2619 (((-1075) $) NIL)) (-3555 (($ (-856)) 29)) (-3450 (($ $ $) 21)) (-2093 (((-1039) $) NIL)) (-2610 (($) 8 T CONST)) (-4094 (($ $ $) 22)) (-3210 (((-501) $) 37)) (-1217 (((-798) $) 40)) (-3762 (($ $ $) 12)) (-1619 (($ $) 10)) (-1525 (($ $ $) 15)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 20)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 23)) (-1509 (($ $ $) 13)))
-(((-108) (-13 (-789) (-346) (-607) (-901) (-567 (-501)) (-10 -8 (-15 -2489 ($) -2709) (-15 -2610 ($) -2709) (-15 -1619 ($ $)) (-15 -3469 ($ $ $)) (-15 -2404 ($ $ $)) (-15 -1299 ($ $ $)) (-15 -4235 ($ $))))) (T -108))
-((-2489 (*1 *1) (-5 *1 (-108))) (-2610 (*1 *1) (-5 *1 (-108))) (-1619 (*1 *1 *1) (-5 *1 (-108))) (-3469 (*1 *1 *1 *1) (-5 *1 (-108))) (-2404 (*1 *1 *1 *1) (-5 *1 (-108))) (-1299 (*1 *1 *1 *1) (-5 *1 (-108))) (-4235 (*1 *1 *1) (-5 *1 (-108))))
-(-13 (-789) (-346) (-607) (-901) (-567 (-501)) (-10 -8 (-15 -2489 ($) -2709) (-15 -2610 ($) -2709) (-15 -1619 ($ $)) (-15 -3469 ($ $ $)) (-15 -2404 ($ $ $)) (-15 -1299 ($ $ $)) (-15 -4235 ($ $))))
-((-3719 (((-3 (-1 |#1| (-592 |#1|)) "failed") (-110)) 19) (((-110) (-110) (-1 |#1| |#1|)) 13) (((-110) (-110) (-1 |#1| (-592 |#1|))) 11) (((-3 |#1| "failed") (-110) (-592 |#1|)) 21)) (-2785 (((-3 (-592 (-1 |#1| (-592 |#1|))) "failed") (-110)) 25) (((-110) (-110) (-1 |#1| |#1|)) 30) (((-110) (-110) (-592 (-1 |#1| (-592 |#1|)))) 26)) (-3135 (((-110) |#1|) 56 (|has| |#1| (-789)))) (-1660 (((-3 |#1| "failed") (-110)) 50 (|has| |#1| (-789)))))
-(((-109 |#1|) (-10 -7 (-15 -3719 ((-3 |#1| "failed") (-110) (-592 |#1|))) (-15 -3719 ((-110) (-110) (-1 |#1| (-592 |#1|)))) (-15 -3719 ((-110) (-110) (-1 |#1| |#1|))) (-15 -3719 ((-3 (-1 |#1| (-592 |#1|)) "failed") (-110))) (-15 -2785 ((-110) (-110) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2785 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2785 ((-3 (-592 (-1 |#1| (-592 |#1|))) "failed") (-110))) (IF (|has| |#1| (-789)) (PROGN (-15 -3135 ((-110) |#1|)) (-15 -1660 ((-3 |#1| "failed") (-110)))) |%noBranch|)) (-1020)) (T -109))
-((-1660 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1020)) (-4 *2 (-789)) (-5 *1 (-109 *2)))) (-3135 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-789)) (-4 *3 (-1020)))) (-2785 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-1 *4 (-592 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1020)))) (-2785 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1020)) (-5 *1 (-109 *4)))) (-2785 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 (-1 *4 (-592 *4)))) (-4 *4 (-1020)) (-5 *1 (-109 *4)))) (-3719 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-592 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1020)))) (-3719 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1020)) (-5 *1 (-109 *4)))) (-3719 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-592 *4))) (-4 *4 (-1020)) (-5 *1 (-109 *4)))) (-3719 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-592 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1020)))))
-(-10 -7 (-15 -3719 ((-3 |#1| "failed") (-110) (-592 |#1|))) (-15 -3719 ((-110) (-110) (-1 |#1| (-592 |#1|)))) (-15 -3719 ((-110) (-110) (-1 |#1| |#1|))) (-15 -3719 ((-3 (-1 |#1| (-592 |#1|)) "failed") (-110))) (-15 -2785 ((-110) (-110) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2785 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2785 ((-3 (-592 (-1 |#1| (-592 |#1|))) "failed") (-110))) (IF (|has| |#1| (-789)) (PROGN (-15 -3135 ((-110) |#1|)) (-15 -1660 ((-3 |#1| "failed") (-110)))) |%noBranch|))
-((-4236 (((-108) $ $) NIL)) (-3398 (((-713) $) 72) (($ $ (-713)) 30)) (-1393 (((-108) $) 32)) (-4080 (($ $ (-1075) (-716)) 26)) (-2832 (($ $ (-44 (-1075) (-716))) 15)) (-3280 (((-3 (-716) "failed") $ (-1075)) 25)) (-2282 (((-44 (-1075) (-716)) $) 14)) (-3930 (($ (-1092)) 17) (($ (-1092) (-713)) 22)) (-2069 (((-108) $) 31)) (-1441 (((-108) $) 33)) (-3257 (((-1092) $) 8)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-2619 (((-1075) $) NIL)) (-3131 (((-108) $ (-1092)) 10)) (-2779 (($ $ (-1 (-501) (-592 (-501)))) 52) (((-3 (-1 (-501) (-592 (-501))) "failed") $) 56)) (-2093 (((-1039) $) NIL)) (-3608 (((-108) $ (-1075)) 29)) (-2266 (($ $ (-1 (-108) $ $)) 35)) (-2736 (((-3 (-1 (-798) (-592 (-798))) "failed") $) 54) (($ $ (-1 (-798) (-592 (-798)))) 41) (($ $ (-1 (-798) (-798))) 43)) (-1739 (($ $ (-1075)) 45)) (-1462 (($ $) 63)) (-3932 (($ $ (-1 (-108) $ $)) 36)) (-1217 (((-798) $) 48)) (-1225 (($ $ (-1075)) 27)) (-3014 (((-3 (-713) "failed") $) 58)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 71)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 79)))
-(((-110) (-13 (-789) (-10 -8 (-15 -3257 ((-1092) $)) (-15 -2282 ((-44 (-1075) (-716)) $)) (-15 -1462 ($ $)) (-15 -3930 ($ (-1092))) (-15 -3930 ($ (-1092) (-713))) (-15 -3014 ((-3 (-713) "failed") $)) (-15 -2069 ((-108) $)) (-15 -1393 ((-108) $)) (-15 -1441 ((-108) $)) (-15 -3398 ((-713) $)) (-15 -3398 ($ $ (-713))) (-15 -2266 ($ $ (-1 (-108) $ $))) (-15 -3932 ($ $ (-1 (-108) $ $))) (-15 -2736 ((-3 (-1 (-798) (-592 (-798))) "failed") $)) (-15 -2736 ($ $ (-1 (-798) (-592 (-798))))) (-15 -2736 ($ $ (-1 (-798) (-798)))) (-15 -2779 ($ $ (-1 (-501) (-592 (-501))))) (-15 -2779 ((-3 (-1 (-501) (-592 (-501))) "failed") $)) (-15 -3131 ((-108) $ (-1092))) (-15 -3608 ((-108) $ (-1075))) (-15 -1225 ($ $ (-1075))) (-15 -1739 ($ $ (-1075))) (-15 -3280 ((-3 (-716) "failed") $ (-1075))) (-15 -4080 ($ $ (-1075) (-716))) (-15 -2832 ($ $ (-44 (-1075) (-716))))))) (T -110))
-((-3257 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-110)))) (-2282 (*1 *2 *1) (-12 (-5 *2 (-44 (-1075) (-716))) (-5 *1 (-110)))) (-1462 (*1 *1 *1) (-5 *1 (-110))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-110)))) (-3930 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-713)) (-5 *1 (-110)))) (-3014 (*1 *2 *1) (|partial| -12 (-5 *2 (-713)) (-5 *1 (-110)))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-110)))) (-3398 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-110)))) (-2266 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-3932 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-2736 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-798) (-592 (-798)))) (-5 *1 (-110)))) (-2736 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-798) (-592 (-798)))) (-5 *1 (-110)))) (-2736 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-798) (-798))) (-5 *1 (-110)))) (-2779 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110)))) (-2779 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110)))) (-3131 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-108)) (-5 *1 (-110)))) (-3608 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-108)) (-5 *1 (-110)))) (-1225 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-110)))) (-1739 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-110)))) (-3280 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1075)) (-5 *2 (-716)) (-5 *1 (-110)))) (-4080 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-716)) (-5 *1 (-110)))) (-2832 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1075) (-716))) (-5 *1 (-110)))))
-(-13 (-789) (-10 -8 (-15 -3257 ((-1092) $)) (-15 -2282 ((-44 (-1075) (-716)) $)) (-15 -1462 ($ $)) (-15 -3930 ($ (-1092))) (-15 -3930 ($ (-1092) (-713))) (-15 -3014 ((-3 (-713) "failed") $)) (-15 -2069 ((-108) $)) (-15 -1393 ((-108) $)) (-15 -1441 ((-108) $)) (-15 -3398 ((-713) $)) (-15 -3398 ($ $ (-713))) (-15 -2266 ($ $ (-1 (-108) $ $))) (-15 -3932 ($ $ (-1 (-108) $ $))) (-15 -2736 ((-3 (-1 (-798) (-592 (-798))) "failed") $)) (-15 -2736 ($ $ (-1 (-798) (-592 (-798))))) (-15 -2736 ($ $ (-1 (-798) (-798)))) (-15 -2779 ($ $ (-1 (-501) (-592 (-501))))) (-15 -2779 ((-3 (-1 (-501) (-592 (-501))) "failed") $)) (-15 -3131 ((-108) $ (-1092))) (-15 -3608 ((-108) $ (-1075))) (-15 -1225 ($ $ (-1075))) (-15 -1739 ($ $ (-1075))) (-15 -3280 ((-3 (-716) "failed") $ (-1075))) (-15 -4080 ($ $ (-1075) (-716))) (-15 -2832 ($ $ (-44 (-1075) (-716))))))
-((-3791 (((-525) |#2|) 37)))
-(((-111 |#1| |#2|) (-10 -7 (-15 -3791 ((-525) |#2|))) (-13 (-341) (-968 (-385 (-525)))) (-1150 |#1|)) (T -111))
-((-3791 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-968 (-385 *2)))) (-5 *2 (-525)) (-5 *1 (-111 *4 *3)) (-4 *3 (-1150 *4)))))
-(-10 -7 (-15 -3791 ((-525) |#2|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2782 (($ $ (-525)) NIL)) (-2193 (((-108) $ $) NIL)) (-2169 (($) NIL T CONST)) (-2649 (($ (-1088 (-525)) (-525)) NIL)) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1786 (($ $) NIL)) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-2581 (((-713) $) NIL)) (-1396 (((-108) $) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2152 (((-525)) NIL)) (-3571 (((-525) $) NIL)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3931 (($ $ (-525)) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3780 (((-1073 (-525)) $) NIL)) (-1489 (($ $) NIL)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL)) (-3917 (((-713)) NIL)) (-3325 (((-108) $ $) NIL)) (-1454 (((-525) $ (-525)) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2026 (($ $) 11)) (-2532 (($ $ $) 16)) (-3929 (($) 7 T CONST)) (-2085 (($ $) 6)) (-1613 (((-713)) 25)) (-1903 (($) 31)) (-3307 (($ $ $) 14)) (-3272 (($ $) 9)) (-3087 (($ $ $) 17)) (-2909 (($ $ $) 18)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-3685 (((-856) $) 30)) (-1289 (((-1075) $) NIL)) (-1722 (($ (-856)) 29)) (-2513 (($ $ $) 21)) (-3993 (((-1039) $) NIL)) (-2780 (($) 8 T CONST)) (-3592 (($ $ $) 22)) (-2069 (((-501) $) 37)) (-4100 (((-798) $) 40)) (-3944 (($ $ $) 12)) (-3706 (($ $) 10)) (-3836 (($ $ $) 15)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 20)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 23)) (-3826 (($ $ $) 13)))
+(((-108) (-13 (-789) (-346) (-607) (-901) (-567 (-501)) (-10 -8 (-15 -3929 ($) -2247) (-15 -2780 ($) -2247) (-15 -3706 ($ $)) (-15 -2532 ($ $ $)) (-15 -2909 ($ $ $)) (-15 -3087 ($ $ $)) (-15 -2085 ($ $))))) (T -108))
+((-3929 (*1 *1) (-5 *1 (-108))) (-2780 (*1 *1) (-5 *1 (-108))) (-3706 (*1 *1 *1) (-5 *1 (-108))) (-2532 (*1 *1 *1 *1) (-5 *1 (-108))) (-2909 (*1 *1 *1 *1) (-5 *1 (-108))) (-3087 (*1 *1 *1 *1) (-5 *1 (-108))) (-2085 (*1 *1 *1) (-5 *1 (-108))))
+(-13 (-789) (-346) (-607) (-901) (-567 (-501)) (-10 -8 (-15 -3929 ($) -2247) (-15 -2780 ($) -2247) (-15 -3706 ($ $)) (-15 -2532 ($ $ $)) (-15 -2909 ($ $ $)) (-15 -3087 ($ $ $)) (-15 -2085 ($ $))))
+((-4076 (((-3 (-1 |#1| (-592 |#1|)) "failed") (-110)) 19) (((-110) (-110) (-1 |#1| |#1|)) 13) (((-110) (-110) (-1 |#1| (-592 |#1|))) 11) (((-3 |#1| "failed") (-110) (-592 |#1|)) 21)) (-2241 (((-3 (-592 (-1 |#1| (-592 |#1|))) "failed") (-110)) 25) (((-110) (-110) (-1 |#1| |#1|)) 30) (((-110) (-110) (-592 (-1 |#1| (-592 |#1|)))) 26)) (-2443 (((-110) |#1|) 56 (|has| |#1| (-789)))) (-4142 (((-3 |#1| "failed") (-110)) 50 (|has| |#1| (-789)))))
+(((-109 |#1|) (-10 -7 (-15 -4076 ((-3 |#1| "failed") (-110) (-592 |#1|))) (-15 -4076 ((-110) (-110) (-1 |#1| (-592 |#1|)))) (-15 -4076 ((-110) (-110) (-1 |#1| |#1|))) (-15 -4076 ((-3 (-1 |#1| (-592 |#1|)) "failed") (-110))) (-15 -2241 ((-110) (-110) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2241 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2241 ((-3 (-592 (-1 |#1| (-592 |#1|))) "failed") (-110))) (IF (|has| |#1| (-789)) (PROGN (-15 -2443 ((-110) |#1|)) (-15 -4142 ((-3 |#1| "failed") (-110)))) |%noBranch|)) (-1020)) (T -109))
+((-4142 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1020)) (-4 *2 (-789)) (-5 *1 (-109 *2)))) (-2443 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-789)) (-4 *3 (-1020)))) (-2241 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-1 *4 (-592 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1020)))) (-2241 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1020)) (-5 *1 (-109 *4)))) (-2241 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 (-1 *4 (-592 *4)))) (-4 *4 (-1020)) (-5 *1 (-109 *4)))) (-4076 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-592 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1020)))) (-4076 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1020)) (-5 *1 (-109 *4)))) (-4076 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-592 *4))) (-4 *4 (-1020)) (-5 *1 (-109 *4)))) (-4076 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-592 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1020)))))
+(-10 -7 (-15 -4076 ((-3 |#1| "failed") (-110) (-592 |#1|))) (-15 -4076 ((-110) (-110) (-1 |#1| (-592 |#1|)))) (-15 -4076 ((-110) (-110) (-1 |#1| |#1|))) (-15 -4076 ((-3 (-1 |#1| (-592 |#1|)) "failed") (-110))) (-15 -2241 ((-110) (-110) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2241 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2241 ((-3 (-592 (-1 |#1| (-592 |#1|))) "failed") (-110))) (IF (|has| |#1| (-789)) (PROGN (-15 -2443 ((-110) |#1|)) (-15 -4142 ((-3 |#1| "failed") (-110)))) |%noBranch|))
+((-4087 (((-108) $ $) NIL)) (-4016 (((-713) $) 72) (($ $ (-713)) 30)) (-3716 (((-108) $) 32)) (-3440 (($ $ (-1075) (-716)) 26)) (-1449 (($ $ (-44 (-1075) (-716))) 15)) (-1495 (((-3 (-716) "failed") $ (-1075)) 25)) (-2123 (((-44 (-1075) (-716)) $) 14)) (-1386 (($ (-1092)) 17) (($ (-1092) (-713)) 22)) (-2624 (((-108) $) 31)) (-2295 (((-108) $) 33)) (-2411 (((-1092) $) 8)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-1289 (((-1075) $) NIL)) (-2412 (((-108) $ (-1092)) 10)) (-2750 (($ $ (-1 (-501) (-592 (-501)))) 52) (((-3 (-1 (-501) (-592 (-501))) "failed") $) 56)) (-3993 (((-1039) $) NIL)) (-2372 (((-108) $ (-1075)) 29)) (-4015 (($ $ (-1 (-108) $ $)) 35)) (-2701 (((-3 (-1 (-798) (-592 (-798))) "failed") $) 54) (($ $ (-1 (-798) (-592 (-798)))) 41) (($ $ (-1 (-798) (-798))) 43)) (-2469 (($ $ (-1075)) 45)) (-2503 (($ $) 63)) (-1405 (($ $ (-1 (-108) $ $)) 36)) (-4100 (((-798) $) 48)) (-2199 (($ $ (-1075)) 27)) (-3753 (((-3 (-713) "failed") $) 58)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 71)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 79)))
+(((-110) (-13 (-789) (-10 -8 (-15 -2411 ((-1092) $)) (-15 -2123 ((-44 (-1075) (-716)) $)) (-15 -2503 ($ $)) (-15 -1386 ($ (-1092))) (-15 -1386 ($ (-1092) (-713))) (-15 -3753 ((-3 (-713) "failed") $)) (-15 -2624 ((-108) $)) (-15 -3716 ((-108) $)) (-15 -2295 ((-108) $)) (-15 -4016 ((-713) $)) (-15 -4016 ($ $ (-713))) (-15 -4015 ($ $ (-1 (-108) $ $))) (-15 -1405 ($ $ (-1 (-108) $ $))) (-15 -2701 ((-3 (-1 (-798) (-592 (-798))) "failed") $)) (-15 -2701 ($ $ (-1 (-798) (-592 (-798))))) (-15 -2701 ($ $ (-1 (-798) (-798)))) (-15 -2750 ($ $ (-1 (-501) (-592 (-501))))) (-15 -2750 ((-3 (-1 (-501) (-592 (-501))) "failed") $)) (-15 -2412 ((-108) $ (-1092))) (-15 -2372 ((-108) $ (-1075))) (-15 -2199 ($ $ (-1075))) (-15 -2469 ($ $ (-1075))) (-15 -1495 ((-3 (-716) "failed") $ (-1075))) (-15 -3440 ($ $ (-1075) (-716))) (-15 -1449 ($ $ (-44 (-1075) (-716))))))) (T -110))
+((-2411 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-110)))) (-2123 (*1 *2 *1) (-12 (-5 *2 (-44 (-1075) (-716))) (-5 *1 (-110)))) (-2503 (*1 *1 *1) (-5 *1 (-110))) (-1386 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-110)))) (-1386 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-713)) (-5 *1 (-110)))) (-3753 (*1 *2 *1) (|partial| -12 (-5 *2 (-713)) (-5 *1 (-110)))) (-2624 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-3716 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-2295 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-4016 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-110)))) (-4016 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-110)))) (-4015 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-1405 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-2701 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-798) (-592 (-798)))) (-5 *1 (-110)))) (-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-798) (-592 (-798)))) (-5 *1 (-110)))) (-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-798) (-798))) (-5 *1 (-110)))) (-2750 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110)))) (-2750 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110)))) (-2412 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-108)) (-5 *1 (-110)))) (-2372 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-108)) (-5 *1 (-110)))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-110)))) (-2469 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-110)))) (-1495 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1075)) (-5 *2 (-716)) (-5 *1 (-110)))) (-3440 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-716)) (-5 *1 (-110)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1075) (-716))) (-5 *1 (-110)))))
+(-13 (-789) (-10 -8 (-15 -2411 ((-1092) $)) (-15 -2123 ((-44 (-1075) (-716)) $)) (-15 -2503 ($ $)) (-15 -1386 ($ (-1092))) (-15 -1386 ($ (-1092) (-713))) (-15 -3753 ((-3 (-713) "failed") $)) (-15 -2624 ((-108) $)) (-15 -3716 ((-108) $)) (-15 -2295 ((-108) $)) (-15 -4016 ((-713) $)) (-15 -4016 ($ $ (-713))) (-15 -4015 ($ $ (-1 (-108) $ $))) (-15 -1405 ($ $ (-1 (-108) $ $))) (-15 -2701 ((-3 (-1 (-798) (-592 (-798))) "failed") $)) (-15 -2701 ($ $ (-1 (-798) (-592 (-798))))) (-15 -2701 ($ $ (-1 (-798) (-798)))) (-15 -2750 ($ $ (-1 (-501) (-592 (-501))))) (-15 -2750 ((-3 (-1 (-501) (-592 (-501))) "failed") $)) (-15 -2412 ((-108) $ (-1092))) (-15 -2372 ((-108) $ (-1075))) (-15 -2199 ($ $ (-1075))) (-15 -2469 ($ $ (-1075))) (-15 -1495 ((-3 (-716) "failed") $ (-1075))) (-15 -3440 ($ $ (-1075) (-716))) (-15 -1449 ($ $ (-44 (-1075) (-716))))))
+((-3556 (((-525) |#2|) 37)))
+(((-111 |#1| |#2|) (-10 -7 (-15 -3556 ((-525) |#2|))) (-13 (-341) (-968 (-385 (-525)))) (-1150 |#1|)) (T -111))
+((-3556 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-968 (-385 *2)))) (-5 *2 (-525)) (-5 *1 (-111 *4 *3)) (-4 *3 (-1150 *4)))))
+(-10 -7 (-15 -3556 ((-525) |#2|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $ (-525)) NIL)) (-1507 (((-108) $ $) NIL)) (-2475 (($) NIL T CONST)) (-3378 (($ (-1088 (-525)) (-525)) NIL)) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-2840 (($ $) NIL)) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-4000 (((-713) $) NIL)) (-2278 (((-108) $) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2287 (((-525)) NIL)) (-2027 (((-525) $) NIL)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1397 (($ $ (-525)) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-3444 (((-1073 (-525)) $) NIL)) (-3926 (($ $) NIL)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL)) (-2448 (((-713)) NIL)) (-1571 (((-108) $ $) NIL)) (-1485 (((-525) $ (-525)) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL)))
(((-112 |#1|) (-804 |#1|) (-525)) (T -112))
NIL
(-804 |#1|)
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1548 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-286)))) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-112 |#1|) (-844)))) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| (-112 |#1|) (-844)))) (-2193 (((-108) $ $) NIL)) (-3855 (((-525) $) NIL (|has| (-112 |#1|) (-762)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-112 |#1|) "failed") $) NIL) (((-3 (-1092) "failed") $) NIL (|has| (-112 |#1|) (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-112 |#1|) (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-112 |#1|) (-968 (-525))))) (-1572 (((-112 |#1|) $) NIL) (((-1092) $) NIL (|has| (-112 |#1|) (-968 (-1092)))) (((-385 (-525)) $) NIL (|has| (-112 |#1|) (-968 (-525)))) (((-525) $) NIL (|has| (-112 |#1|) (-968 (-525))))) (-3318 (($ $) NIL) (($ (-525) $) NIL)) (-1747 (($ $ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| (-112 |#1|) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-112 |#1|) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-112 |#1|))) (|:| |vec| (-1174 (-112 |#1|)))) (-632 $) (-1174 $)) NIL) (((-632 (-112 |#1|)) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($) NIL (|has| (-112 |#1|) (-510)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-1222 (((-108) $) NIL (|has| (-112 |#1|) (-762)))) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-112 |#1|) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-112 |#1|) (-821 (-357))))) (-1396 (((-108) $) NIL)) (-3858 (($ $) NIL)) (-3114 (((-112 |#1|) $) NIL)) (-3844 (((-3 $ "failed") $) NIL (|has| (-112 |#1|) (-1068)))) (-3256 (((-108) $) NIL (|has| (-112 |#1|) (-762)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2638 (($ $ $) NIL (|has| (-112 |#1|) (-789)))) (-3662 (($ $ $) NIL (|has| (-112 |#1|) (-789)))) (-3165 (($ (-1 (-112 |#1|) (-112 |#1|)) $) NIL)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2295 (($) NIL (|has| (-112 |#1|) (-1068)) CONST)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3628 (($ $) NIL (|has| (-112 |#1|) (-286)))) (-2487 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-510)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-112 |#1|) (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-112 |#1|) (-844)))) (-2770 (((-396 $) $) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2457 (($ $ (-592 (-112 |#1|)) (-592 (-112 |#1|))) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-112 |#1|) (-112 |#1|)) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-273 (-112 |#1|))) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-592 (-273 (-112 |#1|)))) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-592 (-1092)) (-592 (-112 |#1|))) NIL (|has| (-112 |#1|) (-486 (-1092) (-112 |#1|)))) (($ $ (-1092) (-112 |#1|)) NIL (|has| (-112 |#1|) (-486 (-1092) (-112 |#1|))))) (-3684 (((-713) $) NIL)) (-3406 (($ $ (-112 |#1|)) NIL (|has| (-112 |#1|) (-265 (-112 |#1|) (-112 |#1|))))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3376 (($ $) NIL (|has| (-112 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-112 |#1|) (-213))) (($ $ (-1092)) NIL (|has| (-112 |#1|) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-112 |#1|) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-112 |#1|) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-112 |#1|) (-835 (-1092)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-713)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-4143 (($ $) NIL)) (-3123 (((-112 |#1|) $) NIL)) (-3210 (((-827 (-525)) $) NIL (|has| (-112 |#1|) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-112 |#1|) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-112 |#1|) (-567 (-501)))) (((-357) $) NIL (|has| (-112 |#1|) (-953))) (((-205) $) NIL (|has| (-112 |#1|) (-953)))) (-2272 (((-161 (-385 (-525))) $) NIL)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-112 |#1|) (-844))))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-112 |#1|)) NIL) (($ (-1092)) NIL (|has| (-112 |#1|) (-968 (-1092))))) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| (-112 |#1|) (-844))) (|has| (-112 |#1|) (-136))))) (-3917 (((-713)) NIL)) (-3074 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-510)))) (-3325 (((-108) $ $) NIL)) (-1454 (((-385 (-525)) $ (-525)) NIL)) (-2802 (($ $) NIL (|has| (-112 |#1|) (-762)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $) NIL (|has| (-112 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-112 |#1|) (-213))) (($ $ (-1092)) NIL (|has| (-112 |#1|) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-112 |#1|) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-112 |#1|) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-112 |#1|) (-835 (-1092)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-713)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-4011 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-3987 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-3978 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-4075 (($ $ $) NIL) (($ (-112 |#1|) (-112 |#1|)) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-112 |#1|) $) NIL) (($ $ (-112 |#1|)) NIL)))
-(((-113 |#1|) (-13 (-925 (-112 |#1|)) (-10 -8 (-15 -1454 ((-385 (-525)) $ (-525))) (-15 -2272 ((-161 (-385 (-525))) $)) (-15 -3318 ($ $)) (-15 -3318 ($ (-525) $)))) (-525)) (T -113))
-((-1454 (*1 *2 *1 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-113 *4)) (-14 *4 *3) (-5 *3 (-525)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-113 *3)) (-14 *3 (-525)))) (-3318 (*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-525)))) (-3318 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-113 *3)) (-14 *3 *2))))
-(-13 (-925 (-112 |#1|)) (-10 -8 (-15 -1454 ((-385 (-525)) $ (-525))) (-15 -2272 ((-161 (-385 (-525))) $)) (-15 -3318 ($ $)) (-15 -3318 ($ (-525) $))))
-((-1430 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3396 (((-592 $) $) 27)) (-1729 (((-108) $ $) 32)) (-2004 (((-108) |#2| $) 36)) (-2803 (((-592 |#2|) $) 22)) (-3786 (((-108) $) 16)) (-3406 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2905 (((-108) $) 45)) (-1217 (((-798) $) 41)) (-3793 (((-592 $) $) 28)) (-3955 (((-108) $ $) 34)) (-3522 (((-713) $) 43)))
-(((-114 |#1| |#2|) (-10 -8 (-15 -1217 ((-798) |#1|)) (-15 -1430 (|#1| |#1| "right" |#1|)) (-15 -1430 (|#1| |#1| "left" |#1|)) (-15 -3406 (|#1| |#1| "right")) (-15 -3406 (|#1| |#1| "left")) (-15 -1430 (|#2| |#1| "value" |#2|)) (-15 -1729 ((-108) |#1| |#1|)) (-15 -2803 ((-592 |#2|) |#1|)) (-15 -2905 ((-108) |#1|)) (-15 -3406 (|#2| |#1| "value")) (-15 -3786 ((-108) |#1|)) (-15 -3396 ((-592 |#1|) |#1|)) (-15 -3793 ((-592 |#1|) |#1|)) (-15 -3955 ((-108) |#1| |#1|)) (-15 -2004 ((-108) |#2| |#1|)) (-15 -3522 ((-713) |#1|))) (-115 |#2|) (-1128)) (T -114))
-NIL
-(-10 -8 (-15 -1217 ((-798) |#1|)) (-15 -1430 (|#1| |#1| "right" |#1|)) (-15 -1430 (|#1| |#1| "left" |#1|)) (-15 -3406 (|#1| |#1| "right")) (-15 -3406 (|#1| |#1| "left")) (-15 -1430 (|#2| |#1| "value" |#2|)) (-15 -1729 ((-108) |#1| |#1|)) (-15 -2803 ((-592 |#2|) |#1|)) (-15 -2905 ((-108) |#1|)) (-15 -3406 (|#2| |#1| "value")) (-15 -3786 ((-108) |#1|)) (-15 -3396 ((-592 |#1|) |#1|)) (-15 -3793 ((-592 |#1|) |#1|)) (-15 -3955 ((-108) |#1| |#1|)) (-15 -2004 ((-108) |#2| |#1|)) (-15 -3522 ((-713) |#1|)))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3284 ((|#1| $) 48)) (-3991 (((-108) $ (-713)) 8)) (-3214 ((|#1| $ |#1|) 39 (|has| $ (-6 -4259)))) (-3121 (($ $ $) 52 (|has| $ (-6 -4259)))) (-3720 (($ $ $) 54 (|has| $ (-6 -4259)))) (-1430 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4259))) (($ $ "left" $) 55 (|has| $ (-6 -4259))) (($ $ "right" $) 53 (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) 41 (|has| $ (-6 -4259)))) (-2169 (($) 7 T CONST)) (-3519 (($ $) 57)) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3396 (((-592 $) $) 50)) (-1729 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-3924 (((-108) $ (-713)) 9)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-3507 (($ $) 59)) (-2803 (((-592 |#1|) $) 45)) (-3786 (((-108) $) 49)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3340 (((-525) $ $) 44)) (-2905 (((-108) $) 46)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3793 (((-592 $) $) 51)) (-3351 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1653 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-286)))) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-112 |#1|) (-844)))) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| (-112 |#1|) (-844)))) (-1507 (((-108) $ $) NIL)) (-2971 (((-525) $) NIL (|has| (-112 |#1|) (-762)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-112 |#1|) "failed") $) NIL) (((-3 (-1092) "failed") $) NIL (|has| (-112 |#1|) (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-112 |#1|) (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-112 |#1|) (-968 (-525))))) (-4105 (((-112 |#1|) $) NIL) (((-1092) $) NIL (|has| (-112 |#1|) (-968 (-1092)))) (((-385 (-525)) $) NIL (|has| (-112 |#1|) (-968 (-525)))) (((-525) $) NIL (|has| (-112 |#1|) (-968 (-525))))) (-1498 (($ $) NIL) (($ (-525) $) NIL)) (-1356 (($ $ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| (-112 |#1|) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-112 |#1|) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-112 |#1|))) (|:| |vec| (-1174 (-112 |#1|)))) (-632 $) (-1174 $)) NIL) (((-632 (-112 |#1|)) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($) NIL (|has| (-112 |#1|) (-510)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-1889 (((-108) $) NIL (|has| (-112 |#1|) (-762)))) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-112 |#1|) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-112 |#1|) (-821 (-357))))) (-2278 (((-108) $) NIL)) (-2999 (($ $) NIL)) (-4066 (((-112 |#1|) $) NIL)) (-2878 (((-3 $ "failed") $) NIL (|has| (-112 |#1|) (-1068)))) (-4079 (((-108) $) NIL (|has| (-112 |#1|) (-762)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3033 (($ $ $) NIL (|has| (-112 |#1|) (-789)))) (-1609 (($ $ $) NIL (|has| (-112 |#1|) (-789)))) (-2016 (($ (-1 (-112 |#1|) (-112 |#1|)) $) NIL)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-2948 (($) NIL (|has| (-112 |#1|) (-1068)) CONST)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1372 (($ $) NIL (|has| (-112 |#1|) (-286)))) (-1340 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-510)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-112 |#1|) (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-112 |#1|) (-844)))) (-4201 (((-396 $) $) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2825 (($ $ (-592 (-112 |#1|)) (-592 (-112 |#1|))) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-112 |#1|) (-112 |#1|)) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-273 (-112 |#1|))) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-592 (-273 (-112 |#1|)))) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-592 (-1092)) (-592 (-112 |#1|))) NIL (|has| (-112 |#1|) (-486 (-1092) (-112 |#1|)))) (($ $ (-1092) (-112 |#1|)) NIL (|has| (-112 |#1|) (-486 (-1092) (-112 |#1|))))) (-1927 (((-713) $) NIL)) (-3431 (($ $ (-112 |#1|)) NIL (|has| (-112 |#1|) (-265 (-112 |#1|) (-112 |#1|))))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2702 (($ $) NIL (|has| (-112 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-112 |#1|) (-213))) (($ $ (-1092)) NIL (|has| (-112 |#1|) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-112 |#1|) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-112 |#1|) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-112 |#1|) (-835 (-1092)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-713)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-2874 (($ $) NIL)) (-4080 (((-112 |#1|) $) NIL)) (-2069 (((-827 (-525)) $) NIL (|has| (-112 |#1|) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-112 |#1|) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-112 |#1|) (-567 (-501)))) (((-357) $) NIL (|has| (-112 |#1|) (-953))) (((-205) $) NIL (|has| (-112 |#1|) (-953)))) (-4070 (((-161 (-385 (-525))) $) NIL)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-112 |#1|) (-844))))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-112 |#1|)) NIL) (($ (-1092)) NIL (|has| (-112 |#1|) (-968 (-1092))))) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| (-112 |#1|) (-844))) (|has| (-112 |#1|) (-136))))) (-2448 (((-713)) NIL)) (-3064 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-510)))) (-1571 (((-108) $ $) NIL)) (-1485 (((-385 (-525)) $ (-525)) NIL)) (-2380 (($ $) NIL (|has| (-112 |#1|) (-762)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $) NIL (|has| (-112 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-112 |#1|) (-213))) (($ $ (-1092)) NIL (|has| (-112 |#1|) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-112 |#1|) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-112 |#1|) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-112 |#1|) (-835 (-1092)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-713)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-2830 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-2807 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-2795 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-2880 (($ $ $) NIL) (($ (-112 |#1|) (-112 |#1|)) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-112 |#1|) $) NIL) (($ $ (-112 |#1|)) NIL)))
+(((-113 |#1|) (-13 (-925 (-112 |#1|)) (-10 -8 (-15 -1485 ((-385 (-525)) $ (-525))) (-15 -4070 ((-161 (-385 (-525))) $)) (-15 -1498 ($ $)) (-15 -1498 ($ (-525) $)))) (-525)) (T -113))
+((-1485 (*1 *2 *1 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-113 *4)) (-14 *4 *3) (-5 *3 (-525)))) (-4070 (*1 *2 *1) (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-113 *3)) (-14 *3 (-525)))) (-1498 (*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-525)))) (-1498 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-113 *3)) (-14 *3 *2))))
+(-13 (-925 (-112 |#1|)) (-10 -8 (-15 -1485 ((-385 (-525)) $ (-525))) (-15 -4070 ((-161 (-385 (-525))) $)) (-15 -1498 ($ $)) (-15 -1498 ($ (-525) $))))
+((-1233 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3994 (((-592 $) $) 27)) (-3569 (((-108) $ $) 32)) (-3198 (((-108) |#2| $) 36)) (-2010 (((-592 |#2|) $) 22)) (-3506 (((-108) $) 16)) (-3431 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3953 (((-108) $) 45)) (-4100 (((-798) $) 41)) (-3576 (((-592 $) $) 28)) (-2775 (((-108) $ $) 34)) (-2827 (((-713) $) 43)))
+(((-114 |#1| |#2|) (-10 -8 (-15 -4100 ((-798) |#1|)) (-15 -1233 (|#1| |#1| "right" |#1|)) (-15 -1233 (|#1| |#1| "left" |#1|)) (-15 -3431 (|#1| |#1| "right")) (-15 -3431 (|#1| |#1| "left")) (-15 -1233 (|#2| |#1| "value" |#2|)) (-15 -3569 ((-108) |#1| |#1|)) (-15 -2010 ((-592 |#2|) |#1|)) (-15 -3953 ((-108) |#1|)) (-15 -3431 (|#2| |#1| "value")) (-15 -3506 ((-108) |#1|)) (-15 -3994 ((-592 |#1|) |#1|)) (-15 -3576 ((-592 |#1|) |#1|)) (-15 -2775 ((-108) |#1| |#1|)) (-15 -3198 ((-108) |#2| |#1|)) (-15 -2827 ((-713) |#1|))) (-115 |#2|) (-1128)) (T -114))
+NIL
+(-10 -8 (-15 -4100 ((-798) |#1|)) (-15 -1233 (|#1| |#1| "right" |#1|)) (-15 -1233 (|#1| |#1| "left" |#1|)) (-15 -3431 (|#1| |#1| "right")) (-15 -3431 (|#1| |#1| "left")) (-15 -1233 (|#2| |#1| "value" |#2|)) (-15 -3569 ((-108) |#1| |#1|)) (-15 -2010 ((-592 |#2|) |#1|)) (-15 -3953 ((-108) |#1|)) (-15 -3431 (|#2| |#1| "value")) (-15 -3506 ((-108) |#1|)) (-15 -3994 ((-592 |#1|) |#1|)) (-15 -3576 ((-592 |#1|) |#1|)) (-15 -2775 ((-108) |#1| |#1|)) (-15 -3198 ((-108) |#2| |#1|)) (-15 -2827 ((-713) |#1|)))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2219 ((|#1| $) 48)) (-3779 (((-108) $ (-713)) 8)) (-1947 ((|#1| $ |#1|) 39 (|has| $ (-6 -4260)))) (-2314 (($ $ $) 52 (|has| $ (-6 -4260)))) (-4089 (($ $ $) 54 (|has| $ (-6 -4260)))) (-1233 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4260))) (($ $ "left" $) 55 (|has| $ (-6 -4260))) (($ $ "right" $) 53 (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) 41 (|has| $ (-6 -4260)))) (-2475 (($) 7 T CONST)) (-3446 (($ $) 57)) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-3994 (((-592 $) $) 50)) (-3569 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-2516 (((-108) $ (-713)) 9)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-3436 (($ $) 59)) (-2010 (((-592 |#1|) $) 45)) (-3506 (((-108) $) 49)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1707 (((-525) $ $) 44)) (-3953 (((-108) $) 46)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3576 (((-592 $) $) 51)) (-1791 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-115 |#1|) (-131) (-1128)) (T -115))
-((-3507 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1128)))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1128)))) (-3519 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1128)))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1128)))) (-1430 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4259)) (-4 *1 (-115 *3)) (-4 *3 (-1128)))) (-3720 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-115 *2)) (-4 *2 (-1128)))) (-1430 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4259)) (-4 *1 (-115 *3)) (-4 *3 (-1128)))) (-3121 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-115 *2)) (-4 *2 (-1128)))))
-(-13 (-942 |t#1|) (-10 -8 (-15 -3507 ($ $)) (-15 -3406 ($ $ "left")) (-15 -3519 ($ $)) (-15 -3406 ($ $ "right")) (IF (|has| $ (-6 -4259)) (PROGN (-15 -1430 ($ $ "left" $)) (-15 -3720 ($ $ $)) (-15 -1430 ($ $ "right" $)) (-15 -3121 ($ $ $))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-942 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
-((-1966 (((-108) |#1|) 24)) (-2936 (((-713) (-713)) 23) (((-713)) 22)) (-3906 (((-108) |#1| (-108)) 25) (((-108) |#1|) 26)))
-(((-116 |#1|) (-10 -7 (-15 -3906 ((-108) |#1|)) (-15 -3906 ((-108) |#1| (-108))) (-15 -2936 ((-713))) (-15 -2936 ((-713) (-713))) (-15 -1966 ((-108) |#1|))) (-1150 (-525))) (T -116))
-((-1966 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525))))) (-2936 (*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525))))) (-2936 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525))))) (-3906 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525))))) (-3906 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525))))))
-(-10 -7 (-15 -3906 ((-108) |#1|)) (-15 -3906 ((-108) |#1| (-108))) (-15 -2936 ((-713))) (-15 -2936 ((-713) (-713))) (-15 -1966 ((-108) |#1|)))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3284 ((|#1| $) 15)) (-1260 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3991 (((-108) $ (-713)) NIL)) (-3214 ((|#1| $ |#1|) NIL (|has| $ (-6 -4259)))) (-3121 (($ $ $) 18 (|has| $ (-6 -4259)))) (-3720 (($ $ $) 20 (|has| $ (-6 -4259)))) (-1430 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4259))) (($ $ "left" $) NIL (|has| $ (-6 -4259))) (($ $ "right" $) NIL (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) NIL (|has| $ (-6 -4259)))) (-2169 (($) NIL T CONST)) (-3519 (($ $) 17)) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-3396 (((-592 $) $) NIL)) (-1729 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3965 (($ $ |#1| $) 23)) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-3507 (($ $) 19)) (-2803 (((-592 |#1|) $) NIL)) (-3786 (((-108) $) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-1220 (($ |#1| $) 24)) (-1262 (($ |#1| $) 10)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) 14)) (-2512 (($) 8)) (-3406 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3340 (((-525) $ $) NIL)) (-2905 (((-108) $) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) NIL)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3793 (((-592 $) $) NIL)) (-3351 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2729 (($ (-592 |#1|)) 12)) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-117 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4259) (-6 -4258) (-15 -2729 ($ (-592 |#1|))) (-15 -1262 ($ |#1| $)) (-15 -1220 ($ |#1| $)) (-15 -1260 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-789)) (T -117))
-((-2729 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-117 *3)))) (-1262 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789)))) (-1220 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789)))) (-1260 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) (-5 *1 (-117 *3)) (-4 *3 (-789)))))
-(-13 (-121 |#1|) (-10 -8 (-6 -4259) (-6 -4258) (-15 -2729 ($ (-592 |#1|))) (-15 -1262 ($ |#1| $)) (-15 -1220 ($ |#1| $)) (-15 -1260 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-3411 (($ $) 14)) (-1850 (($ $) 11)) (-1299 (($ $ $) 24)) (-2404 (($ $ $) 22)) (-1619 (($ $) 12)) (-1525 (($ $ $) 20)) (-1509 (($ $ $) 18)))
-(((-118 |#1|) (-10 -8 (-15 -1299 (|#1| |#1| |#1|)) (-15 -2404 (|#1| |#1| |#1|)) (-15 -1619 (|#1| |#1|)) (-15 -1850 (|#1| |#1|)) (-15 -3411 (|#1| |#1|)) (-15 -1509 (|#1| |#1| |#1|)) (-15 -1525 (|#1| |#1| |#1|))) (-119)) (T -118))
-NIL
-(-10 -8 (-15 -1299 (|#1| |#1| |#1|)) (-15 -2404 (|#1| |#1| |#1|)) (-15 -1619 (|#1| |#1|)) (-15 -1850 (|#1| |#1|)) (-15 -3411 (|#1| |#1|)) (-15 -1509 (|#1| |#1| |#1|)) (-15 -1525 (|#1| |#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-3411 (($ $) 104)) (-3469 (($ $ $) 25)) (-3456 (((-1179) $ (-525) (-525)) 67 (|has| $ (-6 -4259)))) (-2470 (((-108) $) 99 (|has| (-108) (-789))) (((-108) (-1 (-108) (-108) (-108)) $) 93)) (-2165 (($ $) 103 (-12 (|has| (-108) (-789)) (|has| $ (-6 -4259)))) (($ (-1 (-108) (-108) (-108)) $) 102 (|has| $ (-6 -4259)))) (-2458 (($ $) 98 (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $) 92)) (-3991 (((-108) $ (-713)) 38)) (-1430 (((-108) $ (-1141 (-525)) (-108)) 89 (|has| $ (-6 -4259))) (((-108) $ (-525) (-108)) 55 (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) (-108)) $) 72 (|has| $ (-6 -4258)))) (-2169 (($) 39 T CONST)) (-2700 (($ $) 101 (|has| $ (-6 -4259)))) (-3431 (($ $) 91)) (-1910 (($ $) 69 (-12 (|has| (-108) (-1020)) (|has| $ (-6 -4258))))) (-1703 (($ (-1 (-108) (-108)) $) 73 (|has| $ (-6 -4258))) (($ (-108) $) 70 (-12 (|has| (-108) (-1020)) (|has| $ (-6 -4258))))) (-1284 (((-108) (-1 (-108) (-108) (-108)) $) 75 (|has| $ (-6 -4258))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) 74 (|has| $ (-6 -4258))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) 71 (-12 (|has| (-108) (-1020)) (|has| $ (-6 -4258))))) (-2301 (((-108) $ (-525) (-108)) 54 (|has| $ (-6 -4259)))) (-2222 (((-108) $ (-525)) 56)) (-1932 (((-525) (-108) $ (-525)) 96 (|has| (-108) (-1020))) (((-525) (-108) $) 95 (|has| (-108) (-1020))) (((-525) (-1 (-108) (-108)) $) 94)) (-3440 (((-592 (-108)) $) 46 (|has| $ (-6 -4258)))) (-3749 (($ $ $) 26)) (-1850 (($ $) 31)) (-1299 (($ $ $) 28)) (-3416 (($ (-713) (-108)) 78)) (-2404 (($ $ $) 29)) (-3924 (((-108) $ (-713)) 37)) (-3666 (((-525) $) 64 (|has| (-525) (-789)))) (-2638 (($ $ $) 13)) (-1577 (($ $ $) 97 (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $ $) 90)) (-2694 (((-592 (-108)) $) 47 (|has| $ (-6 -4258)))) (-2004 (((-108) (-108) $) 49 (-12 (|has| (-108) (-1020)) (|has| $ (-6 -4258))))) (-1847 (((-525) $) 63 (|has| (-525) (-789)))) (-3662 (($ $ $) 14)) (-2284 (($ (-1 (-108) (-108)) $) 42 (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-108) (-108) (-108)) $ $) 83) (($ (-1 (-108) (-108)) $) 41)) (-2912 (((-108) $ (-713)) 36)) (-2619 (((-1075) $) 9)) (-2531 (($ $ $ (-525)) 88) (($ (-108) $ (-525)) 87)) (-2628 (((-592 (-525)) $) 61)) (-2978 (((-108) (-525) $) 60)) (-2093 (((-1039) $) 10)) (-1872 (((-108) $) 65 (|has| (-525) (-789)))) (-1983 (((-3 (-108) "failed") (-1 (-108) (-108)) $) 76)) (-1420 (($ $ (-108)) 66 (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) (-108)) $) 44 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-108)) (-592 (-108))) 53 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-108) (-108)) 52 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-273 (-108))) 51 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-592 (-273 (-108)))) 50 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020))))) (-2614 (((-108) $ $) 32)) (-2167 (((-108) (-108) $) 62 (-12 (|has| $ (-6 -4258)) (|has| (-108) (-1020))))) (-3341 (((-592 (-108)) $) 59)) (-2659 (((-108) $) 35)) (-2512 (($) 34)) (-3406 (($ $ (-1141 (-525))) 84) (((-108) $ (-525)) 58) (((-108) $ (-525) (-108)) 57)) (-3038 (($ $ (-1141 (-525))) 86) (($ $ (-525)) 85)) (-2110 (((-713) (-108) $) 48 (-12 (|has| (-108) (-1020)) (|has| $ (-6 -4258)))) (((-713) (-1 (-108) (-108)) $) 45 (|has| $ (-6 -4258)))) (-4098 (($ $ $ (-525)) 100 (|has| $ (-6 -4259)))) (-1462 (($ $) 33)) (-3210 (((-501) $) 68 (|has| (-108) (-567 (-501))))) (-1230 (($ (-592 (-108))) 77)) (-2038 (($ (-592 $)) 82) (($ $ $) 81) (($ (-108) $) 80) (($ $ (-108)) 79)) (-1217 (((-798) $) 11)) (-3029 (((-108) (-1 (-108) (-108)) $) 43 (|has| $ (-6 -4258)))) (-3762 (($ $ $) 27)) (-1619 (($ $) 30)) (-1525 (($ $ $) 106)) (-4011 (((-108) $ $) 16)) (-3987 (((-108) $ $) 17)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 15)) (-3978 (((-108) $ $) 18)) (-1509 (($ $ $) 105)) (-3522 (((-713) $) 40 (|has| $ (-6 -4258)))))
+((-3436 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1128)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1128)))) (-3446 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1128)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1128)))) (-1233 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4260)) (-4 *1 (-115 *3)) (-4 *3 (-1128)))) (-4089 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4260)) (-4 *1 (-115 *2)) (-4 *2 (-1128)))) (-1233 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4260)) (-4 *1 (-115 *3)) (-4 *3 (-1128)))) (-2314 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4260)) (-4 *1 (-115 *2)) (-4 *2 (-1128)))))
+(-13 (-942 |t#1|) (-10 -8 (-15 -3436 ($ $)) (-15 -3431 ($ $ "left")) (-15 -3446 ($ $)) (-15 -3431 ($ $ "right")) (IF (|has| $ (-6 -4260)) (PROGN (-15 -1233 ($ $ "left" $)) (-15 -4089 ($ $ $)) (-15 -1233 ($ $ "right" $)) (-15 -2314 ($ $ $))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-942 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
+((-4019 (((-108) |#1|) 24)) (-1250 (((-713) (-713)) 23) (((-713)) 22)) (-2317 (((-108) |#1| (-108)) 25) (((-108) |#1|) 26)))
+(((-116 |#1|) (-10 -7 (-15 -2317 ((-108) |#1|)) (-15 -2317 ((-108) |#1| (-108))) (-15 -1250 ((-713))) (-15 -1250 ((-713) (-713))) (-15 -4019 ((-108) |#1|))) (-1150 (-525))) (T -116))
+((-4019 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525))))) (-1250 (*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525))))) (-1250 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525))))) (-2317 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525))))) (-2317 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525))))))
+(-10 -7 (-15 -2317 ((-108) |#1|)) (-15 -2317 ((-108) |#1| (-108))) (-15 -1250 ((-713))) (-15 -1250 ((-713) (-713))) (-15 -4019 ((-108) |#1|)))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2219 ((|#1| $) 15)) (-3224 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3779 (((-108) $ (-713)) NIL)) (-1947 ((|#1| $ |#1|) NIL (|has| $ (-6 -4260)))) (-2314 (($ $ $) 18 (|has| $ (-6 -4260)))) (-4089 (($ $ $) 20 (|has| $ (-6 -4260)))) (-1233 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4260))) (($ $ "left" $) NIL (|has| $ (-6 -4260))) (($ $ "right" $) NIL (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) NIL (|has| $ (-6 -4260)))) (-2475 (($) NIL T CONST)) (-3446 (($ $) 17)) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3994 (((-592 $) $) NIL)) (-3569 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1214 (($ $ |#1| $) 23)) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-3436 (($ $) 19)) (-2010 (((-592 |#1|) $) NIL)) (-3506 (((-108) $) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-1861 (($ |#1| $) 24)) (-3246 (($ |#1| $) 10)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) 14)) (-1558 (($) 8)) (-3431 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1707 (((-525) $ $) NIL)) (-3953 (((-108) $) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) NIL)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3576 (((-592 $) $) NIL)) (-1791 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2922 (($ (-592 |#1|)) 12)) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-117 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4260) (-6 -4259) (-15 -2922 ($ (-592 |#1|))) (-15 -3246 ($ |#1| $)) (-15 -1861 ($ |#1| $)) (-15 -3224 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-789)) (T -117))
+((-2922 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-117 *3)))) (-3246 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789)))) (-1861 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789)))) (-3224 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) (-5 *1 (-117 *3)) (-4 *3 (-789)))))
+(-13 (-121 |#1|) (-10 -8 (-6 -4260) (-6 -4259) (-15 -2922 ($ (-592 |#1|))) (-15 -3246 ($ |#1| $)) (-15 -1861 ($ |#1| $)) (-15 -3224 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-2026 (($ $) 14)) (-3272 (($ $) 11)) (-3087 (($ $ $) 24)) (-2909 (($ $ $) 22)) (-3706 (($ $) 12)) (-3836 (($ $ $) 20)) (-3826 (($ $ $) 18)))
+(((-118 |#1|) (-10 -8 (-15 -3087 (|#1| |#1| |#1|)) (-15 -2909 (|#1| |#1| |#1|)) (-15 -3706 (|#1| |#1|)) (-15 -3272 (|#1| |#1|)) (-15 -2026 (|#1| |#1|)) (-15 -3826 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1| |#1|))) (-119)) (T -118))
+NIL
+(-10 -8 (-15 -3087 (|#1| |#1| |#1|)) (-15 -2909 (|#1| |#1| |#1|)) (-15 -3706 (|#1| |#1|)) (-15 -3272 (|#1| |#1|)) (-15 -2026 (|#1| |#1|)) (-15 -3826 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-2026 (($ $) 104)) (-2532 (($ $ $) 25)) (-3289 (((-1179) $ (-525) (-525)) 67 (|has| $ (-6 -4260)))) (-2358 (((-108) $) 99 (|has| (-108) (-789))) (((-108) (-1 (-108) (-108) (-108)) $) 93)) (-2436 (($ $) 103 (-12 (|has| (-108) (-789)) (|has| $ (-6 -4260)))) (($ (-1 (-108) (-108) (-108)) $) 102 (|has| $ (-6 -4260)))) (-1842 (($ $) 98 (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $) 92)) (-3779 (((-108) $ (-713)) 38)) (-1233 (((-108) $ (-1141 (-525)) (-108)) 89 (|has| $ (-6 -4260))) (((-108) $ (-525) (-108)) 55 (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) (-108)) $) 72 (|has| $ (-6 -4259)))) (-2475 (($) 39 T CONST)) (-2670 (($ $) 101 (|has| $ (-6 -4260)))) (-1652 (($ $) 91)) (-1681 (($ $) 69 (-12 (|has| (-108) (-1020)) (|has| $ (-6 -4259))))) (-2698 (($ (-1 (-108) (-108)) $) 73 (|has| $ (-6 -4259))) (($ (-108) $) 70 (-12 (|has| (-108) (-1020)) (|has| $ (-6 -4259))))) (-3504 (((-108) (-1 (-108) (-108) (-108)) $) 75 (|has| $ (-6 -4259))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) 74 (|has| $ (-6 -4259))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) 71 (-12 (|has| (-108) (-1020)) (|has| $ (-6 -4259))))) (-3081 (((-108) $ (-525) (-108)) 54 (|has| $ (-6 -4260)))) (-3017 (((-108) $ (-525)) 56)) (-3856 (((-525) (-108) $ (-525)) 96 (|has| (-108) (-1020))) (((-525) (-108) $) 95 (|has| (-108) (-1020))) (((-525) (-1 (-108) (-108)) $) 94)) (-2175 (((-592 (-108)) $) 46 (|has| $ (-6 -4259)))) (-3307 (($ $ $) 26)) (-3272 (($ $) 31)) (-3087 (($ $ $) 28)) (-3324 (($ (-713) (-108)) 78)) (-2909 (($ $ $) 29)) (-2516 (((-108) $ (-713)) 37)) (-1732 (((-525) $) 64 (|has| (-525) (-789)))) (-3033 (($ $ $) 13)) (-3212 (($ $ $) 97 (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $ $) 90)) (-2617 (((-592 (-108)) $) 47 (|has| $ (-6 -4259)))) (-3198 (((-108) (-108) $) 49 (-12 (|has| (-108) (-1020)) (|has| $ (-6 -4259))))) (-2231 (((-525) $) 63 (|has| (-525) (-789)))) (-1609 (($ $ $) 14)) (-3069 (($ (-1 (-108) (-108)) $) 42 (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-108) (-108) (-108)) $ $) 83) (($ (-1 (-108) (-108)) $) 41)) (-4028 (((-108) $ (-713)) 36)) (-1289 (((-1075) $) 9)) (-2594 (($ $ $ (-525)) 88) (($ (-108) $ (-525)) 87)) (-3177 (((-592 (-525)) $) 61)) (-3461 (((-108) (-525) $) 60)) (-3993 (((-1039) $) 10)) (-1647 (((-108) $) 65 (|has| (-525) (-789)))) (-4202 (((-3 (-108) "failed") (-1 (-108) (-108)) $) 76)) (-3453 (($ $ (-108)) 66 (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) (-108)) $) 44 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-108)) (-592 (-108))) 53 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-108) (-108)) 52 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-273 (-108))) 51 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-592 (-273 (-108)))) 50 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020))))) (-1231 (((-108) $ $) 32)) (-2456 (((-108) (-108) $) 62 (-12 (|has| $ (-6 -4259)) (|has| (-108) (-1020))))) (-1717 (((-592 (-108)) $) 59)) (-3479 (((-108) $) 35)) (-1558 (($) 34)) (-3431 (($ $ (-1141 (-525))) 84) (((-108) $ (-525)) 58) (((-108) $ (-525) (-108)) 57)) (-2139 (($ $ (-1141 (-525))) 86) (($ $ (-525)) 85)) (-4002 (((-713) (-108) $) 48 (-12 (|has| (-108) (-1020)) (|has| $ (-6 -4259)))) (((-713) (-1 (-108) (-108)) $) 45 (|has| $ (-6 -4259)))) (-3632 (($ $ $ (-525)) 100 (|has| $ (-6 -4260)))) (-2503 (($ $) 33)) (-2069 (((-501) $) 68 (|has| (-108) (-567 (-501))))) (-4114 (($ (-592 (-108))) 77)) (-2035 (($ (-592 $)) 82) (($ $ $) 81) (($ (-108) $) 80) (($ $ (-108)) 79)) (-4100 (((-798) $) 11)) (-2706 (((-108) (-1 (-108) (-108)) $) 43 (|has| $ (-6 -4259)))) (-3944 (($ $ $) 27)) (-3706 (($ $) 30)) (-3836 (($ $ $) 106)) (-2830 (((-108) $ $) 16)) (-2807 (((-108) $ $) 17)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 15)) (-2795 (((-108) $ $) 18)) (-3826 (($ $ $) 105)) (-2827 (((-713) $) 40 (|has| $ (-6 -4259)))))
(((-119) (-131)) (T -119))
-((-1850 (*1 *1 *1) (-4 *1 (-119))) (-1619 (*1 *1 *1) (-4 *1 (-119))) (-2404 (*1 *1 *1 *1) (-4 *1 (-119))) (-1299 (*1 *1 *1 *1) (-4 *1 (-119))) (-3762 (*1 *1 *1 *1) (-4 *1 (-119))) (-3749 (*1 *1 *1 *1) (-4 *1 (-119))) (-3469 (*1 *1 *1 *1) (-4 *1 (-119))))
-(-13 (-789) (-607) (-19 (-108)) (-10 -8 (-15 -1850 ($ $)) (-15 -1619 ($ $)) (-15 -2404 ($ $ $)) (-15 -1299 ($ $ $)) (-15 -3762 ($ $ $)) (-15 -3749 ($ $ $)) (-15 -3469 ($ $ $))))
+((-3272 (*1 *1 *1) (-4 *1 (-119))) (-3706 (*1 *1 *1) (-4 *1 (-119))) (-2909 (*1 *1 *1 *1) (-4 *1 (-119))) (-3087 (*1 *1 *1 *1) (-4 *1 (-119))) (-3944 (*1 *1 *1 *1) (-4 *1 (-119))) (-3307 (*1 *1 *1 *1) (-4 *1 (-119))) (-2532 (*1 *1 *1 *1) (-4 *1 (-119))))
+(-13 (-789) (-607) (-19 (-108)) (-10 -8 (-15 -3272 ($ $)) (-15 -3706 ($ $)) (-15 -2909 ($ $ $)) (-15 -3087 ($ $ $)) (-15 -3944 ($ $ $)) (-15 -3307 ($ $ $)) (-15 -2532 ($ $ $))))
(((-33) . T) ((-97) . T) ((-566 (-798)) . T) ((-142 #0=(-108)) . T) ((-567 (-501)) |has| (-108) (-567 (-501))) ((-265 #1=(-525) #0#) . T) ((-267 #1# #0#) . T) ((-288 #0#) -12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020))) ((-351 #0#) . T) ((-464 #0#) . T) ((-558 #1# #0#) . T) ((-486 #0# #0#) -12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020))) ((-597 #0#) . T) ((-607) . T) ((-19 #0#) . T) ((-789) . T) ((-1020) . T) ((-1128) . T))
-((-2284 (($ (-1 |#2| |#2|) $) 22)) (-1462 (($ $) 16)) (-3522 (((-713) $) 24)))
-(((-120 |#1| |#2|) (-10 -8 (-15 -2284 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3522 ((-713) |#1|)) (-15 -1462 (|#1| |#1|))) (-121 |#2|) (-1020)) (T -120))
+((-3069 (($ (-1 |#2| |#2|) $) 22)) (-2503 (($ $) 16)) (-2827 (((-713) $) 24)))
+(((-120 |#1| |#2|) (-10 -8 (-15 -3069 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2827 ((-713) |#1|)) (-15 -2503 (|#1| |#1|))) (-121 |#2|) (-1020)) (T -120))
NIL
-(-10 -8 (-15 -2284 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3522 ((-713) |#1|)) (-15 -1462 (|#1| |#1|)))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3284 ((|#1| $) 48)) (-3991 (((-108) $ (-713)) 8)) (-3214 ((|#1| $ |#1|) 39 (|has| $ (-6 -4259)))) (-3121 (($ $ $) 52 (|has| $ (-6 -4259)))) (-3720 (($ $ $) 54 (|has| $ (-6 -4259)))) (-1430 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4259))) (($ $ "left" $) 55 (|has| $ (-6 -4259))) (($ $ "right" $) 53 (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) 41 (|has| $ (-6 -4259)))) (-2169 (($) 7 T CONST)) (-3519 (($ $) 57)) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3396 (((-592 $) $) 50)) (-1729 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-3965 (($ $ |#1| $) 60)) (-3924 (((-108) $ (-713)) 9)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-3507 (($ $) 59)) (-2803 (((-592 |#1|) $) 45)) (-3786 (((-108) $) 49)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3340 (((-525) $ $) 44)) (-2905 (((-108) $) 46)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3793 (((-592 $) $) 51)) (-3351 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+(-10 -8 (-15 -3069 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2827 ((-713) |#1|)) (-15 -2503 (|#1| |#1|)))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2219 ((|#1| $) 48)) (-3779 (((-108) $ (-713)) 8)) (-1947 ((|#1| $ |#1|) 39 (|has| $ (-6 -4260)))) (-2314 (($ $ $) 52 (|has| $ (-6 -4260)))) (-4089 (($ $ $) 54 (|has| $ (-6 -4260)))) (-1233 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4260))) (($ $ "left" $) 55 (|has| $ (-6 -4260))) (($ $ "right" $) 53 (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) 41 (|has| $ (-6 -4260)))) (-2475 (($) 7 T CONST)) (-3446 (($ $) 57)) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-3994 (((-592 $) $) 50)) (-3569 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-1214 (($ $ |#1| $) 60)) (-2516 (((-108) $ (-713)) 9)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-3436 (($ $) 59)) (-2010 (((-592 |#1|) $) 45)) (-3506 (((-108) $) 49)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1707 (((-525) $ $) 44)) (-3953 (((-108) $) 46)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3576 (((-592 $) $) 51)) (-1791 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-121 |#1|) (-131) (-1020)) (T -121))
-((-3965 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1020)))))
-(-13 (-115 |t#1|) (-10 -8 (-6 -4259) (-6 -4258) (-15 -3965 ($ $ |t#1| $))))
-(((-33) . T) ((-97) |has| |#1| (-1020)) ((-115 |#1|) . T) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-942 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3284 ((|#1| $) 15)) (-3991 (((-108) $ (-713)) NIL)) (-3214 ((|#1| $ |#1|) 19 (|has| $ (-6 -4259)))) (-3121 (($ $ $) 20 (|has| $ (-6 -4259)))) (-3720 (($ $ $) 18 (|has| $ (-6 -4259)))) (-1430 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4259))) (($ $ "left" $) NIL (|has| $ (-6 -4259))) (($ $ "right" $) NIL (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) NIL (|has| $ (-6 -4259)))) (-2169 (($) NIL T CONST)) (-3519 (($ $) 21)) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-3396 (((-592 $) $) NIL)) (-1729 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3965 (($ $ |#1| $) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-3507 (($ $) NIL)) (-2803 (((-592 |#1|) $) NIL)) (-3786 (((-108) $) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-1262 (($ |#1| $) 10)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) 14)) (-2512 (($) 8)) (-3406 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3340 (((-525) $ $) NIL)) (-2905 (((-108) $) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) 17)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3793 (((-592 $) $) NIL)) (-3351 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1424 (($ (-592 |#1|)) 12)) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-122 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4259) (-15 -1424 ($ (-592 |#1|))) (-15 -1262 ($ |#1| $)))) (-789)) (T -122))
-((-1424 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-122 *3)))) (-1262 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-789)))))
-(-13 (-121 |#1|) (-10 -8 (-6 -4259) (-15 -1424 ($ (-592 |#1|))) (-15 -1262 ($ |#1| $))))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3284 ((|#1| $) 24)) (-3991 (((-108) $ (-713)) NIL)) (-3214 ((|#1| $ |#1|) 26 (|has| $ (-6 -4259)))) (-3121 (($ $ $) 30 (|has| $ (-6 -4259)))) (-3720 (($ $ $) 28 (|has| $ (-6 -4259)))) (-1430 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4259))) (($ $ "left" $) NIL (|has| $ (-6 -4259))) (($ $ "right" $) NIL (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) NIL (|has| $ (-6 -4259)))) (-2169 (($) NIL T CONST)) (-3519 (($ $) 20)) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-3396 (((-592 $) $) NIL)) (-1729 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3965 (($ $ |#1| $) 15)) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-3507 (($ $) 19)) (-2803 (((-592 |#1|) $) NIL)) (-3786 (((-108) $) 21)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) 18)) (-2512 (($) 11)) (-3406 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3340 (((-525) $ $) NIL)) (-2905 (((-108) $) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) NIL)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3793 (((-592 $) $) NIL)) (-3351 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1355 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 10 (|has| |#1| (-1020)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-123 |#1|) (-13 (-121 |#1|) (-10 -8 (-15 -1355 ($ |#1|)) (-15 -1355 ($ $ |#1| $)))) (-1020)) (T -123))
-((-1355 (*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1020)))) (-1355 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1020)))))
-(-13 (-121 |#1|) (-10 -8 (-15 -1355 ($ |#1|)) (-15 -1355 ($ $ |#1| $))))
-((-4236 (((-108) $ $) NIL (|has| (-125) (-1020)))) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-2470 (((-108) (-1 (-108) (-125) (-125)) $) NIL) (((-108) $) NIL (|has| (-125) (-789)))) (-2165 (($ (-1 (-108) (-125) (-125)) $) NIL (|has| $ (-6 -4259))) (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-125) (-789))))) (-2458 (($ (-1 (-108) (-125) (-125)) $) NIL) (($ $) NIL (|has| (-125) (-789)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 (((-125) $ (-525) (-125)) NIL (|has| $ (-6 -4259))) (((-125) $ (-1141 (-525)) (-125)) NIL (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4258)))) (-2169 (($) NIL T CONST)) (-2700 (($ $) NIL (|has| $ (-6 -4259)))) (-3431 (($ $) NIL)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-125) (-1020))))) (-1703 (($ (-125) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-125) (-1020)))) (($ (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4258)))) (-1284 (((-125) (-1 (-125) (-125) (-125)) $ (-125) (-125)) NIL (-12 (|has| $ (-6 -4258)) (|has| (-125) (-1020)))) (((-125) (-1 (-125) (-125) (-125)) $ (-125)) NIL (|has| $ (-6 -4258))) (((-125) (-1 (-125) (-125) (-125)) $) NIL (|has| $ (-6 -4258)))) (-2301 (((-125) $ (-525) (-125)) NIL (|has| $ (-6 -4259)))) (-2222 (((-125) $ (-525)) NIL)) (-1932 (((-525) (-1 (-108) (-125)) $) NIL) (((-525) (-125) $) NIL (|has| (-125) (-1020))) (((-525) (-125) $ (-525)) NIL (|has| (-125) (-1020)))) (-3440 (((-592 (-125)) $) NIL (|has| $ (-6 -4258)))) (-3416 (($ (-713) (-125)) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) NIL (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (|has| (-125) (-789)))) (-1577 (($ (-1 (-108) (-125) (-125)) $ $) NIL) (($ $ $) NIL (|has| (-125) (-789)))) (-2694 (((-592 (-125)) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) (-125) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-125) (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| (-125) (-789)))) (-2284 (($ (-1 (-125) (-125)) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-125) (-125)) $) NIL) (($ (-1 (-125) (-125) (-125)) $ $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| (-125) (-1020)))) (-2531 (($ (-125) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-2093 (((-1039) $) NIL (|has| (-125) (-1020)))) (-1872 (((-125) $) NIL (|has| (-525) (-789)))) (-1983 (((-3 (-125) "failed") (-1 (-108) (-125)) $) NIL)) (-1420 (($ $ (-125)) NIL (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-125)))) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1020)))) (($ $ (-273 (-125))) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1020)))) (($ $ (-125) (-125)) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1020)))) (($ $ (-592 (-125)) (-592 (-125))) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) (-125) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-125) (-1020))))) (-3341 (((-592 (-125)) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 (((-125) $ (-525) (-125)) NIL) (((-125) $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-3038 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2110 (((-713) (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4258))) (((-713) (-125) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-125) (-1020))))) (-4098 (($ $ $ (-525)) NIL (|has| $ (-6 -4259)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| (-125) (-567 (-501))))) (-1230 (($ (-592 (-125))) NIL)) (-2038 (($ $ (-125)) NIL) (($ (-125) $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1217 (((-798) $) NIL (|has| (-125) (-566 (-798))))) (-3029 (((-108) (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) NIL (|has| (-125) (-789)))) (-3987 (((-108) $ $) NIL (|has| (-125) (-789)))) (-3955 (((-108) $ $) NIL (|has| (-125) (-1020)))) (-3999 (((-108) $ $) NIL (|has| (-125) (-789)))) (-3978 (((-108) $ $) NIL (|has| (-125) (-789)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
+((-1214 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1020)))))
+(-13 (-115 |t#1|) (-10 -8 (-6 -4260) (-6 -4259) (-15 -1214 ($ $ |t#1| $))))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-115 |#1|) . T) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-942 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2219 ((|#1| $) 15)) (-3779 (((-108) $ (-713)) NIL)) (-1947 ((|#1| $ |#1|) 19 (|has| $ (-6 -4260)))) (-2314 (($ $ $) 20 (|has| $ (-6 -4260)))) (-4089 (($ $ $) 18 (|has| $ (-6 -4260)))) (-1233 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4260))) (($ $ "left" $) NIL (|has| $ (-6 -4260))) (($ $ "right" $) NIL (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) NIL (|has| $ (-6 -4260)))) (-2475 (($) NIL T CONST)) (-3446 (($ $) 21)) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3994 (((-592 $) $) NIL)) (-3569 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1214 (($ $ |#1| $) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-3436 (($ $) NIL)) (-2010 (((-592 |#1|) $) NIL)) (-3506 (((-108) $) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3246 (($ |#1| $) 10)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) 14)) (-1558 (($) 8)) (-3431 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1707 (((-525) $ $) NIL)) (-3953 (((-108) $) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) 17)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3576 (((-592 $) $) NIL)) (-1791 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3501 (($ (-592 |#1|)) 12)) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-122 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4260) (-15 -3501 ($ (-592 |#1|))) (-15 -3246 ($ |#1| $)))) (-789)) (T -122))
+((-3501 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-122 *3)))) (-3246 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-789)))))
+(-13 (-121 |#1|) (-10 -8 (-6 -4260) (-15 -3501 ($ (-592 |#1|))) (-15 -3246 ($ |#1| $))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2219 ((|#1| $) 24)) (-3779 (((-108) $ (-713)) NIL)) (-1947 ((|#1| $ |#1|) 26 (|has| $ (-6 -4260)))) (-2314 (($ $ $) 30 (|has| $ (-6 -4260)))) (-4089 (($ $ $) 28 (|has| $ (-6 -4260)))) (-1233 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4260))) (($ $ "left" $) NIL (|has| $ (-6 -4260))) (($ $ "right" $) NIL (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) NIL (|has| $ (-6 -4260)))) (-2475 (($) NIL T CONST)) (-3446 (($ $) 20)) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3994 (((-592 $) $) NIL)) (-3569 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1214 (($ $ |#1| $) 15)) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-3436 (($ $) 19)) (-2010 (((-592 |#1|) $) NIL)) (-3506 (((-108) $) 21)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) 18)) (-1558 (($) 11)) (-3431 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1707 (((-525) $ $) NIL)) (-3953 (((-108) $) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) NIL)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3576 (((-592 $) $) NIL)) (-1791 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2804 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 10 (|has| |#1| (-1020)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-123 |#1|) (-13 (-121 |#1|) (-10 -8 (-15 -2804 ($ |#1|)) (-15 -2804 ($ $ |#1| $)))) (-1020)) (T -123))
+((-2804 (*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1020)))) (-2804 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1020)))))
+(-13 (-121 |#1|) (-10 -8 (-15 -2804 ($ |#1|)) (-15 -2804 ($ $ |#1| $))))
+((-4087 (((-108) $ $) NIL (|has| (-125) (-1020)))) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-2358 (((-108) (-1 (-108) (-125) (-125)) $) NIL) (((-108) $) NIL (|has| (-125) (-789)))) (-2436 (($ (-1 (-108) (-125) (-125)) $) NIL (|has| $ (-6 -4260))) (($ $) NIL (-12 (|has| $ (-6 -4260)) (|has| (-125) (-789))))) (-1842 (($ (-1 (-108) (-125) (-125)) $) NIL) (($ $) NIL (|has| (-125) (-789)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 (((-125) $ (-525) (-125)) NIL (|has| $ (-6 -4260))) (((-125) $ (-1141 (-525)) (-125)) NIL (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4259)))) (-2475 (($) NIL T CONST)) (-2670 (($ $) NIL (|has| $ (-6 -4260)))) (-1652 (($ $) NIL)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-125) (-1020))))) (-2698 (($ (-125) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-125) (-1020)))) (($ (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4259)))) (-3504 (((-125) (-1 (-125) (-125) (-125)) $ (-125) (-125)) NIL (-12 (|has| $ (-6 -4259)) (|has| (-125) (-1020)))) (((-125) (-1 (-125) (-125) (-125)) $ (-125)) NIL (|has| $ (-6 -4259))) (((-125) (-1 (-125) (-125) (-125)) $) NIL (|has| $ (-6 -4259)))) (-3081 (((-125) $ (-525) (-125)) NIL (|has| $ (-6 -4260)))) (-3017 (((-125) $ (-525)) NIL)) (-3856 (((-525) (-1 (-108) (-125)) $) NIL) (((-525) (-125) $) NIL (|has| (-125) (-1020))) (((-525) (-125) $ (-525)) NIL (|has| (-125) (-1020)))) (-2175 (((-592 (-125)) $) NIL (|has| $ (-6 -4259)))) (-3324 (($ (-713) (-125)) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) NIL (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (|has| (-125) (-789)))) (-3212 (($ (-1 (-108) (-125) (-125)) $ $) NIL) (($ $ $) NIL (|has| (-125) (-789)))) (-2617 (((-592 (-125)) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) (-125) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-125) (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| (-125) (-789)))) (-3069 (($ (-1 (-125) (-125)) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-125) (-125)) $) NIL) (($ (-1 (-125) (-125) (-125)) $ $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| (-125) (-1020)))) (-2594 (($ (-125) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-3993 (((-1039) $) NIL (|has| (-125) (-1020)))) (-1647 (((-125) $) NIL (|has| (-525) (-789)))) (-4202 (((-3 (-125) "failed") (-1 (-108) (-125)) $) NIL)) (-3453 (($ $ (-125)) NIL (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-125)))) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1020)))) (($ $ (-273 (-125))) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1020)))) (($ $ (-125) (-125)) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1020)))) (($ $ (-592 (-125)) (-592 (-125))) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) (-125) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-125) (-1020))))) (-1717 (((-592 (-125)) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 (((-125) $ (-525) (-125)) NIL) (((-125) $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2139 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-4002 (((-713) (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4259))) (((-713) (-125) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-125) (-1020))))) (-3632 (($ $ $ (-525)) NIL (|has| $ (-6 -4260)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| (-125) (-567 (-501))))) (-4114 (($ (-592 (-125))) NIL)) (-2035 (($ $ (-125)) NIL) (($ (-125) $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-4100 (((-798) $) NIL (|has| (-125) (-566 (-798))))) (-2706 (((-108) (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) NIL (|has| (-125) (-789)))) (-2807 (((-108) $ $) NIL (|has| (-125) (-789)))) (-2775 (((-108) $ $) NIL (|has| (-125) (-1020)))) (-2817 (((-108) $ $) NIL (|has| (-125) (-789)))) (-2795 (((-108) $ $) NIL (|has| (-125) (-789)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
(((-124) (-19 (-125))) (T -124))
NIL
(-19 (-125))
-((-4236 (((-108) $ $) NIL)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 12) (((-713) $) 9) (($ (-713)) 8)) (-2076 (($ (-713)) 7)) (-3150 (($ $ $) 16)) (-3141 (($ $ $) 15)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 14)))
-(((-125) (-13 (-789) (-566 (-713)) (-10 -8 (-15 -2076 ($ (-713))) (-15 -1217 ($ (-713))) (-15 -3141 ($ $ $)) (-15 -3150 ($ $ $))))) (T -125))
-((-2076 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125)))) (-3141 (*1 *1 *1 *1) (-5 *1 (-125))) (-3150 (*1 *1 *1 *1) (-5 *1 (-125))))
-(-13 (-789) (-566 (-713)) (-10 -8 (-15 -2076 ($ (-713))) (-15 -1217 ($ (-713))) (-15 -3141 ($ $ $)) (-15 -3150 ($ $ $))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3349 (($) 18 T CONST)) (-3955 (((-108) $ $) 6)) (-4047 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15)))
+((-4087 (((-108) $ $) NIL)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 12) (((-713) $) 9) (($ (-713)) 8)) (-2688 (($ (-713)) 7)) (-2269 (($ $ $) 16)) (-2257 (($ $ $) 15)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 14)))
+(((-125) (-13 (-789) (-566 (-713)) (-10 -8 (-15 -2688 ($ (-713))) (-15 -4100 ($ (-713))) (-15 -2257 ($ $ $)) (-15 -2269 ($ $ $))))) (T -125))
+((-2688 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125)))) (-2257 (*1 *1 *1 *1) (-5 *1 (-125))) (-2269 (*1 *1 *1 *1) (-5 *1 (-125))))
+(-13 (-789) (-566 (-713)) (-10 -8 (-15 -2688 ($ (-713))) (-15 -4100 ($ (-713))) (-15 -2257 ($ $ $)) (-15 -2269 ($ $ $))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3364 (($) 18 T CONST)) (-2775 (((-108) $ $) 6)) (-2860 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15)))
(((-126) (-131)) (T -126))
-((-1578 (*1 *1 *1 *1) (|partial| -4 *1 (-126))))
-(-13 (-23) (-10 -8 (-15 -1578 ((-3 $ "failed") $ $))))
+((-3222 (*1 *1 *1 *1) (|partial| -4 *1 (-126))))
+(-13 (-23) (-10 -8 (-15 -3222 ((-3 $ "failed") $ $))))
(((-23) . T) ((-25) . T) ((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-4236 (((-108) $ $) 7)) (-2543 (((-1179) $ (-713)) 19)) (-1932 (((-713) $) 20)) (-2638 (($ $ $) 13)) (-3662 (($ $ $) 14)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-4011 (((-108) $ $) 16)) (-3987 (((-108) $ $) 17)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 15)) (-3978 (((-108) $ $) 18)))
+((-4087 (((-108) $ $) 7)) (-1835 (((-1179) $ (-713)) 19)) (-3856 (((-713) $) 20)) (-3033 (($ $ $) 13)) (-1609 (($ $ $) 14)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-2830 (((-108) $ $) 16)) (-2807 (((-108) $ $) 17)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 15)) (-2795 (((-108) $ $) 18)))
(((-127) (-131)) (T -127))
-((-1932 (*1 *2 *1) (-12 (-4 *1 (-127)) (-5 *2 (-713)))) (-2543 (*1 *2 *1 *3) (-12 (-4 *1 (-127)) (-5 *3 (-713)) (-5 *2 (-1179)))))
-(-13 (-789) (-10 -8 (-15 -1932 ((-713) $)) (-15 -2543 ((-1179) $ (-713)))))
+((-3856 (*1 *2 *1) (-12 (-4 *1 (-127)) (-5 *2 (-713)))) (-1835 (*1 *2 *1 *3) (-12 (-4 *1 (-127)) (-5 *3 (-713)) (-5 *2 (-1179)))))
+(-13 (-789) (-10 -8 (-15 -3856 ((-713) $)) (-15 -1835 ((-1179) $ (-713)))))
(((-97) . T) ((-566 (-798)) . T) ((-789) . T) ((-1020) . T))
-((-4236 (((-108) $ $) 34)) (-1209 (((-108) $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-713) "failed") $) 40)) (-1572 (((-713) $) 38)) (-3457 (((-3 $ "failed") $) NIL)) (-1396 (((-108) $) NIL)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) 27)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3233 (((-108)) 41)) (-2216 (((-108) (-108)) 43)) (-2052 (((-108) $) 24)) (-1776 (((-108) $) 37)) (-1217 (((-798) $) 22) (($ (-713)) 14)) (-1619 (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3349 (($) 12 T CONST)) (-3359 (($) 11 T CONST)) (-2805 (($ (-713)) 15)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 25)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 26)) (-4061 (((-3 $ "failed") $ $) 30)) (-4047 (($ $ $) 28)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL) (($ $ $) 36)) (* (($ (-713) $) 33) (($ (-856) $) NIL) (($ $ $) 31)))
-(((-128) (-13 (-789) (-23) (-669) (-968 (-713)) (-10 -8 (-6 (-4260 "*")) (-15 -4061 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2805 ($ (-713))) (-15 -2052 ((-108) $)) (-15 -1776 ((-108) $)) (-15 -3233 ((-108))) (-15 -2216 ((-108) (-108)))))) (T -128))
-((-4061 (*1 *1 *1 *1) (|partial| -5 *1 (-128))) (** (*1 *1 *1 *1) (-5 *1 (-128))) (-2805 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-128)))) (-2052 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) (-3233 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) (-2216 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128)))))
-(-13 (-789) (-23) (-669) (-968 (-713)) (-10 -8 (-6 (-4260 "*")) (-15 -4061 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2805 ($ (-713))) (-15 -2052 ((-108) $)) (-15 -1776 ((-108) $)) (-15 -3233 ((-108))) (-15 -2216 ((-108) (-108)))))
-((-1798 (((-130 |#1| |#2| |#4|) (-592 |#4|) (-130 |#1| |#2| |#3|)) 14)) (-3165 (((-130 |#1| |#2| |#4|) (-1 |#4| |#3|) (-130 |#1| |#2| |#3|)) 18)))
-(((-129 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1798 ((-130 |#1| |#2| |#4|) (-592 |#4|) (-130 |#1| |#2| |#3|))) (-15 -3165 ((-130 |#1| |#2| |#4|) (-1 |#4| |#3|) (-130 |#1| |#2| |#3|)))) (-525) (-713) (-160) (-160)) (T -129))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525)) (-14 *6 (-713)) (-4 *7 (-160)) (-4 *8 (-160)) (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8)))) (-1798 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525)) (-14 *6 (-713)) (-4 *7 (-160)) (-4 *8 (-160)) (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1798 ((-130 |#1| |#2| |#4|) (-592 |#4|) (-130 |#1| |#2| |#3|))) (-15 -3165 ((-130 |#1| |#2| |#4|) (-1 |#4| |#3|) (-130 |#1| |#2| |#3|))))
-((-4236 (((-108) $ $) NIL)) (-3864 (($ (-592 |#3|)) 40)) (-3966 (($ $) 99) (($ $ (-525) (-525)) 98)) (-2169 (($) 17)) (-3077 (((-3 |#3| "failed") $) 60)) (-1572 ((|#3| $) NIL)) (-1634 (($ $ (-592 (-525))) 100)) (-1783 (((-592 |#3|) $) 36)) (-3622 (((-713) $) 44)) (-1683 (($ $ $) 93)) (-2745 (($) 43)) (-2619 (((-1075) $) NIL)) (-2063 (($) 16)) (-2093 (((-1039) $) NIL)) (-3406 ((|#3| $) 46) ((|#3| $ (-525)) 47) ((|#3| $ (-525) (-525)) 48) ((|#3| $ (-525) (-525) (-525)) 49) ((|#3| $ (-525) (-525) (-525) (-525)) 50) ((|#3| $ (-592 (-525))) 52)) (-2343 (((-713) $) 45)) (-3217 (($ $ (-525) $ (-525)) 94) (($ $ (-525) (-525)) 96)) (-1217 (((-798) $) 67) (($ |#3|) 68) (($ (-220 |#2| |#3|)) 75) (($ (-1059 |#2| |#3|)) 78) (($ (-592 |#3|)) 53) (($ (-592 $)) 58)) (-3349 (($) 69 T CONST)) (-3359 (($) 70 T CONST)) (-3955 (((-108) $ $) 80)) (-4061 (($ $) 86) (($ $ $) 84)) (-4047 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-525)) 89) (($ (-525) $) 88) (($ $ $) 95)))
-(((-130 |#1| |#2| |#3|) (-13 (-442 |#3| (-713)) (-447 (-525) (-713)) (-10 -8 (-15 -1217 ($ (-220 |#2| |#3|))) (-15 -1217 ($ (-1059 |#2| |#3|))) (-15 -1217 ($ (-592 |#3|))) (-15 -1217 ($ (-592 $))) (-15 -3622 ((-713) $)) (-15 -3406 (|#3| $)) (-15 -3406 (|#3| $ (-525))) (-15 -3406 (|#3| $ (-525) (-525))) (-15 -3406 (|#3| $ (-525) (-525) (-525))) (-15 -3406 (|#3| $ (-525) (-525) (-525) (-525))) (-15 -3406 (|#3| $ (-592 (-525)))) (-15 -1683 ($ $ $)) (-15 * ($ $ $)) (-15 -3217 ($ $ (-525) $ (-525))) (-15 -3217 ($ $ (-525) (-525))) (-15 -3966 ($ $)) (-15 -3966 ($ $ (-525) (-525))) (-15 -1634 ($ $ (-592 (-525)))) (-15 -2063 ($)) (-15 -2745 ($)) (-15 -1783 ((-592 |#3|) $)) (-15 -3864 ($ (-592 |#3|))) (-15 -2169 ($)))) (-525) (-713) (-160)) (T -130))
-((-1683 (*1 *1 *1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-220 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-1059 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-592 (-130 *3 *4 *5))) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 *2) (-4 *5 (-160)))) (-3406 (*1 *2 *1) (-12 (-4 *2 (-160)) (-5 *1 (-130 *3 *4 *2)) (-14 *3 (-525)) (-14 *4 (-713)))) (-3406 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-713)))) (-3406 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-713)))) (-3406 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-713)))) (-3406 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-713)))) (-3406 (*1 *2 *1 *3) (-12 (-5 *3 (-592 (-525))) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 (-525)) (-14 *5 (-713)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-3217 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-713)) (-4 *5 (-160)))) (-3217 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-713)) (-4 *5 (-160)))) (-3966 (*1 *1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-3966 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-713)) (-4 *5 (-160)))) (-1634 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-2063 (*1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-2745 (*1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-1783 (*1 *2 *1) (-12 (-5 *2 (-592 *5)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-3864 (*1 *1 *2) (-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)))) (-2169 (*1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))))
-(-13 (-442 |#3| (-713)) (-447 (-525) (-713)) (-10 -8 (-15 -1217 ($ (-220 |#2| |#3|))) (-15 -1217 ($ (-1059 |#2| |#3|))) (-15 -1217 ($ (-592 |#3|))) (-15 -1217 ($ (-592 $))) (-15 -3622 ((-713) $)) (-15 -3406 (|#3| $)) (-15 -3406 (|#3| $ (-525))) (-15 -3406 (|#3| $ (-525) (-525))) (-15 -3406 (|#3| $ (-525) (-525) (-525))) (-15 -3406 (|#3| $ (-525) (-525) (-525) (-525))) (-15 -3406 (|#3| $ (-592 (-525)))) (-15 -1683 ($ $ $)) (-15 * ($ $ $)) (-15 -3217 ($ $ (-525) $ (-525))) (-15 -3217 ($ $ (-525) (-525))) (-15 -3966 ($ $)) (-15 -3966 ($ $ (-525) (-525))) (-15 -1634 ($ $ (-592 (-525)))) (-15 -2063 ($)) (-15 -2745 ($)) (-15 -1783 ((-592 |#3|) $)) (-15 -3864 ($ (-592 |#3|))) (-15 -2169 ($))))
-((-1217 (((-798) $) 7)))
+((-4087 (((-108) $ $) 34)) (-2414 (((-108) $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-713) "failed") $) 40)) (-4105 (((-713) $) 38)) (-3300 (((-3 $ "failed") $) NIL)) (-2278 (((-108) $) NIL)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) 27)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-3917 (((-108)) 41)) (-1736 (((-108) (-108)) 43)) (-3635 (((-108) $) 24)) (-2762 (((-108) $) 37)) (-4100 (((-798) $) 22) (($ (-713)) 14)) (-3706 (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3364 (($) 12 T CONST)) (-3375 (($) 11 T CONST)) (-2393 (($ (-713)) 15)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 25)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 26)) (-2871 (((-3 $ "failed") $ $) 30)) (-2860 (($ $ $) 28)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL) (($ $ $) 36)) (* (($ (-713) $) 33) (($ (-856) $) NIL) (($ $ $) 31)))
+(((-128) (-13 (-789) (-23) (-669) (-968 (-713)) (-10 -8 (-6 (-4261 "*")) (-15 -2871 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2393 ($ (-713))) (-15 -3635 ((-108) $)) (-15 -2762 ((-108) $)) (-15 -3917 ((-108))) (-15 -1736 ((-108) (-108)))))) (T -128))
+((-2871 (*1 *1 *1 *1) (|partial| -5 *1 (-128))) (** (*1 *1 *1 *1) (-5 *1 (-128))) (-2393 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-128)))) (-3635 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) (-3917 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) (-1736 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128)))))
+(-13 (-789) (-23) (-669) (-968 (-713)) (-10 -8 (-6 (-4261 "*")) (-15 -2871 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2393 ($ (-713))) (-15 -3635 ((-108) $)) (-15 -2762 ((-108) $)) (-15 -3917 ((-108))) (-15 -1736 ((-108) (-108)))))
+((-3741 (((-130 |#1| |#2| |#4|) (-592 |#4|) (-130 |#1| |#2| |#3|)) 14)) (-2016 (((-130 |#1| |#2| |#4|) (-1 |#4| |#3|) (-130 |#1| |#2| |#3|)) 18)))
+(((-129 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3741 ((-130 |#1| |#2| |#4|) (-592 |#4|) (-130 |#1| |#2| |#3|))) (-15 -2016 ((-130 |#1| |#2| |#4|) (-1 |#4| |#3|) (-130 |#1| |#2| |#3|)))) (-525) (-713) (-160) (-160)) (T -129))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525)) (-14 *6 (-713)) (-4 *7 (-160)) (-4 *8 (-160)) (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8)))) (-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525)) (-14 *6 (-713)) (-4 *7 (-160)) (-4 *8 (-160)) (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3741 ((-130 |#1| |#2| |#4|) (-592 |#4|) (-130 |#1| |#2| |#3|))) (-15 -2016 ((-130 |#1| |#2| |#4|) (-1 |#4| |#3|) (-130 |#1| |#2| |#3|))))
+((-4087 (((-108) $ $) NIL)) (-3057 (($ (-592 |#3|)) 40)) (-1730 (($ $) 99) (($ $ (-525) (-525)) 98)) (-2475 (($) 17)) (-1934 (((-3 |#3| "failed") $) 60)) (-4105 ((|#3| $) NIL)) (-3910 (($ $ (-592 (-525))) 100)) (-3733 (((-592 |#3|) $) 36)) (-3085 (((-713) $) 44)) (-3125 (($ $ $) 93)) (-3034 (($) 43)) (-1289 (((-1075) $) NIL)) (-2569 (($) 16)) (-3993 (((-1039) $) NIL)) (-3431 ((|#3| $) 46) ((|#3| $ (-525)) 47) ((|#3| $ (-525) (-525)) 48) ((|#3| $ (-525) (-525) (-525)) 49) ((|#3| $ (-525) (-525) (-525) (-525)) 50) ((|#3| $ (-592 (-525))) 52)) (-3529 (((-713) $) 45)) (-1978 (($ $ (-525) $ (-525)) 94) (($ $ (-525) (-525)) 96)) (-4100 (((-798) $) 67) (($ |#3|) 68) (($ (-220 |#2| |#3|)) 75) (($ (-1059 |#2| |#3|)) 78) (($ (-592 |#3|)) 53) (($ (-592 $)) 58)) (-3364 (($) 69 T CONST)) (-3375 (($) 70 T CONST)) (-2775 (((-108) $ $) 80)) (-2871 (($ $) 86) (($ $ $) 84)) (-2860 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-525)) 89) (($ (-525) $) 88) (($ $ $) 95)))
+(((-130 |#1| |#2| |#3|) (-13 (-442 |#3| (-713)) (-447 (-525) (-713)) (-10 -8 (-15 -4100 ($ (-220 |#2| |#3|))) (-15 -4100 ($ (-1059 |#2| |#3|))) (-15 -4100 ($ (-592 |#3|))) (-15 -4100 ($ (-592 $))) (-15 -3085 ((-713) $)) (-15 -3431 (|#3| $)) (-15 -3431 (|#3| $ (-525))) (-15 -3431 (|#3| $ (-525) (-525))) (-15 -3431 (|#3| $ (-525) (-525) (-525))) (-15 -3431 (|#3| $ (-525) (-525) (-525) (-525))) (-15 -3431 (|#3| $ (-592 (-525)))) (-15 -3125 ($ $ $)) (-15 * ($ $ $)) (-15 -1978 ($ $ (-525) $ (-525))) (-15 -1978 ($ $ (-525) (-525))) (-15 -1730 ($ $)) (-15 -1730 ($ $ (-525) (-525))) (-15 -3910 ($ $ (-592 (-525)))) (-15 -2569 ($)) (-15 -3034 ($)) (-15 -3733 ((-592 |#3|) $)) (-15 -3057 ($ (-592 |#3|))) (-15 -2475 ($)))) (-525) (-713) (-160)) (T -130))
+((-3125 (*1 *1 *1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-220 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-1059 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-592 (-130 *3 *4 *5))) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-3085 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 *2) (-4 *5 (-160)))) (-3431 (*1 *2 *1) (-12 (-4 *2 (-160)) (-5 *1 (-130 *3 *4 *2)) (-14 *3 (-525)) (-14 *4 (-713)))) (-3431 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-713)))) (-3431 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-713)))) (-3431 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-713)))) (-3431 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-713)))) (-3431 (*1 *2 *1 *3) (-12 (-5 *3 (-592 (-525))) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 (-525)) (-14 *5 (-713)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-1978 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-713)) (-4 *5 (-160)))) (-1978 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-713)) (-4 *5 (-160)))) (-1730 (*1 *1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-1730 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-713)) (-4 *5 (-160)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-2569 (*1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-3034 (*1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-592 *5)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-3057 (*1 *1 *2) (-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)))) (-2475 (*1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))))
+(-13 (-442 |#3| (-713)) (-447 (-525) (-713)) (-10 -8 (-15 -4100 ($ (-220 |#2| |#3|))) (-15 -4100 ($ (-1059 |#2| |#3|))) (-15 -4100 ($ (-592 |#3|))) (-15 -4100 ($ (-592 $))) (-15 -3085 ((-713) $)) (-15 -3431 (|#3| $)) (-15 -3431 (|#3| $ (-525))) (-15 -3431 (|#3| $ (-525) (-525))) (-15 -3431 (|#3| $ (-525) (-525) (-525))) (-15 -3431 (|#3| $ (-525) (-525) (-525) (-525))) (-15 -3431 (|#3| $ (-592 (-525)))) (-15 -3125 ($ $ $)) (-15 * ($ $ $)) (-15 -1978 ($ $ (-525) $ (-525))) (-15 -1978 ($ $ (-525) (-525))) (-15 -1730 ($ $)) (-15 -1730 ($ $ (-525) (-525))) (-15 -3910 ($ $ (-592 (-525)))) (-15 -2569 ($)) (-15 -3034 ($)) (-15 -3733 ((-592 |#3|) $)) (-15 -3057 ($ (-592 |#3|))) (-15 -2475 ($))))
+((-4100 (((-798) $) 7)))
(((-131) (-566 (-798))) (T -131))
NIL
(-566 (-798))
-((-4236 (((-108) $ $) NIL)) (-2723 (($) 15 T CONST)) (-2622 (($) NIL (|has| (-135) (-346)))) (-2600 (($ $ $) 17) (($ $ (-135)) NIL) (($ (-135) $) NIL)) (-3703 (($ $ $) NIL)) (-2267 (((-108) $ $) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-1834 (((-713)) NIL (|has| (-135) (-346)))) (-2839 (($) NIL) (($ (-592 (-135))) NIL)) (-1676 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4258)))) (-2169 (($) NIL T CONST)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020))))) (-3271 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4258))) (($ (-135) $) 51 (|has| $ (-6 -4258)))) (-1703 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4258))) (($ (-135) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020))))) (-1284 (((-135) (-1 (-135) (-135) (-135)) $) NIL (|has| $ (-6 -4258))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) NIL (|has| $ (-6 -4258))) (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) NIL (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020))))) (-2502 (($) NIL (|has| (-135) (-346)))) (-3440 (((-592 (-135)) $) 60 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) NIL)) (-2638 (((-135) $) NIL (|has| (-135) (-789)))) (-2694 (((-592 (-135)) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) (-135) $) 26 (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020))))) (-3662 (((-135) $) NIL (|has| (-135) (-789)))) (-2284 (($ (-1 (-135) (-135)) $) 59 (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-135) (-135)) $) 55)) (-1528 (($) 16 T CONST)) (-3005 (((-856) $) NIL (|has| (-135) (-346)))) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL)) (-2099 (($ $ $) 29)) (-2992 (((-135) $) 52)) (-1262 (($ (-135) $) 50)) (-3555 (($ (-856)) NIL (|has| (-135) (-346)))) (-4163 (($) 14 T CONST)) (-2093 (((-1039) $) NIL)) (-1983 (((-3 (-135) "failed") (-1 (-108) (-135)) $) NIL)) (-4127 (((-135) $) 53)) (-3944 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-135)) (-592 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-135) (-135)) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-273 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-592 (-273 (-135)))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) 48)) (-3758 (($) 13 T CONST)) (-1535 (($ $ $) 31) (($ $ (-135)) NIL)) (-1760 (($ (-592 (-135))) NIL) (($) NIL)) (-2110 (((-713) (-135) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020)))) (((-713) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) NIL)) (-3210 (((-1075) $) 36) (((-501) $) NIL (|has| (-135) (-567 (-501)))) (((-592 (-135)) $) 34)) (-1230 (($ (-592 (-135))) NIL)) (-1574 (($ $) 32 (|has| (-135) (-346)))) (-1217 (((-798) $) 46)) (-2176 (($ (-1075)) 12) (($ (-592 (-135))) 43)) (-3037 (((-713) $) NIL)) (-3240 (($) 49) (($ (-592 (-135))) NIL)) (-1956 (($ (-592 (-135))) NIL)) (-3029 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4258)))) (-2885 (($) 19 T CONST)) (-4073 (($) 18 T CONST)) (-3955 (((-108) $ $) 22)) (-3978 (((-108) $ $) NIL)) (-3522 (((-713) $) 47 (|has| $ (-6 -4258)))))
-(((-132) (-13 (-1020) (-567 (-1075)) (-403 (-135)) (-567 (-592 (-135))) (-10 -8 (-15 -2176 ($ (-1075))) (-15 -2176 ($ (-592 (-135)))) (-15 -3758 ($) -2709) (-15 -4163 ($) -2709) (-15 -2723 ($) -2709) (-15 -1528 ($) -2709) (-15 -4073 ($) -2709) (-15 -2885 ($) -2709)))) (T -132))
-((-2176 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-132)))) (-2176 (*1 *1 *2) (-12 (-5 *2 (-592 (-135))) (-5 *1 (-132)))) (-3758 (*1 *1) (-5 *1 (-132))) (-4163 (*1 *1) (-5 *1 (-132))) (-2723 (*1 *1) (-5 *1 (-132))) (-1528 (*1 *1) (-5 *1 (-132))) (-4073 (*1 *1) (-5 *1 (-132))) (-2885 (*1 *1) (-5 *1 (-132))))
-(-13 (-1020) (-567 (-1075)) (-403 (-135)) (-567 (-592 (-135))) (-10 -8 (-15 -2176 ($ (-1075))) (-15 -2176 ($ (-592 (-135)))) (-15 -3758 ($) -2709) (-15 -4163 ($) -2709) (-15 -2723 ($) -2709) (-15 -1528 ($) -2709) (-15 -4073 ($) -2709) (-15 -2885 ($) -2709)))
-((-3711 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3815 ((|#1| |#3|) 9)) (-3607 ((|#3| |#3|) 15)))
-(((-133 |#1| |#2| |#3|) (-10 -7 (-15 -3815 (|#1| |#3|)) (-15 -3607 (|#3| |#3|)) (-15 -3711 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-517) (-925 |#1|) (-351 |#2|)) (T -133))
-((-3711 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-925 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-133 *4 *5 *3)) (-4 *3 (-351 *5)))) (-3607 (*1 *2 *2) (-12 (-4 *3 (-517)) (-4 *4 (-925 *3)) (-5 *1 (-133 *3 *4 *2)) (-4 *2 (-351 *4)))) (-3815 (*1 *2 *3) (-12 (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-133 *2 *4 *3)) (-4 *3 (-351 *4)))))
-(-10 -7 (-15 -3815 (|#1| |#3|)) (-15 -3607 (|#3| |#3|)) (-15 -3711 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-3984 (($ $ $) 8)) (-1545 (($ $) 7)) (-3163 (($ $ $) 6)))
+((-4087 (((-108) $ $) NIL)) (-2877 (($) 15 T CONST)) (-1320 (($) NIL (|has| (-135) (-346)))) (-1705 (($ $ $) 17) (($ $ (-135)) NIL) (($ (-135) $) NIL)) (-3907 (($ $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-1613 (((-713)) NIL (|has| (-135) (-346)))) (-2805 (($) NIL) (($ (-592 (-135))) NIL)) (-3050 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4259)))) (-2475 (($) NIL T CONST)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020))))) (-4205 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4259))) (($ (-135) $) 51 (|has| $ (-6 -4259)))) (-2698 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4259))) (($ (-135) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020))))) (-3504 (((-135) (-1 (-135) (-135) (-135)) $) NIL (|has| $ (-6 -4259))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) NIL (|has| $ (-6 -4259))) (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) NIL (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020))))) (-1903 (($) NIL (|has| (-135) (-346)))) (-2175 (((-592 (-135)) $) 60 (|has| $ (-6 -4259)))) (-4207 (((-108) $ $) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-3033 (((-135) $) NIL (|has| (-135) (-789)))) (-2617 (((-592 (-135)) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) (-135) $) 26 (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020))))) (-1609 (((-135) $) NIL (|has| (-135) (-789)))) (-3069 (($ (-1 (-135) (-135)) $) 59 (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-135) (-135)) $) 55)) (-1904 (($) 16 T CONST)) (-3685 (((-856) $) NIL (|has| (-135) (-346)))) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL)) (-2913 (($ $ $) 29)) (-3577 (((-135) $) 52)) (-3246 (($ (-135) $) 50)) (-1722 (($ (-856)) NIL (|has| (-135) (-346)))) (-3044 (($) 14 T CONST)) (-3993 (((-1039) $) NIL)) (-4202 (((-3 (-135) "failed") (-1 (-108) (-135)) $) NIL)) (-2724 (((-135) $) 53)) (-1518 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-135)) (-592 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-135) (-135)) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-273 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-592 (-273 (-135)))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) 48)) (-3220 (($) 13 T CONST)) (-1292 (($ $ $) 31) (($ $ (-135)) NIL)) (-2637 (($ (-592 (-135))) NIL) (($) NIL)) (-4002 (((-713) (-135) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020)))) (((-713) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) NIL)) (-2069 (((-1075) $) 36) (((-501) $) NIL (|has| (-135) (-567 (-501)))) (((-592 (-135)) $) 34)) (-4114 (($ (-592 (-135))) NIL)) (-3189 (($ $) 32 (|has| (-135) (-346)))) (-4100 (((-798) $) 46)) (-1357 (($ (-1075)) 12) (($ (-592 (-135))) 43)) (-2763 (((-713) $) NIL)) (-2180 (($) 49) (($ (-592 (-135))) NIL)) (-3905 (($ (-592 (-135))) NIL)) (-2706 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4259)))) (-1960 (($) 19 T CONST)) (-3384 (($) 18 T CONST)) (-2775 (((-108) $ $) 22)) (-2827 (((-713) $) 47 (|has| $ (-6 -4259)))))
+(((-132) (-13 (-1020) (-567 (-1075)) (-403 (-135)) (-567 (-592 (-135))) (-10 -8 (-15 -1357 ($ (-1075))) (-15 -1357 ($ (-592 (-135)))) (-15 -3220 ($) -2247) (-15 -3044 ($) -2247) (-15 -2877 ($) -2247) (-15 -1904 ($) -2247) (-15 -3384 ($) -2247) (-15 -1960 ($) -2247)))) (T -132))
+((-1357 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-132)))) (-1357 (*1 *1 *2) (-12 (-5 *2 (-592 (-135))) (-5 *1 (-132)))) (-3220 (*1 *1) (-5 *1 (-132))) (-3044 (*1 *1) (-5 *1 (-132))) (-2877 (*1 *1) (-5 *1 (-132))) (-1904 (*1 *1) (-5 *1 (-132))) (-3384 (*1 *1) (-5 *1 (-132))) (-1960 (*1 *1) (-5 *1 (-132))))
+(-13 (-1020) (-567 (-1075)) (-403 (-135)) (-567 (-592 (-135))) (-10 -8 (-15 -1357 ($ (-1075))) (-15 -1357 ($ (-592 (-135)))) (-15 -3220 ($) -2247) (-15 -3044 ($) -2247) (-15 -2877 ($) -2247) (-15 -1904 ($) -2247) (-15 -3384 ($) -2247) (-15 -1960 ($) -2247)))
+((-3999 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2618 ((|#1| |#3|) 9)) (-2360 ((|#3| |#3|) 15)))
+(((-133 |#1| |#2| |#3|) (-10 -7 (-15 -2618 (|#1| |#3|)) (-15 -2360 (|#3| |#3|)) (-15 -3999 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-517) (-925 |#1|) (-351 |#2|)) (T -133))
+((-3999 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-925 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-133 *4 *5 *3)) (-4 *3 (-351 *5)))) (-2360 (*1 *2 *2) (-12 (-4 *3 (-517)) (-4 *4 (-925 *3)) (-5 *1 (-133 *3 *4 *2)) (-4 *2 (-351 *4)))) (-2618 (*1 *2 *3) (-12 (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-133 *2 *4 *3)) (-4 *3 (-351 *4)))))
+(-10 -7 (-15 -2618 (|#1| |#3|)) (-15 -2360 (|#3| |#3|)) (-15 -3999 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1922 (($ $ $) 8)) (-1606 (($ $) 7)) (-1494 (($ $ $) 6)))
(((-134) (-131)) (T -134))
-((-3984 (*1 *1 *1 *1) (-4 *1 (-134))) (-1545 (*1 *1 *1) (-4 *1 (-134))) (-3163 (*1 *1 *1 *1) (-4 *1 (-134))))
-(-13 (-10 -8 (-15 -3163 ($ $ $)) (-15 -1545 ($ $)) (-15 -3984 ($ $ $))))
-((-4236 (((-108) $ $) NIL)) (-4116 (((-108) $) 30)) (-2723 (($ $) 43)) (-2044 (($) 17)) (-1834 (((-713)) 10)) (-2502 (($) 16)) (-3502 (($) 18)) (-1758 (((-713) $) 14)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-2202 (((-108) $) 32)) (-1528 (($ $) 44)) (-3005 (((-856) $) 15)) (-2619 (((-1075) $) 38)) (-3555 (($ (-856)) 13)) (-2713 (((-108) $) 28)) (-2093 (((-1039) $) NIL)) (-2660 (($) 19)) (-3241 (((-108) $) 26)) (-1217 (((-798) $) 21)) (-3260 (($ (-713)) 11) (($ (-1075)) 42)) (-2310 (((-108) $) 36)) (-1600 (((-108) $) 34)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 7)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 8)))
-(((-135) (-13 (-783) (-10 -8 (-15 -1758 ((-713) $)) (-15 -3260 ($ (-713))) (-15 -3260 ($ (-1075))) (-15 -2044 ($)) (-15 -3502 ($)) (-15 -2660 ($)) (-15 -2723 ($ $)) (-15 -1528 ($ $)) (-15 -3241 ((-108) $)) (-15 -2713 ((-108) $)) (-15 -1600 ((-108) $)) (-15 -4116 ((-108) $)) (-15 -2202 ((-108) $)) (-15 -2310 ((-108) $))))) (T -135))
-((-1758 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-135)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-135)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-135)))) (-2044 (*1 *1) (-5 *1 (-135))) (-3502 (*1 *1) (-5 *1 (-135))) (-2660 (*1 *1) (-5 *1 (-135))) (-2723 (*1 *1 *1) (-5 *1 (-135))) (-1528 (*1 *1 *1) (-5 *1 (-135))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-2713 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-4116 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-2310 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
-(-13 (-783) (-10 -8 (-15 -1758 ((-713) $)) (-15 -3260 ($ (-713))) (-15 -3260 ($ (-1075))) (-15 -2044 ($)) (-15 -3502 ($)) (-15 -2660 ($)) (-15 -2723 ($ $)) (-15 -1528 ($ $)) (-15 -3241 ((-108) $)) (-15 -2713 ((-108) $)) (-15 -1600 ((-108) $)) (-15 -4116 ((-108) $)) (-15 -2202 ((-108) $)) (-15 -2310 ((-108) $))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11) (($ (-525)) 28)) (-3637 (((-3 $ "failed") $) 35)) (-3917 (((-713)) 29)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-1922 (*1 *1 *1 *1) (-4 *1 (-134))) (-1606 (*1 *1 *1) (-4 *1 (-134))) (-1494 (*1 *1 *1 *1) (-4 *1 (-134))))
+(-13 (-10 -8 (-15 -1494 ($ $ $)) (-15 -1606 ($ $)) (-15 -1922 ($ $ $))))
+((-4087 (((-108) $ $) NIL)) (-2622 (((-108) $) 30)) (-2877 (($ $) 43)) (-3555 (($) 17)) (-1613 (((-713)) 10)) (-1903 (($) 16)) (-2566 (($) 18)) (-2619 (((-713) $) 14)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-1584 (((-108) $) 32)) (-1904 (($ $) 44)) (-3685 (((-856) $) 15)) (-1289 (((-1075) $) 38)) (-1722 (($ (-856)) 13)) (-2790 (((-108) $) 28)) (-3993 (((-1039) $) NIL)) (-3489 (($) 19)) (-3746 (((-108) $) 26)) (-4100 (((-798) $) 21)) (-3493 (($ (-713)) 11) (($ (-1075)) 42)) (-3171 (((-108) $) 36)) (-3445 (((-108) $) 34)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 7)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 8)))
+(((-135) (-13 (-783) (-10 -8 (-15 -2619 ((-713) $)) (-15 -3493 ($ (-713))) (-15 -3493 ($ (-1075))) (-15 -3555 ($)) (-15 -2566 ($)) (-15 -3489 ($)) (-15 -2877 ($ $)) (-15 -1904 ($ $)) (-15 -3746 ((-108) $)) (-15 -2790 ((-108) $)) (-15 -3445 ((-108) $)) (-15 -2622 ((-108) $)) (-15 -1584 ((-108) $)) (-15 -3171 ((-108) $))))) (T -135))
+((-2619 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-135)))) (-3493 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-135)))) (-3493 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-135)))) (-3555 (*1 *1) (-5 *1 (-135))) (-2566 (*1 *1) (-5 *1 (-135))) (-3489 (*1 *1) (-5 *1 (-135))) (-2877 (*1 *1 *1) (-5 *1 (-135))) (-1904 (*1 *1 *1) (-5 *1 (-135))) (-3746 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
+(-13 (-783) (-10 -8 (-15 -2619 ((-713) $)) (-15 -3493 ($ (-713))) (-15 -3493 ($ (-1075))) (-15 -3555 ($)) (-15 -2566 ($)) (-15 -3489 ($)) (-15 -2877 ($ $)) (-15 -1904 ($ $)) (-15 -3746 ((-108) $)) (-15 -2790 ((-108) $)) (-15 -3445 ((-108) $)) (-15 -2622 ((-108) $)) (-15 -1584 ((-108) $)) (-15 -3171 ((-108) $))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11) (($ (-525)) 28)) (-1463 (((-3 $ "failed") $) 35)) (-2448 (((-713)) 29)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-136) (-131)) (T -136))
-((-3637 (*1 *1 *1) (|partial| -4 *1 (-136))))
-(-13 (-977) (-10 -8 (-15 -3637 ((-3 $ "failed") $))))
+((-1463 (*1 *1 *1) (|partial| -4 *1 (-136))))
+(-13 (-977) (-10 -8 (-15 -1463 ((-3 $ "failed") $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-669) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-1304 ((|#1| (-632 |#1|) |#1|) 19)))
-(((-137 |#1|) (-10 -7 (-15 -1304 (|#1| (-632 |#1|) |#1|))) (-160)) (T -137))
-((-1304 (*1 *2 *3 *2) (-12 (-5 *3 (-632 *2)) (-4 *2 (-160)) (-5 *1 (-137 *2)))))
-(-10 -7 (-15 -1304 (|#1| (-632 |#1|) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11) (($ (-525)) 28)) (-3917 (((-713)) 29)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-3153 ((|#1| (-632 |#1|) |#1|) 19)))
+(((-137 |#1|) (-10 -7 (-15 -3153 (|#1| (-632 |#1|) |#1|))) (-160)) (T -137))
+((-3153 (*1 *2 *3 *2) (-12 (-5 *3 (-632 *2)) (-4 *2 (-160)) (-5 *1 (-137 *2)))))
+(-10 -7 (-15 -3153 (|#1| (-632 |#1|) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11) (($ (-525)) 28)) (-2448 (((-713)) 29)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-138) (-131)) (T -138))
NIL
(-13 (-977))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-669) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-1623 (((-2 (|:| -4193 (-713)) (|:| -3244 (-385 |#2|)) (|:| |radicand| |#2|)) (-385 |#2|) (-713)) 70)) (-1516 (((-3 (-2 (|:| |radicand| (-385 |#2|)) (|:| |deg| (-713))) "failed") |#3|) 52)) (-2190 (((-2 (|:| -3244 (-385 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-3985 ((|#1| |#3| |#3|) 40)) (-2457 ((|#3| |#3| (-385 |#2|) (-385 |#2|)) 19)) (-2525 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| |deg| (-713))) |#3| |#3|) 49)))
-(((-139 |#1| |#2| |#3|) (-10 -7 (-15 -2190 ((-2 (|:| -3244 (-385 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1516 ((-3 (-2 (|:| |radicand| (-385 |#2|)) (|:| |deg| (-713))) "failed") |#3|)) (-15 -1623 ((-2 (|:| -4193 (-713)) (|:| -3244 (-385 |#2|)) (|:| |radicand| |#2|)) (-385 |#2|) (-713))) (-15 -3985 (|#1| |#3| |#3|)) (-15 -2457 (|#3| |#3| (-385 |#2|) (-385 |#2|))) (-15 -2525 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| |deg| (-713))) |#3| |#3|))) (-1132) (-1150 |#1|) (-1150 (-385 |#2|))) (T -139))
-((-2525 (*1 *2 *3 *3) (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-385 *5)) (|:| |c2| (-385 *5)) (|:| |deg| (-713)))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1150 (-385 *5))))) (-2457 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-385 *5)) (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-5 *1 (-139 *4 *5 *2)) (-4 *2 (-1150 *3)))) (-3985 (*1 *2 *3 *3) (-12 (-4 *4 (-1150 *2)) (-4 *2 (-1132)) (-5 *1 (-139 *2 *4 *3)) (-4 *3 (-1150 (-385 *4))))) (-1623 (*1 *2 *3 *4) (-12 (-5 *3 (-385 *6)) (-4 *5 (-1132)) (-4 *6 (-1150 *5)) (-5 *2 (-2 (|:| -4193 (-713)) (|:| -3244 *3) (|:| |radicand| *6))) (-5 *1 (-139 *5 *6 *7)) (-5 *4 (-713)) (-4 *7 (-1150 *3)))) (-1516 (*1 *2 *3) (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-5 *2 (-2 (|:| |radicand| (-385 *5)) (|:| |deg| (-713)))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1150 (-385 *5))))) (-2190 (*1 *2 *3) (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-5 *2 (-2 (|:| -3244 (-385 *5)) (|:| |poly| *3))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1150 (-385 *5))))))
-(-10 -7 (-15 -2190 ((-2 (|:| -3244 (-385 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1516 ((-3 (-2 (|:| |radicand| (-385 |#2|)) (|:| |deg| (-713))) "failed") |#3|)) (-15 -1623 ((-2 (|:| -4193 (-713)) (|:| -3244 (-385 |#2|)) (|:| |radicand| |#2|)) (-385 |#2|) (-713))) (-15 -3985 (|#1| |#3| |#3|)) (-15 -2457 (|#3| |#3| (-385 |#2|) (-385 |#2|))) (-15 -2525 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| |deg| (-713))) |#3| |#3|)))
-((-2969 (((-3 (-592 (-1088 |#2|)) "failed") (-592 (-1088 |#2|)) (-1088 |#2|)) 32)))
-(((-140 |#1| |#2|) (-10 -7 (-15 -2969 ((-3 (-592 (-1088 |#2|)) "failed") (-592 (-1088 |#2|)) (-1088 |#2|)))) (-510) (-154 |#1|)) (T -140))
-((-2969 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1088 *5))) (-5 *3 (-1088 *5)) (-4 *5 (-154 *4)) (-4 *4 (-510)) (-5 *1 (-140 *4 *5)))))
-(-10 -7 (-15 -2969 ((-3 (-592 (-1088 |#2|)) "failed") (-592 (-1088 |#2|)) (-1088 |#2|))))
-((-3785 (($ (-1 (-108) |#2|) $) 29)) (-1910 (($ $) 36)) (-1703 (($ (-1 (-108) |#2|) $) 27) (($ |#2| $) 32)) (-1284 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1983 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 19)) (-3944 (((-108) (-1 (-108) |#2|) $) 16)) (-2110 (((-713) (-1 (-108) |#2|) $) 14) (((-713) |#2| $) NIL)) (-3029 (((-108) (-1 (-108) |#2|) $) 15)) (-3522 (((-713) $) 11)))
-(((-141 |#1| |#2|) (-10 -8 (-15 -1910 (|#1| |#1|)) (-15 -1703 (|#1| |#2| |#1|)) (-15 -1284 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3785 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1703 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1284 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1284 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1983 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2110 ((-713) |#2| |#1|)) (-15 -2110 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3944 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3029 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3522 ((-713) |#1|))) (-142 |#2|) (-1128)) (T -141))
-NIL
-(-10 -8 (-15 -1910 (|#1| |#1|)) (-15 -1703 (|#1| |#2| |#1|)) (-15 -1284 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3785 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1703 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1284 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1284 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1983 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2110 ((-713) |#2| |#1|)) (-15 -2110 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3944 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3029 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3522 ((-713) |#1|)))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3991 (((-108) $ (-713)) 8)) (-3785 (($ (-1 (-108) |#1|) $) 44 (|has| $ (-6 -4258)))) (-2169 (($) 7 T CONST)) (-1910 (($ $) 41 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1703 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4258))) (($ |#1| $) 42 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) 9)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 48)) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-3210 (((-501) $) 40 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 49)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-3809 (((-2 (|:| -2168 (-713)) (|:| -2681 (-385 |#2|)) (|:| |radicand| |#2|)) (-385 |#2|) (-713)) 70)) (-1778 (((-3 (-2 (|:| |radicand| (-385 |#2|)) (|:| |deg| (-713))) "failed") |#3|) 52)) (-1476 (((-2 (|:| -2681 (-385 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-1931 ((|#1| |#3| |#3|) 40)) (-2825 ((|#3| |#3| (-385 |#2|) (-385 |#2|)) 19)) (-1673 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| |deg| (-713))) |#3| |#3|) 49)))
+(((-139 |#1| |#2| |#3|) (-10 -7 (-15 -1476 ((-2 (|:| -2681 (-385 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1778 ((-3 (-2 (|:| |radicand| (-385 |#2|)) (|:| |deg| (-713))) "failed") |#3|)) (-15 -3809 ((-2 (|:| -2168 (-713)) (|:| -2681 (-385 |#2|)) (|:| |radicand| |#2|)) (-385 |#2|) (-713))) (-15 -1931 (|#1| |#3| |#3|)) (-15 -2825 (|#3| |#3| (-385 |#2|) (-385 |#2|))) (-15 -1673 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| |deg| (-713))) |#3| |#3|))) (-1132) (-1150 |#1|) (-1150 (-385 |#2|))) (T -139))
+((-1673 (*1 *2 *3 *3) (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-385 *5)) (|:| |c2| (-385 *5)) (|:| |deg| (-713)))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1150 (-385 *5))))) (-2825 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-385 *5)) (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-5 *1 (-139 *4 *5 *2)) (-4 *2 (-1150 *3)))) (-1931 (*1 *2 *3 *3) (-12 (-4 *4 (-1150 *2)) (-4 *2 (-1132)) (-5 *1 (-139 *2 *4 *3)) (-4 *3 (-1150 (-385 *4))))) (-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-385 *6)) (-4 *5 (-1132)) (-4 *6 (-1150 *5)) (-5 *2 (-2 (|:| -2168 (-713)) (|:| -2681 *3) (|:| |radicand| *6))) (-5 *1 (-139 *5 *6 *7)) (-5 *4 (-713)) (-4 *7 (-1150 *3)))) (-1778 (*1 *2 *3) (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-5 *2 (-2 (|:| |radicand| (-385 *5)) (|:| |deg| (-713)))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1150 (-385 *5))))) (-1476 (*1 *2 *3) (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-5 *2 (-2 (|:| -2681 (-385 *5)) (|:| |poly| *3))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1150 (-385 *5))))))
+(-10 -7 (-15 -1476 ((-2 (|:| -2681 (-385 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1778 ((-3 (-2 (|:| |radicand| (-385 |#2|)) (|:| |deg| (-713))) "failed") |#3|)) (-15 -3809 ((-2 (|:| -2168 (-713)) (|:| -2681 (-385 |#2|)) (|:| |radicand| |#2|)) (-385 |#2|) (-713))) (-15 -1931 (|#1| |#3| |#3|)) (-15 -2825 (|#3| |#3| (-385 |#2|) (-385 |#2|))) (-15 -1673 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| |deg| (-713))) |#3| |#3|)))
+((-3373 (((-3 (-592 (-1088 |#2|)) "failed") (-592 (-1088 |#2|)) (-1088 |#2|)) 32)))
+(((-140 |#1| |#2|) (-10 -7 (-15 -3373 ((-3 (-592 (-1088 |#2|)) "failed") (-592 (-1088 |#2|)) (-1088 |#2|)))) (-510) (-154 |#1|)) (T -140))
+((-3373 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1088 *5))) (-5 *3 (-1088 *5)) (-4 *5 (-154 *4)) (-4 *4 (-510)) (-5 *1 (-140 *4 *5)))))
+(-10 -7 (-15 -3373 ((-3 (-592 (-1088 |#2|)) "failed") (-592 (-1088 |#2|)) (-1088 |#2|))))
+((-2399 (($ (-1 (-108) |#2|) $) 29)) (-1681 (($ $) 36)) (-2698 (($ (-1 (-108) |#2|) $) 27) (($ |#2| $) 32)) (-3504 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-4202 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 19)) (-1518 (((-108) (-1 (-108) |#2|) $) 16)) (-4002 (((-713) (-1 (-108) |#2|) $) 14) (((-713) |#2| $) NIL)) (-2706 (((-108) (-1 (-108) |#2|) $) 15)) (-2827 (((-713) $) 11)))
+(((-141 |#1| |#2|) (-10 -8 (-15 -1681 (|#1| |#1|)) (-15 -2698 (|#1| |#2| |#1|)) (-15 -3504 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2399 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2698 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3504 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3504 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4202 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -4002 ((-713) |#2| |#1|)) (-15 -4002 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -1518 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2706 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2827 ((-713) |#1|))) (-142 |#2|) (-1128)) (T -141))
+NIL
+(-10 -8 (-15 -1681 (|#1| |#1|)) (-15 -2698 (|#1| |#2| |#1|)) (-15 -3504 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2399 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2698 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3504 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3504 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4202 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -4002 ((-713) |#2| |#1|)) (-15 -4002 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -1518 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2706 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2827 ((-713) |#1|)))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3779 (((-108) $ (-713)) 8)) (-2399 (($ (-1 (-108) |#1|) $) 44 (|has| $ (-6 -4259)))) (-2475 (($) 7 T CONST)) (-1681 (($ $) 41 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2698 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4259))) (($ |#1| $) 42 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) 9)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 48)) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-2069 (((-501) $) 40 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 49)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-142 |#1|) (-131) (-1128)) (T -142))
-((-1230 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-4 *1 (-142 *3)))) (-1983 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-142 *2)) (-4 *2 (-1128)))) (-1284 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4258)) (-4 *1 (-142 *2)) (-4 *2 (-1128)))) (-1284 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4258)) (-4 *1 (-142 *2)) (-4 *2 (-1128)))) (-1703 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4258)) (-4 *1 (-142 *3)) (-4 *3 (-1128)))) (-3785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4258)) (-4 *1 (-142 *3)) (-4 *3 (-1128)))) (-1284 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1020)) (|has| *1 (-6 -4258)) (-4 *1 (-142 *2)) (-4 *2 (-1128)))) (-1703 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4258)) (-4 *1 (-142 *2)) (-4 *2 (-1128)) (-4 *2 (-1020)))) (-1910 (*1 *1 *1) (-12 (|has| *1 (-6 -4258)) (-4 *1 (-142 *2)) (-4 *2 (-1128)) (-4 *2 (-1020)))))
-(-13 (-464 |t#1|) (-10 -8 (-15 -1230 ($ (-592 |t#1|))) (-15 -1983 ((-3 |t#1| "failed") (-1 (-108) |t#1|) $)) (IF (|has| $ (-6 -4258)) (PROGN (-15 -1284 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1284 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1703 ($ (-1 (-108) |t#1|) $)) (-15 -3785 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1020)) (PROGN (-15 -1284 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1703 ($ |t#1| $)) (-15 -1910 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3457 (((-3 $ "failed") $) 86)) (-1396 (((-108) $) NIL)) (-2876 (($ |#2| (-592 (-856))) 56)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-2678 (($ (-856)) 47)) (-3705 (((-128)) 23)) (-1217 (((-798) $) 69) (($ (-525)) 45) (($ |#2|) 46)) (-1568 ((|#2| $ (-592 (-856))) 59)) (-3917 (((-713)) 20)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 40 T CONST)) (-3359 (($) 43 T CONST)) (-3955 (((-108) $ $) 26)) (-4075 (($ $ |#2|) NIL)) (-4061 (($ $) 34) (($ $ $) 32)) (-4047 (($ $ $) 30)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
-(((-143 |#1| |#2| |#3|) (-13 (-977) (-37 |#2|) (-1181 |#2|) (-10 -8 (-15 -2678 ($ (-856))) (-15 -2876 ($ |#2| (-592 (-856)))) (-15 -1568 (|#2| $ (-592 (-856)))) (-15 -3457 ((-3 $ "failed") $)))) (-856) (-341) (-926 |#1| |#2|)) (T -143))
-((-3457 (*1 *1 *1) (|partial| -12 (-5 *1 (-143 *2 *3 *4)) (-14 *2 (-856)) (-4 *3 (-341)) (-14 *4 (-926 *2 *3)))) (-2678 (*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-143 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-341)) (-14 *5 (-926 *3 *4)))) (-2876 (*1 *1 *2 *3) (-12 (-5 *3 (-592 (-856))) (-5 *1 (-143 *4 *2 *5)) (-14 *4 (-856)) (-4 *2 (-341)) (-14 *5 (-926 *4 *2)))) (-1568 (*1 *2 *1 *3) (-12 (-5 *3 (-592 (-856))) (-4 *2 (-341)) (-5 *1 (-143 *4 *2 *5)) (-14 *4 (-856)) (-14 *5 (-926 *4 *2)))))
-(-13 (-977) (-37 |#2|) (-1181 |#2|) (-10 -8 (-15 -2678 ($ (-856))) (-15 -2876 ($ |#2| (-592 (-856)))) (-15 -1568 (|#2| $ (-592 (-856)))) (-15 -3457 ((-3 $ "failed") $))))
-((-3277 (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-592 (-878 (-205)))) (-205) (-205) (-205) (-205)) 38)) (-3330 (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862) (-385 (-525)) (-385 (-525))) 63) (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862)) 64)) (-2128 (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-592 (-878 (-205))))) 67) (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-878 (-205)))) 66) (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862) (-385 (-525)) (-385 (-525))) 58) (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862)) 59)))
-(((-144) (-10 -7 (-15 -2128 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862))) (-15 -2128 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862) (-385 (-525)) (-385 (-525)))) (-15 -3330 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862))) (-15 -3330 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862) (-385 (-525)) (-385 (-525)))) (-15 -3277 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-592 (-878 (-205)))) (-205) (-205) (-205) (-205))) (-15 -2128 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-878 (-205))))) (-15 -2128 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-592 (-878 (-205)))))))) (T -144))
-((-2128 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205))))) (-5 *1 (-144)) (-5 *3 (-592 (-592 (-878 (-205))))))) (-2128 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205))))) (-5 *1 (-144)) (-5 *3 (-592 (-878 (-205)))))) (-3277 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-205)) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 *4)))) (|:| |xValues| (-1015 *4)) (|:| |yValues| (-1015 *4)))) (-5 *1 (-144)) (-5 *3 (-592 (-592 (-878 *4)))))) (-3330 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-862)) (-5 *4 (-385 (-525))) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205))))) (-5 *1 (-144)))) (-3330 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205))))) (-5 *1 (-144)))) (-2128 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-862)) (-5 *4 (-385 (-525))) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205))))) (-5 *1 (-144)))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205))))) (-5 *1 (-144)))))
-(-10 -7 (-15 -2128 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862))) (-15 -2128 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862) (-385 (-525)) (-385 (-525)))) (-15 -3330 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862))) (-15 -3330 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862) (-385 (-525)) (-385 (-525)))) (-15 -3277 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-592 (-878 (-205)))) (-205) (-205) (-205) (-205))) (-15 -2128 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-878 (-205))))) (-15 -2128 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-592 (-878 (-205)))))))
-((-3225 (((-592 (-157 |#2|)) |#1| |#2|) 45)))
-(((-145 |#1| |#2|) (-10 -7 (-15 -3225 ((-592 (-157 |#2|)) |#1| |#2|))) (-1150 (-157 (-525))) (-13 (-341) (-787))) (T -145))
-((-3225 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-157 *4))) (-5 *1 (-145 *3 *4)) (-4 *3 (-1150 (-157 (-525)))) (-4 *4 (-13 (-341) (-787))))))
-(-10 -7 (-15 -3225 ((-592 (-157 |#2|)) |#1| |#2|)))
-((-4236 (((-108) $ $) NIL)) (-3825 (($) 16)) (-1444 (($) 15)) (-2088 (((-856)) 23)) (-2619 (((-1075) $) NIL)) (-2412 (((-525) $) 20)) (-2093 (((-1039) $) NIL)) (-4064 (($) 17)) (-2558 (($ (-525)) 24)) (-1217 (((-798) $) 30)) (-3643 (($) 18)) (-3955 (((-108) $ $) 14)) (-4047 (($ $ $) 13)) (* (($ (-856) $) 22) (($ (-205) $) 8)))
-(((-146) (-13 (-25) (-10 -8 (-15 * ($ (-856) $)) (-15 * ($ (-205) $)) (-15 -4047 ($ $ $)) (-15 -1444 ($)) (-15 -3825 ($)) (-15 -4064 ($)) (-15 -3643 ($)) (-15 -2412 ((-525) $)) (-15 -2088 ((-856))) (-15 -2558 ($ (-525)))))) (T -146))
-((-4047 (*1 *1 *1 *1) (-5 *1 (-146))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-146)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-146)))) (-1444 (*1 *1) (-5 *1 (-146))) (-3825 (*1 *1) (-5 *1 (-146))) (-4064 (*1 *1) (-5 *1 (-146))) (-3643 (*1 *1) (-5 *1 (-146))) (-2412 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-146)))) (-2088 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-146)))) (-2558 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-146)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-856) $)) (-15 * ($ (-205) $)) (-15 -4047 ($ $ $)) (-15 -1444 ($)) (-15 -3825 ($)) (-15 -4064 ($)) (-15 -3643 ($)) (-15 -2412 ((-525) $)) (-15 -2088 ((-856))) (-15 -2558 ($ (-525)))))
-((-3291 ((|#2| |#2| (-1013 |#2|)) 88) ((|#2| |#2| (-1092)) 68)) (-1683 ((|#2| |#2| (-1013 |#2|)) 87) ((|#2| |#2| (-1092)) 67)) (-3984 ((|#2| |#2| |#2|) 27)) (-3930 (((-110) (-110)) 99)) (-2926 ((|#2| (-592 |#2|)) 117)) (-1655 ((|#2| (-592 |#2|)) 135)) (-3861 ((|#2| (-592 |#2|)) 125)) (-4202 ((|#2| |#2|) 123)) (-3960 ((|#2| (-592 |#2|)) 111)) (-1256 ((|#2| (-592 |#2|)) 112)) (-2335 ((|#2| (-592 |#2|)) 133)) (-1243 ((|#2| |#2| (-1092)) 56) ((|#2| |#2|) 55)) (-1545 ((|#2| |#2|) 23)) (-3163 ((|#2| |#2| |#2|) 26)) (-1960 (((-108) (-110)) 49)) (** ((|#2| |#2| |#2|) 41)))
-(((-147 |#1| |#2|) (-10 -7 (-15 -1960 ((-108) (-110))) (-15 -3930 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -3163 (|#2| |#2| |#2|)) (-15 -3984 (|#2| |#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1243 (|#2| |#2|)) (-15 -1243 (|#2| |#2| (-1092))) (-15 -3291 (|#2| |#2| (-1092))) (-15 -3291 (|#2| |#2| (-1013 |#2|))) (-15 -1683 (|#2| |#2| (-1092))) (-15 -1683 (|#2| |#2| (-1013 |#2|))) (-15 -4202 (|#2| |#2|)) (-15 -2335 (|#2| (-592 |#2|))) (-15 -3861 (|#2| (-592 |#2|))) (-15 -1655 (|#2| (-592 |#2|))) (-15 -3960 (|#2| (-592 |#2|))) (-15 -1256 (|#2| (-592 |#2|))) (-15 -2926 (|#2| (-592 |#2|)))) (-13 (-789) (-517)) (-408 |#1|)) (T -147))
-((-2926 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-1256 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-3861 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-2335 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-4202 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-1683 (*1 *2 *2 *3) (-12 (-5 *3 (-1013 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)))) (-1683 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)) (-4 *2 (-408 *4)))) (-3291 (*1 *2 *2 *3) (-12 (-5 *3 (-1013 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)))) (-3291 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)) (-4 *2 (-408 *4)))) (-1243 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)) (-4 *2 (-408 *4)))) (-1243 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-3984 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-3163 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *4)) (-4 *4 (-408 *3)))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-147 *4 *5)) (-4 *5 (-408 *4)))))
-(-10 -7 (-15 -1960 ((-108) (-110))) (-15 -3930 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -3163 (|#2| |#2| |#2|)) (-15 -3984 (|#2| |#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1243 (|#2| |#2|)) (-15 -1243 (|#2| |#2| (-1092))) (-15 -3291 (|#2| |#2| (-1092))) (-15 -3291 (|#2| |#2| (-1013 |#2|))) (-15 -1683 (|#2| |#2| (-1092))) (-15 -1683 (|#2| |#2| (-1013 |#2|))) (-15 -4202 (|#2| |#2|)) (-15 -2335 (|#2| (-592 |#2|))) (-15 -3861 (|#2| (-592 |#2|))) (-15 -1655 (|#2| (-592 |#2|))) (-15 -3960 (|#2| (-592 |#2|))) (-15 -1256 (|#2| (-592 |#2|))) (-15 -2926 (|#2| (-592 |#2|))))
-((-3854 ((|#1| |#1| |#1|) 53)) (-2020 ((|#1| |#1| |#1|) 50)) (-3984 ((|#1| |#1| |#1|) 44)) (-3816 ((|#1| |#1|) 35)) (-2844 ((|#1| |#1| (-592 |#1|)) 43)) (-1545 ((|#1| |#1|) 37)) (-3163 ((|#1| |#1| |#1|) 40)))
-(((-148 |#1|) (-10 -7 (-15 -3163 (|#1| |#1| |#1|)) (-15 -1545 (|#1| |#1|)) (-15 -2844 (|#1| |#1| (-592 |#1|))) (-15 -3816 (|#1| |#1|)) (-15 -3984 (|#1| |#1| |#1|)) (-15 -2020 (|#1| |#1| |#1|)) (-15 -3854 (|#1| |#1| |#1|))) (-510)) (T -148))
-((-3854 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-2020 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-3984 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-3816 (*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-2844 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-510)) (-5 *1 (-148 *2)))) (-1545 (*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-3163 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
-(-10 -7 (-15 -3163 (|#1| |#1| |#1|)) (-15 -1545 (|#1| |#1|)) (-15 -2844 (|#1| |#1| (-592 |#1|))) (-15 -3816 (|#1| |#1|)) (-15 -3984 (|#1| |#1| |#1|)) (-15 -2020 (|#1| |#1| |#1|)) (-15 -3854 (|#1| |#1| |#1|)))
-((-3291 (($ $ (-1092)) 12) (($ $ (-1013 $)) 11)) (-1683 (($ $ (-1092)) 10) (($ $ (-1013 $)) 9)) (-3984 (($ $ $) 8)) (-1243 (($ $) 14) (($ $ (-1092)) 13)) (-1545 (($ $) 7)) (-3163 (($ $ $) 6)))
+((-4114 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-4 *1 (-142 *3)))) (-4202 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-142 *2)) (-4 *2 (-1128)))) (-3504 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4259)) (-4 *1 (-142 *2)) (-4 *2 (-1128)))) (-3504 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4259)) (-4 *1 (-142 *2)) (-4 *2 (-1128)))) (-2698 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4259)) (-4 *1 (-142 *3)) (-4 *3 (-1128)))) (-2399 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4259)) (-4 *1 (-142 *3)) (-4 *3 (-1128)))) (-3504 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1020)) (|has| *1 (-6 -4259)) (-4 *1 (-142 *2)) (-4 *2 (-1128)))) (-2698 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-142 *2)) (-4 *2 (-1128)) (-4 *2 (-1020)))) (-1681 (*1 *1 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-142 *2)) (-4 *2 (-1128)) (-4 *2 (-1020)))))
+(-13 (-464 |t#1|) (-10 -8 (-15 -4114 ($ (-592 |t#1|))) (-15 -4202 ((-3 |t#1| "failed") (-1 (-108) |t#1|) $)) (IF (|has| $ (-6 -4259)) (PROGN (-15 -3504 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3504 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2698 ($ (-1 (-108) |t#1|) $)) (-15 -2399 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1020)) (PROGN (-15 -3504 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2698 ($ |t#1| $)) (-15 -1681 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-3300 (((-3 $ "failed") $) 86)) (-2278 (((-108) $) NIL)) (-1272 (($ |#2| (-592 (-856))) 56)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1939 (($ (-856)) 47)) (-3933 (((-128)) 23)) (-4100 (((-798) $) 69) (($ (-525)) 45) (($ |#2|) 46)) (-3136 ((|#2| $ (-592 (-856))) 59)) (-2448 (((-713)) 20)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 40 T CONST)) (-3375 (($) 43 T CONST)) (-2775 (((-108) $ $) 26)) (-2880 (($ $ |#2|) NIL)) (-2871 (($ $) 34) (($ $ $) 32)) (-2860 (($ $ $) 30)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
+(((-143 |#1| |#2| |#3|) (-13 (-977) (-37 |#2|) (-1181 |#2|) (-10 -8 (-15 -1939 ($ (-856))) (-15 -1272 ($ |#2| (-592 (-856)))) (-15 -3136 (|#2| $ (-592 (-856)))) (-15 -3300 ((-3 $ "failed") $)))) (-856) (-341) (-926 |#1| |#2|)) (T -143))
+((-3300 (*1 *1 *1) (|partial| -12 (-5 *1 (-143 *2 *3 *4)) (-14 *2 (-856)) (-4 *3 (-341)) (-14 *4 (-926 *2 *3)))) (-1939 (*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-143 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-341)) (-14 *5 (-926 *3 *4)))) (-1272 (*1 *1 *2 *3) (-12 (-5 *3 (-592 (-856))) (-5 *1 (-143 *4 *2 *5)) (-14 *4 (-856)) (-4 *2 (-341)) (-14 *5 (-926 *4 *2)))) (-3136 (*1 *2 *1 *3) (-12 (-5 *3 (-592 (-856))) (-4 *2 (-341)) (-5 *1 (-143 *4 *2 *5)) (-14 *4 (-856)) (-14 *5 (-926 *4 *2)))))
+(-13 (-977) (-37 |#2|) (-1181 |#2|) (-10 -8 (-15 -1939 ($ (-856))) (-15 -1272 ($ |#2| (-592 (-856)))) (-15 -3136 (|#2| $ (-592 (-856)))) (-15 -3300 ((-3 $ "failed") $))))
+((-1224 (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-592 (-878 (-205)))) (-205) (-205) (-205) (-205)) 38)) (-1619 (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862) (-385 (-525)) (-385 (-525))) 63) (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862)) 64)) (-2042 (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-592 (-878 (-205))))) 67) (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-878 (-205)))) 66) (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862) (-385 (-525)) (-385 (-525))) 58) (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862)) 59)))
+(((-144) (-10 -7 (-15 -2042 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862))) (-15 -2042 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862) (-385 (-525)) (-385 (-525)))) (-15 -1619 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862))) (-15 -1619 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862) (-385 (-525)) (-385 (-525)))) (-15 -1224 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-592 (-878 (-205)))) (-205) (-205) (-205) (-205))) (-15 -2042 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-878 (-205))))) (-15 -2042 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-592 (-878 (-205)))))))) (T -144))
+((-2042 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205))))) (-5 *1 (-144)) (-5 *3 (-592 (-592 (-878 (-205))))))) (-2042 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205))))) (-5 *1 (-144)) (-5 *3 (-592 (-878 (-205)))))) (-1224 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-205)) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 *4)))) (|:| |xValues| (-1015 *4)) (|:| |yValues| (-1015 *4)))) (-5 *1 (-144)) (-5 *3 (-592 (-592 (-878 *4)))))) (-1619 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-862)) (-5 *4 (-385 (-525))) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205))))) (-5 *1 (-144)))) (-1619 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205))))) (-5 *1 (-144)))) (-2042 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-862)) (-5 *4 (-385 (-525))) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205))))) (-5 *1 (-144)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205))))) (-5 *1 (-144)))))
+(-10 -7 (-15 -2042 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862))) (-15 -2042 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862) (-385 (-525)) (-385 (-525)))) (-15 -1619 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862))) (-15 -1619 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862) (-385 (-525)) (-385 (-525)))) (-15 -1224 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-592 (-878 (-205)))) (-205) (-205) (-205) (-205))) (-15 -2042 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-878 (-205))))) (-15 -2042 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-592 (-878 (-205)))))))
+((-3842 (((-592 (-157 |#2|)) |#1| |#2|) 45)))
+(((-145 |#1| |#2|) (-10 -7 (-15 -3842 ((-592 (-157 |#2|)) |#1| |#2|))) (-1150 (-157 (-525))) (-13 (-341) (-787))) (T -145))
+((-3842 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-157 *4))) (-5 *1 (-145 *3 *4)) (-4 *3 (-1150 (-157 (-525)))) (-4 *4 (-13 (-341) (-787))))))
+(-10 -7 (-15 -3842 ((-592 (-157 |#2|)) |#1| |#2|)))
+((-4087 (((-108) $ $) NIL)) (-2699 (($) 16)) (-2327 (($) 15)) (-2812 (((-856)) 23)) (-1289 (((-1075) $) NIL)) (-2974 (((-525) $) 20)) (-3993 (((-1039) $) NIL)) (-3291 (($) 17)) (-3785 (($ (-525)) 24)) (-4100 (((-798) $) 30)) (-1502 (($) 18)) (-2775 (((-108) $ $) 14)) (-2860 (($ $ $) 13)) (* (($ (-856) $) 22) (($ (-205) $) 8)))
+(((-146) (-13 (-25) (-10 -8 (-15 * ($ (-856) $)) (-15 * ($ (-205) $)) (-15 -2860 ($ $ $)) (-15 -2327 ($)) (-15 -2699 ($)) (-15 -3291 ($)) (-15 -1502 ($)) (-15 -2974 ((-525) $)) (-15 -2812 ((-856))) (-15 -3785 ($ (-525)))))) (T -146))
+((-2860 (*1 *1 *1 *1) (-5 *1 (-146))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-146)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-146)))) (-2327 (*1 *1) (-5 *1 (-146))) (-2699 (*1 *1) (-5 *1 (-146))) (-3291 (*1 *1) (-5 *1 (-146))) (-1502 (*1 *1) (-5 *1 (-146))) (-2974 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-146)))) (-2812 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-146)))) (-3785 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-146)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-856) $)) (-15 * ($ (-205) $)) (-15 -2860 ($ $ $)) (-15 -2327 ($)) (-15 -2699 ($)) (-15 -3291 ($)) (-15 -1502 ($)) (-15 -2974 ((-525) $)) (-15 -2812 ((-856))) (-15 -3785 ($ (-525)))))
+((-1354 ((|#2| |#2| (-1013 |#2|)) 88) ((|#2| |#2| (-1092)) 68)) (-3125 ((|#2| |#2| (-1013 |#2|)) 87) ((|#2| |#2| (-1092)) 67)) (-1922 ((|#2| |#2| |#2|) 27)) (-1386 (((-110) (-110)) 99)) (-4189 ((|#2| (-592 |#2|)) 117)) (-4093 ((|#2| (-592 |#2|)) 135)) (-3026 ((|#2| (-592 |#2|)) 125)) (-2248 ((|#2| |#2|) 123)) (-1679 ((|#2| (-592 |#2|)) 111)) (-3180 ((|#2| (-592 |#2|)) 112)) (-3438 ((|#2| (-592 |#2|)) 133)) (-2389 ((|#2| |#2| (-1092)) 56) ((|#2| |#2|) 55)) (-1606 ((|#2| |#2|) 23)) (-1494 ((|#2| |#2| |#2|) 26)) (-3954 (((-108) (-110)) 49)) (** ((|#2| |#2| |#2|) 41)))
+(((-147 |#1| |#2|) (-10 -7 (-15 -3954 ((-108) (-110))) (-15 -1386 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -1494 (|#2| |#2| |#2|)) (-15 -1922 (|#2| |#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -2389 (|#2| |#2|)) (-15 -2389 (|#2| |#2| (-1092))) (-15 -1354 (|#2| |#2| (-1092))) (-15 -1354 (|#2| |#2| (-1013 |#2|))) (-15 -3125 (|#2| |#2| (-1092))) (-15 -3125 (|#2| |#2| (-1013 |#2|))) (-15 -2248 (|#2| |#2|)) (-15 -3438 (|#2| (-592 |#2|))) (-15 -3026 (|#2| (-592 |#2|))) (-15 -4093 (|#2| (-592 |#2|))) (-15 -1679 (|#2| (-592 |#2|))) (-15 -3180 (|#2| (-592 |#2|))) (-15 -4189 (|#2| (-592 |#2|)))) (-13 (-789) (-517)) (-408 |#1|)) (T -147))
+((-4189 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-3180 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-2248 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-3125 (*1 *2 *2 *3) (-12 (-5 *3 (-1013 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)))) (-3125 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)) (-4 *2 (-408 *4)))) (-1354 (*1 *2 *2 *3) (-12 (-5 *3 (-1013 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)))) (-1354 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)) (-4 *2 (-408 *4)))) (-2389 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)) (-4 *2 (-408 *4)))) (-2389 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-1606 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-1922 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-1494 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-1386 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *4)) (-4 *4 (-408 *3)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-147 *4 *5)) (-4 *5 (-408 *4)))))
+(-10 -7 (-15 -3954 ((-108) (-110))) (-15 -1386 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -1494 (|#2| |#2| |#2|)) (-15 -1922 (|#2| |#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -2389 (|#2| |#2|)) (-15 -2389 (|#2| |#2| (-1092))) (-15 -1354 (|#2| |#2| (-1092))) (-15 -1354 (|#2| |#2| (-1013 |#2|))) (-15 -3125 (|#2| |#2| (-1092))) (-15 -3125 (|#2| |#2| (-1013 |#2|))) (-15 -2248 (|#2| |#2|)) (-15 -3438 (|#2| (-592 |#2|))) (-15 -3026 (|#2| (-592 |#2|))) (-15 -4093 (|#2| (-592 |#2|))) (-15 -1679 (|#2| (-592 |#2|))) (-15 -3180 (|#2| (-592 |#2|))) (-15 -4189 (|#2| (-592 |#2|))))
+((-2961 ((|#1| |#1| |#1|) 53)) (-3342 ((|#1| |#1| |#1|) 50)) (-1922 ((|#1| |#1| |#1|) 44)) (-2627 ((|#1| |#1|) 35)) (-1540 ((|#1| |#1| (-592 |#1|)) 43)) (-1606 ((|#1| |#1|) 37)) (-1494 ((|#1| |#1| |#1|) 40)))
+(((-148 |#1|) (-10 -7 (-15 -1494 (|#1| |#1| |#1|)) (-15 -1606 (|#1| |#1|)) (-15 -1540 (|#1| |#1| (-592 |#1|))) (-15 -2627 (|#1| |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -3342 (|#1| |#1| |#1|)) (-15 -2961 (|#1| |#1| |#1|))) (-510)) (T -148))
+((-2961 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-3342 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-1922 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-2627 (*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-1540 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-510)) (-5 *1 (-148 *2)))) (-1606 (*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-1494 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
+(-10 -7 (-15 -1494 (|#1| |#1| |#1|)) (-15 -1606 (|#1| |#1|)) (-15 -1540 (|#1| |#1| (-592 |#1|))) (-15 -2627 (|#1| |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -3342 (|#1| |#1| |#1|)) (-15 -2961 (|#1| |#1| |#1|)))
+((-1354 (($ $ (-1092)) 12) (($ $ (-1013 $)) 11)) (-3125 (($ $ (-1092)) 10) (($ $ (-1013 $)) 9)) (-1922 (($ $ $) 8)) (-2389 (($ $) 14) (($ $ (-1092)) 13)) (-1606 (($ $) 7)) (-1494 (($ $ $) 6)))
(((-149) (-131)) (T -149))
-((-1243 (*1 *1 *1) (-4 *1 (-149))) (-1243 (*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1092)))) (-3291 (*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1092)))) (-3291 (*1 *1 *1 *2) (-12 (-5 *2 (-1013 *1)) (-4 *1 (-149)))) (-1683 (*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1092)))) (-1683 (*1 *1 *1 *2) (-12 (-5 *2 (-1013 *1)) (-4 *1 (-149)))))
-(-13 (-134) (-10 -8 (-15 -1243 ($ $)) (-15 -1243 ($ $ (-1092))) (-15 -3291 ($ $ (-1092))) (-15 -3291 ($ $ (-1013 $))) (-15 -1683 ($ $ (-1092))) (-15 -1683 ($ $ (-1013 $)))))
+((-2389 (*1 *1 *1) (-4 *1 (-149))) (-2389 (*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1092)))) (-1354 (*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1092)))) (-1354 (*1 *1 *1 *2) (-12 (-5 *2 (-1013 *1)) (-4 *1 (-149)))) (-3125 (*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1092)))) (-3125 (*1 *1 *1 *2) (-12 (-5 *2 (-1013 *1)) (-4 *1 (-149)))))
+(-13 (-134) (-10 -8 (-15 -2389 ($ $)) (-15 -2389 ($ $ (-1092))) (-15 -1354 ($ $ (-1092))) (-15 -1354 ($ $ (-1013 $))) (-15 -3125 ($ $ (-1092))) (-15 -3125 ($ $ (-1013 $)))))
(((-134) . T))
-((-4236 (((-108) $ $) NIL)) (-1635 (($ (-525)) 13) (($ $ $) 14)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 17)) (-3955 (((-108) $ $) 9)))
-(((-150) (-13 (-1020) (-10 -8 (-15 -1635 ($ (-525))) (-15 -1635 ($ $ $))))) (T -150))
-((-1635 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-150)))) (-1635 (*1 *1 *1 *1) (-5 *1 (-150))))
-(-13 (-1020) (-10 -8 (-15 -1635 ($ (-525))) (-15 -1635 ($ $ $))))
-((-3930 (((-110) (-1092)) 97)))
-(((-151) (-10 -7 (-15 -3930 ((-110) (-1092))))) (T -151))
-((-3930 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-110)) (-5 *1 (-151)))))
-(-10 -7 (-15 -3930 ((-110) (-1092))))
-((-3040 ((|#3| |#3|) 19)))
-(((-152 |#1| |#2| |#3|) (-10 -7 (-15 -3040 (|#3| |#3|))) (-977) (-1150 |#1|) (-1150 |#2|)) (T -152))
-((-3040 (*1 *2 *2) (-12 (-4 *3 (-977)) (-4 *4 (-1150 *3)) (-5 *1 (-152 *3 *4 *2)) (-4 *2 (-1150 *4)))))
-(-10 -7 (-15 -3040 (|#3| |#3|)))
-((-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 217)) (-2952 ((|#2| $) 96)) (-1575 (($ $) 245)) (-2804 (($ $) 239)) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 40)) (-1549 (($ $) 243)) (-2780 (($ $) 237)) (-3077 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-1572 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 139)) (-1747 (($ $ $) 222)) (-1994 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) 155) (((-632 |#2|) (-632 $)) 149)) (-1284 (($ (-1088 |#2|)) 119) (((-3 $ "failed") (-385 (-1088 |#2|))) NIL)) (-3457 (((-3 $ "failed") $) 209)) (-1514 (((-3 (-385 (-525)) "failed") $) 199)) (-3933 (((-108) $) 194)) (-3303 (((-385 (-525)) $) 197)) (-3622 (((-856)) 89)) (-1733 (($ $ $) 224)) (-1952 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-3140 (($) 234)) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 186) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 191)) (-2382 ((|#2| $) 94)) (-2126 (((-1088 |#2|) $) 121)) (-3165 (($ (-1 |#2| |#2|) $) 102)) (-1517 (($ $) 236)) (-1269 (((-1088 |#2|) $) 120)) (-2997 (($ $) 202)) (-1887 (($) 97)) (-3076 (((-396 (-1088 $)) (-1088 $)) 88)) (-4099 (((-396 (-1088 $)) (-1088 $)) 57)) (-1715 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-3096 (($ $) 235)) (-3684 (((-713) $) 219)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 229)) (-1975 ((|#2| (-1174 $)) NIL) ((|#2|) 91)) (-3376 (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-2756 (((-1088 |#2|)) 114)) (-1562 (($ $) 244)) (-2794 (($ $) 238)) (-2387 (((-1174 |#2|) $ (-1174 $)) 128) (((-632 |#2|) (-1174 $) (-1174 $)) NIL) (((-1174 |#2|) $) 110) (((-632 |#2|) (-1174 $)) NIL)) (-3210 (((-1174 |#2|) $) NIL) (($ (-1174 |#2|)) NIL) (((-1088 |#2|) $) NIL) (($ (-1088 |#2|)) NIL) (((-827 (-525)) $) 177) (((-827 (-357)) $) 181) (((-157 (-357)) $) 167) (((-157 (-205)) $) 162) (((-501) $) 173)) (-1499 (($ $) 98)) (-1217 (((-798) $) 138) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-385 (-525))) NIL) (($ $) NIL)) (-1304 (((-1088 |#2|) $) 23)) (-3917 (((-713)) 100)) (-1649 (($ $) 248)) (-1492 (($ $) 242)) (-1630 (($ $) 246)) (-1465 (($ $) 240)) (-2771 ((|#2| $) 233)) (-1639 (($ $) 247)) (-1479 (($ $) 241)) (-2802 (($ $) 157)) (-3955 (((-108) $ $) 104)) (-3978 (((-108) $ $) 193)) (-4061 (($ $) 106) (($ $ $) NIL)) (-4047 (($ $ $) 105)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-385 (-525))) 267) (($ $ $) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL)))
-(((-153 |#1| |#2|) (-10 -8 (-15 -3376 (|#1| |#1|)) (-15 -3376 (|#1| |#1| (-713))) (-15 -1217 (|#1| |#1|)) (-15 -1715 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2582 ((-2 (|:| -2841 |#1|) (|:| -4245 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -3684 ((-713) |#1|)) (-15 -2818 ((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|)) (-15 -1733 (|#1| |#1| |#1|)) (-15 -1747 (|#1| |#1| |#1|)) (-15 -2997 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -3978 ((-108) |#1| |#1|)) (-15 -3210 ((-501) |#1|)) (-15 -3210 ((-157 (-205)) |#1|)) (-15 -3210 ((-157 (-357)) |#1|)) (-15 -2804 (|#1| |#1|)) (-15 -2780 (|#1| |#1|)) (-15 -2794 (|#1| |#1|)) (-15 -1479 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1549 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -1630 (|#1| |#1|)) (-15 -1649 (|#1| |#1|)) (-15 -1517 (|#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3140 (|#1|)) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -4099 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3076 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -2969 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|))) (-15 -1514 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3303 ((-385 (-525)) |#1|)) (-15 -3933 ((-108) |#1|)) (-15 -1952 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2771 (|#2| |#1|)) (-15 -2802 (|#1| |#1|)) (-15 -1715 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1499 (|#1| |#1|)) (-15 -1887 (|#1|)) (-15 -3210 ((-827 (-357)) |#1|)) (-15 -3210 ((-827 (-525)) |#1|)) (-15 -2989 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -2989 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -3165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -1284 ((-3 |#1| "failed") (-385 (-1088 |#2|)))) (-15 -1269 ((-1088 |#2|) |#1|)) (-15 -3210 (|#1| (-1088 |#2|))) (-15 -1284 (|#1| (-1088 |#2|))) (-15 -2756 ((-1088 |#2|))) (-15 -1994 ((-632 |#2|) (-632 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-632 (-525)) (-632 |#1|))) (-15 -1572 (|#2| |#1|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-525) |#1|)) (-15 -3210 ((-1088 |#2|) |#1|)) (-15 -1975 (|#2|)) (-15 -3210 (|#1| (-1174 |#2|))) (-15 -3210 ((-1174 |#2|) |#1|)) (-15 -2387 ((-632 |#2|) (-1174 |#1|))) (-15 -2387 ((-1174 |#2|) |#1|)) (-15 -2126 ((-1088 |#2|) |#1|)) (-15 -1304 ((-1088 |#2|) |#1|)) (-15 -1975 (|#2| (-1174 |#1|))) (-15 -2387 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2387 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -2382 (|#2| |#1|)) (-15 -2952 (|#2| |#1|)) (-15 -3622 ((-856))) (-15 -1217 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1217 (|#1| (-525))) (-15 -3917 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 -3457 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-856))) (-15 * (|#1| (-525) |#1|)) (-15 -4061 (|#1| |#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -1217 ((-798) |#1|)) (-15 -3955 ((-108) |#1| |#1|))) (-154 |#2|) (-160)) (T -153))
-((-3917 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-153 *3 *4)) (-4 *3 (-154 *4)))) (-3622 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-856)) (-5 *1 (-153 *3 *4)) (-4 *3 (-154 *4)))) (-1975 (*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-153 *3 *2)) (-4 *3 (-154 *2)))) (-2756 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1088 *4)) (-5 *1 (-153 *3 *4)) (-4 *3 (-154 *4)))))
-(-10 -8 (-15 -3376 (|#1| |#1|)) (-15 -3376 (|#1| |#1| (-713))) (-15 -1217 (|#1| |#1|)) (-15 -1715 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2582 ((-2 (|:| -2841 |#1|) (|:| -4245 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -3684 ((-713) |#1|)) (-15 -2818 ((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|)) (-15 -1733 (|#1| |#1| |#1|)) (-15 -1747 (|#1| |#1| |#1|)) (-15 -2997 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -3978 ((-108) |#1| |#1|)) (-15 -3210 ((-501) |#1|)) (-15 -3210 ((-157 (-205)) |#1|)) (-15 -3210 ((-157 (-357)) |#1|)) (-15 -2804 (|#1| |#1|)) (-15 -2780 (|#1| |#1|)) (-15 -2794 (|#1| |#1|)) (-15 -1479 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1549 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -1630 (|#1| |#1|)) (-15 -1649 (|#1| |#1|)) (-15 -1517 (|#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3140 (|#1|)) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -4099 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3076 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -2969 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|))) (-15 -1514 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3303 ((-385 (-525)) |#1|)) (-15 -3933 ((-108) |#1|)) (-15 -1952 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2771 (|#2| |#1|)) (-15 -2802 (|#1| |#1|)) (-15 -1715 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1499 (|#1| |#1|)) (-15 -1887 (|#1|)) (-15 -3210 ((-827 (-357)) |#1|)) (-15 -3210 ((-827 (-525)) |#1|)) (-15 -2989 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -2989 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -3165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -1284 ((-3 |#1| "failed") (-385 (-1088 |#2|)))) (-15 -1269 ((-1088 |#2|) |#1|)) (-15 -3210 (|#1| (-1088 |#2|))) (-15 -1284 (|#1| (-1088 |#2|))) (-15 -2756 ((-1088 |#2|))) (-15 -1994 ((-632 |#2|) (-632 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-632 (-525)) (-632 |#1|))) (-15 -1572 (|#2| |#1|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-525) |#1|)) (-15 -3210 ((-1088 |#2|) |#1|)) (-15 -1975 (|#2|)) (-15 -3210 (|#1| (-1174 |#2|))) (-15 -3210 ((-1174 |#2|) |#1|)) (-15 -2387 ((-632 |#2|) (-1174 |#1|))) (-15 -2387 ((-1174 |#2|) |#1|)) (-15 -2126 ((-1088 |#2|) |#1|)) (-15 -1304 ((-1088 |#2|) |#1|)) (-15 -1975 (|#2| (-1174 |#1|))) (-15 -2387 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2387 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -2382 (|#2| |#1|)) (-15 -2952 (|#2| |#1|)) (-15 -3622 ((-856))) (-15 -1217 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1217 (|#1| (-525))) (-15 -3917 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 -3457 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-856))) (-15 * (|#1| (-525) |#1|)) (-15 -4061 (|#1| |#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -1217 ((-798) |#1|)) (-15 -3955 ((-108) |#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 93 (-3254 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-4218 (($ $) 94 (-3254 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-3171 (((-108) $) 96 (-3254 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-1627 (((-632 |#1|) (-1174 $)) 46) (((-632 |#1|)) 61)) (-2952 ((|#1| $) 52)) (-1575 (($ $) 228 (|has| |#1| (-1114)))) (-2804 (($ $) 211 (|has| |#1| (-1114)))) (-2971 (((-1102 (-856) (-713)) (-525)) 147 (|has| |#1| (-327)))) (-1578 (((-3 $ "failed") $ $) 19)) (-1448 (((-396 (-1088 $)) (-1088 $)) 242 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-1286 (($ $) 113 (-3254 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-2669 (((-396 $) $) 114 (-3254 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-2782 (($ $) 241 (-12 (|has| |#1| (-934)) (|has| |#1| (-1114))))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 245 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-2193 (((-108) $ $) 104 (|has| |#1| (-286)))) (-1834 (((-713)) 87 (|has| |#1| (-346)))) (-1549 (($ $) 227 (|has| |#1| (-1114)))) (-2780 (($ $) 212 (|has| |#1| (-1114)))) (-1599 (($ $) 226 (|has| |#1| (-1114)))) (-2836 (($ $) 213 (|has| |#1| (-1114)))) (-2169 (($) 17 T CONST)) (-3077 (((-3 (-525) "failed") $) 169 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 167 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 166)) (-1572 (((-525) $) 170 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 168 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 165)) (-2064 (($ (-1174 |#1|) (-1174 $)) 48) (($ (-1174 |#1|)) 64)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-327)))) (-1747 (($ $ $) 108 (|has| |#1| (-286)))) (-1906 (((-632 |#1|) $ (-1174 $)) 53) (((-632 |#1|) $) 59)) (-1994 (((-632 (-525)) (-632 $)) 164 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 163 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 162) (((-632 |#1|) (-632 $)) 161)) (-1284 (($ (-1088 |#1|)) 158) (((-3 $ "failed") (-385 (-1088 |#1|))) 155 (|has| |#1| (-341)))) (-3457 (((-3 $ "failed") $) 34)) (-2796 ((|#1| $) 253)) (-1514 (((-3 (-385 (-525)) "failed") $) 246 (|has| |#1| (-510)))) (-3933 (((-108) $) 248 (|has| |#1| (-510)))) (-3303 (((-385 (-525)) $) 247 (|has| |#1| (-510)))) (-3622 (((-856)) 54)) (-2502 (($) 90 (|has| |#1| (-346)))) (-1733 (($ $ $) 107 (|has| |#1| (-286)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 102 (|has| |#1| (-286)))) (-2574 (($) 149 (|has| |#1| (-327)))) (-3704 (((-108) $) 150 (|has| |#1| (-327)))) (-3625 (($ $ (-713)) 141 (|has| |#1| (-327))) (($ $) 140 (|has| |#1| (-327)))) (-3673 (((-108) $) 115 (-3254 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-1952 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-986)) (|has| |#1| (-1114))))) (-3140 (($) 238 (|has| |#1| (-1114)))) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 261 (|has| |#1| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 260 (|has| |#1| (-821 (-357))))) (-2581 (((-856) $) 152 (|has| |#1| (-327))) (((-775 (-856)) $) 138 (|has| |#1| (-327)))) (-1396 (((-108) $) 31)) (-2171 (($ $ (-525)) 240 (-12 (|has| |#1| (-934)) (|has| |#1| (-1114))))) (-2382 ((|#1| $) 51)) (-3844 (((-3 $ "failed") $) 142 (|has| |#1| (-327)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 111 (|has| |#1| (-286)))) (-2126 (((-1088 |#1|) $) 44 (|has| |#1| (-341)))) (-2638 (($ $ $) 207 (|has| |#1| (-789)))) (-3662 (($ $ $) 206 (|has| |#1| (-789)))) (-3165 (($ (-1 |#1| |#1|) $) 262)) (-3005 (((-856) $) 89 (|has| |#1| (-346)))) (-1517 (($ $) 235 (|has| |#1| (-1114)))) (-1269 (((-1088 |#1|) $) 156)) (-2556 (($ (-592 $)) 100 (-3254 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (($ $ $) 99 (-3254 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-2619 (((-1075) $) 9)) (-2997 (($ $) 116 (|has| |#1| (-341)))) (-2295 (($) 143 (|has| |#1| (-327)) CONST)) (-3555 (($ (-856)) 88 (|has| |#1| (-346)))) (-1887 (($) 257)) (-2806 ((|#1| $) 254)) (-2093 (((-1039) $) 10)) (-3409 (($) 160)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 101 (-3254 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-2589 (($ (-592 $)) 98 (-3254 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (($ $ $) 97 (-3254 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) 146 (|has| |#1| (-327)))) (-3076 (((-396 (-1088 $)) (-1088 $)) 244 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-4099 (((-396 (-1088 $)) (-1088 $)) 243 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-2770 (((-396 $) $) 112 (-3254 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-286))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 109 (|has| |#1| (-286)))) (-1715 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 92 (-3254 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 103 (|has| |#1| (-286)))) (-3096 (($ $) 236 (|has| |#1| (-1114)))) (-2457 (($ $ (-592 |#1|) (-592 |#1|)) 268 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 266 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 265 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) 264 (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) |#1|) 263 (|has| |#1| (-486 (-1092) |#1|)))) (-3684 (((-713) $) 105 (|has| |#1| (-286)))) (-3406 (($ $ |#1|) 269 (|has| |#1| (-265 |#1| |#1|)))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 106 (|has| |#1| (-286)))) (-1975 ((|#1| (-1174 $)) 47) ((|#1|) 60)) (-3877 (((-713) $) 151 (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) 139 (|has| |#1| (-327)))) (-3376 (($ $ (-1 |#1| |#1|) (-713)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-592 (-1092)) (-592 (-713))) 130 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 131 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 132 (|has| |#1| (-835 (-1092)))) (($ $ (-1092)) 133 (|has| |#1| (-835 (-1092)))) (($ $ (-713)) 135 (-3254 (-3762 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-3762 (|has| |#1| (-213)) (|has| |#1| (-341))))) (($ $) 137 (-3254 (-3762 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-3762 (|has| |#1| (-213)) (|has| |#1| (-341)))))) (-2725 (((-632 |#1|) (-1174 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-341)))) (-2756 (((-1088 |#1|)) 159)) (-1609 (($ $) 225 (|has| |#1| (-1114)))) (-1447 (($ $) 214 (|has| |#1| (-1114)))) (-2244 (($) 148 (|has| |#1| (-327)))) (-1587 (($ $) 224 (|has| |#1| (-1114)))) (-2815 (($ $) 215 (|has| |#1| (-1114)))) (-1562 (($ $) 223 (|has| |#1| (-1114)))) (-2794 (($ $) 216 (|has| |#1| (-1114)))) (-2387 (((-1174 |#1|) $ (-1174 $)) 50) (((-632 |#1|) (-1174 $) (-1174 $)) 49) (((-1174 |#1|) $) 66) (((-632 |#1|) (-1174 $)) 65)) (-3210 (((-1174 |#1|) $) 63) (($ (-1174 |#1|)) 62) (((-1088 |#1|) $) 171) (($ (-1088 |#1|)) 157) (((-827 (-525)) $) 259 (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) 258 (|has| |#1| (-567 (-827 (-357))))) (((-157 (-357)) $) 210 (|has| |#1| (-953))) (((-157 (-205)) $) 209 (|has| |#1| (-953))) (((-501) $) 208 (|has| |#1| (-567 (-501))))) (-1499 (($ $) 256)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) 145 (-3254 (-3762 (|has| $ (-136)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))) (|has| |#1| (-327))))) (-1466 (($ |#1| |#1|) 255)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ (-385 (-525))) 86 (-3254 (|has| |#1| (-341)) (|has| |#1| (-968 (-385 (-525)))))) (($ $) 91 (-3254 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-3637 (($ $) 144 (|has| |#1| (-327))) (((-3 $ "failed") $) 43 (-3254 (-3762 (|has| $ (-136)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))) (|has| |#1| (-136))))) (-1304 (((-1088 |#1|) $) 45)) (-3917 (((-713)) 29)) (-3094 (((-1174 $)) 67)) (-1649 (($ $) 234 (|has| |#1| (-1114)))) (-1492 (($ $) 222 (|has| |#1| (-1114)))) (-3325 (((-108) $ $) 95 (-3254 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-1630 (($ $) 233 (|has| |#1| (-1114)))) (-1465 (($ $) 221 (|has| |#1| (-1114)))) (-1669 (($ $) 232 (|has| |#1| (-1114)))) (-1522 (($ $) 220 (|has| |#1| (-1114)))) (-2771 ((|#1| $) 250 (|has| |#1| (-1114)))) (-2359 (($ $) 231 (|has| |#1| (-1114)))) (-1537 (($ $) 219 (|has| |#1| (-1114)))) (-1659 (($ $) 230 (|has| |#1| (-1114)))) (-1506 (($ $) 218 (|has| |#1| (-1114)))) (-1639 (($ $) 229 (|has| |#1| (-1114)))) (-1479 (($ $) 217 (|has| |#1| (-1114)))) (-2802 (($ $) 251 (|has| |#1| (-986)))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 117 (|has| |#1| (-341)))) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $ (-1 |#1| |#1|) (-713)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-592 (-1092)) (-592 (-713))) 126 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 127 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 128 (|has| |#1| (-835 (-1092)))) (($ $ (-1092)) 129 (|has| |#1| (-835 (-1092)))) (($ $ (-713)) 134 (-3254 (-3762 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-3762 (|has| |#1| (-213)) (|has| |#1| (-341))))) (($ $) 136 (-3254 (-3762 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-3762 (|has| |#1| (-213)) (|has| |#1| (-341)))))) (-4011 (((-108) $ $) 204 (|has| |#1| (-789)))) (-3987 (((-108) $ $) 203 (|has| |#1| (-789)))) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 205 (|has| |#1| (-789)))) (-3978 (((-108) $ $) 202 (|has| |#1| (-789)))) (-4075 (($ $ $) 121 (|has| |#1| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-385 (-525))) 239 (-12 (|has| |#1| (-934)) (|has| |#1| (-1114)))) (($ $ $) 237 (|has| |#1| (-1114))) (($ $ (-525)) 118 (|has| |#1| (-341)))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-385 (-525)) $) 120 (|has| |#1| (-341))) (($ $ (-385 (-525))) 119 (|has| |#1| (-341)))))
+((-4087 (((-108) $ $) NIL)) (-3923 (($ (-525)) 13) (($ $ $) 14)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 17)) (-2775 (((-108) $ $) 9)))
+(((-150) (-13 (-1020) (-10 -8 (-15 -3923 ($ (-525))) (-15 -3923 ($ $ $))))) (T -150))
+((-3923 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-150)))) (-3923 (*1 *1 *1 *1) (-5 *1 (-150))))
+(-13 (-1020) (-10 -8 (-15 -3923 ($ (-525))) (-15 -3923 ($ $ $))))
+((-1386 (((-110) (-1092)) 97)))
+(((-151) (-10 -7 (-15 -1386 ((-110) (-1092))))) (T -151))
+((-1386 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-110)) (-5 *1 (-151)))))
+(-10 -7 (-15 -1386 ((-110) (-1092))))
+((-2788 ((|#3| |#3|) 19)))
+(((-152 |#1| |#2| |#3|) (-10 -7 (-15 -2788 (|#3| |#3|))) (-977) (-1150 |#1|) (-1150 |#2|)) (T -152))
+((-2788 (*1 *2 *2) (-12 (-4 *3 (-977)) (-4 *4 (-1150 *3)) (-5 *1 (-152 *3 *4 *2)) (-4 *2 (-1150 *4)))))
+(-10 -7 (-15 -2788 (|#3| |#3|)))
+((-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 217)) (-2924 ((|#2| $) 96)) (-1803 (($ $) 245)) (-3659 (($ $) 239)) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 40)) (-1781 (($ $) 243)) (-3638 (($ $) 237)) (-1934 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-4105 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 139)) (-1356 (($ $ $) 222)) (-3090 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) 155) (((-632 |#2|) (-632 $)) 149)) (-3504 (($ (-1088 |#2|)) 119) (((-3 $ "failed") (-385 (-1088 |#2|))) NIL)) (-3300 (((-3 $ "failed") $) 209)) (-3306 (((-3 (-385 (-525)) "failed") $) 199)) (-1417 (((-108) $) 194)) (-1367 (((-385 (-525)) $) 197)) (-3085 (((-856)) 89)) (-1332 (($ $ $) 224)) (-3861 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-4106 (($) 234)) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 186) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 191)) (-2704 ((|#2| $) 94)) (-2021 (((-1088 |#2|) $) 121)) (-2016 (($ (-1 |#2| |#2|) $) 102)) (-2533 (($ $) 236)) (-3492 (((-1088 |#2|) $) 120)) (-1387 (($ $) 202)) (-1409 (($) 97)) (-3089 (((-396 (-1088 $)) (-1088 $)) 88)) (-3644 (((-396 (-1088 $)) (-1088 $)) 57)) (-1311 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-1618 (($ $) 235)) (-1927 (((-713) $) 219)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 229)) (-4115 ((|#2| (-1174 $)) NIL) ((|#2|) 91)) (-2702 (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-2013 (((-1088 |#2|)) 114)) (-1792 (($ $) 244)) (-3649 (($ $) 238)) (-2754 (((-1174 |#2|) $ (-1174 $)) 128) (((-632 |#2|) (-1174 $) (-1174 $)) NIL) (((-1174 |#2|) $) 110) (((-632 |#2|) (-1174 $)) NIL)) (-2069 (((-1174 |#2|) $) NIL) (($ (-1174 |#2|)) NIL) (((-1088 |#2|) $) NIL) (($ (-1088 |#2|)) NIL) (((-827 (-525)) $) 177) (((-827 (-357)) $) 181) (((-157 (-357)) $) 167) (((-157 (-205)) $) 162) (((-501) $) 173)) (-3055 (($ $) 98)) (-4100 (((-798) $) 138) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-385 (-525))) NIL) (($ $) NIL)) (-3153 (((-1088 |#2|) $) 23)) (-2448 (((-713)) 100)) (-1876 (($ $) 248)) (-3853 (($ $) 242)) (-1853 (($ $) 246)) (-3808 (($ $) 240)) (-2136 ((|#2| $) 233)) (-1866 (($ $) 247)) (-3820 (($ $) 241)) (-2380 (($ $) 157)) (-2775 (((-108) $ $) 104)) (-2795 (((-108) $ $) 193)) (-2871 (($ $) 106) (($ $ $) NIL)) (-2860 (($ $ $) 105)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-385 (-525))) 267) (($ $ $) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL)))
+(((-153 |#1| |#2|) (-10 -8 (-15 -2702 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-713))) (-15 -4100 (|#1| |#1|)) (-15 -1311 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4011 ((-2 (|:| -1509 |#1|) (|:| -4246 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -1927 ((-713) |#1|)) (-15 -2494 ((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|)) (-15 -1332 (|#1| |#1| |#1|)) (-15 -1356 (|#1| |#1| |#1|)) (-15 -1387 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -2795 ((-108) |#1| |#1|)) (-15 -2069 ((-501) |#1|)) (-15 -2069 ((-157 (-205)) |#1|)) (-15 -2069 ((-157 (-357)) |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3649 (|#1| |#1|)) (-15 -3820 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -1792 (|#1| |#1|)) (-15 -1781 (|#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -1866 (|#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -2533 (|#1| |#1|)) (-15 -1618 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4106 (|#1|)) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -3644 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3089 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3373 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|))) (-15 -3306 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1367 ((-385 (-525)) |#1|)) (-15 -1417 ((-108) |#1|)) (-15 -3861 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2136 (|#2| |#1|)) (-15 -2380 (|#1| |#1|)) (-15 -1311 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3055 (|#1| |#1|)) (-15 -1409 (|#1|)) (-15 -2069 ((-827 (-357)) |#1|)) (-15 -2069 ((-827 (-525)) |#1|)) (-15 -3552 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -3552 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -2016 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3504 ((-3 |#1| "failed") (-385 (-1088 |#2|)))) (-15 -3492 ((-1088 |#2|) |#1|)) (-15 -2069 (|#1| (-1088 |#2|))) (-15 -3504 (|#1| (-1088 |#2|))) (-15 -2013 ((-1088 |#2|))) (-15 -3090 ((-632 |#2|) (-632 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-632 (-525)) (-632 |#1|))) (-15 -4105 (|#2| |#1|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-525) |#1|)) (-15 -2069 ((-1088 |#2|) |#1|)) (-15 -4115 (|#2|)) (-15 -2069 (|#1| (-1174 |#2|))) (-15 -2069 ((-1174 |#2|) |#1|)) (-15 -2754 ((-632 |#2|) (-1174 |#1|))) (-15 -2754 ((-1174 |#2|) |#1|)) (-15 -2021 ((-1088 |#2|) |#1|)) (-15 -3153 ((-1088 |#2|) |#1|)) (-15 -4115 (|#2| (-1174 |#1|))) (-15 -2754 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2754 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -2704 (|#2| |#1|)) (-15 -2924 (|#2| |#1|)) (-15 -3085 ((-856))) (-15 -4100 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4100 (|#1| (-525))) (-15 -2448 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 -3300 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-856))) (-15 * (|#1| (-525) |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -4100 ((-798) |#1|)) (-15 -2775 ((-108) |#1| |#1|))) (-154 |#2|) (-160)) (T -153))
+((-2448 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-153 *3 *4)) (-4 *3 (-154 *4)))) (-3085 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-856)) (-5 *1 (-153 *3 *4)) (-4 *3 (-154 *4)))) (-4115 (*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-153 *3 *2)) (-4 *3 (-154 *2)))) (-2013 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1088 *4)) (-5 *1 (-153 *3 *4)) (-4 *3 (-154 *4)))))
+(-10 -8 (-15 -2702 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-713))) (-15 -4100 (|#1| |#1|)) (-15 -1311 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4011 ((-2 (|:| -1509 |#1|) (|:| -4246 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -1927 ((-713) |#1|)) (-15 -2494 ((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|)) (-15 -1332 (|#1| |#1| |#1|)) (-15 -1356 (|#1| |#1| |#1|)) (-15 -1387 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -2795 ((-108) |#1| |#1|)) (-15 -2069 ((-501) |#1|)) (-15 -2069 ((-157 (-205)) |#1|)) (-15 -2069 ((-157 (-357)) |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3649 (|#1| |#1|)) (-15 -3820 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -1792 (|#1| |#1|)) (-15 -1781 (|#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -1866 (|#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -2533 (|#1| |#1|)) (-15 -1618 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4106 (|#1|)) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -3644 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3089 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3373 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|))) (-15 -3306 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1367 ((-385 (-525)) |#1|)) (-15 -1417 ((-108) |#1|)) (-15 -3861 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2136 (|#2| |#1|)) (-15 -2380 (|#1| |#1|)) (-15 -1311 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3055 (|#1| |#1|)) (-15 -1409 (|#1|)) (-15 -2069 ((-827 (-357)) |#1|)) (-15 -2069 ((-827 (-525)) |#1|)) (-15 -3552 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -3552 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -2016 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3504 ((-3 |#1| "failed") (-385 (-1088 |#2|)))) (-15 -3492 ((-1088 |#2|) |#1|)) (-15 -2069 (|#1| (-1088 |#2|))) (-15 -3504 (|#1| (-1088 |#2|))) (-15 -2013 ((-1088 |#2|))) (-15 -3090 ((-632 |#2|) (-632 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-632 (-525)) (-632 |#1|))) (-15 -4105 (|#2| |#1|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-525) |#1|)) (-15 -2069 ((-1088 |#2|) |#1|)) (-15 -4115 (|#2|)) (-15 -2069 (|#1| (-1174 |#2|))) (-15 -2069 ((-1174 |#2|) |#1|)) (-15 -2754 ((-632 |#2|) (-1174 |#1|))) (-15 -2754 ((-1174 |#2|) |#1|)) (-15 -2021 ((-1088 |#2|) |#1|)) (-15 -3153 ((-1088 |#2|) |#1|)) (-15 -4115 (|#2| (-1174 |#1|))) (-15 -2754 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2754 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -2704 (|#2| |#1|)) (-15 -2924 (|#2| |#1|)) (-15 -3085 ((-856))) (-15 -4100 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4100 (|#1| (-525))) (-15 -2448 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 -3300 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-856))) (-15 * (|#1| (-525) |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -4100 ((-798) |#1|)) (-15 -2775 ((-108) |#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 93 (-2067 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-2433 (($ $) 94 (-2067 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-1568 (((-108) $) 96 (-2067 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-3855 (((-632 |#1|) (-1174 $)) 46) (((-632 |#1|)) 61)) (-2924 ((|#1| $) 52)) (-1803 (($ $) 228 (|has| |#1| (-1114)))) (-3659 (($ $) 211 (|has| |#1| (-1114)))) (-3395 (((-1102 (-856) (-713)) (-525)) 147 (|has| |#1| (-327)))) (-3222 (((-3 $ "failed") $ $) 19)) (-2426 (((-396 (-1088 $)) (-1088 $)) 242 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-4195 (($ $) 113 (-2067 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-3586 (((-396 $) $) 114 (-2067 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-4211 (($ $) 241 (-12 (|has| |#1| (-934)) (|has| |#1| (-1114))))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 245 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-1507 (((-108) $ $) 104 (|has| |#1| (-286)))) (-1613 (((-713)) 87 (|has| |#1| (-346)))) (-1781 (($ $) 227 (|has| |#1| (-1114)))) (-3638 (($ $) 212 (|has| |#1| (-1114)))) (-1828 (($ $) 226 (|has| |#1| (-1114)))) (-3698 (($ $) 213 (|has| |#1| (-1114)))) (-2475 (($) 17 T CONST)) (-1934 (((-3 (-525) "failed") $) 169 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 167 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 166)) (-4105 (((-525) $) 170 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 168 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 165)) (-2580 (($ (-1174 |#1|) (-1174 $)) 48) (($ (-1174 |#1|)) 64)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-327)))) (-1356 (($ $ $) 108 (|has| |#1| (-286)))) (-1588 (((-632 |#1|) $ (-1174 $)) 53) (((-632 |#1|) $) 59)) (-3090 (((-632 (-525)) (-632 $)) 164 (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 163 (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 162) (((-632 |#1|) (-632 $)) 161)) (-3504 (($ (-1088 |#1|)) 158) (((-3 $ "failed") (-385 (-1088 |#1|))) 155 (|has| |#1| (-341)))) (-3300 (((-3 $ "failed") $) 34)) (-4220 ((|#1| $) 253)) (-3306 (((-3 (-385 (-525)) "failed") $) 246 (|has| |#1| (-510)))) (-1417 (((-108) $) 248 (|has| |#1| (-510)))) (-1367 (((-385 (-525)) $) 247 (|has| |#1| (-510)))) (-3085 (((-856)) 54)) (-1903 (($) 90 (|has| |#1| (-346)))) (-1332 (($ $ $) 107 (|has| |#1| (-286)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 102 (|has| |#1| (-286)))) (-3932 (($) 149 (|has| |#1| (-327)))) (-3920 (((-108) $) 150 (|has| |#1| (-327)))) (-1339 (($ $ (-713)) 141 (|has| |#1| (-327))) (($ $) 140 (|has| |#1| (-327)))) (-1798 (((-108) $) 115 (-2067 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-3861 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-986)) (|has| |#1| (-1114))))) (-4106 (($) 238 (|has| |#1| (-1114)))) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 261 (|has| |#1| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 260 (|has| |#1| (-821 (-357))))) (-4000 (((-856) $) 152 (|has| |#1| (-327))) (((-775 (-856)) $) 138 (|has| |#1| (-327)))) (-2278 (((-108) $) 31)) (-1303 (($ $ (-525)) 240 (-12 (|has| |#1| (-934)) (|has| |#1| (-1114))))) (-2704 ((|#1| $) 51)) (-2878 (((-3 $ "failed") $) 142 (|has| |#1| (-327)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 111 (|has| |#1| (-286)))) (-2021 (((-1088 |#1|) $) 44 (|has| |#1| (-341)))) (-3033 (($ $ $) 207 (|has| |#1| (-789)))) (-1609 (($ $ $) 206 (|has| |#1| (-789)))) (-2016 (($ (-1 |#1| |#1|) $) 262)) (-3685 (((-856) $) 89 (|has| |#1| (-346)))) (-2533 (($ $) 235 (|has| |#1| (-1114)))) (-3492 (((-1088 |#1|) $) 156)) (-2739 (($ (-592 $)) 100 (-2067 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (($ $ $) 99 (-2067 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-1289 (((-1075) $) 9)) (-1387 (($ $) 116 (|has| |#1| (-341)))) (-2948 (($) 143 (|has| |#1| (-327)) CONST)) (-1722 (($ (-856)) 88 (|has| |#1| (-346)))) (-1409 (($) 257)) (-4233 ((|#1| $) 254)) (-3993 (((-1039) $) 10)) (-3817 (($) 160)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 101 (-2067 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-2772 (($ (-592 $)) 98 (-2067 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (($ $ $) 97 (-2067 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) 146 (|has| |#1| (-327)))) (-3089 (((-396 (-1088 $)) (-1088 $)) 244 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-3644 (((-396 (-1088 $)) (-1088 $)) 243 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-4201 (((-396 $) $) 112 (-2067 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-286))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 109 (|has| |#1| (-286)))) (-1311 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 92 (-2067 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 103 (|has| |#1| (-286)))) (-1618 (($ $) 236 (|has| |#1| (-1114)))) (-2825 (($ $ (-592 |#1|) (-592 |#1|)) 268 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 266 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 265 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) 264 (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) |#1|) 263 (|has| |#1| (-486 (-1092) |#1|)))) (-1927 (((-713) $) 105 (|has| |#1| (-286)))) (-3431 (($ $ |#1|) 269 (|has| |#1| (-265 |#1| |#1|)))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 106 (|has| |#1| (-286)))) (-4115 ((|#1| (-1174 $)) 47) ((|#1|) 60)) (-2043 (((-713) $) 151 (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) 139 (|has| |#1| (-327)))) (-2702 (($ $ (-1 |#1| |#1|) (-713)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-592 (-1092)) (-592 (-713))) 130 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 131 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 132 (|has| |#1| (-835 (-1092)))) (($ $ (-1092)) 133 (|has| |#1| (-835 (-1092)))) (($ $ (-713)) 135 (-2067 (-3944 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-3944 (|has| |#1| (-213)) (|has| |#1| (-341))))) (($ $) 137 (-2067 (-3944 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-3944 (|has| |#1| (-213)) (|has| |#1| (-341)))))) (-2897 (((-632 |#1|) (-1174 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-341)))) (-2013 (((-1088 |#1|)) 159)) (-1841 (($ $) 225 (|has| |#1| (-1114)))) (-3798 (($ $) 214 (|has| |#1| (-1114)))) (-3823 (($) 148 (|has| |#1| (-327)))) (-1816 (($ $) 224 (|has| |#1| (-1114)))) (-3678 (($ $) 215 (|has| |#1| (-1114)))) (-1792 (($ $) 223 (|has| |#1| (-1114)))) (-3649 (($ $) 216 (|has| |#1| (-1114)))) (-2754 (((-1174 |#1|) $ (-1174 $)) 50) (((-632 |#1|) (-1174 $) (-1174 $)) 49) (((-1174 |#1|) $) 66) (((-632 |#1|) (-1174 $)) 65)) (-2069 (((-1174 |#1|) $) 63) (($ (-1174 |#1|)) 62) (((-1088 |#1|) $) 171) (($ (-1088 |#1|)) 157) (((-827 (-525)) $) 259 (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) 258 (|has| |#1| (-567 (-827 (-357))))) (((-157 (-357)) $) 210 (|has| |#1| (-953))) (((-157 (-205)) $) 209 (|has| |#1| (-953))) (((-501) $) 208 (|has| |#1| (-567 (-501))))) (-3055 (($ $) 256)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) 145 (-2067 (-3944 (|has| $ (-136)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))) (|has| |#1| (-327))))) (-1496 (($ |#1| |#1|) 255)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ (-385 (-525))) 86 (-2067 (|has| |#1| (-341)) (|has| |#1| (-968 (-385 (-525)))))) (($ $) 91 (-2067 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-1463 (($ $) 144 (|has| |#1| (-327))) (((-3 $ "failed") $) 43 (-2067 (-3944 (|has| $ (-136)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))) (|has| |#1| (-136))))) (-3153 (((-1088 |#1|) $) 45)) (-2448 (((-713)) 29)) (-2103 (((-1174 $)) 67)) (-1876 (($ $) 234 (|has| |#1| (-1114)))) (-3853 (($ $) 222 (|has| |#1| (-1114)))) (-1571 (((-108) $ $) 95 (-2067 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-1853 (($ $) 233 (|has| |#1| (-1114)))) (-3808 (($ $) 221 (|has| |#1| (-1114)))) (-1902 (($ $) 232 (|has| |#1| (-1114)))) (-1760 (($ $) 220 (|has| |#1| (-1114)))) (-2136 ((|#1| $) 250 (|has| |#1| (-1114)))) (-3135 (($ $) 231 (|has| |#1| (-1114)))) (-1770 (($ $) 219 (|has| |#1| (-1114)))) (-1891 (($ $) 230 (|has| |#1| (-1114)))) (-1748 (($ $) 218 (|has| |#1| (-1114)))) (-1866 (($ $) 229 (|has| |#1| (-1114)))) (-3820 (($ $) 217 (|has| |#1| (-1114)))) (-2380 (($ $) 251 (|has| |#1| (-986)))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 117 (|has| |#1| (-341)))) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $ (-1 |#1| |#1|) (-713)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-592 (-1092)) (-592 (-713))) 126 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 127 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 128 (|has| |#1| (-835 (-1092)))) (($ $ (-1092)) 129 (|has| |#1| (-835 (-1092)))) (($ $ (-713)) 134 (-2067 (-3944 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-3944 (|has| |#1| (-213)) (|has| |#1| (-341))))) (($ $) 136 (-2067 (-3944 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-3944 (|has| |#1| (-213)) (|has| |#1| (-341)))))) (-2830 (((-108) $ $) 204 (|has| |#1| (-789)))) (-2807 (((-108) $ $) 203 (|has| |#1| (-789)))) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 205 (|has| |#1| (-789)))) (-2795 (((-108) $ $) 202 (|has| |#1| (-789)))) (-2880 (($ $ $) 121 (|has| |#1| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-385 (-525))) 239 (-12 (|has| |#1| (-934)) (|has| |#1| (-1114)))) (($ $ $) 237 (|has| |#1| (-1114))) (($ $ (-525)) 118 (|has| |#1| (-341)))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-385 (-525)) $) 120 (|has| |#1| (-341))) (($ $ (-385 (-525))) 119 (|has| |#1| (-341)))))
(((-154 |#1|) (-131) (-160)) (T -154))
-((-2382 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-1887 (*1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-1499 (*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-1466 (*1 *1 *2 *2) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-2806 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-2796 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-1715 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-2802 (*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-986)))) (-2771 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-1114)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-986)) (-4 *3 (-1114)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-1514 (*1 *2 *1) (|partial| -12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))))
-(-13 (-667 |t#1| (-1088 |t#1|)) (-389 |t#1|) (-211 |t#1|) (-316 |t#1|) (-378 |t#1|) (-819 |t#1|) (-355 |t#1|) (-160) (-10 -8 (-6 -1466) (-15 -1887 ($)) (-15 -1499 ($ $)) (-15 -1466 ($ |t#1| |t#1|)) (-15 -2806 (|t#1| $)) (-15 -2796 (|t#1| $)) (-15 -2382 (|t#1| $)) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-6 (-517)) (-15 -1715 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-286)) (-6 (-286)) |%noBranch|) (IF (|has| |t#1| (-6 -4257)) (-6 -4257) |%noBranch|) (IF (|has| |t#1| (-6 -4254)) (-6 -4254) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-953)) (PROGN (-6 (-567 (-157 (-205)))) (-6 (-567 (-157 (-357))))) |%noBranch|) (IF (|has| |t#1| (-986)) (-15 -2802 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1114)) (PROGN (-6 (-1114)) (-15 -2771 (|t#1| $)) (IF (|has| |t#1| (-934)) (-6 (-934)) |%noBranch|) (IF (|has| |t#1| (-986)) (-15 -1952 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -3933 ((-108) $)) (-15 -3303 ((-385 (-525)) $)) (-15 -1514 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-844)) (IF (|has| |t#1| (-286)) (-6 (-844)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-37 |#1|) . T) ((-37 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-34) |has| |#1| (-1114)) ((-91) |has| |#1| (-1114)) ((-97) . T) ((-107 #0# #0#) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3254 (|has| |#1| (-327)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) . T) ((-567 (-157 (-205))) |has| |#1| (-953)) ((-567 (-157 (-357))) |has| |#1| (-953)) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-827 (-357))) |has| |#1| (-567 (-827 (-357)))) ((-567 (-827 (-525))) |has| |#1| (-567 (-827 (-525)))) ((-567 #1=(-1088 |#1|)) . T) ((-211 |#1|) . T) ((-213) -3254 (|has| |#1| (-327)) (|has| |#1| (-213))) ((-223) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-263) |has| |#1| (-1114)) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-269) -3254 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-286) -3254 (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-341) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-380) |has| |#1| (-327)) ((-346) -3254 (|has| |#1| (-346)) (|has| |#1| (-327))) ((-327) |has| |#1| (-327)) ((-348 |#1| #1#) . T) ((-387 |#1| #1#) . T) ((-316 |#1|) . T) ((-355 |#1|) . T) ((-378 |#1|) . T) ((-389 |#1|) . T) ((-429) -3254 (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-466) |has| |#1| (-1114)) ((-486 (-1092) |#1|) |has| |#1| (-486 (-1092) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-517) -3254 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-594 #0#) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-660 |#1|) . T) ((-660 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-667 |#1| #1#) . T) ((-669) . T) ((-789) |has| |#1| (-789)) ((-835 (-1092)) |has| |#1| (-835 (-1092))) ((-821 (-357)) |has| |#1| (-821 (-357))) ((-821 (-525)) |has| |#1| (-821 (-525))) ((-819 |#1|) . T) ((-844) -12 (|has| |#1| (-286)) (|has| |#1| (-844))) ((-855) -3254 (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-934) -12 (|has| |#1| (-934)) (|has| |#1| (-1114))) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-983 #0#) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-983 |#1|) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1068) |has| |#1| (-327)) ((-1114) |has| |#1| (-1114)) ((-1117) |has| |#1| (-1114)) ((-1128) . T) ((-1132) -3254 (|has| |#1| (-327)) (|has| |#1| (-341)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))
-((-2770 (((-396 |#2|) |#2|) 63)))
-(((-155 |#1| |#2|) (-10 -7 (-15 -2770 ((-396 |#2|) |#2|))) (-286) (-1150 (-157 |#1|))) (T -155))
-((-2770 (*1 *2 *3) (-12 (-4 *4 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1150 (-157 *4))))))
-(-10 -7 (-15 -2770 ((-396 |#2|) |#2|)))
-((-3165 (((-157 |#2|) (-1 |#2| |#1|) (-157 |#1|)) 14)))
-(((-156 |#1| |#2|) (-10 -7 (-15 -3165 ((-157 |#2|) (-1 |#2| |#1|) (-157 |#1|)))) (-160) (-160)) (T -156))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-157 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-5 *2 (-157 *6)) (-5 *1 (-156 *5 *6)))))
-(-10 -7 (-15 -3165 ((-157 |#2|) (-1 |#2| |#1|) (-157 |#1|))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 33)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (-3254 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-517))))) (-4218 (($ $) NIL (-3254 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-517))))) (-3171 (((-108) $) NIL (-3254 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-517))))) (-1627 (((-632 |#1|) (-1174 $)) NIL) (((-632 |#1|)) NIL)) (-2952 ((|#1| $) NIL)) (-1575 (($ $) NIL (|has| |#1| (-1114)))) (-2804 (($ $) NIL (|has| |#1| (-1114)))) (-2971 (((-1102 (-856) (-713)) (-525)) NIL (|has| |#1| (-327)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-1286 (($ $) NIL (-3254 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-2669 (((-396 $) $) NIL (-3254 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-2782 (($ $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-1114))))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-2193 (((-108) $ $) NIL (|has| |#1| (-286)))) (-1834 (((-713)) NIL (|has| |#1| (-346)))) (-1549 (($ $) NIL (|has| |#1| (-1114)))) (-2780 (($ $) NIL (|has| |#1| (-1114)))) (-1599 (($ $) NIL (|has| |#1| (-1114)))) (-2836 (($ $) NIL (|has| |#1| (-1114)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-1572 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-2064 (($ (-1174 |#1|) (-1174 $)) NIL) (($ (-1174 |#1|)) NIL)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-327)))) (-1747 (($ $ $) NIL (|has| |#1| (-286)))) (-1906 (((-632 |#1|) $ (-1174 $)) NIL) (((-632 |#1|) $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-1284 (($ (-1088 |#1|)) NIL) (((-3 $ "failed") (-385 (-1088 |#1|))) NIL (|has| |#1| (-341)))) (-3457 (((-3 $ "failed") $) NIL)) (-2796 ((|#1| $) 13)) (-1514 (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-510)))) (-3933 (((-108) $) NIL (|has| |#1| (-510)))) (-3303 (((-385 (-525)) $) NIL (|has| |#1| (-510)))) (-3622 (((-856)) NIL)) (-2502 (($) NIL (|has| |#1| (-346)))) (-1733 (($ $ $) NIL (|has| |#1| (-286)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| |#1| (-286)))) (-2574 (($) NIL (|has| |#1| (-327)))) (-3704 (((-108) $) NIL (|has| |#1| (-327)))) (-3625 (($ $ (-713)) NIL (|has| |#1| (-327))) (($ $) NIL (|has| |#1| (-327)))) (-3673 (((-108) $) NIL (-3254 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-1952 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-986)) (|has| |#1| (-1114))))) (-3140 (($) NIL (|has| |#1| (-1114)))) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| |#1| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| |#1| (-821 (-357))))) (-2581 (((-856) $) NIL (|has| |#1| (-327))) (((-775 (-856)) $) NIL (|has| |#1| (-327)))) (-1396 (((-108) $) 35)) (-2171 (($ $ (-525)) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-1114))))) (-2382 ((|#1| $) 46)) (-3844 (((-3 $ "failed") $) NIL (|has| |#1| (-327)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-286)))) (-2126 (((-1088 |#1|) $) NIL (|has| |#1| (-341)))) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-3005 (((-856) $) NIL (|has| |#1| (-346)))) (-1517 (($ $) NIL (|has| |#1| (-1114)))) (-1269 (((-1088 |#1|) $) NIL)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-286))) (($ $ $) NIL (|has| |#1| (-286)))) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL (|has| |#1| (-341)))) (-2295 (($) NIL (|has| |#1| (-327)) CONST)) (-3555 (($ (-856)) NIL (|has| |#1| (-346)))) (-1887 (($) NIL)) (-2806 ((|#1| $) 15)) (-2093 (((-1039) $) NIL)) (-3409 (($) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-286)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-286))) (($ $ $) NIL (|has| |#1| (-286)))) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) NIL (|has| |#1| (-327)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-2770 (((-396 $) $) NIL (-3254 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-286))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-286)))) (-1715 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 47 (-3254 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-517))))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-286)))) (-3096 (($ $) NIL (|has| |#1| (-1114)))) (-2457 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) |#1|) NIL (|has| |#1| (-486 (-1092) |#1|)))) (-3684 (((-713) $) NIL (|has| |#1| (-286)))) (-3406 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-286)))) (-1975 ((|#1| (-1174 $)) NIL) ((|#1|) NIL)) (-3877 (((-713) $) NIL (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) NIL (|has| |#1| (-327)))) (-3376 (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-2725 (((-632 |#1|) (-1174 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-2756 (((-1088 |#1|)) NIL)) (-1609 (($ $) NIL (|has| |#1| (-1114)))) (-1447 (($ $) NIL (|has| |#1| (-1114)))) (-2244 (($) NIL (|has| |#1| (-327)))) (-1587 (($ $) NIL (|has| |#1| (-1114)))) (-2815 (($ $) NIL (|has| |#1| (-1114)))) (-1562 (($ $) NIL (|has| |#1| (-1114)))) (-2794 (($ $) NIL (|has| |#1| (-1114)))) (-2387 (((-1174 |#1|) $ (-1174 $)) NIL) (((-632 |#1|) (-1174 $) (-1174 $)) NIL) (((-1174 |#1|) $) NIL) (((-632 |#1|) (-1174 $)) NIL)) (-3210 (((-1174 |#1|) $) NIL) (($ (-1174 |#1|)) NIL) (((-1088 |#1|) $) NIL) (($ (-1088 |#1|)) NIL) (((-827 (-525)) $) NIL (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| |#1| (-567 (-827 (-357))))) (((-157 (-357)) $) NIL (|has| |#1| (-953))) (((-157 (-205)) $) NIL (|has| |#1| (-953))) (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1499 (($ $) 45)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-3254 (-12 (|has| $ (-136)) (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-327))))) (-1466 (($ |#1| |#1|) 37)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) 36) (($ (-385 (-525))) NIL (-3254 (|has| |#1| (-341)) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (-3254 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-517))))) (-3637 (($ $) NIL (|has| |#1| (-327))) (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-1304 (((-1088 |#1|) $) NIL)) (-3917 (((-713)) NIL)) (-3094 (((-1174 $)) NIL)) (-1649 (($ $) NIL (|has| |#1| (-1114)))) (-1492 (($ $) NIL (|has| |#1| (-1114)))) (-3325 (((-108) $ $) NIL (-3254 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-517))))) (-1630 (($ $) NIL (|has| |#1| (-1114)))) (-1465 (($ $) NIL (|has| |#1| (-1114)))) (-1669 (($ $) NIL (|has| |#1| (-1114)))) (-1522 (($ $) NIL (|has| |#1| (-1114)))) (-2771 ((|#1| $) NIL (|has| |#1| (-1114)))) (-2359 (($ $) NIL (|has| |#1| (-1114)))) (-1537 (($ $) NIL (|has| |#1| (-1114)))) (-1659 (($ $) NIL (|has| |#1| (-1114)))) (-1506 (($ $) NIL (|has| |#1| (-1114)))) (-1639 (($ $) NIL (|has| |#1| (-1114)))) (-1479 (($ $) NIL (|has| |#1| (-1114)))) (-2802 (($ $) NIL (|has| |#1| (-986)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3349 (($) 28 T CONST)) (-3359 (($) 30 T CONST)) (-1388 (((-1075) $) 23 (|has| |#1| (-770))) (((-1075) $ (-108)) 25 (|has| |#1| (-770))) (((-1179) (-764) $) 26 (|has| |#1| (-770))) (((-1179) (-764) $ (-108)) 27 (|has| |#1| (-770)))) (-2022 (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4075 (($ $ $) NIL (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) 39)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-385 (-525))) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-1114)))) (($ $ $) NIL (|has| |#1| (-1114))) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-341))) (($ $ (-385 (-525))) NIL (|has| |#1| (-341)))))
+((-2704 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-1409 (*1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-3055 (*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-1496 (*1 *1 *2 *2) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-4233 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-4220 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-1311 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-2380 (*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-986)))) (-2136 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-1114)))) (-3861 (*1 *2 *1) (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-986)) (-4 *3 (-1114)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1417 (*1 *2 *1) (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) (-1367 (*1 *2 *1) (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-3306 (*1 *2 *1) (|partial| -12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))))
+(-13 (-667 |t#1| (-1088 |t#1|)) (-389 |t#1|) (-211 |t#1|) (-316 |t#1|) (-378 |t#1|) (-819 |t#1|) (-355 |t#1|) (-160) (-10 -8 (-6 -1496) (-15 -1409 ($)) (-15 -3055 ($ $)) (-15 -1496 ($ |t#1| |t#1|)) (-15 -4233 (|t#1| $)) (-15 -4220 (|t#1| $)) (-15 -2704 (|t#1| $)) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-6 (-517)) (-15 -1311 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-286)) (-6 (-286)) |%noBranch|) (IF (|has| |t#1| (-6 -4258)) (-6 -4258) |%noBranch|) (IF (|has| |t#1| (-6 -4255)) (-6 -4255) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-953)) (PROGN (-6 (-567 (-157 (-205)))) (-6 (-567 (-157 (-357))))) |%noBranch|) (IF (|has| |t#1| (-986)) (-15 -2380 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1114)) (PROGN (-6 (-1114)) (-15 -2136 (|t#1| $)) (IF (|has| |t#1| (-934)) (-6 (-934)) |%noBranch|) (IF (|has| |t#1| (-986)) (-15 -3861 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -1417 ((-108) $)) (-15 -1367 ((-385 (-525)) $)) (-15 -3306 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-844)) (IF (|has| |t#1| (-286)) (-6 (-844)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-37 |#1|) . T) ((-37 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-34) |has| |#1| (-1114)) ((-91) |has| |#1| (-1114)) ((-97) . T) ((-107 #0# #0#) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -2067 (|has| |#1| (-327)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) . T) ((-567 (-157 (-205))) |has| |#1| (-953)) ((-567 (-157 (-357))) |has| |#1| (-953)) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-827 (-357))) |has| |#1| (-567 (-827 (-357)))) ((-567 (-827 (-525))) |has| |#1| (-567 (-827 (-525)))) ((-567 #1=(-1088 |#1|)) . T) ((-211 |#1|) . T) ((-213) -2067 (|has| |#1| (-327)) (|has| |#1| (-213))) ((-223) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-263) |has| |#1| (-1114)) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-269) -2067 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-286) -2067 (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-341) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-380) |has| |#1| (-327)) ((-346) -2067 (|has| |#1| (-346)) (|has| |#1| (-327))) ((-327) |has| |#1| (-327)) ((-348 |#1| #1#) . T) ((-387 |#1| #1#) . T) ((-316 |#1|) . T) ((-355 |#1|) . T) ((-378 |#1|) . T) ((-389 |#1|) . T) ((-429) -2067 (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-466) |has| |#1| (-1114)) ((-486 (-1092) |#1|) |has| |#1| (-486 (-1092) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-517) -2067 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-594 #0#) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-660 |#1|) . T) ((-660 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-667 |#1| #1#) . T) ((-669) . T) ((-789) |has| |#1| (-789)) ((-835 (-1092)) |has| |#1| (-835 (-1092))) ((-821 (-357)) |has| |#1| (-821 (-357))) ((-821 (-525)) |has| |#1| (-821 (-525))) ((-819 |#1|) . T) ((-844) -12 (|has| |#1| (-286)) (|has| |#1| (-844))) ((-855) -2067 (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-934) -12 (|has| |#1| (-934)) (|has| |#1| (-1114))) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-983 #0#) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-983 |#1|) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1068) |has| |#1| (-327)) ((-1114) |has| |#1| (-1114)) ((-1117) |has| |#1| (-1114)) ((-1128) . T) ((-1132) -2067 (|has| |#1| (-327)) (|has| |#1| (-341)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))
+((-4201 (((-396 |#2|) |#2|) 63)))
+(((-155 |#1| |#2|) (-10 -7 (-15 -4201 ((-396 |#2|) |#2|))) (-286) (-1150 (-157 |#1|))) (T -155))
+((-4201 (*1 *2 *3) (-12 (-4 *4 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1150 (-157 *4))))))
+(-10 -7 (-15 -4201 ((-396 |#2|) |#2|)))
+((-2016 (((-157 |#2|) (-1 |#2| |#1|) (-157 |#1|)) 14)))
+(((-156 |#1| |#2|) (-10 -7 (-15 -2016 ((-157 |#2|) (-1 |#2| |#1|) (-157 |#1|)))) (-160) (-160)) (T -156))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-157 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-5 *2 (-157 *6)) (-5 *1 (-156 *5 *6)))))
+(-10 -7 (-15 -2016 ((-157 |#2|) (-1 |#2| |#1|) (-157 |#1|))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 33)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (-2067 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-517))))) (-2433 (($ $) NIL (-2067 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-517))))) (-1568 (((-108) $) NIL (-2067 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-517))))) (-3855 (((-632 |#1|) (-1174 $)) NIL) (((-632 |#1|)) NIL)) (-2924 ((|#1| $) NIL)) (-1803 (($ $) NIL (|has| |#1| (-1114)))) (-3659 (($ $) NIL (|has| |#1| (-1114)))) (-3395 (((-1102 (-856) (-713)) (-525)) NIL (|has| |#1| (-327)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-4195 (($ $) NIL (-2067 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-3586 (((-396 $) $) NIL (-2067 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-4211 (($ $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-1114))))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-1507 (((-108) $ $) NIL (|has| |#1| (-286)))) (-1613 (((-713)) NIL (|has| |#1| (-346)))) (-1781 (($ $) NIL (|has| |#1| (-1114)))) (-3638 (($ $) NIL (|has| |#1| (-1114)))) (-1828 (($ $) NIL (|has| |#1| (-1114)))) (-3698 (($ $) NIL (|has| |#1| (-1114)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-4105 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-2580 (($ (-1174 |#1|) (-1174 $)) NIL) (($ (-1174 |#1|)) NIL)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-327)))) (-1356 (($ $ $) NIL (|has| |#1| (-286)))) (-1588 (((-632 |#1|) $ (-1174 $)) NIL) (((-632 |#1|) $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3504 (($ (-1088 |#1|)) NIL) (((-3 $ "failed") (-385 (-1088 |#1|))) NIL (|has| |#1| (-341)))) (-3300 (((-3 $ "failed") $) NIL)) (-4220 ((|#1| $) 13)) (-3306 (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-510)))) (-1417 (((-108) $) NIL (|has| |#1| (-510)))) (-1367 (((-385 (-525)) $) NIL (|has| |#1| (-510)))) (-3085 (((-856)) NIL)) (-1903 (($) NIL (|has| |#1| (-346)))) (-1332 (($ $ $) NIL (|has| |#1| (-286)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| |#1| (-286)))) (-3932 (($) NIL (|has| |#1| (-327)))) (-3920 (((-108) $) NIL (|has| |#1| (-327)))) (-1339 (($ $ (-713)) NIL (|has| |#1| (-327))) (($ $) NIL (|has| |#1| (-327)))) (-1798 (((-108) $) NIL (-2067 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-3861 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-986)) (|has| |#1| (-1114))))) (-4106 (($) NIL (|has| |#1| (-1114)))) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| |#1| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| |#1| (-821 (-357))))) (-4000 (((-856) $) NIL (|has| |#1| (-327))) (((-775 (-856)) $) NIL (|has| |#1| (-327)))) (-2278 (((-108) $) 35)) (-1303 (($ $ (-525)) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-1114))))) (-2704 ((|#1| $) 46)) (-2878 (((-3 $ "failed") $) NIL (|has| |#1| (-327)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-286)))) (-2021 (((-1088 |#1|) $) NIL (|has| |#1| (-341)))) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-3685 (((-856) $) NIL (|has| |#1| (-346)))) (-2533 (($ $) NIL (|has| |#1| (-1114)))) (-3492 (((-1088 |#1|) $) NIL)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-286))) (($ $ $) NIL (|has| |#1| (-286)))) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL (|has| |#1| (-341)))) (-2948 (($) NIL (|has| |#1| (-327)) CONST)) (-1722 (($ (-856)) NIL (|has| |#1| (-346)))) (-1409 (($) NIL)) (-4233 ((|#1| $) 15)) (-3993 (((-1039) $) NIL)) (-3817 (($) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-286)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-286))) (($ $ $) NIL (|has| |#1| (-286)))) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) NIL (|has| |#1| (-327)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-4201 (((-396 $) $) NIL (-2067 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-286))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-286)))) (-1311 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 47 (-2067 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-517))))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-286)))) (-1618 (($ $) NIL (|has| |#1| (-1114)))) (-2825 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) |#1|) NIL (|has| |#1| (-486 (-1092) |#1|)))) (-1927 (((-713) $) NIL (|has| |#1| (-286)))) (-3431 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-286)))) (-4115 ((|#1| (-1174 $)) NIL) ((|#1|) NIL)) (-2043 (((-713) $) NIL (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) NIL (|has| |#1| (-327)))) (-2702 (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-2897 (((-632 |#1|) (-1174 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-2013 (((-1088 |#1|)) NIL)) (-1841 (($ $) NIL (|has| |#1| (-1114)))) (-3798 (($ $) NIL (|has| |#1| (-1114)))) (-3823 (($) NIL (|has| |#1| (-327)))) (-1816 (($ $) NIL (|has| |#1| (-1114)))) (-3678 (($ $) NIL (|has| |#1| (-1114)))) (-1792 (($ $) NIL (|has| |#1| (-1114)))) (-3649 (($ $) NIL (|has| |#1| (-1114)))) (-2754 (((-1174 |#1|) $ (-1174 $)) NIL) (((-632 |#1|) (-1174 $) (-1174 $)) NIL) (((-1174 |#1|) $) NIL) (((-632 |#1|) (-1174 $)) NIL)) (-2069 (((-1174 |#1|) $) NIL) (($ (-1174 |#1|)) NIL) (((-1088 |#1|) $) NIL) (($ (-1088 |#1|)) NIL) (((-827 (-525)) $) NIL (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| |#1| (-567 (-827 (-357))))) (((-157 (-357)) $) NIL (|has| |#1| (-953))) (((-157 (-205)) $) NIL (|has| |#1| (-953))) (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-3055 (($ $) 45)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-2067 (-12 (|has| $ (-136)) (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-327))))) (-1496 (($ |#1| |#1|) 37)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) 36) (($ (-385 (-525))) NIL (-2067 (|has| |#1| (-341)) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (-2067 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-517))))) (-1463 (($ $) NIL (|has| |#1| (-327))) (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-3153 (((-1088 |#1|) $) NIL)) (-2448 (((-713)) NIL)) (-2103 (((-1174 $)) NIL)) (-1876 (($ $) NIL (|has| |#1| (-1114)))) (-3853 (($ $) NIL (|has| |#1| (-1114)))) (-1571 (((-108) $ $) NIL (-2067 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-517))))) (-1853 (($ $) NIL (|has| |#1| (-1114)))) (-3808 (($ $) NIL (|has| |#1| (-1114)))) (-1902 (($ $) NIL (|has| |#1| (-1114)))) (-1760 (($ $) NIL (|has| |#1| (-1114)))) (-2136 ((|#1| $) NIL (|has| |#1| (-1114)))) (-3135 (($ $) NIL (|has| |#1| (-1114)))) (-1770 (($ $) NIL (|has| |#1| (-1114)))) (-1891 (($ $) NIL (|has| |#1| (-1114)))) (-1748 (($ $) NIL (|has| |#1| (-1114)))) (-1866 (($ $) NIL (|has| |#1| (-1114)))) (-3820 (($ $) NIL (|has| |#1| (-1114)))) (-2380 (($ $) NIL (|has| |#1| (-986)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3364 (($) 28 T CONST)) (-3375 (($) 30 T CONST)) (-3660 (((-1075) $) 23 (|has| |#1| (-770))) (((-1075) $ (-108)) 25 (|has| |#1| (-770))) (((-1179) (-764) $) 26 (|has| |#1| (-770))) (((-1179) (-764) $ (-108)) 27 (|has| |#1| (-770)))) (-2401 (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2880 (($ $ $) NIL (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) 39)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-385 (-525))) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-1114)))) (($ $ $) NIL (|has| |#1| (-1114))) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-341))) (($ $ (-385 (-525))) NIL (|has| |#1| (-341)))))
(((-157 |#1|) (-13 (-154 |#1|) (-10 -7 (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|))) (-160)) (T -157))
NIL
(-13 (-154 |#1|) (-10 -7 (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|)))
-((-3210 (((-827 |#1|) |#3|) 22)))
-(((-158 |#1| |#2| |#3|) (-10 -7 (-15 -3210 ((-827 |#1|) |#3|))) (-1020) (-13 (-567 (-827 |#1|)) (-160)) (-154 |#2|)) (T -158))
-((-3210 (*1 *2 *3) (-12 (-4 *5 (-13 (-567 *2) (-160))) (-5 *2 (-827 *4)) (-5 *1 (-158 *4 *5 *3)) (-4 *4 (-1020)) (-4 *3 (-154 *5)))))
-(-10 -7 (-15 -3210 ((-827 |#1|) |#3|)))
-((-4236 (((-108) $ $) NIL)) (-4194 (((-108) $) 9)) (-2150 (((-108) $ (-108)) 11)) (-3416 (($) 12)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1462 (($ $) 13)) (-1217 (((-798) $) 17)) (-1261 (((-108) $) 8)) (-2719 (((-108) $ (-108)) 10)) (-3955 (((-108) $ $) NIL)))
-(((-159) (-13 (-1020) (-10 -8 (-15 -3416 ($)) (-15 -1261 ((-108) $)) (-15 -4194 ((-108) $)) (-15 -2719 ((-108) $ (-108))) (-15 -2150 ((-108) $ (-108))) (-15 -1462 ($ $))))) (T -159))
-((-3416 (*1 *1) (-5 *1 (-159))) (-1261 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-2719 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-2150 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-1462 (*1 *1 *1) (-5 *1 (-159))))
-(-13 (-1020) (-10 -8 (-15 -3416 ($)) (-15 -1261 ((-108) $)) (-15 -4194 ((-108) $)) (-15 -2719 ((-108) $ (-108))) (-15 -2150 ((-108) $ (-108))) (-15 -1462 ($ $))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11) (($ (-525)) 28)) (-3917 (((-713)) 29)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-2069 (((-827 |#1|) |#3|) 22)))
+(((-158 |#1| |#2| |#3|) (-10 -7 (-15 -2069 ((-827 |#1|) |#3|))) (-1020) (-13 (-567 (-827 |#1|)) (-160)) (-154 |#2|)) (T -158))
+((-2069 (*1 *2 *3) (-12 (-4 *5 (-13 (-567 *2) (-160))) (-5 *2 (-827 *4)) (-5 *1 (-158 *4 *5 *3)) (-4 *4 (-1020)) (-4 *3 (-154 *5)))))
+(-10 -7 (-15 -2069 ((-827 |#1|) |#3|)))
+((-4087 (((-108) $ $) NIL)) (-2177 (((-108) $) 9)) (-2264 (((-108) $ (-108)) 11)) (-3324 (($) 12)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2503 (($ $) 13)) (-4100 (((-798) $) 17)) (-3235 (((-108) $) 8)) (-2682 (((-108) $ (-108)) 10)) (-2775 (((-108) $ $) NIL)))
+(((-159) (-13 (-1020) (-10 -8 (-15 -3324 ($)) (-15 -3235 ((-108) $)) (-15 -2177 ((-108) $)) (-15 -2682 ((-108) $ (-108))) (-15 -2264 ((-108) $ (-108))) (-15 -2503 ($ $))))) (T -159))
+((-3324 (*1 *1) (-5 *1 (-159))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-2177 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-2682 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-2264 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-2503 (*1 *1 *1) (-5 *1 (-159))))
+(-13 (-1020) (-10 -8 (-15 -3324 ($)) (-15 -3235 ((-108) $)) (-15 -2177 ((-108) $)) (-15 -2682 ((-108) $ (-108))) (-15 -2264 ((-108) $ (-108))) (-15 -2503 ($ $))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11) (($ (-525)) 28)) (-2448 (((-713)) 29)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-160) (-131)) (T -160))
NIL
-(-13 (-977) (-107 $ $) (-10 -7 (-6 (-4260 "*"))))
+(-13 (-977) (-107 $ $) (-10 -7 (-6 (-4261 "*"))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-669) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1548 ((|#1| $) 75)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2193 (((-108) $ $) NIL)) (-2169 (($) NIL T CONST)) (-1747 (($ $ $) NIL)) (-4101 (($ $) 19)) (-1497 (($ |#1| (-1073 |#1|)) 48)) (-3457 (((-3 $ "failed") $) 117)) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-3942 (((-1073 |#1|) $) 82)) (-1837 (((-1073 |#1|) $) 79)) (-4035 (((-1073 |#1|) $) 80)) (-1396 (((-108) $) NIL)) (-1268 (((-1073 |#1|) $) 88)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2556 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2770 (((-396 $) $) NIL)) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL)) (-3931 (($ $ (-525)) 91)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-2344 (((-1073 |#1|) $) 89)) (-2819 (((-1073 (-385 |#1|)) $) 14)) (-2272 (($ (-385 |#1|)) 17) (($ |#1| (-1073 |#1|) (-1073 |#1|)) 38)) (-1489 (($ $) 93)) (-1217 (((-798) $) 127) (($ (-525)) 51) (($ |#1|) 52) (($ (-385 |#1|)) 36) (($ (-385 (-525))) NIL) (($ $) NIL)) (-3917 (((-713)) 64)) (-3325 (((-108) $ $) NIL)) (-1973 (((-1073 (-385 |#1|)) $) 18)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) 25 T CONST)) (-3359 (($) 28 T CONST)) (-3955 (((-108) $ $) 35)) (-4075 (($ $ $) 115)) (-4061 (($ $) 106) (($ $ $) 103)) (-4047 (($ $ $) 101)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-385 |#1|) $) 111) (($ $ (-385 |#1|)) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL)))
-(((-161 |#1|) (-13 (-37 |#1|) (-37 (-385 |#1|)) (-341) (-10 -8 (-15 -2272 ($ (-385 |#1|))) (-15 -2272 ($ |#1| (-1073 |#1|) (-1073 |#1|))) (-15 -1497 ($ |#1| (-1073 |#1|))) (-15 -1837 ((-1073 |#1|) $)) (-15 -4035 ((-1073 |#1|) $)) (-15 -3942 ((-1073 |#1|) $)) (-15 -1548 (|#1| $)) (-15 -4101 ($ $)) (-15 -1973 ((-1073 (-385 |#1|)) $)) (-15 -2819 ((-1073 (-385 |#1|)) $)) (-15 -1268 ((-1073 |#1|) $)) (-15 -2344 ((-1073 |#1|) $)) (-15 -3931 ($ $ (-525))) (-15 -1489 ($ $)))) (-286)) (T -161))
-((-2272 (*1 *1 *2) (-12 (-5 *2 (-385 *3)) (-4 *3 (-286)) (-5 *1 (-161 *3)))) (-2272 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1073 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2)))) (-1497 (*1 *1 *2 *3) (-12 (-5 *3 (-1073 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2)))) (-1837 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-1548 (*1 *2 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))) (-4101 (*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))) (-1973 (*1 *2 *1) (-12 (-5 *2 (-1073 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-1073 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-1268 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-2344 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-3931 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-1489 (*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))))
-(-13 (-37 |#1|) (-37 (-385 |#1|)) (-341) (-10 -8 (-15 -2272 ($ (-385 |#1|))) (-15 -2272 ($ |#1| (-1073 |#1|) (-1073 |#1|))) (-15 -1497 ($ |#1| (-1073 |#1|))) (-15 -1837 ((-1073 |#1|) $)) (-15 -4035 ((-1073 |#1|) $)) (-15 -3942 ((-1073 |#1|) $)) (-15 -1548 (|#1| $)) (-15 -4101 ($ $)) (-15 -1973 ((-1073 (-385 |#1|)) $)) (-15 -2819 ((-1073 (-385 |#1|)) $)) (-15 -1268 ((-1073 |#1|) $)) (-15 -2344 ((-1073 |#1|) $)) (-15 -3931 ($ $ (-525))) (-15 -1489 ($ $))))
-((-3665 (($ (-104) $) 13)) (-2810 (((-3 (-104) "failed") (-1092) $) 12)) (-1217 (((-798) $) 16)) (-2424 (((-592 (-104)) $) 8)))
-(((-162) (-13 (-566 (-798)) (-10 -8 (-15 -2424 ((-592 (-104)) $)) (-15 -3665 ($ (-104) $)) (-15 -2810 ((-3 (-104) "failed") (-1092) $))))) (T -162))
-((-2424 (*1 *2 *1) (-12 (-5 *2 (-592 (-104))) (-5 *1 (-162)))) (-3665 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-162)))) (-2810 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1092)) (-5 *2 (-104)) (-5 *1 (-162)))))
-(-13 (-566 (-798)) (-10 -8 (-15 -2424 ((-592 (-104)) $)) (-15 -3665 ($ (-104) $)) (-15 -2810 ((-3 (-104) "failed") (-1092) $))))
-((-3360 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 40)) (-3789 (((-878 |#1|) (-878 |#1|)) 19)) (-3900 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 36)) (-3003 (((-878 |#1|) (-878 |#1|)) 17)) (-2761 (((-878 |#1|) (-878 |#1|)) 25)) (-1531 (((-878 |#1|) (-878 |#1|)) 24)) (-2916 (((-878 |#1|) (-878 |#1|)) 23)) (-2560 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 37)) (-1431 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 35)) (-1805 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 34)) (-1759 (((-878 |#1|) (-878 |#1|)) 18)) (-1795 (((-1 (-878 |#1|) (-878 |#1|)) |#1| |#1|) 43)) (-3026 (((-878 |#1|) (-878 |#1|)) 8)) (-2023 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 39)) (-3729 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 38)))
-(((-163 |#1|) (-10 -7 (-15 -3026 ((-878 |#1|) (-878 |#1|))) (-15 -3003 ((-878 |#1|) (-878 |#1|))) (-15 -1759 ((-878 |#1|) (-878 |#1|))) (-15 -3789 ((-878 |#1|) (-878 |#1|))) (-15 -2916 ((-878 |#1|) (-878 |#1|))) (-15 -1531 ((-878 |#1|) (-878 |#1|))) (-15 -2761 ((-878 |#1|) (-878 |#1|))) (-15 -1805 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -1431 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -3900 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -2560 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -3729 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -2023 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -3360 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -1795 ((-1 (-878 |#1|) (-878 |#1|)) |#1| |#1|))) (-13 (-341) (-1114) (-934))) (T -163))
-((-1795 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1114) (-934))))) (-3360 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1114) (-934))))) (-2023 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1114) (-934))))) (-3729 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1114) (-934))))) (-2560 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1114) (-934))))) (-3900 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1114) (-934))))) (-1431 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1114) (-934))))) (-1805 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1114) (-934))))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934))) (-5 *1 (-163 *3)))) (-1531 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934))) (-5 *1 (-163 *3)))) (-2916 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934))) (-5 *1 (-163 *3)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934))) (-5 *1 (-163 *3)))) (-1759 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934))) (-5 *1 (-163 *3)))) (-3003 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934))) (-5 *1 (-163 *3)))) (-3026 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934))) (-5 *1 (-163 *3)))))
-(-10 -7 (-15 -3026 ((-878 |#1|) (-878 |#1|))) (-15 -3003 ((-878 |#1|) (-878 |#1|))) (-15 -1759 ((-878 |#1|) (-878 |#1|))) (-15 -3789 ((-878 |#1|) (-878 |#1|))) (-15 -2916 ((-878 |#1|) (-878 |#1|))) (-15 -1531 ((-878 |#1|) (-878 |#1|))) (-15 -2761 ((-878 |#1|) (-878 |#1|))) (-15 -1805 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -1431 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -3900 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -2560 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -3729 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -2023 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -3360 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -1795 ((-1 (-878 |#1|) (-878 |#1|)) |#1| |#1|)))
-((-1304 ((|#2| |#3|) 27)))
-(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -1304 (|#2| |#3|))) (-160) (-1150 |#1|) (-667 |#1| |#2|)) (T -164))
-((-1304 (*1 *2 *3) (-12 (-4 *4 (-160)) (-4 *2 (-1150 *4)) (-5 *1 (-164 *4 *2 *3)) (-4 *3 (-667 *4 *2)))))
-(-10 -7 (-15 -1304 (|#2| |#3|)))
-((-2989 (((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)) 47 (|has| (-887 |#2|) (-821 |#1|)))))
-(((-165 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-887 |#2|) (-821 |#1|)) (-15 -2989 ((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))) |%noBranch|)) (-1020) (-13 (-821 |#1|) (-160)) (-154 |#2|)) (T -165))
-((-2989 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *3)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *3 (-154 *6)) (-4 (-887 *6) (-821 *5)) (-4 *6 (-13 (-821 *5) (-160))) (-5 *1 (-165 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-887 |#2|) (-821 |#1|)) (-15 -2989 ((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))) |%noBranch|))
-((-2333 (((-592 |#1|) (-592 |#1|) |#1|) 38)) (-3455 (((-592 |#1|) |#1| (-592 |#1|)) 19)) (-4109 (((-592 |#1|) (-592 (-592 |#1|)) (-592 |#1|)) 33) ((|#1| (-592 |#1|) (-592 |#1|)) 31)))
-(((-166 |#1|) (-10 -7 (-15 -3455 ((-592 |#1|) |#1| (-592 |#1|))) (-15 -4109 (|#1| (-592 |#1|) (-592 |#1|))) (-15 -4109 ((-592 |#1|) (-592 (-592 |#1|)) (-592 |#1|))) (-15 -2333 ((-592 |#1|) (-592 |#1|) |#1|))) (-286)) (T -166))
-((-2333 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3)))) (-4109 (*1 *2 *3 *2) (-12 (-5 *3 (-592 (-592 *4))) (-5 *2 (-592 *4)) (-4 *4 (-286)) (-5 *1 (-166 *4)))) (-4109 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-166 *2)) (-4 *2 (-286)))) (-3455 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3)))))
-(-10 -7 (-15 -3455 ((-592 |#1|) |#1| (-592 |#1|))) (-15 -4109 (|#1| (-592 |#1|) (-592 |#1|))) (-15 -4109 ((-592 |#1|) (-592 (-592 |#1|)) (-592 |#1|))) (-15 -2333 ((-592 |#1|) (-592 |#1|) |#1|)))
-((-1291 (((-2 (|:| |start| |#2|) (|:| -3843 (-396 |#2|))) |#2|) 61)) (-2881 ((|#1| |#1|) 54)) (-3813 (((-157 |#1|) |#2|) 84)) (-3635 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-3464 ((|#2| |#2|) 83)) (-2871 (((-396 |#2|) |#2| |#1|) 113) (((-396 |#2|) |#2| |#1| (-108)) 81)) (-2382 ((|#1| |#2|) 112)) (-3874 ((|#2| |#2|) 119)) (-2770 (((-396 |#2|) |#2|) 134) (((-396 |#2|) |#2| |#1|) 32) (((-396 |#2|) |#2| |#1| (-108)) 133)) (-2145 (((-592 (-2 (|:| -3843 (-592 |#2|)) (|:| -1213 |#1|))) |#2| |#2|) 132) (((-592 (-2 (|:| -3843 (-592 |#2|)) (|:| -1213 |#1|))) |#2| |#2| (-108)) 76)) (-3225 (((-592 (-157 |#1|)) |#2| |#1|) 40) (((-592 (-157 |#1|)) |#2|) 41)))
-(((-167 |#1| |#2|) (-10 -7 (-15 -3225 ((-592 (-157 |#1|)) |#2|)) (-15 -3225 ((-592 (-157 |#1|)) |#2| |#1|)) (-15 -2145 ((-592 (-2 (|:| -3843 (-592 |#2|)) (|:| -1213 |#1|))) |#2| |#2| (-108))) (-15 -2145 ((-592 (-2 (|:| -3843 (-592 |#2|)) (|:| -1213 |#1|))) |#2| |#2|)) (-15 -2770 ((-396 |#2|) |#2| |#1| (-108))) (-15 -2770 ((-396 |#2|) |#2| |#1|)) (-15 -2770 ((-396 |#2|) |#2|)) (-15 -3874 (|#2| |#2|)) (-15 -2382 (|#1| |#2|)) (-15 -2871 ((-396 |#2|) |#2| |#1| (-108))) (-15 -2871 ((-396 |#2|) |#2| |#1|)) (-15 -3464 (|#2| |#2|)) (-15 -3635 (|#1| |#2| |#1|)) (-15 -3635 (|#1| |#2|)) (-15 -3813 ((-157 |#1|) |#2|)) (-15 -2881 (|#1| |#1|)) (-15 -1291 ((-2 (|:| |start| |#2|) (|:| -3843 (-396 |#2|))) |#2|))) (-13 (-341) (-787)) (-1150 (-157 |#1|))) (T -167))
-((-1291 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-2 (|:| |start| *3) (|:| -3843 (-396 *3)))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))) (-2881 (*1 *2 *2) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1150 (-157 *2))))) (-3813 (*1 *2 *3) (-12 (-5 *2 (-157 *4)) (-5 *1 (-167 *4 *3)) (-4 *4 (-13 (-341) (-787))) (-4 *3 (-1150 *2)))) (-3635 (*1 *2 *3) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1150 (-157 *2))))) (-3635 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1150 (-157 *2))))) (-3464 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2)) (-4 *2 (-1150 (-157 *3))))) (-2871 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))) (-2871 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))) (-2382 (*1 *2 *3) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1150 (-157 *2))))) (-3874 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2)) (-4 *2 (-1150 (-157 *3))))) (-2770 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))) (-2770 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))) (-2770 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))) (-2145 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-2 (|:| -3843 (-592 *3)) (|:| -1213 *4)))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))) (-2145 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-341) (-787))) (-5 *2 (-592 (-2 (|:| -3843 (-592 *3)) (|:| -1213 *5)))) (-5 *1 (-167 *5 *3)) (-4 *3 (-1150 (-157 *5))))) (-3225 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))) (-3225 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))))
-(-10 -7 (-15 -3225 ((-592 (-157 |#1|)) |#2|)) (-15 -3225 ((-592 (-157 |#1|)) |#2| |#1|)) (-15 -2145 ((-592 (-2 (|:| -3843 (-592 |#2|)) (|:| -1213 |#1|))) |#2| |#2| (-108))) (-15 -2145 ((-592 (-2 (|:| -3843 (-592 |#2|)) (|:| -1213 |#1|))) |#2| |#2|)) (-15 -2770 ((-396 |#2|) |#2| |#1| (-108))) (-15 -2770 ((-396 |#2|) |#2| |#1|)) (-15 -2770 ((-396 |#2|) |#2|)) (-15 -3874 (|#2| |#2|)) (-15 -2382 (|#1| |#2|)) (-15 -2871 ((-396 |#2|) |#2| |#1| (-108))) (-15 -2871 ((-396 |#2|) |#2| |#1|)) (-15 -3464 (|#2| |#2|)) (-15 -3635 (|#1| |#2| |#1|)) (-15 -3635 (|#1| |#2|)) (-15 -3813 ((-157 |#1|) |#2|)) (-15 -2881 (|#1| |#1|)) (-15 -1291 ((-2 (|:| |start| |#2|) (|:| -3843 (-396 |#2|))) |#2|)))
-((-3356 (((-3 |#2| "failed") |#2|) 14)) (-3833 (((-713) |#2|) 16)) (-2982 ((|#2| |#2| |#2|) 18)))
-(((-168 |#1| |#2|) (-10 -7 (-15 -3356 ((-3 |#2| "failed") |#2|)) (-15 -3833 ((-713) |#2|)) (-15 -2982 (|#2| |#2| |#2|))) (-1128) (-619 |#1|)) (T -168))
-((-2982 (*1 *2 *2 *2) (-12 (-4 *3 (-1128)) (-5 *1 (-168 *3 *2)) (-4 *2 (-619 *3)))) (-3833 (*1 *2 *3) (-12 (-4 *4 (-1128)) (-5 *2 (-713)) (-5 *1 (-168 *4 *3)) (-4 *3 (-619 *4)))) (-3356 (*1 *2 *2) (|partial| -12 (-4 *3 (-1128)) (-5 *1 (-168 *3 *2)) (-4 *2 (-619 *3)))))
-(-10 -7 (-15 -3356 ((-3 |#2| "failed") |#2|)) (-15 -3833 ((-713) |#2|)) (-15 -2982 (|#2| |#2| |#2|)))
-((-4236 (((-108) $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1865 (((-1092) $) 10)) (-1217 (((-798) $) 17)) (-1307 (((-592 (-1097)) $) 12)) (-3955 (((-108) $ $) 15)))
-(((-169) (-13 (-1020) (-10 -8 (-15 -1865 ((-1092) $)) (-15 -1307 ((-592 (-1097)) $))))) (T -169))
-((-1865 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-169)))) (-1307 (*1 *2 *1) (-12 (-5 *2 (-592 (-1097))) (-5 *1 (-169)))))
-(-13 (-1020) (-10 -8 (-15 -1865 ((-1092) $)) (-15 -1307 ((-592 (-1097)) $))))
-((-2187 ((|#2| |#2|) 28)) (-1271 (((-108) |#2|) 19)) (-2796 (((-294 |#1|) |#2|) 12)) (-2806 (((-294 |#1|) |#2|) 14)) (-3079 ((|#2| |#2| (-1092)) 68) ((|#2| |#2|) 69)) (-3067 (((-157 (-294 |#1|)) |#2|) 10)) (-3461 ((|#2| |#2| (-1092)) 65) ((|#2| |#2|) 59)))
-(((-170 |#1| |#2|) (-10 -7 (-15 -3079 (|#2| |#2|)) (-15 -3079 (|#2| |#2| (-1092))) (-15 -3461 (|#2| |#2|)) (-15 -3461 (|#2| |#2| (-1092))) (-15 -2796 ((-294 |#1|) |#2|)) (-15 -2806 ((-294 |#1|) |#2|)) (-15 -1271 ((-108) |#2|)) (-15 -2187 (|#2| |#2|)) (-15 -3067 ((-157 (-294 |#1|)) |#2|))) (-13 (-517) (-789) (-968 (-525))) (-13 (-27) (-1114) (-408 (-157 |#1|)))) (T -170))
-((-3067 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-157 (-294 *4))) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 (-157 *4)))))) (-2187 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 (-157 *3)))))) (-1271 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-108)) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 (-157 *4)))))) (-2806 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-294 *4)) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 (-157 *4)))))) (-2796 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-294 *4)) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 (-157 *4)))))) (-3461 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 (-157 *4)))))) (-3461 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 (-157 *3)))))) (-3079 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 (-157 *4)))))) (-3079 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 (-157 *3)))))))
-(-10 -7 (-15 -3079 (|#2| |#2|)) (-15 -3079 (|#2| |#2| (-1092))) (-15 -3461 (|#2| |#2|)) (-15 -3461 (|#2| |#2| (-1092))) (-15 -2796 ((-294 |#1|) |#2|)) (-15 -2806 ((-294 |#1|) |#2|)) (-15 -1271 ((-108) |#2|)) (-15 -2187 (|#2| |#2|)) (-15 -3067 ((-157 (-294 |#1|)) |#2|)))
-((-3017 (((-1174 (-632 (-887 |#1|))) (-1174 (-632 |#1|))) 24)) (-1217 (((-1174 (-632 (-385 (-887 |#1|)))) (-1174 (-632 |#1|))) 33)))
-(((-171 |#1|) (-10 -7 (-15 -3017 ((-1174 (-632 (-887 |#1|))) (-1174 (-632 |#1|)))) (-15 -1217 ((-1174 (-632 (-385 (-887 |#1|)))) (-1174 (-632 |#1|))))) (-160)) (T -171))
-((-1217 (*1 *2 *3) (-12 (-5 *3 (-1174 (-632 *4))) (-4 *4 (-160)) (-5 *2 (-1174 (-632 (-385 (-887 *4))))) (-5 *1 (-171 *4)))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-1174 (-632 *4))) (-4 *4 (-160)) (-5 *2 (-1174 (-632 (-887 *4)))) (-5 *1 (-171 *4)))))
-(-10 -7 (-15 -3017 ((-1174 (-632 (-887 |#1|))) (-1174 (-632 |#1|)))) (-15 -1217 ((-1174 (-632 (-385 (-887 |#1|)))) (-1174 (-632 |#1|)))))
-((-4105 (((-1094 (-385 (-525))) (-1094 (-385 (-525))) (-1094 (-385 (-525)))) 66)) (-2192 (((-1094 (-385 (-525))) (-592 (-525)) (-592 (-525))) 75)) (-3946 (((-1094 (-385 (-525))) (-525)) 40)) (-4190 (((-1094 (-385 (-525))) (-525)) 52)) (-2457 (((-385 (-525)) (-1094 (-385 (-525)))) 62)) (-4045 (((-1094 (-385 (-525))) (-525)) 32)) (-3484 (((-1094 (-385 (-525))) (-525)) 48)) (-1830 (((-1094 (-385 (-525))) (-525)) 46)) (-3654 (((-1094 (-385 (-525))) (-1094 (-385 (-525))) (-1094 (-385 (-525)))) 60)) (-1489 (((-1094 (-385 (-525))) (-525)) 25)) (-2268 (((-385 (-525)) (-1094 (-385 (-525))) (-1094 (-385 (-525)))) 64)) (-2611 (((-1094 (-385 (-525))) (-525)) 30)) (-1689 (((-1094 (-385 (-525))) (-592 (-525))) 72)))
-(((-172) (-10 -7 (-15 -1489 ((-1094 (-385 (-525))) (-525))) (-15 -3946 ((-1094 (-385 (-525))) (-525))) (-15 -4045 ((-1094 (-385 (-525))) (-525))) (-15 -2611 ((-1094 (-385 (-525))) (-525))) (-15 -1830 ((-1094 (-385 (-525))) (-525))) (-15 -3484 ((-1094 (-385 (-525))) (-525))) (-15 -4190 ((-1094 (-385 (-525))) (-525))) (-15 -2268 ((-385 (-525)) (-1094 (-385 (-525))) (-1094 (-385 (-525))))) (-15 -3654 ((-1094 (-385 (-525))) (-1094 (-385 (-525))) (-1094 (-385 (-525))))) (-15 -2457 ((-385 (-525)) (-1094 (-385 (-525))))) (-15 -4105 ((-1094 (-385 (-525))) (-1094 (-385 (-525))) (-1094 (-385 (-525))))) (-15 -1689 ((-1094 (-385 (-525))) (-592 (-525)))) (-15 -2192 ((-1094 (-385 (-525))) (-592 (-525)) (-592 (-525)))))) (T -172))
-((-2192 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)))) (-4105 (*1 *2 *2 *2) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-1094 (-385 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-172)))) (-3654 (*1 *2 *2 *2) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)))) (-2268 (*1 *2 *3 *3) (-12 (-5 *3 (-1094 (-385 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-172)))) (-4190 (*1 *2 *3) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-3484 (*1 *2 *3) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-1830 (*1 *2 *3) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-2611 (*1 *2 *3) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-4045 (*1 *2 *3) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-3946 (*1 *2 *3) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-1489 (*1 *2 *3) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
-(-10 -7 (-15 -1489 ((-1094 (-385 (-525))) (-525))) (-15 -3946 ((-1094 (-385 (-525))) (-525))) (-15 -4045 ((-1094 (-385 (-525))) (-525))) (-15 -2611 ((-1094 (-385 (-525))) (-525))) (-15 -1830 ((-1094 (-385 (-525))) (-525))) (-15 -3484 ((-1094 (-385 (-525))) (-525))) (-15 -4190 ((-1094 (-385 (-525))) (-525))) (-15 -2268 ((-385 (-525)) (-1094 (-385 (-525))) (-1094 (-385 (-525))))) (-15 -3654 ((-1094 (-385 (-525))) (-1094 (-385 (-525))) (-1094 (-385 (-525))))) (-15 -2457 ((-385 (-525)) (-1094 (-385 (-525))))) (-15 -4105 ((-1094 (-385 (-525))) (-1094 (-385 (-525))) (-1094 (-385 (-525))))) (-15 -1689 ((-1094 (-385 (-525))) (-592 (-525)))) (-15 -2192 ((-1094 (-385 (-525))) (-592 (-525)) (-592 (-525)))))
-((-2170 (((-396 (-1088 (-525))) (-525)) 28)) (-4091 (((-592 (-1088 (-525))) (-525)) 23)) (-1300 (((-1088 (-525)) (-525)) 21)))
-(((-173) (-10 -7 (-15 -4091 ((-592 (-1088 (-525))) (-525))) (-15 -1300 ((-1088 (-525)) (-525))) (-15 -2170 ((-396 (-1088 (-525))) (-525))))) (T -173))
-((-2170 (*1 *2 *3) (-12 (-5 *2 (-396 (-1088 (-525)))) (-5 *1 (-173)) (-5 *3 (-525)))) (-1300 (*1 *2 *3) (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-173)) (-5 *3 (-525)))) (-4091 (*1 *2 *3) (-12 (-5 *2 (-592 (-1088 (-525)))) (-5 *1 (-173)) (-5 *3 (-525)))))
-(-10 -7 (-15 -4091 ((-592 (-1088 (-525))) (-525))) (-15 -1300 ((-1088 (-525)) (-525))) (-15 -2170 ((-396 (-1088 (-525))) (-525))))
-((-4013 (((-1073 (-205)) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 104)) (-1508 (((-592 (-1075)) (-1073 (-205))) NIL)) (-2396 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 80)) (-2290 (((-592 (-205)) (-294 (-205)) (-1092) (-1015 (-782 (-205)))) NIL)) (-1626 (((-592 (-1075)) (-592 (-205))) NIL)) (-2562 (((-205) (-1015 (-782 (-205)))) 24)) (-2910 (((-205) (-1015 (-782 (-205)))) 25)) (-2080 (((-357) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 97)) (-3742 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 42)) (-3372 (((-1075) (-205)) NIL)) (-1723 (((-1075) (-592 (-1075))) 20)) (-2346 (((-966) (-1092) (-1092) (-966)) 13)))
-(((-174) (-10 -7 (-15 -2396 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3742 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2562 ((-205) (-1015 (-782 (-205))))) (-15 -2910 ((-205) (-1015 (-782 (-205))))) (-15 -2080 ((-357) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2290 ((-592 (-205)) (-294 (-205)) (-1092) (-1015 (-782 (-205))))) (-15 -4013 ((-1073 (-205)) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3372 ((-1075) (-205))) (-15 -1626 ((-592 (-1075)) (-592 (-205)))) (-15 -1508 ((-592 (-1075)) (-1073 (-205)))) (-15 -1723 ((-1075) (-592 (-1075)))) (-15 -2346 ((-966) (-1092) (-1092) (-966))))) (T -174))
-((-2346 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-966)) (-5 *3 (-1092)) (-5 *1 (-174)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-1075)) (-5 *1 (-174)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-1073 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-174)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-174)))) (-3372 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1075)) (-5 *1 (-174)))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-1073 (-205))) (-5 *1 (-174)))) (-2290 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1092)) (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-174)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-174)))) (-2910 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174)))) (-2562 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-174)))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-174)))))
-(-10 -7 (-15 -2396 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3742 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2562 ((-205) (-1015 (-782 (-205))))) (-15 -2910 ((-205) (-1015 (-782 (-205))))) (-15 -2080 ((-357) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2290 ((-592 (-205)) (-294 (-205)) (-1092) (-1015 (-782 (-205))))) (-15 -4013 ((-1073 (-205)) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3372 ((-1075) (-205))) (-15 -1626 ((-592 (-1075)) (-592 (-205)))) (-15 -1508 ((-592 (-1075)) (-1073 (-205)))) (-15 -1723 ((-1075) (-592 (-1075)))) (-15 -2346 ((-966) (-1092) (-1092) (-966))))
-((-4236 (((-108) $ $) NIL)) (-3909 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 55) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 32) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1653 ((|#1| $) 75)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-1507 (((-108) $ $) NIL)) (-2475 (($) NIL T CONST)) (-1356 (($ $ $) NIL)) (-3665 (($ $) 19)) (-4023 (($ |#1| (-1073 |#1|)) 48)) (-3300 (((-3 $ "failed") $) 117)) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-1500 (((-1073 |#1|) $) 82)) (-2137 (((-1073 |#1|) $) 79)) (-1217 (((-1073 |#1|) $) 80)) (-2278 (((-108) $) NIL)) (-3898 (((-1073 |#1|) $) 88)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2739 (($ (-592 $)) NIL) (($ $ $) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ (-592 $)) NIL) (($ $ $) NIL)) (-4201 (((-396 $) $) NIL)) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL)) (-1397 (($ $ (-525)) 91)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-3537 (((-1073 |#1|) $) 89)) (-2505 (((-1073 (-385 |#1|)) $) 14)) (-4070 (($ (-385 |#1|)) 17) (($ |#1| (-1073 |#1|) (-1073 |#1|)) 38)) (-3926 (($ $) 93)) (-4100 (((-798) $) 127) (($ (-525)) 51) (($ |#1|) 52) (($ (-385 |#1|)) 36) (($ (-385 (-525))) NIL) (($ $) NIL)) (-2448 (((-713)) 64)) (-1571 (((-108) $ $) NIL)) (-4099 (((-1073 (-385 |#1|)) $) 18)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) 25 T CONST)) (-3375 (($) 28 T CONST)) (-2775 (((-108) $ $) 35)) (-2880 (($ $ $) 115)) (-2871 (($ $) 106) (($ $ $) 103)) (-2860 (($ $ $) 101)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-385 |#1|) $) 111) (($ $ (-385 |#1|)) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL)))
+(((-161 |#1|) (-13 (-37 |#1|) (-37 (-385 |#1|)) (-341) (-10 -8 (-15 -4070 ($ (-385 |#1|))) (-15 -4070 ($ |#1| (-1073 |#1|) (-1073 |#1|))) (-15 -4023 ($ |#1| (-1073 |#1|))) (-15 -2137 ((-1073 |#1|) $)) (-15 -1217 ((-1073 |#1|) $)) (-15 -1500 ((-1073 |#1|) $)) (-15 -1653 (|#1| $)) (-15 -3665 ($ $)) (-15 -4099 ((-1073 (-385 |#1|)) $)) (-15 -2505 ((-1073 (-385 |#1|)) $)) (-15 -3898 ((-1073 |#1|) $)) (-15 -3537 ((-1073 |#1|) $)) (-15 -1397 ($ $ (-525))) (-15 -3926 ($ $)))) (-286)) (T -161))
+((-4070 (*1 *1 *2) (-12 (-5 *2 (-385 *3)) (-4 *3 (-286)) (-5 *1 (-161 *3)))) (-4070 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1073 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2)))) (-4023 (*1 *1 *2 *3) (-12 (-5 *3 (-1073 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2)))) (-2137 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-1500 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-1653 (*1 *2 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))) (-3665 (*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))) (-4099 (*1 *2 *1) (-12 (-5 *2 (-1073 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-2505 (*1 *2 *1) (-12 (-5 *2 (-1073 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-1397 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-3926 (*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))))
+(-13 (-37 |#1|) (-37 (-385 |#1|)) (-341) (-10 -8 (-15 -4070 ($ (-385 |#1|))) (-15 -4070 ($ |#1| (-1073 |#1|) (-1073 |#1|))) (-15 -4023 ($ |#1| (-1073 |#1|))) (-15 -2137 ((-1073 |#1|) $)) (-15 -1217 ((-1073 |#1|) $)) (-15 -1500 ((-1073 |#1|) $)) (-15 -1653 (|#1| $)) (-15 -3665 ($ $)) (-15 -4099 ((-1073 (-385 |#1|)) $)) (-15 -2505 ((-1073 (-385 |#1|)) $)) (-15 -3898 ((-1073 |#1|) $)) (-15 -3537 ((-1073 |#1|) $)) (-15 -1397 ($ $ (-525))) (-15 -3926 ($ $))))
+((-1721 (($ (-104) $) 13)) (-2439 (((-3 (-104) "failed") (-1092) $) 12)) (-4100 (((-798) $) 16)) (-1952 (((-592 (-104)) $) 8)))
+(((-162) (-13 (-566 (-798)) (-10 -8 (-15 -1952 ((-592 (-104)) $)) (-15 -1721 ($ (-104) $)) (-15 -2439 ((-3 (-104) "failed") (-1092) $))))) (T -162))
+((-1952 (*1 *2 *1) (-12 (-5 *2 (-592 (-104))) (-5 *1 (-162)))) (-1721 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-162)))) (-2439 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1092)) (-5 *2 (-104)) (-5 *1 (-162)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -1952 ((-592 (-104)) $)) (-15 -1721 ($ (-104) $)) (-15 -2439 ((-3 (-104) "failed") (-1092) $))))
+((-1873 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 40)) (-3533 (((-878 |#1|) (-878 |#1|)) 19)) (-2251 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 36)) (-3666 (((-878 |#1|) (-878 |#1|)) 17)) (-2063 (((-878 |#1|) (-878 |#1|)) 25)) (-1237 (((-878 |#1|) (-878 |#1|)) 24)) (-4071 (((-878 |#1|) (-878 |#1|)) 23)) (-3806 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 37)) (-3587 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 35)) (-2981 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 34)) (-2629 (((-878 |#1|) (-878 |#1|)) 18)) (-2908 (((-1 (-878 |#1|) (-878 |#1|)) |#1| |#1|) 43)) (-2675 (((-878 |#1|) (-878 |#1|)) 8)) (-3365 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 39)) (-4192 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 38)))
+(((-163 |#1|) (-10 -7 (-15 -2675 ((-878 |#1|) (-878 |#1|))) (-15 -3666 ((-878 |#1|) (-878 |#1|))) (-15 -2629 ((-878 |#1|) (-878 |#1|))) (-15 -3533 ((-878 |#1|) (-878 |#1|))) (-15 -4071 ((-878 |#1|) (-878 |#1|))) (-15 -1237 ((-878 |#1|) (-878 |#1|))) (-15 -2063 ((-878 |#1|) (-878 |#1|))) (-15 -2981 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -3587 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -2251 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -3806 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -4192 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -3365 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -1873 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -2908 ((-1 (-878 |#1|) (-878 |#1|)) |#1| |#1|))) (-13 (-341) (-1114) (-934))) (T -163))
+((-2908 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1114) (-934))))) (-1873 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1114) (-934))))) (-3365 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1114) (-934))))) (-4192 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1114) (-934))))) (-3806 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1114) (-934))))) (-2251 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1114) (-934))))) (-3587 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1114) (-934))))) (-2981 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1114) (-934))))) (-2063 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934))) (-5 *1 (-163 *3)))) (-1237 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934))) (-5 *1 (-163 *3)))) (-4071 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934))) (-5 *1 (-163 *3)))) (-3533 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934))) (-5 *1 (-163 *3)))) (-2629 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934))) (-5 *1 (-163 *3)))) (-3666 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934))) (-5 *1 (-163 *3)))) (-2675 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934))) (-5 *1 (-163 *3)))))
+(-10 -7 (-15 -2675 ((-878 |#1|) (-878 |#1|))) (-15 -3666 ((-878 |#1|) (-878 |#1|))) (-15 -2629 ((-878 |#1|) (-878 |#1|))) (-15 -3533 ((-878 |#1|) (-878 |#1|))) (-15 -4071 ((-878 |#1|) (-878 |#1|))) (-15 -1237 ((-878 |#1|) (-878 |#1|))) (-15 -2063 ((-878 |#1|) (-878 |#1|))) (-15 -2981 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -3587 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -2251 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -3806 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -4192 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -3365 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -1873 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -2908 ((-1 (-878 |#1|) (-878 |#1|)) |#1| |#1|)))
+((-3153 ((|#2| |#3|) 27)))
+(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -3153 (|#2| |#3|))) (-160) (-1150 |#1|) (-667 |#1| |#2|)) (T -164))
+((-3153 (*1 *2 *3) (-12 (-4 *4 (-160)) (-4 *2 (-1150 *4)) (-5 *1 (-164 *4 *2 *3)) (-4 *3 (-667 *4 *2)))))
+(-10 -7 (-15 -3153 (|#2| |#3|)))
+((-3552 (((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)) 47 (|has| (-887 |#2|) (-821 |#1|)))))
+(((-165 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-887 |#2|) (-821 |#1|)) (-15 -3552 ((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))) |%noBranch|)) (-1020) (-13 (-821 |#1|) (-160)) (-154 |#2|)) (T -165))
+((-3552 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *3)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *3 (-154 *6)) (-4 (-887 *6) (-821 *5)) (-4 *6 (-13 (-821 *5) (-160))) (-5 *1 (-165 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-887 |#2|) (-821 |#1|)) (-15 -3552 ((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))) |%noBranch|))
+((-3415 (((-592 |#1|) (-592 |#1|) |#1|) 38)) (-3275 (((-592 |#1|) |#1| (-592 |#1|)) 19)) (-3737 (((-592 |#1|) (-592 (-592 |#1|)) (-592 |#1|)) 33) ((|#1| (-592 |#1|) (-592 |#1|)) 31)))
+(((-166 |#1|) (-10 -7 (-15 -3275 ((-592 |#1|) |#1| (-592 |#1|))) (-15 -3737 (|#1| (-592 |#1|) (-592 |#1|))) (-15 -3737 ((-592 |#1|) (-592 (-592 |#1|)) (-592 |#1|))) (-15 -3415 ((-592 |#1|) (-592 |#1|) |#1|))) (-286)) (T -166))
+((-3415 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3)))) (-3737 (*1 *2 *3 *2) (-12 (-5 *3 (-592 (-592 *4))) (-5 *2 (-592 *4)) (-4 *4 (-286)) (-5 *1 (-166 *4)))) (-3737 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-166 *2)) (-4 *2 (-286)))) (-3275 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3)))))
+(-10 -7 (-15 -3275 ((-592 |#1|) |#1| (-592 |#1|))) (-15 -3737 (|#1| (-592 |#1|) (-592 |#1|))) (-15 -3737 ((-592 |#1|) (-592 (-592 |#1|)) (-592 |#1|))) (-15 -3415 ((-592 |#1|) (-592 |#1|) |#1|)))
+((-1307 (((-2 (|:| |start| |#2|) (|:| -2868 (-396 |#2|))) |#2|) 61)) (-1923 ((|#1| |#1|) 54)) (-2599 (((-157 |#1|) |#2|) 84)) (-1442 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-3371 ((|#2| |#2|) 83)) (-1831 (((-396 |#2|) |#2| |#1|) 113) (((-396 |#2|) |#2| |#1| (-108)) 81)) (-2704 ((|#1| |#2|) 112)) (-2012 ((|#2| |#2|) 119)) (-4201 (((-396 |#2|) |#2|) 134) (((-396 |#2|) |#2| |#1|) 32) (((-396 |#2|) |#2| |#1| (-108)) 133)) (-2208 (((-592 (-2 (|:| -2868 (-592 |#2|)) (|:| -2188 |#1|))) |#2| |#2|) 132) (((-592 (-2 (|:| -2868 (-592 |#2|)) (|:| -2188 |#1|))) |#2| |#2| (-108)) 76)) (-3842 (((-592 (-157 |#1|)) |#2| |#1|) 40) (((-592 (-157 |#1|)) |#2|) 41)))
+(((-167 |#1| |#2|) (-10 -7 (-15 -3842 ((-592 (-157 |#1|)) |#2|)) (-15 -3842 ((-592 (-157 |#1|)) |#2| |#1|)) (-15 -2208 ((-592 (-2 (|:| -2868 (-592 |#2|)) (|:| -2188 |#1|))) |#2| |#2| (-108))) (-15 -2208 ((-592 (-2 (|:| -2868 (-592 |#2|)) (|:| -2188 |#1|))) |#2| |#2|)) (-15 -4201 ((-396 |#2|) |#2| |#1| (-108))) (-15 -4201 ((-396 |#2|) |#2| |#1|)) (-15 -4201 ((-396 |#2|) |#2|)) (-15 -2012 (|#2| |#2|)) (-15 -2704 (|#1| |#2|)) (-15 -1831 ((-396 |#2|) |#2| |#1| (-108))) (-15 -1831 ((-396 |#2|) |#2| |#1|)) (-15 -3371 (|#2| |#2|)) (-15 -1442 (|#1| |#2| |#1|)) (-15 -1442 (|#1| |#2|)) (-15 -2599 ((-157 |#1|) |#2|)) (-15 -1923 (|#1| |#1|)) (-15 -1307 ((-2 (|:| |start| |#2|) (|:| -2868 (-396 |#2|))) |#2|))) (-13 (-341) (-787)) (-1150 (-157 |#1|))) (T -167))
+((-1307 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-2 (|:| |start| *3) (|:| -2868 (-396 *3)))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))) (-1923 (*1 *2 *2) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1150 (-157 *2))))) (-2599 (*1 *2 *3) (-12 (-5 *2 (-157 *4)) (-5 *1 (-167 *4 *3)) (-4 *4 (-13 (-341) (-787))) (-4 *3 (-1150 *2)))) (-1442 (*1 *2 *3) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1150 (-157 *2))))) (-1442 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1150 (-157 *2))))) (-3371 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2)) (-4 *2 (-1150 (-157 *3))))) (-1831 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))) (-1831 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))) (-2704 (*1 *2 *3) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1150 (-157 *2))))) (-2012 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2)) (-4 *2 (-1150 (-157 *3))))) (-4201 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))) (-4201 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))) (-4201 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))) (-2208 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-2 (|:| -2868 (-592 *3)) (|:| -2188 *4)))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))) (-2208 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-341) (-787))) (-5 *2 (-592 (-2 (|:| -2868 (-592 *3)) (|:| -2188 *5)))) (-5 *1 (-167 *5 *3)) (-4 *3 (-1150 (-157 *5))))) (-3842 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))) (-3842 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))))
+(-10 -7 (-15 -3842 ((-592 (-157 |#1|)) |#2|)) (-15 -3842 ((-592 (-157 |#1|)) |#2| |#1|)) (-15 -2208 ((-592 (-2 (|:| -2868 (-592 |#2|)) (|:| -2188 |#1|))) |#2| |#2| (-108))) (-15 -2208 ((-592 (-2 (|:| -2868 (-592 |#2|)) (|:| -2188 |#1|))) |#2| |#2|)) (-15 -4201 ((-396 |#2|) |#2| |#1| (-108))) (-15 -4201 ((-396 |#2|) |#2| |#1|)) (-15 -4201 ((-396 |#2|) |#2|)) (-15 -2012 (|#2| |#2|)) (-15 -2704 (|#1| |#2|)) (-15 -1831 ((-396 |#2|) |#2| |#1| (-108))) (-15 -1831 ((-396 |#2|) |#2| |#1|)) (-15 -3371 (|#2| |#2|)) (-15 -1442 (|#1| |#2| |#1|)) (-15 -1442 (|#1| |#2|)) (-15 -2599 ((-157 |#1|) |#2|)) (-15 -1923 (|#1| |#1|)) (-15 -1307 ((-2 (|:| |start| |#2|) (|:| -2868 (-396 |#2|))) |#2|)))
+((-1838 (((-3 |#2| "failed") |#2|) 14)) (-2782 (((-713) |#2|) 16)) (-3499 ((|#2| |#2| |#2|) 18)))
+(((-168 |#1| |#2|) (-10 -7 (-15 -1838 ((-3 |#2| "failed") |#2|)) (-15 -2782 ((-713) |#2|)) (-15 -3499 (|#2| |#2| |#2|))) (-1128) (-619 |#1|)) (T -168))
+((-3499 (*1 *2 *2 *2) (-12 (-4 *3 (-1128)) (-5 *1 (-168 *3 *2)) (-4 *2 (-619 *3)))) (-2782 (*1 *2 *3) (-12 (-4 *4 (-1128)) (-5 *2 (-713)) (-5 *1 (-168 *4 *3)) (-4 *3 (-619 *4)))) (-1838 (*1 *2 *2) (|partial| -12 (-4 *3 (-1128)) (-5 *1 (-168 *3 *2)) (-4 *2 (-619 *3)))))
+(-10 -7 (-15 -1838 ((-3 |#2| "failed") |#2|)) (-15 -2782 ((-713) |#2|)) (-15 -3499 (|#2| |#2| |#2|)))
+((-4087 (((-108) $ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4067 (((-1092) $) 10)) (-4100 (((-798) $) 17)) (-1701 (((-592 (-1097)) $) 12)) (-2775 (((-108) $ $) 15)))
+(((-169) (-13 (-1020) (-10 -8 (-15 -4067 ((-1092) $)) (-15 -1701 ((-592 (-1097)) $))))) (T -169))
+((-4067 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-169)))) (-1701 (*1 *2 *1) (-12 (-5 *2 (-592 (-1097))) (-5 *1 (-169)))))
+(-13 (-1020) (-10 -8 (-15 -4067 ((-1092) $)) (-15 -1701 ((-592 (-1097)) $))))
+((-1448 ((|#2| |#2|) 28)) (-3934 (((-108) |#2|) 19)) (-4220 (((-294 |#1|) |#2|) 12)) (-4233 (((-294 |#1|) |#2|) 14)) (-3109 ((|#2| |#2| (-1092)) 68) ((|#2| |#2|) 69)) (-3005 (((-157 (-294 |#1|)) |#2|) 10)) (-3338 ((|#2| |#2| (-1092)) 65) ((|#2| |#2|) 59)))
+(((-170 |#1| |#2|) (-10 -7 (-15 -3109 (|#2| |#2|)) (-15 -3109 (|#2| |#2| (-1092))) (-15 -3338 (|#2| |#2|)) (-15 -3338 (|#2| |#2| (-1092))) (-15 -4220 ((-294 |#1|) |#2|)) (-15 -4233 ((-294 |#1|) |#2|)) (-15 -3934 ((-108) |#2|)) (-15 -1448 (|#2| |#2|)) (-15 -3005 ((-157 (-294 |#1|)) |#2|))) (-13 (-517) (-789) (-968 (-525))) (-13 (-27) (-1114) (-408 (-157 |#1|)))) (T -170))
+((-3005 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-157 (-294 *4))) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 (-157 *4)))))) (-1448 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 (-157 *3)))))) (-3934 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-108)) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 (-157 *4)))))) (-4233 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-294 *4)) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 (-157 *4)))))) (-4220 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-294 *4)) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 (-157 *4)))))) (-3338 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 (-157 *4)))))) (-3338 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 (-157 *3)))))) (-3109 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 (-157 *4)))))) (-3109 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 (-157 *3)))))))
+(-10 -7 (-15 -3109 (|#2| |#2|)) (-15 -3109 (|#2| |#2| (-1092))) (-15 -3338 (|#2| |#2|)) (-15 -3338 (|#2| |#2| (-1092))) (-15 -4220 ((-294 |#1|) |#2|)) (-15 -4233 ((-294 |#1|) |#2|)) (-15 -3934 ((-108) |#2|)) (-15 -1448 (|#2| |#2|)) (-15 -3005 ((-157 (-294 |#1|)) |#2|)))
+((-2613 (((-1174 (-632 (-887 |#1|))) (-1174 (-632 |#1|))) 24)) (-4100 (((-1174 (-632 (-385 (-887 |#1|)))) (-1174 (-632 |#1|))) 33)))
+(((-171 |#1|) (-10 -7 (-15 -2613 ((-1174 (-632 (-887 |#1|))) (-1174 (-632 |#1|)))) (-15 -4100 ((-1174 (-632 (-385 (-887 |#1|)))) (-1174 (-632 |#1|))))) (-160)) (T -171))
+((-4100 (*1 *2 *3) (-12 (-5 *3 (-1174 (-632 *4))) (-4 *4 (-160)) (-5 *2 (-1174 (-632 (-385 (-887 *4))))) (-5 *1 (-171 *4)))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-1174 (-632 *4))) (-4 *4 (-160)) (-5 *2 (-1174 (-632 (-887 *4)))) (-5 *1 (-171 *4)))))
+(-10 -7 (-15 -2613 ((-1174 (-632 (-887 |#1|))) (-1174 (-632 |#1|)))) (-15 -4100 ((-1174 (-632 (-385 (-887 |#1|)))) (-1174 (-632 |#1|)))))
+((-3701 (((-1094 (-385 (-525))) (-1094 (-385 (-525))) (-1094 (-385 (-525)))) 66)) (-1497 (((-1094 (-385 (-525))) (-592 (-525)) (-592 (-525))) 75)) (-1541 (((-1094 (-385 (-525))) (-525)) 40)) (-2151 (((-1094 (-385 (-525))) (-525)) 52)) (-2825 (((-385 (-525)) (-1094 (-385 (-525)))) 62)) (-1316 (((-1094 (-385 (-525))) (-525)) 32)) (-3558 (((-1094 (-385 (-525))) (-525)) 48)) (-2079 (((-1094 (-385 (-525))) (-525)) 46)) (-1615 (((-1094 (-385 (-525))) (-1094 (-385 (-525))) (-1094 (-385 (-525)))) 60)) (-3926 (((-1094 (-385 (-525))) (-525)) 25)) (-4036 (((-385 (-525)) (-1094 (-385 (-525))) (-1094 (-385 (-525)))) 64)) (-4236 (((-1094 (-385 (-525))) (-525)) 30)) (-3181 (((-1094 (-385 (-525))) (-592 (-525))) 72)))
+(((-172) (-10 -7 (-15 -3926 ((-1094 (-385 (-525))) (-525))) (-15 -1541 ((-1094 (-385 (-525))) (-525))) (-15 -1316 ((-1094 (-385 (-525))) (-525))) (-15 -4236 ((-1094 (-385 (-525))) (-525))) (-15 -2079 ((-1094 (-385 (-525))) (-525))) (-15 -3558 ((-1094 (-385 (-525))) (-525))) (-15 -2151 ((-1094 (-385 (-525))) (-525))) (-15 -4036 ((-385 (-525)) (-1094 (-385 (-525))) (-1094 (-385 (-525))))) (-15 -1615 ((-1094 (-385 (-525))) (-1094 (-385 (-525))) (-1094 (-385 (-525))))) (-15 -2825 ((-385 (-525)) (-1094 (-385 (-525))))) (-15 -3701 ((-1094 (-385 (-525))) (-1094 (-385 (-525))) (-1094 (-385 (-525))))) (-15 -3181 ((-1094 (-385 (-525))) (-592 (-525)))) (-15 -1497 ((-1094 (-385 (-525))) (-592 (-525)) (-592 (-525)))))) (T -172))
+((-1497 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)))) (-3701 (*1 *2 *2 *2) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-1094 (-385 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-172)))) (-1615 (*1 *2 *2 *2) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)))) (-4036 (*1 *2 *3 *3) (-12 (-5 *3 (-1094 (-385 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-172)))) (-2151 (*1 *2 *3) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-3558 (*1 *2 *3) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-2079 (*1 *2 *3) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-4236 (*1 *2 *3) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-1316 (*1 *2 *3) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-1541 (*1 *2 *3) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-3926 (*1 *2 *3) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
+(-10 -7 (-15 -3926 ((-1094 (-385 (-525))) (-525))) (-15 -1541 ((-1094 (-385 (-525))) (-525))) (-15 -1316 ((-1094 (-385 (-525))) (-525))) (-15 -4236 ((-1094 (-385 (-525))) (-525))) (-15 -2079 ((-1094 (-385 (-525))) (-525))) (-15 -3558 ((-1094 (-385 (-525))) (-525))) (-15 -2151 ((-1094 (-385 (-525))) (-525))) (-15 -4036 ((-385 (-525)) (-1094 (-385 (-525))) (-1094 (-385 (-525))))) (-15 -1615 ((-1094 (-385 (-525))) (-1094 (-385 (-525))) (-1094 (-385 (-525))))) (-15 -2825 ((-385 (-525)) (-1094 (-385 (-525))))) (-15 -3701 ((-1094 (-385 (-525))) (-1094 (-385 (-525))) (-1094 (-385 (-525))))) (-15 -3181 ((-1094 (-385 (-525))) (-592 (-525)))) (-15 -1497 ((-1094 (-385 (-525))) (-592 (-525)) (-592 (-525)))))
+((-2483 (((-396 (-1088 (-525))) (-525)) 28)) (-3560 (((-592 (-1088 (-525))) (-525)) 23)) (-3099 (((-1088 (-525)) (-525)) 21)))
+(((-173) (-10 -7 (-15 -3560 ((-592 (-1088 (-525))) (-525))) (-15 -3099 ((-1088 (-525)) (-525))) (-15 -2483 ((-396 (-1088 (-525))) (-525))))) (T -173))
+((-2483 (*1 *2 *3) (-12 (-5 *2 (-396 (-1088 (-525)))) (-5 *1 (-173)) (-5 *3 (-525)))) (-3099 (*1 *2 *3) (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-173)) (-5 *3 (-525)))) (-3560 (*1 *2 *3) (-12 (-5 *2 (-592 (-1088 (-525)))) (-5 *1 (-173)) (-5 *3 (-525)))))
+(-10 -7 (-15 -3560 ((-592 (-1088 (-525))) (-525))) (-15 -3099 ((-1088 (-525)) (-525))) (-15 -2483 ((-396 (-1088 (-525))) (-525))))
+((-4007 (((-1073 (-205)) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 104)) (-3163 (((-592 (-1075)) (-1073 (-205))) NIL)) (-2828 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 80)) (-4228 (((-592 (-205)) (-294 (-205)) (-1092) (-1015 (-782 (-205)))) NIL)) (-3843 (((-592 (-1075)) (-592 (-205))) NIL)) (-3829 (((-205) (-1015 (-782 (-205)))) 24)) (-4008 (((-205) (-1015 (-782 (-205)))) 25)) (-2728 (((-357) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 97)) (-1288 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 42)) (-3768 (((-1075) (-205)) NIL)) (-3527 (((-1075) (-592 (-1075))) 20)) (-3561 (((-966) (-1092) (-1092) (-966)) 13)))
+(((-174) (-10 -7 (-15 -2828 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1288 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3829 ((-205) (-1015 (-782 (-205))))) (-15 -4008 ((-205) (-1015 (-782 (-205))))) (-15 -2728 ((-357) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4228 ((-592 (-205)) (-294 (-205)) (-1092) (-1015 (-782 (-205))))) (-15 -4007 ((-1073 (-205)) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3768 ((-1075) (-205))) (-15 -3843 ((-592 (-1075)) (-592 (-205)))) (-15 -3163 ((-592 (-1075)) (-1073 (-205)))) (-15 -3527 ((-1075) (-592 (-1075)))) (-15 -3561 ((-966) (-1092) (-1092) (-966))))) (T -174))
+((-3561 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-966)) (-5 *3 (-1092)) (-5 *1 (-174)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-1075)) (-5 *1 (-174)))) (-3163 (*1 *2 *3) (-12 (-5 *3 (-1073 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-174)))) (-3843 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-174)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1075)) (-5 *1 (-174)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-1073 (-205))) (-5 *1 (-174)))) (-4228 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1092)) (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-174)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-174)))) (-4008 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174)))) (-3829 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174)))) (-1288 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-174)))) (-2828 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-174)))))
+(-10 -7 (-15 -2828 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1288 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3829 ((-205) (-1015 (-782 (-205))))) (-15 -4008 ((-205) (-1015 (-782 (-205))))) (-15 -2728 ((-357) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4228 ((-592 (-205)) (-294 (-205)) (-1092) (-1015 (-782 (-205))))) (-15 -4007 ((-1073 (-205)) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3768 ((-1075) (-205))) (-15 -3843 ((-592 (-1075)) (-592 (-205)))) (-15 -3163 ((-592 (-1075)) (-1073 (-205)))) (-15 -3527 ((-1075) (-592 (-1075)))) (-15 -3561 ((-966) (-1092) (-1092) (-966))))
+((-4087 (((-108) $ $) NIL)) (-2354 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 55) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 32) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
(((-175) (-729)) (T -175))
NIL
(-729)
-((-4236 (((-108) $ $) NIL)) (-3909 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 60) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 41) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2354 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 60) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 41) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
(((-176) (-729)) (T -176))
NIL
(-729)
-((-4236 (((-108) $ $) NIL)) (-3909 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 69) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 40) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2354 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 69) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 40) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
(((-177) (-729)) (T -177))
NIL
(-729)
-((-4236 (((-108) $ $) NIL)) (-3909 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 56) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 34) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2354 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 56) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 34) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
(((-178) (-729)) (T -178))
NIL
(-729)
-((-4236 (((-108) $ $) NIL)) (-3909 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 67) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 38) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2354 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 67) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 38) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
(((-179) (-729)) (T -179))
NIL
(-729)
-((-4236 (((-108) $ $) NIL)) (-3909 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 73) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 36) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2354 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 73) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 36) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
(((-180) (-729)) (T -180))
NIL
(-729)
-((-4236 (((-108) $ $) NIL)) (-3909 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 80) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 44) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2354 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 80) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 44) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
(((-181) (-729)) (T -181))
NIL
(-729)
-((-4236 (((-108) $ $) NIL)) (-3909 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 70) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 40) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2354 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 70) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 40) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
(((-182) (-729)) (T -182))
NIL
(-729)
-((-4236 (((-108) $ $) NIL)) (-3909 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 65)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 32)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2354 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 65)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 32)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
(((-183) (-729)) (T -183))
NIL
(-729)
-((-4236 (((-108) $ $) NIL)) (-3909 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 63)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 34)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2354 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 63)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 34)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
(((-184) (-729)) (T -184))
NIL
(-729)
-((-4236 (((-108) $ $) NIL)) (-3909 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 90) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 78) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2354 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 90) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 78) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
(((-185) (-729)) (T -185))
NIL
(-729)
-((-2111 (((-3 (-2 (|:| -4188 (-110)) (|:| |w| (-205))) "failed") (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 85)) (-3792 (((-525) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 42)) (-4003 (((-3 (-592 (-205)) "failed") (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 73)))
-(((-186) (-10 -7 (-15 -2111 ((-3 (-2 (|:| -4188 (-110)) (|:| |w| (-205))) "failed") (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4003 ((-3 (-592 (-205)) "failed") (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3792 ((-525) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -186))
-((-3792 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-525)) (-5 *1 (-186)))) (-4003 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-186)))) (-2111 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -4188 (-110)) (|:| |w| (-205)))) (-5 *1 (-186)))))
-(-10 -7 (-15 -2111 ((-3 (-2 (|:| -4188 (-110)) (|:| |w| (-205))) "failed") (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4003 ((-3 (-592 (-205)) "failed") (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3792 ((-525) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
-((-2751 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 39)) (-3332 (((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 129)) (-2203 (((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-632 (-294 (-205)))) 88)) (-1457 (((-357) (-632 (-294 (-205)))) 112)) (-2174 (((-632 (-294 (-205))) (-1174 (-294 (-205))) (-592 (-1092))) 109)) (-3313 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 30)) (-2003 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 43)) (-2457 (((-632 (-294 (-205))) (-632 (-294 (-205))) (-592 (-1092)) (-1174 (-294 (-205)))) 101)) (-2724 (((-357) (-357) (-592 (-357))) 106) (((-357) (-357) (-357)) 104)) (-4037 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 36)))
-(((-187) (-10 -7 (-15 -2724 ((-357) (-357) (-357))) (-15 -2724 ((-357) (-357) (-592 (-357)))) (-15 -1457 ((-357) (-632 (-294 (-205))))) (-15 -2174 ((-632 (-294 (-205))) (-1174 (-294 (-205))) (-592 (-1092)))) (-15 -2457 ((-632 (-294 (-205))) (-632 (-294 (-205))) (-592 (-1092)) (-1174 (-294 (-205))))) (-15 -2203 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-632 (-294 (-205))))) (-15 -3332 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2751 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2003 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4037 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3313 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -187))
-((-3313 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357)))) (-5 *1 (-187)))) (-2203 (*1 *2 *3) (-12 (-5 *3 (-632 (-294 (-205)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357)))) (-5 *1 (-187)))) (-2457 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-632 (-294 (-205)))) (-5 *3 (-592 (-1092))) (-5 *4 (-1174 (-294 (-205)))) (-5 *1 (-187)))) (-2174 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 (-294 (-205)))) (-5 *4 (-592 (-1092))) (-5 *2 (-632 (-294 (-205)))) (-5 *1 (-187)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-632 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-2724 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-357))) (-5 *2 (-357)) (-5 *1 (-187)))) (-2724 (*1 *2 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-187)))))
-(-10 -7 (-15 -2724 ((-357) (-357) (-357))) (-15 -2724 ((-357) (-357) (-592 (-357)))) (-15 -1457 ((-357) (-632 (-294 (-205))))) (-15 -2174 ((-632 (-294 (-205))) (-1174 (-294 (-205))) (-592 (-1092)))) (-15 -2457 ((-632 (-294 (-205))) (-632 (-294 (-205))) (-592 (-1092)) (-1174 (-294 (-205))))) (-15 -2203 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-632 (-294 (-205))))) (-15 -3332 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2751 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2003 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4037 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3313 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
-((-4236 (((-108) $ $) NIL)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 41)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-2999 (((-966) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 64)) (-3955 (((-108) $ $) NIL)))
+((-3016 (((-3 (-2 (|:| -1534 (-110)) (|:| |w| (-205))) "failed") (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 85)) (-3567 (((-525) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 42)) (-3903 (((-3 (-592 (-205)) "failed") (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 73)))
+(((-186) (-10 -7 (-15 -3016 ((-3 (-2 (|:| -1534 (-110)) (|:| |w| (-205))) "failed") (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3903 ((-3 (-592 (-205)) "failed") (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3567 ((-525) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -186))
+((-3567 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-525)) (-5 *1 (-186)))) (-3903 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-186)))) (-3016 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -1534 (-110)) (|:| |w| (-205)))) (-5 *1 (-186)))))
+(-10 -7 (-15 -3016 ((-3 (-2 (|:| -1534 (-110)) (|:| |w| (-205))) "failed") (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3903 ((-3 (-592 (-205)) "failed") (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3567 ((-525) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
+((-3102 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 39)) (-1642 (((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 129)) (-1596 (((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-632 (-294 (-205)))) 88)) (-2504 (((-357) (-632 (-294 (-205)))) 112)) (-1334 (((-632 (-294 (-205))) (-1174 (-294 (-205))) (-592 (-1092))) 109)) (-1447 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 30)) (-3186 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 43)) (-2825 (((-632 (-294 (-205))) (-632 (-294 (-205))) (-592 (-1092)) (-1174 (-294 (-205)))) 101)) (-2887 (((-357) (-357) (-592 (-357))) 106) (((-357) (-357) (-357)) 104)) (-1240 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 36)))
+(((-187) (-10 -7 (-15 -2887 ((-357) (-357) (-357))) (-15 -2887 ((-357) (-357) (-592 (-357)))) (-15 -2504 ((-357) (-632 (-294 (-205))))) (-15 -1334 ((-632 (-294 (-205))) (-1174 (-294 (-205))) (-592 (-1092)))) (-15 -2825 ((-632 (-294 (-205))) (-632 (-294 (-205))) (-592 (-1092)) (-1174 (-294 (-205))))) (-15 -1596 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-632 (-294 (-205))))) (-15 -1642 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3102 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3186 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1240 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1447 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -187))
+((-1447 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-1240 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357)))) (-5 *1 (-187)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-632 (-294 (-205)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357)))) (-5 *1 (-187)))) (-2825 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-632 (-294 (-205)))) (-5 *3 (-592 (-1092))) (-5 *4 (-1174 (-294 (-205)))) (-5 *1 (-187)))) (-1334 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 (-294 (-205)))) (-5 *4 (-592 (-1092))) (-5 *2 (-632 (-294 (-205)))) (-5 *1 (-187)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-632 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-2887 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-357))) (-5 *2 (-357)) (-5 *1 (-187)))) (-2887 (*1 *2 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-187)))))
+(-10 -7 (-15 -2887 ((-357) (-357) (-357))) (-15 -2887 ((-357) (-357) (-592 (-357)))) (-15 -2504 ((-357) (-632 (-294 (-205))))) (-15 -1334 ((-632 (-294 (-205))) (-1174 (-294 (-205))) (-592 (-1092)))) (-15 -2825 ((-632 (-294 (-205))) (-632 (-294 (-205))) (-592 (-1092)) (-1174 (-294 (-205))))) (-15 -1596 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-632 (-294 (-205))))) (-15 -1642 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3102 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3186 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1240 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1447 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
+((-4087 (((-108) $ $) NIL)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 41)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-3643 (((-966) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 64)) (-2775 (((-108) $ $) NIL)))
(((-188) (-742)) (T -188))
NIL
(-742)
-((-4236 (((-108) $ $) NIL)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 41)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-2999 (((-966) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 62)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 41)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-3643 (((-966) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 62)) (-2775 (((-108) $ $) NIL)))
(((-189) (-742)) (T -189))
NIL
(-742)
-((-4236 (((-108) $ $) NIL)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 40)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-2999 (((-966) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 66)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 40)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-3643 (((-966) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 66)) (-2775 (((-108) $ $) NIL)))
(((-190) (-742)) (T -190))
NIL
(-742)
-((-4236 (((-108) $ $) NIL)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 46)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-2999 (((-966) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 75)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 46)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-3643 (((-966) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 75)) (-2775 (((-108) $ $) NIL)))
(((-191) (-742)) (T -191))
NIL
(-742)
-((-2726 (((-592 (-1092)) (-1092) (-713)) 23)) (-1615 (((-294 (-205)) (-294 (-205))) 31)) (-3988 (((-108) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) 73)) (-3390 (((-108) (-205) (-205) (-592 (-294 (-205)))) 44)))
-(((-192) (-10 -7 (-15 -2726 ((-592 (-1092)) (-1092) (-713))) (-15 -1615 ((-294 (-205)) (-294 (-205)))) (-15 -3390 ((-108) (-205) (-205) (-592 (-294 (-205))))) (-15 -3988 ((-108) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205))))))) (T -192))
-((-3988 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) (-5 *2 (-108)) (-5 *1 (-192)))) (-3390 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-592 (-294 (-205)))) (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-192)))) (-1615 (*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-192)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-592 (-1092))) (-5 *1 (-192)) (-5 *3 (-1092)))))
-(-10 -7 (-15 -2726 ((-592 (-1092)) (-1092) (-713))) (-15 -1615 ((-294 (-205)) (-294 (-205)))) (-15 -3390 ((-108) (-205) (-205) (-592 (-294 (-205))))) (-15 -3988 ((-108) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205))))))
-((-4236 (((-108) $ $) NIL)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) 26)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3804 (((-966) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) 57)) (-3955 (((-108) $ $) NIL)))
+((-2668 (((-592 (-1092)) (-1092) (-713)) 23)) (-3740 (((-294 (-205)) (-294 (-205))) 31)) (-1950 (((-108) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) 73)) (-3936 (((-108) (-205) (-205) (-592 (-294 (-205)))) 44)))
+(((-192) (-10 -7 (-15 -2668 ((-592 (-1092)) (-1092) (-713))) (-15 -3740 ((-294 (-205)) (-294 (-205)))) (-15 -3936 ((-108) (-205) (-205) (-592 (-294 (-205))))) (-15 -1950 ((-108) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205))))))) (T -192))
+((-1950 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) (-5 *2 (-108)) (-5 *1 (-192)))) (-3936 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-592 (-294 (-205)))) (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-192)))) (-3740 (*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-192)))) (-2668 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-592 (-1092))) (-5 *1 (-192)) (-5 *3 (-1092)))))
+(-10 -7 (-15 -2668 ((-592 (-1092)) (-1092) (-713))) (-15 -3740 ((-294 (-205)) (-294 (-205)))) (-15 -3936 ((-108) (-205) (-205) (-592 (-294 (-205))))) (-15 -1950 ((-108) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205))))))
+((-4087 (((-108) $ $) NIL)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) 26)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-3688 (((-966) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) 57)) (-2775 (((-108) $ $) NIL)))
(((-193) (-830)) (T -193))
NIL
(-830)
-((-4236 (((-108) $ $) NIL)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) 21)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3804 (((-966) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) NIL)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) 21)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-3688 (((-966) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) NIL)) (-2775 (((-108) $ $) NIL)))
(((-194) (-830)) (T -194))
NIL
(-830)
-((-4236 (((-108) $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1934 (((-1179) $) 36) (((-1179) $ (-856) (-856)) 38)) (-3406 (($ $ (-922)) 19) (((-225 (-1075)) $ (-1092)) 15)) (-2736 (((-1179) $) 34)) (-1217 (((-798) $) 31) (($ (-592 |#1|)) 8)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $ $) 27)) (-4047 (($ $ $) 22)))
-(((-195 |#1|) (-13 (-1020) (-10 -8 (-15 -3406 ($ $ (-922))) (-15 -3406 ((-225 (-1075)) $ (-1092))) (-15 -4047 ($ $ $)) (-15 -4061 ($ $ $)) (-15 -1217 ($ (-592 |#1|))) (-15 -2736 ((-1179) $)) (-15 -1934 ((-1179) $)) (-15 -1934 ((-1179) $ (-856) (-856))))) (-13 (-789) (-10 -8 (-15 -3406 ((-1075) $ (-1092))) (-15 -2736 ((-1179) $)) (-15 -1934 ((-1179) $))))) (T -195))
-((-3406 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-195 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3406 ((-1075) $ (-1092))) (-15 -2736 ((-1179) $)) (-15 -1934 ((-1179) $))))))) (-3406 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-225 (-1075))) (-5 *1 (-195 *4)) (-4 *4 (-13 (-789) (-10 -8 (-15 -3406 ((-1075) $ *3)) (-15 -2736 ((-1179) $)) (-15 -1934 ((-1179) $))))))) (-4047 (*1 *1 *1 *1) (-12 (-5 *1 (-195 *2)) (-4 *2 (-13 (-789) (-10 -8 (-15 -3406 ((-1075) $ (-1092))) (-15 -2736 ((-1179) $)) (-15 -1934 ((-1179) $))))))) (-4061 (*1 *1 *1 *1) (-12 (-5 *1 (-195 *2)) (-4 *2 (-13 (-789) (-10 -8 (-15 -3406 ((-1075) $ (-1092))) (-15 -2736 ((-1179) $)) (-15 -1934 ((-1179) $))))))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3406 ((-1075) $ (-1092))) (-15 -2736 ((-1179) $)) (-15 -1934 ((-1179) $))))) (-5 *1 (-195 *3)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-195 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3406 ((-1075) $ (-1092))) (-15 -2736 (*2 $)) (-15 -1934 (*2 $))))))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-195 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3406 ((-1075) $ (-1092))) (-15 -2736 (*2 $)) (-15 -1934 (*2 $))))))) (-1934 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1179)) (-5 *1 (-195 *4)) (-4 *4 (-13 (-789) (-10 -8 (-15 -3406 ((-1075) $ (-1092))) (-15 -2736 (*2 $)) (-15 -1934 (*2 $))))))))
-(-13 (-1020) (-10 -8 (-15 -3406 ($ $ (-922))) (-15 -3406 ((-225 (-1075)) $ (-1092))) (-15 -4047 ($ $ $)) (-15 -4061 ($ $ $)) (-15 -1217 ($ (-592 |#1|))) (-15 -2736 ((-1179) $)) (-15 -1934 ((-1179) $)) (-15 -1934 ((-1179) $ (-856) (-856)))))
-((-2215 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
-(((-196 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2215 (|#2| |#4| (-1 |#2| |#2|)))) (-341) (-1150 |#1|) (-1150 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -196))
-((-2215 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-341)) (-4 *6 (-1150 (-385 *2))) (-4 *2 (-1150 *5)) (-5 *1 (-196 *5 *2 *6 *3)) (-4 *3 (-320 *5 *2 *6)))))
-(-10 -7 (-15 -2215 (|#2| |#4| (-1 |#2| |#2|))))
-((-1985 ((|#2| |#2| (-713) |#2|) 42)) (-4140 ((|#2| |#2| (-713) |#2|) 38)) (-1390 (((-592 |#2|) (-592 (-2 (|:| |deg| (-713)) (|:| -3724 |#2|)))) 58)) (-2799 (((-592 (-2 (|:| |deg| (-713)) (|:| -3724 |#2|))) |#2|) 53)) (-4124 (((-108) |#2|) 50)) (-2635 (((-396 |#2|) |#2|) 78)) (-2770 (((-396 |#2|) |#2|) 77)) (-2209 ((|#2| |#2| (-713) |#2|) 36)) (-1341 (((-2 (|:| |cont| |#1|) (|:| -3843 (-592 (-2 (|:| |irr| |#2|) (|:| -1616 (-525)))))) |#2| (-108)) 70)))
-(((-197 |#1| |#2|) (-10 -7 (-15 -2770 ((-396 |#2|) |#2|)) (-15 -2635 ((-396 |#2|) |#2|)) (-15 -1341 ((-2 (|:| |cont| |#1|) (|:| -3843 (-592 (-2 (|:| |irr| |#2|) (|:| -1616 (-525)))))) |#2| (-108))) (-15 -2799 ((-592 (-2 (|:| |deg| (-713)) (|:| -3724 |#2|))) |#2|)) (-15 -1390 ((-592 |#2|) (-592 (-2 (|:| |deg| (-713)) (|:| -3724 |#2|))))) (-15 -2209 (|#2| |#2| (-713) |#2|)) (-15 -4140 (|#2| |#2| (-713) |#2|)) (-15 -1985 (|#2| |#2| (-713) |#2|)) (-15 -4124 ((-108) |#2|))) (-327) (-1150 |#1|)) (T -197))
-((-4124 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-197 *4 *3)) (-4 *3 (-1150 *4)))) (-1985 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) (-4 *2 (-1150 *4)))) (-4140 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) (-4 *2 (-1150 *4)))) (-2209 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) (-4 *2 (-1150 *4)))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |deg| (-713)) (|:| -3724 *5)))) (-4 *5 (-1150 *4)) (-4 *4 (-327)) (-5 *2 (-592 *5)) (-5 *1 (-197 *4 *5)))) (-2799 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -3724 *3)))) (-5 *1 (-197 *4 *3)) (-4 *3 (-1150 *4)))) (-1341 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-327)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3843 (-592 (-2 (|:| |irr| *3) (|:| -1616 (-525))))))) (-5 *1 (-197 *5 *3)) (-4 *3 (-1150 *5)))) (-2635 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3)) (-4 *3 (-1150 *4)))) (-2770 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3)) (-4 *3 (-1150 *4)))))
-(-10 -7 (-15 -2770 ((-396 |#2|) |#2|)) (-15 -2635 ((-396 |#2|) |#2|)) (-15 -1341 ((-2 (|:| |cont| |#1|) (|:| -3843 (-592 (-2 (|:| |irr| |#2|) (|:| -1616 (-525)))))) |#2| (-108))) (-15 -2799 ((-592 (-2 (|:| |deg| (-713)) (|:| -3724 |#2|))) |#2|)) (-15 -1390 ((-592 |#2|) (-592 (-2 (|:| |deg| (-713)) (|:| -3724 |#2|))))) (-15 -2209 (|#2| |#2| (-713) |#2|)) (-15 -4140 (|#2| |#2| (-713) |#2|)) (-15 -1985 (|#2| |#2| (-713) |#2|)) (-15 -4124 ((-108) |#2|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1548 (((-525) $) NIL (|has| (-525) (-286)))) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-2193 (((-108) $ $) NIL)) (-3855 (((-525) $) NIL (|has| (-525) (-762)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL) (((-3 (-1092) "failed") $) NIL (|has| (-525) (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-525) (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-525) (-968 (-525))))) (-1572 (((-525) $) NIL) (((-1092) $) NIL (|has| (-525) (-968 (-1092)))) (((-385 (-525)) $) NIL (|has| (-525) (-968 (-525)))) (((-525) $) NIL (|has| (-525) (-968 (-525))))) (-1747 (($ $ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($) NIL (|has| (-525) (-510)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-1222 (((-108) $) NIL (|has| (-525) (-762)))) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-525) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-525) (-821 (-357))))) (-1396 (((-108) $) NIL)) (-3858 (($ $) NIL)) (-3114 (((-525) $) NIL)) (-3844 (((-3 $ "failed") $) NIL (|has| (-525) (-1068)))) (-3256 (((-108) $) NIL (|has| (-525) (-762)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2638 (($ $ $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| (-525) (-789)))) (-3165 (($ (-1 (-525) (-525)) $) NIL)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2295 (($) NIL (|has| (-525) (-1068)) CONST)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3628 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) NIL)) (-2487 (((-525) $) NIL (|has| (-525) (-510)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-2770 (((-396 $) $) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2457 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1092)) (-592 (-525))) NIL (|has| (-525) (-486 (-1092) (-525)))) (($ $ (-1092) (-525)) NIL (|has| (-525) (-486 (-1092) (-525))))) (-3684 (((-713) $) NIL)) (-3406 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3376 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1092)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4143 (($ $) NIL)) (-3123 (((-525) $) NIL)) (-3990 (($ (-385 (-525))) 9)) (-3210 (((-827 (-525)) $) NIL (|has| (-525) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-525) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-953))) (((-205) $) NIL (|has| (-525) (-953)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-844))))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 8) (($ (-525)) NIL) (($ (-1092)) NIL (|has| (-525) (-968 (-1092)))) (((-385 (-525)) $) NIL) (((-936 10) $) 10)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| (-525) (-844))) (|has| (-525) (-136))))) (-3917 (((-713)) NIL)) (-3074 (((-525) $) NIL (|has| (-525) (-510)))) (-3325 (((-108) $ $) NIL)) (-2802 (($ $) NIL (|has| (-525) (-762)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1092)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4011 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3987 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3978 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4075 (($ $ $) NIL) (($ (-525) (-525)) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL)))
-(((-198) (-13 (-925 (-525)) (-10 -8 (-15 -1217 ((-385 (-525)) $)) (-15 -1217 ((-936 10) $)) (-15 -3628 ((-385 (-525)) $)) (-15 -3990 ($ (-385 (-525))))))) (T -198))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-936 10)) (-5 *1 (-198)))) (-3628 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))) (-3990 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))))
-(-13 (-925 (-525)) (-10 -8 (-15 -1217 ((-385 (-525)) $)) (-15 -1217 ((-936 10) $)) (-15 -3628 ((-385 (-525)) $)) (-15 -3990 ($ (-385 (-525))))))
-((-1206 (((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1013 (-782 |#2|)) (-1075)) 28) (((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1013 (-782 |#2|))) 24)) (-4141 (((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1092) (-782 |#2|) (-782 |#2|) (-108)) 17)))
-(((-199 |#1| |#2|) (-10 -7 (-15 -1206 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1013 (-782 |#2|)))) (-15 -1206 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1013 (-782 |#2|)) (-1075))) (-15 -4141 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1092) (-782 |#2|) (-782 |#2|) (-108)))) (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1114) (-893) (-29 |#1|))) (T -199))
-((-4141 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1092)) (-5 *6 (-108)) (-4 *7 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-4 *3 (-13 (-1114) (-893) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-199 *7 *3)) (-5 *5 (-782 *3)))) (-1206 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1013 (-782 *3))) (-5 *5 (-1075)) (-4 *3 (-13 (-1114) (-893) (-29 *6))) (-4 *6 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-199 *6 *3)))) (-1206 (*1 *2 *3 *4) (-12 (-5 *4 (-1013 (-782 *3))) (-4 *3 (-13 (-1114) (-893) (-29 *5))) (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-199 *5 *3)))))
-(-10 -7 (-15 -1206 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1013 (-782 |#2|)))) (-15 -1206 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1013 (-782 |#2|)) (-1075))) (-15 -4141 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1092) (-782 |#2|) (-782 |#2|) (-108))))
-((-1206 (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-385 (-887 |#1|)))) (-1075)) 46) (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-385 (-887 |#1|))))) 43) (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-294 |#1|))) (-1075)) 47) (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-294 |#1|)))) 20)))
-(((-200 |#1|) (-10 -7 (-15 -1206 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-294 |#1|))))) (-15 -1206 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-294 |#1|))) (-1075))) (-15 -1206 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-385 (-887 |#1|)))))) (-15 -1206 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-385 (-887 |#1|)))) (-1075)))) (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (T -200))
-((-1206 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1013 (-782 (-385 (-887 *6))))) (-5 *5 (-1075)) (-5 *3 (-385 (-887 *6))) (-4 *6 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *6)))) (-1206 (*1 *2 *3 *4) (-12 (-5 *4 (-1013 (-782 (-385 (-887 *5))))) (-5 *3 (-385 (-887 *5))) (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *5)))) (-1206 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-385 (-887 *6))) (-5 *4 (-1013 (-782 (-294 *6)))) (-5 *5 (-1075)) (-4 *6 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *6)))) (-1206 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1013 (-782 (-294 *5)))) (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *5)))))
-(-10 -7 (-15 -1206 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-294 |#1|))))) (-15 -1206 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-294 |#1|))) (-1075))) (-15 -1206 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-385 (-887 |#1|)))))) (-15 -1206 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-385 (-887 |#1|)))) (-1075))))
-((-1284 (((-2 (|:| -3101 (-1088 |#1|)) (|:| |deg| (-856))) (-1088 |#1|)) 21)) (-3751 (((-592 (-294 |#2|)) (-294 |#2|) (-856)) 42)))
-(((-201 |#1| |#2|) (-10 -7 (-15 -1284 ((-2 (|:| -3101 (-1088 |#1|)) (|:| |deg| (-856))) (-1088 |#1|))) (-15 -3751 ((-592 (-294 |#2|)) (-294 |#2|) (-856)))) (-977) (-13 (-517) (-789))) (T -201))
-((-3751 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-4 *6 (-13 (-517) (-789))) (-5 *2 (-592 (-294 *6))) (-5 *1 (-201 *5 *6)) (-5 *3 (-294 *6)) (-4 *5 (-977)))) (-1284 (*1 *2 *3) (-12 (-4 *4 (-977)) (-5 *2 (-2 (|:| -3101 (-1088 *4)) (|:| |deg| (-856)))) (-5 *1 (-201 *4 *5)) (-5 *3 (-1088 *4)) (-4 *5 (-13 (-517) (-789))))))
-(-10 -7 (-15 -1284 ((-2 (|:| -3101 (-1088 |#1|)) (|:| |deg| (-856))) (-1088 |#1|))) (-15 -3751 ((-592 (-294 |#2|)) (-294 |#2|) (-856))))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3744 ((|#1| $) NIL)) (-3412 ((|#1| $) 25)) (-3991 (((-108) $ (-713)) NIL)) (-2169 (($) NIL T CONST)) (-3680 (($ $) NIL)) (-2700 (($ $) 31)) (-2940 ((|#1| |#1| $) NIL)) (-2375 ((|#1| $) NIL)) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-4178 (((-713) $) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2992 ((|#1| $) NIL)) (-1929 ((|#1| |#1| $) 28)) (-1685 ((|#1| |#1| $) 30)) (-1262 (($ |#1| $) NIL)) (-1794 (((-713) $) 27)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-2417 ((|#1| $) NIL)) (-2334 ((|#1| $) 26)) (-2024 ((|#1| $) 24)) (-4127 ((|#1| $) NIL)) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2859 ((|#1| |#1| $) NIL)) (-2659 (((-108) $) 9)) (-2512 (($) NIL)) (-1892 ((|#1| $) NIL)) (-3429 (($) NIL) (($ (-592 |#1|)) 16)) (-1769 (((-713) $) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) NIL)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3599 ((|#1| $) 13)) (-1956 (($ (-592 |#1|)) NIL)) (-1407 ((|#1| $) NIL)) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-202 |#1|) (-13 (-233 |#1|) (-10 -8 (-15 -3429 ($ (-592 |#1|))))) (-1020)) (T -202))
-((-3429 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-202 *3)))))
-(-13 (-233 |#1|) (-10 -8 (-15 -3429 ($ (-592 |#1|)))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1919 (($ (-294 |#1|)) 23)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-4063 (((-108) $) NIL)) (-3077 (((-3 (-294 |#1|) "failed") $) NIL)) (-1572 (((-294 |#1|) $) NIL)) (-3063 (($ $) 31)) (-3457 (((-3 $ "failed") $) NIL)) (-1396 (((-108) $) NIL)) (-3165 (($ (-1 (-294 |#1|) (-294 |#1|)) $) NIL)) (-3043 (((-294 |#1|) $) NIL)) (-1540 (($ $) 30)) (-2619 (((-1075) $) NIL)) (-3738 (((-108) $) NIL)) (-2093 (((-1039) $) NIL)) (-3409 (($ (-713)) NIL)) (-1949 (($ $) 32)) (-2343 (((-525) $) NIL)) (-1217 (((-798) $) 57) (($ (-525)) NIL) (($ (-294 |#1|)) NIL)) (-1568 (((-294 |#1|) $ $) NIL)) (-3917 (((-713)) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 25 T CONST)) (-3359 (($) 50 T CONST)) (-3955 (((-108) $ $) 28)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) 19)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 24) (($ (-294 |#1|) $) 18)))
-(((-203 |#1| |#2|) (-13 (-570 (-294 |#1|)) (-968 (-294 |#1|)) (-10 -8 (-15 -3043 ((-294 |#1|) $)) (-15 -1540 ($ $)) (-15 -3063 ($ $)) (-15 -1568 ((-294 |#1|) $ $)) (-15 -3409 ($ (-713))) (-15 -3738 ((-108) $)) (-15 -4063 ((-108) $)) (-15 -2343 ((-525) $)) (-15 -3165 ($ (-1 (-294 |#1|) (-294 |#1|)) $)) (-15 -1919 ($ (-294 |#1|))) (-15 -1949 ($ $)))) (-13 (-977) (-789)) (-592 (-1092))) (T -203))
-((-3043 (*1 *2 *1) (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1092))))) (-1540 (*1 *1 *1) (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-977) (-789))) (-14 *3 (-592 (-1092))))) (-3063 (*1 *1 *1) (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-977) (-789))) (-14 *3 (-592 (-1092))))) (-1568 (*1 *2 *1 *1) (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1092))))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1092))))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1092))))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1092))))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1092))))) (-3165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-294 *3) (-294 *3))) (-4 *3 (-13 (-977) (-789))) (-5 *1 (-203 *3 *4)) (-14 *4 (-592 (-1092))))) (-1919 (*1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *3 (-13 (-977) (-789))) (-5 *1 (-203 *3 *4)) (-14 *4 (-592 (-1092))))) (-1949 (*1 *1 *1) (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-977) (-789))) (-14 *3 (-592 (-1092))))))
-(-13 (-570 (-294 |#1|)) (-968 (-294 |#1|)) (-10 -8 (-15 -3043 ((-294 |#1|) $)) (-15 -1540 ($ $)) (-15 -3063 ($ $)) (-15 -1568 ((-294 |#1|) $ $)) (-15 -3409 ($ (-713))) (-15 -3738 ((-108) $)) (-15 -4063 ((-108) $)) (-15 -2343 ((-525) $)) (-15 -3165 ($ (-1 (-294 |#1|) (-294 |#1|)) $)) (-15 -1919 ($ (-294 |#1|))) (-15 -1949 ($ $))))
-((-2345 (((-108) (-1075)) 22)) (-3015 (((-3 (-782 |#2|) "failed") (-565 |#2|) |#2| (-782 |#2|) (-782 |#2|) (-108)) 32)) (-1385 (((-3 (-108) "failed") (-1088 |#2|) (-782 |#2|) (-782 |#2|) (-108)) 73) (((-3 (-108) "failed") (-887 |#1|) (-1092) (-782 |#2|) (-782 |#2|) (-108)) 74)))
-(((-204 |#1| |#2|) (-10 -7 (-15 -2345 ((-108) (-1075))) (-15 -3015 ((-3 (-782 |#2|) "failed") (-565 |#2|) |#2| (-782 |#2|) (-782 |#2|) (-108))) (-15 -1385 ((-3 (-108) "failed") (-887 |#1|) (-1092) (-782 |#2|) (-782 |#2|) (-108))) (-15 -1385 ((-3 (-108) "failed") (-1088 |#2|) (-782 |#2|) (-782 |#2|) (-108)))) (-13 (-429) (-789) (-968 (-525)) (-588 (-525))) (-13 (-1114) (-29 |#1|))) (T -204))
-((-1385 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1088 *6)) (-5 *4 (-782 *6)) (-4 *6 (-13 (-1114) (-29 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-204 *5 *6)))) (-1385 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-887 *6)) (-5 *4 (-1092)) (-5 *5 (-782 *7)) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-4 *7 (-13 (-1114) (-29 *6))) (-5 *1 (-204 *6 *7)))) (-3015 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-782 *4)) (-5 *3 (-565 *4)) (-5 *5 (-108)) (-4 *4 (-13 (-1114) (-29 *6))) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-204 *6 *4)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-108)) (-5 *1 (-204 *4 *5)) (-4 *5 (-13 (-1114) (-29 *4))))))
-(-10 -7 (-15 -2345 ((-108) (-1075))) (-15 -3015 ((-3 (-782 |#2|) "failed") (-565 |#2|) |#2| (-782 |#2|) (-782 |#2|) (-108))) (-15 -1385 ((-3 (-108) "failed") (-887 |#1|) (-1092) (-782 |#2|) (-782 |#2|) (-108))) (-15 -1385 ((-3 (-108) "failed") (-1088 |#2|) (-782 |#2|) (-782 |#2|) (-108))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 89)) (-1548 (((-525) $) 99)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-3828 (($ $) NIL)) (-1575 (($ $) 77)) (-2804 (($ $) 65)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2782 (($ $) 56)) (-2193 (((-108) $ $) NIL)) (-1549 (($ $) 75)) (-2780 (($ $) 63)) (-3855 (((-525) $) 116)) (-1599 (($ $) 80)) (-2836 (($ $) 67)) (-2169 (($) NIL T CONST)) (-3384 (($ $) NIL)) (-3077 (((-3 (-525) "failed") $) 115) (((-3 (-385 (-525)) "failed") $) 112)) (-1572 (((-525) $) 113) (((-385 (-525)) $) 110)) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) 92)) (-1896 (((-385 (-525)) $ (-713)) 108) (((-385 (-525)) $ (-713) (-713)) 107)) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-3836 (((-856)) 29) (((-856) (-856)) NIL (|has| $ (-6 -4249)))) (-1222 (((-108) $) NIL)) (-3140 (($) 39)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL)) (-2581 (((-525) $) 35)) (-1396 (((-108) $) NIL)) (-2171 (($ $ (-525)) NIL)) (-2382 (($ $) NIL)) (-3256 (((-108) $) 88)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2638 (($ $ $) 53) (($) 34 (-12 (-1850 (|has| $ (-6 -4241))) (-1850 (|has| $ (-6 -4249)))))) (-3662 (($ $ $) 52) (($) 33 (-12 (-1850 (|has| $ (-6 -4241))) (-1850 (|has| $ (-6 -4249)))))) (-1914 (((-525) $) 27)) (-2699 (($ $) 30)) (-3133 (($ $) 57)) (-1517 (($ $) 62)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2896 (((-856) (-525)) NIL (|has| $ (-6 -4249)))) (-2093 (((-1039) $) NIL) (((-525) $) 90)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3628 (($ $) NIL)) (-2487 (($ $) NIL)) (-3299 (($ (-525) (-525)) NIL) (($ (-525) (-525) (-856)) 100)) (-2770 (((-396 $) $) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-4193 (((-525) $) 28)) (-4217 (($) 38)) (-3096 (($ $) 61)) (-3684 (((-713) $) NIL)) (-4142 (((-1075) (-1075)) 8)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3780 (((-856)) NIL) (((-856) (-856)) NIL (|has| $ (-6 -4249)))) (-3376 (($ $ (-713)) NIL) (($ $) 93)) (-1930 (((-856) (-525)) NIL (|has| $ (-6 -4249)))) (-1609 (($ $) 78)) (-1447 (($ $) 68)) (-1587 (($ $) 79)) (-2815 (($ $) 66)) (-1562 (($ $) 76)) (-2794 (($ $) 64)) (-3210 (((-357) $) 104) (((-205) $) 101) (((-827 (-357)) $) NIL) (((-501) $) 45)) (-1217 (((-798) $) 42) (($ (-525)) 60) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-525)) 60) (($ (-385 (-525))) NIL)) (-3917 (((-713)) NIL)) (-3074 (($ $) NIL)) (-3293 (((-856)) 32) (((-856) (-856)) NIL (|has| $ (-6 -4249)))) (-3379 (((-856)) 25)) (-1649 (($ $) 83)) (-1492 (($ $) 71) (($ $ $) 109)) (-3325 (((-108) $ $) NIL)) (-1630 (($ $) 81)) (-1465 (($ $) 69)) (-1669 (($ $) 86)) (-1522 (($ $) 74)) (-2359 (($ $) 84)) (-1537 (($ $) 72)) (-1659 (($ $) 85)) (-1506 (($ $) 73)) (-1639 (($ $) 82)) (-1479 (($ $) 70)) (-2802 (($ $) 117)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) 36 T CONST)) (-3359 (($) 37 T CONST)) (-1388 (((-1075) $) 19) (((-1075) $ (-108)) 21) (((-1179) (-764) $) 22) (((-1179) (-764) $ (-108)) 23)) (-3477 (($ $) 96)) (-2022 (($ $ (-713)) NIL) (($ $) NIL)) (-2402 (($ $ $) 98)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 54)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 46)) (-4075 (($ $ $) 87) (($ $ (-525)) 55)) (-4061 (($ $) 47) (($ $ $) 49)) (-4047 (($ $ $) 48)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 58) (($ $ (-385 (-525))) 128) (($ $ $) 59)) (* (($ (-856) $) 31) (($ (-713) $) NIL) (($ (-525) $) 51) (($ $ $) 50) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
-(((-205) (-13 (-382) (-213) (-770) (-1114) (-567 (-501)) (-10 -8 (-15 -4075 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -4217 ($)) (-15 -2093 ((-525) $)) (-15 -2699 ($ $)) (-15 -3133 ($ $)) (-15 -1492 ($ $ $)) (-15 -3477 ($ $)) (-15 -2402 ($ $ $)) (-15 -4142 ((-1075) (-1075))) (-15 -1896 ((-385 (-525)) $ (-713))) (-15 -1896 ((-385 (-525)) $ (-713) (-713)))))) (T -205))
-((** (*1 *1 *1 *1) (-5 *1 (-205))) (-4075 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-205)))) (-4217 (*1 *1) (-5 *1 (-205))) (-2093 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-205)))) (-2699 (*1 *1 *1) (-5 *1 (-205))) (-3133 (*1 *1 *1) (-5 *1 (-205))) (-1492 (*1 *1 *1 *1) (-5 *1 (-205))) (-3477 (*1 *1 *1) (-5 *1 (-205))) (-2402 (*1 *1 *1 *1) (-5 *1 (-205))) (-4142 (*1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-205)))) (-1896 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205)))) (-1896 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205)))))
-(-13 (-382) (-213) (-770) (-1114) (-567 (-501)) (-10 -8 (-15 -4075 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -4217 ($)) (-15 -2093 ((-525) $)) (-15 -2699 ($ $)) (-15 -3133 ($ $)) (-15 -1492 ($ $ $)) (-15 -3477 ($ $)) (-15 -2402 ($ $ $)) (-15 -4142 ((-1075) (-1075))) (-15 -1896 ((-385 (-525)) $ (-713))) (-15 -1896 ((-385 (-525)) $ (-713) (-713)))))
-((-2821 (((-157 (-205)) (-713) (-157 (-205))) 11) (((-205) (-713) (-205)) 12)) (-1913 (((-157 (-205)) (-157 (-205))) 13) (((-205) (-205)) 14)) (-4199 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 19) (((-205) (-205) (-205)) 22)) (-2640 (((-157 (-205)) (-157 (-205))) 25) (((-205) (-205)) 24)) (-4090 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 43) (((-205) (-205) (-205)) 35)) (-3305 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 48) (((-205) (-205) (-205)) 45)) (-3033 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 15) (((-205) (-205) (-205)) 16)) (-3116 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 17) (((-205) (-205) (-205)) 18)) (-1426 (((-157 (-205)) (-157 (-205))) 60) (((-205) (-205)) 59)) (-1873 (((-205) (-205)) 54) (((-157 (-205)) (-157 (-205))) 58)) (-3477 (((-157 (-205)) (-157 (-205))) 8) (((-205) (-205)) 9)) (-2402 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 30) (((-205) (-205) (-205)) 26)))
-(((-206) (-10 -7 (-15 -3477 ((-205) (-205))) (-15 -3477 ((-157 (-205)) (-157 (-205)))) (-15 -2402 ((-205) (-205) (-205))) (-15 -2402 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1913 ((-205) (-205))) (-15 -1913 ((-157 (-205)) (-157 (-205)))) (-15 -2640 ((-205) (-205))) (-15 -2640 ((-157 (-205)) (-157 (-205)))) (-15 -2821 ((-205) (-713) (-205))) (-15 -2821 ((-157 (-205)) (-713) (-157 (-205)))) (-15 -3033 ((-205) (-205) (-205))) (-15 -3033 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -4090 ((-205) (-205) (-205))) (-15 -4090 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3116 ((-205) (-205) (-205))) (-15 -3116 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3305 ((-205) (-205) (-205))) (-15 -3305 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1873 ((-157 (-205)) (-157 (-205)))) (-15 -1873 ((-205) (-205))) (-15 -1426 ((-205) (-205))) (-15 -1426 ((-157 (-205)) (-157 (-205)))) (-15 -4199 ((-205) (-205) (-205))) (-15 -4199 ((-157 (-205)) (-157 (-205)) (-157 (-205)))))) (T -206))
-((-4199 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-4199 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1426 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1426 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1873 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1873 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3305 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3305 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-3116 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3116 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-4090 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-4090 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-3033 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3033 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2821 (*1 *2 *3 *2) (-12 (-5 *2 (-157 (-205))) (-5 *3 (-713)) (-5 *1 (-206)))) (-2821 (*1 *2 *3 *2) (-12 (-5 *2 (-205)) (-5 *3 (-713)) (-5 *1 (-206)))) (-2640 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2640 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1913 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1913 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2402 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2402 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-3477 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3477 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))))
-(-10 -7 (-15 -3477 ((-205) (-205))) (-15 -3477 ((-157 (-205)) (-157 (-205)))) (-15 -2402 ((-205) (-205) (-205))) (-15 -2402 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1913 ((-205) (-205))) (-15 -1913 ((-157 (-205)) (-157 (-205)))) (-15 -2640 ((-205) (-205))) (-15 -2640 ((-157 (-205)) (-157 (-205)))) (-15 -2821 ((-205) (-713) (-205))) (-15 -2821 ((-157 (-205)) (-713) (-157 (-205)))) (-15 -3033 ((-205) (-205) (-205))) (-15 -3033 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -4090 ((-205) (-205) (-205))) (-15 -4090 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3116 ((-205) (-205) (-205))) (-15 -3116 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3305 ((-205) (-205) (-205))) (-15 -3305 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1873 ((-157 (-205)) (-157 (-205)))) (-15 -1873 ((-205) (-205))) (-15 -1426 ((-205) (-205))) (-15 -1426 ((-157 (-205)) (-157 (-205)))) (-15 -4199 ((-205) (-205) (-205))) (-15 -4199 ((-157 (-205)) (-157 (-205)) (-157 (-205)))))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2609 (($ (-713) (-713)) NIL)) (-2073 (($ $ $) NIL)) (-3966 (($ (-1174 |#1|)) NIL) (($ $) NIL)) (-3109 (($ |#1| |#1| |#1|) 32)) (-4197 (((-108) $) NIL)) (-2105 (($ $ (-525) (-525)) NIL)) (-2901 (($ $ (-525) (-525)) NIL)) (-2199 (($ $ (-525) (-525) (-525) (-525)) NIL)) (-4060 (($ $) NIL)) (-1772 (((-108) $) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-2050 (($ $ (-525) (-525) $) NIL)) (-1430 ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) NIL)) (-3028 (($ $ (-525) (-1174 |#1|)) NIL)) (-1925 (($ $ (-525) (-1174 |#1|)) NIL)) (-2778 (($ |#1| |#1| |#1|) 31)) (-1989 (($ (-713) |#1|) NIL)) (-2169 (($) NIL T CONST)) (-2361 (($ $) NIL (|has| |#1| (-286)))) (-2631 (((-1174 |#1|) $ (-525)) NIL)) (-2139 (($ |#1|) 30)) (-4187 (($ |#1|) 29)) (-1957 (($ |#1|) 28)) (-3622 (((-713) $) NIL (|has| |#1| (-517)))) (-2301 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2222 ((|#1| $ (-525) (-525)) NIL)) (-3440 (((-592 |#1|) $) NIL)) (-2313 (((-713) $) NIL (|has| |#1| (-517)))) (-2319 (((-592 (-1174 |#1|)) $) NIL (|has| |#1| (-517)))) (-1632 (((-713) $) NIL)) (-3416 (($ (-713) (-713) |#1|) NIL)) (-1644 (((-713) $) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-2956 ((|#1| $) NIL (|has| |#1| (-6 (-4260 "*"))))) (-2391 (((-525) $) NIL)) (-1237 (((-525) $) NIL)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3446 (((-525) $) NIL)) (-3757 (((-525) $) NIL)) (-1716 (($ (-592 (-592 |#1|))) 11)) (-2284 (($ (-1 |#1| |#1|) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4151 (((-592 (-592 |#1|)) $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-1529 (((-3 $ "failed") $) NIL (|has| |#1| (-341)))) (-2634 (($) 12)) (-2091 (($ $ $) NIL)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1420 (($ $ |#1|) NIL)) (-1715 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525))) NIL)) (-2663 (($ (-592 |#1|)) NIL) (($ (-592 $)) NIL)) (-2007 (((-108) $) NIL)) (-1927 ((|#1| $) NIL (|has| |#1| (-6 (-4260 "*"))))) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) NIL)) (-1808 (((-1174 |#1|) $ (-525)) NIL)) (-1217 (($ (-1174 |#1|)) NIL) (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3737 (((-108) $) NIL)) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4061 (($ $ $) NIL) (($ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-525) $) NIL) (((-1174 |#1|) $ (-1174 |#1|)) 15) (((-1174 |#1|) (-1174 |#1|) $) NIL) (((-878 |#1|) $ (-878 |#1|)) 20)) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-207 |#1|) (-13 (-630 |#1| (-1174 |#1|) (-1174 |#1|)) (-10 -8 (-15 * ((-878 |#1|) $ (-878 |#1|))) (-15 -2634 ($)) (-15 -1957 ($ |#1|)) (-15 -4187 ($ |#1|)) (-15 -2139 ($ |#1|)) (-15 -2778 ($ |#1| |#1| |#1|)) (-15 -3109 ($ |#1| |#1| |#1|)))) (-13 (-341) (-1114))) (T -207))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114))) (-5 *1 (-207 *3)))) (-2634 (*1 *1) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))) (-1957 (*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))) (-4187 (*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))) (-2139 (*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))) (-2778 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))) (-3109 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))))
-(-13 (-630 |#1| (-1174 |#1|) (-1174 |#1|)) (-10 -8 (-15 * ((-878 |#1|) $ (-878 |#1|))) (-15 -2634 ($)) (-15 -1957 ($ |#1|)) (-15 -4187 ($ |#1|)) (-15 -2139 ($ |#1|)) (-15 -2778 ($ |#1| |#1| |#1|)) (-15 -3109 ($ |#1| |#1| |#1|))))
-((-1676 (($ (-1 (-108) |#2|) $) 16)) (-3271 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 25)) (-1760 (($) NIL) (($ (-592 |#2|)) 11)) (-3955 (((-108) $ $) 23)))
-(((-208 |#1| |#2|) (-10 -8 (-15 -1676 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3271 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3271 (|#1| |#2| |#1|)) (-15 -1760 (|#1| (-592 |#2|))) (-15 -1760 (|#1|)) (-15 -3955 ((-108) |#1| |#1|))) (-209 |#2|) (-1020)) (T -208))
-NIL
-(-10 -8 (-15 -1676 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3271 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3271 (|#1| |#2| |#1|)) (-15 -1760 (|#1| (-592 |#2|))) (-15 -1760 (|#1|)) (-15 -3955 ((-108) |#1| |#1|)))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3991 (((-108) $ (-713)) 8)) (-1676 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4258)))) (-2169 (($) 7 T CONST)) (-1910 (($ $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-3271 (($ |#1| $) 47 (|has| $ (-6 -4258))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4258)))) (-1703 (($ |#1| $) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4258)))) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) 9)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2992 ((|#1| $) 39)) (-1262 (($ |#1| $) 40)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-4127 ((|#1| $) 41)) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-1760 (($) 49) (($ (-592 |#1|)) 48)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-3210 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 50)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-1956 (($ (-592 |#1|)) 42)) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-3686 (((-1179) $) 36) (((-1179) $ (-856) (-856)) 38)) (-3431 (($ $ (-922)) 19) (((-225 (-1075)) $ (-1092)) 15)) (-2701 (((-1179) $) 34)) (-4100 (((-798) $) 31) (($ (-592 |#1|)) 8)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $ $) 27)) (-2860 (($ $ $) 22)))
+(((-195 |#1|) (-13 (-1020) (-10 -8 (-15 -3431 ($ $ (-922))) (-15 -3431 ((-225 (-1075)) $ (-1092))) (-15 -2860 ($ $ $)) (-15 -2871 ($ $ $)) (-15 -4100 ($ (-592 |#1|))) (-15 -2701 ((-1179) $)) (-15 -3686 ((-1179) $)) (-15 -3686 ((-1179) $ (-856) (-856))))) (-13 (-789) (-10 -8 (-15 -3431 ((-1075) $ (-1092))) (-15 -2701 ((-1179) $)) (-15 -3686 ((-1179) $))))) (T -195))
+((-3431 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-195 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3431 ((-1075) $ (-1092))) (-15 -2701 ((-1179) $)) (-15 -3686 ((-1179) $))))))) (-3431 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-225 (-1075))) (-5 *1 (-195 *4)) (-4 *4 (-13 (-789) (-10 -8 (-15 -3431 ((-1075) $ *3)) (-15 -2701 ((-1179) $)) (-15 -3686 ((-1179) $))))))) (-2860 (*1 *1 *1 *1) (-12 (-5 *1 (-195 *2)) (-4 *2 (-13 (-789) (-10 -8 (-15 -3431 ((-1075) $ (-1092))) (-15 -2701 ((-1179) $)) (-15 -3686 ((-1179) $))))))) (-2871 (*1 *1 *1 *1) (-12 (-5 *1 (-195 *2)) (-4 *2 (-13 (-789) (-10 -8 (-15 -3431 ((-1075) $ (-1092))) (-15 -2701 ((-1179) $)) (-15 -3686 ((-1179) $))))))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3431 ((-1075) $ (-1092))) (-15 -2701 ((-1179) $)) (-15 -3686 ((-1179) $))))) (-5 *1 (-195 *3)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-195 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3431 ((-1075) $ (-1092))) (-15 -2701 (*2 $)) (-15 -3686 (*2 $))))))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-195 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3431 ((-1075) $ (-1092))) (-15 -2701 (*2 $)) (-15 -3686 (*2 $))))))) (-3686 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1179)) (-5 *1 (-195 *4)) (-4 *4 (-13 (-789) (-10 -8 (-15 -3431 ((-1075) $ (-1092))) (-15 -2701 (*2 $)) (-15 -3686 (*2 $))))))))
+(-13 (-1020) (-10 -8 (-15 -3431 ($ $ (-922))) (-15 -3431 ((-225 (-1075)) $ (-1092))) (-15 -2860 ($ $ $)) (-15 -2871 ($ $ $)) (-15 -4100 ($ (-592 |#1|))) (-15 -2701 ((-1179) $)) (-15 -3686 ((-1179) $)) (-15 -3686 ((-1179) $ (-856) (-856)))))
+((-1727 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
+(((-196 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1727 (|#2| |#4| (-1 |#2| |#2|)))) (-341) (-1150 |#1|) (-1150 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -196))
+((-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-341)) (-4 *6 (-1150 (-385 *2))) (-4 *2 (-1150 *5)) (-5 *1 (-196 *5 *2 *6 *3)) (-4 *3 (-320 *5 *2 *6)))))
+(-10 -7 (-15 -1727 (|#2| |#4| (-1 |#2| |#2|))))
+((-4224 ((|#2| |#2| (-713) |#2|) 42)) (-2839 ((|#2| |#2| (-713) |#2|) 38)) (-3679 (((-592 |#2|) (-592 (-2 (|:| |deg| (-713)) (|:| -4138 |#2|)))) 58)) (-2339 (((-592 (-2 (|:| |deg| (-713)) (|:| -4138 |#2|))) |#2|) 53)) (-2696 (((-108) |#2|) 50)) (-3243 (((-396 |#2|) |#2|) 78)) (-4201 (((-396 |#2|) |#2|) 77)) (-1665 ((|#2| |#2| (-713) |#2|) 36)) (-3463 (((-2 (|:| |cont| |#1|) (|:| -2868 (-592 (-2 (|:| |irr| |#2|) (|:| -3750 (-525)))))) |#2| (-108)) 70)))
+(((-197 |#1| |#2|) (-10 -7 (-15 -4201 ((-396 |#2|) |#2|)) (-15 -3243 ((-396 |#2|) |#2|)) (-15 -3463 ((-2 (|:| |cont| |#1|) (|:| -2868 (-592 (-2 (|:| |irr| |#2|) (|:| -3750 (-525)))))) |#2| (-108))) (-15 -2339 ((-592 (-2 (|:| |deg| (-713)) (|:| -4138 |#2|))) |#2|)) (-15 -3679 ((-592 |#2|) (-592 (-2 (|:| |deg| (-713)) (|:| -4138 |#2|))))) (-15 -1665 (|#2| |#2| (-713) |#2|)) (-15 -2839 (|#2| |#2| (-713) |#2|)) (-15 -4224 (|#2| |#2| (-713) |#2|)) (-15 -2696 ((-108) |#2|))) (-327) (-1150 |#1|)) (T -197))
+((-2696 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-197 *4 *3)) (-4 *3 (-1150 *4)))) (-4224 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) (-4 *2 (-1150 *4)))) (-2839 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) (-4 *2 (-1150 *4)))) (-1665 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) (-4 *2 (-1150 *4)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |deg| (-713)) (|:| -4138 *5)))) (-4 *5 (-1150 *4)) (-4 *4 (-327)) (-5 *2 (-592 *5)) (-5 *1 (-197 *4 *5)))) (-2339 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -4138 *3)))) (-5 *1 (-197 *4 *3)) (-4 *3 (-1150 *4)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-327)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2868 (-592 (-2 (|:| |irr| *3) (|:| -3750 (-525))))))) (-5 *1 (-197 *5 *3)) (-4 *3 (-1150 *5)))) (-3243 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3)) (-4 *3 (-1150 *4)))) (-4201 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3)) (-4 *3 (-1150 *4)))))
+(-10 -7 (-15 -4201 ((-396 |#2|) |#2|)) (-15 -3243 ((-396 |#2|) |#2|)) (-15 -3463 ((-2 (|:| |cont| |#1|) (|:| -2868 (-592 (-2 (|:| |irr| |#2|) (|:| -3750 (-525)))))) |#2| (-108))) (-15 -2339 ((-592 (-2 (|:| |deg| (-713)) (|:| -4138 |#2|))) |#2|)) (-15 -3679 ((-592 |#2|) (-592 (-2 (|:| |deg| (-713)) (|:| -4138 |#2|))))) (-15 -1665 (|#2| |#2| (-713) |#2|)) (-15 -2839 (|#2| |#2| (-713) |#2|)) (-15 -4224 (|#2| |#2| (-713) |#2|)) (-15 -2696 ((-108) |#2|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1653 (((-525) $) NIL (|has| (-525) (-286)))) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-1507 (((-108) $ $) NIL)) (-2971 (((-525) $) NIL (|has| (-525) (-762)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL) (((-3 (-1092) "failed") $) NIL (|has| (-525) (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-525) (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-525) (-968 (-525))))) (-4105 (((-525) $) NIL) (((-1092) $) NIL (|has| (-525) (-968 (-1092)))) (((-385 (-525)) $) NIL (|has| (-525) (-968 (-525)))) (((-525) $) NIL (|has| (-525) (-968 (-525))))) (-1356 (($ $ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($) NIL (|has| (-525) (-510)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-1889 (((-108) $) NIL (|has| (-525) (-762)))) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-525) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-525) (-821 (-357))))) (-2278 (((-108) $) NIL)) (-2999 (($ $) NIL)) (-4066 (((-525) $) NIL)) (-2878 (((-3 $ "failed") $) NIL (|has| (-525) (-1068)))) (-4079 (((-108) $) NIL (|has| (-525) (-762)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3033 (($ $ $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| (-525) (-789)))) (-2016 (($ (-1 (-525) (-525)) $) NIL)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-2948 (($) NIL (|has| (-525) (-1068)) CONST)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1372 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) NIL)) (-1340 (((-525) $) NIL (|has| (-525) (-510)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-4201 (((-396 $) $) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2825 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1092)) (-592 (-525))) NIL (|has| (-525) (-486 (-1092) (-525)))) (($ $ (-1092) (-525)) NIL (|has| (-525) (-486 (-1092) (-525))))) (-1927 (((-713) $) NIL)) (-3431 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2702 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1092)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-2874 (($ $) NIL)) (-4080 (((-525) $) NIL)) (-1971 (($ (-385 (-525))) 9)) (-2069 (((-827 (-525)) $) NIL (|has| (-525) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-525) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-953))) (((-205) $) NIL (|has| (-525) (-953)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-844))))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 8) (($ (-525)) NIL) (($ (-1092)) NIL (|has| (-525) (-968 (-1092)))) (((-385 (-525)) $) NIL) (((-936 10) $) 10)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| (-525) (-844))) (|has| (-525) (-136))))) (-2448 (((-713)) NIL)) (-3064 (((-525) $) NIL (|has| (-525) (-510)))) (-1571 (((-108) $ $) NIL)) (-2380 (($ $) NIL (|has| (-525) (-762)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1092)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-2830 (((-108) $ $) NIL (|has| (-525) (-789)))) (-2807 (((-108) $ $) NIL (|has| (-525) (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| (-525) (-789)))) (-2795 (((-108) $ $) NIL (|has| (-525) (-789)))) (-2880 (($ $ $) NIL) (($ (-525) (-525)) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL)))
+(((-198) (-13 (-925 (-525)) (-10 -8 (-15 -4100 ((-385 (-525)) $)) (-15 -4100 ((-936 10) $)) (-15 -1372 ((-385 (-525)) $)) (-15 -1971 ($ (-385 (-525))))))) (T -198))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-936 10)) (-5 *1 (-198)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))) (-1971 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))))
+(-13 (-925 (-525)) (-10 -8 (-15 -4100 ((-385 (-525)) $)) (-15 -4100 ((-936 10) $)) (-15 -1372 ((-385 (-525)) $)) (-15 -1971 ($ (-385 (-525))))))
+((-2367 (((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1013 (-782 |#2|)) (-1075)) 28) (((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1013 (-782 |#2|))) 24)) (-2850 (((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1092) (-782 |#2|) (-782 |#2|) (-108)) 17)))
+(((-199 |#1| |#2|) (-10 -7 (-15 -2367 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1013 (-782 |#2|)))) (-15 -2367 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1013 (-782 |#2|)) (-1075))) (-15 -2850 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1092) (-782 |#2|) (-782 |#2|) (-108)))) (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1114) (-893) (-29 |#1|))) (T -199))
+((-2850 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1092)) (-5 *6 (-108)) (-4 *7 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-4 *3 (-13 (-1114) (-893) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-199 *7 *3)) (-5 *5 (-782 *3)))) (-2367 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1013 (-782 *3))) (-5 *5 (-1075)) (-4 *3 (-13 (-1114) (-893) (-29 *6))) (-4 *6 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-199 *6 *3)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *4 (-1013 (-782 *3))) (-4 *3 (-13 (-1114) (-893) (-29 *5))) (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-199 *5 *3)))))
+(-10 -7 (-15 -2367 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1013 (-782 |#2|)))) (-15 -2367 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1013 (-782 |#2|)) (-1075))) (-15 -2850 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1092) (-782 |#2|) (-782 |#2|) (-108))))
+((-2367 (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-385 (-887 |#1|)))) (-1075)) 46) (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-385 (-887 |#1|))))) 43) (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-294 |#1|))) (-1075)) 47) (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-294 |#1|)))) 20)))
+(((-200 |#1|) (-10 -7 (-15 -2367 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-294 |#1|))))) (-15 -2367 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-294 |#1|))) (-1075))) (-15 -2367 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-385 (-887 |#1|)))))) (-15 -2367 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-385 (-887 |#1|)))) (-1075)))) (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (T -200))
+((-2367 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1013 (-782 (-385 (-887 *6))))) (-5 *5 (-1075)) (-5 *3 (-385 (-887 *6))) (-4 *6 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *6)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *4 (-1013 (-782 (-385 (-887 *5))))) (-5 *3 (-385 (-887 *5))) (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *5)))) (-2367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-385 (-887 *6))) (-5 *4 (-1013 (-782 (-294 *6)))) (-5 *5 (-1075)) (-4 *6 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *6)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1013 (-782 (-294 *5)))) (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *5)))))
+(-10 -7 (-15 -2367 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-294 |#1|))))) (-15 -2367 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-294 |#1|))) (-1075))) (-15 -2367 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-385 (-887 |#1|)))))) (-15 -2367 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-385 (-887 |#1|)))) (-1075))))
+((-3504 (((-2 (|:| -2158 (-1088 |#1|)) (|:| |deg| (-856))) (-1088 |#1|)) 21)) (-2361 (((-592 (-294 |#2|)) (-294 |#2|) (-856)) 42)))
+(((-201 |#1| |#2|) (-10 -7 (-15 -3504 ((-2 (|:| -2158 (-1088 |#1|)) (|:| |deg| (-856))) (-1088 |#1|))) (-15 -2361 ((-592 (-294 |#2|)) (-294 |#2|) (-856)))) (-977) (-13 (-517) (-789))) (T -201))
+((-2361 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-4 *6 (-13 (-517) (-789))) (-5 *2 (-592 (-294 *6))) (-5 *1 (-201 *5 *6)) (-5 *3 (-294 *6)) (-4 *5 (-977)))) (-3504 (*1 *2 *3) (-12 (-4 *4 (-977)) (-5 *2 (-2 (|:| -2158 (-1088 *4)) (|:| |deg| (-856)))) (-5 *1 (-201 *4 *5)) (-5 *3 (-1088 *4)) (-4 *5 (-13 (-517) (-789))))))
+(-10 -7 (-15 -3504 ((-2 (|:| -2158 (-1088 |#1|)) (|:| |deg| (-856))) (-1088 |#1|))) (-15 -2361 ((-592 (-294 |#2|)) (-294 |#2|) (-856))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1308 ((|#1| $) NIL)) (-3490 ((|#1| $) 25)) (-3779 (((-108) $ (-713)) NIL)) (-2475 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-2670 (($ $) 31)) (-1282 ((|#1| |#1| $) NIL)) (-2639 ((|#1| $) NIL)) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-4128 (((-713) $) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3577 ((|#1| $) NIL)) (-1820 ((|#1| |#1| $) 28)) (-3149 ((|#1| |#1| $) 30)) (-3246 (($ |#1| $) NIL)) (-2934 (((-713) $) 27)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3010 ((|#1| $) NIL)) (-3426 ((|#1| $) 26)) (-3376 ((|#1| $) 24)) (-2724 ((|#1| $) NIL)) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-1699 ((|#1| |#1| $) NIL)) (-3479 (((-108) $) 9)) (-1558 (($) NIL)) (-1462 ((|#1| $) NIL)) (-1226 (($) NIL) (($ (-592 |#1|)) 16)) (-2895 (((-713) $) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) NIL)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-2271 ((|#1| $) 13)) (-3905 (($ (-592 |#1|)) NIL)) (-1977 ((|#1| $) NIL)) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-202 |#1|) (-13 (-233 |#1|) (-10 -8 (-15 -1226 ($ (-592 |#1|))))) (-1020)) (T -202))
+((-1226 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-202 *3)))))
+(-13 (-233 |#1|) (-10 -8 (-15 -1226 ($ (-592 |#1|)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1711 (($ (-294 |#1|)) 23)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-3278 (((-108) $) NIL)) (-1934 (((-3 (-294 |#1|) "failed") $) NIL)) (-4105 (((-294 |#1|) $) NIL)) (-1451 (($ $) 31)) (-3300 (((-3 $ "failed") $) NIL)) (-2278 (((-108) $) NIL)) (-2016 (($ (-1 (-294 |#1|) (-294 |#1|)) $) NIL)) (-1430 (((-294 |#1|) $) NIL)) (-1345 (($ $) 30)) (-1289 (((-1075) $) NIL)) (-1253 (((-108) $) NIL)) (-3993 (((-1039) $) NIL)) (-3817 (($ (-713)) NIL)) (-3827 (($ $) 32)) (-3529 (((-525) $) NIL)) (-4100 (((-798) $) 57) (($ (-525)) NIL) (($ (-294 |#1|)) NIL)) (-3136 (((-294 |#1|) $ $) NIL)) (-2448 (((-713)) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 25 T CONST)) (-3375 (($) 50 T CONST)) (-2775 (((-108) $ $) 28)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) 19)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 24) (($ (-294 |#1|) $) 18)))
+(((-203 |#1| |#2|) (-13 (-570 (-294 |#1|)) (-968 (-294 |#1|)) (-10 -8 (-15 -1430 ((-294 |#1|) $)) (-15 -1345 ($ $)) (-15 -1451 ($ $)) (-15 -3136 ((-294 |#1|) $ $)) (-15 -3817 ($ (-713))) (-15 -1253 ((-108) $)) (-15 -3278 ((-108) $)) (-15 -3529 ((-525) $)) (-15 -2016 ($ (-1 (-294 |#1|) (-294 |#1|)) $)) (-15 -1711 ($ (-294 |#1|))) (-15 -3827 ($ $)))) (-13 (-977) (-789)) (-592 (-1092))) (T -203))
+((-1430 (*1 *2 *1) (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1092))))) (-1345 (*1 *1 *1) (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-977) (-789))) (-14 *3 (-592 (-1092))))) (-1451 (*1 *1 *1) (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-977) (-789))) (-14 *3 (-592 (-1092))))) (-3136 (*1 *2 *1 *1) (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1092))))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1092))))) (-1253 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1092))))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1092))))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1092))))) (-2016 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-294 *3) (-294 *3))) (-4 *3 (-13 (-977) (-789))) (-5 *1 (-203 *3 *4)) (-14 *4 (-592 (-1092))))) (-1711 (*1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *3 (-13 (-977) (-789))) (-5 *1 (-203 *3 *4)) (-14 *4 (-592 (-1092))))) (-3827 (*1 *1 *1) (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-977) (-789))) (-14 *3 (-592 (-1092))))))
+(-13 (-570 (-294 |#1|)) (-968 (-294 |#1|)) (-10 -8 (-15 -1430 ((-294 |#1|) $)) (-15 -1345 ($ $)) (-15 -1451 ($ $)) (-15 -3136 ((-294 |#1|) $ $)) (-15 -3817 ($ (-713))) (-15 -1253 ((-108) $)) (-15 -3278 ((-108) $)) (-15 -3529 ((-525) $)) (-15 -2016 ($ (-1 (-294 |#1|) (-294 |#1|)) $)) (-15 -1711 ($ (-294 |#1|))) (-15 -3827 ($ $))))
+((-3548 (((-108) (-1075)) 22)) (-3762 (((-3 (-782 |#2|) "failed") (-565 |#2|) |#2| (-782 |#2|) (-782 |#2|) (-108)) 32)) (-3617 (((-3 (-108) "failed") (-1088 |#2|) (-782 |#2|) (-782 |#2|) (-108)) 73) (((-3 (-108) "failed") (-887 |#1|) (-1092) (-782 |#2|) (-782 |#2|) (-108)) 74)))
+(((-204 |#1| |#2|) (-10 -7 (-15 -3548 ((-108) (-1075))) (-15 -3762 ((-3 (-782 |#2|) "failed") (-565 |#2|) |#2| (-782 |#2|) (-782 |#2|) (-108))) (-15 -3617 ((-3 (-108) "failed") (-887 |#1|) (-1092) (-782 |#2|) (-782 |#2|) (-108))) (-15 -3617 ((-3 (-108) "failed") (-1088 |#2|) (-782 |#2|) (-782 |#2|) (-108)))) (-13 (-429) (-789) (-968 (-525)) (-588 (-525))) (-13 (-1114) (-29 |#1|))) (T -204))
+((-3617 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1088 *6)) (-5 *4 (-782 *6)) (-4 *6 (-13 (-1114) (-29 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-204 *5 *6)))) (-3617 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-887 *6)) (-5 *4 (-1092)) (-5 *5 (-782 *7)) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-4 *7 (-13 (-1114) (-29 *6))) (-5 *1 (-204 *6 *7)))) (-3762 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-782 *4)) (-5 *3 (-565 *4)) (-5 *5 (-108)) (-4 *4 (-13 (-1114) (-29 *6))) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-204 *6 *4)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-108)) (-5 *1 (-204 *4 *5)) (-4 *5 (-13 (-1114) (-29 *4))))))
+(-10 -7 (-15 -3548 ((-108) (-1075))) (-15 -3762 ((-3 (-782 |#2|) "failed") (-565 |#2|) |#2| (-782 |#2|) (-782 |#2|) (-108))) (-15 -3617 ((-3 (-108) "failed") (-887 |#1|) (-1092) (-782 |#2|) (-782 |#2|) (-108))) (-15 -3617 ((-3 (-108) "failed") (-1088 |#2|) (-782 |#2|) (-782 |#2|) (-108))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 89)) (-1653 (((-525) $) 99)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-2730 (($ $) NIL)) (-1803 (($ $) 77)) (-3659 (($ $) 65)) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-4211 (($ $) 56)) (-1507 (((-108) $ $) NIL)) (-1781 (($ $) 75)) (-3638 (($ $) 63)) (-2971 (((-525) $) 116)) (-1828 (($ $) 80)) (-3698 (($ $) 67)) (-2475 (($) NIL T CONST)) (-3869 (($ $) NIL)) (-1934 (((-3 (-525) "failed") $) 115) (((-3 (-385 (-525)) "failed") $) 112)) (-4105 (((-525) $) 113) (((-385 (-525)) $) 110)) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) 92)) (-1503 (((-385 (-525)) $ (-713)) 108) (((-385 (-525)) $ (-713) (-713)) 107)) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-2524 (((-856)) 29) (((-856) (-856)) NIL (|has| $ (-6 -4250)))) (-1889 (((-108) $) NIL)) (-4106 (($) 39)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL)) (-4000 (((-525) $) 35)) (-2278 (((-108) $) NIL)) (-1303 (($ $ (-525)) NIL)) (-2704 (($ $) NIL)) (-4079 (((-108) $) 88)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3033 (($ $ $) 53) (($) 34 (-12 (-3272 (|has| $ (-6 -4242))) (-3272 (|has| $ (-6 -4250)))))) (-1609 (($ $ $) 52) (($) 33 (-12 (-3272 (|has| $ (-6 -4242))) (-3272 (|has| $ (-6 -4250)))))) (-1741 (((-525) $) 27)) (-2660 (($ $) 30)) (-2243 (($ $) 57)) (-2533 (($ $) 62)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-3870 (((-856) (-525)) NIL (|has| $ (-6 -4250)))) (-3993 (((-1039) $) NIL) (((-525) $) 90)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1372 (($ $) NIL)) (-1340 (($ $) NIL)) (-3536 (($ (-525) (-525)) NIL) (($ (-525) (-525) (-856)) 100)) (-4201 (((-396 $) $) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2168 (((-525) $) 28)) (-2423 (($) 38)) (-1618 (($ $) 61)) (-1927 (((-713) $) NIL)) (-2864 (((-1075) (-1075)) 8)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-3444 (((-856)) NIL) (((-856) (-856)) NIL (|has| $ (-6 -4250)))) (-2702 (($ $ (-713)) NIL) (($ $) 93)) (-1833 (((-856) (-525)) NIL (|has| $ (-6 -4250)))) (-1841 (($ $) 78)) (-3798 (($ $) 68)) (-1816 (($ $) 79)) (-3678 (($ $) 66)) (-1792 (($ $) 76)) (-3649 (($ $) 64)) (-2069 (((-357) $) 104) (((-205) $) 101) (((-827 (-357)) $) NIL) (((-501) $) 45)) (-4100 (((-798) $) 42) (($ (-525)) 60) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-525)) 60) (($ (-385 (-525))) NIL)) (-2448 (((-713)) NIL)) (-3064 (($ $) NIL)) (-1373 (((-856)) 32) (((-856) (-856)) NIL (|has| $ (-6 -4250)))) (-3771 (((-856)) 25)) (-1876 (($ $) 83)) (-3853 (($ $) 71) (($ $ $) 109)) (-1571 (((-108) $ $) NIL)) (-1853 (($ $) 81)) (-3808 (($ $) 69)) (-1902 (($ $) 86)) (-1760 (($ $) 74)) (-3135 (($ $) 84)) (-1770 (($ $) 72)) (-1891 (($ $) 85)) (-1748 (($ $) 73)) (-1866 (($ $) 82)) (-3820 (($ $) 70)) (-2380 (($ $) 117)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) 36 T CONST)) (-3375 (($) 37 T CONST)) (-3660 (((-1075) $) 19) (((-1075) $ (-108)) 21) (((-1179) (-764) $) 22) (((-1179) (-764) $ (-108)) 23)) (-3496 (($ $) 96)) (-2401 (($ $ (-713)) NIL) (($ $) NIL)) (-2892 (($ $ $) 98)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 54)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 46)) (-2880 (($ $ $) 87) (($ $ (-525)) 55)) (-2871 (($ $) 47) (($ $ $) 49)) (-2860 (($ $ $) 48)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 58) (($ $ (-385 (-525))) 128) (($ $ $) 59)) (* (($ (-856) $) 31) (($ (-713) $) NIL) (($ (-525) $) 51) (($ $ $) 50) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
+(((-205) (-13 (-382) (-213) (-770) (-1114) (-567 (-501)) (-10 -8 (-15 -2880 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -2423 ($)) (-15 -3993 ((-525) $)) (-15 -2660 ($ $)) (-15 -2243 ($ $)) (-15 -3853 ($ $ $)) (-15 -3496 ($ $)) (-15 -2892 ($ $ $)) (-15 -2864 ((-1075) (-1075))) (-15 -1503 ((-385 (-525)) $ (-713))) (-15 -1503 ((-385 (-525)) $ (-713) (-713)))))) (T -205))
+((** (*1 *1 *1 *1) (-5 *1 (-205))) (-2880 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-205)))) (-2423 (*1 *1) (-5 *1 (-205))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-205)))) (-2660 (*1 *1 *1) (-5 *1 (-205))) (-2243 (*1 *1 *1) (-5 *1 (-205))) (-3853 (*1 *1 *1 *1) (-5 *1 (-205))) (-3496 (*1 *1 *1) (-5 *1 (-205))) (-2892 (*1 *1 *1 *1) (-5 *1 (-205))) (-2864 (*1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-205)))) (-1503 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205)))) (-1503 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205)))))
+(-13 (-382) (-213) (-770) (-1114) (-567 (-501)) (-10 -8 (-15 -2880 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -2423 ($)) (-15 -3993 ((-525) $)) (-15 -2660 ($ $)) (-15 -2243 ($ $)) (-15 -3853 ($ $ $)) (-15 -3496 ($ $)) (-15 -2892 ($ $ $)) (-15 -2864 ((-1075) (-1075))) (-15 -1503 ((-385 (-525)) $ (-713))) (-15 -1503 ((-385 (-525)) $ (-713) (-713)))))
+((-2527 (((-157 (-205)) (-713) (-157 (-205))) 11) (((-205) (-713) (-205)) 12)) (-1658 (((-157 (-205)) (-157 (-205))) 13) (((-205) (-205)) 14)) (-2226 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 19) (((-205) (-205) (-205)) 22)) (-3284 (((-157 (-205)) (-157 (-205))) 25) (((-205) (-205)) 24)) (-3553 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 43) (((-205) (-205) (-205)) 35)) (-1384 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 48) (((-205) (-205) (-205)) 45)) (-2735 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 15) (((-205) (-205) (-205)) 16)) (-2273 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 17) (((-205) (-205) (-205)) 18)) (-3541 (((-157 (-205)) (-157 (-205))) 60) (((-205) (-205)) 59)) (-1287 (((-205) (-205)) 54) (((-157 (-205)) (-157 (-205))) 58)) (-3496 (((-157 (-205)) (-157 (-205))) 8) (((-205) (-205)) 9)) (-2892 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 30) (((-205) (-205) (-205)) 26)))
+(((-206) (-10 -7 (-15 -3496 ((-205) (-205))) (-15 -3496 ((-157 (-205)) (-157 (-205)))) (-15 -2892 ((-205) (-205) (-205))) (-15 -2892 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1658 ((-205) (-205))) (-15 -1658 ((-157 (-205)) (-157 (-205)))) (-15 -3284 ((-205) (-205))) (-15 -3284 ((-157 (-205)) (-157 (-205)))) (-15 -2527 ((-205) (-713) (-205))) (-15 -2527 ((-157 (-205)) (-713) (-157 (-205)))) (-15 -2735 ((-205) (-205) (-205))) (-15 -2735 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3553 ((-205) (-205) (-205))) (-15 -3553 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -2273 ((-205) (-205) (-205))) (-15 -2273 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1384 ((-205) (-205) (-205))) (-15 -1384 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1287 ((-157 (-205)) (-157 (-205)))) (-15 -1287 ((-205) (-205))) (-15 -3541 ((-205) (-205))) (-15 -3541 ((-157 (-205)) (-157 (-205)))) (-15 -2226 ((-205) (-205) (-205))) (-15 -2226 ((-157 (-205)) (-157 (-205)) (-157 (-205)))))) (T -206))
+((-2226 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2226 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-3541 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3541 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1287 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1287 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1384 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1384 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2273 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2273 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-3553 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3553 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2735 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2735 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2527 (*1 *2 *3 *2) (-12 (-5 *2 (-157 (-205))) (-5 *3 (-713)) (-5 *1 (-206)))) (-2527 (*1 *2 *3 *2) (-12 (-5 *2 (-205)) (-5 *3 (-713)) (-5 *1 (-206)))) (-3284 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3284 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1658 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1658 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2892 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2892 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))))
+(-10 -7 (-15 -3496 ((-205) (-205))) (-15 -3496 ((-157 (-205)) (-157 (-205)))) (-15 -2892 ((-205) (-205) (-205))) (-15 -2892 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1658 ((-205) (-205))) (-15 -1658 ((-157 (-205)) (-157 (-205)))) (-15 -3284 ((-205) (-205))) (-15 -3284 ((-157 (-205)) (-157 (-205)))) (-15 -2527 ((-205) (-713) (-205))) (-15 -2527 ((-157 (-205)) (-713) (-157 (-205)))) (-15 -2735 ((-205) (-205) (-205))) (-15 -2735 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3553 ((-205) (-205) (-205))) (-15 -3553 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -2273 ((-205) (-205) (-205))) (-15 -2273 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1384 ((-205) (-205) (-205))) (-15 -1384 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1287 ((-157 (-205)) (-157 (-205)))) (-15 -1287 ((-205) (-205))) (-15 -3541 ((-205) (-205))) (-15 -3541 ((-157 (-205)) (-157 (-205)))) (-15 -2226 ((-205) (-205) (-205))) (-15 -2226 ((-157 (-205)) (-157 (-205)) (-157 (-205)))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1221 (($ (-713) (-713)) NIL)) (-2659 (($ $ $) NIL)) (-1730 (($ (-1174 |#1|)) NIL) (($ $) NIL)) (-2133 (($ |#1| |#1| |#1|) 32)) (-2207 (((-108) $) NIL)) (-2968 (($ $ (-525) (-525)) NIL)) (-3904 (($ $ (-525) (-525)) NIL)) (-1550 (($ $ (-525) (-525) (-525) (-525)) NIL)) (-3263 (($ $) NIL)) (-2721 (((-108) $) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-3614 (($ $ (-525) (-525) $) NIL)) (-1233 ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) NIL)) (-2695 (($ $ (-525) (-1174 |#1|)) NIL)) (-1773 (($ $ (-525) (-1174 |#1|)) NIL)) (-2201 (($ |#1| |#1| |#1|) 31)) (-1232 (($ (-713) |#1|) NIL)) (-2475 (($) NIL T CONST)) (-3692 (($ $) NIL (|has| |#1| (-286)))) (-3209 (((-1174 |#1|) $ (-525)) NIL)) (-2152 (($ |#1|) 30)) (-2131 (($ |#1|) 29)) (-3918 (($ |#1|) 28)) (-3085 (((-713) $) NIL (|has| |#1| (-517)))) (-3081 ((|#1| $ (-525) (-525) |#1|) NIL)) (-3017 ((|#1| $ (-525) (-525)) NIL)) (-2175 (((-592 |#1|) $) NIL)) (-3204 (((-713) $) NIL (|has| |#1| (-517)))) (-3261 (((-592 (-1174 |#1|)) $) NIL (|has| |#1| (-517)))) (-2720 (((-713) $) NIL)) (-3324 (($ (-713) (-713) |#1|) NIL)) (-2731 (((-713) $) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-3239 ((|#1| $) NIL (|has| |#1| (-6 (-4261 "*"))))) (-2797 (((-525) $) NIL)) (-2307 (((-525) $) NIL)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3194 (((-525) $) NIL)) (-3210 (((-525) $) NIL)) (-4054 (($ (-592 (-592 |#1|))) 11)) (-3069 (($ (-1 |#1| |#1|) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2949 (((-592 (-592 |#1|)) $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-1921 (((-3 $ "failed") $) NIL (|has| |#1| (-341)))) (-3230 (($) 12)) (-2847 (($ $ $) NIL)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3453 (($ $ |#1|) NIL)) (-1311 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525))) NIL)) (-3525 (($ (-592 |#1|)) NIL) (($ (-592 $)) NIL)) (-3219 (((-108) $) NIL)) (-1796 ((|#1| $) NIL (|has| |#1| (-6 (-4261 "*"))))) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) NIL)) (-1881 (((-1174 |#1|) $ (-525)) NIL)) (-4100 (($ (-1174 |#1|)) NIL) (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-1245 (((-108) $) NIL)) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-2871 (($ $ $) NIL) (($ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-525) $) NIL) (((-1174 |#1|) $ (-1174 |#1|)) 15) (((-1174 |#1|) (-1174 |#1|) $) NIL) (((-878 |#1|) $ (-878 |#1|)) 20)) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-207 |#1|) (-13 (-630 |#1| (-1174 |#1|) (-1174 |#1|)) (-10 -8 (-15 * ((-878 |#1|) $ (-878 |#1|))) (-15 -3230 ($)) (-15 -3918 ($ |#1|)) (-15 -2131 ($ |#1|)) (-15 -2152 ($ |#1|)) (-15 -2201 ($ |#1| |#1| |#1|)) (-15 -2133 ($ |#1| |#1| |#1|)))) (-13 (-341) (-1114))) (T -207))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114))) (-5 *1 (-207 *3)))) (-3230 (*1 *1) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))) (-3918 (*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))) (-2131 (*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))) (-2152 (*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))) (-2201 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))) (-2133 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))))
+(-13 (-630 |#1| (-1174 |#1|) (-1174 |#1|)) (-10 -8 (-15 * ((-878 |#1|) $ (-878 |#1|))) (-15 -3230 ($)) (-15 -3918 ($ |#1|)) (-15 -2131 ($ |#1|)) (-15 -2152 ($ |#1|)) (-15 -2201 ($ |#1| |#1| |#1|)) (-15 -2133 ($ |#1| |#1| |#1|))))
+((-3050 (($ (-1 (-108) |#2|) $) 16)) (-4205 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 25)) (-2637 (($) NIL) (($ (-592 |#2|)) 11)) (-2775 (((-108) $ $) 23)))
+(((-208 |#1| |#2|) (-10 -8 (-15 -3050 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -4205 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -4205 (|#1| |#2| |#1|)) (-15 -2637 (|#1| (-592 |#2|))) (-15 -2637 (|#1|)) (-15 -2775 ((-108) |#1| |#1|))) (-209 |#2|) (-1020)) (T -208))
+NIL
+(-10 -8 (-15 -3050 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -4205 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -4205 (|#1| |#2| |#1|)) (-15 -2637 (|#1| (-592 |#2|))) (-15 -2637 (|#1|)) (-15 -2775 ((-108) |#1| |#1|)))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3779 (((-108) $ (-713)) 8)) (-3050 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4259)))) (-2475 (($) 7 T CONST)) (-1681 (($ $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-4205 (($ |#1| $) 47 (|has| $ (-6 -4259))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4259)))) (-2698 (($ |#1| $) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4259)))) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) 9)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-3577 ((|#1| $) 39)) (-3246 (($ |#1| $) 40)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-2724 ((|#1| $) 41)) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-2637 (($) 49) (($ (-592 |#1|)) 48)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-2069 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 50)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3905 (($ (-592 |#1|)) 42)) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-209 |#1|) (-131) (-1020)) (T -209))
NIL
(-13 (-215 |t#1|))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
-((-3376 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) 11) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) 19) (($ $ (-713)) NIL) (($ $) 16)) (-2022 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-713)) 14) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) NIL) (($ $ (-713)) NIL) (($ $) NIL)))
-(((-210 |#1| |#2|) (-10 -8 (-15 -3376 (|#1| |#1|)) (-15 -2022 (|#1| |#1|)) (-15 -3376 (|#1| |#1| (-713))) (-15 -2022 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2022 (|#1| |#1| (-1092))) (-15 -2022 (|#1| |#1| (-592 (-1092)))) (-15 -2022 (|#1| |#1| (-1092) (-713))) (-15 -2022 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2022 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2022 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|)))) (-211 |#2|) (-977)) (T -210))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
+((-2702 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) 11) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) 19) (($ $ (-713)) NIL) (($ $) 16)) (-2401 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-713)) 14) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) NIL) (($ $ (-713)) NIL) (($ $) NIL)))
+(((-210 |#1| |#2|) (-10 -8 (-15 -2702 (|#1| |#1|)) (-15 -2401 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-713))) (-15 -2401 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2401 (|#1| |#1| (-1092))) (-15 -2401 (|#1| |#1| (-592 (-1092)))) (-15 -2401 (|#1| |#1| (-1092) (-713))) (-15 -2401 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2401 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2401 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|)))) (-211 |#2|) (-977)) (T -210))
NIL
-(-10 -8 (-15 -3376 (|#1| |#1|)) (-15 -2022 (|#1| |#1|)) (-15 -3376 (|#1| |#1| (-713))) (-15 -2022 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2022 (|#1| |#1| (-1092))) (-15 -2022 (|#1| |#1| (-592 (-1092)))) (-15 -2022 (|#1| |#1| (-1092) (-713))) (-15 -2022 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2022 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2022 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-3376 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-713)) 51) (($ $ (-592 (-1092)) (-592 (-713))) 44 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 43 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 42 (|has| |#1| (-835 (-1092)))) (($ $ (-1092)) 41 (|has| |#1| (-835 (-1092)))) (($ $ (-713)) 39 (|has| |#1| (-213))) (($ $) 37 (|has| |#1| (-213)))) (-1217 (((-798) $) 11) (($ (-525)) 28)) (-3917 (((-713)) 29)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-713)) 49) (($ $ (-592 (-1092)) (-592 (-713))) 48 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 47 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 46 (|has| |#1| (-835 (-1092)))) (($ $ (-1092)) 45 (|has| |#1| (-835 (-1092)))) (($ $ (-713)) 40 (|has| |#1| (-213))) (($ $) 38 (|has| |#1| (-213)))) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+(-10 -8 (-15 -2702 (|#1| |#1|)) (-15 -2401 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-713))) (-15 -2401 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2401 (|#1| |#1| (-1092))) (-15 -2401 (|#1| |#1| (-592 (-1092)))) (-15 -2401 (|#1| |#1| (-1092) (-713))) (-15 -2401 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2401 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2401 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-2702 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-713)) 51) (($ $ (-592 (-1092)) (-592 (-713))) 44 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 43 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 42 (|has| |#1| (-835 (-1092)))) (($ $ (-1092)) 41 (|has| |#1| (-835 (-1092)))) (($ $ (-713)) 39 (|has| |#1| (-213))) (($ $) 37 (|has| |#1| (-213)))) (-4100 (((-798) $) 11) (($ (-525)) 28)) (-2448 (((-713)) 29)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-713)) 49) (($ $ (-592 (-1092)) (-592 (-713))) 48 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 47 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 46 (|has| |#1| (-835 (-1092)))) (($ $ (-1092)) 45 (|has| |#1| (-835 (-1092)))) (($ $ (-713)) 40 (|has| |#1| (-213))) (($ $) 38 (|has| |#1| (-213)))) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-211 |#1|) (-131) (-977)) (T -211))
-((-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-977)))) (-3376 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4)) (-4 *4 (-977)))) (-2022 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-977)))) (-2022 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4)) (-4 *4 (-977)))))
-(-13 (-977) (-10 -8 (-15 -3376 ($ $ (-1 |t#1| |t#1|))) (-15 -3376 ($ $ (-1 |t#1| |t#1|) (-713))) (-15 -2022 ($ $ (-1 |t#1| |t#1|))) (-15 -2022 ($ $ (-1 |t#1| |t#1|) (-713))) (IF (|has| |t#1| (-213)) (-6 (-213)) |%noBranch|) (IF (|has| |t#1| (-835 (-1092))) (-6 (-835 (-1092))) |%noBranch|)))
+((-2702 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-977)))) (-2702 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4)) (-4 *4 (-977)))) (-2401 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-977)))) (-2401 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4)) (-4 *4 (-977)))))
+(-13 (-977) (-10 -8 (-15 -2702 ($ $ (-1 |t#1| |t#1|))) (-15 -2702 ($ $ (-1 |t#1| |t#1|) (-713))) (-15 -2401 ($ $ (-1 |t#1| |t#1|))) (-15 -2401 ($ $ (-1 |t#1| |t#1|) (-713))) (IF (|has| |t#1| (-213)) (-6 (-213)) |%noBranch|) (IF (|has| |t#1| (-835 (-1092))) (-6 (-835 (-1092))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-213) |has| |#1| (-213)) ((-594 $) . T) ((-669) . T) ((-835 (-1092)) |has| |#1| (-835 (-1092))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-3376 (($ $) NIL) (($ $ (-713)) 10)) (-2022 (($ $) 8) (($ $ (-713)) 12)))
-(((-212 |#1|) (-10 -8 (-15 -2022 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1| (-713))) (-15 -2022 (|#1| |#1|)) (-15 -3376 (|#1| |#1|))) (-213)) (T -212))
+((-2702 (($ $) NIL) (($ $ (-713)) 10)) (-2401 (($ $) 8) (($ $ (-713)) 12)))
+(((-212 |#1|) (-10 -8 (-15 -2401 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1| (-713))) (-15 -2401 (|#1| |#1|)) (-15 -2702 (|#1| |#1|))) (-213)) (T -212))
NIL
-(-10 -8 (-15 -2022 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1| (-713))) (-15 -2022 (|#1| |#1|)) (-15 -3376 (|#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-3376 (($ $) 38) (($ $ (-713)) 36)) (-1217 (((-798) $) 11) (($ (-525)) 28)) (-3917 (((-713)) 29)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $) 37) (($ $ (-713)) 35)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+(-10 -8 (-15 -2401 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1| (-713))) (-15 -2401 (|#1| |#1|)) (-15 -2702 (|#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-2702 (($ $) 38) (($ $ (-713)) 36)) (-4100 (((-798) $) 11) (($ (-525)) 28)) (-2448 (((-713)) 29)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $) 37) (($ $ (-713)) 35)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-213) (-131)) (T -213))
-((-3376 (*1 *1 *1) (-4 *1 (-213))) (-2022 (*1 *1 *1) (-4 *1 (-213))) (-3376 (*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713)))) (-2022 (*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713)))))
-(-13 (-977) (-10 -8 (-15 -3376 ($ $)) (-15 -2022 ($ $)) (-15 -3376 ($ $ (-713))) (-15 -2022 ($ $ (-713)))))
+((-2702 (*1 *1 *1) (-4 *1 (-213))) (-2401 (*1 *1 *1) (-4 *1 (-213))) (-2702 (*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713)))) (-2401 (*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713)))))
+(-13 (-977) (-10 -8 (-15 -2702 ($ $)) (-15 -2401 ($ $)) (-15 -2702 ($ $ (-713))) (-15 -2401 ($ $ (-713)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-669) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-1760 (($) 12) (($ (-592 |#2|)) NIL)) (-1462 (($ $) 14)) (-1230 (($ (-592 |#2|)) 10)) (-1217 (((-798) $) 21)))
-(((-214 |#1| |#2|) (-10 -8 (-15 -1217 ((-798) |#1|)) (-15 -1760 (|#1| (-592 |#2|))) (-15 -1760 (|#1|)) (-15 -1230 (|#1| (-592 |#2|))) (-15 -1462 (|#1| |#1|))) (-215 |#2|) (-1020)) (T -214))
+((-2637 (($) 12) (($ (-592 |#2|)) NIL)) (-2503 (($ $) 14)) (-4114 (($ (-592 |#2|)) 10)) (-4100 (((-798) $) 21)))
+(((-214 |#1| |#2|) (-10 -8 (-15 -4100 ((-798) |#1|)) (-15 -2637 (|#1| (-592 |#2|))) (-15 -2637 (|#1|)) (-15 -4114 (|#1| (-592 |#2|))) (-15 -2503 (|#1| |#1|))) (-215 |#2|) (-1020)) (T -214))
NIL
-(-10 -8 (-15 -1217 ((-798) |#1|)) (-15 -1760 (|#1| (-592 |#2|))) (-15 -1760 (|#1|)) (-15 -1230 (|#1| (-592 |#2|))) (-15 -1462 (|#1| |#1|)))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3991 (((-108) $ (-713)) 8)) (-1676 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4258)))) (-2169 (($) 7 T CONST)) (-1910 (($ $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-3271 (($ |#1| $) 47 (|has| $ (-6 -4258))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4258)))) (-1703 (($ |#1| $) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4258)))) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) 9)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2992 ((|#1| $) 39)) (-1262 (($ |#1| $) 40)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-4127 ((|#1| $) 41)) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-1760 (($) 49) (($ (-592 |#1|)) 48)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-3210 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 50)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-1956 (($ (-592 |#1|)) 42)) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+(-10 -8 (-15 -4100 ((-798) |#1|)) (-15 -2637 (|#1| (-592 |#2|))) (-15 -2637 (|#1|)) (-15 -4114 (|#1| (-592 |#2|))) (-15 -2503 (|#1| |#1|)))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3779 (((-108) $ (-713)) 8)) (-3050 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4259)))) (-2475 (($) 7 T CONST)) (-1681 (($ $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-4205 (($ |#1| $) 47 (|has| $ (-6 -4259))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4259)))) (-2698 (($ |#1| $) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4259)))) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) 9)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-3577 ((|#1| $) 39)) (-3246 (($ |#1| $) 40)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-2724 ((|#1| $) 41)) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-2637 (($) 49) (($ (-592 |#1|)) 48)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-2069 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 50)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3905 (($ (-592 |#1|)) 42)) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-215 |#1|) (-131) (-1020)) (T -215))
-((-1760 (*1 *1) (-12 (-4 *1 (-215 *2)) (-4 *2 (-1020)))) (-1760 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-215 *3)))) (-3271 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4258)) (-4 *1 (-215 *2)) (-4 *2 (-1020)))) (-3271 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4258)) (-4 *1 (-215 *3)) (-4 *3 (-1020)))) (-1676 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4258)) (-4 *1 (-215 *3)) (-4 *3 (-1020)))))
-(-13 (-102 |t#1|) (-142 |t#1|) (-10 -8 (-15 -1760 ($)) (-15 -1760 ($ (-592 |t#1|))) (IF (|has| $ (-6 -4258)) (PROGN (-15 -3271 ($ |t#1| $)) (-15 -3271 ($ (-1 (-108) |t#1|) $)) (-15 -1676 ($ (-1 (-108) |t#1|) $))) |%noBranch|)))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
-((-3889 (((-2 (|:| |varOrder| (-592 (-1092))) (|:| |inhom| (-3 (-592 (-1174 (-713))) "failed")) (|:| |hom| (-592 (-1174 (-713))))) (-273 (-887 (-525)))) 27)))
-(((-216) (-10 -7 (-15 -3889 ((-2 (|:| |varOrder| (-592 (-1092))) (|:| |inhom| (-3 (-592 (-1174 (-713))) "failed")) (|:| |hom| (-592 (-1174 (-713))))) (-273 (-887 (-525))))))) (T -216))
-((-3889 (*1 *2 *3) (-12 (-5 *3 (-273 (-887 (-525)))) (-5 *2 (-2 (|:| |varOrder| (-592 (-1092))) (|:| |inhom| (-3 (-592 (-1174 (-713))) "failed")) (|:| |hom| (-592 (-1174 (-713)))))) (-5 *1 (-216)))))
-(-10 -7 (-15 -3889 ((-2 (|:| |varOrder| (-592 (-1092))) (|:| |inhom| (-3 (-592 (-1174 (-713))) "failed")) (|:| |hom| (-592 (-1174 (-713))))) (-273 (-887 (-525))))))
-((-1834 (((-713)) 51)) (-1994 (((-2 (|:| -3407 (-632 |#3|)) (|:| |vec| (-1174 |#3|))) (-632 $) (-1174 $)) 49) (((-632 |#3|) (-632 $)) 41) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3705 (((-128)) 57)) (-3376 (($ $ (-1 |#3| |#3|) (-713)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-1217 (((-1174 |#3|) $) NIL) (($ |#3|) NIL) (((-798) $) NIL) (($ (-525)) 12) (($ (-385 (-525))) NIL)) (-3917 (((-713)) 15)) (-4075 (($ $ |#3|) 54)))
-(((-217 |#1| |#2| |#3|) (-10 -8 (-15 -1217 (|#1| (-385 (-525)))) (-15 -1217 (|#1| (-525))) (-15 -1217 ((-798) |#1|)) (-15 -3917 ((-713))) (-15 -3376 (|#1| |#1|)) (-15 -3376 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -1994 ((-632 (-525)) (-632 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -1217 (|#1| |#3|)) (-15 -3376 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3376 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -1994 ((-632 |#3|) (-632 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 |#3|)) (|:| |vec| (-1174 |#3|))) (-632 |#1|) (-1174 |#1|))) (-15 -1834 ((-713))) (-15 -4075 (|#1| |#1| |#3|)) (-15 -3705 ((-128))) (-15 -1217 ((-1174 |#3|) |#1|))) (-218 |#2| |#3|) (-713) (-1128)) (T -217))
-((-3705 (*1 *2) (-12 (-14 *4 (-713)) (-4 *5 (-1128)) (-5 *2 (-128)) (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))) (-1834 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-713)) (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))) (-3917 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-713)) (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))))
-(-10 -8 (-15 -1217 (|#1| (-385 (-525)))) (-15 -1217 (|#1| (-525))) (-15 -1217 ((-798) |#1|)) (-15 -3917 ((-713))) (-15 -3376 (|#1| |#1|)) (-15 -3376 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -1994 ((-632 (-525)) (-632 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -1217 (|#1| |#3|)) (-15 -3376 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3376 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -1994 ((-632 |#3|) (-632 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 |#3|)) (|:| |vec| (-1174 |#3|))) (-632 |#1|) (-1174 |#1|))) (-15 -1834 ((-713))) (-15 -4075 (|#1| |#1| |#3|)) (-15 -3705 ((-128))) (-15 -1217 ((-1174 |#3|) |#1|)))
-((-4236 (((-108) $ $) 19 (|has| |#2| (-1020)))) (-1209 (((-108) $) 72 (|has| |#2| (-126)))) (-4083 (($ (-856)) 127 (|has| |#2| (-977)))) (-3456 (((-1179) $ (-525) (-525)) 40 (|has| $ (-6 -4259)))) (-3167 (($ $ $) 123 (|has| |#2| (-735)))) (-1578 (((-3 $ "failed") $ $) 74 (|has| |#2| (-126)))) (-3991 (((-108) $ (-713)) 8)) (-1834 (((-713)) 109 (|has| |#2| (-346)))) (-3855 (((-525) $) 121 (|has| |#2| (-787)))) (-1430 ((|#2| $ (-525) |#2|) 52 (|has| $ (-6 -4259)))) (-2169 (($) 7 T CONST)) (-3077 (((-3 (-525) "failed") $) 67 (-3762 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-3 (-385 (-525)) "failed") $) 64 (-3762 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1020)))) (-1572 (((-525) $) 68 (-3762 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-385 (-525)) $) 65 (-3762 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) ((|#2| $) 60 (|has| |#2| (-1020)))) (-1994 (((-632 (-525)) (-632 $)) 108 (-3762 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 107 (-3762 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) 106 (|has| |#2| (-977))) (((-632 |#2|) (-632 $)) 105 (|has| |#2| (-977)))) (-3457 (((-3 $ "failed") $) 80 (|has| |#2| (-669)))) (-2502 (($) 112 (|has| |#2| (-346)))) (-2301 ((|#2| $ (-525) |#2|) 53 (|has| $ (-6 -4259)))) (-2222 ((|#2| $ (-525)) 51)) (-1222 (((-108) $) 119 (|has| |#2| (-787)))) (-3440 (((-592 |#2|) $) 30 (|has| $ (-6 -4258)))) (-1396 (((-108) $) 83 (|has| |#2| (-669)))) (-3256 (((-108) $) 120 (|has| |#2| (-787)))) (-3924 (((-108) $ (-713)) 9)) (-3666 (((-525) $) 43 (|has| (-525) (-789)))) (-2638 (($ $ $) 118 (-3254 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-2694 (((-592 |#2|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4258))))) (-1847 (((-525) $) 44 (|has| (-525) (-789)))) (-3662 (($ $ $) 117 (-3254 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-2284 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#2| |#2|) $) 35)) (-3005 (((-856) $) 111 (|has| |#2| (-346)))) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22 (|has| |#2| (-1020)))) (-2628 (((-592 (-525)) $) 46)) (-2978 (((-108) (-525) $) 47)) (-3555 (($ (-856)) 110 (|has| |#2| (-346)))) (-2093 (((-1039) $) 21 (|has| |#2| (-1020)))) (-1872 ((|#2| $) 42 (|has| (-525) (-789)))) (-1420 (($ $ |#2|) 41 (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#2|))) 26 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) 25 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) 23 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-2614 (((-108) $ $) 14)) (-2167 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-3341 (((-592 |#2|) $) 48)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#2| $ (-525) |#2|) 50) ((|#2| $ (-525)) 49)) (-2047 ((|#2| $ $) 126 (|has| |#2| (-977)))) (-2816 (($ (-1174 |#2|)) 128)) (-3705 (((-128)) 125 (|has| |#2| (-341)))) (-3376 (($ $) 100 (-3762 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) 98 (-3762 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1092)) 96 (-3762 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092))) 95 (-3762 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1092) (-713)) 94 (-3762 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) 93 (-3762 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) 86 (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-977)))) (-2110 (((-713) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4258))) (((-713) |#2| $) 28 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-1217 (((-1174 |#2|) $) 129) (($ (-525)) 66 (-3254 (-3762 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) (|has| |#2| (-977)))) (($ (-385 (-525))) 63 (-3762 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (($ |#2|) 62 (|has| |#2| (-1020))) (((-798) $) 18 (|has| |#2| (-566 (-798))))) (-3917 (((-713)) 104 (|has| |#2| (-977)))) (-3029 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4258)))) (-2802 (($ $) 122 (|has| |#2| (-787)))) (-1619 (($ $ (-713)) 81 (|has| |#2| (-669))) (($ $ (-856)) 77 (|has| |#2| (-669)))) (-3349 (($) 71 (|has| |#2| (-126)) CONST)) (-3359 (($) 84 (|has| |#2| (-669)) CONST)) (-2022 (($ $) 99 (-3762 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) 97 (-3762 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1092)) 92 (-3762 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092))) 91 (-3762 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1092) (-713)) 90 (-3762 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) 89 (-3762 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) 88 (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) 87 (|has| |#2| (-977)))) (-4011 (((-108) $ $) 115 (-3254 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-3987 (((-108) $ $) 114 (-3254 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-3955 (((-108) $ $) 20 (|has| |#2| (-1020)))) (-3999 (((-108) $ $) 116 (-3254 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-3978 (((-108) $ $) 113 (-3254 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-4075 (($ $ |#2|) 124 (|has| |#2| (-341)))) (-4061 (($ $ $) 102 (|has| |#2| (-977))) (($ $) 101 (|has| |#2| (-977)))) (-4047 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-713)) 82 (|has| |#2| (-669))) (($ $ (-856)) 78 (|has| |#2| (-669)))) (* (($ (-525) $) 103 (|has| |#2| (-977))) (($ $ $) 79 (|has| |#2| (-669))) (($ $ |#2|) 76 (|has| |#2| (-669))) (($ |#2| $) 75 (|has| |#2| (-669))) (($ (-713) $) 73 (|has| |#2| (-126))) (($ (-856) $) 70 (|has| |#2| (-25)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-2637 (*1 *1) (-12 (-4 *1 (-215 *2)) (-4 *2 (-1020)))) (-2637 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-215 *3)))) (-4205 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-215 *2)) (-4 *2 (-1020)))) (-4205 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4259)) (-4 *1 (-215 *3)) (-4 *3 (-1020)))) (-3050 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4259)) (-4 *1 (-215 *3)) (-4 *3 (-1020)))))
+(-13 (-102 |t#1|) (-142 |t#1|) (-10 -8 (-15 -2637 ($)) (-15 -2637 ($ (-592 |t#1|))) (IF (|has| $ (-6 -4259)) (PROGN (-15 -4205 ($ |t#1| $)) (-15 -4205 ($ (-1 (-108) |t#1|) $)) (-15 -3050 ($ (-1 (-108) |t#1|) $))) |%noBranch|)))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
+((-2145 (((-2 (|:| |varOrder| (-592 (-1092))) (|:| |inhom| (-3 (-592 (-1174 (-713))) "failed")) (|:| |hom| (-592 (-1174 (-713))))) (-273 (-887 (-525)))) 27)))
+(((-216) (-10 -7 (-15 -2145 ((-2 (|:| |varOrder| (-592 (-1092))) (|:| |inhom| (-3 (-592 (-1174 (-713))) "failed")) (|:| |hom| (-592 (-1174 (-713))))) (-273 (-887 (-525))))))) (T -216))
+((-2145 (*1 *2 *3) (-12 (-5 *3 (-273 (-887 (-525)))) (-5 *2 (-2 (|:| |varOrder| (-592 (-1092))) (|:| |inhom| (-3 (-592 (-1174 (-713))) "failed")) (|:| |hom| (-592 (-1174 (-713)))))) (-5 *1 (-216)))))
+(-10 -7 (-15 -2145 ((-2 (|:| |varOrder| (-592 (-1092))) (|:| |inhom| (-3 (-592 (-1174 (-713))) "failed")) (|:| |hom| (-592 (-1174 (-713))))) (-273 (-887 (-525))))))
+((-1613 (((-713)) 51)) (-3090 (((-2 (|:| -4108 (-632 |#3|)) (|:| |vec| (-1174 |#3|))) (-632 $) (-1174 $)) 49) (((-632 |#3|) (-632 $)) 41) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3933 (((-128)) 57)) (-2702 (($ $ (-1 |#3| |#3|) (-713)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-4100 (((-1174 |#3|) $) NIL) (($ |#3|) NIL) (((-798) $) NIL) (($ (-525)) 12) (($ (-385 (-525))) NIL)) (-2448 (((-713)) 15)) (-2880 (($ $ |#3|) 54)))
+(((-217 |#1| |#2| |#3|) (-10 -8 (-15 -4100 (|#1| (-385 (-525)))) (-15 -4100 (|#1| (-525))) (-15 -4100 ((-798) |#1|)) (-15 -2448 ((-713))) (-15 -2702 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -3090 ((-632 (-525)) (-632 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -4100 (|#1| |#3|)) (-15 -2702 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2702 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -3090 ((-632 |#3|) (-632 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 |#3|)) (|:| |vec| (-1174 |#3|))) (-632 |#1|) (-1174 |#1|))) (-15 -1613 ((-713))) (-15 -2880 (|#1| |#1| |#3|)) (-15 -3933 ((-128))) (-15 -4100 ((-1174 |#3|) |#1|))) (-218 |#2| |#3|) (-713) (-1128)) (T -217))
+((-3933 (*1 *2) (-12 (-14 *4 (-713)) (-4 *5 (-1128)) (-5 *2 (-128)) (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))) (-1613 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-713)) (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))) (-2448 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-713)) (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))))
+(-10 -8 (-15 -4100 (|#1| (-385 (-525)))) (-15 -4100 (|#1| (-525))) (-15 -4100 ((-798) |#1|)) (-15 -2448 ((-713))) (-15 -2702 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -3090 ((-632 (-525)) (-632 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -4100 (|#1| |#3|)) (-15 -2702 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2702 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -3090 ((-632 |#3|) (-632 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 |#3|)) (|:| |vec| (-1174 |#3|))) (-632 |#1|) (-1174 |#1|))) (-15 -1613 ((-713))) (-15 -2880 (|#1| |#1| |#3|)) (-15 -3933 ((-128))) (-15 -4100 ((-1174 |#3|) |#1|)))
+((-4087 (((-108) $ $) 19 (|has| |#2| (-1020)))) (-2414 (((-108) $) 72 (|has| |#2| (-126)))) (-3473 (($ (-856)) 127 (|has| |#2| (-977)))) (-3289 (((-1179) $ (-525) (-525)) 40 (|has| $ (-6 -4260)))) (-1525 (($ $ $) 123 (|has| |#2| (-735)))) (-3222 (((-3 $ "failed") $ $) 74 (|has| |#2| (-126)))) (-3779 (((-108) $ (-713)) 8)) (-1613 (((-713)) 109 (|has| |#2| (-346)))) (-2971 (((-525) $) 121 (|has| |#2| (-787)))) (-1233 ((|#2| $ (-525) |#2|) 52 (|has| $ (-6 -4260)))) (-2475 (($) 7 T CONST)) (-1934 (((-3 (-525) "failed") $) 67 (-3944 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-3 (-385 (-525)) "failed") $) 64 (-3944 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1020)))) (-4105 (((-525) $) 68 (-3944 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-385 (-525)) $) 65 (-3944 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) ((|#2| $) 60 (|has| |#2| (-1020)))) (-3090 (((-632 (-525)) (-632 $)) 108 (-3944 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 107 (-3944 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) 106 (|has| |#2| (-977))) (((-632 |#2|) (-632 $)) 105 (|has| |#2| (-977)))) (-3300 (((-3 $ "failed") $) 80 (|has| |#2| (-669)))) (-1903 (($) 112 (|has| |#2| (-346)))) (-3081 ((|#2| $ (-525) |#2|) 53 (|has| $ (-6 -4260)))) (-3017 ((|#2| $ (-525)) 51)) (-1889 (((-108) $) 119 (|has| |#2| (-787)))) (-2175 (((-592 |#2|) $) 30 (|has| $ (-6 -4259)))) (-2278 (((-108) $) 83 (|has| |#2| (-669)))) (-4079 (((-108) $) 120 (|has| |#2| (-787)))) (-2516 (((-108) $ (-713)) 9)) (-1732 (((-525) $) 43 (|has| (-525) (-789)))) (-3033 (($ $ $) 118 (-2067 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-2617 (((-592 |#2|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4259))))) (-2231 (((-525) $) 44 (|has| (-525) (-789)))) (-1609 (($ $ $) 117 (-2067 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-3069 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#2| |#2|) $) 35)) (-3685 (((-856) $) 111 (|has| |#2| (-346)))) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22 (|has| |#2| (-1020)))) (-3177 (((-592 (-525)) $) 46)) (-3461 (((-108) (-525) $) 47)) (-1722 (($ (-856)) 110 (|has| |#2| (-346)))) (-3993 (((-1039) $) 21 (|has| |#2| (-1020)))) (-1647 ((|#2| $) 42 (|has| (-525) (-789)))) (-3453 (($ $ |#2|) 41 (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#2|))) 26 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) 25 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) 23 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-1231 (((-108) $ $) 14)) (-2456 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-1717 (((-592 |#2|) $) 48)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#2| $ (-525) |#2|) 50) ((|#2| $ (-525)) 49)) (-3584 ((|#2| $ $) 126 (|has| |#2| (-977)))) (-4238 (($ (-1174 |#2|)) 128)) (-3933 (((-128)) 125 (|has| |#2| (-341)))) (-2702 (($ $) 100 (-3944 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) 98 (-3944 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1092)) 96 (-3944 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092))) 95 (-3944 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1092) (-713)) 94 (-3944 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) 93 (-3944 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) 86 (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-977)))) (-4002 (((-713) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4259))) (((-713) |#2| $) 28 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-4100 (((-1174 |#2|) $) 129) (($ (-525)) 66 (-2067 (-3944 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) (|has| |#2| (-977)))) (($ (-385 (-525))) 63 (-3944 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (($ |#2|) 62 (|has| |#2| (-1020))) (((-798) $) 18 (|has| |#2| (-566 (-798))))) (-2448 (((-713)) 104 (|has| |#2| (-977)))) (-2706 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4259)))) (-2380 (($ $) 122 (|has| |#2| (-787)))) (-3706 (($ $ (-713)) 81 (|has| |#2| (-669))) (($ $ (-856)) 77 (|has| |#2| (-669)))) (-3364 (($) 71 (|has| |#2| (-126)) CONST)) (-3375 (($) 84 (|has| |#2| (-669)) CONST)) (-2401 (($ $) 99 (-3944 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) 97 (-3944 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1092)) 92 (-3944 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092))) 91 (-3944 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1092) (-713)) 90 (-3944 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) 89 (-3944 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) 88 (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) 87 (|has| |#2| (-977)))) (-2830 (((-108) $ $) 115 (-2067 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-2807 (((-108) $ $) 114 (-2067 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-2775 (((-108) $ $) 20 (|has| |#2| (-1020)))) (-2817 (((-108) $ $) 116 (-2067 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-2795 (((-108) $ $) 113 (-2067 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-2880 (($ $ |#2|) 124 (|has| |#2| (-341)))) (-2871 (($ $ $) 102 (|has| |#2| (-977))) (($ $) 101 (|has| |#2| (-977)))) (-2860 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-713)) 82 (|has| |#2| (-669))) (($ $ (-856)) 78 (|has| |#2| (-669)))) (* (($ (-525) $) 103 (|has| |#2| (-977))) (($ $ $) 79 (|has| |#2| (-669))) (($ $ |#2|) 76 (|has| |#2| (-669))) (($ |#2| $) 75 (|has| |#2| (-669))) (($ (-713) $) 73 (|has| |#2| (-126))) (($ (-856) $) 70 (|has| |#2| (-25)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-218 |#1| |#2|) (-131) (-713) (-1128)) (T -218))
-((-2816 (*1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-4 *4 (-1128)) (-4 *1 (-218 *3 *4)))) (-4083 (*1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-218 *3 *4)) (-4 *4 (-977)) (-4 *4 (-1128)))) (-2047 (*1 *2 *1 *1) (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1128)) (-4 *2 (-977)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1128)) (-4 *2 (-669)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1128)) (-4 *2 (-669)))))
-(-13 (-558 (-525) |t#2|) (-566 (-1174 |t#2|)) (-10 -8 (-6 -4258) (-15 -2816 ($ (-1174 |t#2|))) (IF (|has| |t#2| (-1020)) (-6 (-389 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-977)) (PROGN (-6 (-107 |t#2| |t#2|)) (-6 (-211 |t#2|)) (-6 (-355 |t#2|)) (-15 -4083 ($ (-856))) (-15 -2047 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-126)) (-6 (-126)) |%noBranch|) (IF (|has| |t#2| (-669)) (PROGN (-6 (-669)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-346)) (-6 (-346)) |%noBranch|) (IF (|has| |t#2| (-160)) (PROGN (-6 (-37 |t#2|)) (-6 (-160))) |%noBranch|) (IF (|has| |t#2| (-6 -4255)) (-6 -4255) |%noBranch|) (IF (|has| |t#2| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |t#2| (-735)) (-6 (-735)) |%noBranch|) (IF (|has| |t#2| (-341)) (-6 (-1181 |t#2|)) |%noBranch|)))
-(((-21) -3254 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-23) -3254 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126))) ((-25) -3254 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-160)) ((-97) -3254 (|has| |#2| (-1020)) (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-669)) (|has| |#2| (-346)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-107 |#2| |#2|) -3254 (|has| |#2| (-977)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-107 $ $) |has| |#2| (-160)) ((-126) -3254 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126))) ((-566 (-798)) -3254 (|has| |#2| (-1020)) (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-669)) (|has| |#2| (-346)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-566 (-798))) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-566 (-1174 |#2|)) . T) ((-160) |has| |#2| (-160)) ((-211 |#2|) |has| |#2| (-977)) ((-213) -12 (|has| |#2| (-213)) (|has| |#2| (-977))) ((-265 #0=(-525) |#2|) . T) ((-267 #0# |#2|) . T) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-346) |has| |#2| (-346)) ((-355 |#2|) |has| |#2| (-977)) ((-389 |#2|) |has| |#2| (-1020)) ((-464 |#2|) . T) ((-558 #0# |#2|) . T) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-594 |#2|) -3254 (|has| |#2| (-977)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-594 $) -3254 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-588 (-525)) -12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977))) ((-588 |#2|) |has| |#2| (-977)) ((-660 |#2|) -3254 (|has| |#2| (-341)) (|has| |#2| (-160))) ((-669) -3254 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-669)) (|has| |#2| (-160))) ((-733) |has| |#2| (-787)) ((-734) -3254 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-735) |has| |#2| (-735)) ((-736) -3254 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-737) -3254 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-787) |has| |#2| (-787)) ((-789) -3254 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-835 (-1092)) -12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977))) ((-968 (-385 (-525))) -12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020))) ((-968 (-525)) -12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) ((-968 |#2|) |has| |#2| (-1020)) ((-983 |#2|) -3254 (|has| |#2| (-977)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-983 $) |has| |#2| (-160)) ((-977) -3254 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-984) -3254 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-1032) -3254 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-669)) (|has| |#2| (-160))) ((-1020) -3254 (|has| |#2| (-1020)) (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-669)) (|has| |#2| (-346)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-1128) . T) ((-1181 |#2|) |has| |#2| (-341)))
-((-4192 (((-220 |#1| |#3|) (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|) 21)) (-1284 ((|#3| (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|) 23)) (-3165 (((-220 |#1| |#3|) (-1 |#3| |#2|) (-220 |#1| |#2|)) 18)))
-(((-219 |#1| |#2| |#3|) (-10 -7 (-15 -4192 ((-220 |#1| |#3|) (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -1284 (|#3| (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -3165 ((-220 |#1| |#3|) (-1 |#3| |#2|) (-220 |#1| |#2|)))) (-713) (-1128) (-1128)) (T -219))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-220 *5 *6)) (-14 *5 (-713)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-5 *2 (-220 *5 *7)) (-5 *1 (-219 *5 *6 *7)))) (-1284 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-220 *5 *6)) (-14 *5 (-713)) (-4 *6 (-1128)) (-4 *2 (-1128)) (-5 *1 (-219 *5 *6 *2)))) (-4192 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-220 *6 *7)) (-14 *6 (-713)) (-4 *7 (-1128)) (-4 *5 (-1128)) (-5 *2 (-220 *6 *5)) (-5 *1 (-219 *6 *7 *5)))))
-(-10 -7 (-15 -4192 ((-220 |#1| |#3|) (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -1284 (|#3| (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -3165 ((-220 |#1| |#3|) (-1 |#3| |#2|) (-220 |#1| |#2|))))
-((-4236 (((-108) $ $) NIL (|has| |#2| (-1020)))) (-1209 (((-108) $) NIL (|has| |#2| (-126)))) (-4083 (($ (-856)) 56 (|has| |#2| (-977)))) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-3167 (($ $ $) 60 (|has| |#2| (-735)))) (-1578 (((-3 $ "failed") $ $) 49 (|has| |#2| (-126)))) (-3991 (((-108) $ (-713)) 17)) (-1834 (((-713)) NIL (|has| |#2| (-346)))) (-3855 (((-525) $) NIL (|has| |#2| (-787)))) (-1430 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4259)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1020)))) (-1572 (((-525) $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) ((|#2| $) 27 (|has| |#2| (-1020)))) (-1994 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL (|has| |#2| (-977))) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-977)))) (-3457 (((-3 $ "failed") $) 53 (|has| |#2| (-669)))) (-2502 (($) NIL (|has| |#2| (-346)))) (-2301 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#2| $ (-525)) 51)) (-1222 (((-108) $) NIL (|has| |#2| (-787)))) (-3440 (((-592 |#2|) $) 15 (|has| $ (-6 -4258)))) (-1396 (((-108) $) NIL (|has| |#2| (-669)))) (-3256 (((-108) $) NIL (|has| |#2| (-787)))) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) 20 (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (-3254 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2694 (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-1847 (((-525) $) 50 (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (-3254 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2284 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#2| |#2|) $) 41)) (-3005 (((-856) $) NIL (|has| |#2| (-346)))) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#2| (-1020)))) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-3555 (($ (-856)) NIL (|has| |#2| (-346)))) (-2093 (((-1039) $) NIL (|has| |#2| (-1020)))) (-1872 ((|#2| $) NIL (|has| (-525) (-789)))) (-1420 (($ $ |#2|) NIL (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#2|) $) 24 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-3341 (((-592 |#2|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) 21)) (-2047 ((|#2| $ $) NIL (|has| |#2| (-977)))) (-2816 (($ (-1174 |#2|)) 18)) (-3705 (((-128)) NIL (|has| |#2| (-341)))) (-3376 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-977)))) (-2110 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-1462 (($ $) NIL)) (-1217 (((-1174 |#2|) $) 10) (($ (-525)) NIL (-3254 (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) (|has| |#2| (-977)))) (($ (-385 (-525))) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (($ |#2|) 13 (|has| |#2| (-1020))) (((-798) $) NIL (|has| |#2| (-566 (-798))))) (-3917 (((-713)) NIL (|has| |#2| (-977)))) (-3029 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-2802 (($ $) NIL (|has| |#2| (-787)))) (-1619 (($ $ (-713)) NIL (|has| |#2| (-669))) (($ $ (-856)) NIL (|has| |#2| (-669)))) (-3349 (($) 35 (|has| |#2| (-126)) CONST)) (-3359 (($) 38 (|has| |#2| (-669)) CONST)) (-2022 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-977)))) (-4011 (((-108) $ $) NIL (-3254 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3987 (((-108) $ $) NIL (-3254 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3955 (((-108) $ $) 26 (|has| |#2| (-1020)))) (-3999 (((-108) $ $) NIL (-3254 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3978 (((-108) $ $) 58 (-3254 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-4075 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4061 (($ $ $) NIL (|has| |#2| (-977))) (($ $) NIL (|has| |#2| (-977)))) (-4047 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-713)) NIL (|has| |#2| (-669))) (($ $ (-856)) NIL (|has| |#2| (-669)))) (* (($ (-525) $) NIL (|has| |#2| (-977))) (($ $ $) 44 (|has| |#2| (-669))) (($ $ |#2|) 42 (|has| |#2| (-669))) (($ |#2| $) 43 (|has| |#2| (-669))) (($ (-713) $) NIL (|has| |#2| (-126))) (($ (-856) $) NIL (|has| |#2| (-25)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
+((-4238 (*1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-4 *4 (-1128)) (-4 *1 (-218 *3 *4)))) (-3473 (*1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-218 *3 *4)) (-4 *4 (-977)) (-4 *4 (-1128)))) (-3584 (*1 *2 *1 *1) (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1128)) (-4 *2 (-977)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1128)) (-4 *2 (-669)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1128)) (-4 *2 (-669)))))
+(-13 (-558 (-525) |t#2|) (-566 (-1174 |t#2|)) (-10 -8 (-6 -4259) (-15 -4238 ($ (-1174 |t#2|))) (IF (|has| |t#2| (-1020)) (-6 (-389 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-977)) (PROGN (-6 (-107 |t#2| |t#2|)) (-6 (-211 |t#2|)) (-6 (-355 |t#2|)) (-15 -3473 ($ (-856))) (-15 -3584 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-126)) (-6 (-126)) |%noBranch|) (IF (|has| |t#2| (-669)) (PROGN (-6 (-669)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-346)) (-6 (-346)) |%noBranch|) (IF (|has| |t#2| (-160)) (PROGN (-6 (-37 |t#2|)) (-6 (-160))) |%noBranch|) (IF (|has| |t#2| (-6 -4256)) (-6 -4256) |%noBranch|) (IF (|has| |t#2| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |t#2| (-735)) (-6 (-735)) |%noBranch|) (IF (|has| |t#2| (-341)) (-6 (-1181 |t#2|)) |%noBranch|)))
+(((-21) -2067 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-23) -2067 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126))) ((-25) -2067 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-160)) ((-97) -2067 (|has| |#2| (-1020)) (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-669)) (|has| |#2| (-346)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-107 |#2| |#2|) -2067 (|has| |#2| (-977)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-107 $ $) |has| |#2| (-160)) ((-126) -2067 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126))) ((-566 (-798)) -2067 (|has| |#2| (-1020)) (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-669)) (|has| |#2| (-346)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-566 (-798))) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-566 (-1174 |#2|)) . T) ((-160) |has| |#2| (-160)) ((-211 |#2|) |has| |#2| (-977)) ((-213) -12 (|has| |#2| (-213)) (|has| |#2| (-977))) ((-265 #0=(-525) |#2|) . T) ((-267 #0# |#2|) . T) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-346) |has| |#2| (-346)) ((-355 |#2|) |has| |#2| (-977)) ((-389 |#2|) |has| |#2| (-1020)) ((-464 |#2|) . T) ((-558 #0# |#2|) . T) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-594 |#2|) -2067 (|has| |#2| (-977)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-594 $) -2067 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-588 (-525)) -12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977))) ((-588 |#2|) |has| |#2| (-977)) ((-660 |#2|) -2067 (|has| |#2| (-341)) (|has| |#2| (-160))) ((-669) -2067 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-669)) (|has| |#2| (-160))) ((-733) |has| |#2| (-787)) ((-734) -2067 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-735) |has| |#2| (-735)) ((-736) -2067 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-737) -2067 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-787) |has| |#2| (-787)) ((-789) -2067 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-835 (-1092)) -12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977))) ((-968 (-385 (-525))) -12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020))) ((-968 (-525)) -12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) ((-968 |#2|) |has| |#2| (-1020)) ((-983 |#2|) -2067 (|has| |#2| (-977)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-983 $) |has| |#2| (-160)) ((-977) -2067 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-984) -2067 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-1032) -2067 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-669)) (|has| |#2| (-160))) ((-1020) -2067 (|has| |#2| (-1020)) (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-669)) (|has| |#2| (-346)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-1128) . T) ((-1181 |#2|) |has| |#2| (-341)))
+((-2159 (((-220 |#1| |#3|) (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|) 21)) (-3504 ((|#3| (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|) 23)) (-2016 (((-220 |#1| |#3|) (-1 |#3| |#2|) (-220 |#1| |#2|)) 18)))
+(((-219 |#1| |#2| |#3|) (-10 -7 (-15 -2159 ((-220 |#1| |#3|) (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -3504 (|#3| (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -2016 ((-220 |#1| |#3|) (-1 |#3| |#2|) (-220 |#1| |#2|)))) (-713) (-1128) (-1128)) (T -219))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-220 *5 *6)) (-14 *5 (-713)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-5 *2 (-220 *5 *7)) (-5 *1 (-219 *5 *6 *7)))) (-3504 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-220 *5 *6)) (-14 *5 (-713)) (-4 *6 (-1128)) (-4 *2 (-1128)) (-5 *1 (-219 *5 *6 *2)))) (-2159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-220 *6 *7)) (-14 *6 (-713)) (-4 *7 (-1128)) (-4 *5 (-1128)) (-5 *2 (-220 *6 *5)) (-5 *1 (-219 *6 *7 *5)))))
+(-10 -7 (-15 -2159 ((-220 |#1| |#3|) (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -3504 (|#3| (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -2016 ((-220 |#1| |#3|) (-1 |#3| |#2|) (-220 |#1| |#2|))))
+((-4087 (((-108) $ $) NIL (|has| |#2| (-1020)))) (-2414 (((-108) $) NIL (|has| |#2| (-126)))) (-3473 (($ (-856)) 56 (|has| |#2| (-977)))) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-1525 (($ $ $) 60 (|has| |#2| (-735)))) (-3222 (((-3 $ "failed") $ $) 49 (|has| |#2| (-126)))) (-3779 (((-108) $ (-713)) 17)) (-1613 (((-713)) NIL (|has| |#2| (-346)))) (-2971 (((-525) $) NIL (|has| |#2| (-787)))) (-1233 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4260)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1020)))) (-4105 (((-525) $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) ((|#2| $) 27 (|has| |#2| (-1020)))) (-3090 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL (|has| |#2| (-977))) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-977)))) (-3300 (((-3 $ "failed") $) 53 (|has| |#2| (-669)))) (-1903 (($) NIL (|has| |#2| (-346)))) (-3081 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#2| $ (-525)) 51)) (-1889 (((-108) $) NIL (|has| |#2| (-787)))) (-2175 (((-592 |#2|) $) 15 (|has| $ (-6 -4259)))) (-2278 (((-108) $) NIL (|has| |#2| (-669)))) (-4079 (((-108) $) NIL (|has| |#2| (-787)))) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) 20 (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (-2067 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2617 (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-2231 (((-525) $) 50 (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (-2067 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3069 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#2| |#2|) $) 41)) (-3685 (((-856) $) NIL (|has| |#2| (-346)))) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#2| (-1020)))) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-1722 (($ (-856)) NIL (|has| |#2| (-346)))) (-3993 (((-1039) $) NIL (|has| |#2| (-1020)))) (-1647 ((|#2| $) NIL (|has| (-525) (-789)))) (-3453 (($ $ |#2|) NIL (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#2|) $) 24 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-1717 (((-592 |#2|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) 21)) (-3584 ((|#2| $ $) NIL (|has| |#2| (-977)))) (-4238 (($ (-1174 |#2|)) 18)) (-3933 (((-128)) NIL (|has| |#2| (-341)))) (-2702 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-977)))) (-4002 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-2503 (($ $) NIL)) (-4100 (((-1174 |#2|) $) 10) (($ (-525)) NIL (-2067 (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) (|has| |#2| (-977)))) (($ (-385 (-525))) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (($ |#2|) 13 (|has| |#2| (-1020))) (((-798) $) NIL (|has| |#2| (-566 (-798))))) (-2448 (((-713)) NIL (|has| |#2| (-977)))) (-2706 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2380 (($ $) NIL (|has| |#2| (-787)))) (-3706 (($ $ (-713)) NIL (|has| |#2| (-669))) (($ $ (-856)) NIL (|has| |#2| (-669)))) (-3364 (($) 35 (|has| |#2| (-126)) CONST)) (-3375 (($) 38 (|has| |#2| (-669)) CONST)) (-2401 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-977)))) (-2830 (((-108) $ $) NIL (-2067 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2807 (((-108) $ $) NIL (-2067 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2775 (((-108) $ $) 26 (|has| |#2| (-1020)))) (-2817 (((-108) $ $) NIL (-2067 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2795 (((-108) $ $) 58 (-2067 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2880 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-2871 (($ $ $) NIL (|has| |#2| (-977))) (($ $) NIL (|has| |#2| (-977)))) (-2860 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-713)) NIL (|has| |#2| (-669))) (($ $ (-856)) NIL (|has| |#2| (-669)))) (* (($ (-525) $) NIL (|has| |#2| (-977))) (($ $ $) 44 (|has| |#2| (-669))) (($ $ |#2|) 42 (|has| |#2| (-669))) (($ |#2| $) 43 (|has| |#2| (-669))) (($ (-713) $) NIL (|has| |#2| (-126))) (($ (-856) $) NIL (|has| |#2| (-25)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
(((-220 |#1| |#2|) (-218 |#1| |#2|) (-713) (-1128)) (T -220))
NIL
(-218 |#1| |#2|)
-((-1926 (((-525) (-592 (-1075))) 24) (((-525) (-1075)) 19)) (-3059 (((-1179) (-592 (-1075))) 29) (((-1179) (-1075)) 28)) (-3997 (((-1075)) 14)) (-4226 (((-1075) (-525) (-1075)) 16)) (-1340 (((-592 (-1075)) (-592 (-1075)) (-525) (-1075)) 25) (((-1075) (-1075) (-525) (-1075)) 23)) (-2979 (((-592 (-1075)) (-592 (-1075))) 13) (((-592 (-1075)) (-1075)) 11)))
-(((-221) (-10 -7 (-15 -2979 ((-592 (-1075)) (-1075))) (-15 -2979 ((-592 (-1075)) (-592 (-1075)))) (-15 -3997 ((-1075))) (-15 -4226 ((-1075) (-525) (-1075))) (-15 -1340 ((-1075) (-1075) (-525) (-1075))) (-15 -1340 ((-592 (-1075)) (-592 (-1075)) (-525) (-1075))) (-15 -3059 ((-1179) (-1075))) (-15 -3059 ((-1179) (-592 (-1075)))) (-15 -1926 ((-525) (-1075))) (-15 -1926 ((-525) (-592 (-1075)))))) (T -221))
-((-1926 (*1 *2 *3) (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-525)) (-5 *1 (-221)))) (-1926 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-525)) (-5 *1 (-221)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-1179)) (-5 *1 (-221)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-221)))) (-1340 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-592 (-1075))) (-5 *3 (-525)) (-5 *4 (-1075)) (-5 *1 (-221)))) (-1340 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-525)) (-5 *1 (-221)))) (-4226 (*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-525)) (-5 *1 (-221)))) (-3997 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-221)))) (-2979 (*1 *2 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-221)))) (-2979 (*1 *2 *3) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-221)) (-5 *3 (-1075)))))
-(-10 -7 (-15 -2979 ((-592 (-1075)) (-1075))) (-15 -2979 ((-592 (-1075)) (-592 (-1075)))) (-15 -3997 ((-1075))) (-15 -4226 ((-1075) (-525) (-1075))) (-15 -1340 ((-1075) (-1075) (-525) (-1075))) (-15 -1340 ((-592 (-1075)) (-592 (-1075)) (-525) (-1075))) (-15 -3059 ((-1179) (-1075))) (-15 -3059 ((-1179) (-592 (-1075)))) (-15 -1926 ((-525) (-1075))) (-15 -1926 ((-525) (-592 (-1075)))))
-((-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 9)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 18)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ (-385 (-525)) $) 25) (($ $ (-385 (-525))) NIL)))
-(((-222 |#1|) (-10 -8 (-15 -1619 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 ** (|#1| |#1| (-713))) (-15 -1619 (|#1| |#1| (-713))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-856))) (-15 -1619 (|#1| |#1| (-856))) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|))) (-223)) (T -222))
-NIL
-(-10 -8 (-15 -1619 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 ** (|#1| |#1| (-713))) (-15 -1619 (|#1| |#1| (-713))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-856))) (-15 -1619 (|#1| |#1| (-856))) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-2619 (((-1075) $) 9)) (-2997 (($ $) 39)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 44)) (-3917 (((-713)) 29)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 40)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 41)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ (-385 (-525)) $) 43) (($ $ (-385 (-525))) 42)))
+((-1784 (((-525) (-592 (-1075))) 24) (((-525) (-1075)) 19)) (-2865 (((-1179) (-592 (-1075))) 29) (((-1179) (-1075)) 28)) (-3846 (((-1075)) 14)) (-2510 (((-1075) (-525) (-1075)) 16)) (-1423 (((-592 (-1075)) (-592 (-1075)) (-525) (-1075)) 25) (((-1075) (-1075) (-525) (-1075)) 23)) (-2070 (((-592 (-1075)) (-592 (-1075))) 13) (((-592 (-1075)) (-1075)) 11)))
+(((-221) (-10 -7 (-15 -2070 ((-592 (-1075)) (-1075))) (-15 -2070 ((-592 (-1075)) (-592 (-1075)))) (-15 -3846 ((-1075))) (-15 -2510 ((-1075) (-525) (-1075))) (-15 -1423 ((-1075) (-1075) (-525) (-1075))) (-15 -1423 ((-592 (-1075)) (-592 (-1075)) (-525) (-1075))) (-15 -2865 ((-1179) (-1075))) (-15 -2865 ((-1179) (-592 (-1075)))) (-15 -1784 ((-525) (-1075))) (-15 -1784 ((-525) (-592 (-1075)))))) (T -221))
+((-1784 (*1 *2 *3) (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-525)) (-5 *1 (-221)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-525)) (-5 *1 (-221)))) (-2865 (*1 *2 *3) (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-1179)) (-5 *1 (-221)))) (-2865 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-221)))) (-1423 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-592 (-1075))) (-5 *3 (-525)) (-5 *4 (-1075)) (-5 *1 (-221)))) (-1423 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-525)) (-5 *1 (-221)))) (-2510 (*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-525)) (-5 *1 (-221)))) (-3846 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-221)))) (-2070 (*1 *2 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-221)))) (-2070 (*1 *2 *3) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-221)) (-5 *3 (-1075)))))
+(-10 -7 (-15 -2070 ((-592 (-1075)) (-1075))) (-15 -2070 ((-592 (-1075)) (-592 (-1075)))) (-15 -3846 ((-1075))) (-15 -2510 ((-1075) (-525) (-1075))) (-15 -1423 ((-1075) (-1075) (-525) (-1075))) (-15 -1423 ((-592 (-1075)) (-592 (-1075)) (-525) (-1075))) (-15 -2865 ((-1179) (-1075))) (-15 -2865 ((-1179) (-592 (-1075)))) (-15 -1784 ((-525) (-1075))) (-15 -1784 ((-525) (-592 (-1075)))))
+((-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 9)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 18)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ (-385 (-525)) $) 25) (($ $ (-385 (-525))) NIL)))
+(((-222 |#1|) (-10 -8 (-15 -3706 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 ** (|#1| |#1| (-713))) (-15 -3706 (|#1| |#1| (-713))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-856))) (-15 -3706 (|#1| |#1| (-856))) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|))) (-223)) (T -222))
+NIL
+(-10 -8 (-15 -3706 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 ** (|#1| |#1| (-713))) (-15 -3706 (|#1| |#1| (-713))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-856))) (-15 -3706 (|#1| |#1| (-856))) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-1289 (((-1075) $) 9)) (-1387 (($ $) 39)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 44)) (-2448 (((-713)) 29)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 40)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 41)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ (-385 (-525)) $) 43) (($ $ (-385 (-525))) 42)))
(((-223) (-131)) (T -223))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525)))) (-1619 (*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525)))) (-2997 (*1 *1 *1) (-4 *1 (-223))))
-(-13 (-269) (-37 (-385 (-525))) (-10 -8 (-15 ** ($ $ (-525))) (-15 -1619 ($ $ (-525))) (-15 -2997 ($ $))))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525)))) (-3706 (*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525)))) (-1387 (*1 *1 *1) (-4 *1 (-223))))
+(-13 (-269) (-37 (-385 (-525))) (-10 -8 (-15 ** ($ $ (-525))) (-15 -3706 ($ $ (-525))) (-15 -1387 ($ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-269) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-669) . T) ((-983 #0#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3284 ((|#1| $) 48)) (-2798 (($ $) 57)) (-3991 (((-108) $ (-713)) 8)) (-3214 ((|#1| $ |#1|) 39 (|has| $ (-6 -4259)))) (-2532 (($ $ $) 53 (|has| $ (-6 -4259)))) (-4200 (($ $ $) 52 (|has| $ (-6 -4259)))) (-1430 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) 41 (|has| $ (-6 -4259)))) (-2169 (($) 7 T CONST)) (-3483 (($ $) 56)) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3396 (((-592 $) $) 50)) (-1729 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-2393 (($ $) 55)) (-3924 (((-108) $ (-713)) 9)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-2803 (((-592 |#1|) $) 45)) (-3786 (((-108) $) 49)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-1717 ((|#1| $) 59)) (-2451 (($ $) 58)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#1| $ "value") 47)) (-3340 (((-525) $ $) 44)) (-2905 (((-108) $) 46)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-4029 (($ $ $) 54 (|has| $ (-6 -4259)))) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3793 (((-592 $) $) 51)) (-3351 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2219 ((|#1| $) 48)) (-3979 (($ $) 57)) (-3779 (((-108) $ (-713)) 8)) (-1947 ((|#1| $ |#1|) 39 (|has| $ (-6 -4260)))) (-1724 (($ $ $) 53 (|has| $ (-6 -4260)))) (-2235 (($ $ $) 52 (|has| $ (-6 -4260)))) (-1233 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) 41 (|has| $ (-6 -4260)))) (-2475 (($) 7 T CONST)) (-3890 (($ $) 56)) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-3994 (((-592 $) $) 50)) (-3569 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-1286 (($ $) 55)) (-2516 (((-108) $ (-713)) 9)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-2010 (((-592 |#1|) $) 45)) (-3506 (((-108) $) 49)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2718 ((|#1| $) 59)) (-2205 (($ $) 58)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#1| $ "value") 47)) (-1707 (((-525) $ $) 44)) (-3953 (((-108) $) 46)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-4190 (($ $ $) 54 (|has| $ (-6 -4260)))) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3576 (((-592 $) $) 51)) (-1791 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-224 |#1|) (-131) (-1128)) (T -224))
-((-1717 (*1 *2 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128)))) (-2451 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128)))) (-2798 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128)))) (-3483 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128)))) (-2393 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128)))) (-4029 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-224 *2)) (-4 *2 (-1128)))) (-2532 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-224 *2)) (-4 *2 (-1128)))) (-4200 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-224 *2)) (-4 *2 (-1128)))))
-(-13 (-942 |t#1|) (-10 -8 (-15 -1717 (|t#1| $)) (-15 -2451 ($ $)) (-15 -2798 ($ $)) (-15 -3483 ($ $)) (-15 -2393 ($ $)) (IF (|has| $ (-6 -4259)) (PROGN (-15 -4029 ($ $ $)) (-15 -2532 ($ $ $)) (-15 -4200 ($ $ $))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-942 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3284 ((|#1| $) NIL)) (-3581 ((|#1| $) NIL)) (-2798 (($ $) NIL)) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-4238 (($ $ (-525)) NIL (|has| $ (-6 -4259)))) (-2470 (((-108) $) NIL (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-2165 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-789)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-2458 (($ $) 10 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-3214 ((|#1| $ |#1|) NIL (|has| $ (-6 -4259)))) (-1620 (($ $ $) NIL (|has| $ (-6 -4259)))) (-2603 ((|#1| $ |#1|) NIL (|has| $ (-6 -4259)))) (-4145 ((|#1| $ |#1|) NIL (|has| $ (-6 -4259)))) (-1430 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4259))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4259))) (($ $ "rest" $) NIL (|has| $ (-6 -4259))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4259))) ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) NIL (|has| $ (-6 -4259)))) (-1676 (($ (-1 (-108) |#1|) $) NIL)) (-3785 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3570 ((|#1| $) NIL)) (-2169 (($) NIL T CONST)) (-2700 (($ $) NIL (|has| $ (-6 -4259)))) (-3431 (($ $) NIL)) (-1886 (($ $) NIL) (($ $ (-713)) NIL)) (-3972 (($ $) NIL (|has| |#1| (-1020)))) (-1910 (($ $) 7 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3271 (($ |#1| $) NIL (|has| |#1| (-1020))) (($ (-1 (-108) |#1|) $) NIL)) (-1703 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-2301 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) NIL)) (-2353 (((-108) $) NIL)) (-1932 (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020))) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) (-1 (-108) |#1|) $) NIL)) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-3396 (((-592 $) $) NIL)) (-1729 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3416 (($ (-713) |#1|) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) NIL (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-2639 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1577 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1755 (($ |#1|) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2803 (((-592 |#1|) $) NIL)) (-3786 (((-108) $) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-1717 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-1262 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2531 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1872 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1420 (($ $ |#1|) NIL (|has| $ (-6 -4259)))) (-3920 (((-108) $) NIL)) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1141 (-525))) NIL) ((|#1| $ (-525)) NIL) ((|#1| $ (-525) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-713) $ "count") 16)) (-3340 (((-525) $ $) NIL)) (-1356 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-3038 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-2767 (($ (-592 |#1|)) 22)) (-2905 (((-108) $) NIL)) (-3004 (($ $) NIL)) (-1354 (($ $) NIL (|has| $ (-6 -4259)))) (-1654 (((-713) $) NIL)) (-4167 (($ $) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-4098 (($ $ $ (-525)) NIL (|has| $ (-6 -4259)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) NIL)) (-4029 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2038 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-592 $)) NIL) (($ $ |#1|) NIL)) (-1217 (($ (-592 |#1|)) 17) (((-592 |#1|) $) 18) (((-798) $) 21 (|has| |#1| (-566 (-798))))) (-3793 (((-592 $) $) NIL)) (-3351 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3522 (((-713) $) 14 (|has| $ (-6 -4258)))))
-(((-225 |#1|) (-13 (-612 |#1|) (-10 -8 (-15 -1217 ($ (-592 |#1|))) (-15 -1217 ((-592 |#1|) $)) (-15 -2767 ($ (-592 |#1|))) (-15 -3406 ($ $ "unique")) (-15 -3406 ($ $ "sort")) (-15 -3406 ((-713) $ "count")))) (-789)) (T -225))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-225 *3)) (-4 *3 (-789)))) (-2767 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3)))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-225 *3)) (-4 *3 (-789)))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-225 *3)) (-4 *3 (-789)))) (-3406 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-713)) (-5 *1 (-225 *4)) (-4 *4 (-789)))))
-(-13 (-612 |#1|) (-10 -8 (-15 -1217 ($ (-592 |#1|))) (-15 -1217 ((-592 |#1|) $)) (-15 -2767 ($ (-592 |#1|))) (-15 -3406 ($ $ "unique")) (-15 -3406 ($ $ "sort")) (-15 -3406 ((-713) $ "count"))))
-((-1554 (((-3 (-713) "failed") |#1| |#1| (-713)) 27)))
-(((-226 |#1|) (-10 -7 (-15 -1554 ((-3 (-713) "failed") |#1| |#1| (-713)))) (-13 (-669) (-346) (-10 -7 (-15 ** (|#1| |#1| (-525)))))) (T -226))
-((-1554 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-713)) (-4 *3 (-13 (-669) (-346) (-10 -7 (-15 ** (*3 *3 (-525)))))) (-5 *1 (-226 *3)))))
-(-10 -7 (-15 -1554 ((-3 (-713) "failed") |#1| |#1| (-713))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2897 (((-592 (-800 |#1|)) $) NIL)) (-2744 (((-1088 $) $ (-800 |#1|)) NIL) (((-1088 |#2|) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-4218 (($ $) NIL (|has| |#2| (-517)))) (-3171 (((-108) $) NIL (|has| |#2| (-517)))) (-3212 (((-713) $) NIL) (((-713) $ (-592 (-800 |#1|))) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-1286 (($ $) NIL (|has| |#2| (-429)))) (-2669 (((-396 $) $) NIL (|has| |#2| (-429)))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-800 |#1|) "failed") $) NIL)) (-1572 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-800 |#1|) $) NIL)) (-3377 (($ $ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-1415 (($ $ (-592 (-525))) NIL)) (-3063 (($ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1576 (($ $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-3052 (((-592 $) $) NIL)) (-3673 (((-108) $) NIL (|has| |#2| (-844)))) (-2188 (($ $ |#2| (-220 (-3522 |#1|) (-713)) $) NIL)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) NIL)) (-2887 (($ (-1088 |#2|) (-800 |#1|)) NIL) (($ (-1088 $) (-800 |#1|)) NIL)) (-4144 (((-592 $) $) NIL)) (-1212 (((-108) $) NIL)) (-2876 (($ |#2| (-220 (-3522 |#1|) (-713))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ (-800 |#1|)) NIL)) (-2870 (((-220 (-3522 |#1|) (-713)) $) NIL) (((-713) $ (-800 |#1|)) NIL) (((-592 (-713)) $ (-592 (-800 |#1|))) NIL)) (-2638 (($ $ $) NIL (|has| |#2| (-789)))) (-3662 (($ $ $) NIL (|has| |#2| (-789)))) (-2172 (($ (-1 (-220 (-3522 |#1|) (-713)) (-220 (-3522 |#1|) (-713))) $) NIL)) (-3165 (($ (-1 |#2| |#2|) $) NIL)) (-2431 (((-3 (-800 |#1|) "failed") $) NIL)) (-3031 (($ $) NIL)) (-3043 ((|#2| $) NIL)) (-2556 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2619 (((-1075) $) NIL)) (-1334 (((-3 (-592 $) "failed") $) NIL)) (-2001 (((-3 (-592 $) "failed") $) NIL)) (-2121 (((-3 (-2 (|:| |var| (-800 |#1|)) (|:| -4193 (-713))) "failed") $) NIL)) (-2093 (((-1039) $) NIL)) (-3007 (((-108) $) NIL)) (-3019 ((|#2| $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#2| (-429)))) (-2589 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-2770 (((-396 $) $) NIL (|has| |#2| (-844)))) (-1715 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-2457 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-800 |#1|) |#2|) NIL) (($ $ (-592 (-800 |#1|)) (-592 |#2|)) NIL) (($ $ (-800 |#1|) $) NIL) (($ $ (-592 (-800 |#1|)) (-592 $)) NIL)) (-1975 (($ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-3376 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-2343 (((-220 (-3522 |#1|) (-713)) $) NIL) (((-713) $ (-800 |#1|)) NIL) (((-592 (-713)) $ (-592 (-800 |#1|))) NIL)) (-3210 (((-827 (-357)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-800 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-3658 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844))))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-800 |#1|)) NIL) (($ (-385 (-525))) NIL (-3254 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-1684 (((-592 |#2|) $) NIL)) (-1568 ((|#2| $ (-220 (-3522 |#1|) (-713))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#2| (-136))))) (-3917 (((-713)) NIL)) (-3716 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-3325 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-4011 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4075 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-227 |#1| |#2|) (-13 (-884 |#2| (-220 (-3522 |#1|) (-713)) (-800 |#1|)) (-10 -8 (-15 -1415 ($ $ (-592 (-525)))))) (-592 (-1092)) (-977)) (T -227))
-((-1415 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-227 *3 *4)) (-14 *3 (-592 (-1092))) (-4 *4 (-977)))))
-(-13 (-884 |#2| (-220 (-3522 |#1|) (-713)) (-800 |#1|)) (-10 -8 (-15 -1415 ($ $ (-592 (-525))))))
-((-4236 (((-108) $ $) NIL)) (-2005 (((-1179) $) 15)) (-3081 (((-169) $) 9)) (-1292 (($ (-169)) 10)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 7)) (-3955 (((-108) $ $) 13)))
-(((-228) (-13 (-1020) (-10 -8 (-15 -3081 ((-169) $)) (-15 -1292 ($ (-169))) (-15 -2005 ((-1179) $))))) (T -228))
-((-3081 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-228)))) (-1292 (*1 *1 *2) (-12 (-5 *2 (-169)) (-5 *1 (-228)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-228)))))
-(-13 (-1020) (-10 -8 (-15 -3081 ((-169) $)) (-15 -1292 ($ (-169))) (-15 -2005 ((-1179) $))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-4083 (($ (-856)) NIL (|has| |#4| (-977)))) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-3167 (($ $ $) NIL (|has| |#4| (-735)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-1834 (((-713)) NIL (|has| |#4| (-346)))) (-3855 (((-525) $) NIL (|has| |#4| (-787)))) (-1430 ((|#4| $ (-525) |#4|) NIL (|has| $ (-6 -4259)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1020))) (((-3 (-525) "failed") $) NIL (-12 (|has| |#4| (-968 (-525))) (|has| |#4| (-1020)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#4| (-968 (-385 (-525)))) (|has| |#4| (-1020))))) (-1572 ((|#4| $) NIL (|has| |#4| (-1020))) (((-525) $) NIL (-12 (|has| |#4| (-968 (-525))) (|has| |#4| (-1020)))) (((-385 (-525)) $) NIL (-12 (|has| |#4| (-968 (-385 (-525)))) (|has| |#4| (-1020))))) (-1994 (((-2 (|:| -3407 (-632 |#4|)) (|:| |vec| (-1174 |#4|))) (-632 $) (-1174 $)) NIL (|has| |#4| (-977))) (((-632 |#4|) (-632 $)) NIL (|has| |#4| (-977))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))))) (-3457 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))))) (-2502 (($) NIL (|has| |#4| (-346)))) (-2301 ((|#4| $ (-525) |#4|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#4| $ (-525)) NIL)) (-1222 (((-108) $) NIL (|has| |#4| (-787)))) (-3440 (((-592 |#4|) $) NIL (|has| $ (-6 -4258)))) (-1396 (((-108) $) NIL (-3254 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))))) (-3256 (((-108) $) NIL (|has| |#4| (-787)))) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) NIL (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (-3254 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-2694 (((-592 |#4|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (-3254 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-2284 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#4| |#4|) $) NIL)) (-3005 (((-856) $) NIL (|has| |#4| (-346)))) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-3555 (($ (-856)) NIL (|has| |#4| (-346)))) (-2093 (((-1039) $) NIL)) (-1872 ((|#4| $) NIL (|has| (-525) (-789)))) (-1420 (($ $ |#4|) NIL (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020))))) (-3341 (((-592 |#4|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#4| $ (-525) |#4|) NIL) ((|#4| $ (-525)) 12)) (-2047 ((|#4| $ $) NIL (|has| |#4| (-977)))) (-2816 (($ (-1174 |#4|)) NIL)) (-3705 (((-128)) NIL (|has| |#4| (-341)))) (-3376 (($ $ (-1 |#4| |#4|) (-713)) NIL (|has| |#4| (-977))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-977))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-977)))) (($ $) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-977))))) (-2110 (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258))) (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020))))) (-1462 (($ $) NIL)) (-1217 (((-1174 |#4|) $) NIL) (((-798) $) NIL) (($ |#4|) NIL (|has| |#4| (-1020))) (($ (-525)) NIL (-3254 (-12 (|has| |#4| (-968 (-525))) (|has| |#4| (-1020))) (|has| |#4| (-977)))) (($ (-385 (-525))) NIL (-12 (|has| |#4| (-968 (-385 (-525)))) (|has| |#4| (-1020))))) (-3917 (((-713)) NIL (|has| |#4| (-977)))) (-3029 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-2802 (($ $) NIL (|has| |#4| (-787)))) (-1619 (($ $ (-713)) NIL (-3254 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977))))) (($ $ (-856)) NIL (-3254 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))))) (-3349 (($) NIL T CONST)) (-3359 (($) NIL (-3254 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))) CONST)) (-2022 (($ $ (-1 |#4| |#4|) (-713)) NIL (|has| |#4| (-977))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-977))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-977)))) (($ $) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-977))))) (-4011 (((-108) $ $) NIL (-3254 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-3987 (((-108) $ $) NIL (-3254 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (-3254 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-3978 (((-108) $ $) NIL (-3254 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-4075 (($ $ |#4|) NIL (|has| |#4| (-341)))) (-4061 (($ $ $) NIL) (($ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-713)) NIL (-3254 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977))))) (($ $ (-856)) NIL (-3254 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))))) (* (($ |#2| $) 14) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-856) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-669))) (($ |#4| $) NIL (|has| |#4| (-669))) (($ $ $) NIL (-3254 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
+((-2718 (*1 *2 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128)))) (-2205 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128)))) (-3979 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128)))) (-3890 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128)))) (-1286 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128)))) (-4190 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4260)) (-4 *1 (-224 *2)) (-4 *2 (-1128)))) (-1724 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4260)) (-4 *1 (-224 *2)) (-4 *2 (-1128)))) (-2235 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4260)) (-4 *1 (-224 *2)) (-4 *2 (-1128)))))
+(-13 (-942 |t#1|) (-10 -8 (-15 -2718 (|t#1| $)) (-15 -2205 ($ $)) (-15 -3979 ($ $)) (-15 -3890 ($ $)) (-15 -1286 ($ $)) (IF (|has| $ (-6 -4260)) (PROGN (-15 -4190 ($ $ $)) (-15 -1724 ($ $ $)) (-15 -2235 ($ $ $))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-942 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2219 ((|#1| $) NIL)) (-2250 ((|#1| $) NIL)) (-3979 (($ $) NIL)) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-1425 (($ $ (-525)) NIL (|has| $ (-6 -4260)))) (-2358 (((-108) $) NIL (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-2436 (($ $) NIL (-12 (|has| $ (-6 -4260)) (|has| |#1| (-789)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-1842 (($ $) 10 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-1947 ((|#1| $ |#1|) NIL (|has| $ (-6 -4260)))) (-3776 (($ $ $) NIL (|has| $ (-6 -4260)))) (-4193 ((|#1| $ |#1|) NIL (|has| $ (-6 -4260)))) (-2894 ((|#1| $ |#1|) NIL (|has| $ (-6 -4260)))) (-1233 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4260))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4260))) (($ $ "rest" $) NIL (|has| $ (-6 -4260))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4260))) ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) NIL (|has| $ (-6 -4260)))) (-3050 (($ (-1 (-108) |#1|) $) NIL)) (-2399 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2237 ((|#1| $) NIL)) (-2475 (($) NIL T CONST)) (-2670 (($ $) NIL (|has| $ (-6 -4260)))) (-1652 (($ $) NIL)) (-1659 (($ $) NIL) (($ $ (-713)) NIL)) (-1793 (($ $) NIL (|has| |#1| (-1020)))) (-1681 (($ $) 7 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-4205 (($ |#1| $) NIL (|has| |#1| (-1020))) (($ (-1 (-108) |#1|) $) NIL)) (-2698 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3081 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) NIL)) (-3631 (((-108) $) NIL)) (-3856 (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020))) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) (-1 (-108) |#1|) $) NIL)) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3994 (((-592 $) $) NIL)) (-3569 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3324 (($ (-713) |#1|) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) NIL (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-3269 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3212 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1522 (($ |#1|) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-2010 (((-592 |#1|) $) NIL)) (-3506 (((-108) $) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2718 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-3246 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2594 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1647 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3453 (($ $ |#1|) NIL (|has| $ (-6 -4260)))) (-2476 (((-108) $) NIL)) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1141 (-525))) NIL) ((|#1| $ (-525)) NIL) ((|#1| $ (-525) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-713) $ "count") 16)) (-1707 (((-525) $ $) NIL)) (-2818 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-2139 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-3386 (($ (-592 |#1|)) 22)) (-3953 (((-108) $) NIL)) (-3675 (($ $) NIL)) (-2789 (($ $) NIL (|has| $ (-6 -4260)))) (-4082 (((-713) $) NIL)) (-3077 (($ $) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3632 (($ $ $ (-525)) NIL (|has| $ (-6 -4260)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) NIL)) (-4190 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2035 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-592 $)) NIL) (($ $ |#1|) NIL)) (-4100 (($ (-592 |#1|)) 17) (((-592 |#1|) $) 18) (((-798) $) 21 (|has| |#1| (-566 (-798))))) (-3576 (((-592 $) $) NIL)) (-1791 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2827 (((-713) $) 14 (|has| $ (-6 -4259)))))
+(((-225 |#1|) (-13 (-612 |#1|) (-10 -8 (-15 -4100 ($ (-592 |#1|))) (-15 -4100 ((-592 |#1|) $)) (-15 -3386 ($ (-592 |#1|))) (-15 -3431 ($ $ "unique")) (-15 -3431 ($ $ "sort")) (-15 -3431 ((-713) $ "count")))) (-789)) (T -225))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-225 *3)) (-4 *3 (-789)))) (-3386 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-225 *3)) (-4 *3 (-789)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-225 *3)) (-4 *3 (-789)))) (-3431 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-713)) (-5 *1 (-225 *4)) (-4 *4 (-789)))))
+(-13 (-612 |#1|) (-10 -8 (-15 -4100 ($ (-592 |#1|))) (-15 -4100 ((-592 |#1|) $)) (-15 -3386 ($ (-592 |#1|))) (-15 -3431 ($ $ "unique")) (-15 -3431 ($ $ "sort")) (-15 -3431 ((-713) $ "count"))))
+((-2124 (((-3 (-713) "failed") |#1| |#1| (-713)) 27)))
+(((-226 |#1|) (-10 -7 (-15 -2124 ((-3 (-713) "failed") |#1| |#1| (-713)))) (-13 (-669) (-346) (-10 -7 (-15 ** (|#1| |#1| (-525)))))) (T -226))
+((-2124 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-713)) (-4 *3 (-13 (-669) (-346) (-10 -7 (-15 ** (*3 *3 (-525)))))) (-5 *1 (-226 *3)))))
+(-10 -7 (-15 -2124 ((-3 (-713) "failed") |#1| |#1| (-713))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1296 (((-592 (-800 |#1|)) $) NIL)) (-4169 (((-1088 $) $ (-800 |#1|)) NIL) (((-1088 |#2|) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-2433 (($ $) NIL (|has| |#2| (-517)))) (-1568 (((-108) $) NIL (|has| |#2| (-517)))) (-1928 (((-713) $) NIL) (((-713) $ (-592 (-800 |#1|))) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-4195 (($ $) NIL (|has| |#2| (-429)))) (-3586 (((-396 $) $) NIL (|has| |#2| (-429)))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-800 |#1|) "failed") $) NIL)) (-4105 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-800 |#1|) $) NIL)) (-3801 (($ $ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-2066 (($ $ (-592 (-525))) NIL)) (-1451 (($ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3201 (($ $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-1441 (((-592 $) $) NIL)) (-1798 (((-108) $) NIL (|has| |#2| (-844)))) (-1457 (($ $ |#2| (-220 (-2827 |#1|) (-713)) $) NIL)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) NIL)) (-1284 (($ (-1088 |#2|) (-800 |#1|)) NIL) (($ (-1088 $) (-800 |#1|)) NIL)) (-2884 (((-592 $) $) NIL)) (-2457 (((-108) $) NIL)) (-1272 (($ |#2| (-220 (-2827 |#1|) (-713))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ (-800 |#1|)) NIL)) (-1819 (((-220 (-2827 |#1|) (-713)) $) NIL) (((-713) $ (-800 |#1|)) NIL) (((-592 (-713)) $ (-592 (-800 |#1|))) NIL)) (-3033 (($ $ $) NIL (|has| |#2| (-789)))) (-1609 (($ $ $) NIL (|has| |#2| (-789)))) (-1314 (($ (-1 (-220 (-2827 |#1|) (-713)) (-220 (-2827 |#1|) (-713))) $) NIL)) (-2016 (($ (-1 |#2| |#2|) $) NIL)) (-2018 (((-3 (-800 |#1|) "failed") $) NIL)) (-1418 (($ $) NIL)) (-1430 ((|#2| $) NIL)) (-2739 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-1289 (((-1075) $) NIL)) (-2977 (((-3 (-592 $) "failed") $) NIL)) (-3165 (((-3 (-592 $) "failed") $) NIL)) (-1986 (((-3 (-2 (|:| |var| (-800 |#1|)) (|:| -2168 (-713))) "failed") $) NIL)) (-3993 (((-1039) $) NIL)) (-1399 (((-108) $) NIL)) (-1407 ((|#2| $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#2| (-429)))) (-2772 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-4201 (((-396 $) $) NIL (|has| |#2| (-844)))) (-1311 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-2825 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-800 |#1|) |#2|) NIL) (($ $ (-592 (-800 |#1|)) (-592 |#2|)) NIL) (($ $ (-800 |#1|) $) NIL) (($ $ (-592 (-800 |#1|)) (-592 $)) NIL)) (-4115 (($ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-2702 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3529 (((-220 (-2827 |#1|) (-713)) $) NIL) (((-713) $ (-800 |#1|)) NIL) (((-592 (-713)) $ (-592 (-800 |#1|))) NIL)) (-2069 (((-827 (-357)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-800 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-1661 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844))))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-800 |#1|)) NIL) (($ (-385 (-525))) NIL (-2067 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-3137 (((-592 |#2|) $) NIL)) (-3136 ((|#2| $ (-220 (-2827 |#1|) (-713))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#2| (-136))))) (-2448 (((-713)) NIL)) (-4042 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-1571 (((-108) $ $) NIL (|has| |#2| (-517)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-2830 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2880 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-227 |#1| |#2|) (-13 (-884 |#2| (-220 (-2827 |#1|) (-713)) (-800 |#1|)) (-10 -8 (-15 -2066 ($ $ (-592 (-525)))))) (-592 (-1092)) (-977)) (T -227))
+((-2066 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-227 *3 *4)) (-14 *3 (-592 (-1092))) (-4 *4 (-977)))))
+(-13 (-884 |#2| (-220 (-2827 |#1|) (-713)) (-800 |#1|)) (-10 -8 (-15 -2066 ($ $ (-592 (-525))))))
+((-4087 (((-108) $ $) NIL)) (-1312 (((-1179) $) 15)) (-3128 (((-169) $) 9)) (-1319 (($ (-169)) 10)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 7)) (-2775 (((-108) $ $) 13)))
+(((-228) (-13 (-1020) (-10 -8 (-15 -3128 ((-169) $)) (-15 -1319 ($ (-169))) (-15 -1312 ((-1179) $))))) (T -228))
+((-3128 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-228)))) (-1319 (*1 *1 *2) (-12 (-5 *2 (-169)) (-5 *1 (-228)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-228)))))
+(-13 (-1020) (-10 -8 (-15 -3128 ((-169) $)) (-15 -1319 ($ (-169))) (-15 -1312 ((-1179) $))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3473 (($ (-856)) NIL (|has| |#4| (-977)))) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-1525 (($ $ $) NIL (|has| |#4| (-735)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-1613 (((-713)) NIL (|has| |#4| (-346)))) (-2971 (((-525) $) NIL (|has| |#4| (-787)))) (-1233 ((|#4| $ (-525) |#4|) NIL (|has| $ (-6 -4260)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1020))) (((-3 (-525) "failed") $) NIL (-12 (|has| |#4| (-968 (-525))) (|has| |#4| (-1020)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#4| (-968 (-385 (-525)))) (|has| |#4| (-1020))))) (-4105 ((|#4| $) NIL (|has| |#4| (-1020))) (((-525) $) NIL (-12 (|has| |#4| (-968 (-525))) (|has| |#4| (-1020)))) (((-385 (-525)) $) NIL (-12 (|has| |#4| (-968 (-385 (-525)))) (|has| |#4| (-1020))))) (-3090 (((-2 (|:| -4108 (-632 |#4|)) (|:| |vec| (-1174 |#4|))) (-632 $) (-1174 $)) NIL (|has| |#4| (-977))) (((-632 |#4|) (-632 $)) NIL (|has| |#4| (-977))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))))) (-3300 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))))) (-1903 (($) NIL (|has| |#4| (-346)))) (-3081 ((|#4| $ (-525) |#4|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#4| $ (-525)) NIL)) (-1889 (((-108) $) NIL (|has| |#4| (-787)))) (-2175 (((-592 |#4|) $) NIL (|has| $ (-6 -4259)))) (-2278 (((-108) $) NIL (-2067 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))))) (-4079 (((-108) $) NIL (|has| |#4| (-787)))) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) NIL (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (-2067 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-2617 (((-592 |#4|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (-2067 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-3069 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#4| |#4|) $) NIL)) (-3685 (((-856) $) NIL (|has| |#4| (-346)))) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-1722 (($ (-856)) NIL (|has| |#4| (-346)))) (-3993 (((-1039) $) NIL)) (-1647 ((|#4| $) NIL (|has| (-525) (-789)))) (-3453 (($ $ |#4|) NIL (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020))))) (-1717 (((-592 |#4|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#4| $ (-525) |#4|) NIL) ((|#4| $ (-525)) 12)) (-3584 ((|#4| $ $) NIL (|has| |#4| (-977)))) (-4238 (($ (-1174 |#4|)) NIL)) (-3933 (((-128)) NIL (|has| |#4| (-341)))) (-2702 (($ $ (-1 |#4| |#4|) (-713)) NIL (|has| |#4| (-977))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-977))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-977)))) (($ $) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-977))))) (-4002 (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259))) (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020))))) (-2503 (($ $) NIL)) (-4100 (((-1174 |#4|) $) NIL) (((-798) $) NIL) (($ |#4|) NIL (|has| |#4| (-1020))) (($ (-525)) NIL (-2067 (-12 (|has| |#4| (-968 (-525))) (|has| |#4| (-1020))) (|has| |#4| (-977)))) (($ (-385 (-525))) NIL (-12 (|has| |#4| (-968 (-385 (-525)))) (|has| |#4| (-1020))))) (-2448 (((-713)) NIL (|has| |#4| (-977)))) (-2706 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-2380 (($ $) NIL (|has| |#4| (-787)))) (-3706 (($ $ (-713)) NIL (-2067 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977))))) (($ $ (-856)) NIL (-2067 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))))) (-3364 (($) NIL T CONST)) (-3375 (($) NIL (-2067 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))) CONST)) (-2401 (($ $ (-1 |#4| |#4|) (-713)) NIL (|has| |#4| (-977))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-977))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-977)))) (($ $) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-977))))) (-2830 (((-108) $ $) NIL (-2067 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-2807 (((-108) $ $) NIL (-2067 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (-2067 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-2795 (((-108) $ $) NIL (-2067 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-2880 (($ $ |#4|) NIL (|has| |#4| (-341)))) (-2871 (($ $ $) NIL) (($ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-713)) NIL (-2067 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977))))) (($ $ (-856)) NIL (-2067 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))))) (* (($ |#2| $) 14) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-856) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-669))) (($ |#4| $) NIL (|has| |#4| (-669))) (($ $ $) NIL (-2067 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1092))) (|has| |#4| (-977)))))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
(((-229 |#1| |#2| |#3| |#4|) (-13 (-218 |#1| |#4|) (-594 |#2|) (-594 |#3|)) (-856) (-977) (-1042 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-594 |#2|)) (T -229))
NIL
(-13 (-218 |#1| |#4|) (-594 |#2|) (-594 |#3|))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-4083 (($ (-856)) NIL (|has| |#3| (-977)))) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-3167 (($ $ $) NIL (|has| |#3| (-735)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-1834 (((-713)) NIL (|has| |#3| (-346)))) (-3855 (((-525) $) NIL (|has| |#3| (-787)))) (-1430 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4259)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1020))) (((-3 (-525) "failed") $) NIL (-12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020))))) (-1572 ((|#3| $) NIL (|has| |#3| (-1020))) (((-525) $) NIL (-12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020)))) (((-385 (-525)) $) NIL (-12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020))))) (-1994 (((-2 (|:| -3407 (-632 |#3|)) (|:| |vec| (-1174 |#3|))) (-632 $) (-1174 $)) NIL (|has| |#3| (-977))) (((-632 |#3|) (-632 $)) NIL (|has| |#3| (-977))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))))) (-3457 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))))) (-2502 (($) NIL (|has| |#3| (-346)))) (-2301 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#3| $ (-525)) NIL)) (-1222 (((-108) $) NIL (|has| |#3| (-787)))) (-3440 (((-592 |#3|) $) NIL (|has| $ (-6 -4258)))) (-1396 (((-108) $) NIL (-3254 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))))) (-3256 (((-108) $) NIL (|has| |#3| (-787)))) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) NIL (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (-3254 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2694 (((-592 |#3|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#3| (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (-3254 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2284 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#3| |#3|) $) NIL)) (-3005 (((-856) $) NIL (|has| |#3| (-346)))) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-3555 (($ (-856)) NIL (|has| |#3| (-346)))) (-2093 (((-1039) $) NIL)) (-1872 ((|#3| $) NIL (|has| (-525) (-789)))) (-1420 (($ $ |#3|) NIL (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#3|))) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-273 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-592 |#3|) (-592 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#3| (-1020))))) (-3341 (((-592 |#3|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#3| $ (-525) |#3|) NIL) ((|#3| $ (-525)) 11)) (-2047 ((|#3| $ $) NIL (|has| |#3| (-977)))) (-2816 (($ (-1174 |#3|)) NIL)) (-3705 (((-128)) NIL (|has| |#3| (-341)))) (-3376 (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-977))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-977))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977)))) (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977))))) (-2110 (((-713) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4258))) (((-713) |#3| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#3| (-1020))))) (-1462 (($ $) NIL)) (-1217 (((-1174 |#3|) $) NIL) (((-798) $) NIL) (($ |#3|) NIL (|has| |#3| (-1020))) (($ (-525)) NIL (-3254 (-12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020))) (|has| |#3| (-977)))) (($ (-385 (-525))) NIL (-12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020))))) (-3917 (((-713)) NIL (|has| |#3| (-977)))) (-3029 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4258)))) (-2802 (($ $) NIL (|has| |#3| (-787)))) (-1619 (($ $ (-713)) NIL (-3254 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977))))) (($ $ (-856)) NIL (-3254 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))))) (-3349 (($) NIL T CONST)) (-3359 (($) NIL (-3254 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) CONST)) (-2022 (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-977))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-977))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977)))) (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977))))) (-4011 (((-108) $ $) NIL (-3254 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3987 (((-108) $ $) NIL (-3254 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (-3254 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3978 (((-108) $ $) NIL (-3254 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-4075 (($ $ |#3|) NIL (|has| |#3| (-341)))) (-4061 (($ $ $) NIL) (($ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-713)) NIL (-3254 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977))))) (($ $ (-856)) NIL (-3254 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))))) (* (($ |#2| $) 13) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-856) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-669))) (($ |#3| $) NIL (|has| |#3| (-669))) (($ $ $) NIL (-3254 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3473 (($ (-856)) NIL (|has| |#3| (-977)))) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-1525 (($ $ $) NIL (|has| |#3| (-735)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-1613 (((-713)) NIL (|has| |#3| (-346)))) (-2971 (((-525) $) NIL (|has| |#3| (-787)))) (-1233 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4260)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1020))) (((-3 (-525) "failed") $) NIL (-12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020))))) (-4105 ((|#3| $) NIL (|has| |#3| (-1020))) (((-525) $) NIL (-12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020)))) (((-385 (-525)) $) NIL (-12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020))))) (-3090 (((-2 (|:| -4108 (-632 |#3|)) (|:| |vec| (-1174 |#3|))) (-632 $) (-1174 $)) NIL (|has| |#3| (-977))) (((-632 |#3|) (-632 $)) NIL (|has| |#3| (-977))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))))) (-3300 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))))) (-1903 (($) NIL (|has| |#3| (-346)))) (-3081 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#3| $ (-525)) NIL)) (-1889 (((-108) $) NIL (|has| |#3| (-787)))) (-2175 (((-592 |#3|) $) NIL (|has| $ (-6 -4259)))) (-2278 (((-108) $) NIL (-2067 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))))) (-4079 (((-108) $) NIL (|has| |#3| (-787)))) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) NIL (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (-2067 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2617 (((-592 |#3|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#3| (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (-2067 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3069 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#3| |#3|) $) NIL)) (-3685 (((-856) $) NIL (|has| |#3| (-346)))) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-1722 (($ (-856)) NIL (|has| |#3| (-346)))) (-3993 (((-1039) $) NIL)) (-1647 ((|#3| $) NIL (|has| (-525) (-789)))) (-3453 (($ $ |#3|) NIL (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#3|))) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-273 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-592 |#3|) (-592 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#3| (-1020))))) (-1717 (((-592 |#3|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#3| $ (-525) |#3|) NIL) ((|#3| $ (-525)) 11)) (-3584 ((|#3| $ $) NIL (|has| |#3| (-977)))) (-4238 (($ (-1174 |#3|)) NIL)) (-3933 (((-128)) NIL (|has| |#3| (-341)))) (-2702 (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-977))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-977))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977)))) (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977))))) (-4002 (((-713) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4259))) (((-713) |#3| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#3| (-1020))))) (-2503 (($ $) NIL)) (-4100 (((-1174 |#3|) $) NIL) (((-798) $) NIL) (($ |#3|) NIL (|has| |#3| (-1020))) (($ (-525)) NIL (-2067 (-12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020))) (|has| |#3| (-977)))) (($ (-385 (-525))) NIL (-12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020))))) (-2448 (((-713)) NIL (|has| |#3| (-977)))) (-2706 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4259)))) (-2380 (($ $) NIL (|has| |#3| (-787)))) (-3706 (($ $ (-713)) NIL (-2067 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977))))) (($ $ (-856)) NIL (-2067 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))))) (-3364 (($) NIL T CONST)) (-3375 (($) NIL (-2067 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) CONST)) (-2401 (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-977))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-977))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977)))) (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977))))) (-2830 (((-108) $ $) NIL (-2067 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2807 (((-108) $ $) NIL (-2067 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (-2067 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2795 (((-108) $ $) NIL (-2067 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2880 (($ $ |#3|) NIL (|has| |#3| (-341)))) (-2871 (($ $ $) NIL) (($ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-713)) NIL (-2067 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977))))) (($ $ (-856)) NIL (-2067 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))))) (* (($ |#2| $) 13) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-856) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-669))) (($ |#3| $) NIL (|has| |#3| (-669))) (($ $ $) NIL (-2067 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
(((-230 |#1| |#2| |#3|) (-13 (-218 |#1| |#3|) (-594 |#2|)) (-713) (-977) (-594 |#2|)) (T -230))
NIL
(-13 (-218 |#1| |#3|) (-594 |#2|))
-((-2865 (((-592 (-713)) $) 47) (((-592 (-713)) $ |#3|) 50)) (-3398 (((-713) $) 49) (((-713) $ |#3|) 52)) (-2970 (($ $) 65)) (-3077 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-2581 (((-713) $ |#3|) 39) (((-713) $) 36)) (-2822 (((-1 $ (-713)) |#3|) 15) (((-1 $ (-713)) $) 77)) (-2564 ((|#4| $) 58)) (-3916 (((-108) $) 56)) (-2253 (($ $) 64)) (-2457 (($ $ (-592 (-273 $))) 97) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-592 |#4|) (-592 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-592 |#4|) (-592 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-592 |#3|) (-592 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-592 |#3|) (-592 |#2|)) 84)) (-3376 (($ $ |#4|) NIL) (($ $ (-592 |#4|)) NIL) (($ $ |#4| (-713)) NIL) (($ $ (-592 |#4|) (-592 (-713))) NIL) (($ $) NIL) (($ $ (-713)) NIL) (($ $ (-1092)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2866 (((-592 |#3|) $) 75)) (-2343 ((|#5| $) NIL) (((-713) $ |#4|) NIL) (((-592 (-713)) $ (-592 |#4|)) NIL) (((-713) $ |#3|) 44)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-385 (-525))) NIL) (($ $) NIL)))
-(((-231 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1217 (|#1| |#1|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -2457 (|#1| |#1| (-592 |#3|) (-592 |#2|))) (-15 -2457 (|#1| |#1| |#3| |#2|)) (-15 -2457 (|#1| |#1| (-592 |#3|) (-592 |#1|))) (-15 -2457 (|#1| |#1| |#3| |#1|)) (-15 -2822 ((-1 |#1| (-713)) |#1|)) (-15 -2970 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2564 (|#4| |#1|)) (-15 -3916 ((-108) |#1|)) (-15 -3398 ((-713) |#1| |#3|)) (-15 -2865 ((-592 (-713)) |#1| |#3|)) (-15 -3398 ((-713) |#1|)) (-15 -2865 ((-592 (-713)) |#1|)) (-15 -2343 ((-713) |#1| |#3|)) (-15 -2581 ((-713) |#1|)) (-15 -2581 ((-713) |#1| |#3|)) (-15 -2866 ((-592 |#3|) |#1|)) (-15 -2822 ((-1 |#1| (-713)) |#3|)) (-15 -3077 ((-3 |#3| "failed") |#1|)) (-15 -1217 (|#1| |#3|)) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1|)) (-15 -2343 ((-592 (-713)) |#1| (-592 |#4|))) (-15 -2343 ((-713) |#1| |#4|)) (-15 -3077 ((-3 |#4| "failed") |#1|)) (-15 -1217 (|#1| |#4|)) (-15 -2457 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -2457 (|#1| |#1| |#4| |#1|)) (-15 -2457 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -2457 (|#1| |#1| |#4| |#2|)) (-15 -2457 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2457 (|#1| |#1| |#1| |#1|)) (-15 -2457 (|#1| |#1| (-273 |#1|))) (-15 -2457 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2343 (|#5| |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1217 (|#1| |#2|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -3376 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -3376 (|#1| |#1| |#4| (-713))) (-15 -3376 (|#1| |#1| (-592 |#4|))) (-15 -3376 (|#1| |#1| |#4|)) (-15 -1217 (|#1| (-525))) (-15 -1217 ((-798) |#1|))) (-232 |#2| |#3| |#4| |#5|) (-977) (-789) (-245 |#3|) (-735)) (T -231))
+((-1761 (((-592 (-713)) $) 47) (((-592 (-713)) $ |#3|) 50)) (-4016 (((-713) $) 49) (((-713) $ |#3|) 52)) (-3385 (($ $) 65)) (-1934 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-4000 (((-713) $ |#3|) 39) (((-713) $) 36)) (-2535 (((-1 $ (-713)) |#3|) 15) (((-1 $ (-713)) $) 77)) (-3481 ((|#4| $) 58)) (-2438 (((-108) $) 56)) (-3343 (($ $) 64)) (-2825 (($ $ (-592 (-273 $))) 97) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-592 |#4|) (-592 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-592 |#4|) (-592 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-592 |#3|) (-592 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-592 |#3|) (-592 |#2|)) 84)) (-2702 (($ $ |#4|) NIL) (($ $ (-592 |#4|)) NIL) (($ $ |#4| (-713)) NIL) (($ $ (-592 |#4|) (-592 (-713))) NIL) (($ $) NIL) (($ $ (-713)) NIL) (($ $ (-1092)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1771 (((-592 |#3|) $) 75)) (-3529 ((|#5| $) NIL) (((-713) $ |#4|) NIL) (((-592 (-713)) $ (-592 |#4|)) NIL) (((-713) $ |#3|) 44)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-385 (-525))) NIL) (($ $) NIL)))
+(((-231 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4100 (|#1| |#1|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -2825 (|#1| |#1| (-592 |#3|) (-592 |#2|))) (-15 -2825 (|#1| |#1| |#3| |#2|)) (-15 -2825 (|#1| |#1| (-592 |#3|) (-592 |#1|))) (-15 -2825 (|#1| |#1| |#3| |#1|)) (-15 -2535 ((-1 |#1| (-713)) |#1|)) (-15 -3385 (|#1| |#1|)) (-15 -3343 (|#1| |#1|)) (-15 -3481 (|#4| |#1|)) (-15 -2438 ((-108) |#1|)) (-15 -4016 ((-713) |#1| |#3|)) (-15 -1761 ((-592 (-713)) |#1| |#3|)) (-15 -4016 ((-713) |#1|)) (-15 -1761 ((-592 (-713)) |#1|)) (-15 -3529 ((-713) |#1| |#3|)) (-15 -4000 ((-713) |#1|)) (-15 -4000 ((-713) |#1| |#3|)) (-15 -1771 ((-592 |#3|) |#1|)) (-15 -2535 ((-1 |#1| (-713)) |#3|)) (-15 -1934 ((-3 |#3| "failed") |#1|)) (-15 -4100 (|#1| |#3|)) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1|)) (-15 -3529 ((-592 (-713)) |#1| (-592 |#4|))) (-15 -3529 ((-713) |#1| |#4|)) (-15 -1934 ((-3 |#4| "failed") |#1|)) (-15 -4100 (|#1| |#4|)) (-15 -2825 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -2825 (|#1| |#1| |#4| |#1|)) (-15 -2825 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -2825 (|#1| |#1| |#4| |#2|)) (-15 -2825 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2825 (|#1| |#1| |#1| |#1|)) (-15 -2825 (|#1| |#1| (-273 |#1|))) (-15 -2825 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3529 (|#5| |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4100 (|#1| |#2|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -2702 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -2702 (|#1| |#1| |#4| (-713))) (-15 -2702 (|#1| |#1| (-592 |#4|))) (-15 -2702 (|#1| |#1| |#4|)) (-15 -4100 (|#1| (-525))) (-15 -4100 ((-798) |#1|))) (-232 |#2| |#3| |#4| |#5|) (-977) (-789) (-245 |#3|) (-735)) (T -231))
NIL
-(-10 -8 (-15 -1217 (|#1| |#1|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -2457 (|#1| |#1| (-592 |#3|) (-592 |#2|))) (-15 -2457 (|#1| |#1| |#3| |#2|)) (-15 -2457 (|#1| |#1| (-592 |#3|) (-592 |#1|))) (-15 -2457 (|#1| |#1| |#3| |#1|)) (-15 -2822 ((-1 |#1| (-713)) |#1|)) (-15 -2970 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2564 (|#4| |#1|)) (-15 -3916 ((-108) |#1|)) (-15 -3398 ((-713) |#1| |#3|)) (-15 -2865 ((-592 (-713)) |#1| |#3|)) (-15 -3398 ((-713) |#1|)) (-15 -2865 ((-592 (-713)) |#1|)) (-15 -2343 ((-713) |#1| |#3|)) (-15 -2581 ((-713) |#1|)) (-15 -2581 ((-713) |#1| |#3|)) (-15 -2866 ((-592 |#3|) |#1|)) (-15 -2822 ((-1 |#1| (-713)) |#3|)) (-15 -3077 ((-3 |#3| "failed") |#1|)) (-15 -1217 (|#1| |#3|)) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1|)) (-15 -2343 ((-592 (-713)) |#1| (-592 |#4|))) (-15 -2343 ((-713) |#1| |#4|)) (-15 -3077 ((-3 |#4| "failed") |#1|)) (-15 -1217 (|#1| |#4|)) (-15 -2457 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -2457 (|#1| |#1| |#4| |#1|)) (-15 -2457 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -2457 (|#1| |#1| |#4| |#2|)) (-15 -2457 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2457 (|#1| |#1| |#1| |#1|)) (-15 -2457 (|#1| |#1| (-273 |#1|))) (-15 -2457 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2343 (|#5| |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1217 (|#1| |#2|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -3376 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -3376 (|#1| |#1| |#4| (-713))) (-15 -3376 (|#1| |#1| (-592 |#4|))) (-15 -3376 (|#1| |#1| |#4|)) (-15 -1217 (|#1| (-525))) (-15 -1217 ((-798) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2865 (((-592 (-713)) $) 214) (((-592 (-713)) $ |#2|) 212)) (-3398 (((-713) $) 213) (((-713) $ |#2|) 211)) (-2897 (((-592 |#3|) $) 110)) (-2744 (((-1088 $) $ |#3|) 125) (((-1088 |#1|) $) 124)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-4218 (($ $) 88 (|has| |#1| (-517)))) (-3171 (((-108) $) 90 (|has| |#1| (-517)))) (-3212 (((-713) $) 112) (((-713) $ (-592 |#3|)) 111)) (-1578 (((-3 $ "failed") $ $) 19)) (-1448 (((-396 (-1088 $)) (-1088 $)) 100 (|has| |#1| (-844)))) (-1286 (($ $) 98 (|has| |#1| (-429)))) (-2669 (((-396 $) $) 97 (|has| |#1| (-429)))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 103 (|has| |#1| (-844)))) (-2970 (($ $) 207)) (-2169 (($) 17 T CONST)) (-3077 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-968 (-525)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-1572 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-968 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-968 (-525)))) ((|#3| $) 135) ((|#2| $) 220)) (-3377 (($ $ $ |#3|) 108 (|has| |#1| (-160)))) (-3063 (($ $) 154)) (-1994 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-3457 (((-3 $ "failed") $) 34)) (-1576 (($ $) 176 (|has| |#1| (-429))) (($ $ |#3|) 105 (|has| |#1| (-429)))) (-3052 (((-592 $) $) 109)) (-3673 (((-108) $) 96 (|has| |#1| (-844)))) (-2188 (($ $ |#1| |#4| $) 172)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 84 (-12 (|has| |#3| (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 83 (-12 (|has| |#3| (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-2581 (((-713) $ |#2|) 217) (((-713) $) 216)) (-1396 (((-108) $) 31)) (-3399 (((-713) $) 169)) (-2887 (($ (-1088 |#1|) |#3|) 117) (($ (-1088 $) |#3|) 116)) (-4144 (((-592 $) $) 126)) (-1212 (((-108) $) 152)) (-2876 (($ |#1| |#4|) 153) (($ $ |#3| (-713)) 119) (($ $ (-592 |#3|) (-592 (-713))) 118)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ |#3|) 120)) (-2870 ((|#4| $) 170) (((-713) $ |#3|) 122) (((-592 (-713)) $ (-592 |#3|)) 121)) (-2638 (($ $ $) 79 (|has| |#1| (-789)))) (-3662 (($ $ $) 78 (|has| |#1| (-789)))) (-2172 (($ (-1 |#4| |#4|) $) 171)) (-3165 (($ (-1 |#1| |#1|) $) 151)) (-2822 (((-1 $ (-713)) |#2|) 219) (((-1 $ (-713)) $) 206 (|has| |#1| (-213)))) (-2431 (((-3 |#3| "failed") $) 123)) (-3031 (($ $) 149)) (-3043 ((|#1| $) 148)) (-2564 ((|#3| $) 209)) (-2556 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-2619 (((-1075) $) 9)) (-3916 (((-108) $) 210)) (-1334 (((-3 (-592 $) "failed") $) 114)) (-2001 (((-3 (-592 $) "failed") $) 115)) (-2121 (((-3 (-2 (|:| |var| |#3|) (|:| -4193 (-713))) "failed") $) 113)) (-2253 (($ $) 208)) (-2093 (((-1039) $) 10)) (-3007 (((-108) $) 166)) (-3019 ((|#1| $) 167)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 95 (|has| |#1| (-429)))) (-2589 (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-3076 (((-396 (-1088 $)) (-1088 $)) 102 (|has| |#1| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) 101 (|has| |#1| (-844)))) (-2770 (((-396 $) $) 99 (|has| |#1| (-844)))) (-1715 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-2457 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-592 |#3|) (-592 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-592 |#3|) (-592 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 $)) 204 (|has| |#1| (-213))) (($ $ |#2| |#1|) 203 (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 |#1|)) 202 (|has| |#1| (-213)))) (-1975 (($ $ |#3|) 107 (|has| |#1| (-160)))) (-3376 (($ $ |#3|) 42) (($ $ (-592 |#3|)) 41) (($ $ |#3| (-713)) 40) (($ $ (-592 |#3|) (-592 (-713))) 39) (($ $) 238 (|has| |#1| (-213))) (($ $ (-713)) 236 (|has| |#1| (-213))) (($ $ (-1092)) 234 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 233 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 232 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) 231 (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2866 (((-592 |#2|) $) 218)) (-2343 ((|#4| $) 150) (((-713) $ |#3|) 130) (((-592 (-713)) $ (-592 |#3|)) 129) (((-713) $ |#2|) 215)) (-3210 (((-827 (-357)) $) 82 (-12 (|has| |#3| (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) 81 (-12 (|has| |#3| (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) 80 (-12 (|has| |#3| (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-3658 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ |#3|) 106 (|has| |#1| (-429)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) 104 (-3762 (|has| $ (-136)) (|has| |#1| (-844))))) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-385 (-525))) 72 (-3254 (|has| |#1| (-968 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))))) (($ $) 85 (|has| |#1| (-517)))) (-1684 (((-592 |#1|) $) 168)) (-1568 ((|#1| $ |#4|) 155) (($ $ |#3| (-713)) 128) (($ $ (-592 |#3|) (-592 (-713))) 127)) (-3637 (((-3 $ "failed") $) 73 (-3254 (-3762 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-3917 (((-713)) 29)) (-3716 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-3325 (((-108) $ $) 89 (|has| |#1| (-517)))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $ |#3|) 38) (($ $ (-592 |#3|)) 37) (($ $ |#3| (-713)) 36) (($ $ (-592 |#3|) (-592 (-713))) 35) (($ $) 237 (|has| |#1| (-213))) (($ $ (-713)) 235 (|has| |#1| (-213))) (($ $ (-1092)) 230 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 229 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 228 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) 227 (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-4011 (((-108) $ $) 76 (|has| |#1| (-789)))) (-3987 (((-108) $ $) 75 (|has| |#1| (-789)))) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 77 (|has| |#1| (-789)))) (-3978 (((-108) $ $) 74 (|has| |#1| (-789)))) (-4075 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(-10 -8 (-15 -4100 (|#1| |#1|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -2825 (|#1| |#1| (-592 |#3|) (-592 |#2|))) (-15 -2825 (|#1| |#1| |#3| |#2|)) (-15 -2825 (|#1| |#1| (-592 |#3|) (-592 |#1|))) (-15 -2825 (|#1| |#1| |#3| |#1|)) (-15 -2535 ((-1 |#1| (-713)) |#1|)) (-15 -3385 (|#1| |#1|)) (-15 -3343 (|#1| |#1|)) (-15 -3481 (|#4| |#1|)) (-15 -2438 ((-108) |#1|)) (-15 -4016 ((-713) |#1| |#3|)) (-15 -1761 ((-592 (-713)) |#1| |#3|)) (-15 -4016 ((-713) |#1|)) (-15 -1761 ((-592 (-713)) |#1|)) (-15 -3529 ((-713) |#1| |#3|)) (-15 -4000 ((-713) |#1|)) (-15 -4000 ((-713) |#1| |#3|)) (-15 -1771 ((-592 |#3|) |#1|)) (-15 -2535 ((-1 |#1| (-713)) |#3|)) (-15 -1934 ((-3 |#3| "failed") |#1|)) (-15 -4100 (|#1| |#3|)) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1|)) (-15 -3529 ((-592 (-713)) |#1| (-592 |#4|))) (-15 -3529 ((-713) |#1| |#4|)) (-15 -1934 ((-3 |#4| "failed") |#1|)) (-15 -4100 (|#1| |#4|)) (-15 -2825 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -2825 (|#1| |#1| |#4| |#1|)) (-15 -2825 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -2825 (|#1| |#1| |#4| |#2|)) (-15 -2825 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2825 (|#1| |#1| |#1| |#1|)) (-15 -2825 (|#1| |#1| (-273 |#1|))) (-15 -2825 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3529 (|#5| |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4100 (|#1| |#2|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -2702 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -2702 (|#1| |#1| |#4| (-713))) (-15 -2702 (|#1| |#1| (-592 |#4|))) (-15 -2702 (|#1| |#1| |#4|)) (-15 -4100 (|#1| (-525))) (-15 -4100 ((-798) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-1761 (((-592 (-713)) $) 214) (((-592 (-713)) $ |#2|) 212)) (-4016 (((-713) $) 213) (((-713) $ |#2|) 211)) (-1296 (((-592 |#3|) $) 110)) (-4169 (((-1088 $) $ |#3|) 125) (((-1088 |#1|) $) 124)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-2433 (($ $) 88 (|has| |#1| (-517)))) (-1568 (((-108) $) 90 (|has| |#1| (-517)))) (-1928 (((-713) $) 112) (((-713) $ (-592 |#3|)) 111)) (-3222 (((-3 $ "failed") $ $) 19)) (-2426 (((-396 (-1088 $)) (-1088 $)) 100 (|has| |#1| (-844)))) (-4195 (($ $) 98 (|has| |#1| (-429)))) (-3586 (((-396 $) $) 97 (|has| |#1| (-429)))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 103 (|has| |#1| (-844)))) (-3385 (($ $) 207)) (-2475 (($) 17 T CONST)) (-1934 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-968 (-525)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-4105 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-968 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-968 (-525)))) ((|#3| $) 135) ((|#2| $) 220)) (-3801 (($ $ $ |#3|) 108 (|has| |#1| (-160)))) (-1451 (($ $) 154)) (-3090 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-3300 (((-3 $ "failed") $) 34)) (-3201 (($ $) 176 (|has| |#1| (-429))) (($ $ |#3|) 105 (|has| |#1| (-429)))) (-1441 (((-592 $) $) 109)) (-1798 (((-108) $) 96 (|has| |#1| (-844)))) (-1457 (($ $ |#1| |#4| $) 172)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 84 (-12 (|has| |#3| (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 83 (-12 (|has| |#3| (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-4000 (((-713) $ |#2|) 217) (((-713) $) 216)) (-2278 (((-108) $) 31)) (-4025 (((-713) $) 169)) (-1284 (($ (-1088 |#1|) |#3|) 117) (($ (-1088 $) |#3|) 116)) (-2884 (((-592 $) $) 126)) (-2457 (((-108) $) 152)) (-1272 (($ |#1| |#4|) 153) (($ $ |#3| (-713)) 119) (($ $ (-592 |#3|) (-592 (-713))) 118)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ |#3|) 120)) (-1819 ((|#4| $) 170) (((-713) $ |#3|) 122) (((-592 (-713)) $ (-592 |#3|)) 121)) (-3033 (($ $ $) 79 (|has| |#1| (-789)))) (-1609 (($ $ $) 78 (|has| |#1| (-789)))) (-1314 (($ (-1 |#4| |#4|) $) 171)) (-2016 (($ (-1 |#1| |#1|) $) 151)) (-2535 (((-1 $ (-713)) |#2|) 219) (((-1 $ (-713)) $) 206 (|has| |#1| (-213)))) (-2018 (((-3 |#3| "failed") $) 123)) (-1418 (($ $) 149)) (-1430 ((|#1| $) 148)) (-3481 ((|#3| $) 209)) (-2739 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-1289 (((-1075) $) 9)) (-2438 (((-108) $) 210)) (-2977 (((-3 (-592 $) "failed") $) 114)) (-3165 (((-3 (-592 $) "failed") $) 115)) (-1986 (((-3 (-2 (|:| |var| |#3|) (|:| -2168 (-713))) "failed") $) 113)) (-3343 (($ $) 208)) (-3993 (((-1039) $) 10)) (-1399 (((-108) $) 166)) (-1407 ((|#1| $) 167)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 95 (|has| |#1| (-429)))) (-2772 (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-3089 (((-396 (-1088 $)) (-1088 $)) 102 (|has| |#1| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) 101 (|has| |#1| (-844)))) (-4201 (((-396 $) $) 99 (|has| |#1| (-844)))) (-1311 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-2825 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-592 |#3|) (-592 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-592 |#3|) (-592 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 $)) 204 (|has| |#1| (-213))) (($ $ |#2| |#1|) 203 (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 |#1|)) 202 (|has| |#1| (-213)))) (-4115 (($ $ |#3|) 107 (|has| |#1| (-160)))) (-2702 (($ $ |#3|) 42) (($ $ (-592 |#3|)) 41) (($ $ |#3| (-713)) 40) (($ $ (-592 |#3|) (-592 (-713))) 39) (($ $) 238 (|has| |#1| (-213))) (($ $ (-713)) 236 (|has| |#1| (-213))) (($ $ (-1092)) 234 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 233 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 232 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) 231 (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1771 (((-592 |#2|) $) 218)) (-3529 ((|#4| $) 150) (((-713) $ |#3|) 130) (((-592 (-713)) $ (-592 |#3|)) 129) (((-713) $ |#2|) 215)) (-2069 (((-827 (-357)) $) 82 (-12 (|has| |#3| (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) 81 (-12 (|has| |#3| (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) 80 (-12 (|has| |#3| (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-1661 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ |#3|) 106 (|has| |#1| (-429)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) 104 (-3944 (|has| $ (-136)) (|has| |#1| (-844))))) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-385 (-525))) 72 (-2067 (|has| |#1| (-968 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))))) (($ $) 85 (|has| |#1| (-517)))) (-3137 (((-592 |#1|) $) 168)) (-3136 ((|#1| $ |#4|) 155) (($ $ |#3| (-713)) 128) (($ $ (-592 |#3|) (-592 (-713))) 127)) (-1463 (((-3 $ "failed") $) 73 (-2067 (-3944 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2448 (((-713)) 29)) (-4042 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-1571 (((-108) $ $) 89 (|has| |#1| (-517)))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $ |#3|) 38) (($ $ (-592 |#3|)) 37) (($ $ |#3| (-713)) 36) (($ $ (-592 |#3|) (-592 (-713))) 35) (($ $) 237 (|has| |#1| (-213))) (($ $ (-713)) 235 (|has| |#1| (-213))) (($ $ (-1092)) 230 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 229 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 228 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) 227 (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-2830 (((-108) $ $) 76 (|has| |#1| (-789)))) (-2807 (((-108) $ $) 75 (|has| |#1| (-789)))) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 77 (|has| |#1| (-789)))) (-2795 (((-108) $ $) 74 (|has| |#1| (-789)))) (-2880 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
(((-232 |#1| |#2| |#3| |#4|) (-131) (-977) (-789) (-245 |t#2|) (-735)) (T -232))
-((-2822 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *4 *3 *5 *6)))) (-2866 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 *4)))) (-2581 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713)))) (-2343 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713)))) (-2865 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 (-713))))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713)))) (-2865 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-592 (-713))))) (-3398 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713)))) (-3916 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-108)))) (-2564 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-735)) (-4 *2 (-245 *4)))) (-2253 (*1 *1 *1) (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-977)) (-4 *3 (-789)) (-4 *4 (-245 *3)) (-4 *5 (-735)))) (-2970 (*1 *1 *1) (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-977)) (-4 *3 (-789)) (-4 *4 (-245 *3)) (-4 *5 (-735)))) (-2822 (*1 *2 *1) (-12 (-4 *3 (-213)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *3 *4 *5 *6)))))
-(-13 (-884 |t#1| |t#4| |t#3|) (-211 |t#1|) (-968 |t#2|) (-10 -8 (-15 -2822 ((-1 $ (-713)) |t#2|)) (-15 -2866 ((-592 |t#2|) $)) (-15 -2581 ((-713) $ |t#2|)) (-15 -2581 ((-713) $)) (-15 -2343 ((-713) $ |t#2|)) (-15 -2865 ((-592 (-713)) $)) (-15 -3398 ((-713) $)) (-15 -2865 ((-592 (-713)) $ |t#2|)) (-15 -3398 ((-713) $ |t#2|)) (-15 -3916 ((-108) $)) (-15 -2564 (|t#3| $)) (-15 -2253 ($ $)) (-15 -2970 ($ $)) (IF (|has| |t#1| (-213)) (PROGN (-6 (-486 |t#2| |t#1|)) (-6 (-486 |t#2| $)) (-6 (-288 $)) (-15 -2822 ((-1 $ (-713)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))) ((-567 (-827 (-357))) -12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#3| (-567 (-827 (-357))))) ((-567 (-827 (-525))) -12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#3| (-567 (-827 (-525))))) ((-211 |#1|) . T) ((-213) |has| |#1| (-213)) ((-269) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-288 $) . T) ((-304 |#1| |#4|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3254 (|has| |#1| (-844)) (|has| |#1| (-429))) ((-486 |#2| |#1|) |has| |#1| (-213)) ((-486 |#2| $) |has| |#1| (-213)) ((-486 |#3| |#1|) . T) ((-486 |#3| $) . T) ((-486 $ $) . T) ((-517) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-835 (-1092)) |has| |#1| (-835 (-1092))) ((-835 |#3|) . T) ((-821 (-357)) -12 (|has| |#1| (-821 (-357))) (|has| |#3| (-821 (-357)))) ((-821 (-525)) -12 (|has| |#1| (-821 (-525))) (|has| |#3| (-821 (-525)))) ((-884 |#1| |#4| |#3|) . T) ((-844) |has| |#1| (-844)) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-968 |#2|) . T) ((-968 |#3|) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1132) |has| |#1| (-844)))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3744 ((|#1| $) 54)) (-3412 ((|#1| $) 44)) (-3991 (((-108) $ (-713)) 8)) (-2169 (($) 7 T CONST)) (-3680 (($ $) 60)) (-2700 (($ $) 48)) (-2940 ((|#1| |#1| $) 46)) (-2375 ((|#1| $) 45)) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) 9)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-4178 (((-713) $) 61)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2992 ((|#1| $) 39)) (-1929 ((|#1| |#1| $) 52)) (-1685 ((|#1| |#1| $) 51)) (-1262 (($ |#1| $) 40)) (-1794 (((-713) $) 55)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-2417 ((|#1| $) 62)) (-2334 ((|#1| $) 50)) (-2024 ((|#1| $) 49)) (-4127 ((|#1| $) 41)) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2859 ((|#1| |#1| $) 58)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-1892 ((|#1| $) 59)) (-3429 (($) 57) (($ (-592 |#1|)) 56)) (-1769 (((-713) $) 43)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3599 ((|#1| $) 53)) (-1956 (($ (-592 |#1|)) 42)) (-1407 ((|#1| $) 63)) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-2535 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *4 *3 *5 *6)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 *4)))) (-4000 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713)))) (-3529 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713)))) (-1761 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 (-713))))) (-4016 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713)))) (-1761 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-592 (-713))))) (-4016 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713)))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-108)))) (-3481 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-735)) (-4 *2 (-245 *4)))) (-3343 (*1 *1 *1) (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-977)) (-4 *3 (-789)) (-4 *4 (-245 *3)) (-4 *5 (-735)))) (-3385 (*1 *1 *1) (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-977)) (-4 *3 (-789)) (-4 *4 (-245 *3)) (-4 *5 (-735)))) (-2535 (*1 *2 *1) (-12 (-4 *3 (-213)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *3 *4 *5 *6)))))
+(-13 (-884 |t#1| |t#4| |t#3|) (-211 |t#1|) (-968 |t#2|) (-10 -8 (-15 -2535 ((-1 $ (-713)) |t#2|)) (-15 -1771 ((-592 |t#2|) $)) (-15 -4000 ((-713) $ |t#2|)) (-15 -4000 ((-713) $)) (-15 -3529 ((-713) $ |t#2|)) (-15 -1761 ((-592 (-713)) $)) (-15 -4016 ((-713) $)) (-15 -1761 ((-592 (-713)) $ |t#2|)) (-15 -4016 ((-713) $ |t#2|)) (-15 -2438 ((-108) $)) (-15 -3481 (|t#3| $)) (-15 -3343 ($ $)) (-15 -3385 ($ $)) (IF (|has| |t#1| (-213)) (PROGN (-6 (-486 |t#2| |t#1|)) (-6 (-486 |t#2| $)) (-6 (-288 $)) (-15 -2535 ((-1 $ (-713)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))) ((-567 (-827 (-357))) -12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#3| (-567 (-827 (-357))))) ((-567 (-827 (-525))) -12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#3| (-567 (-827 (-525))))) ((-211 |#1|) . T) ((-213) |has| |#1| (-213)) ((-269) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-288 $) . T) ((-304 |#1| |#4|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -2067 (|has| |#1| (-844)) (|has| |#1| (-429))) ((-486 |#2| |#1|) |has| |#1| (-213)) ((-486 |#2| $) |has| |#1| (-213)) ((-486 |#3| |#1|) . T) ((-486 |#3| $) . T) ((-486 $ $) . T) ((-517) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-835 (-1092)) |has| |#1| (-835 (-1092))) ((-835 |#3|) . T) ((-821 (-357)) -12 (|has| |#1| (-821 (-357))) (|has| |#3| (-821 (-357)))) ((-821 (-525)) -12 (|has| |#1| (-821 (-525))) (|has| |#3| (-821 (-525)))) ((-884 |#1| |#4| |#3|) . T) ((-844) |has| |#1| (-844)) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-968 |#2|) . T) ((-968 |#3|) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1132) |has| |#1| (-844)))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-1308 ((|#1| $) 54)) (-3490 ((|#1| $) 44)) (-3779 (((-108) $ (-713)) 8)) (-2475 (($) 7 T CONST)) (-1883 (($ $) 60)) (-2670 (($ $) 48)) (-1282 ((|#1| |#1| $) 46)) (-2639 ((|#1| $) 45)) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) 9)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-4128 (((-713) $) 61)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-3577 ((|#1| $) 39)) (-1820 ((|#1| |#1| $) 52)) (-3149 ((|#1| |#1| $) 51)) (-3246 (($ |#1| $) 40)) (-2934 (((-713) $) 55)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-3010 ((|#1| $) 62)) (-3426 ((|#1| $) 50)) (-3376 ((|#1| $) 49)) (-2724 ((|#1| $) 41)) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-1699 ((|#1| |#1| $) 58)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-1462 ((|#1| $) 59)) (-1226 (($) 57) (($ (-592 |#1|)) 56)) (-2895 (((-713) $) 43)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-2271 ((|#1| $) 53)) (-3905 (($ (-592 |#1|)) 42)) (-1977 ((|#1| $) 63)) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-233 |#1|) (-131) (-1128)) (T -233))
-((-3429 (*1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))) (-3429 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-4 *1 (-233 *3)))) (-1794 (*1 *2 *1) (-12 (-4 *1 (-233 *3)) (-4 *3 (-1128)) (-5 *2 (-713)))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))) (-3599 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))) (-1929 (*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))) (-1685 (*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))) (-2024 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))) (-2700 (*1 *1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))))
-(-13 (-1040 |t#1|) (-927 |t#1|) (-10 -8 (-15 -3429 ($)) (-15 -3429 ($ (-592 |t#1|))) (-15 -1794 ((-713) $)) (-15 -3744 (|t#1| $)) (-15 -3599 (|t#1| $)) (-15 -1929 (|t#1| |t#1| $)) (-15 -1685 (|t#1| |t#1| $)) (-15 -2334 (|t#1| $)) (-15 -2024 (|t#1| $)) (-15 -2700 ($ $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-927 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1040 |#1|) . T) ((-1128) . T))
-((-2212 (((-1 (-878 (-205)) (-205) (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205) (-205))) 139)) (-3219 (((-1052 (-205)) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357))) 160) (((-1052 (-205)) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)) (-592 (-242))) 158) (((-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357))) 163) (((-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242))) 159) (((-1052 (-205)) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357))) 150) (((-1052 (-205)) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242))) 149) (((-1052 (-205)) (-1 (-878 (-205)) (-205)) (-1015 (-357))) 129) (((-1052 (-205)) (-1 (-878 (-205)) (-205)) (-1015 (-357)) (-592 (-242))) 127) (((-1052 (-205)) (-814 (-1 (-205) (-205))) (-1015 (-357))) 128) (((-1052 (-205)) (-814 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242))) 125)) (-3182 (((-1176) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357))) 162) (((-1176) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)) (-592 (-242))) 161) (((-1176) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357))) 165) (((-1176) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242))) 164) (((-1176) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357))) 152) (((-1176) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242))) 151) (((-1176) (-1 (-878 (-205)) (-205)) (-1015 (-357))) 135) (((-1176) (-1 (-878 (-205)) (-205)) (-1015 (-357)) (-592 (-242))) 134) (((-1176) (-814 (-1 (-205) (-205))) (-1015 (-357))) 133) (((-1176) (-814 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242))) 132) (((-1175) (-812 (-1 (-205) (-205))) (-1015 (-357))) 100) (((-1175) (-812 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242))) 99) (((-1175) (-1 (-205) (-205)) (-1015 (-357))) 96) (((-1175) (-1 (-205) (-205)) (-1015 (-357)) (-592 (-242))) 95)))
-(((-234) (-10 -7 (-15 -3182 ((-1175) (-1 (-205) (-205)) (-1015 (-357)) (-592 (-242)))) (-15 -3182 ((-1175) (-1 (-205) (-205)) (-1015 (-357)))) (-15 -3182 ((-1175) (-812 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242)))) (-15 -3182 ((-1175) (-812 (-1 (-205) (-205))) (-1015 (-357)))) (-15 -3182 ((-1176) (-814 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242)))) (-15 -3182 ((-1176) (-814 (-1 (-205) (-205))) (-1015 (-357)))) (-15 -3182 ((-1176) (-1 (-878 (-205)) (-205)) (-1015 (-357)) (-592 (-242)))) (-15 -3182 ((-1176) (-1 (-878 (-205)) (-205)) (-1015 (-357)))) (-15 -3219 ((-1052 (-205)) (-814 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242)))) (-15 -3219 ((-1052 (-205)) (-814 (-1 (-205) (-205))) (-1015 (-357)))) (-15 -3219 ((-1052 (-205)) (-1 (-878 (-205)) (-205)) (-1015 (-357)) (-592 (-242)))) (-15 -3219 ((-1052 (-205)) (-1 (-878 (-205)) (-205)) (-1015 (-357)))) (-15 -3182 ((-1176) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -3182 ((-1176) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -3219 ((-1052 (-205)) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -3219 ((-1052 (-205)) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -3182 ((-1176) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -3182 ((-1176) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -3219 ((-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -3219 ((-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -3182 ((-1176) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -3182 ((-1176) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)))) (-15 -3219 ((-1052 (-205)) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -3219 ((-1052 (-205)) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)))) (-15 -2212 ((-1 (-878 (-205)) (-205) (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))) (T -234))
-((-2212 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-878 (-205)) (-205) (-205))) (-5 *3 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-234)))) (-3219 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-3219 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-3182 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-3182 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-3219 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-3219 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-3182 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-3182 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-3219 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-3219 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-3182 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-3182 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-3219 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-3219 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-3219 (*1 *2 *3 *4) (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-3219 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-3182 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-3182 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *2 (-1175)) (-5 *1 (-234)))) (-3182 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-234)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1175)) (-5 *1 (-234)))) (-3182 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-234)))))
-(-10 -7 (-15 -3182 ((-1175) (-1 (-205) (-205)) (-1015 (-357)) (-592 (-242)))) (-15 -3182 ((-1175) (-1 (-205) (-205)) (-1015 (-357)))) (-15 -3182 ((-1175) (-812 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242)))) (-15 -3182 ((-1175) (-812 (-1 (-205) (-205))) (-1015 (-357)))) (-15 -3182 ((-1176) (-814 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242)))) (-15 -3182 ((-1176) (-814 (-1 (-205) (-205))) (-1015 (-357)))) (-15 -3182 ((-1176) (-1 (-878 (-205)) (-205)) (-1015 (-357)) (-592 (-242)))) (-15 -3182 ((-1176) (-1 (-878 (-205)) (-205)) (-1015 (-357)))) (-15 -3219 ((-1052 (-205)) (-814 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242)))) (-15 -3219 ((-1052 (-205)) (-814 (-1 (-205) (-205))) (-1015 (-357)))) (-15 -3219 ((-1052 (-205)) (-1 (-878 (-205)) (-205)) (-1015 (-357)) (-592 (-242)))) (-15 -3219 ((-1052 (-205)) (-1 (-878 (-205)) (-205)) (-1015 (-357)))) (-15 -3182 ((-1176) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -3182 ((-1176) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -3219 ((-1052 (-205)) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -3219 ((-1052 (-205)) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -3182 ((-1176) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -3182 ((-1176) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -3219 ((-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -3219 ((-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -3182 ((-1176) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -3182 ((-1176) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)))) (-15 -3219 ((-1052 (-205)) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -3219 ((-1052 (-205)) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)))) (-15 -2212 ((-1 (-878 (-205)) (-205) (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))
-((-3182 (((-1175) (-273 |#2|) (-1092) (-1092) (-592 (-242))) 96)))
-(((-235 |#1| |#2|) (-10 -7 (-15 -3182 ((-1175) (-273 |#2|) (-1092) (-1092) (-592 (-242))))) (-13 (-517) (-789) (-968 (-525))) (-408 |#1|)) (T -235))
-((-3182 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-273 *7)) (-5 *4 (-1092)) (-5 *5 (-592 (-242))) (-4 *7 (-408 *6)) (-4 *6 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-1175)) (-5 *1 (-235 *6 *7)))))
-(-10 -7 (-15 -3182 ((-1175) (-273 |#2|) (-1092) (-1092) (-592 (-242)))))
-((-1326 (((-525) (-525)) 50)) (-1569 (((-525) (-525)) 51)) (-2311 (((-205) (-205)) 52)) (-3383 (((-1176) (-1 (-157 (-205)) (-157 (-205))) (-1015 (-205)) (-1015 (-205))) 49)) (-3714 (((-1176) (-1 (-157 (-205)) (-157 (-205))) (-1015 (-205)) (-1015 (-205)) (-108)) 47)))
-(((-236) (-10 -7 (-15 -3714 ((-1176) (-1 (-157 (-205)) (-157 (-205))) (-1015 (-205)) (-1015 (-205)) (-108))) (-15 -3383 ((-1176) (-1 (-157 (-205)) (-157 (-205))) (-1015 (-205)) (-1015 (-205)))) (-15 -1326 ((-525) (-525))) (-15 -1569 ((-525) (-525))) (-15 -2311 ((-205) (-205))))) (T -236))
-((-2311 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-236)))) (-1569 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))) (-1326 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))) (-3383 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1015 (-205))) (-5 *2 (-1176)) (-5 *1 (-236)))) (-3714 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1015 (-205))) (-5 *5 (-108)) (-5 *2 (-1176)) (-5 *1 (-236)))))
-(-10 -7 (-15 -3714 ((-1176) (-1 (-157 (-205)) (-157 (-205))) (-1015 (-205)) (-1015 (-205)) (-108))) (-15 -3383 ((-1176) (-1 (-157 (-205)) (-157 (-205))) (-1015 (-205)) (-1015 (-205)))) (-15 -1326 ((-525) (-525))) (-15 -1569 ((-525) (-525))) (-15 -2311 ((-205) (-205))))
-((-1217 (((-1013 (-357)) (-1013 (-294 |#1|))) 16)))
-(((-237 |#1|) (-10 -7 (-15 -1217 ((-1013 (-357)) (-1013 (-294 |#1|))))) (-13 (-789) (-517) (-567 (-357)))) (T -237))
-((-1217 (*1 *2 *3) (-12 (-5 *3 (-1013 (-294 *4))) (-4 *4 (-13 (-789) (-517) (-567 (-357)))) (-5 *2 (-1013 (-357))) (-5 *1 (-237 *4)))))
-(-10 -7 (-15 -1217 ((-1013 (-357)) (-1013 (-294 |#1|)))))
-((-3219 (((-1052 (-205)) (-817 |#1|) (-1013 (-357)) (-1013 (-357))) 71) (((-1052 (-205)) (-817 |#1|) (-1013 (-357)) (-1013 (-357)) (-592 (-242))) 70) (((-1052 (-205)) |#1| (-1013 (-357)) (-1013 (-357))) 61) (((-1052 (-205)) |#1| (-1013 (-357)) (-1013 (-357)) (-592 (-242))) 60) (((-1052 (-205)) (-814 |#1|) (-1013 (-357))) 52) (((-1052 (-205)) (-814 |#1|) (-1013 (-357)) (-592 (-242))) 51)) (-3182 (((-1176) (-817 |#1|) (-1013 (-357)) (-1013 (-357))) 74) (((-1176) (-817 |#1|) (-1013 (-357)) (-1013 (-357)) (-592 (-242))) 73) (((-1176) |#1| (-1013 (-357)) (-1013 (-357))) 64) (((-1176) |#1| (-1013 (-357)) (-1013 (-357)) (-592 (-242))) 63) (((-1176) (-814 |#1|) (-1013 (-357))) 56) (((-1176) (-814 |#1|) (-1013 (-357)) (-592 (-242))) 55) (((-1175) (-812 |#1|) (-1013 (-357))) 43) (((-1175) (-812 |#1|) (-1013 (-357)) (-592 (-242))) 42) (((-1175) |#1| (-1013 (-357))) 35) (((-1175) |#1| (-1013 (-357)) (-592 (-242))) 34)))
-(((-238 |#1|) (-10 -7 (-15 -3182 ((-1175) |#1| (-1013 (-357)) (-592 (-242)))) (-15 -3182 ((-1175) |#1| (-1013 (-357)))) (-15 -3182 ((-1175) (-812 |#1|) (-1013 (-357)) (-592 (-242)))) (-15 -3182 ((-1175) (-812 |#1|) (-1013 (-357)))) (-15 -3182 ((-1176) (-814 |#1|) (-1013 (-357)) (-592 (-242)))) (-15 -3182 ((-1176) (-814 |#1|) (-1013 (-357)))) (-15 -3219 ((-1052 (-205)) (-814 |#1|) (-1013 (-357)) (-592 (-242)))) (-15 -3219 ((-1052 (-205)) (-814 |#1|) (-1013 (-357)))) (-15 -3182 ((-1176) |#1| (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -3182 ((-1176) |#1| (-1013 (-357)) (-1013 (-357)))) (-15 -3219 ((-1052 (-205)) |#1| (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -3219 ((-1052 (-205)) |#1| (-1013 (-357)) (-1013 (-357)))) (-15 -3182 ((-1176) (-817 |#1|) (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -3182 ((-1176) (-817 |#1|) (-1013 (-357)) (-1013 (-357)))) (-15 -3219 ((-1052 (-205)) (-817 |#1|) (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -3219 ((-1052 (-205)) (-817 |#1|) (-1013 (-357)) (-1013 (-357))))) (-13 (-567 (-501)) (-1020))) (T -238))
-((-3219 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 *5)) (-5 *4 (-1013 (-357))) (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1052 (-205))) (-5 *1 (-238 *5)))) (-3219 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1052 (-205))) (-5 *1 (-238 *6)))) (-3182 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 *5)) (-5 *4 (-1013 (-357))) (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1176)) (-5 *1 (-238 *5)))) (-3182 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1176)) (-5 *1 (-238 *6)))) (-3219 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1013 (-357))) (-5 *2 (-1052 (-205))) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020))))) (-3219 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020))))) (-3182 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1013 (-357))) (-5 *2 (-1176)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020))))) (-3182 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020))))) (-3219 (*1 *2 *3 *4) (-12 (-5 *3 (-814 *5)) (-5 *4 (-1013 (-357))) (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1052 (-205))) (-5 *1 (-238 *5)))) (-3219 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1052 (-205))) (-5 *1 (-238 *6)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-814 *5)) (-5 *4 (-1013 (-357))) (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1176)) (-5 *1 (-238 *5)))) (-3182 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1176)) (-5 *1 (-238 *6)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-812 *5)) (-5 *4 (-1013 (-357))) (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1175)) (-5 *1 (-238 *5)))) (-3182 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-812 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1175)) (-5 *1 (-238 *6)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *4 (-1013 (-357))) (-5 *2 (-1175)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020))))) (-3182 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020))))))
-(-10 -7 (-15 -3182 ((-1175) |#1| (-1013 (-357)) (-592 (-242)))) (-15 -3182 ((-1175) |#1| (-1013 (-357)))) (-15 -3182 ((-1175) (-812 |#1|) (-1013 (-357)) (-592 (-242)))) (-15 -3182 ((-1175) (-812 |#1|) (-1013 (-357)))) (-15 -3182 ((-1176) (-814 |#1|) (-1013 (-357)) (-592 (-242)))) (-15 -3182 ((-1176) (-814 |#1|) (-1013 (-357)))) (-15 -3219 ((-1052 (-205)) (-814 |#1|) (-1013 (-357)) (-592 (-242)))) (-15 -3219 ((-1052 (-205)) (-814 |#1|) (-1013 (-357)))) (-15 -3182 ((-1176) |#1| (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -3182 ((-1176) |#1| (-1013 (-357)) (-1013 (-357)))) (-15 -3219 ((-1052 (-205)) |#1| (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -3219 ((-1052 (-205)) |#1| (-1013 (-357)) (-1013 (-357)))) (-15 -3182 ((-1176) (-817 |#1|) (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -3182 ((-1176) (-817 |#1|) (-1013 (-357)) (-1013 (-357)))) (-15 -3219 ((-1052 (-205)) (-817 |#1|) (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -3219 ((-1052 (-205)) (-817 |#1|) (-1013 (-357)) (-1013 (-357)))))
-((-3182 (((-1176) (-592 (-205)) (-592 (-205)) (-592 (-205)) (-592 (-242))) 23) (((-1176) (-592 (-205)) (-592 (-205)) (-592 (-205))) 24) (((-1175) (-592 (-878 (-205))) (-592 (-242))) 16) (((-1175) (-592 (-878 (-205)))) 17) (((-1175) (-592 (-205)) (-592 (-205)) (-592 (-242))) 20) (((-1175) (-592 (-205)) (-592 (-205))) 21)))
-(((-239) (-10 -7 (-15 -3182 ((-1175) (-592 (-205)) (-592 (-205)))) (-15 -3182 ((-1175) (-592 (-205)) (-592 (-205)) (-592 (-242)))) (-15 -3182 ((-1175) (-592 (-878 (-205))))) (-15 -3182 ((-1175) (-592 (-878 (-205))) (-592 (-242)))) (-15 -3182 ((-1176) (-592 (-205)) (-592 (-205)) (-592 (-205)))) (-15 -3182 ((-1176) (-592 (-205)) (-592 (-205)) (-592 (-205)) (-592 (-242)))))) (T -239))
-((-3182 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-239)))) (-3182 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1176)) (-5 *1 (-239)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-878 (-205)))) (-5 *4 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-239)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-592 (-878 (-205)))) (-5 *2 (-1175)) (-5 *1 (-239)))) (-3182 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-239)))) (-3182 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1175)) (-5 *1 (-239)))))
-(-10 -7 (-15 -3182 ((-1175) (-592 (-205)) (-592 (-205)))) (-15 -3182 ((-1175) (-592 (-205)) (-592 (-205)) (-592 (-242)))) (-15 -3182 ((-1175) (-592 (-878 (-205))))) (-15 -3182 ((-1175) (-592 (-878 (-205))) (-592 (-242)))) (-15 -3182 ((-1176) (-592 (-205)) (-592 (-205)) (-592 (-205)))) (-15 -3182 ((-1176) (-592 (-205)) (-592 (-205)) (-592 (-205)) (-592 (-242)))))
-((-4225 (((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) (-592 (-242)) (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) 26)) (-1838 (((-856) (-592 (-242)) (-856)) 53)) (-4203 (((-856) (-592 (-242)) (-856)) 52)) (-3306 (((-592 (-357)) (-592 (-242)) (-592 (-357))) 69)) (-3524 (((-357) (-592 (-242)) (-357)) 58)) (-1313 (((-856) (-592 (-242)) (-856)) 54)) (-2722 (((-108) (-592 (-242)) (-108)) 28)) (-2655 (((-1075) (-592 (-242)) (-1075)) 20)) (-3192 (((-1075) (-592 (-242)) (-1075)) 27)) (-2044 (((-1052 (-205)) (-592 (-242))) 47)) (-3091 (((-592 (-1015 (-357))) (-592 (-242)) (-592 (-1015 (-357)))) 41)) (-1784 (((-809) (-592 (-242)) (-809)) 33)) (-1736 (((-809) (-592 (-242)) (-809)) 34)) (-2180 (((-1 (-878 (-205)) (-878 (-205))) (-592 (-242)) (-1 (-878 (-205)) (-878 (-205)))) 64)) (-2993 (((-108) (-592 (-242)) (-108)) 16)) (-4066 (((-108) (-592 (-242)) (-108)) 15)))
-(((-240) (-10 -7 (-15 -4066 ((-108) (-592 (-242)) (-108))) (-15 -2993 ((-108) (-592 (-242)) (-108))) (-15 -4225 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) (-592 (-242)) (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2655 ((-1075) (-592 (-242)) (-1075))) (-15 -3192 ((-1075) (-592 (-242)) (-1075))) (-15 -2722 ((-108) (-592 (-242)) (-108))) (-15 -1784 ((-809) (-592 (-242)) (-809))) (-15 -1736 ((-809) (-592 (-242)) (-809))) (-15 -3091 ((-592 (-1015 (-357))) (-592 (-242)) (-592 (-1015 (-357))))) (-15 -4203 ((-856) (-592 (-242)) (-856))) (-15 -1838 ((-856) (-592 (-242)) (-856))) (-15 -2044 ((-1052 (-205)) (-592 (-242)))) (-15 -1313 ((-856) (-592 (-242)) (-856))) (-15 -3524 ((-357) (-592 (-242)) (-357))) (-15 -2180 ((-1 (-878 (-205)) (-878 (-205))) (-592 (-242)) (-1 (-878 (-205)) (-878 (-205))))) (-15 -3306 ((-592 (-357)) (-592 (-242)) (-592 (-357)))))) (T -240))
-((-3306 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-357))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2180 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-878 (-205)) (-878 (-205)))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3524 (*1 *2 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-1313 (*1 *2 *3 *2) (-12 (-5 *2 (-856)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2044 (*1 *2 *3) (-12 (-5 *3 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-240)))) (-1838 (*1 *2 *3 *2) (-12 (-5 *2 (-856)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-4203 (*1 *2 *3 *2) (-12 (-5 *2 (-856)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3091 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-1736 (*1 *2 *3 *2) (-12 (-5 *2 (-809)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-1784 (*1 *2 *3 *2) (-12 (-5 *2 (-809)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2722 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3192 (*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2655 (*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-4225 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2993 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-4066 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))))
-(-10 -7 (-15 -4066 ((-108) (-592 (-242)) (-108))) (-15 -2993 ((-108) (-592 (-242)) (-108))) (-15 -4225 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) (-592 (-242)) (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2655 ((-1075) (-592 (-242)) (-1075))) (-15 -3192 ((-1075) (-592 (-242)) (-1075))) (-15 -2722 ((-108) (-592 (-242)) (-108))) (-15 -1784 ((-809) (-592 (-242)) (-809))) (-15 -1736 ((-809) (-592 (-242)) (-809))) (-15 -3091 ((-592 (-1015 (-357))) (-592 (-242)) (-592 (-1015 (-357))))) (-15 -4203 ((-856) (-592 (-242)) (-856))) (-15 -1838 ((-856) (-592 (-242)) (-856))) (-15 -2044 ((-1052 (-205)) (-592 (-242)))) (-15 -1313 ((-856) (-592 (-242)) (-856))) (-15 -3524 ((-357) (-592 (-242)) (-357))) (-15 -2180 ((-1 (-878 (-205)) (-878 (-205))) (-592 (-242)) (-1 (-878 (-205)) (-878 (-205))))) (-15 -3306 ((-592 (-357)) (-592 (-242)) (-592 (-357)))))
-((-1974 (((-3 |#1| "failed") (-592 (-242)) (-1092)) 17)))
-(((-241 |#1|) (-10 -7 (-15 -1974 ((-3 |#1| "failed") (-592 (-242)) (-1092)))) (-1128)) (T -241))
-((-1974 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1092)) (-5 *1 (-241 *2)) (-4 *2 (-1128)))))
-(-10 -7 (-15 -1974 ((-3 |#1| "failed") (-592 (-242)) (-1092))))
-((-4236 (((-108) $ $) NIL)) (-4225 (($ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) 15)) (-1838 (($ (-856)) 76)) (-4203 (($ (-856)) 75)) (-2841 (($ (-592 (-357))) 82)) (-3524 (($ (-357)) 58)) (-1313 (($ (-856)) 77)) (-2722 (($ (-108)) 23)) (-2655 (($ (-1075)) 18)) (-3192 (($ (-1075)) 19)) (-2044 (($ (-1052 (-205))) 71)) (-3091 (($ (-592 (-1015 (-357)))) 67)) (-3196 (($ (-592 (-1015 (-357)))) 59) (($ (-592 (-1015 (-385 (-525))))) 66)) (-2580 (($ (-357)) 29) (($ (-809)) 33)) (-4009 (((-108) (-592 $) (-1092)) 91)) (-1974 (((-3 (-51) "failed") (-592 $) (-1092)) 93)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1449 (($ (-357)) 34) (($ (-809)) 35)) (-2387 (($ (-1 (-878 (-205)) (-878 (-205)))) 57)) (-2180 (($ (-1 (-878 (-205)) (-878 (-205)))) 78)) (-1215 (($ (-1 (-205) (-205))) 39) (($ (-1 (-205) (-205) (-205))) 43) (($ (-1 (-205) (-205) (-205) (-205))) 47)) (-1217 (((-798) $) 87)) (-2128 (($ (-108)) 24) (($ (-592 (-1015 (-357)))) 52)) (-4066 (($ (-108)) 25)) (-3955 (((-108) $ $) 89)))
-(((-242) (-13 (-1020) (-10 -8 (-15 -4066 ($ (-108))) (-15 -2128 ($ (-108))) (-15 -4225 ($ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2655 ($ (-1075))) (-15 -3192 ($ (-1075))) (-15 -2722 ($ (-108))) (-15 -2128 ($ (-592 (-1015 (-357))))) (-15 -2387 ($ (-1 (-878 (-205)) (-878 (-205))))) (-15 -2580 ($ (-357))) (-15 -2580 ($ (-809))) (-15 -1449 ($ (-357))) (-15 -1449 ($ (-809))) (-15 -1215 ($ (-1 (-205) (-205)))) (-15 -1215 ($ (-1 (-205) (-205) (-205)))) (-15 -1215 ($ (-1 (-205) (-205) (-205) (-205)))) (-15 -3524 ($ (-357))) (-15 -3196 ($ (-592 (-1015 (-357))))) (-15 -3196 ($ (-592 (-1015 (-385 (-525)))))) (-15 -3091 ($ (-592 (-1015 (-357))))) (-15 -2044 ($ (-1052 (-205)))) (-15 -4203 ($ (-856))) (-15 -1838 ($ (-856))) (-15 -1313 ($ (-856))) (-15 -2180 ($ (-1 (-878 (-205)) (-878 (-205))))) (-15 -2841 ($ (-592 (-357)))) (-15 -1974 ((-3 (-51) "failed") (-592 $) (-1092))) (-15 -4009 ((-108) (-592 $) (-1092)))))) (T -242))
-((-4066 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) (-4225 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *1 (-242)))) (-2655 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-242)))) (-3192 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-242)))) (-2722 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-242)))) (-2387 (*1 *1 *2) (-12 (-5 *2 (-1 (-878 (-205)) (-878 (-205)))) (-5 *1 (-242)))) (-2580 (*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))) (-2580 (*1 *1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-242)))) (-1449 (*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))) (-1449 (*1 *1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-242)))) (-1215 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-242)))) (-1215 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205) (-205))) (-5 *1 (-242)))) (-1215 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-242)))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))) (-3196 (*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-242)))) (-3196 (*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-385 (-525))))) (-5 *1 (-242)))) (-3091 (*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-242)))) (-2044 (*1 *1 *2) (-12 (-5 *2 (-1052 (-205))) (-5 *1 (-242)))) (-4203 (*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-242)))) (-1838 (*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-242)))) (-1313 (*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-242)))) (-2180 (*1 *1 *2) (-12 (-5 *2 (-1 (-878 (-205)) (-878 (-205)))) (-5 *1 (-242)))) (-2841 (*1 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-242)))) (-1974 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1092)) (-5 *2 (-51)) (-5 *1 (-242)))) (-4009 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-242))) (-5 *4 (-1092)) (-5 *2 (-108)) (-5 *1 (-242)))))
-(-13 (-1020) (-10 -8 (-15 -4066 ($ (-108))) (-15 -2128 ($ (-108))) (-15 -4225 ($ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2655 ($ (-1075))) (-15 -3192 ($ (-1075))) (-15 -2722 ($ (-108))) (-15 -2128 ($ (-592 (-1015 (-357))))) (-15 -2387 ($ (-1 (-878 (-205)) (-878 (-205))))) (-15 -2580 ($ (-357))) (-15 -2580 ($ (-809))) (-15 -1449 ($ (-357))) (-15 -1449 ($ (-809))) (-15 -1215 ($ (-1 (-205) (-205)))) (-15 -1215 ($ (-1 (-205) (-205) (-205)))) (-15 -1215 ($ (-1 (-205) (-205) (-205) (-205)))) (-15 -3524 ($ (-357))) (-15 -3196 ($ (-592 (-1015 (-357))))) (-15 -3196 ($ (-592 (-1015 (-385 (-525)))))) (-15 -3091 ($ (-592 (-1015 (-357))))) (-15 -2044 ($ (-1052 (-205)))) (-15 -4203 ($ (-856))) (-15 -1838 ($ (-856))) (-15 -1313 ($ (-856))) (-15 -2180 ($ (-1 (-878 (-205)) (-878 (-205))))) (-15 -2841 ($ (-592 (-357)))) (-15 -1974 ((-3 (-51) "failed") (-592 $) (-1092))) (-15 -4009 ((-108) (-592 $) (-1092)))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2865 (((-592 (-713)) $) NIL) (((-592 (-713)) $ |#2|) NIL)) (-3398 (((-713) $) NIL) (((-713) $ |#2|) NIL)) (-2897 (((-592 |#3|) $) NIL)) (-2744 (((-1088 $) $ |#3|) NIL) (((-1088 |#1|) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-3212 (((-713) $) NIL) (((-713) $ (-592 |#3|)) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-1286 (($ $) NIL (|has| |#1| (-429)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2970 (($ $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1044 |#1| |#2|) "failed") $) 21)) (-1572 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1044 |#1| |#2|) $) NIL)) (-3377 (($ $ $ |#3|) NIL (|has| |#1| (-160)))) (-3063 (($ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1576 (($ $) NIL (|has| |#1| (-429))) (($ $ |#3|) NIL (|has| |#1| (-429)))) (-3052 (((-592 $) $) NIL)) (-3673 (((-108) $) NIL (|has| |#1| (-844)))) (-2188 (($ $ |#1| (-497 |#3|) $) NIL)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| |#1| (-821 (-357))) (|has| |#3| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| |#1| (-821 (-525))) (|has| |#3| (-821 (-525)))))) (-2581 (((-713) $ |#2|) NIL) (((-713) $) 10)) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) NIL)) (-2887 (($ (-1088 |#1|) |#3|) NIL) (($ (-1088 $) |#3|) NIL)) (-4144 (((-592 $) $) NIL)) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-497 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ |#3|) NIL)) (-2870 (((-497 |#3|) $) NIL) (((-713) $ |#3|) NIL) (((-592 (-713)) $ (-592 |#3|)) NIL)) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2172 (($ (-1 (-497 |#3|) (-497 |#3|)) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2822 (((-1 $ (-713)) |#2|) NIL) (((-1 $ (-713)) $) NIL (|has| |#1| (-213)))) (-2431 (((-3 |#3| "failed") $) NIL)) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2564 ((|#3| $) NIL)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2619 (((-1075) $) NIL)) (-3916 (((-108) $) NIL)) (-1334 (((-3 (-592 $) "failed") $) NIL)) (-2001 (((-3 (-592 $) "failed") $) NIL)) (-2121 (((-3 (-2 (|:| |var| |#3|) (|:| -4193 (-713))) "failed") $) NIL)) (-2253 (($ $) NIL)) (-2093 (((-1039) $) NIL)) (-3007 (((-108) $) NIL)) (-3019 ((|#1| $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-429)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2770 (((-396 $) $) NIL (|has| |#1| (-844)))) (-1715 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2457 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-592 |#3|) (-592 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-592 |#3|) (-592 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 $)) NIL (|has| |#1| (-213))) (($ $ |#2| |#1|) NIL (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 |#1|)) NIL (|has| |#1| (-213)))) (-1975 (($ $ |#3|) NIL (|has| |#1| (-160)))) (-3376 (($ $ |#3|) NIL) (($ $ (-592 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2866 (((-592 |#2|) $) NIL)) (-2343 (((-497 |#3|) $) NIL) (((-713) $ |#3|) NIL) (((-592 (-713)) $ (-592 |#3|)) NIL) (((-713) $ |#2|) NIL)) (-3210 (((-827 (-357)) $) NIL (-12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#3| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#3| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))))) (-3658 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ |#3|) NIL (|has| |#1| (-429)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1044 |#1| |#2|)) 30) (($ (-385 (-525))) NIL (-3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-1684 (((-592 |#1|) $) NIL)) (-1568 ((|#1| $ (-497 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-3917 (((-713)) NIL)) (-3716 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $ |#3|) NIL) (($ $ (-592 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-1226 (*1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))) (-1226 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-4 *1 (-233 *3)))) (-2934 (*1 *2 *1) (-12 (-4 *1 (-233 *3)) (-4 *3 (-1128)) (-5 *2 (-713)))) (-1308 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))) (-1820 (*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))) (-3149 (*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))) (-2670 (*1 *1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))))
+(-13 (-1040 |t#1|) (-927 |t#1|) (-10 -8 (-15 -1226 ($)) (-15 -1226 ($ (-592 |t#1|))) (-15 -2934 ((-713) $)) (-15 -1308 (|t#1| $)) (-15 -2271 (|t#1| $)) (-15 -1820 (|t#1| |t#1| $)) (-15 -3149 (|t#1| |t#1| $)) (-15 -3426 (|t#1| $)) (-15 -3376 (|t#1| $)) (-15 -2670 ($ $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-927 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1040 |#1|) . T) ((-1128) . T))
+((-1697 (((-1 (-878 (-205)) (-205) (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205) (-205))) 139)) (-2662 (((-1052 (-205)) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357))) 160) (((-1052 (-205)) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)) (-592 (-242))) 158) (((-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357))) 163) (((-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242))) 159) (((-1052 (-205)) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357))) 150) (((-1052 (-205)) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242))) 149) (((-1052 (-205)) (-1 (-878 (-205)) (-205)) (-1015 (-357))) 129) (((-1052 (-205)) (-1 (-878 (-205)) (-205)) (-1015 (-357)) (-592 (-242))) 127) (((-1052 (-205)) (-814 (-1 (-205) (-205))) (-1015 (-357))) 128) (((-1052 (-205)) (-814 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242))) 125)) (-4164 (((-1176) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357))) 162) (((-1176) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)) (-592 (-242))) 161) (((-1176) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357))) 165) (((-1176) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242))) 164) (((-1176) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357))) 152) (((-1176) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242))) 151) (((-1176) (-1 (-878 (-205)) (-205)) (-1015 (-357))) 135) (((-1176) (-1 (-878 (-205)) (-205)) (-1015 (-357)) (-592 (-242))) 134) (((-1176) (-814 (-1 (-205) (-205))) (-1015 (-357))) 133) (((-1176) (-814 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242))) 132) (((-1175) (-812 (-1 (-205) (-205))) (-1015 (-357))) 100) (((-1175) (-812 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242))) 99) (((-1175) (-1 (-205) (-205)) (-1015 (-357))) 96) (((-1175) (-1 (-205) (-205)) (-1015 (-357)) (-592 (-242))) 95)))
+(((-234) (-10 -7 (-15 -4164 ((-1175) (-1 (-205) (-205)) (-1015 (-357)) (-592 (-242)))) (-15 -4164 ((-1175) (-1 (-205) (-205)) (-1015 (-357)))) (-15 -4164 ((-1175) (-812 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242)))) (-15 -4164 ((-1175) (-812 (-1 (-205) (-205))) (-1015 (-357)))) (-15 -4164 ((-1176) (-814 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242)))) (-15 -4164 ((-1176) (-814 (-1 (-205) (-205))) (-1015 (-357)))) (-15 -4164 ((-1176) (-1 (-878 (-205)) (-205)) (-1015 (-357)) (-592 (-242)))) (-15 -4164 ((-1176) (-1 (-878 (-205)) (-205)) (-1015 (-357)))) (-15 -2662 ((-1052 (-205)) (-814 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242)))) (-15 -2662 ((-1052 (-205)) (-814 (-1 (-205) (-205))) (-1015 (-357)))) (-15 -2662 ((-1052 (-205)) (-1 (-878 (-205)) (-205)) (-1015 (-357)) (-592 (-242)))) (-15 -2662 ((-1052 (-205)) (-1 (-878 (-205)) (-205)) (-1015 (-357)))) (-15 -4164 ((-1176) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -4164 ((-1176) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -2662 ((-1052 (-205)) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -2662 ((-1052 (-205)) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -4164 ((-1176) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -4164 ((-1176) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -2662 ((-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -2662 ((-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -4164 ((-1176) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -4164 ((-1176) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)))) (-15 -2662 ((-1052 (-205)) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -2662 ((-1052 (-205)) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)))) (-15 -1697 ((-1 (-878 (-205)) (-205) (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))) (T -234))
+((-1697 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-878 (-205)) (-205) (-205))) (-5 *3 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-234)))) (-2662 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-2662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-4164 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-4164 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-2662 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-2662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-4164 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-4164 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-2662 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-2662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-4164 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-4164 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-2662 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-2662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-2662 (*1 *2 *3 *4) (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-2662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-4164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-4164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *2 (-1175)) (-5 *1 (-234)))) (-4164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-234)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1175)) (-5 *1 (-234)))) (-4164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-234)))))
+(-10 -7 (-15 -4164 ((-1175) (-1 (-205) (-205)) (-1015 (-357)) (-592 (-242)))) (-15 -4164 ((-1175) (-1 (-205) (-205)) (-1015 (-357)))) (-15 -4164 ((-1175) (-812 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242)))) (-15 -4164 ((-1175) (-812 (-1 (-205) (-205))) (-1015 (-357)))) (-15 -4164 ((-1176) (-814 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242)))) (-15 -4164 ((-1176) (-814 (-1 (-205) (-205))) (-1015 (-357)))) (-15 -4164 ((-1176) (-1 (-878 (-205)) (-205)) (-1015 (-357)) (-592 (-242)))) (-15 -4164 ((-1176) (-1 (-878 (-205)) (-205)) (-1015 (-357)))) (-15 -2662 ((-1052 (-205)) (-814 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242)))) (-15 -2662 ((-1052 (-205)) (-814 (-1 (-205) (-205))) (-1015 (-357)))) (-15 -2662 ((-1052 (-205)) (-1 (-878 (-205)) (-205)) (-1015 (-357)) (-592 (-242)))) (-15 -2662 ((-1052 (-205)) (-1 (-878 (-205)) (-205)) (-1015 (-357)))) (-15 -4164 ((-1176) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -4164 ((-1176) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -2662 ((-1052 (-205)) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -2662 ((-1052 (-205)) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -4164 ((-1176) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -4164 ((-1176) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -2662 ((-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -2662 ((-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -4164 ((-1176) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -4164 ((-1176) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)))) (-15 -2662 ((-1052 (-205)) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -2662 ((-1052 (-205)) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)))) (-15 -1697 ((-1 (-878 (-205)) (-205) (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))
+((-4164 (((-1175) (-273 |#2|) (-1092) (-1092) (-592 (-242))) 96)))
+(((-235 |#1| |#2|) (-10 -7 (-15 -4164 ((-1175) (-273 |#2|) (-1092) (-1092) (-592 (-242))))) (-13 (-517) (-789) (-968 (-525))) (-408 |#1|)) (T -235))
+((-4164 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-273 *7)) (-5 *4 (-1092)) (-5 *5 (-592 (-242))) (-4 *7 (-408 *6)) (-4 *6 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-1175)) (-5 *1 (-235 *6 *7)))))
+(-10 -7 (-15 -4164 ((-1175) (-273 |#2|) (-1092) (-1092) (-592 (-242)))))
+((-1480 (((-525) (-525)) 50)) (-3147 (((-525) (-525)) 51)) (-3182 (((-205) (-205)) 52)) (-3854 (((-1176) (-1 (-157 (-205)) (-157 (-205))) (-1015 (-205)) (-1015 (-205))) 49)) (-4032 (((-1176) (-1 (-157 (-205)) (-157 (-205))) (-1015 (-205)) (-1015 (-205)) (-108)) 47)))
+(((-236) (-10 -7 (-15 -4032 ((-1176) (-1 (-157 (-205)) (-157 (-205))) (-1015 (-205)) (-1015 (-205)) (-108))) (-15 -3854 ((-1176) (-1 (-157 (-205)) (-157 (-205))) (-1015 (-205)) (-1015 (-205)))) (-15 -1480 ((-525) (-525))) (-15 -3147 ((-525) (-525))) (-15 -3182 ((-205) (-205))))) (T -236))
+((-3182 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-236)))) (-3147 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))) (-1480 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))) (-3854 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1015 (-205))) (-5 *2 (-1176)) (-5 *1 (-236)))) (-4032 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1015 (-205))) (-5 *5 (-108)) (-5 *2 (-1176)) (-5 *1 (-236)))))
+(-10 -7 (-15 -4032 ((-1176) (-1 (-157 (-205)) (-157 (-205))) (-1015 (-205)) (-1015 (-205)) (-108))) (-15 -3854 ((-1176) (-1 (-157 (-205)) (-157 (-205))) (-1015 (-205)) (-1015 (-205)))) (-15 -1480 ((-525) (-525))) (-15 -3147 ((-525) (-525))) (-15 -3182 ((-205) (-205))))
+((-4100 (((-1013 (-357)) (-1013 (-294 |#1|))) 16)))
+(((-237 |#1|) (-10 -7 (-15 -4100 ((-1013 (-357)) (-1013 (-294 |#1|))))) (-13 (-789) (-517) (-567 (-357)))) (T -237))
+((-4100 (*1 *2 *3) (-12 (-5 *3 (-1013 (-294 *4))) (-4 *4 (-13 (-789) (-517) (-567 (-357)))) (-5 *2 (-1013 (-357))) (-5 *1 (-237 *4)))))
+(-10 -7 (-15 -4100 ((-1013 (-357)) (-1013 (-294 |#1|)))))
+((-2662 (((-1052 (-205)) (-817 |#1|) (-1013 (-357)) (-1013 (-357))) 71) (((-1052 (-205)) (-817 |#1|) (-1013 (-357)) (-1013 (-357)) (-592 (-242))) 70) (((-1052 (-205)) |#1| (-1013 (-357)) (-1013 (-357))) 61) (((-1052 (-205)) |#1| (-1013 (-357)) (-1013 (-357)) (-592 (-242))) 60) (((-1052 (-205)) (-814 |#1|) (-1013 (-357))) 52) (((-1052 (-205)) (-814 |#1|) (-1013 (-357)) (-592 (-242))) 51)) (-4164 (((-1176) (-817 |#1|) (-1013 (-357)) (-1013 (-357))) 74) (((-1176) (-817 |#1|) (-1013 (-357)) (-1013 (-357)) (-592 (-242))) 73) (((-1176) |#1| (-1013 (-357)) (-1013 (-357))) 64) (((-1176) |#1| (-1013 (-357)) (-1013 (-357)) (-592 (-242))) 63) (((-1176) (-814 |#1|) (-1013 (-357))) 56) (((-1176) (-814 |#1|) (-1013 (-357)) (-592 (-242))) 55) (((-1175) (-812 |#1|) (-1013 (-357))) 43) (((-1175) (-812 |#1|) (-1013 (-357)) (-592 (-242))) 42) (((-1175) |#1| (-1013 (-357))) 35) (((-1175) |#1| (-1013 (-357)) (-592 (-242))) 34)))
+(((-238 |#1|) (-10 -7 (-15 -4164 ((-1175) |#1| (-1013 (-357)) (-592 (-242)))) (-15 -4164 ((-1175) |#1| (-1013 (-357)))) (-15 -4164 ((-1175) (-812 |#1|) (-1013 (-357)) (-592 (-242)))) (-15 -4164 ((-1175) (-812 |#1|) (-1013 (-357)))) (-15 -4164 ((-1176) (-814 |#1|) (-1013 (-357)) (-592 (-242)))) (-15 -4164 ((-1176) (-814 |#1|) (-1013 (-357)))) (-15 -2662 ((-1052 (-205)) (-814 |#1|) (-1013 (-357)) (-592 (-242)))) (-15 -2662 ((-1052 (-205)) (-814 |#1|) (-1013 (-357)))) (-15 -4164 ((-1176) |#1| (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -4164 ((-1176) |#1| (-1013 (-357)) (-1013 (-357)))) (-15 -2662 ((-1052 (-205)) |#1| (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -2662 ((-1052 (-205)) |#1| (-1013 (-357)) (-1013 (-357)))) (-15 -4164 ((-1176) (-817 |#1|) (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -4164 ((-1176) (-817 |#1|) (-1013 (-357)) (-1013 (-357)))) (-15 -2662 ((-1052 (-205)) (-817 |#1|) (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -2662 ((-1052 (-205)) (-817 |#1|) (-1013 (-357)) (-1013 (-357))))) (-13 (-567 (-501)) (-1020))) (T -238))
+((-2662 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 *5)) (-5 *4 (-1013 (-357))) (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1052 (-205))) (-5 *1 (-238 *5)))) (-2662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1052 (-205))) (-5 *1 (-238 *6)))) (-4164 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 *5)) (-5 *4 (-1013 (-357))) (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1176)) (-5 *1 (-238 *5)))) (-4164 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1176)) (-5 *1 (-238 *6)))) (-2662 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1013 (-357))) (-5 *2 (-1052 (-205))) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020))))) (-2662 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020))))) (-4164 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1013 (-357))) (-5 *2 (-1176)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020))))) (-4164 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020))))) (-2662 (*1 *2 *3 *4) (-12 (-5 *3 (-814 *5)) (-5 *4 (-1013 (-357))) (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1052 (-205))) (-5 *1 (-238 *5)))) (-2662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1052 (-205))) (-5 *1 (-238 *6)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-814 *5)) (-5 *4 (-1013 (-357))) (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1176)) (-5 *1 (-238 *5)))) (-4164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1176)) (-5 *1 (-238 *6)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-812 *5)) (-5 *4 (-1013 (-357))) (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1175)) (-5 *1 (-238 *5)))) (-4164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-812 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1175)) (-5 *1 (-238 *6)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-1013 (-357))) (-5 *2 (-1175)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020))))) (-4164 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020))))))
+(-10 -7 (-15 -4164 ((-1175) |#1| (-1013 (-357)) (-592 (-242)))) (-15 -4164 ((-1175) |#1| (-1013 (-357)))) (-15 -4164 ((-1175) (-812 |#1|) (-1013 (-357)) (-592 (-242)))) (-15 -4164 ((-1175) (-812 |#1|) (-1013 (-357)))) (-15 -4164 ((-1176) (-814 |#1|) (-1013 (-357)) (-592 (-242)))) (-15 -4164 ((-1176) (-814 |#1|) (-1013 (-357)))) (-15 -2662 ((-1052 (-205)) (-814 |#1|) (-1013 (-357)) (-592 (-242)))) (-15 -2662 ((-1052 (-205)) (-814 |#1|) (-1013 (-357)))) (-15 -4164 ((-1176) |#1| (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -4164 ((-1176) |#1| (-1013 (-357)) (-1013 (-357)))) (-15 -2662 ((-1052 (-205)) |#1| (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -2662 ((-1052 (-205)) |#1| (-1013 (-357)) (-1013 (-357)))) (-15 -4164 ((-1176) (-817 |#1|) (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -4164 ((-1176) (-817 |#1|) (-1013 (-357)) (-1013 (-357)))) (-15 -2662 ((-1052 (-205)) (-817 |#1|) (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -2662 ((-1052 (-205)) (-817 |#1|) (-1013 (-357)) (-1013 (-357)))))
+((-4164 (((-1176) (-592 (-205)) (-592 (-205)) (-592 (-205)) (-592 (-242))) 23) (((-1176) (-592 (-205)) (-592 (-205)) (-592 (-205))) 24) (((-1175) (-592 (-878 (-205))) (-592 (-242))) 16) (((-1175) (-592 (-878 (-205)))) 17) (((-1175) (-592 (-205)) (-592 (-205)) (-592 (-242))) 20) (((-1175) (-592 (-205)) (-592 (-205))) 21)))
+(((-239) (-10 -7 (-15 -4164 ((-1175) (-592 (-205)) (-592 (-205)))) (-15 -4164 ((-1175) (-592 (-205)) (-592 (-205)) (-592 (-242)))) (-15 -4164 ((-1175) (-592 (-878 (-205))))) (-15 -4164 ((-1175) (-592 (-878 (-205))) (-592 (-242)))) (-15 -4164 ((-1176) (-592 (-205)) (-592 (-205)) (-592 (-205)))) (-15 -4164 ((-1176) (-592 (-205)) (-592 (-205)) (-592 (-205)) (-592 (-242)))))) (T -239))
+((-4164 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-239)))) (-4164 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1176)) (-5 *1 (-239)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-878 (-205)))) (-5 *4 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-239)))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-592 (-878 (-205)))) (-5 *2 (-1175)) (-5 *1 (-239)))) (-4164 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-239)))) (-4164 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1175)) (-5 *1 (-239)))))
+(-10 -7 (-15 -4164 ((-1175) (-592 (-205)) (-592 (-205)))) (-15 -4164 ((-1175) (-592 (-205)) (-592 (-205)) (-592 (-242)))) (-15 -4164 ((-1175) (-592 (-878 (-205))))) (-15 -4164 ((-1175) (-592 (-878 (-205))) (-592 (-242)))) (-15 -4164 ((-1176) (-592 (-205)) (-592 (-205)) (-592 (-205)))) (-15 -4164 ((-1176) (-592 (-205)) (-592 (-205)) (-592 (-205)) (-592 (-242)))))
+((-2501 (((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) (-592 (-242)) (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) 26)) (-2147 (((-856) (-592 (-242)) (-856)) 53)) (-2262 (((-856) (-592 (-242)) (-856)) 52)) (-1526 (((-592 (-357)) (-592 (-242)) (-592 (-357))) 69)) (-2722 (((-357) (-592 (-242)) (-357)) 58)) (-3334 (((-856) (-592 (-242)) (-856)) 54)) (-2867 (((-108) (-592 (-242)) (-108)) 28)) (-3037 (((-1075) (-592 (-242)) (-1075)) 20)) (-1745 (((-1075) (-592 (-242)) (-1075)) 27)) (-3555 (((-1052 (-205)) (-592 (-242))) 47)) (-2073 (((-592 (-1015 (-357))) (-592 (-242)) (-592 (-1015 (-357)))) 41)) (-2829 (((-809) (-592 (-242)) (-809)) 33)) (-3618 (((-809) (-592 (-242)) (-809)) 34)) (-1383 (((-1 (-878 (-205)) (-878 (-205))) (-592 (-242)) (-1 (-878 (-205)) (-878 (-205)))) 64)) (-3591 (((-108) (-592 (-242)) (-108)) 16)) (-3314 (((-108) (-592 (-242)) (-108)) 15)))
+(((-240) (-10 -7 (-15 -3314 ((-108) (-592 (-242)) (-108))) (-15 -3591 ((-108) (-592 (-242)) (-108))) (-15 -2501 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) (-592 (-242)) (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -3037 ((-1075) (-592 (-242)) (-1075))) (-15 -1745 ((-1075) (-592 (-242)) (-1075))) (-15 -2867 ((-108) (-592 (-242)) (-108))) (-15 -2829 ((-809) (-592 (-242)) (-809))) (-15 -3618 ((-809) (-592 (-242)) (-809))) (-15 -2073 ((-592 (-1015 (-357))) (-592 (-242)) (-592 (-1015 (-357))))) (-15 -2262 ((-856) (-592 (-242)) (-856))) (-15 -2147 ((-856) (-592 (-242)) (-856))) (-15 -3555 ((-1052 (-205)) (-592 (-242)))) (-15 -3334 ((-856) (-592 (-242)) (-856))) (-15 -2722 ((-357) (-592 (-242)) (-357))) (-15 -1383 ((-1 (-878 (-205)) (-878 (-205))) (-592 (-242)) (-1 (-878 (-205)) (-878 (-205))))) (-15 -1526 ((-592 (-357)) (-592 (-242)) (-592 (-357)))))) (T -240))
+((-1526 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-357))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-1383 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-878 (-205)) (-878 (-205)))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2722 (*1 *2 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3334 (*1 *2 *3 *2) (-12 (-5 *2 (-856)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3555 (*1 *2 *3) (-12 (-5 *3 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-240)))) (-2147 (*1 *2 *3 *2) (-12 (-5 *2 (-856)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2262 (*1 *2 *3 *2) (-12 (-5 *2 (-856)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2073 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3618 (*1 *2 *3 *2) (-12 (-5 *2 (-809)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2829 (*1 *2 *3 *2) (-12 (-5 *2 (-809)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2867 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-1745 (*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3037 (*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2501 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3591 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3314 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))))
+(-10 -7 (-15 -3314 ((-108) (-592 (-242)) (-108))) (-15 -3591 ((-108) (-592 (-242)) (-108))) (-15 -2501 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) (-592 (-242)) (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -3037 ((-1075) (-592 (-242)) (-1075))) (-15 -1745 ((-1075) (-592 (-242)) (-1075))) (-15 -2867 ((-108) (-592 (-242)) (-108))) (-15 -2829 ((-809) (-592 (-242)) (-809))) (-15 -3618 ((-809) (-592 (-242)) (-809))) (-15 -2073 ((-592 (-1015 (-357))) (-592 (-242)) (-592 (-1015 (-357))))) (-15 -2262 ((-856) (-592 (-242)) (-856))) (-15 -2147 ((-856) (-592 (-242)) (-856))) (-15 -3555 ((-1052 (-205)) (-592 (-242)))) (-15 -3334 ((-856) (-592 (-242)) (-856))) (-15 -2722 ((-357) (-592 (-242)) (-357))) (-15 -1383 ((-1 (-878 (-205)) (-878 (-205))) (-592 (-242)) (-1 (-878 (-205)) (-878 (-205))))) (-15 -1526 ((-592 (-357)) (-592 (-242)) (-592 (-357)))))
+((-2211 (((-3 |#1| "failed") (-592 (-242)) (-1092)) 17)))
+(((-241 |#1|) (-10 -7 (-15 -2211 ((-3 |#1| "failed") (-592 (-242)) (-1092)))) (-1128)) (T -241))
+((-2211 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1092)) (-5 *1 (-241 *2)) (-4 *2 (-1128)))))
+(-10 -7 (-15 -2211 ((-3 |#1| "failed") (-592 (-242)) (-1092))))
+((-4087 (((-108) $ $) NIL)) (-2501 (($ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) 15)) (-2147 (($ (-856)) 76)) (-2262 (($ (-856)) 75)) (-1509 (($ (-592 (-357))) 82)) (-2722 (($ (-357)) 58)) (-3334 (($ (-856)) 77)) (-2867 (($ (-108)) 23)) (-3037 (($ (-1075)) 18)) (-1745 (($ (-1075)) 19)) (-3555 (($ (-1052 (-205))) 71)) (-2073 (($ (-592 (-1015 (-357)))) 67)) (-1777 (($ (-592 (-1015 (-357)))) 59) (($ (-592 (-1015 (-385 (-525))))) 66)) (-3985 (($ (-357)) 29) (($ (-809)) 33)) (-3972 (((-108) (-592 $) (-1092)) 91)) (-2211 (((-3 (-51) "failed") (-592 $) (-1092)) 93)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2435 (($ (-357)) 34) (($ (-809)) 35)) (-2754 (($ (-1 (-878 (-205)) (-878 (-205)))) 57)) (-1383 (($ (-1 (-878 (-205)) (-878 (-205)))) 78)) (-1813 (($ (-1 (-205) (-205))) 39) (($ (-1 (-205) (-205) (-205))) 43) (($ (-1 (-205) (-205) (-205) (-205))) 47)) (-4100 (((-798) $) 87)) (-2042 (($ (-108)) 24) (($ (-592 (-1015 (-357)))) 52)) (-3314 (($ (-108)) 25)) (-2775 (((-108) $ $) 89)))
+(((-242) (-13 (-1020) (-10 -8 (-15 -3314 ($ (-108))) (-15 -2042 ($ (-108))) (-15 -2501 ($ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -3037 ($ (-1075))) (-15 -1745 ($ (-1075))) (-15 -2867 ($ (-108))) (-15 -2042 ($ (-592 (-1015 (-357))))) (-15 -2754 ($ (-1 (-878 (-205)) (-878 (-205))))) (-15 -3985 ($ (-357))) (-15 -3985 ($ (-809))) (-15 -2435 ($ (-357))) (-15 -2435 ($ (-809))) (-15 -1813 ($ (-1 (-205) (-205)))) (-15 -1813 ($ (-1 (-205) (-205) (-205)))) (-15 -1813 ($ (-1 (-205) (-205) (-205) (-205)))) (-15 -2722 ($ (-357))) (-15 -1777 ($ (-592 (-1015 (-357))))) (-15 -1777 ($ (-592 (-1015 (-385 (-525)))))) (-15 -2073 ($ (-592 (-1015 (-357))))) (-15 -3555 ($ (-1052 (-205)))) (-15 -2262 ($ (-856))) (-15 -2147 ($ (-856))) (-15 -3334 ($ (-856))) (-15 -1383 ($ (-1 (-878 (-205)) (-878 (-205))))) (-15 -1509 ($ (-592 (-357)))) (-15 -2211 ((-3 (-51) "failed") (-592 $) (-1092))) (-15 -3972 ((-108) (-592 $) (-1092)))))) (T -242))
+((-3314 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) (-2501 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *1 (-242)))) (-3037 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-242)))) (-1745 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-242)))) (-2867 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-242)))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-1 (-878 (-205)) (-878 (-205)))) (-5 *1 (-242)))) (-3985 (*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))) (-3985 (*1 *1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-242)))) (-2435 (*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))) (-2435 (*1 *1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-242)))) (-1813 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-242)))) (-1813 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205) (-205))) (-5 *1 (-242)))) (-1813 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-242)))) (-2722 (*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))) (-1777 (*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-242)))) (-1777 (*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-385 (-525))))) (-5 *1 (-242)))) (-2073 (*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-242)))) (-3555 (*1 *1 *2) (-12 (-5 *2 (-1052 (-205))) (-5 *1 (-242)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-242)))) (-2147 (*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-242)))) (-3334 (*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-242)))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-1 (-878 (-205)) (-878 (-205)))) (-5 *1 (-242)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-242)))) (-2211 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1092)) (-5 *2 (-51)) (-5 *1 (-242)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-242))) (-5 *4 (-1092)) (-5 *2 (-108)) (-5 *1 (-242)))))
+(-13 (-1020) (-10 -8 (-15 -3314 ($ (-108))) (-15 -2042 ($ (-108))) (-15 -2501 ($ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -3037 ($ (-1075))) (-15 -1745 ($ (-1075))) (-15 -2867 ($ (-108))) (-15 -2042 ($ (-592 (-1015 (-357))))) (-15 -2754 ($ (-1 (-878 (-205)) (-878 (-205))))) (-15 -3985 ($ (-357))) (-15 -3985 ($ (-809))) (-15 -2435 ($ (-357))) (-15 -2435 ($ (-809))) (-15 -1813 ($ (-1 (-205) (-205)))) (-15 -1813 ($ (-1 (-205) (-205) (-205)))) (-15 -1813 ($ (-1 (-205) (-205) (-205) (-205)))) (-15 -2722 ($ (-357))) (-15 -1777 ($ (-592 (-1015 (-357))))) (-15 -1777 ($ (-592 (-1015 (-385 (-525)))))) (-15 -2073 ($ (-592 (-1015 (-357))))) (-15 -3555 ($ (-1052 (-205)))) (-15 -2262 ($ (-856))) (-15 -2147 ($ (-856))) (-15 -3334 ($ (-856))) (-15 -1383 ($ (-1 (-878 (-205)) (-878 (-205))))) (-15 -1509 ($ (-592 (-357)))) (-15 -2211 ((-3 (-51) "failed") (-592 $) (-1092))) (-15 -3972 ((-108) (-592 $) (-1092)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1761 (((-592 (-713)) $) NIL) (((-592 (-713)) $ |#2|) NIL)) (-4016 (((-713) $) NIL) (((-713) $ |#2|) NIL)) (-1296 (((-592 |#3|) $) NIL)) (-4169 (((-1088 $) $ |#3|) NIL) (((-1088 |#1|) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-1928 (((-713) $) NIL) (((-713) $ (-592 |#3|)) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4195 (($ $) NIL (|has| |#1| (-429)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-3385 (($ $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1044 |#1| |#2|) "failed") $) 21)) (-4105 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1044 |#1| |#2|) $) NIL)) (-3801 (($ $ $ |#3|) NIL (|has| |#1| (-160)))) (-1451 (($ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3201 (($ $) NIL (|has| |#1| (-429))) (($ $ |#3|) NIL (|has| |#1| (-429)))) (-1441 (((-592 $) $) NIL)) (-1798 (((-108) $) NIL (|has| |#1| (-844)))) (-1457 (($ $ |#1| (-497 |#3|) $) NIL)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| |#1| (-821 (-357))) (|has| |#3| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| |#1| (-821 (-525))) (|has| |#3| (-821 (-525)))))) (-4000 (((-713) $ |#2|) NIL) (((-713) $) 10)) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) NIL)) (-1284 (($ (-1088 |#1|) |#3|) NIL) (($ (-1088 $) |#3|) NIL)) (-2884 (((-592 $) $) NIL)) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-497 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ |#3|) NIL)) (-1819 (((-497 |#3|) $) NIL) (((-713) $ |#3|) NIL) (((-592 (-713)) $ (-592 |#3|)) NIL)) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-1314 (($ (-1 (-497 |#3|) (-497 |#3|)) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2535 (((-1 $ (-713)) |#2|) NIL) (((-1 $ (-713)) $) NIL (|has| |#1| (-213)))) (-2018 (((-3 |#3| "failed") $) NIL)) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-3481 ((|#3| $) NIL)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1289 (((-1075) $) NIL)) (-2438 (((-108) $) NIL)) (-2977 (((-3 (-592 $) "failed") $) NIL)) (-3165 (((-3 (-592 $) "failed") $) NIL)) (-1986 (((-3 (-2 (|:| |var| |#3|) (|:| -2168 (-713))) "failed") $) NIL)) (-3343 (($ $) NIL)) (-3993 (((-1039) $) NIL)) (-1399 (((-108) $) NIL)) (-1407 ((|#1| $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-429)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4201 (((-396 $) $) NIL (|has| |#1| (-844)))) (-1311 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2825 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-592 |#3|) (-592 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-592 |#3|) (-592 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 $)) NIL (|has| |#1| (-213))) (($ $ |#2| |#1|) NIL (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 |#1|)) NIL (|has| |#1| (-213)))) (-4115 (($ $ |#3|) NIL (|has| |#1| (-160)))) (-2702 (($ $ |#3|) NIL) (($ $ (-592 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1771 (((-592 |#2|) $) NIL)) (-3529 (((-497 |#3|) $) NIL) (((-713) $ |#3|) NIL) (((-592 (-713)) $ (-592 |#3|)) NIL) (((-713) $ |#2|) NIL)) (-2069 (((-827 (-357)) $) NIL (-12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#3| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#3| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))))) (-1661 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ |#3|) NIL (|has| |#1| (-429)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1044 |#1| |#2|)) 30) (($ (-385 (-525))) NIL (-2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3137 (((-592 |#1|) $) NIL)) (-3136 ((|#1| $ (-497 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2448 (((-713)) NIL)) (-4042 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $ |#3|) NIL) (($ $ (-592 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-243 |#1| |#2| |#3|) (-13 (-232 |#1| |#2| |#3| (-497 |#3|)) (-968 (-1044 |#1| |#2|))) (-977) (-789) (-245 |#2|)) (T -243))
NIL
(-13 (-232 |#1| |#2| |#3| (-497 |#3|)) (-968 (-1044 |#1| |#2|)))
-((-3398 (((-713) $) 30)) (-3077 (((-3 |#2| "failed") $) 17)) (-1572 ((|#2| $) 27)) (-3376 (($ $) 12) (($ $ (-713)) 15)) (-1217 (((-798) $) 26) (($ |#2|) 10)) (-3955 (((-108) $ $) 20)) (-3978 (((-108) $ $) 29)))
-(((-244 |#1| |#2|) (-10 -8 (-15 -3376 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1|)) (-15 -3398 ((-713) |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -1217 (|#1| |#2|)) (-15 -3978 ((-108) |#1| |#1|)) (-15 -1217 ((-798) |#1|)) (-15 -3955 ((-108) |#1| |#1|))) (-245 |#2|) (-789)) (T -244))
+((-4016 (((-713) $) 30)) (-1934 (((-3 |#2| "failed") $) 17)) (-4105 ((|#2| $) 27)) (-2702 (($ $) 12) (($ $ (-713)) 15)) (-4100 (((-798) $) 26) (($ |#2|) 10)) (-2775 (((-108) $ $) 20)) (-2795 (((-108) $ $) 29)))
+(((-244 |#1| |#2|) (-10 -8 (-15 -2702 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1|)) (-15 -4016 ((-713) |#1|)) (-15 -4105 (|#2| |#1|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -4100 (|#1| |#2|)) (-15 -2795 ((-108) |#1| |#1|)) (-15 -4100 ((-798) |#1|)) (-15 -2775 ((-108) |#1| |#1|))) (-245 |#2|) (-789)) (T -244))
NIL
-(-10 -8 (-15 -3376 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1|)) (-15 -3398 ((-713) |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -1217 (|#1| |#2|)) (-15 -3978 ((-108) |#1| |#1|)) (-15 -1217 ((-798) |#1|)) (-15 -3955 ((-108) |#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-3398 (((-713) $) 22)) (-2499 ((|#1| $) 23)) (-3077 (((-3 |#1| "failed") $) 27)) (-1572 ((|#1| $) 26)) (-2581 (((-713) $) 24)) (-2638 (($ $ $) 13)) (-3662 (($ $ $) 14)) (-2822 (($ |#1| (-713)) 25)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-3376 (($ $) 21) (($ $ (-713)) 20)) (-1217 (((-798) $) 11) (($ |#1|) 28)) (-4011 (((-108) $ $) 16)) (-3987 (((-108) $ $) 17)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 15)) (-3978 (((-108) $ $) 18)))
+(-10 -8 (-15 -2702 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1|)) (-15 -4016 ((-713) |#1|)) (-15 -4105 (|#2| |#1|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -4100 (|#1| |#2|)) (-15 -2795 ((-108) |#1| |#1|)) (-15 -4100 ((-798) |#1|)) (-15 -2775 ((-108) |#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-4016 (((-713) $) 22)) (-3469 ((|#1| $) 23)) (-1934 (((-3 |#1| "failed") $) 27)) (-4105 ((|#1| $) 26)) (-4000 (((-713) $) 24)) (-3033 (($ $ $) 13)) (-1609 (($ $ $) 14)) (-2535 (($ |#1| (-713)) 25)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-2702 (($ $) 21) (($ $ (-713)) 20)) (-4100 (((-798) $) 11) (($ |#1|) 28)) (-2830 (((-108) $ $) 16)) (-2807 (((-108) $ $) 17)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 15)) (-2795 (((-108) $ $) 18)))
(((-245 |#1|) (-131) (-789)) (T -245))
-((-1217 (*1 *1 *2) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-2822 (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713)))) (-2499 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713)))) (-3376 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-245 *3)) (-4 *3 (-789)))))
-(-13 (-789) (-968 |t#1|) (-10 -8 (-15 -2822 ($ |t#1| (-713))) (-15 -2581 ((-713) $)) (-15 -2499 (|t#1| $)) (-15 -3398 ((-713) $)) (-15 -3376 ($ $)) (-15 -3376 ($ $ (-713))) (-15 -1217 ($ |t#1|))))
+((-4100 (*1 *1 *2) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-2535 (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-4016 (*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713)))) (-2702 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-2702 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-245 *3)) (-4 *3 (-789)))))
+(-13 (-789) (-968 |t#1|) (-10 -8 (-15 -2535 ($ |t#1| (-713))) (-15 -4000 ((-713) $)) (-15 -3469 (|t#1| $)) (-15 -4016 ((-713) $)) (-15 -2702 ($ $)) (-15 -2702 ($ $ (-713))) (-15 -4100 ($ |t#1|))))
(((-97) . T) ((-566 (-798)) . T) ((-789) . T) ((-968 |#1|) . T) ((-1020) . T))
-((-2897 (((-592 (-1092)) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) 41)) (-2726 (((-592 (-1092)) (-294 (-205)) (-713)) 80)) (-2616 (((-3 (-294 (-205)) "failed") (-294 (-205))) 51)) (-2041 (((-294 (-205)) (-294 (-205))) 67)) (-2405 (((-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 26)) (-2300 (((-108) (-592 (-294 (-205)))) 84)) (-4024 (((-108) (-294 (-205))) 24)) (-1937 (((-592 (-1075)) (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))))) 106)) (-3144 (((-592 (-294 (-205))) (-592 (-294 (-205)))) 88)) (-1395 (((-592 (-294 (-205))) (-592 (-294 (-205)))) 86)) (-4050 (((-632 (-205)) (-592 (-294 (-205))) (-713)) 95)) (-2415 (((-108) (-294 (-205))) 20) (((-108) (-592 (-294 (-205)))) 85)) (-2397 (((-592 (-205)) (-592 (-782 (-205))) (-205)) 14)) (-4030 (((-357) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) 101)) (-2906 (((-966) (-1092) (-966)) 34)))
-(((-246) (-10 -7 (-15 -2397 ((-592 (-205)) (-592 (-782 (-205))) (-205))) (-15 -2405 ((-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -2616 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -2041 ((-294 (-205)) (-294 (-205)))) (-15 -2300 ((-108) (-592 (-294 (-205))))) (-15 -2415 ((-108) (-592 (-294 (-205))))) (-15 -2415 ((-108) (-294 (-205)))) (-15 -4050 ((-632 (-205)) (-592 (-294 (-205))) (-713))) (-15 -1395 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -3144 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -4024 ((-108) (-294 (-205)))) (-15 -2897 ((-592 (-1092)) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))) (-15 -2726 ((-592 (-1092)) (-294 (-205)) (-713))) (-15 -2906 ((-966) (-1092) (-966))) (-15 -4030 ((-357) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))) (-15 -1937 ((-592 (-1075)) (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))))))) (T -246))
-((-1937 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))))) (-5 *2 (-592 (-1075))) (-5 *1 (-246)))) (-4030 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) (-5 *2 (-357)) (-5 *1 (-246)))) (-2906 (*1 *2 *3 *2) (-12 (-5 *2 (-966)) (-5 *3 (-1092)) (-5 *1 (-246)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-713)) (-5 *2 (-592 (-1092))) (-5 *1 (-246)))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) (-5 *2 (-592 (-1092))) (-5 *1 (-246)))) (-4024 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246)))) (-3144 (*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246)))) (-4050 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *4 (-713)) (-5 *2 (-632 (-205))) (-5 *1 (-246)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246)))) (-2300 (*1 *2 *3) (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246)))) (-2041 (*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))) (-2616 (*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))) (-2405 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *1 (-246)))) (-2397 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-782 (-205)))) (-5 *4 (-205)) (-5 *2 (-592 *4)) (-5 *1 (-246)))))
-(-10 -7 (-15 -2397 ((-592 (-205)) (-592 (-782 (-205))) (-205))) (-15 -2405 ((-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -2616 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -2041 ((-294 (-205)) (-294 (-205)))) (-15 -2300 ((-108) (-592 (-294 (-205))))) (-15 -2415 ((-108) (-592 (-294 (-205))))) (-15 -2415 ((-108) (-294 (-205)))) (-15 -4050 ((-632 (-205)) (-592 (-294 (-205))) (-713))) (-15 -1395 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -3144 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -4024 ((-108) (-294 (-205)))) (-15 -2897 ((-592 (-1092)) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))) (-15 -2726 ((-592 (-1092)) (-294 (-205)) (-713))) (-15 -2906 ((-966) (-1092) (-966))) (-15 -4030 ((-357) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))) (-15 -1937 ((-592 (-1075)) (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))))))
-((-4236 (((-108) $ $) NIL)) (-2048 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 44)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 26) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
+((-1296 (((-592 (-1092)) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) 41)) (-2668 (((-592 (-1092)) (-294 (-205)) (-713)) 80)) (-1254 (((-3 (-294 (-205)) "failed") (-294 (-205))) 51)) (-3523 (((-294 (-205)) (-294 (-205))) 67)) (-2917 (((-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 26)) (-1279 (((-108) (-592 (-294 (-205)))) 84)) (-4134 (((-108) (-294 (-205))) 24)) (-3713 (((-592 (-1075)) (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))))) 106)) (-2511 (((-592 (-294 (-205))) (-592 (-294 (-205)))) 88)) (-2265 (((-592 (-294 (-205))) (-592 (-294 (-205)))) 86)) (-1348 (((-632 (-205)) (-592 (-294 (-205))) (-713)) 95)) (-3002 (((-108) (-294 (-205))) 20) (((-108) (-592 (-294 (-205)))) 85)) (-2841 (((-592 (-205)) (-592 (-782 (-205))) (-205)) 14)) (-4196 (((-357) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) 101)) (-3962 (((-966) (-1092) (-966)) 34)))
+(((-246) (-10 -7 (-15 -2841 ((-592 (-205)) (-592 (-782 (-205))) (-205))) (-15 -2917 ((-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -1254 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -3523 ((-294 (-205)) (-294 (-205)))) (-15 -1279 ((-108) (-592 (-294 (-205))))) (-15 -3002 ((-108) (-592 (-294 (-205))))) (-15 -3002 ((-108) (-294 (-205)))) (-15 -1348 ((-632 (-205)) (-592 (-294 (-205))) (-713))) (-15 -2265 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -2511 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -4134 ((-108) (-294 (-205)))) (-15 -1296 ((-592 (-1092)) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))) (-15 -2668 ((-592 (-1092)) (-294 (-205)) (-713))) (-15 -3962 ((-966) (-1092) (-966))) (-15 -4196 ((-357) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))) (-15 -3713 ((-592 (-1075)) (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))))))) (T -246))
+((-3713 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))))) (-5 *2 (-592 (-1075))) (-5 *1 (-246)))) (-4196 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) (-5 *2 (-357)) (-5 *1 (-246)))) (-3962 (*1 *2 *3 *2) (-12 (-5 *2 (-966)) (-5 *3 (-1092)) (-5 *1 (-246)))) (-2668 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-713)) (-5 *2 (-592 (-1092))) (-5 *1 (-246)))) (-1296 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) (-5 *2 (-592 (-1092))) (-5 *1 (-246)))) (-4134 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246)))) (-2511 (*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246)))) (-2265 (*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246)))) (-1348 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *4 (-713)) (-5 *2 (-632 (-205))) (-5 *1 (-246)))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246)))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246)))) (-1279 (*1 *2 *3) (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246)))) (-3523 (*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))) (-1254 (*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))) (-2917 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *1 (-246)))) (-2841 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-782 (-205)))) (-5 *4 (-205)) (-5 *2 (-592 *4)) (-5 *1 (-246)))))
+(-10 -7 (-15 -2841 ((-592 (-205)) (-592 (-782 (-205))) (-205))) (-15 -2917 ((-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -1254 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -3523 ((-294 (-205)) (-294 (-205)))) (-15 -1279 ((-108) (-592 (-294 (-205))))) (-15 -3002 ((-108) (-592 (-294 (-205))))) (-15 -3002 ((-108) (-294 (-205)))) (-15 -1348 ((-632 (-205)) (-592 (-294 (-205))) (-713))) (-15 -2265 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -2511 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -4134 ((-108) (-294 (-205)))) (-15 -1296 ((-592 (-1092)) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))) (-15 -2668 ((-592 (-1092)) (-294 (-205)) (-713))) (-15 -3962 ((-966) (-1092) (-966))) (-15 -4196 ((-357) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))) (-15 -3713 ((-592 (-1075)) (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))))))
+((-4087 (((-108) $ $) NIL)) (-3593 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 44)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 26) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
(((-247) (-778)) (T -247))
NIL
(-778)
-((-4236 (((-108) $ $) NIL)) (-2048 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) 58) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 54)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 34) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) 36)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-3593 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) 58) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 54)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 34) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) 36)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
(((-248) (-778)) (T -248))
NIL
(-778)
-((-4236 (((-108) $ $) NIL)) (-2048 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) 76) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 73)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 44) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) 55)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-3593 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) 76) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 73)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 44) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) 55)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
(((-249) (-778)) (T -249))
NIL
(-778)
-((-4236 (((-108) $ $) NIL)) (-2048 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 50)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 31) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-3593 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 50)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 31) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
(((-250) (-778)) (T -250))
NIL
(-778)
-((-4236 (((-108) $ $) NIL)) (-2048 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 50)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 28) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-3593 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 50)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 28) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
(((-251) (-778)) (T -251))
NIL
(-778)
-((-4236 (((-108) $ $) NIL)) (-2048 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 73)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 28) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-3593 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 73)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 28) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
(((-252) (-778)) (T -252))
NIL
(-778)
-((-4236 (((-108) $ $) NIL)) (-2048 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 77)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 25) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3955 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-3593 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 77)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 25) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-2775 (((-108) $ $) NIL)))
(((-253) (-778)) (T -253))
NIL
(-778)
-((-4236 (((-108) $ $) NIL)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-4023 (((-592 (-525)) $) 19)) (-2343 (((-713) $) 17)) (-1217 (((-798) $) 23) (($ (-592 (-525))) 15)) (-1782 (($ (-713)) 20)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 9)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 11)))
-(((-254) (-13 (-789) (-10 -8 (-15 -1217 ($ (-592 (-525)))) (-15 -2343 ((-713) $)) (-15 -4023 ((-592 (-525)) $)) (-15 -1782 ($ (-713)))))) (T -254))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254)))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-254)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254)))) (-1782 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-254)))))
-(-13 (-789) (-10 -8 (-15 -1217 ($ (-592 (-525)))) (-15 -2343 ((-713) $)) (-15 -4023 ((-592 (-525)) $)) (-15 -1782 ($ (-713)))))
-((-1575 ((|#2| |#2|) 77)) (-2804 ((|#2| |#2|) 65)) (-1909 (((-3 |#2| "failed") |#2| (-592 (-2 (|:| |func| |#2|) (|:| |pole| (-108))))) 116)) (-1549 ((|#2| |#2|) 75)) (-2780 ((|#2| |#2|) 63)) (-1599 ((|#2| |#2|) 79)) (-2836 ((|#2| |#2|) 67)) (-3140 ((|#2|) 46)) (-3930 (((-110) (-110)) 95)) (-1517 ((|#2| |#2|) 61)) (-3850 (((-108) |#2|) 134)) (-1981 ((|#2| |#2|) 181)) (-3501 ((|#2| |#2|) 157)) (-3904 ((|#2|) 59)) (-1884 ((|#2|) 58)) (-3132 ((|#2| |#2|) 177)) (-3105 ((|#2| |#2|) 153)) (-1780 ((|#2| |#2|) 185)) (-2551 ((|#2| |#2|) 161)) (-2354 ((|#2| |#2|) 149)) (-2994 ((|#2| |#2|) 151)) (-3190 ((|#2| |#2|) 187)) (-4174 ((|#2| |#2|) 163)) (-3578 ((|#2| |#2|) 183)) (-1778 ((|#2| |#2|) 159)) (-3375 ((|#2| |#2|) 179)) (-4021 ((|#2| |#2|) 155)) (-2332 ((|#2| |#2|) 193)) (-3663 ((|#2| |#2|) 169)) (-4046 ((|#2| |#2|) 189)) (-3583 ((|#2| |#2|) 165)) (-4135 ((|#2| |#2|) 197)) (-3180 ((|#2| |#2|) 173)) (-3759 ((|#2| |#2|) 199)) (-2583 ((|#2| |#2|) 175)) (-1761 ((|#2| |#2|) 195)) (-1582 ((|#2| |#2|) 171)) (-4007 ((|#2| |#2|) 191)) (-1843 ((|#2| |#2|) 167)) (-3096 ((|#2| |#2|) 62)) (-1609 ((|#2| |#2|) 80)) (-1447 ((|#2| |#2|) 68)) (-1587 ((|#2| |#2|) 78)) (-2815 ((|#2| |#2|) 66)) (-1562 ((|#2| |#2|) 76)) (-2794 ((|#2| |#2|) 64)) (-1960 (((-108) (-110)) 93)) (-1649 ((|#2| |#2|) 83)) (-1492 ((|#2| |#2|) 71)) (-1630 ((|#2| |#2|) 81)) (-1465 ((|#2| |#2|) 69)) (-1669 ((|#2| |#2|) 85)) (-1522 ((|#2| |#2|) 73)) (-2359 ((|#2| |#2|) 86)) (-1537 ((|#2| |#2|) 74)) (-1659 ((|#2| |#2|) 84)) (-1506 ((|#2| |#2|) 72)) (-1639 ((|#2| |#2|) 82)) (-1479 ((|#2| |#2|) 70)))
-(((-255 |#1| |#2|) (-10 -7 (-15 -3096 (|#2| |#2|)) (-15 -1517 (|#2| |#2|)) (-15 -2780 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2804 (|#2| |#2|)) (-15 -2815 (|#2| |#2|)) (-15 -2836 (|#2| |#2|)) (-15 -1447 (|#2| |#2|)) (-15 -1465 (|#2| |#2|)) (-15 -1479 (|#2| |#2|)) (-15 -1492 (|#2| |#2|)) (-15 -1506 (|#2| |#2|)) (-15 -1522 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1562 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1587 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1609 (|#2| |#2|)) (-15 -1630 (|#2| |#2|)) (-15 -1639 (|#2| |#2|)) (-15 -1649 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -1669 (|#2| |#2|)) (-15 -2359 (|#2| |#2|)) (-15 -3140 (|#2|)) (-15 -1960 ((-108) (-110))) (-15 -3930 ((-110) (-110))) (-15 -1884 (|#2|)) (-15 -3904 (|#2|)) (-15 -2994 (|#2| |#2|)) (-15 -2354 (|#2| |#2|)) (-15 -3105 (|#2| |#2|)) (-15 -4021 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -1778 (|#2| |#2|)) (-15 -2551 (|#2| |#2|)) (-15 -4174 (|#2| |#2|)) (-15 -3583 (|#2| |#2|)) (-15 -1843 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -3180 (|#2| |#2|)) (-15 -2583 (|#2| |#2|)) (-15 -3132 (|#2| |#2|)) (-15 -3375 (|#2| |#2|)) (-15 -1981 (|#2| |#2|)) (-15 -3578 (|#2| |#2|)) (-15 -1780 (|#2| |#2|)) (-15 -3190 (|#2| |#2|)) (-15 -4046 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -2332 (|#2| |#2|)) (-15 -1761 (|#2| |#2|)) (-15 -4135 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -1909 ((-3 |#2| "failed") |#2| (-592 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -3850 ((-108) |#2|))) (-13 (-789) (-517)) (-13 (-408 |#1|) (-934))) (T -255))
-((-3850 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-255 *4 *3)) (-4 *3 (-13 (-408 *4) (-934))))) (-1909 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-592 (-2 (|:| |func| *2) (|:| |pole| (-108))))) (-4 *2 (-13 (-408 *4) (-934))) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-255 *4 *2)))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-4135 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1761 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2332 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-4007 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-4046 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3190 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1780 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3578 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1981 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3375 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3132 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2583 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3180 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1582 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1843 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3583 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-4174 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2551 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1778 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-4021 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3105 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2354 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2994 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3904 (*1 *2) (-12 (-4 *2 (-13 (-408 *3) (-934))) (-5 *1 (-255 *3 *2)) (-4 *3 (-13 (-789) (-517))))) (-1884 (*1 *2) (-12 (-4 *2 (-13 (-408 *3) (-934))) (-5 *1 (-255 *3 *2)) (-4 *3 (-13 (-789) (-517))))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *4)) (-4 *4 (-13 (-408 *3) (-934))))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-255 *4 *5)) (-4 *5 (-13 (-408 *4) (-934))))) (-3140 (*1 *2) (-12 (-4 *2 (-13 (-408 *3) (-934))) (-5 *1 (-255 *3 *2)) (-4 *3 (-13 (-789) (-517))))) (-2359 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1669 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1649 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1639 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1630 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1609 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1587 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1562 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1522 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1506 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1465 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1447 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2836 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2804 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2780 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1517 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3096 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))))
-(-10 -7 (-15 -3096 (|#2| |#2|)) (-15 -1517 (|#2| |#2|)) (-15 -2780 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2804 (|#2| |#2|)) (-15 -2815 (|#2| |#2|)) (-15 -2836 (|#2| |#2|)) (-15 -1447 (|#2| |#2|)) (-15 -1465 (|#2| |#2|)) (-15 -1479 (|#2| |#2|)) (-15 -1492 (|#2| |#2|)) (-15 -1506 (|#2| |#2|)) (-15 -1522 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1562 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1587 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1609 (|#2| |#2|)) (-15 -1630 (|#2| |#2|)) (-15 -1639 (|#2| |#2|)) (-15 -1649 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -1669 (|#2| |#2|)) (-15 -2359 (|#2| |#2|)) (-15 -3140 (|#2|)) (-15 -1960 ((-108) (-110))) (-15 -3930 ((-110) (-110))) (-15 -1884 (|#2|)) (-15 -3904 (|#2|)) (-15 -2994 (|#2| |#2|)) (-15 -2354 (|#2| |#2|)) (-15 -3105 (|#2| |#2|)) (-15 -4021 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -1778 (|#2| |#2|)) (-15 -2551 (|#2| |#2|)) (-15 -4174 (|#2| |#2|)) (-15 -3583 (|#2| |#2|)) (-15 -1843 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -3180 (|#2| |#2|)) (-15 -2583 (|#2| |#2|)) (-15 -3132 (|#2| |#2|)) (-15 -3375 (|#2| |#2|)) (-15 -1981 (|#2| |#2|)) (-15 -3578 (|#2| |#2|)) (-15 -1780 (|#2| |#2|)) (-15 -3190 (|#2| |#2|)) (-15 -4046 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -2332 (|#2| |#2|)) (-15 -1761 (|#2| |#2|)) (-15 -4135 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -1909 ((-3 |#2| "failed") |#2| (-592 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -3850 ((-108) |#2|)))
-((-3533 (((-3 |#2| "failed") (-592 (-565 |#2|)) |#2| (-1092)) 135)) (-3544 ((|#2| (-385 (-525)) |#2|) 51)) (-3279 ((|#2| |#2| (-565 |#2|)) 128)) (-3099 (((-2 (|:| |func| |#2|) (|:| |kers| (-592 (-565 |#2|))) (|:| |vals| (-592 |#2|))) |#2| (-1092)) 127)) (-3289 ((|#2| |#2| (-1092)) 20) ((|#2| |#2|) 23)) (-1745 ((|#2| |#2| (-1092)) 141) ((|#2| |#2|) 139)))
-(((-256 |#1| |#2|) (-10 -7 (-15 -1745 (|#2| |#2|)) (-15 -1745 (|#2| |#2| (-1092))) (-15 -3099 ((-2 (|:| |func| |#2|) (|:| |kers| (-592 (-565 |#2|))) (|:| |vals| (-592 |#2|))) |#2| (-1092))) (-15 -3289 (|#2| |#2|)) (-15 -3289 (|#2| |#2| (-1092))) (-15 -3533 ((-3 |#2| "failed") (-592 (-565 |#2|)) |#2| (-1092))) (-15 -3279 (|#2| |#2| (-565 |#2|))) (-15 -3544 (|#2| (-385 (-525)) |#2|))) (-13 (-517) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1114) (-408 |#1|))) (T -256))
-((-3544 (*1 *2 *3 *2) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))) (-3279 (*1 *2 *2 *3) (-12 (-5 *3 (-565 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))) (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)))) (-3533 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-1092)) (-4 *2 (-13 (-27) (-1114) (-408 *5))) (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *5 *2)))) (-3289 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))) (-3289 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))) (-3099 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-592 (-565 *3))) (|:| |vals| (-592 *3)))) (-5 *1 (-256 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))) (-1745 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))) (-1745 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))))
-(-10 -7 (-15 -1745 (|#2| |#2|)) (-15 -1745 (|#2| |#2| (-1092))) (-15 -3099 ((-2 (|:| |func| |#2|) (|:| |kers| (-592 (-565 |#2|))) (|:| |vals| (-592 |#2|))) |#2| (-1092))) (-15 -3289 (|#2| |#2|)) (-15 -3289 (|#2| |#2| (-1092))) (-15 -3533 ((-3 |#2| "failed") (-592 (-565 |#2|)) |#2| (-1092))) (-15 -3279 (|#2| |#2| (-565 |#2|))) (-15 -3544 (|#2| (-385 (-525)) |#2|)))
-((-2205 (((-3 |#3| "failed") |#3|) 110)) (-1575 ((|#3| |#3|) 131)) (-1943 (((-3 |#3| "failed") |#3|) 82)) (-2804 ((|#3| |#3|) 121)) (-2009 (((-3 |#3| "failed") |#3|) 58)) (-1549 ((|#3| |#3|) 129)) (-2430 (((-3 |#3| "failed") |#3|) 46)) (-2780 ((|#3| |#3|) 119)) (-3902 (((-3 |#3| "failed") |#3|) 112)) (-1599 ((|#3| |#3|) 133)) (-3363 (((-3 |#3| "failed") |#3|) 84)) (-2836 ((|#3| |#3|) 123)) (-2902 (((-3 |#3| "failed") |#3| (-713)) 36)) (-3253 (((-3 |#3| "failed") |#3|) 74)) (-1517 ((|#3| |#3|) 118)) (-1941 (((-3 |#3| "failed") |#3|) 44)) (-3096 ((|#3| |#3|) 117)) (-3238 (((-3 |#3| "failed") |#3|) 113)) (-1609 ((|#3| |#3|) 134)) (-4076 (((-3 |#3| "failed") |#3|) 85)) (-1447 ((|#3| |#3|) 124)) (-1236 (((-3 |#3| "failed") |#3|) 111)) (-1587 ((|#3| |#3|) 132)) (-1279 (((-3 |#3| "failed") |#3|) 83)) (-2815 ((|#3| |#3|) 122)) (-1498 (((-3 |#3| "failed") |#3|) 60)) (-1562 ((|#3| |#3|) 130)) (-1555 (((-3 |#3| "failed") |#3|) 48)) (-2794 ((|#3| |#3|) 120)) (-2654 (((-3 |#3| "failed") |#3|) 66)) (-1649 ((|#3| |#3|) 137)) (-2339 (((-3 |#3| "failed") |#3|) 104)) (-1492 ((|#3| |#3|) 142)) (-3947 (((-3 |#3| "failed") |#3|) 62)) (-1630 ((|#3| |#3|) 135)) (-3209 (((-3 |#3| "failed") |#3|) 50)) (-1465 ((|#3| |#3|) 125)) (-3499 (((-3 |#3| "failed") |#3|) 70)) (-1669 ((|#3| |#3|) 139)) (-1901 (((-3 |#3| "failed") |#3|) 54)) (-1522 ((|#3| |#3|) 127)) (-3300 (((-3 |#3| "failed") |#3|) 72)) (-2359 ((|#3| |#3|) 140)) (-2067 (((-3 |#3| "failed") |#3|) 56)) (-1537 ((|#3| |#3|) 128)) (-4086 (((-3 |#3| "failed") |#3|) 68)) (-1659 ((|#3| |#3|) 138)) (-3895 (((-3 |#3| "failed") |#3|) 107)) (-1506 ((|#3| |#3|) 143)) (-1507 (((-3 |#3| "failed") |#3|) 64)) (-1639 ((|#3| |#3|) 136)) (-2731 (((-3 |#3| "failed") |#3|) 52)) (-1479 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-385 (-525))) 40 (|has| |#1| (-341)))))
-(((-257 |#1| |#2| |#3|) (-13 (-916 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -3096 (|#3| |#3|)) (-15 -1517 (|#3| |#3|)) (-15 -2780 (|#3| |#3|)) (-15 -2794 (|#3| |#3|)) (-15 -2804 (|#3| |#3|)) (-15 -2815 (|#3| |#3|)) (-15 -2836 (|#3| |#3|)) (-15 -1447 (|#3| |#3|)) (-15 -1465 (|#3| |#3|)) (-15 -1479 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)) (-15 -1506 (|#3| |#3|)) (-15 -1522 (|#3| |#3|)) (-15 -1537 (|#3| |#3|)) (-15 -1549 (|#3| |#3|)) (-15 -1562 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1587 (|#3| |#3|)) (-15 -1599 (|#3| |#3|)) (-15 -1609 (|#3| |#3|)) (-15 -1630 (|#3| |#3|)) (-15 -1639 (|#3| |#3|)) (-15 -1649 (|#3| |#3|)) (-15 -1659 (|#3| |#3|)) (-15 -1669 (|#3| |#3|)) (-15 -2359 (|#3| |#3|)))) (-37 (-385 (-525))) (-1165 |#1|) (-1136 |#1| |#2|)) (T -257))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 *3)) (-4 *5 (-1165 *4)) (-5 *1 (-257 *4 *5 *2)) (-4 *2 (-1136 *4 *5)))) (-3096 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1517 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-2780 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-2804 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-2836 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1447 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1465 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1506 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1522 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1562 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1587 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1609 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1630 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1639 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1649 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1669 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-2359 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))))
-(-13 (-916 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -3096 (|#3| |#3|)) (-15 -1517 (|#3| |#3|)) (-15 -2780 (|#3| |#3|)) (-15 -2794 (|#3| |#3|)) (-15 -2804 (|#3| |#3|)) (-15 -2815 (|#3| |#3|)) (-15 -2836 (|#3| |#3|)) (-15 -1447 (|#3| |#3|)) (-15 -1465 (|#3| |#3|)) (-15 -1479 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)) (-15 -1506 (|#3| |#3|)) (-15 -1522 (|#3| |#3|)) (-15 -1537 (|#3| |#3|)) (-15 -1549 (|#3| |#3|)) (-15 -1562 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1587 (|#3| |#3|)) (-15 -1599 (|#3| |#3|)) (-15 -1609 (|#3| |#3|)) (-15 -1630 (|#3| |#3|)) (-15 -1639 (|#3| |#3|)) (-15 -1649 (|#3| |#3|)) (-15 -1659 (|#3| |#3|)) (-15 -1669 (|#3| |#3|)) (-15 -2359 (|#3| |#3|))))
-((-2205 (((-3 |#3| "failed") |#3|) 66)) (-1575 ((|#3| |#3|) 133)) (-1943 (((-3 |#3| "failed") |#3|) 50)) (-2804 ((|#3| |#3|) 121)) (-2009 (((-3 |#3| "failed") |#3|) 62)) (-1549 ((|#3| |#3|) 131)) (-2430 (((-3 |#3| "failed") |#3|) 46)) (-2780 ((|#3| |#3|) 119)) (-3902 (((-3 |#3| "failed") |#3|) 70)) (-1599 ((|#3| |#3|) 135)) (-3363 (((-3 |#3| "failed") |#3|) 54)) (-2836 ((|#3| |#3|) 123)) (-2902 (((-3 |#3| "failed") |#3| (-713)) 35)) (-3253 (((-3 |#3| "failed") |#3|) 44)) (-1517 ((|#3| |#3|) 112)) (-1941 (((-3 |#3| "failed") |#3|) 42)) (-3096 ((|#3| |#3|) 118)) (-3238 (((-3 |#3| "failed") |#3|) 72)) (-1609 ((|#3| |#3|) 136)) (-4076 (((-3 |#3| "failed") |#3|) 56)) (-1447 ((|#3| |#3|) 124)) (-1236 (((-3 |#3| "failed") |#3|) 68)) (-1587 ((|#3| |#3|) 134)) (-1279 (((-3 |#3| "failed") |#3|) 52)) (-2815 ((|#3| |#3|) 122)) (-1498 (((-3 |#3| "failed") |#3|) 64)) (-1562 ((|#3| |#3|) 132)) (-1555 (((-3 |#3| "failed") |#3|) 48)) (-2794 ((|#3| |#3|) 120)) (-2654 (((-3 |#3| "failed") |#3|) 78)) (-1649 ((|#3| |#3|) 139)) (-2339 (((-3 |#3| "failed") |#3|) 58)) (-1492 ((|#3| |#3|) 127)) (-3947 (((-3 |#3| "failed") |#3|) 74)) (-1630 ((|#3| |#3|) 137)) (-3209 (((-3 |#3| "failed") |#3|) 102)) (-1465 ((|#3| |#3|) 125)) (-3499 (((-3 |#3| "failed") |#3|) 82)) (-1669 ((|#3| |#3|) 141)) (-1901 (((-3 |#3| "failed") |#3|) 109)) (-1522 ((|#3| |#3|) 129)) (-3300 (((-3 |#3| "failed") |#3|) 84)) (-2359 ((|#3| |#3|) 142)) (-2067 (((-3 |#3| "failed") |#3|) 111)) (-1537 ((|#3| |#3|) 130)) (-4086 (((-3 |#3| "failed") |#3|) 80)) (-1659 ((|#3| |#3|) 140)) (-3895 (((-3 |#3| "failed") |#3|) 60)) (-1506 ((|#3| |#3|) 128)) (-1507 (((-3 |#3| "failed") |#3|) 76)) (-1639 ((|#3| |#3|) 138)) (-2731 (((-3 |#3| "failed") |#3|) 105)) (-1479 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-385 (-525))) 40 (|has| |#1| (-341)))))
-(((-258 |#1| |#2| |#3| |#4|) (-13 (-916 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -3096 (|#3| |#3|)) (-15 -1517 (|#3| |#3|)) (-15 -2780 (|#3| |#3|)) (-15 -2794 (|#3| |#3|)) (-15 -2804 (|#3| |#3|)) (-15 -2815 (|#3| |#3|)) (-15 -2836 (|#3| |#3|)) (-15 -1447 (|#3| |#3|)) (-15 -1465 (|#3| |#3|)) (-15 -1479 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)) (-15 -1506 (|#3| |#3|)) (-15 -1522 (|#3| |#3|)) (-15 -1537 (|#3| |#3|)) (-15 -1549 (|#3| |#3|)) (-15 -1562 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1587 (|#3| |#3|)) (-15 -1599 (|#3| |#3|)) (-15 -1609 (|#3| |#3|)) (-15 -1630 (|#3| |#3|)) (-15 -1639 (|#3| |#3|)) (-15 -1649 (|#3| |#3|)) (-15 -1659 (|#3| |#3|)) (-15 -1669 (|#3| |#3|)) (-15 -2359 (|#3| |#3|)))) (-37 (-385 (-525))) (-1134 |#1|) (-1157 |#1| |#2|) (-916 |#2|)) (T -258))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 *3)) (-4 *5 (-1134 *4)) (-5 *1 (-258 *4 *5 *2 *6)) (-4 *2 (-1157 *4 *5)) (-4 *6 (-916 *5)))) (-3096 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1517 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-2780 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-2804 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-2836 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1447 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1465 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1506 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1522 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1562 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1587 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1609 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1630 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1639 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1649 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1669 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-2359 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))))
-(-13 (-916 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -3096 (|#3| |#3|)) (-15 -1517 (|#3| |#3|)) (-15 -2780 (|#3| |#3|)) (-15 -2794 (|#3| |#3|)) (-15 -2804 (|#3| |#3|)) (-15 -2815 (|#3| |#3|)) (-15 -2836 (|#3| |#3|)) (-15 -1447 (|#3| |#3|)) (-15 -1465 (|#3| |#3|)) (-15 -1479 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)) (-15 -1506 (|#3| |#3|)) (-15 -1522 (|#3| |#3|)) (-15 -1537 (|#3| |#3|)) (-15 -1549 (|#3| |#3|)) (-15 -1562 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1587 (|#3| |#3|)) (-15 -1599 (|#3| |#3|)) (-15 -1609 (|#3| |#3|)) (-15 -1630 (|#3| |#3|)) (-15 -1639 (|#3| |#3|)) (-15 -1649 (|#3| |#3|)) (-15 -1659 (|#3| |#3|)) (-15 -1669 (|#3| |#3|)) (-15 -2359 (|#3| |#3|))))
-((-1347 (((-108) $) 19)) (-2522 (((-169) $) 7)) (-2479 (((-3 (-1092) "failed") $) 14)) (-3725 (((-3 (-592 $) "failed") $) NIL)) (-1314 (((-3 (-1092) "failed") $) 21)) (-1470 (((-3 (-1024) "failed") $) 17)) (-1226 (((-108) $) 15)) (-1217 (((-798) $) NIL)) (-2618 (((-108) $) 9)))
-(((-259) (-13 (-566 (-798)) (-10 -8 (-15 -2522 ((-169) $)) (-15 -1226 ((-108) $)) (-15 -1470 ((-3 (-1024) "failed") $)) (-15 -1347 ((-108) $)) (-15 -1314 ((-3 (-1092) "failed") $)) (-15 -2618 ((-108) $)) (-15 -2479 ((-3 (-1092) "failed") $)) (-15 -3725 ((-3 (-592 $) "failed") $))))) (T -259))
-((-2522 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-259)))) (-1226 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) (-1470 (*1 *2 *1) (|partial| -12 (-5 *2 (-1024)) (-5 *1 (-259)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) (-1314 (*1 *2 *1) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-259)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) (-2479 (*1 *2 *1) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-259)))) (-3725 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-259))) (-5 *1 (-259)))))
-(-13 (-566 (-798)) (-10 -8 (-15 -2522 ((-169) $)) (-15 -1226 ((-108) $)) (-15 -1470 ((-3 (-1024) "failed") $)) (-15 -1347 ((-108) $)) (-15 -1314 ((-3 (-1092) "failed") $)) (-15 -2618 ((-108) $)) (-15 -2479 ((-3 (-1092) "failed") $)) (-15 -3725 ((-3 (-592 $) "failed") $))))
-((-3785 (($ (-1 (-108) |#2|) $) 24)) (-1910 (($ $) 36)) (-3271 (($ (-1 (-108) |#2|) $) NIL) (($ |#2| $) 34)) (-1703 (($ |#2| $) 32) (($ (-1 (-108) |#2|) $) 18)) (-2639 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2531 (($ |#2| $ (-525)) 20) (($ $ $ (-525)) 22)) (-3038 (($ $ (-525)) 11) (($ $ (-1141 (-525))) 14)) (-4029 (($ $ |#2|) 30) (($ $ $) NIL)) (-2038 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-592 $)) NIL)))
-(((-260 |#1| |#2|) (-10 -8 (-15 -2639 (|#1| |#1| |#1|)) (-15 -3271 (|#1| |#2| |#1|)) (-15 -2639 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3271 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -4029 (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1| |#2|)) (-15 -2531 (|#1| |#1| |#1| (-525))) (-15 -2531 (|#1| |#2| |#1| (-525))) (-15 -3038 (|#1| |#1| (-1141 (-525)))) (-15 -3038 (|#1| |#1| (-525))) (-15 -2038 (|#1| (-592 |#1|))) (-15 -2038 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#2| |#1|)) (-15 -2038 (|#1| |#1| |#2|)) (-15 -1703 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3785 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1703 (|#1| |#2| |#1|)) (-15 -1910 (|#1| |#1|))) (-261 |#2|) (-1128)) (T -260))
-NIL
-(-10 -8 (-15 -2639 (|#1| |#1| |#1|)) (-15 -3271 (|#1| |#2| |#1|)) (-15 -2639 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3271 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -4029 (|#1| |#1| |#1|)) (-15 -4029 (|#1| |#1| |#2|)) (-15 -2531 (|#1| |#1| |#1| (-525))) (-15 -2531 (|#1| |#2| |#1| (-525))) (-15 -3038 (|#1| |#1| (-1141 (-525)))) (-15 -3038 (|#1| |#1| (-525))) (-15 -2038 (|#1| (-592 |#1|))) (-15 -2038 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#2| |#1|)) (-15 -2038 (|#1| |#1| |#2|)) (-15 -1703 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3785 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1703 (|#1| |#2| |#1|)) (-15 -1910 (|#1| |#1|)))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3456 (((-1179) $ (-525) (-525)) 40 (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) 8)) (-1430 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) 58 (|has| $ (-6 -4259)))) (-1676 (($ (-1 (-108) |#1|) $) 85)) (-3785 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4258)))) (-2169 (($) 7 T CONST)) (-3972 (($ $) 83 (|has| |#1| (-1020)))) (-1910 (($ $) 78 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-3271 (($ (-1 (-108) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1020)))) (-1703 (($ |#1| $) 77 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4258)))) (-2301 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) 51)) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3416 (($ (-713) |#1|) 69)) (-3924 (((-108) $ (-713)) 9)) (-3666 (((-525) $) 43 (|has| (-525) (-789)))) (-2639 (($ (-1 (-108) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-789)))) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1847 (((-525) $) 44 (|has| (-525) (-789)))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-1262 (($ |#1| $ (-525)) 88) (($ $ $ (-525)) 87)) (-2531 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-2628 (((-592 (-525)) $) 46)) (-2978 (((-108) (-525) $) 47)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1872 ((|#1| $) 42 (|has| (-525) (-789)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1420 (($ $ |#1|) 41 (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2167 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) 48)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1141 (-525))) 63)) (-1356 (($ $ (-525)) 91) (($ $ (-1141 (-525))) 90)) (-3038 (($ $ (-525)) 62) (($ $ (-1141 (-525))) 61)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-3210 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 70)) (-4029 (($ $ |#1|) 93) (($ $ $) 92)) (-2038 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4123 (((-592 (-525)) $) 19)) (-3529 (((-713) $) 17)) (-4100 (((-798) $) 23) (($ (-592 (-525))) 15)) (-2815 (($ (-713)) 20)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 9)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 11)))
+(((-254) (-13 (-789) (-10 -8 (-15 -4100 ($ (-592 (-525)))) (-15 -3529 ((-713) $)) (-15 -4123 ((-592 (-525)) $)) (-15 -2815 ($ (-713)))))) (T -254))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-254)))) (-4123 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254)))) (-2815 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-254)))))
+(-13 (-789) (-10 -8 (-15 -4100 ($ (-592 (-525)))) (-15 -3529 ((-713) $)) (-15 -4123 ((-592 (-525)) $)) (-15 -2815 ($ (-713)))))
+((-1803 ((|#2| |#2|) 77)) (-3659 ((|#2| |#2|) 65)) (-1625 (((-3 |#2| "failed") |#2| (-592 (-2 (|:| |func| |#2|) (|:| |pole| (-108))))) 116)) (-1781 ((|#2| |#2|) 75)) (-3638 ((|#2| |#2|) 63)) (-1828 ((|#2| |#2|) 79)) (-3698 ((|#2| |#2|) 67)) (-4106 ((|#2|) 46)) (-1386 (((-110) (-110)) 95)) (-2533 ((|#2| |#2|) 61)) (-2932 (((-108) |#2|) 134)) (-4182 ((|#2| |#2|) 181)) (-2557 ((|#2| |#2|) 157)) (-2298 ((|#2|) 59)) (-1388 ((|#2|) 58)) (-2422 ((|#2| |#2|) 177)) (-2186 ((|#2| |#2|) 153)) (-2806 ((|#2| |#2|) 185)) (-1926 ((|#2| |#2|) 161)) (-3640 ((|#2| |#2|) 149)) (-3596 ((|#2| |#2|) 151)) (-1726 ((|#2| |#2|) 187)) (-3152 ((|#2| |#2|) 163)) (-2090 ((|#2| |#2|) 183)) (-2784 ((|#2| |#2|) 159)) (-3789 ((|#2| |#2|) 179)) (-4097 ((|#2| |#2|) 155)) (-3404 ((|#2| |#2|) 193)) (-1702 ((|#2| |#2|) 169)) (-1327 ((|#2| |#2|) 189)) (-2129 ((|#2| |#2|) 165)) (-2785 ((|#2| |#2|) 197)) (-1651 ((|#2| |#2|) 173)) (-3231 ((|#2| |#2|) 199)) (-4020 ((|#2| |#2|) 175)) (-2646 ((|#2| |#2|) 195)) (-3265 ((|#2| |#2|) 171)) (-3952 ((|#2| |#2|) 191)) (-2192 ((|#2| |#2|) 167)) (-1618 ((|#2| |#2|) 62)) (-1841 ((|#2| |#2|) 80)) (-3798 ((|#2| |#2|) 68)) (-1816 ((|#2| |#2|) 78)) (-3678 ((|#2| |#2|) 66)) (-1792 ((|#2| |#2|) 76)) (-3649 ((|#2| |#2|) 64)) (-3954 (((-108) (-110)) 93)) (-1876 ((|#2| |#2|) 83)) (-3853 ((|#2| |#2|) 71)) (-1853 ((|#2| |#2|) 81)) (-3808 ((|#2| |#2|) 69)) (-1902 ((|#2| |#2|) 85)) (-1760 ((|#2| |#2|) 73)) (-3135 ((|#2| |#2|) 86)) (-1770 ((|#2| |#2|) 74)) (-1891 ((|#2| |#2|) 84)) (-1748 ((|#2| |#2|) 72)) (-1866 ((|#2| |#2|) 82)) (-3820 ((|#2| |#2|) 70)))
+(((-255 |#1| |#2|) (-10 -7 (-15 -1618 (|#2| |#2|)) (-15 -2533 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3678 (|#2| |#2|)) (-15 -3698 (|#2| |#2|)) (-15 -3798 (|#2| |#2|)) (-15 -3808 (|#2| |#2|)) (-15 -3820 (|#2| |#2|)) (-15 -3853 (|#2| |#2|)) (-15 -1748 (|#2| |#2|)) (-15 -1760 (|#2| |#2|)) (-15 -1770 (|#2| |#2|)) (-15 -1781 (|#2| |#2|)) (-15 -1792 (|#2| |#2|)) (-15 -1803 (|#2| |#2|)) (-15 -1816 (|#2| |#2|)) (-15 -1828 (|#2| |#2|)) (-15 -1841 (|#2| |#2|)) (-15 -1853 (|#2| |#2|)) (-15 -1866 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -1891 (|#2| |#2|)) (-15 -1902 (|#2| |#2|)) (-15 -3135 (|#2| |#2|)) (-15 -4106 (|#2|)) (-15 -3954 ((-108) (-110))) (-15 -1386 ((-110) (-110))) (-15 -1388 (|#2|)) (-15 -2298 (|#2|)) (-15 -3596 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -2186 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -2557 (|#2| |#2|)) (-15 -2784 (|#2| |#2|)) (-15 -1926 (|#2| |#2|)) (-15 -3152 (|#2| |#2|)) (-15 -2129 (|#2| |#2|)) (-15 -2192 (|#2| |#2|)) (-15 -1702 (|#2| |#2|)) (-15 -3265 (|#2| |#2|)) (-15 -1651 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)) (-15 -2422 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -4182 (|#2| |#2|)) (-15 -2090 (|#2| |#2|)) (-15 -2806 (|#2| |#2|)) (-15 -1726 (|#2| |#2|)) (-15 -1327 (|#2| |#2|)) (-15 -3952 (|#2| |#2|)) (-15 -3404 (|#2| |#2|)) (-15 -2646 (|#2| |#2|)) (-15 -2785 (|#2| |#2|)) (-15 -3231 (|#2| |#2|)) (-15 -1625 ((-3 |#2| "failed") |#2| (-592 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -2932 ((-108) |#2|))) (-13 (-789) (-517)) (-13 (-408 |#1|) (-934))) (T -255))
+((-2932 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-255 *4 *3)) (-4 *3 (-13 (-408 *4) (-934))))) (-1625 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-592 (-2 (|:| |func| *2) (|:| |pole| (-108))))) (-4 *2 (-13 (-408 *4) (-934))) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-255 *4 *2)))) (-3231 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2785 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2646 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3404 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3952 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1327 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1726 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2806 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2090 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-4182 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2422 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-4020 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1651 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3265 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1702 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2192 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2129 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3152 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1926 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2784 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2557 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2186 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3596 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2298 (*1 *2) (-12 (-4 *2 (-13 (-408 *3) (-934))) (-5 *1 (-255 *3 *2)) (-4 *3 (-13 (-789) (-517))))) (-1388 (*1 *2) (-12 (-4 *2 (-13 (-408 *3) (-934))) (-5 *1 (-255 *3 *2)) (-4 *3 (-13 (-789) (-517))))) (-1386 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *4)) (-4 *4 (-13 (-408 *3) (-934))))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-255 *4 *5)) (-4 *5 (-13 (-408 *4) (-934))))) (-4106 (*1 *2) (-12 (-4 *2 (-13 (-408 *3) (-934))) (-5 *1 (-255 *3 *2)) (-4 *3 (-13 (-789) (-517))))) (-3135 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1902 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1891 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1866 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1853 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1841 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1828 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1816 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1803 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1792 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1781 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1770 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1760 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1748 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3820 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3698 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3678 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2533 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))))
+(-10 -7 (-15 -1618 (|#2| |#2|)) (-15 -2533 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3678 (|#2| |#2|)) (-15 -3698 (|#2| |#2|)) (-15 -3798 (|#2| |#2|)) (-15 -3808 (|#2| |#2|)) (-15 -3820 (|#2| |#2|)) (-15 -3853 (|#2| |#2|)) (-15 -1748 (|#2| |#2|)) (-15 -1760 (|#2| |#2|)) (-15 -1770 (|#2| |#2|)) (-15 -1781 (|#2| |#2|)) (-15 -1792 (|#2| |#2|)) (-15 -1803 (|#2| |#2|)) (-15 -1816 (|#2| |#2|)) (-15 -1828 (|#2| |#2|)) (-15 -1841 (|#2| |#2|)) (-15 -1853 (|#2| |#2|)) (-15 -1866 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -1891 (|#2| |#2|)) (-15 -1902 (|#2| |#2|)) (-15 -3135 (|#2| |#2|)) (-15 -4106 (|#2|)) (-15 -3954 ((-108) (-110))) (-15 -1386 ((-110) (-110))) (-15 -1388 (|#2|)) (-15 -2298 (|#2|)) (-15 -3596 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -2186 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -2557 (|#2| |#2|)) (-15 -2784 (|#2| |#2|)) (-15 -1926 (|#2| |#2|)) (-15 -3152 (|#2| |#2|)) (-15 -2129 (|#2| |#2|)) (-15 -2192 (|#2| |#2|)) (-15 -1702 (|#2| |#2|)) (-15 -3265 (|#2| |#2|)) (-15 -1651 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)) (-15 -2422 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -4182 (|#2| |#2|)) (-15 -2090 (|#2| |#2|)) (-15 -2806 (|#2| |#2|)) (-15 -1726 (|#2| |#2|)) (-15 -1327 (|#2| |#2|)) (-15 -3952 (|#2| |#2|)) (-15 -3404 (|#2| |#2|)) (-15 -2646 (|#2| |#2|)) (-15 -2785 (|#2| |#2|)) (-15 -3231 (|#2| |#2|)) (-15 -1625 ((-3 |#2| "failed") |#2| (-592 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -2932 ((-108) |#2|)))
+((-2816 (((-3 |#2| "failed") (-592 (-565 |#2|)) |#2| (-1092)) 135)) (-2926 ((|#2| (-385 (-525)) |#2|) 51)) (-1246 ((|#2| |#2| (-565 |#2|)) 128)) (-2141 (((-2 (|:| |func| |#2|) (|:| |kers| (-592 (-565 |#2|))) (|:| |vals| (-592 |#2|))) |#2| (-1092)) 127)) (-1330 ((|#2| |#2| (-1092)) 20) ((|#2| |#2|) 23)) (-2528 ((|#2| |#2| (-1092)) 141) ((|#2| |#2|) 139)))
+(((-256 |#1| |#2|) (-10 -7 (-15 -2528 (|#2| |#2|)) (-15 -2528 (|#2| |#2| (-1092))) (-15 -2141 ((-2 (|:| |func| |#2|) (|:| |kers| (-592 (-565 |#2|))) (|:| |vals| (-592 |#2|))) |#2| (-1092))) (-15 -1330 (|#2| |#2|)) (-15 -1330 (|#2| |#2| (-1092))) (-15 -2816 ((-3 |#2| "failed") (-592 (-565 |#2|)) |#2| (-1092))) (-15 -1246 (|#2| |#2| (-565 |#2|))) (-15 -2926 (|#2| (-385 (-525)) |#2|))) (-13 (-517) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1114) (-408 |#1|))) (T -256))
+((-2926 (*1 *2 *3 *2) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))) (-1246 (*1 *2 *2 *3) (-12 (-5 *3 (-565 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))) (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)))) (-2816 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-1092)) (-4 *2 (-13 (-27) (-1114) (-408 *5))) (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *5 *2)))) (-1330 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))) (-1330 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))) (-2141 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-592 (-565 *3))) (|:| |vals| (-592 *3)))) (-5 *1 (-256 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))) (-2528 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))) (-2528 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))))
+(-10 -7 (-15 -2528 (|#2| |#2|)) (-15 -2528 (|#2| |#2| (-1092))) (-15 -2141 ((-2 (|:| |func| |#2|) (|:| |kers| (-592 (-565 |#2|))) (|:| |vals| (-592 |#2|))) |#2| (-1092))) (-15 -1330 (|#2| |#2|)) (-15 -1330 (|#2| |#2| (-1092))) (-15 -2816 ((-3 |#2| "failed") (-592 (-565 |#2|)) |#2| (-1092))) (-15 -1246 (|#2| |#2| (-565 |#2|))) (-15 -2926 (|#2| (-385 (-525)) |#2|)))
+((-1621 (((-3 |#3| "failed") |#3|) 110)) (-1803 ((|#3| |#3|) 131)) (-3765 (((-3 |#3| "failed") |#3|) 82)) (-3659 ((|#3| |#3|) 121)) (-3240 (((-3 |#3| "failed") |#3|) 58)) (-1781 ((|#3| |#3|) 129)) (-2008 (((-3 |#3| "failed") |#3|) 46)) (-3638 ((|#3| |#3|) 119)) (-2279 (((-3 |#3| "failed") |#3|) 112)) (-1828 ((|#3| |#3|) 133)) (-3719 (((-3 |#3| "failed") |#3|) 84)) (-3698 ((|#3| |#3|) 123)) (-3915 (((-3 |#3| "failed") |#3| (-713)) 36)) (-4053 (((-3 |#3| "failed") |#3|) 74)) (-2533 ((|#3| |#3|) 118)) (-3747 (((-3 |#3| "failed") |#3|) 44)) (-1618 ((|#3| |#3|) 117)) (-3958 (((-3 |#3| "failed") |#3|) 113)) (-1841 ((|#3| |#3|) 134)) (-3407 (((-3 |#3| "failed") |#3|) 85)) (-3798 ((|#3| |#3|) 124)) (-2296 (((-3 |#3| "failed") |#3|) 111)) (-1816 ((|#3| |#3|) 132)) (-4103 (((-3 |#3| "failed") |#3|) 83)) (-3678 ((|#3| |#3|) 122)) (-3046 (((-3 |#3| "failed") |#3|) 60)) (-1792 ((|#3| |#3|) 130)) (-2143 (((-3 |#3| "failed") |#3|) 48)) (-3649 ((|#3| |#3|) 120)) (-3434 (((-3 |#3| "failed") |#3|) 66)) (-1876 ((|#3| |#3|) 137)) (-3484 (((-3 |#3| "failed") |#3|) 104)) (-3853 ((|#3| |#3|) 142)) (-1552 (((-3 |#3| "failed") |#3|) 62)) (-1853 ((|#3| |#3|) 135)) (-1912 (((-3 |#3| "failed") |#3|) 50)) (-3808 ((|#3| |#3|) 125)) (-2538 (((-3 |#3| "failed") |#3|) 70)) (-1902 ((|#3| |#3|) 139)) (-1543 (((-3 |#3| "failed") |#3|) 54)) (-1760 ((|#3| |#3|) 127)) (-1335 (((-3 |#3| "failed") |#3|) 72)) (-3135 ((|#3| |#3|) 140)) (-2607 (((-3 |#3| "failed") |#3|) 56)) (-1770 ((|#3| |#3|) 128)) (-3511 (((-3 |#3| "failed") |#3|) 68)) (-1891 ((|#3| |#3|) 138)) (-2200 (((-3 |#3| "failed") |#3|) 107)) (-1748 ((|#3| |#3|) 143)) (-3143 (((-3 |#3| "failed") |#3|) 64)) (-1866 ((|#3| |#3|) 136)) (-2943 (((-3 |#3| "failed") |#3|) 52)) (-3820 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-385 (-525))) 40 (|has| |#1| (-341)))))
+(((-257 |#1| |#2| |#3|) (-13 (-916 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -1618 (|#3| |#3|)) (-15 -2533 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3649 (|#3| |#3|)) (-15 -3659 (|#3| |#3|)) (-15 -3678 (|#3| |#3|)) (-15 -3698 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3820 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -1748 (|#3| |#3|)) (-15 -1760 (|#3| |#3|)) (-15 -1770 (|#3| |#3|)) (-15 -1781 (|#3| |#3|)) (-15 -1792 (|#3| |#3|)) (-15 -1803 (|#3| |#3|)) (-15 -1816 (|#3| |#3|)) (-15 -1828 (|#3| |#3|)) (-15 -1841 (|#3| |#3|)) (-15 -1853 (|#3| |#3|)) (-15 -1866 (|#3| |#3|)) (-15 -1876 (|#3| |#3|)) (-15 -1891 (|#3| |#3|)) (-15 -1902 (|#3| |#3|)) (-15 -3135 (|#3| |#3|)))) (-37 (-385 (-525))) (-1165 |#1|) (-1136 |#1| |#2|)) (T -257))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 *3)) (-4 *5 (-1165 *4)) (-5 *1 (-257 *4 *5 *2)) (-4 *2 (-1136 *4 *5)))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-2533 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-3678 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-3698 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-3820 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1748 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1760 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1770 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1781 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1792 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1803 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1816 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1828 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1841 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1853 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1866 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1891 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-1902 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))) (-3135 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4)))))
+(-13 (-916 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -1618 (|#3| |#3|)) (-15 -2533 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3649 (|#3| |#3|)) (-15 -3659 (|#3| |#3|)) (-15 -3678 (|#3| |#3|)) (-15 -3698 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3820 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -1748 (|#3| |#3|)) (-15 -1760 (|#3| |#3|)) (-15 -1770 (|#3| |#3|)) (-15 -1781 (|#3| |#3|)) (-15 -1792 (|#3| |#3|)) (-15 -1803 (|#3| |#3|)) (-15 -1816 (|#3| |#3|)) (-15 -1828 (|#3| |#3|)) (-15 -1841 (|#3| |#3|)) (-15 -1853 (|#3| |#3|)) (-15 -1866 (|#3| |#3|)) (-15 -1876 (|#3| |#3|)) (-15 -1891 (|#3| |#3|)) (-15 -1902 (|#3| |#3|)) (-15 -3135 (|#3| |#3|))))
+((-1621 (((-3 |#3| "failed") |#3|) 66)) (-1803 ((|#3| |#3|) 133)) (-3765 (((-3 |#3| "failed") |#3|) 50)) (-3659 ((|#3| |#3|) 121)) (-3240 (((-3 |#3| "failed") |#3|) 62)) (-1781 ((|#3| |#3|) 131)) (-2008 (((-3 |#3| "failed") |#3|) 46)) (-3638 ((|#3| |#3|) 119)) (-2279 (((-3 |#3| "failed") |#3|) 70)) (-1828 ((|#3| |#3|) 135)) (-3719 (((-3 |#3| "failed") |#3|) 54)) (-3698 ((|#3| |#3|) 123)) (-3915 (((-3 |#3| "failed") |#3| (-713)) 35)) (-4053 (((-3 |#3| "failed") |#3|) 44)) (-2533 ((|#3| |#3|) 112)) (-3747 (((-3 |#3| "failed") |#3|) 42)) (-1618 ((|#3| |#3|) 118)) (-3958 (((-3 |#3| "failed") |#3|) 72)) (-1841 ((|#3| |#3|) 136)) (-3407 (((-3 |#3| "failed") |#3|) 56)) (-3798 ((|#3| |#3|) 124)) (-2296 (((-3 |#3| "failed") |#3|) 68)) (-1816 ((|#3| |#3|) 134)) (-4103 (((-3 |#3| "failed") |#3|) 52)) (-3678 ((|#3| |#3|) 122)) (-3046 (((-3 |#3| "failed") |#3|) 64)) (-1792 ((|#3| |#3|) 132)) (-2143 (((-3 |#3| "failed") |#3|) 48)) (-3649 ((|#3| |#3|) 120)) (-3434 (((-3 |#3| "failed") |#3|) 78)) (-1876 ((|#3| |#3|) 139)) (-3484 (((-3 |#3| "failed") |#3|) 58)) (-3853 ((|#3| |#3|) 127)) (-1552 (((-3 |#3| "failed") |#3|) 74)) (-1853 ((|#3| |#3|) 137)) (-1912 (((-3 |#3| "failed") |#3|) 102)) (-3808 ((|#3| |#3|) 125)) (-2538 (((-3 |#3| "failed") |#3|) 82)) (-1902 ((|#3| |#3|) 141)) (-1543 (((-3 |#3| "failed") |#3|) 109)) (-1760 ((|#3| |#3|) 129)) (-1335 (((-3 |#3| "failed") |#3|) 84)) (-3135 ((|#3| |#3|) 142)) (-2607 (((-3 |#3| "failed") |#3|) 111)) (-1770 ((|#3| |#3|) 130)) (-3511 (((-3 |#3| "failed") |#3|) 80)) (-1891 ((|#3| |#3|) 140)) (-2200 (((-3 |#3| "failed") |#3|) 60)) (-1748 ((|#3| |#3|) 128)) (-3143 (((-3 |#3| "failed") |#3|) 76)) (-1866 ((|#3| |#3|) 138)) (-2943 (((-3 |#3| "failed") |#3|) 105)) (-3820 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-385 (-525))) 40 (|has| |#1| (-341)))))
+(((-258 |#1| |#2| |#3| |#4|) (-13 (-916 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -1618 (|#3| |#3|)) (-15 -2533 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3649 (|#3| |#3|)) (-15 -3659 (|#3| |#3|)) (-15 -3678 (|#3| |#3|)) (-15 -3698 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3820 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -1748 (|#3| |#3|)) (-15 -1760 (|#3| |#3|)) (-15 -1770 (|#3| |#3|)) (-15 -1781 (|#3| |#3|)) (-15 -1792 (|#3| |#3|)) (-15 -1803 (|#3| |#3|)) (-15 -1816 (|#3| |#3|)) (-15 -1828 (|#3| |#3|)) (-15 -1841 (|#3| |#3|)) (-15 -1853 (|#3| |#3|)) (-15 -1866 (|#3| |#3|)) (-15 -1876 (|#3| |#3|)) (-15 -1891 (|#3| |#3|)) (-15 -1902 (|#3| |#3|)) (-15 -3135 (|#3| |#3|)))) (-37 (-385 (-525))) (-1134 |#1|) (-1157 |#1| |#2|) (-916 |#2|)) (T -258))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 *3)) (-4 *5 (-1134 *4)) (-5 *1 (-258 *4 *5 *2 *6)) (-4 *2 (-1157 *4 *5)) (-4 *6 (-916 *5)))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-2533 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-3678 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-3698 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-3820 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1748 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1760 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1770 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1781 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1792 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1803 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1816 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1828 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1841 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1853 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1866 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1891 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-1902 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))) (-3135 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4)))))
+(-13 (-916 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -1618 (|#3| |#3|)) (-15 -2533 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3649 (|#3| |#3|)) (-15 -3659 (|#3| |#3|)) (-15 -3678 (|#3| |#3|)) (-15 -3698 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3820 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -1748 (|#3| |#3|)) (-15 -1760 (|#3| |#3|)) (-15 -1770 (|#3| |#3|)) (-15 -1781 (|#3| |#3|)) (-15 -1792 (|#3| |#3|)) (-15 -1803 (|#3| |#3|)) (-15 -1816 (|#3| |#3|)) (-15 -1828 (|#3| |#3|)) (-15 -1841 (|#3| |#3|)) (-15 -1853 (|#3| |#3|)) (-15 -1866 (|#3| |#3|)) (-15 -1876 (|#3| |#3|)) (-15 -1891 (|#3| |#3|)) (-15 -1902 (|#3| |#3|)) (-15 -3135 (|#3| |#3|))))
+((-3543 (((-108) $) 19)) (-4165 (((-169) $) 7)) (-2452 (((-3 (-1092) "failed") $) 14)) (-4149 (((-3 (-592 $) "failed") $) NIL)) (-3346 (((-3 (-1092) "failed") $) 21)) (-2792 (((-3 (-1024) "failed") $) 17)) (-1930 (((-108) $) 15)) (-4100 (((-798) $) NIL)) (-1274 (((-108) $) 9)))
+(((-259) (-13 (-566 (-798)) (-10 -8 (-15 -4165 ((-169) $)) (-15 -1930 ((-108) $)) (-15 -2792 ((-3 (-1024) "failed") $)) (-15 -3543 ((-108) $)) (-15 -3346 ((-3 (-1092) "failed") $)) (-15 -1274 ((-108) $)) (-15 -2452 ((-3 (-1092) "failed") $)) (-15 -4149 ((-3 (-592 $) "failed") $))))) (T -259))
+((-4165 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-259)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) (-2792 (*1 *2 *1) (|partial| -12 (-5 *2 (-1024)) (-5 *1 (-259)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) (-3346 (*1 *2 *1) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-259)))) (-1274 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) (-2452 (*1 *2 *1) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-259)))) (-4149 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-259))) (-5 *1 (-259)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -4165 ((-169) $)) (-15 -1930 ((-108) $)) (-15 -2792 ((-3 (-1024) "failed") $)) (-15 -3543 ((-108) $)) (-15 -3346 ((-3 (-1092) "failed") $)) (-15 -1274 ((-108) $)) (-15 -2452 ((-3 (-1092) "failed") $)) (-15 -4149 ((-3 (-592 $) "failed") $))))
+((-2399 (($ (-1 (-108) |#2|) $) 24)) (-1681 (($ $) 36)) (-4205 (($ (-1 (-108) |#2|) $) NIL) (($ |#2| $) 34)) (-2698 (($ |#2| $) 32) (($ (-1 (-108) |#2|) $) 18)) (-3269 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2594 (($ |#2| $ (-525)) 20) (($ $ $ (-525)) 22)) (-2139 (($ $ (-525)) 11) (($ $ (-1141 (-525))) 14)) (-4190 (($ $ |#2|) 30) (($ $ $) NIL)) (-2035 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-592 $)) NIL)))
+(((-260 |#1| |#2|) (-10 -8 (-15 -3269 (|#1| |#1| |#1|)) (-15 -4205 (|#1| |#2| |#1|)) (-15 -3269 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -4205 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -4190 (|#1| |#1| |#1|)) (-15 -4190 (|#1| |#1| |#2|)) (-15 -2594 (|#1| |#1| |#1| (-525))) (-15 -2594 (|#1| |#2| |#1| (-525))) (-15 -2139 (|#1| |#1| (-1141 (-525)))) (-15 -2139 (|#1| |#1| (-525))) (-15 -2035 (|#1| (-592 |#1|))) (-15 -2035 (|#1| |#1| |#1|)) (-15 -2035 (|#1| |#2| |#1|)) (-15 -2035 (|#1| |#1| |#2|)) (-15 -2698 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2399 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2698 (|#1| |#2| |#1|)) (-15 -1681 (|#1| |#1|))) (-261 |#2|) (-1128)) (T -260))
+NIL
+(-10 -8 (-15 -3269 (|#1| |#1| |#1|)) (-15 -4205 (|#1| |#2| |#1|)) (-15 -3269 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -4205 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -4190 (|#1| |#1| |#1|)) (-15 -4190 (|#1| |#1| |#2|)) (-15 -2594 (|#1| |#1| |#1| (-525))) (-15 -2594 (|#1| |#2| |#1| (-525))) (-15 -2139 (|#1| |#1| (-1141 (-525)))) (-15 -2139 (|#1| |#1| (-525))) (-15 -2035 (|#1| (-592 |#1|))) (-15 -2035 (|#1| |#1| |#1|)) (-15 -2035 (|#1| |#2| |#1|)) (-15 -2035 (|#1| |#1| |#2|)) (-15 -2698 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2399 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2698 (|#1| |#2| |#1|)) (-15 -1681 (|#1| |#1|)))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3289 (((-1179) $ (-525) (-525)) 40 (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) 8)) (-1233 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) 58 (|has| $ (-6 -4260)))) (-3050 (($ (-1 (-108) |#1|) $) 85)) (-2399 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4259)))) (-2475 (($) 7 T CONST)) (-1793 (($ $) 83 (|has| |#1| (-1020)))) (-1681 (($ $) 78 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-4205 (($ (-1 (-108) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1020)))) (-2698 (($ |#1| $) 77 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4259)))) (-3081 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) 51)) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-3324 (($ (-713) |#1|) 69)) (-2516 (((-108) $ (-713)) 9)) (-1732 (((-525) $) 43 (|has| (-525) (-789)))) (-3269 (($ (-1 (-108) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-789)))) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2231 (((-525) $) 44 (|has| (-525) (-789)))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-3246 (($ |#1| $ (-525)) 88) (($ $ $ (-525)) 87)) (-2594 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-3177 (((-592 (-525)) $) 46)) (-3461 (((-108) (-525) $) 47)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1647 ((|#1| $) 42 (|has| (-525) (-789)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-3453 (($ $ |#1|) 41 (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-2456 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) 48)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1141 (-525))) 63)) (-2818 (($ $ (-525)) 91) (($ $ (-1141 (-525))) 90)) (-2139 (($ $ (-525)) 62) (($ $ (-1141 (-525))) 61)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-2069 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 70)) (-4190 (($ $ |#1|) 93) (($ $ $) 92)) (-2035 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-261 |#1|) (-131) (-1128)) (T -261))
-((-4029 (*1 *1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128)))) (-4029 (*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128)))) (-1356 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1128)))) (-1356 (*1 *1 *1 *2) (-12 (-5 *2 (-1141 (-525))) (-4 *1 (-261 *3)) (-4 *3 (-1128)))) (-3271 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1128)))) (-1262 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-261 *2)) (-4 *2 (-1128)))) (-1262 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1128)))) (-2639 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-261 *3)) (-4 *3 (-1128)))) (-1676 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1128)))) (-3271 (*1 *1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128)) (-4 *2 (-1020)))) (-3972 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128)) (-4 *2 (-1020)))) (-2639 (*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128)) (-4 *2 (-789)))))
-(-13 (-597 |t#1|) (-10 -8 (-6 -4259) (-15 -4029 ($ $ |t#1|)) (-15 -4029 ($ $ $)) (-15 -1356 ($ $ (-525))) (-15 -1356 ($ $ (-1141 (-525)))) (-15 -3271 ($ (-1 (-108) |t#1|) $)) (-15 -1262 ($ |t#1| $ (-525))) (-15 -1262 ($ $ $ (-525))) (-15 -2639 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -1676 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1020)) (PROGN (-15 -3271 ($ |t#1| $)) (-15 -3972 ($ $))) |%noBranch|) (IF (|has| |t#1| (-789)) (-15 -2639 ($ $ $)) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
+((-4190 (*1 *1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128)))) (-4190 (*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128)))) (-2818 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1128)))) (-2818 (*1 *1 *1 *2) (-12 (-5 *2 (-1141 (-525))) (-4 *1 (-261 *3)) (-4 *3 (-1128)))) (-4205 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1128)))) (-3246 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-261 *2)) (-4 *2 (-1128)))) (-3246 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1128)))) (-3269 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-261 *3)) (-4 *3 (-1128)))) (-3050 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1128)))) (-4205 (*1 *1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128)) (-4 *2 (-1020)))) (-1793 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128)) (-4 *2 (-1020)))) (-3269 (*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128)) (-4 *2 (-789)))))
+(-13 (-597 |t#1|) (-10 -8 (-6 -4260) (-15 -4190 ($ $ |t#1|)) (-15 -4190 ($ $ $)) (-15 -2818 ($ $ (-525))) (-15 -2818 ($ $ (-1141 (-525)))) (-15 -4205 ($ (-1 (-108) |t#1|) $)) (-15 -3246 ($ |t#1| $ (-525))) (-15 -3246 ($ $ $ (-525))) (-15 -3269 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -3050 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1020)) (PROGN (-15 -4205 ($ |t#1| $)) (-15 -1793 ($ $))) |%noBranch|) (IF (|has| |t#1| (-789)) (-15 -3269 ($ $ $)) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
((** (($ $ $) 10)))
(((-262 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-263)) (T -262))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-1517 (($ $) 6)) (-3096 (($ $) 7)) (** (($ $ $) 8)))
+((-2533 (($ $) 6)) (-1618 (($ $) 7)) (** (($ $ $) 8)))
(((-263) (-131)) (T -263))
-((** (*1 *1 *1 *1) (-4 *1 (-263))) (-3096 (*1 *1 *1) (-4 *1 (-263))) (-1517 (*1 *1 *1) (-4 *1 (-263))))
-(-13 (-10 -8 (-15 -1517 ($ $)) (-15 -3096 ($ $)) (-15 ** ($ $ $))))
-((-3516 (((-592 (-1073 |#1|)) (-1073 |#1|) |#1|) 35)) (-1911 ((|#2| |#2| |#1|) 38)) (-2636 ((|#2| |#2| |#1|) 40)) (-3646 ((|#2| |#2| |#1|) 39)))
-(((-264 |#1| |#2|) (-10 -7 (-15 -1911 (|#2| |#2| |#1|)) (-15 -3646 (|#2| |#2| |#1|)) (-15 -2636 (|#2| |#2| |#1|)) (-15 -3516 ((-592 (-1073 |#1|)) (-1073 |#1|) |#1|))) (-341) (-1165 |#1|)) (T -264))
-((-3516 (*1 *2 *3 *4) (-12 (-4 *4 (-341)) (-5 *2 (-592 (-1073 *4))) (-5 *1 (-264 *4 *5)) (-5 *3 (-1073 *4)) (-4 *5 (-1165 *4)))) (-2636 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1165 *3)))) (-3646 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1165 *3)))) (-1911 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1165 *3)))))
-(-10 -7 (-15 -1911 (|#2| |#2| |#1|)) (-15 -3646 (|#2| |#2| |#1|)) (-15 -2636 (|#2| |#2| |#1|)) (-15 -3516 ((-592 (-1073 |#1|)) (-1073 |#1|) |#1|)))
-((-3406 ((|#2| $ |#1|) 6)))
+((** (*1 *1 *1 *1) (-4 *1 (-263))) (-1618 (*1 *1 *1) (-4 *1 (-263))) (-2533 (*1 *1 *1) (-4 *1 (-263))))
+(-13 (-10 -8 (-15 -2533 ($ $)) (-15 -1618 ($ $)) (-15 ** ($ $ $))))
+((-2664 (((-592 (-1073 |#1|)) (-1073 |#1|) |#1|) 35)) (-1636 ((|#2| |#2| |#1|) 38)) (-3254 ((|#2| |#2| |#1|) 40)) (-1907 ((|#2| |#2| |#1|) 39)))
+(((-264 |#1| |#2|) (-10 -7 (-15 -1636 (|#2| |#2| |#1|)) (-15 -1907 (|#2| |#2| |#1|)) (-15 -3254 (|#2| |#2| |#1|)) (-15 -2664 ((-592 (-1073 |#1|)) (-1073 |#1|) |#1|))) (-341) (-1165 |#1|)) (T -264))
+((-2664 (*1 *2 *3 *4) (-12 (-4 *4 (-341)) (-5 *2 (-592 (-1073 *4))) (-5 *1 (-264 *4 *5)) (-5 *3 (-1073 *4)) (-4 *5 (-1165 *4)))) (-3254 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1165 *3)))) (-1907 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1165 *3)))) (-1636 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1165 *3)))))
+(-10 -7 (-15 -1636 (|#2| |#2| |#1|)) (-15 -1907 (|#2| |#2| |#1|)) (-15 -3254 (|#2| |#2| |#1|)) (-15 -2664 ((-592 (-1073 |#1|)) (-1073 |#1|) |#1|)))
+((-3431 ((|#2| $ |#1|) 6)))
(((-265 |#1| |#2|) (-131) (-1020) (-1128)) (T -265))
-((-3406 (*1 *2 *1 *3) (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1128)))))
-(-13 (-10 -8 (-15 -3406 (|t#2| $ |t#1|))))
-((-2301 ((|#3| $ |#2| |#3|) 12)) (-2222 ((|#3| $ |#2|) 10)))
-(((-266 |#1| |#2| |#3|) (-10 -8 (-15 -2301 (|#3| |#1| |#2| |#3|)) (-15 -2222 (|#3| |#1| |#2|))) (-267 |#2| |#3|) (-1020) (-1128)) (T -266))
+((-3431 (*1 *2 *1 *3) (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1128)))))
+(-13 (-10 -8 (-15 -3431 (|t#2| $ |t#1|))))
+((-3081 ((|#3| $ |#2| |#3|) 12)) (-3017 ((|#3| $ |#2|) 10)))
+(((-266 |#1| |#2| |#3|) (-10 -8 (-15 -3081 (|#3| |#1| |#2| |#3|)) (-15 -3017 (|#3| |#1| |#2|))) (-267 |#2| |#3|) (-1020) (-1128)) (T -266))
NIL
-(-10 -8 (-15 -2301 (|#3| |#1| |#2| |#3|)) (-15 -2222 (|#3| |#1| |#2|)))
-((-1430 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4259)))) (-2301 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4259)))) (-2222 ((|#2| $ |#1|) 11)) (-3406 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(-10 -8 (-15 -3081 (|#3| |#1| |#2| |#3|)) (-15 -3017 (|#3| |#1| |#2|)))
+((-1233 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4260)))) (-3081 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4260)))) (-3017 ((|#2| $ |#1|) 11)) (-3431 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
(((-267 |#1| |#2|) (-131) (-1020) (-1128)) (T -267))
-((-3406 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1128)))) (-2222 (*1 *2 *1 *3) (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1128)))) (-1430 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1128)))) (-2301 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1128)))))
-(-13 (-265 |t#1| |t#2|) (-10 -8 (-15 -3406 (|t#2| $ |t#1| |t#2|)) (-15 -2222 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4259)) (PROGN (-15 -1430 (|t#2| $ |t#1| |t#2|)) (-15 -2301 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+((-3431 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1128)))) (-3017 (*1 *2 *1 *3) (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1128)))) (-1233 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4260)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1128)))) (-3081 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4260)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1128)))))
+(-13 (-265 |t#1| |t#2|) (-10 -8 (-15 -3431 (|t#2| $ |t#1| |t#2|)) (-15 -3017 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4260)) (PROGN (-15 -1233 (|t#2| $ |t#1| |t#2|)) (-15 -3081 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
(((-265 |#1| |#2|) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 35)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 40)) (-4218 (($ $) 38)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2193 (((-108) $ $) NIL)) (-2169 (($) NIL T CONST)) (-1747 (($ $ $) 33)) (-1284 (($ |#2| |#3|) 19)) (-3457 (((-3 $ "failed") $) NIL)) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-1396 (((-108) $) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2152 ((|#3| $) NIL)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) 20)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2200 (((-3 $ "failed") $ $) NIL)) (-3684 (((-713) $) 34)) (-3406 ((|#2| $ |#2|) 42)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 24)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3917 (((-713)) NIL)) (-3325 (((-108) $ $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 29 T CONST)) (-3359 (($) 36 T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 37)))
-(((-268 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-286) (-10 -8 (-15 -2152 (|#3| $)) (-15 -1217 (|#2| $)) (-15 -1284 ($ |#2| |#3|)) (-15 -2200 ((-3 $ "failed") $ $)) (-15 -3457 ((-3 $ "failed") $)) (-15 -2997 ($ $)) (-15 -3406 (|#2| $ |#2|)))) (-160) (-1150 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -268))
-((-3457 (*1 *1 *1) (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1150 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2152 (*1 *2 *1) (-12 (-4 *3 (-160)) (-4 *2 (-23)) (-5 *1 (-268 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1150 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-1217 (*1 *2 *1) (-12 (-4 *2 (-1150 *3)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7)) (-4 *3 (-160)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1284 (*1 *1 *2 *3) (-12 (-4 *4 (-160)) (-5 *1 (-268 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1150 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2200 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1150 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2997 (*1 *1 *1) (-12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1150 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3406 (*1 *2 *1 *2) (-12 (-4 *3 (-160)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1150 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-286) (-10 -8 (-15 -2152 (|#3| $)) (-15 -1217 (|#2| $)) (-15 -1284 ($ |#2| |#3|)) (-15 -2200 ((-3 $ "failed") $ $)) (-15 -3457 ((-3 $ "failed") $)) (-15 -2997 ($ $)) (-15 -3406 (|#2| $ |#2|))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11) (($ (-525)) 28)) (-3917 (((-713)) 29)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 35)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 40)) (-2433 (($ $) 38)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-1507 (((-108) $ $) NIL)) (-2475 (($) NIL T CONST)) (-1356 (($ $ $) 33)) (-3504 (($ |#2| |#3|) 19)) (-3300 (((-3 $ "failed") $) NIL)) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-2278 (((-108) $) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2287 ((|#3| $) NIL)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) 20)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1561 (((-3 $ "failed") $ $) NIL)) (-1927 (((-713) $) 34)) (-3431 ((|#2| $ |#2|) 42)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 24)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2448 (((-713)) NIL)) (-1571 (((-108) $ $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 29 T CONST)) (-3375 (($) 36 T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 37)))
+(((-268 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-286) (-10 -8 (-15 -2287 (|#3| $)) (-15 -4100 (|#2| $)) (-15 -3504 ($ |#2| |#3|)) (-15 -1561 ((-3 $ "failed") $ $)) (-15 -3300 ((-3 $ "failed") $)) (-15 -1387 ($ $)) (-15 -3431 (|#2| $ |#2|)))) (-160) (-1150 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -268))
+((-3300 (*1 *1 *1) (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1150 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2287 (*1 *2 *1) (-12 (-4 *3 (-160)) (-4 *2 (-23)) (-5 *1 (-268 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1150 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-4100 (*1 *2 *1) (-12 (-4 *2 (-1150 *3)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7)) (-4 *3 (-160)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3504 (*1 *1 *2 *3) (-12 (-4 *4 (-160)) (-5 *1 (-268 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1150 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1561 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1150 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1387 (*1 *1 *1) (-12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1150 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3431 (*1 *2 *1 *2) (-12 (-4 *3 (-160)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1150 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-286) (-10 -8 (-15 -2287 (|#3| $)) (-15 -4100 (|#2| $)) (-15 -3504 ($ |#2| |#3|)) (-15 -1561 ((-3 $ "failed") $ $)) (-15 -3300 ((-3 $ "failed") $)) (-15 -1387 ($ $)) (-15 -3431 (|#2| $ |#2|))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11) (($ (-525)) 28)) (-2448 (((-713)) 29)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-269) (-131)) (T -269))
NIL
-(-13 (-977) (-107 $ $) (-10 -7 (-6 -4251)))
+(-13 (-977) (-107 $ $) (-10 -7 (-6 -4252)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-669) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-3061 (($ (-1092) (-1092) (-1024) $) 17)) (-1611 (($ (-1092) (-592 (-899)) $) 22)) (-3403 (((-592 (-1007)) $) 10)) (-2693 (((-3 (-1024) "failed") (-1092) (-1092) $) 16)) (-1501 (((-3 (-592 (-899)) "failed") (-1092) $) 21)) (-2512 (($) 7)) (-3090 (($) 23)) (-1217 (((-798) $) 27)) (-2788 (($) 24)))
-(((-270) (-13 (-566 (-798)) (-10 -8 (-15 -2512 ($)) (-15 -3403 ((-592 (-1007)) $)) (-15 -2693 ((-3 (-1024) "failed") (-1092) (-1092) $)) (-15 -3061 ($ (-1092) (-1092) (-1024) $)) (-15 -1501 ((-3 (-592 (-899)) "failed") (-1092) $)) (-15 -1611 ($ (-1092) (-592 (-899)) $)) (-15 -3090 ($)) (-15 -2788 ($))))) (T -270))
-((-2512 (*1 *1) (-5 *1 (-270))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-592 (-1007))) (-5 *1 (-270)))) (-2693 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1092)) (-5 *2 (-1024)) (-5 *1 (-270)))) (-3061 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1092)) (-5 *3 (-1024)) (-5 *1 (-270)))) (-1501 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1092)) (-5 *2 (-592 (-899))) (-5 *1 (-270)))) (-1611 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-899))) (-5 *1 (-270)))) (-3090 (*1 *1) (-5 *1 (-270))) (-2788 (*1 *1) (-5 *1 (-270))))
-(-13 (-566 (-798)) (-10 -8 (-15 -2512 ($)) (-15 -3403 ((-592 (-1007)) $)) (-15 -2693 ((-3 (-1024) "failed") (-1092) (-1092) $)) (-15 -3061 ($ (-1092) (-1092) (-1024) $)) (-15 -1501 ((-3 (-592 (-899)) "failed") (-1092) $)) (-15 -1611 ($ (-1092) (-592 (-899)) $)) (-15 -3090 ($)) (-15 -2788 ($))))
-((-1708 (((-592 (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (|:| |geneigvec| (-592 (-632 (-385 (-887 |#1|))))))) (-632 (-385 (-887 |#1|)))) 85)) (-1789 (((-592 (-632 (-385 (-887 |#1|)))) (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 |#1|)))))) (-632 (-385 (-887 |#1|)))) 80) (((-592 (-632 (-385 (-887 |#1|)))) (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|))) (-632 (-385 (-887 |#1|))) (-713) (-713)) 38)) (-2874 (((-592 (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 |#1|))))))) (-632 (-385 (-887 |#1|)))) 82)) (-3401 (((-592 (-632 (-385 (-887 |#1|)))) (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|))) (-632 (-385 (-887 |#1|)))) 62)) (-1954 (((-592 (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (-632 (-385 (-887 |#1|)))) 61)) (-1304 (((-887 |#1|) (-632 (-385 (-887 |#1|)))) 50) (((-887 |#1|) (-632 (-385 (-887 |#1|))) (-1092)) 51)))
-(((-271 |#1|) (-10 -7 (-15 -1304 ((-887 |#1|) (-632 (-385 (-887 |#1|))) (-1092))) (-15 -1304 ((-887 |#1|) (-632 (-385 (-887 |#1|))))) (-15 -1954 ((-592 (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (-632 (-385 (-887 |#1|))))) (-15 -3401 ((-592 (-632 (-385 (-887 |#1|)))) (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|))) (-632 (-385 (-887 |#1|))))) (-15 -1789 ((-592 (-632 (-385 (-887 |#1|)))) (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|))) (-632 (-385 (-887 |#1|))) (-713) (-713))) (-15 -1789 ((-592 (-632 (-385 (-887 |#1|)))) (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 |#1|)))))) (-632 (-385 (-887 |#1|))))) (-15 -1708 ((-592 (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (|:| |geneigvec| (-592 (-632 (-385 (-887 |#1|))))))) (-632 (-385 (-887 |#1|))))) (-15 -2874 ((-592 (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 |#1|))))))) (-632 (-385 (-887 |#1|)))))) (-429)) (T -271))
-((-2874 (*1 *2 *3) (-12 (-4 *4 (-429)) (-5 *2 (-592 (-2 (|:| |eigval| (-3 (-385 (-887 *4)) (-1082 (-1092) (-887 *4)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 *4)))))))) (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-887 *4)))))) (-1708 (*1 *2 *3) (-12 (-4 *4 (-429)) (-5 *2 (-592 (-2 (|:| |eigval| (-3 (-385 (-887 *4)) (-1082 (-1092) (-887 *4)))) (|:| |geneigvec| (-592 (-632 (-385 (-887 *4)))))))) (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-887 *4)))))) (-1789 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-385 (-887 *5)) (-1082 (-1092) (-887 *5)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 *4)))) (-4 *5 (-429)) (-5 *2 (-592 (-632 (-385 (-887 *5))))) (-5 *1 (-271 *5)) (-5 *4 (-632 (-385 (-887 *5)))))) (-1789 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-385 (-887 *6)) (-1082 (-1092) (-887 *6)))) (-5 *5 (-713)) (-4 *6 (-429)) (-5 *2 (-592 (-632 (-385 (-887 *6))))) (-5 *1 (-271 *6)) (-5 *4 (-632 (-385 (-887 *6)))))) (-3401 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-385 (-887 *5)) (-1082 (-1092) (-887 *5)))) (-4 *5 (-429)) (-5 *2 (-592 (-632 (-385 (-887 *5))))) (-5 *1 (-271 *5)) (-5 *4 (-632 (-385 (-887 *5)))))) (-1954 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-887 *4)))) (-4 *4 (-429)) (-5 *2 (-592 (-3 (-385 (-887 *4)) (-1082 (-1092) (-887 *4))))) (-5 *1 (-271 *4)))) (-1304 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-887 *4)))) (-5 *2 (-887 *4)) (-5 *1 (-271 *4)) (-4 *4 (-429)))) (-1304 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-887 *5)))) (-5 *4 (-1092)) (-5 *2 (-887 *5)) (-5 *1 (-271 *5)) (-4 *5 (-429)))))
-(-10 -7 (-15 -1304 ((-887 |#1|) (-632 (-385 (-887 |#1|))) (-1092))) (-15 -1304 ((-887 |#1|) (-632 (-385 (-887 |#1|))))) (-15 -1954 ((-592 (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (-632 (-385 (-887 |#1|))))) (-15 -3401 ((-592 (-632 (-385 (-887 |#1|)))) (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|))) (-632 (-385 (-887 |#1|))))) (-15 -1789 ((-592 (-632 (-385 (-887 |#1|)))) (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|))) (-632 (-385 (-887 |#1|))) (-713) (-713))) (-15 -1789 ((-592 (-632 (-385 (-887 |#1|)))) (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 |#1|)))))) (-632 (-385 (-887 |#1|))))) (-15 -1708 ((-592 (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (|:| |geneigvec| (-592 (-632 (-385 (-887 |#1|))))))) (-632 (-385 (-887 |#1|))))) (-15 -2874 ((-592 (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 |#1|))))))) (-632 (-385 (-887 |#1|))))))
-((-3165 (((-273 |#2|) (-1 |#2| |#1|) (-273 |#1|)) 14)))
-(((-272 |#1| |#2|) (-10 -7 (-15 -3165 ((-273 |#2|) (-1 |#2| |#1|) (-273 |#1|)))) (-1128) (-1128)) (T -272))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-273 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-273 *6)) (-5 *1 (-272 *5 *6)))))
-(-10 -7 (-15 -3165 ((-273 |#2|) (-1 |#2| |#1|) (-273 |#1|))))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1209 (((-108) $) NIL (|has| |#1| (-21)))) (-3040 (($ $) 23)) (-1578 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3311 (($ $ $) 94 (|has| |#1| (-281)))) (-2169 (($) NIL (-3254 (|has| |#1| (-21)) (|has| |#1| (-669))) CONST)) (-2450 (($ $) 8 (|has| |#1| (-21)))) (-1657 (((-3 $ "failed") $) 69 (|has| |#1| (-669)))) (-2025 ((|#1| $) 22)) (-3457 (((-3 $ "failed") $) 67 (|has| |#1| (-669)))) (-1396 (((-108) $) NIL (|has| |#1| (-669)))) (-3165 (($ (-1 |#1| |#1|) $) 25)) (-2012 ((|#1| $) 9)) (-3974 (($ $) 58 (|has| |#1| (-21)))) (-3523 (((-3 $ "failed") $) 68 (|has| |#1| (-669)))) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2997 (($ $) 71 (-3254 (|has| |#1| (-341)) (|has| |#1| (-450))))) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3957 (((-592 $) $) 20 (|has| |#1| (-517)))) (-2457 (($ $ $) 35 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 $)) 38 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-1092) |#1|) 28 (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) 32 (|has| |#1| (-486 (-1092) |#1|)))) (-2011 (($ |#1| |#1|) 18)) (-3705 (((-128)) 89 (|has| |#1| (-341)))) (-3376 (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092)) 86 (|has| |#1| (-835 (-1092))))) (-1499 (($ $ $) NIL (|has| |#1| (-450)))) (-1990 (($ $ $) NIL (|has| |#1| (-450)))) (-1217 (($ (-525)) NIL (|has| |#1| (-977))) (((-108) $) 46 (|has| |#1| (-1020))) (((-798) $) 45 (|has| |#1| (-1020)))) (-3917 (((-713)) 74 (|has| |#1| (-977)))) (-1619 (($ $ (-525)) NIL (|has| |#1| (-450))) (($ $ (-713)) NIL (|has| |#1| (-669))) (($ $ (-856)) NIL (|has| |#1| (-1032)))) (-3349 (($) 56 (|has| |#1| (-21)) CONST)) (-3359 (($) 64 (|has| |#1| (-669)) CONST)) (-2022 (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092))))) (-3955 (($ |#1| |#1|) 21) (((-108) $ $) 41 (|has| |#1| (-1020)))) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 91 (-3254 (|has| |#1| (-341)) (|has| |#1| (-450))))) (-4061 (($ |#1| $) 54 (|has| |#1| (-21))) (($ $ |#1|) 55 (|has| |#1| (-21))) (($ $ $) 53 (|has| |#1| (-21))) (($ $) 52 (|has| |#1| (-21)))) (-4047 (($ |#1| $) 49 (|has| |#1| (-25))) (($ $ |#1|) 50 (|has| |#1| (-25))) (($ $ $) 48 (|has| |#1| (-25)))) (** (($ $ (-525)) NIL (|has| |#1| (-450))) (($ $ (-713)) NIL (|has| |#1| (-669))) (($ $ (-856)) NIL (|has| |#1| (-1032)))) (* (($ $ |#1|) 62 (|has| |#1| (-1032))) (($ |#1| $) 61 (|has| |#1| (-1032))) (($ $ $) 60 (|has| |#1| (-1032))) (($ (-525) $) 76 (|has| |#1| (-21))) (($ (-713) $) NIL (|has| |#1| (-21))) (($ (-856) $) NIL (|has| |#1| (-25)))))
-(((-273 |#1|) (-13 (-1128) (-10 -8 (-15 -3955 ($ |#1| |#1|)) (-15 -2011 ($ |#1| |#1|)) (-15 -3040 ($ $)) (-15 -2012 (|#1| $)) (-15 -2025 (|#1| $)) (-15 -3165 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-486 (-1092) |#1|)) (-6 (-486 (-1092) |#1|)) |%noBranch|) (IF (|has| |#1| (-1020)) (PROGN (-6 (-1020)) (-6 (-566 (-108))) (IF (|has| |#1| (-288 |#1|)) (PROGN (-15 -2457 ($ $ $)) (-15 -2457 ($ $ (-592 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4047 ($ |#1| $)) (-15 -4047 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3974 ($ $)) (-15 -2450 ($ $)) (-15 -4061 ($ |#1| $)) (-15 -4061 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1032)) (PROGN (-6 (-1032)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-669)) (PROGN (-6 (-669)) (-15 -3523 ((-3 $ "failed") $)) (-15 -1657 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-450)) (PROGN (-6 (-450)) (-15 -3523 ((-3 $ "failed") $)) (-15 -1657 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-977)) (PROGN (-6 (-977)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-660 |#1|)) |%noBranch|) (IF (|has| |#1| (-517)) (-15 -3957 ((-592 $) $)) |%noBranch|) (IF (|has| |#1| (-835 (-1092))) (-6 (-835 (-1092))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-1181 |#1|)) (-15 -4075 ($ $ $)) (-15 -2997 ($ $))) |%noBranch|) (IF (|has| |#1| (-281)) (-15 -3311 ($ $ $)) |%noBranch|))) (-1128)) (T -273))
-((-3955 (*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128)))) (-2011 (*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128)))) (-3040 (*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128)))) (-2012 (*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128)))) (-2025 (*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128)))) (-3165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-273 *3)))) (-2457 (*1 *1 *1 *1) (-12 (-4 *2 (-288 *2)) (-4 *2 (-1020)) (-4 *2 (-1128)) (-5 *1 (-273 *2)))) (-2457 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *3))) (-4 *3 (-288 *3)) (-4 *3 (-1020)) (-4 *3 (-1128)) (-5 *1 (-273 *3)))) (-4047 (*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1128)))) (-4047 (*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1128)))) (-3974 (*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-2450 (*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-4061 (*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-4061 (*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-3523 (*1 *1 *1) (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1128)))) (-1657 (*1 *1 *1) (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1128)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-592 (-273 *3))) (-5 *1 (-273 *3)) (-4 *3 (-517)) (-4 *3 (-1128)))) (-3311 (*1 *1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-281)) (-4 *2 (-1128)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1032)) (-4 *2 (-1128)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1032)) (-4 *2 (-1128)))) (-4075 (*1 *1 *1 *1) (-3254 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1128))) (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1128))))) (-2997 (*1 *1 *1) (-3254 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1128))) (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1128))))))
-(-13 (-1128) (-10 -8 (-15 -3955 ($ |#1| |#1|)) (-15 -2011 ($ |#1| |#1|)) (-15 -3040 ($ $)) (-15 -2012 (|#1| $)) (-15 -2025 (|#1| $)) (-15 -3165 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-486 (-1092) |#1|)) (-6 (-486 (-1092) |#1|)) |%noBranch|) (IF (|has| |#1| (-1020)) (PROGN (-6 (-1020)) (-6 (-566 (-108))) (IF (|has| |#1| (-288 |#1|)) (PROGN (-15 -2457 ($ $ $)) (-15 -2457 ($ $ (-592 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4047 ($ |#1| $)) (-15 -4047 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3974 ($ $)) (-15 -2450 ($ $)) (-15 -4061 ($ |#1| $)) (-15 -4061 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1032)) (PROGN (-6 (-1032)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-669)) (PROGN (-6 (-669)) (-15 -3523 ((-3 $ "failed") $)) (-15 -1657 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-450)) (PROGN (-6 (-450)) (-15 -3523 ((-3 $ "failed") $)) (-15 -1657 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-977)) (PROGN (-6 (-977)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-660 |#1|)) |%noBranch|) (IF (|has| |#1| (-517)) (-15 -3957 ((-592 $) $)) |%noBranch|) (IF (|has| |#1| (-835 (-1092))) (-6 (-835 (-1092))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-1181 |#1|)) (-15 -4075 ($ $ $)) (-15 -2997 ($ $))) |%noBranch|) (IF (|has| |#1| (-281)) (-15 -3311 ($ $ $)) |%noBranch|)))
-((-4236 (((-108) $ $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1675 (($) NIL) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-3456 (((-1179) $ |#1| |#1|) NIL (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 ((|#2| $ |#1| |#2|) NIL)) (-1676 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-2591 (((-3 |#2| "failed") |#1| $) NIL)) (-2169 (($) NIL T CONST)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-3271 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (|has| $ (-6 -4258))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-3 |#2| "failed") |#1| $) NIL)) (-1703 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-1284 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (|has| $ (-6 -4258))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-2301 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#2| $ |#1|) NIL)) (-3440 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) NIL)) (-3666 ((|#1| $) NIL (|has| |#1| (-789)))) (-2694 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-1847 ((|#1| $) NIL (|has| |#1| (-789)))) (-2284 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4259))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-2356 (((-592 |#1|) $) NIL)) (-2239 (((-108) |#1| $) NIL)) (-2992 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-1262 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-2628 (((-592 |#1|) $) NIL)) (-2978 (((-108) |#1| $) NIL)) (-2093 (((-1039) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1872 ((|#2| $) NIL (|has| |#1| (-789)))) (-1983 (((-3 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) "failed") (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL)) (-1420 (($ $ |#2|) NIL (|has| $ (-6 -4259)))) (-4127 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-3944 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-3341 (((-592 |#2|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1760 (($) NIL) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-2110 (((-713) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-713) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-567 (-501))))) (-1230 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-1217 (((-798) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-1956 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-3029 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-274 |#1| |#2|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -4258))) (-1020) (-1020)) (T -274))
-NIL
-(-13 (-1105 |#1| |#2|) (-10 -7 (-6 -4258)))
-((-1213 (((-290) (-1075) (-592 (-1075))) 16) (((-290) (-1075) (-1075)) 15) (((-290) (-592 (-1075))) 14) (((-290) (-1075)) 12)))
-(((-275) (-10 -7 (-15 -1213 ((-290) (-1075))) (-15 -1213 ((-290) (-592 (-1075)))) (-15 -1213 ((-290) (-1075) (-1075))) (-15 -1213 ((-290) (-1075) (-592 (-1075)))))) (T -275))
-((-1213 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-1075))) (-5 *3 (-1075)) (-5 *2 (-290)) (-5 *1 (-275)))) (-1213 (*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-290)) (-5 *1 (-275)))) (-1213 (*1 *2 *3) (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-290)) (-5 *1 (-275)))) (-1213 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-290)) (-5 *1 (-275)))))
-(-10 -7 (-15 -1213 ((-290) (-1075))) (-15 -1213 ((-290) (-592 (-1075)))) (-15 -1213 ((-290) (-1075) (-1075))) (-15 -1213 ((-290) (-1075) (-592 (-1075)))))
-((-3165 ((|#2| (-1 |#2| |#1|) (-1075) (-565 |#1|)) 18)))
-(((-276 |#1| |#2|) (-10 -7 (-15 -3165 (|#2| (-1 |#2| |#1|) (-1075) (-565 |#1|)))) (-281) (-1128)) (T -276))
-((-3165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1075)) (-5 *5 (-565 *6)) (-4 *6 (-281)) (-4 *2 (-1128)) (-5 *1 (-276 *6 *2)))))
-(-10 -7 (-15 -3165 (|#2| (-1 |#2| |#1|) (-1075) (-565 |#1|))))
-((-3165 ((|#2| (-1 |#2| |#1|) (-565 |#1|)) 17)))
-(((-277 |#1| |#2|) (-10 -7 (-15 -3165 (|#2| (-1 |#2| |#1|) (-565 |#1|)))) (-281) (-281)) (T -277))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-565 *5)) (-4 *5 (-281)) (-4 *2 (-281)) (-5 *1 (-277 *5 *2)))))
-(-10 -7 (-15 -3165 (|#2| (-1 |#2| |#1|) (-565 |#1|))))
-((-1258 (((-108) (-205)) 10)))
-(((-278 |#1| |#2|) (-10 -7 (-15 -1258 ((-108) (-205)))) (-205) (-205)) (T -278))
-((-1258 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-278 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -1258 ((-108) (-205))))
-((-3709 (((-1073 (-205)) (-294 (-205)) (-592 (-1092)) (-1015 (-782 (-205)))) 92)) (-4013 (((-1073 (-205)) (-1174 (-294 (-205))) (-592 (-1092)) (-1015 (-782 (-205)))) 106) (((-1073 (-205)) (-294 (-205)) (-592 (-1092)) (-1015 (-782 (-205)))) 61)) (-1508 (((-592 (-1075)) (-1073 (-205))) NIL)) (-2290 (((-592 (-205)) (-294 (-205)) (-1092) (-1015 (-782 (-205)))) 58)) (-2937 (((-592 (-205)) (-887 (-385 (-525))) (-1092) (-1015 (-782 (-205)))) 49)) (-1626 (((-592 (-1075)) (-592 (-205))) NIL)) (-2562 (((-205) (-1015 (-782 (-205)))) 25)) (-2910 (((-205) (-1015 (-782 (-205)))) 26)) (-2612 (((-108) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 54)) (-3372 (((-1075) (-205)) NIL)))
-(((-279) (-10 -7 (-15 -2562 ((-205) (-1015 (-782 (-205))))) (-15 -2910 ((-205) (-1015 (-782 (-205))))) (-15 -2612 ((-108) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2290 ((-592 (-205)) (-294 (-205)) (-1092) (-1015 (-782 (-205))))) (-15 -3709 ((-1073 (-205)) (-294 (-205)) (-592 (-1092)) (-1015 (-782 (-205))))) (-15 -4013 ((-1073 (-205)) (-294 (-205)) (-592 (-1092)) (-1015 (-782 (-205))))) (-15 -4013 ((-1073 (-205)) (-1174 (-294 (-205))) (-592 (-1092)) (-1015 (-782 (-205))))) (-15 -2937 ((-592 (-205)) (-887 (-385 (-525))) (-1092) (-1015 (-782 (-205))))) (-15 -3372 ((-1075) (-205))) (-15 -1626 ((-592 (-1075)) (-592 (-205)))) (-15 -1508 ((-592 (-1075)) (-1073 (-205)))))) (T -279))
-((-1508 (*1 *2 *3) (-12 (-5 *3 (-1073 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-279)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-279)))) (-3372 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1075)) (-5 *1 (-279)))) (-2937 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-887 (-385 (-525)))) (-5 *4 (-1092)) (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279)))) (-4013 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1174 (-294 (-205)))) (-5 *4 (-592 (-1092))) (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-1073 (-205))) (-5 *1 (-279)))) (-4013 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1092))) (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-1073 (-205))) (-5 *1 (-279)))) (-3709 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1092))) (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-1073 (-205))) (-5 *1 (-279)))) (-2290 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1092)) (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279)))) (-2612 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-108)) (-5 *1 (-279)))) (-2910 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279)))) (-2562 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279)))))
-(-10 -7 (-15 -2562 ((-205) (-1015 (-782 (-205))))) (-15 -2910 ((-205) (-1015 (-782 (-205))))) (-15 -2612 ((-108) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2290 ((-592 (-205)) (-294 (-205)) (-1092) (-1015 (-782 (-205))))) (-15 -3709 ((-1073 (-205)) (-294 (-205)) (-592 (-1092)) (-1015 (-782 (-205))))) (-15 -4013 ((-1073 (-205)) (-294 (-205)) (-592 (-1092)) (-1015 (-782 (-205))))) (-15 -4013 ((-1073 (-205)) (-1174 (-294 (-205))) (-592 (-1092)) (-1015 (-782 (-205))))) (-15 -2937 ((-592 (-205)) (-887 (-385 (-525))) (-1092) (-1015 (-782 (-205))))) (-15 -3372 ((-1075) (-205))) (-15 -1626 ((-592 (-1075)) (-592 (-205)))) (-15 -1508 ((-592 (-1075)) (-1073 (-205)))))
-((-2563 (((-592 (-565 $)) $) 30)) (-3311 (($ $ (-273 $)) 81) (($ $ (-592 (-273 $))) 123) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-3077 (((-3 (-565 $) "failed") $) 113)) (-1572 (((-565 $) $) 112)) (-3437 (($ $) 19) (($ (-592 $)) 56)) (-2059 (((-592 (-110)) $) 38)) (-3930 (((-110) (-110)) 91)) (-1673 (((-108) $) 131)) (-3165 (($ (-1 $ $) (-565 $)) 89)) (-1923 (((-3 (-565 $) "failed") $) 93)) (-3173 (($ (-110) $) 61) (($ (-110) (-592 $)) 100)) (-3131 (((-108) $ (-110)) 117) (((-108) $ (-1092)) 116)) (-1794 (((-713) $) 46)) (-2662 (((-108) $ $) 59) (((-108) $ (-1092)) 51)) (-3699 (((-108) $) 129)) (-2457 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) 121) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ $))) 84) (($ $ (-592 (-1092)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1092) (-1 $ (-592 $))) 69) (($ $ (-1092) (-1 $ $)) 75) (($ $ (-592 (-110)) (-592 (-1 $ $))) 83) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 85) (($ $ (-110) (-1 $ (-592 $))) 71) (($ $ (-110) (-1 $ $)) 77)) (-3406 (($ (-110) $) 62) (($ (-110) $ $) 63) (($ (-110) $ $ $) 64) (($ (-110) $ $ $ $) 65) (($ (-110) (-592 $)) 109)) (-3147 (($ $) 53) (($ $ $) 119)) (-1381 (($ $) 17) (($ (-592 $)) 55)) (-1960 (((-108) (-110)) 22)))
-(((-280 |#1|) (-10 -8 (-15 -1673 ((-108) |#1|)) (-15 -3699 ((-108) |#1|)) (-15 -2457 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2457 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -2457 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2457 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -2457 (|#1| |#1| (-1092) (-1 |#1| |#1|))) (-15 -2457 (|#1| |#1| (-1092) (-1 |#1| (-592 |#1|)))) (-15 -2457 (|#1| |#1| (-592 (-1092)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2457 (|#1| |#1| (-592 (-1092)) (-592 (-1 |#1| |#1|)))) (-15 -2662 ((-108) |#1| (-1092))) (-15 -2662 ((-108) |#1| |#1|)) (-15 -3165 (|#1| (-1 |#1| |#1|) (-565 |#1|))) (-15 -3173 (|#1| (-110) (-592 |#1|))) (-15 -3173 (|#1| (-110) |#1|)) (-15 -3131 ((-108) |#1| (-1092))) (-15 -3131 ((-108) |#1| (-110))) (-15 -1960 ((-108) (-110))) (-15 -3930 ((-110) (-110))) (-15 -2059 ((-592 (-110)) |#1|)) (-15 -2563 ((-592 (-565 |#1|)) |#1|)) (-15 -1923 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -1794 ((-713) |#1|)) (-15 -3147 (|#1| |#1| |#1|)) (-15 -3147 (|#1| |#1|)) (-15 -3437 (|#1| (-592 |#1|))) (-15 -3437 (|#1| |#1|)) (-15 -1381 (|#1| (-592 |#1|))) (-15 -1381 (|#1| |#1|)) (-15 -3311 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -3311 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3311 (|#1| |#1| (-273 |#1|))) (-15 -3406 (|#1| (-110) (-592 |#1|))) (-15 -3406 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3406 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3406 (|#1| (-110) |#1| |#1|)) (-15 -3406 (|#1| (-110) |#1|)) (-15 -2457 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2457 (|#1| |#1| |#1| |#1|)) (-15 -2457 (|#1| |#1| (-273 |#1|))) (-15 -2457 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2457 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -2457 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -1572 ((-565 |#1|) |#1|)) (-15 -3077 ((-3 (-565 |#1|) "failed") |#1|))) (-281)) (T -280))
-((-3930 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-280 *3)) (-4 *3 (-281)))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-280 *4)) (-4 *4 (-281)))))
-(-10 -8 (-15 -1673 ((-108) |#1|)) (-15 -3699 ((-108) |#1|)) (-15 -2457 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2457 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -2457 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2457 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -2457 (|#1| |#1| (-1092) (-1 |#1| |#1|))) (-15 -2457 (|#1| |#1| (-1092) (-1 |#1| (-592 |#1|)))) (-15 -2457 (|#1| |#1| (-592 (-1092)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2457 (|#1| |#1| (-592 (-1092)) (-592 (-1 |#1| |#1|)))) (-15 -2662 ((-108) |#1| (-1092))) (-15 -2662 ((-108) |#1| |#1|)) (-15 -3165 (|#1| (-1 |#1| |#1|) (-565 |#1|))) (-15 -3173 (|#1| (-110) (-592 |#1|))) (-15 -3173 (|#1| (-110) |#1|)) (-15 -3131 ((-108) |#1| (-1092))) (-15 -3131 ((-108) |#1| (-110))) (-15 -1960 ((-108) (-110))) (-15 -3930 ((-110) (-110))) (-15 -2059 ((-592 (-110)) |#1|)) (-15 -2563 ((-592 (-565 |#1|)) |#1|)) (-15 -1923 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -1794 ((-713) |#1|)) (-15 -3147 (|#1| |#1| |#1|)) (-15 -3147 (|#1| |#1|)) (-15 -3437 (|#1| (-592 |#1|))) (-15 -3437 (|#1| |#1|)) (-15 -1381 (|#1| (-592 |#1|))) (-15 -1381 (|#1| |#1|)) (-15 -3311 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -3311 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3311 (|#1| |#1| (-273 |#1|))) (-15 -3406 (|#1| (-110) (-592 |#1|))) (-15 -3406 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3406 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3406 (|#1| (-110) |#1| |#1|)) (-15 -3406 (|#1| (-110) |#1|)) (-15 -2457 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2457 (|#1| |#1| |#1| |#1|)) (-15 -2457 (|#1| |#1| (-273 |#1|))) (-15 -2457 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2457 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -2457 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -1572 ((-565 |#1|) |#1|)) (-15 -3077 ((-3 (-565 |#1|) "failed") |#1|)))
-((-4236 (((-108) $ $) 7)) (-2563 (((-592 (-565 $)) $) 44)) (-3311 (($ $ (-273 $)) 56) (($ $ (-592 (-273 $))) 55) (($ $ (-592 (-565 $)) (-592 $)) 54)) (-3077 (((-3 (-565 $) "failed") $) 69)) (-1572 (((-565 $) $) 68)) (-3437 (($ $) 51) (($ (-592 $)) 50)) (-2059 (((-592 (-110)) $) 43)) (-3930 (((-110) (-110)) 42)) (-1673 (((-108) $) 22 (|has| $ (-968 (-525))))) (-2541 (((-1088 $) (-565 $)) 25 (|has| $ (-977)))) (-2638 (($ $ $) 13)) (-3662 (($ $ $) 14)) (-3165 (($ (-1 $ $) (-565 $)) 36)) (-1923 (((-3 (-565 $) "failed") $) 46)) (-2619 (((-1075) $) 9)) (-2734 (((-592 (-565 $)) $) 45)) (-3173 (($ (-110) $) 38) (($ (-110) (-592 $)) 37)) (-3131 (((-108) $ (-110)) 40) (((-108) $ (-1092)) 39)) (-1794 (((-713) $) 47)) (-2093 (((-1039) $) 10)) (-2662 (((-108) $ $) 35) (((-108) $ (-1092)) 34)) (-3699 (((-108) $) 23 (|has| $ (-968 (-525))))) (-2457 (($ $ (-565 $) $) 67) (($ $ (-592 (-565 $)) (-592 $)) 66) (($ $ (-592 (-273 $))) 65) (($ $ (-273 $)) 64) (($ $ $ $) 63) (($ $ (-592 $) (-592 $)) 62) (($ $ (-592 (-1092)) (-592 (-1 $ $))) 33) (($ $ (-592 (-1092)) (-592 (-1 $ (-592 $)))) 32) (($ $ (-1092) (-1 $ (-592 $))) 31) (($ $ (-1092) (-1 $ $)) 30) (($ $ (-592 (-110)) (-592 (-1 $ $))) 29) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 28) (($ $ (-110) (-1 $ (-592 $))) 27) (($ $ (-110) (-1 $ $)) 26)) (-3406 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-592 $)) 57)) (-3147 (($ $) 49) (($ $ $) 48)) (-2756 (($ $) 24 (|has| $ (-977)))) (-1217 (((-798) $) 11) (($ (-565 $)) 70)) (-1381 (($ $) 53) (($ (-592 $)) 52)) (-1960 (((-108) (-110)) 41)) (-4011 (((-108) $ $) 16)) (-3987 (((-108) $ $) 17)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 15)) (-3978 (((-108) $ $) 18)))
+((-2957 (($ (-1092) (-1092) (-1024) $) 17)) (-3710 (($ (-1092) (-592 (-899)) $) 22)) (-4069 (((-592 (-1007)) $) 10)) (-2606 (((-3 (-1024) "failed") (-1092) (-1092) $) 16)) (-3079 (((-3 (-592 (-899)) "failed") (-1092) $) 21)) (-1558 (($) 7)) (-2169 (($) 23)) (-4100 (((-798) $) 27)) (-2275 (($) 24)))
+(((-270) (-13 (-566 (-798)) (-10 -8 (-15 -1558 ($)) (-15 -4069 ((-592 (-1007)) $)) (-15 -2606 ((-3 (-1024) "failed") (-1092) (-1092) $)) (-15 -2957 ($ (-1092) (-1092) (-1024) $)) (-15 -3079 ((-3 (-592 (-899)) "failed") (-1092) $)) (-15 -3710 ($ (-1092) (-592 (-899)) $)) (-15 -2169 ($)) (-15 -2275 ($))))) (T -270))
+((-1558 (*1 *1) (-5 *1 (-270))) (-4069 (*1 *2 *1) (-12 (-5 *2 (-592 (-1007))) (-5 *1 (-270)))) (-2606 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1092)) (-5 *2 (-1024)) (-5 *1 (-270)))) (-2957 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1092)) (-5 *3 (-1024)) (-5 *1 (-270)))) (-3079 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1092)) (-5 *2 (-592 (-899))) (-5 *1 (-270)))) (-3710 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-899))) (-5 *1 (-270)))) (-2169 (*1 *1) (-5 *1 (-270))) (-2275 (*1 *1) (-5 *1 (-270))))
+(-13 (-566 (-798)) (-10 -8 (-15 -1558 ($)) (-15 -4069 ((-592 (-1007)) $)) (-15 -2606 ((-3 (-1024) "failed") (-1092) (-1092) $)) (-15 -2957 ($ (-1092) (-1092) (-1024) $)) (-15 -3079 ((-3 (-592 (-899)) "failed") (-1092) $)) (-15 -3710 ($ (-1092) (-592 (-899)) $)) (-15 -2169 ($)) (-15 -2275 ($))))
+((-3391 (((-592 (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (|:| |geneigvec| (-592 (-632 (-385 (-887 |#1|))))))) (-632 (-385 (-887 |#1|)))) 85)) (-2870 (((-592 (-632 (-385 (-887 |#1|)))) (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 |#1|)))))) (-632 (-385 (-887 |#1|)))) 80) (((-592 (-632 (-385 (-887 |#1|)))) (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|))) (-632 (-385 (-887 |#1|))) (-713) (-713)) 38)) (-1867 (((-592 (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 |#1|))))))) (-632 (-385 (-887 |#1|)))) 82)) (-4046 (((-592 (-632 (-385 (-887 |#1|)))) (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|))) (-632 (-385 (-887 |#1|)))) 62)) (-3883 (((-592 (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (-632 (-385 (-887 |#1|)))) 61)) (-3153 (((-887 |#1|) (-632 (-385 (-887 |#1|)))) 50) (((-887 |#1|) (-632 (-385 (-887 |#1|))) (-1092)) 51)))
+(((-271 |#1|) (-10 -7 (-15 -3153 ((-887 |#1|) (-632 (-385 (-887 |#1|))) (-1092))) (-15 -3153 ((-887 |#1|) (-632 (-385 (-887 |#1|))))) (-15 -3883 ((-592 (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (-632 (-385 (-887 |#1|))))) (-15 -4046 ((-592 (-632 (-385 (-887 |#1|)))) (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|))) (-632 (-385 (-887 |#1|))))) (-15 -2870 ((-592 (-632 (-385 (-887 |#1|)))) (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|))) (-632 (-385 (-887 |#1|))) (-713) (-713))) (-15 -2870 ((-592 (-632 (-385 (-887 |#1|)))) (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 |#1|)))))) (-632 (-385 (-887 |#1|))))) (-15 -3391 ((-592 (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (|:| |geneigvec| (-592 (-632 (-385 (-887 |#1|))))))) (-632 (-385 (-887 |#1|))))) (-15 -1867 ((-592 (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 |#1|))))))) (-632 (-385 (-887 |#1|)))))) (-429)) (T -271))
+((-1867 (*1 *2 *3) (-12 (-4 *4 (-429)) (-5 *2 (-592 (-2 (|:| |eigval| (-3 (-385 (-887 *4)) (-1082 (-1092) (-887 *4)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 *4)))))))) (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-887 *4)))))) (-3391 (*1 *2 *3) (-12 (-4 *4 (-429)) (-5 *2 (-592 (-2 (|:| |eigval| (-3 (-385 (-887 *4)) (-1082 (-1092) (-887 *4)))) (|:| |geneigvec| (-592 (-632 (-385 (-887 *4)))))))) (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-887 *4)))))) (-2870 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-385 (-887 *5)) (-1082 (-1092) (-887 *5)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 *4)))) (-4 *5 (-429)) (-5 *2 (-592 (-632 (-385 (-887 *5))))) (-5 *1 (-271 *5)) (-5 *4 (-632 (-385 (-887 *5)))))) (-2870 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-385 (-887 *6)) (-1082 (-1092) (-887 *6)))) (-5 *5 (-713)) (-4 *6 (-429)) (-5 *2 (-592 (-632 (-385 (-887 *6))))) (-5 *1 (-271 *6)) (-5 *4 (-632 (-385 (-887 *6)))))) (-4046 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-385 (-887 *5)) (-1082 (-1092) (-887 *5)))) (-4 *5 (-429)) (-5 *2 (-592 (-632 (-385 (-887 *5))))) (-5 *1 (-271 *5)) (-5 *4 (-632 (-385 (-887 *5)))))) (-3883 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-887 *4)))) (-4 *4 (-429)) (-5 *2 (-592 (-3 (-385 (-887 *4)) (-1082 (-1092) (-887 *4))))) (-5 *1 (-271 *4)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-887 *4)))) (-5 *2 (-887 *4)) (-5 *1 (-271 *4)) (-4 *4 (-429)))) (-3153 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-887 *5)))) (-5 *4 (-1092)) (-5 *2 (-887 *5)) (-5 *1 (-271 *5)) (-4 *5 (-429)))))
+(-10 -7 (-15 -3153 ((-887 |#1|) (-632 (-385 (-887 |#1|))) (-1092))) (-15 -3153 ((-887 |#1|) (-632 (-385 (-887 |#1|))))) (-15 -3883 ((-592 (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (-632 (-385 (-887 |#1|))))) (-15 -4046 ((-592 (-632 (-385 (-887 |#1|)))) (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|))) (-632 (-385 (-887 |#1|))))) (-15 -2870 ((-592 (-632 (-385 (-887 |#1|)))) (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|))) (-632 (-385 (-887 |#1|))) (-713) (-713))) (-15 -2870 ((-592 (-632 (-385 (-887 |#1|)))) (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 |#1|)))))) (-632 (-385 (-887 |#1|))))) (-15 -3391 ((-592 (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (|:| |geneigvec| (-592 (-632 (-385 (-887 |#1|))))))) (-632 (-385 (-887 |#1|))))) (-15 -1867 ((-592 (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1082 (-1092) (-887 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 |#1|))))))) (-632 (-385 (-887 |#1|))))))
+((-2016 (((-273 |#2|) (-1 |#2| |#1|) (-273 |#1|)) 14)))
+(((-272 |#1| |#2|) (-10 -7 (-15 -2016 ((-273 |#2|) (-1 |#2| |#1|) (-273 |#1|)))) (-1128) (-1128)) (T -272))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-273 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-273 *6)) (-5 *1 (-272 *5 *6)))))
+(-10 -7 (-15 -2016 ((-273 |#2|) (-1 |#2| |#1|) (-273 |#1|))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2414 (((-108) $) NIL (|has| |#1| (-21)))) (-2788 (($ $) 23)) (-3222 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3702 (($ $ $) 94 (|has| |#1| (-281)))) (-2475 (($) NIL (-2067 (|has| |#1| (-21)) (|has| |#1| (-669))) CONST)) (-2194 (($ $) 8 (|has| |#1| (-21)))) (-4120 (((-3 $ "failed") $) 69 (|has| |#1| (-669)))) (-3283 ((|#1| $) 22)) (-3300 (((-3 $ "failed") $) 67 (|has| |#1| (-669)))) (-2278 (((-108) $) NIL (|has| |#1| (-669)))) (-2016 (($ (-1 |#1| |#1|) $) 25)) (-3268 ((|#1| $) 9)) (-1818 (($ $) 58 (|has| |#1| (-21)))) (-2712 (((-3 $ "failed") $) 68 (|has| |#1| (-669)))) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-1387 (($ $) 71 (-2067 (|has| |#1| (-341)) (|has| |#1| (-450))))) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1644 (((-592 $) $) 20 (|has| |#1| (-517)))) (-2825 (($ $ $) 35 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 $)) 38 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-1092) |#1|) 28 (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) 32 (|has| |#1| (-486 (-1092) |#1|)))) (-3237 (($ |#1| |#1|) 18)) (-3933 (((-128)) 89 (|has| |#1| (-341)))) (-2702 (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092)) 86 (|has| |#1| (-835 (-1092))))) (-3055 (($ $ $) NIL (|has| |#1| (-450)))) (-1242 (($ $ $) NIL (|has| |#1| (-450)))) (-4100 (($ (-525)) NIL (|has| |#1| (-977))) (((-108) $) 46 (|has| |#1| (-1020))) (((-798) $) 45 (|has| |#1| (-1020)))) (-2448 (((-713)) 74 (|has| |#1| (-977)))) (-3706 (($ $ (-525)) NIL (|has| |#1| (-450))) (($ $ (-713)) NIL (|has| |#1| (-669))) (($ $ (-856)) NIL (|has| |#1| (-1032)))) (-3364 (($) 56 (|has| |#1| (-21)) CONST)) (-3375 (($) 64 (|has| |#1| (-669)) CONST)) (-2401 (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092))))) (-2775 (($ |#1| |#1|) 21) (((-108) $ $) 41 (|has| |#1| (-1020)))) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 91 (-2067 (|has| |#1| (-341)) (|has| |#1| (-450))))) (-2871 (($ |#1| $) 54 (|has| |#1| (-21))) (($ $ |#1|) 55 (|has| |#1| (-21))) (($ $ $) 53 (|has| |#1| (-21))) (($ $) 52 (|has| |#1| (-21)))) (-2860 (($ |#1| $) 49 (|has| |#1| (-25))) (($ $ |#1|) 50 (|has| |#1| (-25))) (($ $ $) 48 (|has| |#1| (-25)))) (** (($ $ (-525)) NIL (|has| |#1| (-450))) (($ $ (-713)) NIL (|has| |#1| (-669))) (($ $ (-856)) NIL (|has| |#1| (-1032)))) (* (($ $ |#1|) 62 (|has| |#1| (-1032))) (($ |#1| $) 61 (|has| |#1| (-1032))) (($ $ $) 60 (|has| |#1| (-1032))) (($ (-525) $) 76 (|has| |#1| (-21))) (($ (-713) $) NIL (|has| |#1| (-21))) (($ (-856) $) NIL (|has| |#1| (-25)))))
+(((-273 |#1|) (-13 (-1128) (-10 -8 (-15 -2775 ($ |#1| |#1|)) (-15 -3237 ($ |#1| |#1|)) (-15 -2788 ($ $)) (-15 -3268 (|#1| $)) (-15 -3283 (|#1| $)) (-15 -2016 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-486 (-1092) |#1|)) (-6 (-486 (-1092) |#1|)) |%noBranch|) (IF (|has| |#1| (-1020)) (PROGN (-6 (-1020)) (-6 (-566 (-108))) (IF (|has| |#1| (-288 |#1|)) (PROGN (-15 -2825 ($ $ $)) (-15 -2825 ($ $ (-592 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2860 ($ |#1| $)) (-15 -2860 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1818 ($ $)) (-15 -2194 ($ $)) (-15 -2871 ($ |#1| $)) (-15 -2871 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1032)) (PROGN (-6 (-1032)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-669)) (PROGN (-6 (-669)) (-15 -2712 ((-3 $ "failed") $)) (-15 -4120 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-450)) (PROGN (-6 (-450)) (-15 -2712 ((-3 $ "failed") $)) (-15 -4120 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-977)) (PROGN (-6 (-977)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-660 |#1|)) |%noBranch|) (IF (|has| |#1| (-517)) (-15 -1644 ((-592 $) $)) |%noBranch|) (IF (|has| |#1| (-835 (-1092))) (-6 (-835 (-1092))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-1181 |#1|)) (-15 -2880 ($ $ $)) (-15 -1387 ($ $))) |%noBranch|) (IF (|has| |#1| (-281)) (-15 -3702 ($ $ $)) |%noBranch|))) (-1128)) (T -273))
+((-2775 (*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128)))) (-3237 (*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128)))) (-2788 (*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128)))) (-3268 (*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128)))) (-3283 (*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128)))) (-2016 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-273 *3)))) (-2825 (*1 *1 *1 *1) (-12 (-4 *2 (-288 *2)) (-4 *2 (-1020)) (-4 *2 (-1128)) (-5 *1 (-273 *2)))) (-2825 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *3))) (-4 *3 (-288 *3)) (-4 *3 (-1020)) (-4 *3 (-1128)) (-5 *1 (-273 *3)))) (-2860 (*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1128)))) (-2860 (*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1128)))) (-1818 (*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-2194 (*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-2871 (*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-2871 (*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-2712 (*1 *1 *1) (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1128)))) (-4120 (*1 *1 *1) (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1128)))) (-1644 (*1 *2 *1) (-12 (-5 *2 (-592 (-273 *3))) (-5 *1 (-273 *3)) (-4 *3 (-517)) (-4 *3 (-1128)))) (-3702 (*1 *1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-281)) (-4 *2 (-1128)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1032)) (-4 *2 (-1128)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1032)) (-4 *2 (-1128)))) (-2880 (*1 *1 *1 *1) (-2067 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1128))) (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1128))))) (-1387 (*1 *1 *1) (-2067 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1128))) (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1128))))))
+(-13 (-1128) (-10 -8 (-15 -2775 ($ |#1| |#1|)) (-15 -3237 ($ |#1| |#1|)) (-15 -2788 ($ $)) (-15 -3268 (|#1| $)) (-15 -3283 (|#1| $)) (-15 -2016 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-486 (-1092) |#1|)) (-6 (-486 (-1092) |#1|)) |%noBranch|) (IF (|has| |#1| (-1020)) (PROGN (-6 (-1020)) (-6 (-566 (-108))) (IF (|has| |#1| (-288 |#1|)) (PROGN (-15 -2825 ($ $ $)) (-15 -2825 ($ $ (-592 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2860 ($ |#1| $)) (-15 -2860 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1818 ($ $)) (-15 -2194 ($ $)) (-15 -2871 ($ |#1| $)) (-15 -2871 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1032)) (PROGN (-6 (-1032)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-669)) (PROGN (-6 (-669)) (-15 -2712 ((-3 $ "failed") $)) (-15 -4120 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-450)) (PROGN (-6 (-450)) (-15 -2712 ((-3 $ "failed") $)) (-15 -4120 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-977)) (PROGN (-6 (-977)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-660 |#1|)) |%noBranch|) (IF (|has| |#1| (-517)) (-15 -1644 ((-592 $) $)) |%noBranch|) (IF (|has| |#1| (-835 (-1092))) (-6 (-835 (-1092))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-1181 |#1|)) (-15 -2880 ($ $ $)) (-15 -1387 ($ $))) |%noBranch|) (IF (|has| |#1| (-281)) (-15 -3702 ($ $ $)) |%noBranch|)))
+((-4087 (((-108) $ $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3311 (($) NIL) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-3289 (((-1179) $ |#1| |#1|) NIL (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 ((|#2| $ |#1| |#2|) NIL)) (-3050 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-1515 (((-3 |#2| "failed") |#1| $) NIL)) (-2475 (($) NIL T CONST)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-4205 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (|has| $ (-6 -4259))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-3 |#2| "failed") |#1| $) NIL)) (-2698 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3504 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (|has| $ (-6 -4259))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3081 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#2| $ |#1|) NIL)) (-2175 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) NIL)) (-1732 ((|#1| $) NIL (|has| |#1| (-789)))) (-2617 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-2231 ((|#1| $) NIL (|has| |#1| (-789)))) (-3069 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4260))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1398 (((-592 |#1|) $) NIL)) (-3770 (((-108) |#1| $) NIL)) (-3577 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-3246 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-3177 (((-592 |#1|) $) NIL)) (-3461 (((-108) |#1| $) NIL)) (-3993 (((-1039) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1647 ((|#2| $) NIL (|has| |#1| (-789)))) (-4202 (((-3 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) "failed") (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL)) (-3453 (($ $ |#2|) NIL (|has| $ (-6 -4260)))) (-2724 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-1518 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-1717 (((-592 |#2|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2637 (($) NIL) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-4002 (((-713) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-713) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-567 (-501))))) (-4114 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-4100 (((-798) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-3905 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-2706 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-274 |#1| |#2|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -4259))) (-1020) (-1020)) (T -274))
+NIL
+(-13 (-1105 |#1| |#2|) (-10 -7 (-6 -4259)))
+((-2188 (((-290) (-1075) (-592 (-1075))) 16) (((-290) (-1075) (-1075)) 15) (((-290) (-592 (-1075))) 14) (((-290) (-1075)) 12)))
+(((-275) (-10 -7 (-15 -2188 ((-290) (-1075))) (-15 -2188 ((-290) (-592 (-1075)))) (-15 -2188 ((-290) (-1075) (-1075))) (-15 -2188 ((-290) (-1075) (-592 (-1075)))))) (T -275))
+((-2188 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-1075))) (-5 *3 (-1075)) (-5 *2 (-290)) (-5 *1 (-275)))) (-2188 (*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-290)) (-5 *1 (-275)))) (-2188 (*1 *2 *3) (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-290)) (-5 *1 (-275)))) (-2188 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-290)) (-5 *1 (-275)))))
+(-10 -7 (-15 -2188 ((-290) (-1075))) (-15 -2188 ((-290) (-592 (-1075)))) (-15 -2188 ((-290) (-1075) (-1075))) (-15 -2188 ((-290) (-1075) (-592 (-1075)))))
+((-2016 ((|#2| (-1 |#2| |#1|) (-1075) (-565 |#1|)) 18)))
+(((-276 |#1| |#2|) (-10 -7 (-15 -2016 (|#2| (-1 |#2| |#1|) (-1075) (-565 |#1|)))) (-281) (-1128)) (T -276))
+((-2016 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1075)) (-5 *5 (-565 *6)) (-4 *6 (-281)) (-4 *2 (-1128)) (-5 *1 (-276 *6 *2)))))
+(-10 -7 (-15 -2016 (|#2| (-1 |#2| |#1|) (-1075) (-565 |#1|))))
+((-2016 ((|#2| (-1 |#2| |#1|) (-565 |#1|)) 17)))
+(((-277 |#1| |#2|) (-10 -7 (-15 -2016 (|#2| (-1 |#2| |#1|) (-565 |#1|)))) (-281) (-281)) (T -277))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-565 *5)) (-4 *5 (-281)) (-4 *2 (-281)) (-5 *1 (-277 *5 *2)))))
+(-10 -7 (-15 -2016 (|#2| (-1 |#2| |#1|) (-565 |#1|))))
+((-3202 (((-108) (-205)) 10)))
+(((-278 |#1| |#2|) (-10 -7 (-15 -3202 ((-108) (-205)))) (-205) (-205)) (T -278))
+((-3202 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-278 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -3202 ((-108) (-205))))
+((-3975 (((-1073 (-205)) (-294 (-205)) (-592 (-1092)) (-1015 (-782 (-205)))) 92)) (-4007 (((-1073 (-205)) (-1174 (-294 (-205))) (-592 (-1092)) (-1015 (-782 (-205)))) 106) (((-1073 (-205)) (-294 (-205)) (-592 (-1092)) (-1015 (-782 (-205)))) 61)) (-3163 (((-592 (-1075)) (-1073 (-205))) NIL)) (-4228 (((-592 (-205)) (-294 (-205)) (-1092) (-1015 (-782 (-205)))) 58)) (-1260 (((-592 (-205)) (-887 (-385 (-525))) (-1092) (-1015 (-782 (-205)))) 49)) (-3843 (((-592 (-1075)) (-592 (-205))) NIL)) (-3829 (((-205) (-1015 (-782 (-205)))) 25)) (-4008 (((-205) (-1015 (-782 (-205)))) 26)) (-1209 (((-108) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 54)) (-3768 (((-1075) (-205)) NIL)))
+(((-279) (-10 -7 (-15 -3829 ((-205) (-1015 (-782 (-205))))) (-15 -4008 ((-205) (-1015 (-782 (-205))))) (-15 -1209 ((-108) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4228 ((-592 (-205)) (-294 (-205)) (-1092) (-1015 (-782 (-205))))) (-15 -3975 ((-1073 (-205)) (-294 (-205)) (-592 (-1092)) (-1015 (-782 (-205))))) (-15 -4007 ((-1073 (-205)) (-294 (-205)) (-592 (-1092)) (-1015 (-782 (-205))))) (-15 -4007 ((-1073 (-205)) (-1174 (-294 (-205))) (-592 (-1092)) (-1015 (-782 (-205))))) (-15 -1260 ((-592 (-205)) (-887 (-385 (-525))) (-1092) (-1015 (-782 (-205))))) (-15 -3768 ((-1075) (-205))) (-15 -3843 ((-592 (-1075)) (-592 (-205)))) (-15 -3163 ((-592 (-1075)) (-1073 (-205)))))) (T -279))
+((-3163 (*1 *2 *3) (-12 (-5 *3 (-1073 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-279)))) (-3843 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-279)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1075)) (-5 *1 (-279)))) (-1260 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-887 (-385 (-525)))) (-5 *4 (-1092)) (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279)))) (-4007 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1174 (-294 (-205)))) (-5 *4 (-592 (-1092))) (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-1073 (-205))) (-5 *1 (-279)))) (-4007 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1092))) (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-1073 (-205))) (-5 *1 (-279)))) (-3975 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1092))) (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-1073 (-205))) (-5 *1 (-279)))) (-4228 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1092)) (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279)))) (-1209 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-108)) (-5 *1 (-279)))) (-4008 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279)))) (-3829 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279)))))
+(-10 -7 (-15 -3829 ((-205) (-1015 (-782 (-205))))) (-15 -4008 ((-205) (-1015 (-782 (-205))))) (-15 -1209 ((-108) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4228 ((-592 (-205)) (-294 (-205)) (-1092) (-1015 (-782 (-205))))) (-15 -3975 ((-1073 (-205)) (-294 (-205)) (-592 (-1092)) (-1015 (-782 (-205))))) (-15 -4007 ((-1073 (-205)) (-294 (-205)) (-592 (-1092)) (-1015 (-782 (-205))))) (-15 -4007 ((-1073 (-205)) (-1174 (-294 (-205))) (-592 (-1092)) (-1015 (-782 (-205))))) (-15 -1260 ((-592 (-205)) (-887 (-385 (-525))) (-1092) (-1015 (-782 (-205))))) (-15 -3768 ((-1075) (-205))) (-15 -3843 ((-592 (-1075)) (-592 (-205)))) (-15 -3163 ((-592 (-1075)) (-1073 (-205)))))
+((-1285 (((-592 (-565 $)) $) 30)) (-3702 (($ $ (-273 $)) 81) (($ $ (-592 (-273 $))) 123) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-1934 (((-3 (-565 $) "failed") $) 113)) (-4105 (((-565 $) $) 112)) (-3106 (($ $) 19) (($ (-592 $)) 56)) (-2531 (((-592 (-110)) $) 38)) (-1386 (((-110) (-110)) 91)) (-3028 (((-108) $) 131)) (-2016 (($ (-1 $ $) (-565 $)) 89)) (-1751 (((-3 (-565 $) "failed") $) 93)) (-4152 (($ (-110) $) 61) (($ (-110) (-592 $)) 100)) (-2412 (((-108) $ (-110)) 117) (((-108) $ (-1092)) 116)) (-2934 (((-713) $) 46)) (-3513 (((-108) $ $) 59) (((-108) $ (-1092)) 51)) (-3864 (((-108) $) 129)) (-2825 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) 121) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ $))) 84) (($ $ (-592 (-1092)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1092) (-1 $ (-592 $))) 69) (($ $ (-1092) (-1 $ $)) 75) (($ $ (-592 (-110)) (-592 (-1 $ $))) 83) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 85) (($ $ (-110) (-1 $ (-592 $))) 71) (($ $ (-110) (-1 $ $)) 77)) (-3431 (($ (-110) $) 62) (($ (-110) $ $) 63) (($ (-110) $ $ $) 64) (($ (-110) $ $ $ $) 65) (($ (-110) (-592 $)) 109)) (-2540 (($ $) 53) (($ $ $) 119)) (-2239 (($ $) 17) (($ (-592 $)) 55)) (-3954 (((-108) (-110)) 22)))
+(((-280 |#1|) (-10 -8 (-15 -3028 ((-108) |#1|)) (-15 -3864 ((-108) |#1|)) (-15 -2825 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2825 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -2825 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2825 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -2825 (|#1| |#1| (-1092) (-1 |#1| |#1|))) (-15 -2825 (|#1| |#1| (-1092) (-1 |#1| (-592 |#1|)))) (-15 -2825 (|#1| |#1| (-592 (-1092)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2825 (|#1| |#1| (-592 (-1092)) (-592 (-1 |#1| |#1|)))) (-15 -3513 ((-108) |#1| (-1092))) (-15 -3513 ((-108) |#1| |#1|)) (-15 -2016 (|#1| (-1 |#1| |#1|) (-565 |#1|))) (-15 -4152 (|#1| (-110) (-592 |#1|))) (-15 -4152 (|#1| (-110) |#1|)) (-15 -2412 ((-108) |#1| (-1092))) (-15 -2412 ((-108) |#1| (-110))) (-15 -3954 ((-108) (-110))) (-15 -1386 ((-110) (-110))) (-15 -2531 ((-592 (-110)) |#1|)) (-15 -1285 ((-592 (-565 |#1|)) |#1|)) (-15 -1751 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -2934 ((-713) |#1|)) (-15 -2540 (|#1| |#1| |#1|)) (-15 -2540 (|#1| |#1|)) (-15 -3106 (|#1| (-592 |#1|))) (-15 -3106 (|#1| |#1|)) (-15 -2239 (|#1| (-592 |#1|))) (-15 -2239 (|#1| |#1|)) (-15 -3702 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -3702 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3702 (|#1| |#1| (-273 |#1|))) (-15 -3431 (|#1| (-110) (-592 |#1|))) (-15 -3431 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3431 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3431 (|#1| (-110) |#1| |#1|)) (-15 -3431 (|#1| (-110) |#1|)) (-15 -2825 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2825 (|#1| |#1| |#1| |#1|)) (-15 -2825 (|#1| |#1| (-273 |#1|))) (-15 -2825 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2825 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -2825 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -4105 ((-565 |#1|) |#1|)) (-15 -1934 ((-3 (-565 |#1|) "failed") |#1|))) (-281)) (T -280))
+((-1386 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-280 *3)) (-4 *3 (-281)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-280 *4)) (-4 *4 (-281)))))
+(-10 -8 (-15 -3028 ((-108) |#1|)) (-15 -3864 ((-108) |#1|)) (-15 -2825 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2825 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -2825 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2825 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -2825 (|#1| |#1| (-1092) (-1 |#1| |#1|))) (-15 -2825 (|#1| |#1| (-1092) (-1 |#1| (-592 |#1|)))) (-15 -2825 (|#1| |#1| (-592 (-1092)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2825 (|#1| |#1| (-592 (-1092)) (-592 (-1 |#1| |#1|)))) (-15 -3513 ((-108) |#1| (-1092))) (-15 -3513 ((-108) |#1| |#1|)) (-15 -2016 (|#1| (-1 |#1| |#1|) (-565 |#1|))) (-15 -4152 (|#1| (-110) (-592 |#1|))) (-15 -4152 (|#1| (-110) |#1|)) (-15 -2412 ((-108) |#1| (-1092))) (-15 -2412 ((-108) |#1| (-110))) (-15 -3954 ((-108) (-110))) (-15 -1386 ((-110) (-110))) (-15 -2531 ((-592 (-110)) |#1|)) (-15 -1285 ((-592 (-565 |#1|)) |#1|)) (-15 -1751 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -2934 ((-713) |#1|)) (-15 -2540 (|#1| |#1| |#1|)) (-15 -2540 (|#1| |#1|)) (-15 -3106 (|#1| (-592 |#1|))) (-15 -3106 (|#1| |#1|)) (-15 -2239 (|#1| (-592 |#1|))) (-15 -2239 (|#1| |#1|)) (-15 -3702 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -3702 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3702 (|#1| |#1| (-273 |#1|))) (-15 -3431 (|#1| (-110) (-592 |#1|))) (-15 -3431 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3431 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3431 (|#1| (-110) |#1| |#1|)) (-15 -3431 (|#1| (-110) |#1|)) (-15 -2825 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2825 (|#1| |#1| |#1| |#1|)) (-15 -2825 (|#1| |#1| (-273 |#1|))) (-15 -2825 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2825 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -2825 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -4105 ((-565 |#1|) |#1|)) (-15 -1934 ((-3 (-565 |#1|) "failed") |#1|)))
+((-4087 (((-108) $ $) 7)) (-1285 (((-592 (-565 $)) $) 44)) (-3702 (($ $ (-273 $)) 56) (($ $ (-592 (-273 $))) 55) (($ $ (-592 (-565 $)) (-592 $)) 54)) (-1934 (((-3 (-565 $) "failed") $) 69)) (-4105 (((-565 $) $) 68)) (-3106 (($ $) 51) (($ (-592 $)) 50)) (-2531 (((-592 (-110)) $) 43)) (-1386 (((-110) (-110)) 42)) (-3028 (((-108) $) 22 (|has| $ (-968 (-525))))) (-1808 (((-1088 $) (-565 $)) 25 (|has| $ (-977)))) (-3033 (($ $ $) 13)) (-1609 (($ $ $) 14)) (-2016 (($ (-1 $ $) (-565 $)) 36)) (-1751 (((-3 (-565 $) "failed") $) 46)) (-1289 (((-1075) $) 9)) (-4153 (((-592 (-565 $)) $) 45)) (-4152 (($ (-110) $) 38) (($ (-110) (-592 $)) 37)) (-2412 (((-108) $ (-110)) 40) (((-108) $ (-1092)) 39)) (-2934 (((-713) $) 47)) (-3993 (((-1039) $) 10)) (-3513 (((-108) $ $) 35) (((-108) $ (-1092)) 34)) (-3864 (((-108) $) 23 (|has| $ (-968 (-525))))) (-2825 (($ $ (-565 $) $) 67) (($ $ (-592 (-565 $)) (-592 $)) 66) (($ $ (-592 (-273 $))) 65) (($ $ (-273 $)) 64) (($ $ $ $) 63) (($ $ (-592 $) (-592 $)) 62) (($ $ (-592 (-1092)) (-592 (-1 $ $))) 33) (($ $ (-592 (-1092)) (-592 (-1 $ (-592 $)))) 32) (($ $ (-1092) (-1 $ (-592 $))) 31) (($ $ (-1092) (-1 $ $)) 30) (($ $ (-592 (-110)) (-592 (-1 $ $))) 29) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 28) (($ $ (-110) (-1 $ (-592 $))) 27) (($ $ (-110) (-1 $ $)) 26)) (-3431 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-592 $)) 57)) (-2540 (($ $) 49) (($ $ $) 48)) (-2013 (($ $) 24 (|has| $ (-977)))) (-4100 (((-798) $) 11) (($ (-565 $)) 70)) (-2239 (($ $) 53) (($ (-592 $)) 52)) (-3954 (((-108) (-110)) 41)) (-2830 (((-108) $ $) 16)) (-2807 (((-108) $ $) 17)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 15)) (-2795 (((-108) $ $) 18)))
(((-281) (-131)) (T -281))
-((-3406 (*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3406 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3406 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3406 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3406 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281)))) (-3311 (*1 *1 *1 *2) (-12 (-5 *2 (-273 *1)) (-4 *1 (-281)))) (-3311 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *1))) (-4 *1 (-281)))) (-3311 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-565 *1))) (-5 *3 (-592 *1)) (-4 *1 (-281)))) (-1381 (*1 *1 *1) (-4 *1 (-281))) (-1381 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281)))) (-3437 (*1 *1 *1) (-4 *1 (-281))) (-3437 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281)))) (-3147 (*1 *1 *1) (-4 *1 (-281))) (-3147 (*1 *1 *1 *1) (-4 *1 (-281))) (-1794 (*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-713)))) (-1923 (*1 *2 *1) (|partial| -12 (-5 *2 (-565 *1)) (-4 *1 (-281)))) (-2734 (*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281)))) (-2563 (*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281)))) (-2059 (*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-592 (-110))))) (-3930 (*1 *2 *2) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-1960 (*1 *2 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108)))) (-3131 (*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108)))) (-3131 (*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1092)) (-5 *2 (-108)))) (-3173 (*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3173 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281)))) (-3165 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-565 *1)) (-4 *1 (-281)))) (-2662 (*1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-108)))) (-2662 (*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1092)) (-5 *2 (-108)))) (-2457 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281)))) (-2457 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-281)))) (-2457 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1 *1 (-592 *1))) (-4 *1 (-281)))) (-2457 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281)))) (-2457 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281)))) (-2457 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-281)))) (-2457 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-592 *1))) (-4 *1 (-281)))) (-2457 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281)))) (-2541 (*1 *2 *3) (-12 (-5 *3 (-565 *1)) (-4 *1 (-977)) (-4 *1 (-281)) (-5 *2 (-1088 *1)))) (-2756 (*1 *1 *1) (-12 (-4 *1 (-977)) (-4 *1 (-281)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-968 (-525))) (-4 *1 (-281)) (-5 *2 (-108)))) (-1673 (*1 *2 *1) (-12 (-4 *1 (-968 (-525))) (-4 *1 (-281)) (-5 *2 (-108)))))
-(-13 (-789) (-968 (-565 $)) (-486 (-565 $) $) (-288 $) (-10 -8 (-15 -3406 ($ (-110) $)) (-15 -3406 ($ (-110) $ $)) (-15 -3406 ($ (-110) $ $ $)) (-15 -3406 ($ (-110) $ $ $ $)) (-15 -3406 ($ (-110) (-592 $))) (-15 -3311 ($ $ (-273 $))) (-15 -3311 ($ $ (-592 (-273 $)))) (-15 -3311 ($ $ (-592 (-565 $)) (-592 $))) (-15 -1381 ($ $)) (-15 -1381 ($ (-592 $))) (-15 -3437 ($ $)) (-15 -3437 ($ (-592 $))) (-15 -3147 ($ $)) (-15 -3147 ($ $ $)) (-15 -1794 ((-713) $)) (-15 -1923 ((-3 (-565 $) "failed") $)) (-15 -2734 ((-592 (-565 $)) $)) (-15 -2563 ((-592 (-565 $)) $)) (-15 -2059 ((-592 (-110)) $)) (-15 -3930 ((-110) (-110))) (-15 -1960 ((-108) (-110))) (-15 -3131 ((-108) $ (-110))) (-15 -3131 ((-108) $ (-1092))) (-15 -3173 ($ (-110) $)) (-15 -3173 ($ (-110) (-592 $))) (-15 -3165 ($ (-1 $ $) (-565 $))) (-15 -2662 ((-108) $ $)) (-15 -2662 ((-108) $ (-1092))) (-15 -2457 ($ $ (-592 (-1092)) (-592 (-1 $ $)))) (-15 -2457 ($ $ (-592 (-1092)) (-592 (-1 $ (-592 $))))) (-15 -2457 ($ $ (-1092) (-1 $ (-592 $)))) (-15 -2457 ($ $ (-1092) (-1 $ $))) (-15 -2457 ($ $ (-592 (-110)) (-592 (-1 $ $)))) (-15 -2457 ($ $ (-592 (-110)) (-592 (-1 $ (-592 $))))) (-15 -2457 ($ $ (-110) (-1 $ (-592 $)))) (-15 -2457 ($ $ (-110) (-1 $ $))) (IF (|has| $ (-977)) (PROGN (-15 -2541 ((-1088 $) (-565 $))) (-15 -2756 ($ $))) |%noBranch|) (IF (|has| $ (-968 (-525))) (PROGN (-15 -3699 ((-108) $)) (-15 -1673 ((-108) $))) |%noBranch|)))
+((-3431 (*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3431 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3431 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3431 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3431 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281)))) (-3702 (*1 *1 *1 *2) (-12 (-5 *2 (-273 *1)) (-4 *1 (-281)))) (-3702 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *1))) (-4 *1 (-281)))) (-3702 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-565 *1))) (-5 *3 (-592 *1)) (-4 *1 (-281)))) (-2239 (*1 *1 *1) (-4 *1 (-281))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281)))) (-3106 (*1 *1 *1) (-4 *1 (-281))) (-3106 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281)))) (-2540 (*1 *1 *1) (-4 *1 (-281))) (-2540 (*1 *1 *1 *1) (-4 *1 (-281))) (-2934 (*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-713)))) (-1751 (*1 *2 *1) (|partial| -12 (-5 *2 (-565 *1)) (-4 *1 (-281)))) (-4153 (*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281)))) (-2531 (*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-592 (-110))))) (-1386 (*1 *2 *2) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3954 (*1 *2 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108)))) (-2412 (*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108)))) (-2412 (*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1092)) (-5 *2 (-108)))) (-4152 (*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-4152 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281)))) (-2016 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-565 *1)) (-4 *1 (-281)))) (-3513 (*1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-108)))) (-3513 (*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1092)) (-5 *2 (-108)))) (-2825 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281)))) (-2825 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-281)))) (-2825 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1 *1 (-592 *1))) (-4 *1 (-281)))) (-2825 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281)))) (-2825 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281)))) (-2825 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-281)))) (-2825 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-592 *1))) (-4 *1 (-281)))) (-2825 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-565 *1)) (-4 *1 (-977)) (-4 *1 (-281)) (-5 *2 (-1088 *1)))) (-2013 (*1 *1 *1) (-12 (-4 *1 (-977)) (-4 *1 (-281)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-968 (-525))) (-4 *1 (-281)) (-5 *2 (-108)))) (-3028 (*1 *2 *1) (-12 (-4 *1 (-968 (-525))) (-4 *1 (-281)) (-5 *2 (-108)))))
+(-13 (-789) (-968 (-565 $)) (-486 (-565 $) $) (-288 $) (-10 -8 (-15 -3431 ($ (-110) $)) (-15 -3431 ($ (-110) $ $)) (-15 -3431 ($ (-110) $ $ $)) (-15 -3431 ($ (-110) $ $ $ $)) (-15 -3431 ($ (-110) (-592 $))) (-15 -3702 ($ $ (-273 $))) (-15 -3702 ($ $ (-592 (-273 $)))) (-15 -3702 ($ $ (-592 (-565 $)) (-592 $))) (-15 -2239 ($ $)) (-15 -2239 ($ (-592 $))) (-15 -3106 ($ $)) (-15 -3106 ($ (-592 $))) (-15 -2540 ($ $)) (-15 -2540 ($ $ $)) (-15 -2934 ((-713) $)) (-15 -1751 ((-3 (-565 $) "failed") $)) (-15 -4153 ((-592 (-565 $)) $)) (-15 -1285 ((-592 (-565 $)) $)) (-15 -2531 ((-592 (-110)) $)) (-15 -1386 ((-110) (-110))) (-15 -3954 ((-108) (-110))) (-15 -2412 ((-108) $ (-110))) (-15 -2412 ((-108) $ (-1092))) (-15 -4152 ($ (-110) $)) (-15 -4152 ($ (-110) (-592 $))) (-15 -2016 ($ (-1 $ $) (-565 $))) (-15 -3513 ((-108) $ $)) (-15 -3513 ((-108) $ (-1092))) (-15 -2825 ($ $ (-592 (-1092)) (-592 (-1 $ $)))) (-15 -2825 ($ $ (-592 (-1092)) (-592 (-1 $ (-592 $))))) (-15 -2825 ($ $ (-1092) (-1 $ (-592 $)))) (-15 -2825 ($ $ (-1092) (-1 $ $))) (-15 -2825 ($ $ (-592 (-110)) (-592 (-1 $ $)))) (-15 -2825 ($ $ (-592 (-110)) (-592 (-1 $ (-592 $))))) (-15 -2825 ($ $ (-110) (-1 $ (-592 $)))) (-15 -2825 ($ $ (-110) (-1 $ $))) (IF (|has| $ (-977)) (PROGN (-15 -1808 ((-1088 $) (-565 $))) (-15 -2013 ($ $))) |%noBranch|) (IF (|has| $ (-968 (-525))) (PROGN (-15 -3864 ((-108) $)) (-15 -3028 ((-108) $))) |%noBranch|)))
(((-97) . T) ((-566 (-798)) . T) ((-288 $) . T) ((-486 (-565 $) $) . T) ((-486 $ $) . T) ((-789) . T) ((-968 (-565 $)) . T) ((-1020) . T))
-((-1652 (((-592 |#1|) (-592 |#1|)) 10)))
-(((-282 |#1|) (-10 -7 (-15 -1652 ((-592 |#1|) (-592 |#1|)))) (-787)) (T -282))
-((-1652 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-787)) (-5 *1 (-282 *3)))))
-(-10 -7 (-15 -1652 ((-592 |#1|) (-592 |#1|))))
-((-3165 (((-632 |#2|) (-1 |#2| |#1|) (-632 |#1|)) 17)))
-(((-283 |#1| |#2|) (-10 -7 (-15 -3165 ((-632 |#2|) (-1 |#2| |#1|) (-632 |#1|)))) (-977) (-977)) (T -283))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-632 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-5 *2 (-632 *6)) (-5 *1 (-283 *5 *6)))))
-(-10 -7 (-15 -3165 ((-632 |#2|) (-1 |#2| |#1|) (-632 |#1|))))
-((-2741 (((-1174 (-294 (-357))) (-1174 (-294 (-205)))) 105)) (-1804 (((-1015 (-782 (-205))) (-1015 (-782 (-357)))) 40)) (-1508 (((-592 (-1075)) (-1073 (-205))) 87)) (-1351 (((-294 (-357)) (-887 (-205))) 50)) (-2626 (((-205) (-887 (-205))) 46)) (-2584 (((-1075) (-357)) 169)) (-3910 (((-782 (-205)) (-782 (-357))) 34)) (-2162 (((-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))) (-1174 (-294 (-205)))) 143)) (-1800 (((-966) (-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966)))) 181) (((-966) (-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))))) 179)) (-3407 (((-632 (-205)) (-592 (-205)) (-713)) 14)) (-2915 (((-1174 (-641)) (-592 (-205))) 94)) (-1626 (((-592 (-1075)) (-592 (-205))) 75)) (-1748 (((-3 (-294 (-205)) "failed") (-294 (-205))) 120)) (-1258 (((-108) (-205) (-1015 (-782 (-205)))) 109)) (-1899 (((-966) (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) 198)) (-2562 (((-205) (-1015 (-782 (-205)))) 107)) (-2910 (((-205) (-1015 (-782 (-205)))) 108)) (-3668 (((-205) (-385 (-525))) 27)) (-1538 (((-1075) (-357)) 73)) (-1969 (((-205) (-357)) 17)) (-4030 (((-357) (-1174 (-294 (-205)))) 154)) (-3631 (((-294 (-205)) (-294 (-357))) 23)) (-2013 (((-385 (-525)) (-294 (-205))) 53)) (-3115 (((-294 (-385 (-525))) (-294 (-205))) 69)) (-2935 (((-294 (-357)) (-294 (-205))) 98)) (-1413 (((-205) (-294 (-205))) 54)) (-2410 (((-592 (-205)) (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))) 64)) (-3062 (((-1015 (-782 (-205))) (-1015 (-782 (-205)))) 61)) (-3372 (((-1075) (-205)) 72)) (-3773 (((-641) (-205)) 90)) (-2758 (((-385 (-525)) (-205)) 55)) (-3766 (((-294 (-357)) (-205)) 49)) (-3210 (((-592 (-1015 (-782 (-205)))) (-592 (-1015 (-782 (-357))))) 43)) (-2038 (((-966) (-592 (-966))) 165) (((-966) (-966) (-966)) 162)) (-2765 (((-966) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
-(((-284) (-10 -7 (-15 -1969 ((-205) (-357))) (-15 -3631 ((-294 (-205)) (-294 (-357)))) (-15 -3910 ((-782 (-205)) (-782 (-357)))) (-15 -1804 ((-1015 (-782 (-205))) (-1015 (-782 (-357))))) (-15 -3210 ((-592 (-1015 (-782 (-205)))) (-592 (-1015 (-782 (-357)))))) (-15 -2758 ((-385 (-525)) (-205))) (-15 -2013 ((-385 (-525)) (-294 (-205)))) (-15 -1413 ((-205) (-294 (-205)))) (-15 -1748 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -4030 ((-357) (-1174 (-294 (-205))))) (-15 -2162 ((-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))) (-1174 (-294 (-205))))) (-15 -3115 ((-294 (-385 (-525))) (-294 (-205)))) (-15 -3062 ((-1015 (-782 (-205))) (-1015 (-782 (-205))))) (-15 -2410 ((-592 (-205)) (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))))) (-15 -3773 ((-641) (-205))) (-15 -2915 ((-1174 (-641)) (-592 (-205)))) (-15 -2935 ((-294 (-357)) (-294 (-205)))) (-15 -2741 ((-1174 (-294 (-357))) (-1174 (-294 (-205))))) (-15 -1258 ((-108) (-205) (-1015 (-782 (-205))))) (-15 -3372 ((-1075) (-205))) (-15 -1538 ((-1075) (-357))) (-15 -1626 ((-592 (-1075)) (-592 (-205)))) (-15 -1508 ((-592 (-1075)) (-1073 (-205)))) (-15 -2562 ((-205) (-1015 (-782 (-205))))) (-15 -2910 ((-205) (-1015 (-782 (-205))))) (-15 -2038 ((-966) (-966) (-966))) (-15 -2038 ((-966) (-592 (-966)))) (-15 -2584 ((-1075) (-357))) (-15 -1800 ((-966) (-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))))) (-15 -1800 ((-966) (-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))))) (-15 -2765 ((-966) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1899 ((-966) (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))) (-15 -1351 ((-294 (-357)) (-887 (-205)))) (-15 -2626 ((-205) (-887 (-205)))) (-15 -3766 ((-294 (-357)) (-205))) (-15 -3668 ((-205) (-385 (-525)))) (-15 -3407 ((-632 (-205)) (-592 (-205)) (-713))))) (T -284))
-((-3407 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-205))) (-5 *4 (-713)) (-5 *2 (-632 (-205))) (-5 *1 (-284)))) (-3668 (*1 *2 *3) (-12 (-5 *3 (-385 (-525))) (-5 *2 (-205)) (-5 *1 (-284)))) (-3766 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-294 (-357))) (-5 *1 (-284)))) (-2626 (*1 *2 *3) (-12 (-5 *3 (-887 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-887 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) (-5 *2 (-966)) (-5 *1 (-284)))) (-2765 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-966)) (-5 *1 (-284)))) (-1800 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966)))) (-5 *2 (-966)) (-5 *1 (-284)))) (-1800 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))))) (-5 *2 (-966)) (-5 *1 (-284)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1075)) (-5 *1 (-284)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-592 (-966))) (-5 *2 (-966)) (-5 *1 (-284)))) (-2038 (*1 *2 *2 *2) (-12 (-5 *2 (-966)) (-5 *1 (-284)))) (-2910 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))) (-2562 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-1073 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-284)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-284)))) (-1538 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1075)) (-5 *1 (-284)))) (-3372 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1075)) (-5 *1 (-284)))) (-1258 (*1 *2 *3 *4) (-12 (-5 *4 (-1015 (-782 (-205)))) (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-284)))) (-2741 (*1 *2 *3) (-12 (-5 *3 (-1174 (-294 (-205)))) (-5 *2 (-1174 (-294 (-357)))) (-5 *1 (-284)))) (-2935 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))) (-2915 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1174 (-641))) (-5 *1 (-284)))) (-3773 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-641)) (-5 *1 (-284)))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))) (-5 *2 (-592 (-205))) (-5 *1 (-284)))) (-3062 (*1 *2 *2) (-12 (-5 *2 (-1015 (-782 (-205)))) (-5 *1 (-284)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-385 (-525)))) (-5 *1 (-284)))) (-2162 (*1 *2 *3) (-12 (-5 *3 (-1174 (-294 (-205)))) (-5 *2 (-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525)))) (-5 *1 (-284)))) (-4030 (*1 *2 *3) (-12 (-5 *3 (-1174 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-284)))) (-1748 (*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-284)))) (-1413 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-385 (-525))) (-5 *1 (-284)))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-385 (-525))) (-5 *1 (-284)))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-592 (-1015 (-782 (-357))))) (-5 *2 (-592 (-1015 (-782 (-205))))) (-5 *1 (-284)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-357)))) (-5 *2 (-1015 (-782 (-205)))) (-5 *1 (-284)))) (-3910 (*1 *2 *3) (-12 (-5 *3 (-782 (-357))) (-5 *2 (-782 (-205))) (-5 *1 (-284)))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-294 (-357))) (-5 *2 (-294 (-205))) (-5 *1 (-284)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-284)))))
-(-10 -7 (-15 -1969 ((-205) (-357))) (-15 -3631 ((-294 (-205)) (-294 (-357)))) (-15 -3910 ((-782 (-205)) (-782 (-357)))) (-15 -1804 ((-1015 (-782 (-205))) (-1015 (-782 (-357))))) (-15 -3210 ((-592 (-1015 (-782 (-205)))) (-592 (-1015 (-782 (-357)))))) (-15 -2758 ((-385 (-525)) (-205))) (-15 -2013 ((-385 (-525)) (-294 (-205)))) (-15 -1413 ((-205) (-294 (-205)))) (-15 -1748 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -4030 ((-357) (-1174 (-294 (-205))))) (-15 -2162 ((-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))) (-1174 (-294 (-205))))) (-15 -3115 ((-294 (-385 (-525))) (-294 (-205)))) (-15 -3062 ((-1015 (-782 (-205))) (-1015 (-782 (-205))))) (-15 -2410 ((-592 (-205)) (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))))) (-15 -3773 ((-641) (-205))) (-15 -2915 ((-1174 (-641)) (-592 (-205)))) (-15 -2935 ((-294 (-357)) (-294 (-205)))) (-15 -2741 ((-1174 (-294 (-357))) (-1174 (-294 (-205))))) (-15 -1258 ((-108) (-205) (-1015 (-782 (-205))))) (-15 -3372 ((-1075) (-205))) (-15 -1538 ((-1075) (-357))) (-15 -1626 ((-592 (-1075)) (-592 (-205)))) (-15 -1508 ((-592 (-1075)) (-1073 (-205)))) (-15 -2562 ((-205) (-1015 (-782 (-205))))) (-15 -2910 ((-205) (-1015 (-782 (-205))))) (-15 -2038 ((-966) (-966) (-966))) (-15 -2038 ((-966) (-592 (-966)))) (-15 -2584 ((-1075) (-357))) (-15 -1800 ((-966) (-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))))) (-15 -1800 ((-966) (-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))))) (-15 -2765 ((-966) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1899 ((-966) (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))) (-15 -1351 ((-294 (-357)) (-887 (-205)))) (-15 -2626 ((-205) (-887 (-205)))) (-15 -3766 ((-294 (-357)) (-205))) (-15 -3668 ((-205) (-385 (-525)))) (-15 -3407 ((-632 (-205)) (-592 (-205)) (-713))))
-((-2193 (((-108) $ $) 11)) (-1747 (($ $ $) 15)) (-1733 (($ $ $) 14)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 44)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 53)) (-2589 (($ $ $) 21) (($ (-592 $)) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-1715 (((-3 $ "failed") $ $) 17)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 46)))
-(((-285 |#1|) (-10 -8 (-15 -3798 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -1774 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1774 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3409 |#1|)) |#1| |#1|)) (-15 -1747 (|#1| |#1| |#1|)) (-15 -1733 (|#1| |#1| |#1|)) (-15 -2193 ((-108) |#1| |#1|)) (-15 -1842 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -2168 ((-2 (|:| -3244 (-592 |#1|)) (|:| -3409 |#1|)) (-592 |#1|))) (-15 -2589 (|#1| (-592 |#1|))) (-15 -2589 (|#1| |#1| |#1|)) (-15 -1715 ((-3 |#1| "failed") |#1| |#1|))) (-286)) (T -285))
-NIL
-(-10 -8 (-15 -3798 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -1774 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1774 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3409 |#1|)) |#1| |#1|)) (-15 -1747 (|#1| |#1| |#1|)) (-15 -1733 (|#1| |#1| |#1|)) (-15 -2193 ((-108) |#1| |#1|)) (-15 -1842 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -2168 ((-2 (|:| -3244 (-592 |#1|)) (|:| -3409 |#1|)) (-592 |#1|))) (-15 -2589 (|#1| (-592 |#1|))) (-15 -2589 (|#1| |#1| |#1|)) (-15 -1715 ((-3 |#1| "failed") |#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-1578 (((-3 $ "failed") $ $) 19)) (-2193 (((-108) $ $) 59)) (-2169 (($) 17 T CONST)) (-1747 (($ $ $) 55)) (-3457 (((-3 $ "failed") $) 34)) (-1733 (($ $ $) 56)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 51)) (-1396 (((-108) $) 31)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2556 (($ $ $) 46) (($ (-592 $)) 45)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2589 (($ $ $) 48) (($ (-592 $)) 47)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1715 (((-3 $ "failed") $ $) 42)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-3684 (((-713) $) 58)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 57)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-3917 (((-713)) 29)) (-3325 (((-108) $ $) 39)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-4068 (((-592 |#1|) (-592 |#1|)) 10)))
+(((-282 |#1|) (-10 -7 (-15 -4068 ((-592 |#1|) (-592 |#1|)))) (-787)) (T -282))
+((-4068 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-787)) (-5 *1 (-282 *3)))))
+(-10 -7 (-15 -4068 ((-592 |#1|) (-592 |#1|))))
+((-2016 (((-632 |#2|) (-1 |#2| |#1|) (-632 |#1|)) 17)))
+(((-283 |#1| |#2|) (-10 -7 (-15 -2016 ((-632 |#2|) (-1 |#2| |#1|) (-632 |#1|)))) (-977) (-977)) (T -283))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-632 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-5 *2 (-632 *6)) (-5 *1 (-283 *5 *6)))))
+(-10 -7 (-15 -2016 ((-632 |#2|) (-1 |#2| |#1|) (-632 |#1|))))
+((-3008 (((-1174 (-294 (-357))) (-1174 (-294 (-205)))) 105)) (-2972 (((-1015 (-782 (-205))) (-1015 (-782 (-357)))) 40)) (-3163 (((-592 (-1075)) (-1073 (-205))) 87)) (-2751 (((-294 (-357)) (-887 (-205))) 50)) (-3166 (((-205) (-887 (-205))) 46)) (-4033 (((-1075) (-357)) 169)) (-2368 (((-782 (-205)) (-782 (-357))) 34)) (-2402 (((-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))) (-1174 (-294 (-205)))) 143)) (-2945 (((-966) (-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966)))) 181) (((-966) (-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))))) 179)) (-4108 (((-632 (-205)) (-592 (-205)) (-713)) 14)) (-4058 (((-1174 (-641)) (-592 (-205))) 94)) (-3843 (((-592 (-1075)) (-592 (-205))) 75)) (-2889 (((-3 (-294 (-205)) "failed") (-294 (-205))) 120)) (-3202 (((-108) (-205) (-1015 (-782 (-205)))) 109)) (-1520 (((-966) (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) 198)) (-3829 (((-205) (-1015 (-782 (-205)))) 107)) (-4008 (((-205) (-1015 (-782 (-205)))) 108)) (-1752 (((-205) (-385 (-525))) 27)) (-1313 (((-1075) (-357)) 73)) (-4050 (((-205) (-357)) 17)) (-4196 (((-357) (-1174 (-294 (-205)))) 154)) (-1401 (((-294 (-205)) (-294 (-357))) 23)) (-3266 (((-385 (-525)) (-294 (-205))) 53)) (-2263 (((-294 (-385 (-525))) (-294 (-205))) 69)) (-1241 (((-294 (-357)) (-294 (-205))) 98)) (-2034 (((-205) (-294 (-205))) 54)) (-2964 (((-592 (-205)) (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))) 64)) (-2966 (((-1015 (-782 (-205))) (-1015 (-782 (-205)))) 61)) (-3768 (((-1075) (-205)) 72)) (-3377 (((-641) (-205)) 90)) (-2032 (((-385 (-525)) (-205)) 55)) (-3294 (((-294 (-357)) (-205)) 49)) (-2069 (((-592 (-1015 (-782 (-205)))) (-592 (-1015 (-782 (-357))))) 43)) (-2035 (((-966) (-592 (-966))) 165) (((-966) (-966) (-966)) 162)) (-2106 (((-966) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
+(((-284) (-10 -7 (-15 -4050 ((-205) (-357))) (-15 -1401 ((-294 (-205)) (-294 (-357)))) (-15 -2368 ((-782 (-205)) (-782 (-357)))) (-15 -2972 ((-1015 (-782 (-205))) (-1015 (-782 (-357))))) (-15 -2069 ((-592 (-1015 (-782 (-205)))) (-592 (-1015 (-782 (-357)))))) (-15 -2032 ((-385 (-525)) (-205))) (-15 -3266 ((-385 (-525)) (-294 (-205)))) (-15 -2034 ((-205) (-294 (-205)))) (-15 -2889 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -4196 ((-357) (-1174 (-294 (-205))))) (-15 -2402 ((-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))) (-1174 (-294 (-205))))) (-15 -2263 ((-294 (-385 (-525))) (-294 (-205)))) (-15 -2966 ((-1015 (-782 (-205))) (-1015 (-782 (-205))))) (-15 -2964 ((-592 (-205)) (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))))) (-15 -3377 ((-641) (-205))) (-15 -4058 ((-1174 (-641)) (-592 (-205)))) (-15 -1241 ((-294 (-357)) (-294 (-205)))) (-15 -3008 ((-1174 (-294 (-357))) (-1174 (-294 (-205))))) (-15 -3202 ((-108) (-205) (-1015 (-782 (-205))))) (-15 -3768 ((-1075) (-205))) (-15 -1313 ((-1075) (-357))) (-15 -3843 ((-592 (-1075)) (-592 (-205)))) (-15 -3163 ((-592 (-1075)) (-1073 (-205)))) (-15 -3829 ((-205) (-1015 (-782 (-205))))) (-15 -4008 ((-205) (-1015 (-782 (-205))))) (-15 -2035 ((-966) (-966) (-966))) (-15 -2035 ((-966) (-592 (-966)))) (-15 -4033 ((-1075) (-357))) (-15 -2945 ((-966) (-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))))) (-15 -2945 ((-966) (-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))))) (-15 -2106 ((-966) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1520 ((-966) (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))) (-15 -2751 ((-294 (-357)) (-887 (-205)))) (-15 -3166 ((-205) (-887 (-205)))) (-15 -3294 ((-294 (-357)) (-205))) (-15 -1752 ((-205) (-385 (-525)))) (-15 -4108 ((-632 (-205)) (-592 (-205)) (-713))))) (T -284))
+((-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-205))) (-5 *4 (-713)) (-5 *2 (-632 (-205))) (-5 *1 (-284)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-385 (-525))) (-5 *2 (-205)) (-5 *1 (-284)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-294 (-357))) (-5 *1 (-284)))) (-3166 (*1 *2 *3) (-12 (-5 *3 (-887 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-887 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) (-5 *2 (-966)) (-5 *1 (-284)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-966)) (-5 *1 (-284)))) (-2945 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966)))) (-5 *2 (-966)) (-5 *1 (-284)))) (-2945 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))))) (-5 *2 (-966)) (-5 *1 (-284)))) (-4033 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1075)) (-5 *1 (-284)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-592 (-966))) (-5 *2 (-966)) (-5 *1 (-284)))) (-2035 (*1 *2 *2 *2) (-12 (-5 *2 (-966)) (-5 *1 (-284)))) (-4008 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))) (-3829 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))) (-3163 (*1 *2 *3) (-12 (-5 *3 (-1073 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-284)))) (-3843 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-284)))) (-1313 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1075)) (-5 *1 (-284)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1075)) (-5 *1 (-284)))) (-3202 (*1 *2 *3 *4) (-12 (-5 *4 (-1015 (-782 (-205)))) (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-284)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-1174 (-294 (-205)))) (-5 *2 (-1174 (-294 (-357)))) (-5 *1 (-284)))) (-1241 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))) (-4058 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1174 (-641))) (-5 *1 (-284)))) (-3377 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-641)) (-5 *1 (-284)))) (-2964 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))) (-5 *2 (-592 (-205))) (-5 *1 (-284)))) (-2966 (*1 *2 *2) (-12 (-5 *2 (-1015 (-782 (-205)))) (-5 *1 (-284)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-385 (-525)))) (-5 *1 (-284)))) (-2402 (*1 *2 *3) (-12 (-5 *3 (-1174 (-294 (-205)))) (-5 *2 (-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525)))) (-5 *1 (-284)))) (-4196 (*1 *2 *3) (-12 (-5 *3 (-1174 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-284)))) (-2889 (*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-284)))) (-2034 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-385 (-525))) (-5 *1 (-284)))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-385 (-525))) (-5 *1 (-284)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-592 (-1015 (-782 (-357))))) (-5 *2 (-592 (-1015 (-782 (-205))))) (-5 *1 (-284)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-357)))) (-5 *2 (-1015 (-782 (-205)))) (-5 *1 (-284)))) (-2368 (*1 *2 *3) (-12 (-5 *3 (-782 (-357))) (-5 *2 (-782 (-205))) (-5 *1 (-284)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-294 (-357))) (-5 *2 (-294 (-205))) (-5 *1 (-284)))) (-4050 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-284)))))
+(-10 -7 (-15 -4050 ((-205) (-357))) (-15 -1401 ((-294 (-205)) (-294 (-357)))) (-15 -2368 ((-782 (-205)) (-782 (-357)))) (-15 -2972 ((-1015 (-782 (-205))) (-1015 (-782 (-357))))) (-15 -2069 ((-592 (-1015 (-782 (-205)))) (-592 (-1015 (-782 (-357)))))) (-15 -2032 ((-385 (-525)) (-205))) (-15 -3266 ((-385 (-525)) (-294 (-205)))) (-15 -2034 ((-205) (-294 (-205)))) (-15 -2889 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -4196 ((-357) (-1174 (-294 (-205))))) (-15 -2402 ((-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))) (-1174 (-294 (-205))))) (-15 -2263 ((-294 (-385 (-525))) (-294 (-205)))) (-15 -2966 ((-1015 (-782 (-205))) (-1015 (-782 (-205))))) (-15 -2964 ((-592 (-205)) (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))))) (-15 -3377 ((-641) (-205))) (-15 -4058 ((-1174 (-641)) (-592 (-205)))) (-15 -1241 ((-294 (-357)) (-294 (-205)))) (-15 -3008 ((-1174 (-294 (-357))) (-1174 (-294 (-205))))) (-15 -3202 ((-108) (-205) (-1015 (-782 (-205))))) (-15 -3768 ((-1075) (-205))) (-15 -1313 ((-1075) (-357))) (-15 -3843 ((-592 (-1075)) (-592 (-205)))) (-15 -3163 ((-592 (-1075)) (-1073 (-205)))) (-15 -3829 ((-205) (-1015 (-782 (-205))))) (-15 -4008 ((-205) (-1015 (-782 (-205))))) (-15 -2035 ((-966) (-966) (-966))) (-15 -2035 ((-966) (-592 (-966)))) (-15 -4033 ((-1075) (-357))) (-15 -2945 ((-966) (-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))))) (-15 -2945 ((-966) (-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))))) (-15 -2106 ((-966) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1520 ((-966) (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))) (-15 -2751 ((-294 (-357)) (-887 (-205)))) (-15 -3166 ((-205) (-887 (-205)))) (-15 -3294 ((-294 (-357)) (-205))) (-15 -1752 ((-205) (-385 (-525)))) (-15 -4108 ((-632 (-205)) (-592 (-205)) (-713))))
+((-1507 (((-108) $ $) 11)) (-1356 (($ $ $) 15)) (-1332 (($ $ $) 14)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 44)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 53)) (-2772 (($ $ $) 21) (($ (-592 $)) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-1311 (((-3 $ "failed") $ $) 17)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 46)))
+(((-285 |#1|) (-10 -8 (-15 -3624 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -2741 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2741 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3817 |#1|)) |#1| |#1|)) (-15 -1356 (|#1| |#1| |#1|)) (-15 -1332 (|#1| |#1| |#1|)) (-15 -1507 ((-108) |#1| |#1|)) (-15 -2183 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -2466 ((-2 (|:| -2681 (-592 |#1|)) (|:| -3817 |#1|)) (-592 |#1|))) (-15 -2772 (|#1| (-592 |#1|))) (-15 -2772 (|#1| |#1| |#1|)) (-15 -1311 ((-3 |#1| "failed") |#1| |#1|))) (-286)) (T -285))
+NIL
+(-10 -8 (-15 -3624 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -2741 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2741 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3817 |#1|)) |#1| |#1|)) (-15 -1356 (|#1| |#1| |#1|)) (-15 -1332 (|#1| |#1| |#1|)) (-15 -1507 ((-108) |#1| |#1|)) (-15 -2183 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -2466 ((-2 (|:| -2681 (-592 |#1|)) (|:| -3817 |#1|)) (-592 |#1|))) (-15 -2772 (|#1| (-592 |#1|))) (-15 -2772 (|#1| |#1| |#1|)) (-15 -1311 ((-3 |#1| "failed") |#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-3222 (((-3 $ "failed") $ $) 19)) (-1507 (((-108) $ $) 59)) (-2475 (($) 17 T CONST)) (-1356 (($ $ $) 55)) (-3300 (((-3 $ "failed") $) 34)) (-1332 (($ $ $) 56)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 51)) (-2278 (((-108) $) 31)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2739 (($ $ $) 46) (($ (-592 $)) 45)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2772 (($ $ $) 48) (($ (-592 $)) 47)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1311 (((-3 $ "failed") $ $) 42)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1927 (((-713) $) 58)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 57)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-2448 (((-713)) 29)) (-1571 (((-108) $ $) 39)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-286) (-131)) (T -286))
-((-2193 (*1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-108)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-713)))) (-2818 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-286)))) (-1733 (*1 *1 *1 *1) (-4 *1 (-286))) (-1747 (*1 *1 *1 *1) (-4 *1 (-286))) (-1774 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3409 *1))) (-4 *1 (-286)))) (-1774 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-286)))) (-3798 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-286)))))
-(-13 (-855) (-10 -8 (-15 -2193 ((-108) $ $)) (-15 -3684 ((-713) $)) (-15 -2818 ((-2 (|:| -2829 $) (|:| -1607 $)) $ $)) (-15 -1733 ($ $ $)) (-15 -1747 ($ $ $)) (-15 -1774 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $)) (-15 -1774 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3798 ((-3 (-592 $) "failed") (-592 $) $))))
+((-1507 (*1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-108)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-713)))) (-2494 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-286)))) (-1332 (*1 *1 *1 *1) (-4 *1 (-286))) (-1356 (*1 *1 *1 *1) (-4 *1 (-286))) (-2741 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3817 *1))) (-4 *1 (-286)))) (-2741 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-286)))) (-3624 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-286)))))
+(-13 (-855) (-10 -8 (-15 -1507 ((-108) $ $)) (-15 -1927 ((-713) $)) (-15 -2494 ((-2 (|:| -1416 $) (|:| -3681 $)) $ $)) (-15 -1332 ($ $ $)) (-15 -1356 ($ $ $)) (-15 -2741 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $)) (-15 -2741 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3624 ((-3 (-592 $) "failed") (-592 $) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-855) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-2457 (($ $ (-592 |#2|) (-592 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-273 |#2|)) 11) (($ $ (-592 (-273 |#2|))) NIL)))
-(((-287 |#1| |#2|) (-10 -8 (-15 -2457 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2457 (|#1| |#1| (-273 |#2|))) (-15 -2457 (|#1| |#1| |#2| |#2|)) (-15 -2457 (|#1| |#1| (-592 |#2|) (-592 |#2|)))) (-288 |#2|) (-1020)) (T -287))
+((-2825 (($ $ (-592 |#2|) (-592 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-273 |#2|)) 11) (($ $ (-592 (-273 |#2|))) NIL)))
+(((-287 |#1| |#2|) (-10 -8 (-15 -2825 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2825 (|#1| |#1| (-273 |#2|))) (-15 -2825 (|#1| |#1| |#2| |#2|)) (-15 -2825 (|#1| |#1| (-592 |#2|) (-592 |#2|)))) (-288 |#2|) (-1020)) (T -287))
NIL
-(-10 -8 (-15 -2457 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2457 (|#1| |#1| (-273 |#2|))) (-15 -2457 (|#1| |#1| |#2| |#2|)) (-15 -2457 (|#1| |#1| (-592 |#2|) (-592 |#2|))))
-((-2457 (($ $ (-592 |#1|) (-592 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-273 |#1|)) 11) (($ $ (-592 (-273 |#1|))) 10)))
+(-10 -8 (-15 -2825 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2825 (|#1| |#1| (-273 |#2|))) (-15 -2825 (|#1| |#1| |#2| |#2|)) (-15 -2825 (|#1| |#1| (-592 |#2|) (-592 |#2|))))
+((-2825 (($ $ (-592 |#1|) (-592 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-273 |#1|)) 11) (($ $ (-592 (-273 |#1|))) 10)))
(((-288 |#1|) (-131) (-1020)) (T -288))
-((-2457 (*1 *1 *1 *2) (-12 (-5 *2 (-273 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1020)))) (-2457 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *3))) (-4 *1 (-288 *3)) (-4 *3 (-1020)))))
-(-13 (-486 |t#1| |t#1|) (-10 -8 (-15 -2457 ($ $ (-273 |t#1|))) (-15 -2457 ($ $ (-592 (-273 |t#1|))))))
+((-2825 (*1 *1 *1 *2) (-12 (-5 *2 (-273 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1020)))) (-2825 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *3))) (-4 *1 (-288 *3)) (-4 *3 (-1020)))))
+(-13 (-486 |t#1| |t#1|) (-10 -8 (-15 -2825 ($ $ (-273 |t#1|))) (-15 -2825 ($ $ (-592 (-273 |t#1|))))))
(((-486 |#1| |#1|) . T))
-((-2457 ((|#1| (-1 |#1| (-525)) (-1094 (-385 (-525)))) 25)))
-(((-289 |#1|) (-10 -7 (-15 -2457 (|#1| (-1 |#1| (-525)) (-1094 (-385 (-525)))))) (-37 (-385 (-525)))) (T -289))
-((-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-525))) (-5 *4 (-1094 (-385 (-525)))) (-5 *1 (-289 *2)) (-4 *2 (-37 (-385 (-525)))))))
-(-10 -7 (-15 -2457 (|#1| (-1 |#1| (-525)) (-1094 (-385 (-525))))))
-((-4236 (((-108) $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 7)) (-3955 (((-108) $ $) 9)))
+((-2825 ((|#1| (-1 |#1| (-525)) (-1094 (-385 (-525)))) 25)))
+(((-289 |#1|) (-10 -7 (-15 -2825 (|#1| (-1 |#1| (-525)) (-1094 (-385 (-525)))))) (-37 (-385 (-525)))) (T -289))
+((-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-525))) (-5 *4 (-1094 (-385 (-525)))) (-5 *1 (-289 *2)) (-4 *2 (-37 (-385 (-525)))))))
+(-10 -7 (-15 -2825 (|#1| (-1 |#1| (-525)) (-1094 (-385 (-525))))))
+((-4087 (((-108) $ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 7)) (-2775 (((-108) $ $) 9)))
(((-290) (-1020)) (T -290))
NIL
(-1020)
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 62)) (-1548 (((-1160 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-286)))) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-844)))) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-844)))) (-2193 (((-108) $ $) NIL)) (-3855 (((-525) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-762)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-1160 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1092) "failed") $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-968 (-525)))) (((-3 (-1159 |#2| |#3| |#4|) "failed") $) 25)) (-1572 (((-1160 |#1| |#2| |#3| |#4|) $) NIL) (((-1092) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-968 (-1092)))) (((-385 (-525)) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-968 (-525)))) (((-525) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-968 (-525)))) (((-1159 |#2| |#3| |#4|) $) NIL)) (-1747 (($ $ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-1160 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1174 (-1160 |#1| |#2| |#3| |#4|)))) (-632 $) (-1174 $)) NIL) (((-632 (-1160 |#1| |#2| |#3| |#4|)) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-510)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-1222 (((-108) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-762)))) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-821 (-357))))) (-1396 (((-108) $) NIL)) (-3858 (($ $) NIL)) (-3114 (((-1160 |#1| |#2| |#3| |#4|) $) 21)) (-3844 (((-3 $ "failed") $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-1068)))) (-3256 (((-108) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-762)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2638 (($ $ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-789)))) (-3662 (($ $ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-789)))) (-3165 (($ (-1 (-1160 |#1| |#2| |#3| |#4|) (-1160 |#1| |#2| |#3| |#4|)) $) NIL)) (-2677 (((-3 (-782 |#2|) "failed") $) 78)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2295 (($) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-1068)) CONST)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3628 (($ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-286)))) (-2487 (((-1160 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-510)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-844)))) (-2770 (((-396 $) $) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2457 (($ $ (-592 (-1160 |#1| |#2| |#3| |#4|)) (-592 (-1160 |#1| |#2| |#3| |#4|))) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-288 (-1160 |#1| |#2| |#3| |#4|)))) (($ $ (-1160 |#1| |#2| |#3| |#4|) (-1160 |#1| |#2| |#3| |#4|)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-288 (-1160 |#1| |#2| |#3| |#4|)))) (($ $ (-273 (-1160 |#1| |#2| |#3| |#4|))) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-288 (-1160 |#1| |#2| |#3| |#4|)))) (($ $ (-592 (-273 (-1160 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-288 (-1160 |#1| |#2| |#3| |#4|)))) (($ $ (-592 (-1092)) (-592 (-1160 |#1| |#2| |#3| |#4|))) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-486 (-1092) (-1160 |#1| |#2| |#3| |#4|)))) (($ $ (-1092) (-1160 |#1| |#2| |#3| |#4|)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-486 (-1092) (-1160 |#1| |#2| |#3| |#4|))))) (-3684 (((-713) $) NIL)) (-3406 (($ $ (-1160 |#1| |#2| |#3| |#4|)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-265 (-1160 |#1| |#2| |#3| |#4|) (-1160 |#1| |#2| |#3| |#4|))))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3376 (($ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-713)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-1092)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-835 (-1092)))) (($ $ (-1 (-1160 |#1| |#2| |#3| |#4|) (-1160 |#1| |#2| |#3| |#4|)) (-713)) NIL) (($ $ (-1 (-1160 |#1| |#2| |#3| |#4|) (-1160 |#1| |#2| |#3| |#4|))) NIL)) (-4143 (($ $) NIL)) (-3123 (((-1160 |#1| |#2| |#3| |#4|) $) 17)) (-3210 (((-827 (-525)) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-567 (-501)))) (((-357) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-953))) (((-205) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-953)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-1160 |#1| |#2| |#3| |#4|) (-844))))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-1160 |#1| |#2| |#3| |#4|)) 29) (($ (-1092)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-968 (-1092)))) (($ (-1159 |#2| |#3| |#4|)) 36)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| (-1160 |#1| |#2| |#3| |#4|) (-844))) (|has| (-1160 |#1| |#2| |#3| |#4|) (-136))))) (-3917 (((-713)) NIL)) (-3074 (((-1160 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-510)))) (-3325 (((-108) $ $) NIL)) (-2802 (($ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-762)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) 41 T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-713)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-1092)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-835 (-1092)))) (($ $ (-1 (-1160 |#1| |#2| |#3| |#4|) (-1160 |#1| |#2| |#3| |#4|)) (-713)) NIL) (($ $ (-1 (-1160 |#1| |#2| |#3| |#4|) (-1160 |#1| |#2| |#3| |#4|))) NIL)) (-4011 (((-108) $ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-789)))) (-3987 (((-108) $ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-789)))) (-3978 (((-108) $ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-789)))) (-4075 (($ $ $) 34) (($ (-1160 |#1| |#2| |#3| |#4|) (-1160 |#1| |#2| |#3| |#4|)) 31)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-1160 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1160 |#1| |#2| |#3| |#4|)) NIL)))
-(((-291 |#1| |#2| |#3| |#4|) (-13 (-925 (-1160 |#1| |#2| |#3| |#4|)) (-968 (-1159 |#2| |#3| |#4|)) (-10 -8 (-15 -2677 ((-3 (-782 |#2|) "failed") $)) (-15 -1217 ($ (-1159 |#2| |#3| |#4|))))) (-13 (-789) (-968 (-525)) (-588 (-525)) (-429)) (-13 (-27) (-1114) (-408 |#1|)) (-1092) |#2|) (T -291))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1159 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-408 *3))) (-14 *5 (-1092)) (-14 *6 *4) (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429))) (-5 *1 (-291 *3 *4 *5 *6)))) (-2677 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429))) (-5 *2 (-782 *4)) (-5 *1 (-291 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-408 *3))) (-14 *5 (-1092)) (-14 *6 *4))))
-(-13 (-925 (-1160 |#1| |#2| |#3| |#4|)) (-968 (-1159 |#2| |#3| |#4|)) (-10 -8 (-15 -2677 ((-3 (-782 |#2|) "failed") $)) (-15 -1217 ($ (-1159 |#2| |#3| |#4|)))))
-((-3165 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 13)))
-(((-292 |#1| |#2|) (-10 -7 (-15 -3165 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-789) (-789)) (T -292))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-789)) (-4 *6 (-789)) (-5 *2 (-294 *6)) (-5 *1 (-292 *5 *6)))))
-(-10 -7 (-15 -3165 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|))))
-((-2950 (((-51) |#2| (-273 |#2|) (-713)) 33) (((-51) |#2| (-273 |#2|)) 24) (((-51) |#2| (-713)) 28) (((-51) |#2|) 25) (((-51) (-1092)) 21)) (-2598 (((-51) |#2| (-273 |#2|) (-385 (-525))) 51) (((-51) |#2| (-273 |#2|)) 48) (((-51) |#2| (-385 (-525))) 50) (((-51) |#2|) 49) (((-51) (-1092)) 47)) (-2973 (((-51) |#2| (-273 |#2|) (-385 (-525))) 46) (((-51) |#2| (-273 |#2|)) 43) (((-51) |#2| (-385 (-525))) 45) (((-51) |#2|) 44) (((-51) (-1092)) 42)) (-2962 (((-51) |#2| (-273 |#2|) (-525)) 39) (((-51) |#2| (-273 |#2|)) 35) (((-51) |#2| (-525)) 38) (((-51) |#2|) 36) (((-51) (-1092)) 34)))
-(((-293 |#1| |#2|) (-10 -7 (-15 -2950 ((-51) (-1092))) (-15 -2950 ((-51) |#2|)) (-15 -2950 ((-51) |#2| (-713))) (-15 -2950 ((-51) |#2| (-273 |#2|))) (-15 -2950 ((-51) |#2| (-273 |#2|) (-713))) (-15 -2962 ((-51) (-1092))) (-15 -2962 ((-51) |#2|)) (-15 -2962 ((-51) |#2| (-525))) (-15 -2962 ((-51) |#2| (-273 |#2|))) (-15 -2962 ((-51) |#2| (-273 |#2|) (-525))) (-15 -2973 ((-51) (-1092))) (-15 -2973 ((-51) |#2|)) (-15 -2973 ((-51) |#2| (-385 (-525)))) (-15 -2973 ((-51) |#2| (-273 |#2|))) (-15 -2973 ((-51) |#2| (-273 |#2|) (-385 (-525)))) (-15 -2598 ((-51) (-1092))) (-15 -2598 ((-51) |#2|)) (-15 -2598 ((-51) |#2| (-385 (-525)))) (-15 -2598 ((-51) |#2| (-273 |#2|))) (-15 -2598 ((-51) |#2| (-273 |#2|) (-385 (-525))))) (-13 (-429) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1114) (-408 |#1|))) (T -293))
-((-2598 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525))) (-4 *3 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-2598 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-2598 (*1 *2 *3 *4) (-12 (-5 *4 (-385 (-525))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))) (-2598 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *4))))) (-2598 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-408 *4))))) (-2973 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525))) (-4 *3 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-2973 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-2973 (*1 *2 *3 *4) (-12 (-5 *4 (-385 (-525))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))) (-2973 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *4))))) (-2973 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-408 *4))))) (-2962 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-968 *5) (-588 *5))) (-5 *5 (-525)) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-2962 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-2962 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-4 *5 (-13 (-429) (-789) (-968 *4) (-588 *4))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))) (-2962 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *4))))) (-2962 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-408 *4))))) (-2950 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-713)) (-4 *3 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-2950 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-2950 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))) (-2950 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *4))))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-408 *4))))))
-(-10 -7 (-15 -2950 ((-51) (-1092))) (-15 -2950 ((-51) |#2|)) (-15 -2950 ((-51) |#2| (-713))) (-15 -2950 ((-51) |#2| (-273 |#2|))) (-15 -2950 ((-51) |#2| (-273 |#2|) (-713))) (-15 -2962 ((-51) (-1092))) (-15 -2962 ((-51) |#2|)) (-15 -2962 ((-51) |#2| (-525))) (-15 -2962 ((-51) |#2| (-273 |#2|))) (-15 -2962 ((-51) |#2| (-273 |#2|) (-525))) (-15 -2973 ((-51) (-1092))) (-15 -2973 ((-51) |#2|)) (-15 -2973 ((-51) |#2| (-385 (-525)))) (-15 -2973 ((-51) |#2| (-273 |#2|))) (-15 -2973 ((-51) |#2| (-273 |#2|) (-385 (-525)))) (-15 -2598 ((-51) (-1092))) (-15 -2598 ((-51) |#2|)) (-15 -2598 ((-51) |#2| (-385 (-525)))) (-15 -2598 ((-51) |#2| (-273 |#2|))) (-15 -2598 ((-51) |#2| (-273 |#2|) (-385 (-525)))))
-((-4236 (((-108) $ $) NIL)) (-3709 (((-592 $) $ (-1092)) NIL (|has| |#1| (-517))) (((-592 $) $) NIL (|has| |#1| (-517))) (((-592 $) (-1088 $) (-1092)) NIL (|has| |#1| (-517))) (((-592 $) (-1088 $)) NIL (|has| |#1| (-517))) (((-592 $) (-887 $)) NIL (|has| |#1| (-517)))) (-4058 (($ $ (-1092)) NIL (|has| |#1| (-517))) (($ $) NIL (|has| |#1| (-517))) (($ (-1088 $) (-1092)) NIL (|has| |#1| (-517))) (($ (-1088 $)) NIL (|has| |#1| (-517))) (($ (-887 $)) NIL (|has| |#1| (-517)))) (-1209 (((-108) $) 27 (-3254 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))))) (-2897 (((-592 (-1092)) $) 350)) (-2744 (((-385 (-1088 $)) $ (-565 $)) NIL (|has| |#1| (-517)))) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-2563 (((-592 (-565 $)) $) NIL)) (-1575 (($ $) 159 (|has| |#1| (-517)))) (-2804 (($ $) 135 (|has| |#1| (-517)))) (-3291 (($ $ (-1013 $)) 220 (|has| |#1| (-517))) (($ $ (-1092)) 216 (|has| |#1| (-517)))) (-1578 (((-3 $ "failed") $ $) NIL (-3254 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))))) (-3311 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) 367) (($ $ (-592 (-565 $)) (-592 $)) 411)) (-1448 (((-396 (-1088 $)) (-1088 $)) 294 (-12 (|has| |#1| (-429)) (|has| |#1| (-517))))) (-1286 (($ $) NIL (|has| |#1| (-517)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-517)))) (-2782 (($ $) NIL (|has| |#1| (-517)))) (-2193 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1549 (($ $) 155 (|has| |#1| (-517)))) (-2780 (($ $) 131 (|has| |#1| (-517)))) (-1908 (($ $ (-525)) 69 (|has| |#1| (-517)))) (-1599 (($ $) 163 (|has| |#1| (-517)))) (-2836 (($ $) 139 (|has| |#1| (-517)))) (-2169 (($) NIL (-3254 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032))) CONST)) (-3419 (((-592 $) $ (-1092)) NIL (|has| |#1| (-517))) (((-592 $) $) NIL (|has| |#1| (-517))) (((-592 $) (-1088 $) (-1092)) NIL (|has| |#1| (-517))) (((-592 $) (-1088 $)) NIL (|has| |#1| (-517))) (((-592 $) (-887 $)) NIL (|has| |#1| (-517)))) (-2964 (($ $ (-1092)) NIL (|has| |#1| (-517))) (($ $) NIL (|has| |#1| (-517))) (($ (-1088 $) (-1092)) 122 (|has| |#1| (-517))) (($ (-1088 $)) NIL (|has| |#1| (-517))) (($ (-887 $)) NIL (|has| |#1| (-517)))) (-3077 (((-3 (-565 $) "failed") $) 17) (((-3 (-1092) "failed") $) NIL) (((-3 |#1| "failed") $) 420) (((-3 (-47) "failed") $) 322 (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-887 |#1|)) "failed") $) NIL (|has| |#1| (-517))) (((-3 (-887 |#1|) "failed") $) NIL (|has| |#1| (-977))) (((-3 (-385 (-525)) "failed") $) 46 (-3254 (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-1572 (((-565 $) $) 11) (((-1092) $) NIL) ((|#1| $) 402) (((-47) $) NIL (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-887 |#1|)) $) NIL (|has| |#1| (-517))) (((-887 |#1|) $) NIL (|has| |#1| (-977))) (((-385 (-525)) $) 305 (-3254 (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-1747 (($ $ $) NIL (|has| |#1| (-517)))) (-1994 (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 115 (|has| |#1| (-977))) (((-632 |#1|) (-632 $)) 105 (|has| |#1| (-977))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))))) (-1284 (($ $) 87 (|has| |#1| (-517)))) (-3457 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032))))) (-1733 (($ $ $) NIL (|has| |#1| (-517)))) (-1683 (($ $ (-1013 $)) 224 (|has| |#1| (-517))) (($ $ (-1092)) 222 (|has| |#1| (-517)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| |#1| (-517)))) (-3673 (((-108) $) NIL (|has| |#1| (-517)))) (-2821 (($ $ $) 190 (|has| |#1| (-517)))) (-3140 (($) 125 (|has| |#1| (-517)))) (-3984 (($ $ $) 210 (|has| |#1| (-517)))) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 373 (|has| |#1| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 380 (|has| |#1| (-821 (-357))))) (-3437 (($ $) NIL) (($ (-592 $)) NIL)) (-2059 (((-592 (-110)) $) NIL)) (-3930 (((-110) (-110)) 265)) (-1396 (((-108) $) 25 (-3254 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032))))) (-1673 (((-108) $) NIL (|has| $ (-968 (-525))))) (-3858 (($ $) 68 (|has| |#1| (-977)))) (-3114 (((-1044 |#1| (-565 $)) $) 82 (|has| |#1| (-977)))) (-2219 (((-108) $) 61 (|has| |#1| (-517)))) (-2171 (($ $ (-525)) NIL (|has| |#1| (-517)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-517)))) (-2541 (((-1088 $) (-565 $)) 266 (|has| $ (-977)))) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-3165 (($ (-1 $ $) (-565 $)) 407)) (-1923 (((-3 (-565 $) "failed") $) NIL)) (-1517 (($ $) 129 (|has| |#1| (-517)))) (-3000 (($ $) 235 (|has| |#1| (-517)))) (-2556 (($ (-592 $)) NIL (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-2619 (((-1075) $) NIL)) (-2734 (((-592 (-565 $)) $) 49)) (-3173 (($ (-110) $) NIL) (($ (-110) (-592 $)) 412)) (-1334 (((-3 (-592 $) "failed") $) NIL (|has| |#1| (-1032)))) (-1687 (((-3 (-2 (|:| |val| $) (|:| -4193 (-525))) "failed") $) NIL (|has| |#1| (-977)))) (-2001 (((-3 (-592 $) "failed") $) 415 (|has| |#1| (-25)))) (-2056 (((-3 (-2 (|:| -3244 (-525)) (|:| |var| (-565 $))) "failed") $) 419 (|has| |#1| (-25)))) (-2121 (((-3 (-2 (|:| |var| (-565 $)) (|:| -4193 (-525))) "failed") $) NIL (|has| |#1| (-1032))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -4193 (-525))) "failed") $ (-110)) NIL (|has| |#1| (-977))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -4193 (-525))) "failed") $ (-1092)) NIL (|has| |#1| (-977)))) (-3131 (((-108) $ (-110)) NIL) (((-108) $ (-1092)) 53)) (-2997 (($ $) NIL (-3254 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-3205 (($ $ (-1092)) 239 (|has| |#1| (-517))) (($ $ (-1013 $)) 241 (|has| |#1| (-517)))) (-1794 (((-713) $) NIL)) (-2093 (((-1039) $) NIL)) (-3007 (((-108) $) 43)) (-3019 ((|#1| $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 287 (|has| |#1| (-517)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-2662 (((-108) $ $) NIL) (((-108) $ (-1092)) NIL)) (-1243 (($ $ (-1092)) 214 (|has| |#1| (-517))) (($ $) 212 (|has| |#1| (-517)))) (-1545 (($ $) 206 (|has| |#1| (-517)))) (-4099 (((-396 (-1088 $)) (-1088 $)) 292 (-12 (|has| |#1| (-429)) (|has| |#1| (-517))))) (-2770 (((-396 $) $) NIL (|has| |#1| (-517)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-517))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-517)))) (-1715 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-517)))) (-3096 (($ $) 127 (|has| |#1| (-517)))) (-3699 (((-108) $) NIL (|has| $ (-968 (-525))))) (-2457 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) 406) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1092) (-1 $ (-592 $))) NIL) (($ $ (-1092) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) 360) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1092)) NIL (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-567 (-501)))) (($ $) NIL (|has| |#1| (-567 (-501)))) (($ $ (-110) $ (-1092)) 348 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-110)) (-592 $) (-1092)) 347 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ $))) NIL (|has| |#1| (-977))) (($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ (-592 $)))) NIL (|has| |#1| (-977))) (($ $ (-1092) (-713) (-1 $ (-592 $))) NIL (|has| |#1| (-977))) (($ $ (-1092) (-713) (-1 $ $)) NIL (|has| |#1| (-977)))) (-3684 (((-713) $) NIL (|has| |#1| (-517)))) (-2733 (($ $) 227 (|has| |#1| (-517)))) (-3406 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-517)))) (-3147 (($ $) NIL) (($ $ $) NIL)) (-2768 (($ $) 237 (|has| |#1| (-517)))) (-2640 (($ $) 188 (|has| |#1| (-517)))) (-3376 (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-977))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-977))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-977))) (($ $ (-1092)) NIL (|has| |#1| (-977)))) (-4143 (($ $) 70 (|has| |#1| (-517)))) (-3123 (((-1044 |#1| (-565 $)) $) 84 (|has| |#1| (-517)))) (-2756 (($ $) 303 (|has| $ (-977)))) (-1609 (($ $) 165 (|has| |#1| (-517)))) (-1447 (($ $) 141 (|has| |#1| (-517)))) (-1587 (($ $) 161 (|has| |#1| (-517)))) (-2815 (($ $) 137 (|has| |#1| (-517)))) (-1562 (($ $) 157 (|has| |#1| (-517)))) (-2794 (($ $) 133 (|has| |#1| (-517)))) (-3210 (((-827 (-525)) $) NIL (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| |#1| (-567 (-827 (-357))))) (($ (-396 $)) NIL (|has| |#1| (-517))) (((-501) $) 345 (|has| |#1| (-567 (-501))))) (-1499 (($ $ $) NIL (|has| |#1| (-450)))) (-1990 (($ $ $) NIL (|has| |#1| (-450)))) (-1217 (((-798) $) 405) (($ (-565 $)) 396) (($ (-1092)) 362) (($ |#1|) 323) (($ $) NIL (|has| |#1| (-517))) (($ (-47)) 298 (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525))))) (($ (-1044 |#1| (-565 $))) 86 (|has| |#1| (-977))) (($ (-385 |#1|)) NIL (|has| |#1| (-517))) (($ (-887 (-385 |#1|))) NIL (|has| |#1| (-517))) (($ (-385 (-887 (-385 |#1|)))) NIL (|has| |#1| (-517))) (($ (-385 (-887 |#1|))) NIL (|has| |#1| (-517))) (($ (-887 |#1|)) NIL (|has| |#1| (-977))) (($ (-385 (-525))) NIL (-3254 (|has| |#1| (-517)) (|has| |#1| (-968 (-385 (-525)))))) (($ (-525)) 34 (-3254 (|has| |#1| (-968 (-525))) (|has| |#1| (-977))))) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) NIL (|has| |#1| (-977)))) (-1381 (($ $) NIL) (($ (-592 $)) NIL)) (-3163 (($ $ $) 208 (|has| |#1| (-517)))) (-4090 (($ $ $) 194 (|has| |#1| (-517)))) (-3305 (($ $ $) 198 (|has| |#1| (-517)))) (-3033 (($ $ $) 192 (|has| |#1| (-517)))) (-3116 (($ $ $) 196 (|has| |#1| (-517)))) (-1960 (((-108) (-110)) 9)) (-1649 (($ $) 171 (|has| |#1| (-517)))) (-1492 (($ $) 147 (|has| |#1| (-517)))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1630 (($ $) 167 (|has| |#1| (-517)))) (-1465 (($ $) 143 (|has| |#1| (-517)))) (-1669 (($ $) 175 (|has| |#1| (-517)))) (-1522 (($ $) 151 (|has| |#1| (-517)))) (-2194 (($ (-1092) $) NIL) (($ (-1092) $ $) NIL) (($ (-1092) $ $ $) NIL) (($ (-1092) $ $ $ $) NIL) (($ (-1092) (-592 $)) NIL)) (-1426 (($ $) 202 (|has| |#1| (-517)))) (-1873 (($ $) 200 (|has| |#1| (-517)))) (-2359 (($ $) 177 (|has| |#1| (-517)))) (-1537 (($ $) 153 (|has| |#1| (-517)))) (-1659 (($ $) 173 (|has| |#1| (-517)))) (-1506 (($ $) 149 (|has| |#1| (-517)))) (-1639 (($ $) 169 (|has| |#1| (-517)))) (-1479 (($ $) 145 (|has| |#1| (-517)))) (-2802 (($ $) 180 (|has| |#1| (-517)))) (-1619 (($ $ (-525)) NIL (-3254 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) NIL (-3254 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032)))) (($ $ (-856)) NIL (-3254 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032))))) (-3349 (($) 20 (-3254 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))) CONST)) (-2149 (($ $) 231 (|has| |#1| (-517)))) (-3359 (($) 22 (-3254 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032))) CONST)) (-3477 (($ $) 182 (|has| |#1| (-517))) (($ $ $) 184 (|has| |#1| (-517)))) (-2753 (($ $) 229 (|has| |#1| (-517)))) (-2022 (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-977))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-977))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-977))) (($ $ (-1092)) NIL (|has| |#1| (-977)))) (-3652 (($ $) 233 (|has| |#1| (-517)))) (-2402 (($ $ $) 186 (|has| |#1| (-517)))) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 79)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 78)) (-4075 (($ (-1044 |#1| (-565 $)) (-1044 |#1| (-565 $))) 96 (|has| |#1| (-517))) (($ $ $) 42 (-3254 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-4061 (($ $ $) 40 (-3254 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))))) (($ $) 29 (-3254 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))))) (-4047 (($ $ $) 38 (-3254 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))))) (** (($ $ $) 63 (|has| |#1| (-517))) (($ $ (-385 (-525))) 300 (|has| |#1| (-517))) (($ $ (-525)) 74 (-3254 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) 71 (-3254 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032)))) (($ $ (-856)) 76 (-3254 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032))))) (* (($ (-385 (-525)) $) NIL (|has| |#1| (-517))) (($ $ (-385 (-525))) NIL (|has| |#1| (-517))) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160))) (($ $ $) 36 (-3254 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032)))) (($ (-525) $) 32 (-3254 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))))) (($ (-713) $) NIL (-3254 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))))) (($ (-856) $) NIL (-3254 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))))))
-(((-294 |#1|) (-13 (-408 |#1|) (-10 -8 (IF (|has| |#1| (-517)) (PROGN (-6 (-29 |#1|)) (-6 (-1114)) (-6 (-149)) (-6 (-578)) (-6 (-1056)) (-15 -1284 ($ $)) (-15 -2219 ((-108) $)) (-15 -1908 ($ $ (-525))) (IF (|has| |#1| (-429)) (PROGN (-15 -4099 ((-396 (-1088 $)) (-1088 $))) (-15 -1448 ((-396 (-1088 $)) (-1088 $)))) |%noBranch|) (IF (|has| |#1| (-968 (-525))) (-6 (-968 (-47))) |%noBranch|)) |%noBranch|))) (-789)) (T -294))
-((-1284 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-517)) (-4 *2 (-789)))) (-2219 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789)))) (-1908 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789)))) (-4099 (*1 *2 *3) (-12 (-5 *2 (-396 (-1088 *1))) (-5 *1 (-294 *4)) (-5 *3 (-1088 *1)) (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789)))) (-1448 (*1 *2 *3) (-12 (-5 *2 (-396 (-1088 *1))) (-5 *1 (-294 *4)) (-5 *3 (-1088 *1)) (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789)))))
-(-13 (-408 |#1|) (-10 -8 (IF (|has| |#1| (-517)) (PROGN (-6 (-29 |#1|)) (-6 (-1114)) (-6 (-149)) (-6 (-578)) (-6 (-1056)) (-15 -1284 ($ $)) (-15 -2219 ((-108) $)) (-15 -1908 ($ $ (-525))) (IF (|has| |#1| (-429)) (PROGN (-15 -4099 ((-396 (-1088 $)) (-1088 $))) (-15 -1448 ((-396 (-1088 $)) (-1088 $)))) |%noBranch|) (IF (|has| |#1| (-968 (-525))) (-6 (-968 (-47))) |%noBranch|)) |%noBranch|)))
-((-2280 (((-51) |#2| (-110) (-273 |#2|) (-592 |#2|)) 88) (((-51) |#2| (-110) (-273 |#2|) (-273 |#2|)) 84) (((-51) |#2| (-110) (-273 |#2|) |#2|) 86) (((-51) (-273 |#2|) (-110) (-273 |#2|) |#2|) 87) (((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|))) 80) (((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 |#2|)) 82) (((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 |#2|)) 83) (((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|))) 81) (((-51) (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|)) 89) (((-51) (-273 |#2|) (-110) (-273 |#2|) (-273 |#2|)) 85)))
-(((-295 |#1| |#2|) (-10 -7 (-15 -2280 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-273 |#2|))) (-15 -2280 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -2280 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -2280 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -2280 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -2280 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -2280 ((-51) (-273 |#2|) (-110) (-273 |#2|) |#2|)) (-15 -2280 ((-51) |#2| (-110) (-273 |#2|) |#2|)) (-15 -2280 ((-51) |#2| (-110) (-273 |#2|) (-273 |#2|))) (-15 -2280 ((-51) |#2| (-110) (-273 |#2|) (-592 |#2|)))) (-13 (-789) (-517) (-567 (-501))) (-408 |#1|)) (T -295))
-((-2280 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-5 *6 (-592 *3)) (-4 *3 (-408 *7)) (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *7 *3)))) (-2280 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *3)))) (-2280 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *3)))) (-2280 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-273 *5)) (-5 *4 (-110)) (-4 *5 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *5)))) (-2280 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-110))) (-5 *6 (-592 (-273 *8))) (-4 *8 (-408 *7)) (-5 *5 (-273 *8)) (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *7 *8)))) (-2280 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7)) (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) (-2280 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-592 (-273 *8))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *8)) (-5 *6 (-592 *8)) (-4 *8 (-408 *7)) (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *7 *8)))) (-2280 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-592 (-273 *7))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7)) (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) (-2280 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-592 *7)) (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) (-2280 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-273 *6)) (-5 *4 (-110)) (-4 *6 (-408 *5)) (-4 *5 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *5 *6)))))
-(-10 -7 (-15 -2280 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-273 |#2|))) (-15 -2280 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -2280 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -2280 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -2280 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -2280 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -2280 ((-51) (-273 |#2|) (-110) (-273 |#2|) |#2|)) (-15 -2280 ((-51) |#2| (-110) (-273 |#2|) |#2|)) (-15 -2280 ((-51) |#2| (-110) (-273 |#2|) (-273 |#2|))) (-15 -2280 ((-51) |#2| (-110) (-273 |#2|) (-592 |#2|))))
-((-3462 (((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-205) (-525) (-1075)) 46) (((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-205) (-525)) 47) (((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-1 (-205) (-205)) (-525) (-1075)) 43) (((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-1 (-205) (-205)) (-525)) 44)) (-2177 (((-1 (-205) (-205)) (-205)) 45)))
-(((-296) (-10 -7 (-15 -2177 ((-1 (-205) (-205)) (-205))) (-15 -3462 ((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-1 (-205) (-205)) (-525))) (-15 -3462 ((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-1 (-205) (-205)) (-525) (-1075))) (-15 -3462 ((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-205) (-525))) (-15 -3462 ((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-205) (-525) (-1075))))) (T -296))
-((-3462 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1015 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) (-5 *8 (-1075)) (-5 *2 (-1124 (-861))) (-5 *1 (-296)))) (-3462 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1015 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) (-5 *2 (-1124 (-861))) (-5 *1 (-296)))) (-3462 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1015 (-205))) (-5 *6 (-525)) (-5 *7 (-1075)) (-5 *2 (-1124 (-861))) (-5 *1 (-296)))) (-3462 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1015 (-205))) (-5 *6 (-525)) (-5 *2 (-1124 (-861))) (-5 *1 (-296)))) (-2177 (*1 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-296)) (-5 *3 (-205)))))
-(-10 -7 (-15 -2177 ((-1 (-205) (-205)) (-205))) (-15 -3462 ((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-1 (-205) (-205)) (-525))) (-15 -3462 ((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-1 (-205) (-205)) (-525) (-1075))) (-15 -3462 ((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-205) (-525))) (-15 -3462 ((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-205) (-525) (-1075))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 25)) (-2897 (((-592 (-1005)) $) NIL)) (-2499 (((-1092) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-3828 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-2755 (((-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 20)) (-1575 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2804 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL (|has| |#1| (-341)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2782 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2193 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1549 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2780 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2598 (($ (-713) (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-1599 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2169 (($) NIL T CONST)) (-1747 (($ $ $) NIL (|has| |#1| (-341)))) (-3063 (($ $) 32)) (-3457 (((-3 $ "failed") $) NIL)) (-1733 (($ $ $) NIL (|has| |#1| (-341)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3673 (((-108) $) NIL (|has| |#1| (-341)))) (-2398 (((-108) $) NIL)) (-3140 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2581 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) 16)) (-1396 (((-108) $) NIL)) (-2171 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3326 (($ $ (-856)) NIL) (($ $ (-385 (-525))) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-385 (-525))) NIL) (($ $ (-1005) (-385 (-525))) NIL) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) NIL)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-1517 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL (|has| |#1| (-341)))) (-1206 (($ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) NIL (-3254 (-12 (|has| |#1| (-15 -1206 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -2897 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114)))))) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2770 (((-396 $) $) NIL (|has| |#1| (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-3931 (($ $ (-385 (-525))) NIL)) (-1715 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1984 (((-385 (-525)) $) 17)) (-3620 (($ (-1159 |#1| |#2| |#3|)) 11)) (-4193 (((-1159 |#1| |#2| |#3|) $) 12)) (-3096 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2457 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-3684 (((-713) $) NIL (|has| |#1| (-341)))) (-3406 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1032)))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-341)))) (-3376 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2343 (((-385 (-525)) $) NIL)) (-1609 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1447 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1587 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1562 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2794 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1489 (($ $) 10)) (-1217 (((-798) $) 38) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-1568 ((|#1| $ (-385 (-525))) 30)) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) NIL)) (-1340 ((|#1| $) NIL)) (-1649 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1630 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1669 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1522 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1454 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1217 (|#1| (-1092))))))) (-2359 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1537 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1659 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1506 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1639 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1479 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 27)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 33)) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-297 |#1| |#2| |#3|) (-13 (-1155 |#1|) (-734) (-10 -8 (-15 -3620 ($ (-1159 |#1| |#2| |#3|))) (-15 -4193 ((-1159 |#1| |#2| |#3|) $)) (-15 -1984 ((-385 (-525)) $)))) (-13 (-341) (-789)) (-1092) |#1|) (T -297))
-((-3620 (*1 *1 *2) (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-297 *3 *4 *5)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-1159 *3 *4 *5)) (-5 *1 (-297 *3 *4 *5)) (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1092)) (-14 *5 *3))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-297 *3 *4 *5)) (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1092)) (-14 *5 *3))))
-(-13 (-1155 |#1|) (-734) (-10 -8 (-15 -3620 ($ (-1159 |#1| |#2| |#3|))) (-15 -4193 ((-1159 |#1| |#2| |#3|) $)) (-15 -1984 ((-385 (-525)) $))))
-((-2171 (((-2 (|:| -4193 (-713)) (|:| -3244 |#1|) (|:| |radicand| (-592 |#1|))) (-396 |#1|) (-713)) 24)) (-1517 (((-592 (-2 (|:| -3244 (-713)) (|:| |logand| |#1|))) (-396 |#1|)) 28)))
-(((-298 |#1|) (-10 -7 (-15 -2171 ((-2 (|:| -4193 (-713)) (|:| -3244 |#1|) (|:| |radicand| (-592 |#1|))) (-396 |#1|) (-713))) (-15 -1517 ((-592 (-2 (|:| -3244 (-713)) (|:| |logand| |#1|))) (-396 |#1|)))) (-517)) (T -298))
-((-1517 (*1 *2 *3) (-12 (-5 *3 (-396 *4)) (-4 *4 (-517)) (-5 *2 (-592 (-2 (|:| -3244 (-713)) (|:| |logand| *4)))) (-5 *1 (-298 *4)))) (-2171 (*1 *2 *3 *4) (-12 (-5 *3 (-396 *5)) (-4 *5 (-517)) (-5 *2 (-2 (|:| -4193 (-713)) (|:| -3244 *5) (|:| |radicand| (-592 *5)))) (-5 *1 (-298 *5)) (-5 *4 (-713)))))
-(-10 -7 (-15 -2171 ((-2 (|:| -4193 (-713)) (|:| -3244 |#1|) (|:| |radicand| (-592 |#1|))) (-396 |#1|) (-713))) (-15 -1517 ((-592 (-2 (|:| -3244 (-713)) (|:| |logand| |#1|))) (-396 |#1|))))
-((-2897 (((-592 |#2|) (-1088 |#4|)) 43)) (-4120 ((|#3| (-525)) 46)) (-3470 (((-1088 |#4|) (-1088 |#3|)) 30)) (-2573 (((-1088 |#4|) (-1088 |#4|) (-525)) 56)) (-2875 (((-1088 |#3|) (-1088 |#4|)) 21)) (-2343 (((-592 (-713)) (-1088 |#4|) (-592 |#2|)) 40)) (-1445 (((-1088 |#3|) (-1088 |#4|) (-592 |#2|) (-592 |#3|)) 35)))
-(((-299 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1445 ((-1088 |#3|) (-1088 |#4|) (-592 |#2|) (-592 |#3|))) (-15 -2343 ((-592 (-713)) (-1088 |#4|) (-592 |#2|))) (-15 -2897 ((-592 |#2|) (-1088 |#4|))) (-15 -2875 ((-1088 |#3|) (-1088 |#4|))) (-15 -3470 ((-1088 |#4|) (-1088 |#3|))) (-15 -2573 ((-1088 |#4|) (-1088 |#4|) (-525))) (-15 -4120 (|#3| (-525)))) (-735) (-789) (-977) (-884 |#3| |#1| |#2|)) (T -299))
-((-4120 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-977)) (-5 *1 (-299 *4 *5 *2 *6)) (-4 *6 (-884 *2 *4 *5)))) (-2573 (*1 *2 *2 *3) (-12 (-5 *2 (-1088 *7)) (-5 *3 (-525)) (-4 *7 (-884 *6 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-5 *1 (-299 *4 *5 *6 *7)))) (-3470 (*1 *2 *3) (-12 (-5 *3 (-1088 *6)) (-4 *6 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-1088 *7)) (-5 *1 (-299 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))) (-2875 (*1 *2 *3) (-12 (-5 *3 (-1088 *7)) (-4 *7 (-884 *6 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-5 *2 (-1088 *6)) (-5 *1 (-299 *4 *5 *6 *7)))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-1088 *7)) (-4 *7 (-884 *6 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-5 *2 (-592 *5)) (-5 *1 (-299 *4 *5 *6 *7)))) (-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-1088 *8)) (-5 *4 (-592 *6)) (-4 *6 (-789)) (-4 *8 (-884 *7 *5 *6)) (-4 *5 (-735)) (-4 *7 (-977)) (-5 *2 (-592 (-713))) (-5 *1 (-299 *5 *6 *7 *8)))) (-1445 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1088 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 *8)) (-4 *7 (-789)) (-4 *8 (-977)) (-4 *9 (-884 *8 *6 *7)) (-4 *6 (-735)) (-5 *2 (-1088 *8)) (-5 *1 (-299 *6 *7 *8 *9)))))
-(-10 -7 (-15 -1445 ((-1088 |#3|) (-1088 |#4|) (-592 |#2|) (-592 |#3|))) (-15 -2343 ((-592 (-713)) (-1088 |#4|) (-592 |#2|))) (-15 -2897 ((-592 |#2|) (-1088 |#4|))) (-15 -2875 ((-1088 |#3|) (-1088 |#4|))) (-15 -3470 ((-1088 |#4|) (-1088 |#3|))) (-15 -2573 ((-1088 |#4|) (-1088 |#4|) (-525))) (-15 -4120 (|#3| (-525))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 14)) (-2755 (((-592 (-2 (|:| |gen| |#1|) (|:| -3096 (-525)))) $) 18)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1834 (((-713) $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) NIL)) (-1572 ((|#1| $) NIL)) (-1726 ((|#1| $ (-525)) NIL)) (-4147 (((-525) $ (-525)) NIL)) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2527 (($ (-1 |#1| |#1|) $) NIL)) (-1460 (($ (-1 (-525) (-525)) $) 10)) (-2619 (((-1075) $) NIL)) (-2893 (($ $ $) NIL (|has| (-525) (-734)))) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL) (($ |#1|) NIL)) (-1568 (((-525) |#1| $) NIL)) (-3349 (($) 15 T CONST)) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) 21 (|has| |#1| (-789)))) (-4061 (($ $) 11) (($ $ $) 20)) (-4047 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL) (($ (-525) |#1|) 19)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 62)) (-1653 (((-1160 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-286)))) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-844)))) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-844)))) (-1507 (((-108) $ $) NIL)) (-2971 (((-525) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-762)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-1160 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1092) "failed") $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-968 (-525)))) (((-3 (-1159 |#2| |#3| |#4|) "failed") $) 25)) (-4105 (((-1160 |#1| |#2| |#3| |#4|) $) NIL) (((-1092) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-968 (-1092)))) (((-385 (-525)) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-968 (-525)))) (((-525) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-968 (-525)))) (((-1159 |#2| |#3| |#4|) $) NIL)) (-1356 (($ $ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-1160 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1174 (-1160 |#1| |#2| |#3| |#4|)))) (-632 $) (-1174 $)) NIL) (((-632 (-1160 |#1| |#2| |#3| |#4|)) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-510)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-1889 (((-108) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-762)))) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-821 (-357))))) (-2278 (((-108) $) NIL)) (-2999 (($ $) NIL)) (-4066 (((-1160 |#1| |#2| |#3| |#4|) $) 21)) (-2878 (((-3 $ "failed") $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-1068)))) (-4079 (((-108) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-762)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3033 (($ $ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-789)))) (-1609 (($ $ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-789)))) (-2016 (($ (-1 (-1160 |#1| |#2| |#3| |#4|) (-1160 |#1| |#2| |#3| |#4|)) $) NIL)) (-3658 (((-3 (-782 |#2|) "failed") $) 78)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-2948 (($) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-1068)) CONST)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1372 (($ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-286)))) (-1340 (((-1160 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-510)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-844)))) (-4201 (((-396 $) $) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2825 (($ $ (-592 (-1160 |#1| |#2| |#3| |#4|)) (-592 (-1160 |#1| |#2| |#3| |#4|))) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-288 (-1160 |#1| |#2| |#3| |#4|)))) (($ $ (-1160 |#1| |#2| |#3| |#4|) (-1160 |#1| |#2| |#3| |#4|)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-288 (-1160 |#1| |#2| |#3| |#4|)))) (($ $ (-273 (-1160 |#1| |#2| |#3| |#4|))) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-288 (-1160 |#1| |#2| |#3| |#4|)))) (($ $ (-592 (-273 (-1160 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-288 (-1160 |#1| |#2| |#3| |#4|)))) (($ $ (-592 (-1092)) (-592 (-1160 |#1| |#2| |#3| |#4|))) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-486 (-1092) (-1160 |#1| |#2| |#3| |#4|)))) (($ $ (-1092) (-1160 |#1| |#2| |#3| |#4|)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-486 (-1092) (-1160 |#1| |#2| |#3| |#4|))))) (-1927 (((-713) $) NIL)) (-3431 (($ $ (-1160 |#1| |#2| |#3| |#4|)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-265 (-1160 |#1| |#2| |#3| |#4|) (-1160 |#1| |#2| |#3| |#4|))))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2702 (($ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-713)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-1092)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-835 (-1092)))) (($ $ (-1 (-1160 |#1| |#2| |#3| |#4|) (-1160 |#1| |#2| |#3| |#4|)) (-713)) NIL) (($ $ (-1 (-1160 |#1| |#2| |#3| |#4|) (-1160 |#1| |#2| |#3| |#4|))) NIL)) (-2874 (($ $) NIL)) (-4080 (((-1160 |#1| |#2| |#3| |#4|) $) 17)) (-2069 (((-827 (-525)) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-567 (-501)))) (((-357) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-953))) (((-205) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-953)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-1160 |#1| |#2| |#3| |#4|) (-844))))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-1160 |#1| |#2| |#3| |#4|)) 29) (($ (-1092)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-968 (-1092)))) (($ (-1159 |#2| |#3| |#4|)) 36)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| (-1160 |#1| |#2| |#3| |#4|) (-844))) (|has| (-1160 |#1| |#2| |#3| |#4|) (-136))))) (-2448 (((-713)) NIL)) (-3064 (((-1160 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-510)))) (-1571 (((-108) $ $) NIL)) (-2380 (($ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-762)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) 41 T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-713)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-1092)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-835 (-1092)))) (($ $ (-1 (-1160 |#1| |#2| |#3| |#4|) (-1160 |#1| |#2| |#3| |#4|)) (-713)) NIL) (($ $ (-1 (-1160 |#1| |#2| |#3| |#4|) (-1160 |#1| |#2| |#3| |#4|))) NIL)) (-2830 (((-108) $ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-789)))) (-2807 (((-108) $ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-789)))) (-2795 (((-108) $ $) NIL (|has| (-1160 |#1| |#2| |#3| |#4|) (-789)))) (-2880 (($ $ $) 34) (($ (-1160 |#1| |#2| |#3| |#4|) (-1160 |#1| |#2| |#3| |#4|)) 31)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-1160 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1160 |#1| |#2| |#3| |#4|)) NIL)))
+(((-291 |#1| |#2| |#3| |#4|) (-13 (-925 (-1160 |#1| |#2| |#3| |#4|)) (-968 (-1159 |#2| |#3| |#4|)) (-10 -8 (-15 -3658 ((-3 (-782 |#2|) "failed") $)) (-15 -4100 ($ (-1159 |#2| |#3| |#4|))))) (-13 (-789) (-968 (-525)) (-588 (-525)) (-429)) (-13 (-27) (-1114) (-408 |#1|)) (-1092) |#2|) (T -291))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1159 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-408 *3))) (-14 *5 (-1092)) (-14 *6 *4) (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429))) (-5 *1 (-291 *3 *4 *5 *6)))) (-3658 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429))) (-5 *2 (-782 *4)) (-5 *1 (-291 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-408 *3))) (-14 *5 (-1092)) (-14 *6 *4))))
+(-13 (-925 (-1160 |#1| |#2| |#3| |#4|)) (-968 (-1159 |#2| |#3| |#4|)) (-10 -8 (-15 -3658 ((-3 (-782 |#2|) "failed") $)) (-15 -4100 ($ (-1159 |#2| |#3| |#4|)))))
+((-2016 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 13)))
+(((-292 |#1| |#2|) (-10 -7 (-15 -2016 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-789) (-789)) (T -292))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-789)) (-4 *6 (-789)) (-5 *2 (-294 *6)) (-5 *1 (-292 *5 *6)))))
+(-10 -7 (-15 -2016 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|))))
+((-1350 (((-51) |#2| (-273 |#2|) (-713)) 33) (((-51) |#2| (-273 |#2|)) 24) (((-51) |#2| (-713)) 28) (((-51) |#2|) 25) (((-51) (-1092)) 21)) (-2996 (((-51) |#2| (-273 |#2|) (-385 (-525))) 51) (((-51) |#2| (-273 |#2|)) 48) (((-51) |#2| (-385 (-525))) 50) (((-51) |#2|) 49) (((-51) (-1092)) 47)) (-1368 (((-51) |#2| (-273 |#2|) (-385 (-525))) 46) (((-51) |#2| (-273 |#2|)) 43) (((-51) |#2| (-385 (-525))) 45) (((-51) |#2|) 44) (((-51) (-1092)) 42)) (-1361 (((-51) |#2| (-273 |#2|) (-525)) 39) (((-51) |#2| (-273 |#2|)) 35) (((-51) |#2| (-525)) 38) (((-51) |#2|) 36) (((-51) (-1092)) 34)))
+(((-293 |#1| |#2|) (-10 -7 (-15 -1350 ((-51) (-1092))) (-15 -1350 ((-51) |#2|)) (-15 -1350 ((-51) |#2| (-713))) (-15 -1350 ((-51) |#2| (-273 |#2|))) (-15 -1350 ((-51) |#2| (-273 |#2|) (-713))) (-15 -1361 ((-51) (-1092))) (-15 -1361 ((-51) |#2|)) (-15 -1361 ((-51) |#2| (-525))) (-15 -1361 ((-51) |#2| (-273 |#2|))) (-15 -1361 ((-51) |#2| (-273 |#2|) (-525))) (-15 -1368 ((-51) (-1092))) (-15 -1368 ((-51) |#2|)) (-15 -1368 ((-51) |#2| (-385 (-525)))) (-15 -1368 ((-51) |#2| (-273 |#2|))) (-15 -1368 ((-51) |#2| (-273 |#2|) (-385 (-525)))) (-15 -2996 ((-51) (-1092))) (-15 -2996 ((-51) |#2|)) (-15 -2996 ((-51) |#2| (-385 (-525)))) (-15 -2996 ((-51) |#2| (-273 |#2|))) (-15 -2996 ((-51) |#2| (-273 |#2|) (-385 (-525))))) (-13 (-429) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1114) (-408 |#1|))) (T -293))
+((-2996 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525))) (-4 *3 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-2996 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-2996 (*1 *2 *3 *4) (-12 (-5 *4 (-385 (-525))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))) (-2996 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *4))))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-408 *4))))) (-1368 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525))) (-4 *3 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-1368 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-1368 (*1 *2 *3 *4) (-12 (-5 *4 (-385 (-525))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))) (-1368 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *4))))) (-1368 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-408 *4))))) (-1361 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-968 *5) (-588 *5))) (-5 *5 (-525)) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-1361 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-1361 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-4 *5 (-13 (-429) (-789) (-968 *4) (-588 *4))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))) (-1361 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *4))))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-408 *4))))) (-1350 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-713)) (-4 *3 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-1350 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-1350 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))) (-1350 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *4))))) (-1350 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-408 *4))))))
+(-10 -7 (-15 -1350 ((-51) (-1092))) (-15 -1350 ((-51) |#2|)) (-15 -1350 ((-51) |#2| (-713))) (-15 -1350 ((-51) |#2| (-273 |#2|))) (-15 -1350 ((-51) |#2| (-273 |#2|) (-713))) (-15 -1361 ((-51) (-1092))) (-15 -1361 ((-51) |#2|)) (-15 -1361 ((-51) |#2| (-525))) (-15 -1361 ((-51) |#2| (-273 |#2|))) (-15 -1361 ((-51) |#2| (-273 |#2|) (-525))) (-15 -1368 ((-51) (-1092))) (-15 -1368 ((-51) |#2|)) (-15 -1368 ((-51) |#2| (-385 (-525)))) (-15 -1368 ((-51) |#2| (-273 |#2|))) (-15 -1368 ((-51) |#2| (-273 |#2|) (-385 (-525)))) (-15 -2996 ((-51) (-1092))) (-15 -2996 ((-51) |#2|)) (-15 -2996 ((-51) |#2| (-385 (-525)))) (-15 -2996 ((-51) |#2| (-273 |#2|))) (-15 -2996 ((-51) |#2| (-273 |#2|) (-385 (-525)))))
+((-4087 (((-108) $ $) NIL)) (-3975 (((-592 $) $ (-1092)) NIL (|has| |#1| (-517))) (((-592 $) $) NIL (|has| |#1| (-517))) (((-592 $) (-1088 $) (-1092)) NIL (|has| |#1| (-517))) (((-592 $) (-1088 $)) NIL (|has| |#1| (-517))) (((-592 $) (-887 $)) NIL (|has| |#1| (-517)))) (-3238 (($ $ (-1092)) NIL (|has| |#1| (-517))) (($ $) NIL (|has| |#1| (-517))) (($ (-1088 $) (-1092)) NIL (|has| |#1| (-517))) (($ (-1088 $)) NIL (|has| |#1| (-517))) (($ (-887 $)) NIL (|has| |#1| (-517)))) (-2414 (((-108) $) 27 (-2067 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))))) (-1296 (((-592 (-1092)) $) 350)) (-4169 (((-385 (-1088 $)) $ (-565 $)) NIL (|has| |#1| (-517)))) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-1285 (((-592 (-565 $)) $) NIL)) (-1803 (($ $) 159 (|has| |#1| (-517)))) (-3659 (($ $) 135 (|has| |#1| (-517)))) (-1354 (($ $ (-1013 $)) 220 (|has| |#1| (-517))) (($ $ (-1092)) 216 (|has| |#1| (-517)))) (-3222 (((-3 $ "failed") $ $) NIL (-2067 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))))) (-3702 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) 367) (($ $ (-592 (-565 $)) (-592 $)) 411)) (-2426 (((-396 (-1088 $)) (-1088 $)) 294 (-12 (|has| |#1| (-429)) (|has| |#1| (-517))))) (-4195 (($ $) NIL (|has| |#1| (-517)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-517)))) (-4211 (($ $) NIL (|has| |#1| (-517)))) (-1507 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1781 (($ $) 155 (|has| |#1| (-517)))) (-3638 (($ $) 131 (|has| |#1| (-517)))) (-1612 (($ $ (-525)) 69 (|has| |#1| (-517)))) (-1828 (($ $) 163 (|has| |#1| (-517)))) (-3698 (($ $) 139 (|has| |#1| (-517)))) (-2475 (($) NIL (-2067 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032))) CONST)) (-4178 (((-592 $) $ (-1092)) NIL (|has| |#1| (-517))) (((-592 $) $) NIL (|has| |#1| (-517))) (((-592 $) (-1088 $) (-1092)) NIL (|has| |#1| (-517))) (((-592 $) (-1088 $)) NIL (|has| |#1| (-517))) (((-592 $) (-887 $)) NIL (|has| |#1| (-517)))) (-3317 (($ $ (-1092)) NIL (|has| |#1| (-517))) (($ $) NIL (|has| |#1| (-517))) (($ (-1088 $) (-1092)) 122 (|has| |#1| (-517))) (($ (-1088 $)) NIL (|has| |#1| (-517))) (($ (-887 $)) NIL (|has| |#1| (-517)))) (-1934 (((-3 (-565 $) "failed") $) 17) (((-3 (-1092) "failed") $) NIL) (((-3 |#1| "failed") $) 420) (((-3 (-47) "failed") $) 322 (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-887 |#1|)) "failed") $) NIL (|has| |#1| (-517))) (((-3 (-887 |#1|) "failed") $) NIL (|has| |#1| (-977))) (((-3 (-385 (-525)) "failed") $) 46 (-2067 (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-4105 (((-565 $) $) 11) (((-1092) $) NIL) ((|#1| $) 402) (((-47) $) NIL (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-887 |#1|)) $) NIL (|has| |#1| (-517))) (((-887 |#1|) $) NIL (|has| |#1| (-977))) (((-385 (-525)) $) 305 (-2067 (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-1356 (($ $ $) NIL (|has| |#1| (-517)))) (-3090 (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 115 (|has| |#1| (-977))) (((-632 |#1|) (-632 $)) 105 (|has| |#1| (-977))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))))) (-3504 (($ $) 87 (|has| |#1| (-517)))) (-3300 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032))))) (-1332 (($ $ $) NIL (|has| |#1| (-517)))) (-3125 (($ $ (-1013 $)) 224 (|has| |#1| (-517))) (($ $ (-1092)) 222 (|has| |#1| (-517)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| |#1| (-517)))) (-1798 (((-108) $) NIL (|has| |#1| (-517)))) (-2527 (($ $ $) 190 (|has| |#1| (-517)))) (-4106 (($) 125 (|has| |#1| (-517)))) (-1922 (($ $ $) 210 (|has| |#1| (-517)))) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 373 (|has| |#1| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 380 (|has| |#1| (-821 (-357))))) (-3106 (($ $) NIL) (($ (-592 $)) NIL)) (-2531 (((-592 (-110)) $) NIL)) (-1386 (((-110) (-110)) 265)) (-2278 (((-108) $) 25 (-2067 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032))))) (-3028 (((-108) $) NIL (|has| $ (-968 (-525))))) (-2999 (($ $) 68 (|has| |#1| (-977)))) (-4066 (((-1044 |#1| (-565 $)) $) 82 (|has| |#1| (-977)))) (-1767 (((-108) $) 61 (|has| |#1| (-517)))) (-1303 (($ $ (-525)) NIL (|has| |#1| (-517)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-517)))) (-1808 (((-1088 $) (-565 $)) 266 (|has| $ (-977)))) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-2016 (($ (-1 $ $) (-565 $)) 407)) (-1751 (((-3 (-565 $) "failed") $) NIL)) (-2533 (($ $) 129 (|has| |#1| (-517)))) (-3074 (($ $) 235 (|has| |#1| (-517)))) (-2739 (($ (-592 $)) NIL (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-1289 (((-1075) $) NIL)) (-4153 (((-592 (-565 $)) $) 49)) (-4152 (($ (-110) $) NIL) (($ (-110) (-592 $)) 412)) (-2977 (((-3 (-592 $) "failed") $) NIL (|has| |#1| (-1032)))) (-3159 (((-3 (-2 (|:| |val| $) (|:| -2168 (-525))) "failed") $) NIL (|has| |#1| (-977)))) (-3165 (((-3 (-592 $) "failed") $) 415 (|has| |#1| (-25)))) (-2502 (((-3 (-2 (|:| -2681 (-525)) (|:| |var| (-565 $))) "failed") $) 419 (|has| |#1| (-25)))) (-1986 (((-3 (-2 (|:| |var| (-565 $)) (|:| -2168 (-525))) "failed") $) NIL (|has| |#1| (-1032))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -2168 (-525))) "failed") $ (-110)) NIL (|has| |#1| (-977))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -2168 (-525))) "failed") $ (-1092)) NIL (|has| |#1| (-977)))) (-2412 (((-108) $ (-110)) NIL) (((-108) $ (-1092)) 53)) (-1387 (($ $) NIL (-2067 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-1872 (($ $ (-1092)) 239 (|has| |#1| (-517))) (($ $ (-1013 $)) 241 (|has| |#1| (-517)))) (-2934 (((-713) $) NIL)) (-3993 (((-1039) $) NIL)) (-1399 (((-108) $) 43)) (-1407 ((|#1| $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 287 (|has| |#1| (-517)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-3513 (((-108) $ $) NIL) (((-108) $ (-1092)) NIL)) (-2389 (($ $ (-1092)) 214 (|has| |#1| (-517))) (($ $) 212 (|has| |#1| (-517)))) (-1606 (($ $) 206 (|has| |#1| (-517)))) (-3644 (((-396 (-1088 $)) (-1088 $)) 292 (-12 (|has| |#1| (-429)) (|has| |#1| (-517))))) (-4201 (((-396 $) $) NIL (|has| |#1| (-517)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-517))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-517)))) (-1311 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-517)))) (-1618 (($ $) 127 (|has| |#1| (-517)))) (-3864 (((-108) $) NIL (|has| $ (-968 (-525))))) (-2825 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) 406) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1092) (-1 $ (-592 $))) NIL) (($ $ (-1092) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) 360) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1092)) NIL (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-567 (-501)))) (($ $) NIL (|has| |#1| (-567 (-501)))) (($ $ (-110) $ (-1092)) 348 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-110)) (-592 $) (-1092)) 347 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ $))) NIL (|has| |#1| (-977))) (($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ (-592 $)))) NIL (|has| |#1| (-977))) (($ $ (-1092) (-713) (-1 $ (-592 $))) NIL (|has| |#1| (-977))) (($ $ (-1092) (-713) (-1 $ $)) NIL (|has| |#1| (-977)))) (-1927 (((-713) $) NIL (|has| |#1| (-517)))) (-1887 (($ $) 227 (|has| |#1| (-517)))) (-3431 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-517)))) (-2540 (($ $) NIL) (($ $ $) NIL)) (-3615 (($ $) 237 (|has| |#1| (-517)))) (-3284 (($ $) 188 (|has| |#1| (-517)))) (-2702 (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-977))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-977))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-977))) (($ $ (-1092)) NIL (|has| |#1| (-977)))) (-2874 (($ $) 70 (|has| |#1| (-517)))) (-4080 (((-1044 |#1| (-565 $)) $) 84 (|has| |#1| (-517)))) (-2013 (($ $) 303 (|has| $ (-977)))) (-1841 (($ $) 165 (|has| |#1| (-517)))) (-3798 (($ $) 141 (|has| |#1| (-517)))) (-1816 (($ $) 161 (|has| |#1| (-517)))) (-3678 (($ $) 137 (|has| |#1| (-517)))) (-1792 (($ $) 157 (|has| |#1| (-517)))) (-3649 (($ $) 133 (|has| |#1| (-517)))) (-2069 (((-827 (-525)) $) NIL (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| |#1| (-567 (-827 (-357))))) (($ (-396 $)) NIL (|has| |#1| (-517))) (((-501) $) 345 (|has| |#1| (-567 (-501))))) (-3055 (($ $ $) NIL (|has| |#1| (-450)))) (-1242 (($ $ $) NIL (|has| |#1| (-450)))) (-4100 (((-798) $) 405) (($ (-565 $)) 396) (($ (-1092)) 362) (($ |#1|) 323) (($ $) NIL (|has| |#1| (-517))) (($ (-47)) 298 (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525))))) (($ (-1044 |#1| (-565 $))) 86 (|has| |#1| (-977))) (($ (-385 |#1|)) NIL (|has| |#1| (-517))) (($ (-887 (-385 |#1|))) NIL (|has| |#1| (-517))) (($ (-385 (-887 (-385 |#1|)))) NIL (|has| |#1| (-517))) (($ (-385 (-887 |#1|))) NIL (|has| |#1| (-517))) (($ (-887 |#1|)) NIL (|has| |#1| (-977))) (($ (-385 (-525))) NIL (-2067 (|has| |#1| (-517)) (|has| |#1| (-968 (-385 (-525)))))) (($ (-525)) 34 (-2067 (|has| |#1| (-968 (-525))) (|has| |#1| (-977))))) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) NIL (|has| |#1| (-977)))) (-2239 (($ $) NIL) (($ (-592 $)) NIL)) (-1494 (($ $ $) 208 (|has| |#1| (-517)))) (-3553 (($ $ $) 194 (|has| |#1| (-517)))) (-1384 (($ $ $) 198 (|has| |#1| (-517)))) (-2735 (($ $ $) 192 (|has| |#1| (-517)))) (-2273 (($ $ $) 196 (|has| |#1| (-517)))) (-3954 (((-108) (-110)) 9)) (-1876 (($ $) 171 (|has| |#1| (-517)))) (-3853 (($ $) 147 (|has| |#1| (-517)))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1853 (($ $) 167 (|has| |#1| (-517)))) (-3808 (($ $) 143 (|has| |#1| (-517)))) (-1902 (($ $) 175 (|has| |#1| (-517)))) (-1760 (($ $) 151 (|has| |#1| (-517)))) (-4040 (($ (-1092) $) NIL) (($ (-1092) $ $) NIL) (($ (-1092) $ $ $) NIL) (($ (-1092) $ $ $ $) NIL) (($ (-1092) (-592 $)) NIL)) (-3541 (($ $) 202 (|has| |#1| (-517)))) (-1287 (($ $) 200 (|has| |#1| (-517)))) (-3135 (($ $) 177 (|has| |#1| (-517)))) (-1770 (($ $) 153 (|has| |#1| (-517)))) (-1891 (($ $) 173 (|has| |#1| (-517)))) (-1748 (($ $) 149 (|has| |#1| (-517)))) (-1866 (($ $) 169 (|has| |#1| (-517)))) (-3820 (($ $) 145 (|has| |#1| (-517)))) (-2380 (($ $) 180 (|has| |#1| (-517)))) (-3706 (($ $ (-525)) NIL (-2067 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) NIL (-2067 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032)))) (($ $ (-856)) NIL (-2067 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032))))) (-3364 (($) 20 (-2067 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))) CONST)) (-2253 (($ $) 231 (|has| |#1| (-517)))) (-3375 (($) 22 (-2067 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032))) CONST)) (-3496 (($ $) 182 (|has| |#1| (-517))) (($ $ $) 184 (|has| |#1| (-517)))) (-1989 (($ $) 229 (|has| |#1| (-517)))) (-2401 (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-977))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-977))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-977))) (($ $ (-1092)) NIL (|has| |#1| (-977)))) (-1592 (($ $) 233 (|has| |#1| (-517)))) (-2892 (($ $ $) 186 (|has| |#1| (-517)))) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 79)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 78)) (-2880 (($ (-1044 |#1| (-565 $)) (-1044 |#1| (-565 $))) 96 (|has| |#1| (-517))) (($ $ $) 42 (-2067 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-2871 (($ $ $) 40 (-2067 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))))) (($ $) 29 (-2067 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))))) (-2860 (($ $ $) 38 (-2067 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))))) (** (($ $ $) 63 (|has| |#1| (-517))) (($ $ (-385 (-525))) 300 (|has| |#1| (-517))) (($ $ (-525)) 74 (-2067 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) 71 (-2067 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032)))) (($ $ (-856)) 76 (-2067 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032))))) (* (($ (-385 (-525)) $) NIL (|has| |#1| (-517))) (($ $ (-385 (-525))) NIL (|has| |#1| (-517))) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160))) (($ $ $) 36 (-2067 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032)))) (($ (-525) $) 32 (-2067 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))))) (($ (-713) $) NIL (-2067 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))))) (($ (-856) $) NIL (-2067 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))))))
+(((-294 |#1|) (-13 (-408 |#1|) (-10 -8 (IF (|has| |#1| (-517)) (PROGN (-6 (-29 |#1|)) (-6 (-1114)) (-6 (-149)) (-6 (-578)) (-6 (-1056)) (-15 -3504 ($ $)) (-15 -1767 ((-108) $)) (-15 -1612 ($ $ (-525))) (IF (|has| |#1| (-429)) (PROGN (-15 -3644 ((-396 (-1088 $)) (-1088 $))) (-15 -2426 ((-396 (-1088 $)) (-1088 $)))) |%noBranch|) (IF (|has| |#1| (-968 (-525))) (-6 (-968 (-47))) |%noBranch|)) |%noBranch|))) (-789)) (T -294))
+((-3504 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-517)) (-4 *2 (-789)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789)))) (-1612 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789)))) (-3644 (*1 *2 *3) (-12 (-5 *2 (-396 (-1088 *1))) (-5 *1 (-294 *4)) (-5 *3 (-1088 *1)) (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789)))) (-2426 (*1 *2 *3) (-12 (-5 *2 (-396 (-1088 *1))) (-5 *1 (-294 *4)) (-5 *3 (-1088 *1)) (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789)))))
+(-13 (-408 |#1|) (-10 -8 (IF (|has| |#1| (-517)) (PROGN (-6 (-29 |#1|)) (-6 (-1114)) (-6 (-149)) (-6 (-578)) (-6 (-1056)) (-15 -3504 ($ $)) (-15 -1767 ((-108) $)) (-15 -1612 ($ $ (-525))) (IF (|has| |#1| (-429)) (PROGN (-15 -3644 ((-396 (-1088 $)) (-1088 $))) (-15 -2426 ((-396 (-1088 $)) (-1088 $)))) |%noBranch|) (IF (|has| |#1| (-968 (-525))) (-6 (-968 (-47))) |%noBranch|)) |%noBranch|)))
+((-4155 (((-51) |#2| (-110) (-273 |#2|) (-592 |#2|)) 88) (((-51) |#2| (-110) (-273 |#2|) (-273 |#2|)) 84) (((-51) |#2| (-110) (-273 |#2|) |#2|) 86) (((-51) (-273 |#2|) (-110) (-273 |#2|) |#2|) 87) (((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|))) 80) (((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 |#2|)) 82) (((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 |#2|)) 83) (((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|))) 81) (((-51) (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|)) 89) (((-51) (-273 |#2|) (-110) (-273 |#2|) (-273 |#2|)) 85)))
+(((-295 |#1| |#2|) (-10 -7 (-15 -4155 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-273 |#2|))) (-15 -4155 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -4155 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -4155 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -4155 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -4155 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -4155 ((-51) (-273 |#2|) (-110) (-273 |#2|) |#2|)) (-15 -4155 ((-51) |#2| (-110) (-273 |#2|) |#2|)) (-15 -4155 ((-51) |#2| (-110) (-273 |#2|) (-273 |#2|))) (-15 -4155 ((-51) |#2| (-110) (-273 |#2|) (-592 |#2|)))) (-13 (-789) (-517) (-567 (-501))) (-408 |#1|)) (T -295))
+((-4155 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-5 *6 (-592 *3)) (-4 *3 (-408 *7)) (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *7 *3)))) (-4155 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *3)))) (-4155 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *3)))) (-4155 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-273 *5)) (-5 *4 (-110)) (-4 *5 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *5)))) (-4155 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-110))) (-5 *6 (-592 (-273 *8))) (-4 *8 (-408 *7)) (-5 *5 (-273 *8)) (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *7 *8)))) (-4155 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7)) (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) (-4155 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-592 (-273 *8))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *8)) (-5 *6 (-592 *8)) (-4 *8 (-408 *7)) (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *7 *8)))) (-4155 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-592 (-273 *7))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7)) (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) (-4155 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-592 *7)) (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) (-4155 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-273 *6)) (-5 *4 (-110)) (-4 *6 (-408 *5)) (-4 *5 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *5 *6)))))
+(-10 -7 (-15 -4155 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-273 |#2|))) (-15 -4155 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -4155 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -4155 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -4155 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -4155 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -4155 ((-51) (-273 |#2|) (-110) (-273 |#2|) |#2|)) (-15 -4155 ((-51) |#2| (-110) (-273 |#2|) |#2|)) (-15 -4155 ((-51) |#2| (-110) (-273 |#2|) (-273 |#2|))) (-15 -4155 ((-51) |#2| (-110) (-273 |#2|) (-592 |#2|))))
+((-3349 (((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-205) (-525) (-1075)) 46) (((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-205) (-525)) 47) (((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-1 (-205) (-205)) (-525) (-1075)) 43) (((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-1 (-205) (-205)) (-525)) 44)) (-1366 (((-1 (-205) (-205)) (-205)) 45)))
+(((-296) (-10 -7 (-15 -1366 ((-1 (-205) (-205)) (-205))) (-15 -3349 ((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-1 (-205) (-205)) (-525))) (-15 -3349 ((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-1 (-205) (-205)) (-525) (-1075))) (-15 -3349 ((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-205) (-525))) (-15 -3349 ((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-205) (-525) (-1075))))) (T -296))
+((-3349 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1015 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) (-5 *8 (-1075)) (-5 *2 (-1124 (-861))) (-5 *1 (-296)))) (-3349 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1015 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) (-5 *2 (-1124 (-861))) (-5 *1 (-296)))) (-3349 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1015 (-205))) (-5 *6 (-525)) (-5 *7 (-1075)) (-5 *2 (-1124 (-861))) (-5 *1 (-296)))) (-3349 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1015 (-205))) (-5 *6 (-525)) (-5 *2 (-1124 (-861))) (-5 *1 (-296)))) (-1366 (*1 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-296)) (-5 *3 (-205)))))
+(-10 -7 (-15 -1366 ((-1 (-205) (-205)) (-205))) (-15 -3349 ((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-1 (-205) (-205)) (-525))) (-15 -3349 ((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-1 (-205) (-205)) (-525) (-1075))) (-15 -3349 ((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-205) (-525))) (-15 -3349 ((-1124 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-205) (-525) (-1075))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 25)) (-1296 (((-592 (-1005)) $) NIL)) (-3469 (((-1092) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-2730 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-2005 (((-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 20)) (-1803 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3659 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL (|has| |#1| (-341)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-341)))) (-4211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1507 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1781 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3638 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2996 (($ (-713) (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-1828 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3698 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2475 (($) NIL T CONST)) (-1356 (($ $ $) NIL (|has| |#1| (-341)))) (-1451 (($ $) 32)) (-3300 (((-3 $ "failed") $) NIL)) (-1332 (($ $ $) NIL (|has| |#1| (-341)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-1798 (((-108) $) NIL (|has| |#1| (-341)))) (-2853 (((-108) $) NIL)) (-4106 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4000 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) 16)) (-2278 (((-108) $) NIL)) (-1303 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1585 (($ $ (-856)) NIL) (($ $ (-385 (-525))) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-385 (-525))) NIL) (($ $ (-1005) (-385 (-525))) NIL) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) NIL)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2533 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL (|has| |#1| (-341)))) (-2367 (($ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) NIL (-2067 (-12 (|has| |#1| (-15 -2367 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -1296 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114)))))) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4201 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-1397 (($ $ (-385 (-525))) NIL)) (-1311 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-4213 (((-385 (-525)) $) 17)) (-2489 (($ (-1159 |#1| |#2| |#3|)) 11)) (-2168 (((-1159 |#1| |#2| |#3|) $) 12)) (-1618 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2825 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-1927 (((-713) $) NIL (|has| |#1| (-341)))) (-3431 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1032)))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-341)))) (-2702 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3529 (((-385 (-525)) $) NIL)) (-1841 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1816 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3678 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1792 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3649 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3926 (($ $) 10)) (-4100 (((-798) $) 38) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-3136 ((|#1| $ (-385 (-525))) 30)) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) NIL)) (-1423 ((|#1| $) NIL)) (-1876 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3853 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1853 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1902 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1760 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1485 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -4100 (|#1| (-1092))))))) (-3135 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1891 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1748 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1866 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3820 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 27)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 33)) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-297 |#1| |#2| |#3|) (-13 (-1155 |#1|) (-734) (-10 -8 (-15 -2489 ($ (-1159 |#1| |#2| |#3|))) (-15 -2168 ((-1159 |#1| |#2| |#3|) $)) (-15 -4213 ((-385 (-525)) $)))) (-13 (-341) (-789)) (-1092) |#1|) (T -297))
+((-2489 (*1 *1 *2) (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-297 *3 *4 *5)))) (-2168 (*1 *2 *1) (-12 (-5 *2 (-1159 *3 *4 *5)) (-5 *1 (-297 *3 *4 *5)) (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1092)) (-14 *5 *3))) (-4213 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-297 *3 *4 *5)) (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1092)) (-14 *5 *3))))
+(-13 (-1155 |#1|) (-734) (-10 -8 (-15 -2489 ($ (-1159 |#1| |#2| |#3|))) (-15 -2168 ((-1159 |#1| |#2| |#3|) $)) (-15 -4213 ((-385 (-525)) $))))
+((-1303 (((-2 (|:| -2168 (-713)) (|:| -2681 |#1|) (|:| |radicand| (-592 |#1|))) (-396 |#1|) (-713)) 24)) (-2533 (((-592 (-2 (|:| -2681 (-713)) (|:| |logand| |#1|))) (-396 |#1|)) 28)))
+(((-298 |#1|) (-10 -7 (-15 -1303 ((-2 (|:| -2168 (-713)) (|:| -2681 |#1|) (|:| |radicand| (-592 |#1|))) (-396 |#1|) (-713))) (-15 -2533 ((-592 (-2 (|:| -2681 (-713)) (|:| |logand| |#1|))) (-396 |#1|)))) (-517)) (T -298))
+((-2533 (*1 *2 *3) (-12 (-5 *3 (-396 *4)) (-4 *4 (-517)) (-5 *2 (-592 (-2 (|:| -2681 (-713)) (|:| |logand| *4)))) (-5 *1 (-298 *4)))) (-1303 (*1 *2 *3 *4) (-12 (-5 *3 (-396 *5)) (-4 *5 (-517)) (-5 *2 (-2 (|:| -2168 (-713)) (|:| -2681 *5) (|:| |radicand| (-592 *5)))) (-5 *1 (-298 *5)) (-5 *4 (-713)))))
+(-10 -7 (-15 -1303 ((-2 (|:| -2168 (-713)) (|:| -2681 |#1|) (|:| |radicand| (-592 |#1|))) (-396 |#1|) (-713))) (-15 -2533 ((-592 (-2 (|:| -2681 (-713)) (|:| |logand| |#1|))) (-396 |#1|))))
+((-1296 (((-592 |#2|) (-1088 |#4|)) 43)) (-2657 ((|#3| (-525)) 46)) (-3416 (((-1088 |#4|) (-1088 |#3|)) 30)) (-3919 (((-1088 |#4|) (-1088 |#4|) (-525)) 56)) (-1878 (((-1088 |#3|) (-1088 |#4|)) 21)) (-3529 (((-592 (-713)) (-1088 |#4|) (-592 |#2|)) 40)) (-2340 (((-1088 |#3|) (-1088 |#4|) (-592 |#2|) (-592 |#3|)) 35)))
+(((-299 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2340 ((-1088 |#3|) (-1088 |#4|) (-592 |#2|) (-592 |#3|))) (-15 -3529 ((-592 (-713)) (-1088 |#4|) (-592 |#2|))) (-15 -1296 ((-592 |#2|) (-1088 |#4|))) (-15 -1878 ((-1088 |#3|) (-1088 |#4|))) (-15 -3416 ((-1088 |#4|) (-1088 |#3|))) (-15 -3919 ((-1088 |#4|) (-1088 |#4|) (-525))) (-15 -2657 (|#3| (-525)))) (-735) (-789) (-977) (-884 |#3| |#1| |#2|)) (T -299))
+((-2657 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-977)) (-5 *1 (-299 *4 *5 *2 *6)) (-4 *6 (-884 *2 *4 *5)))) (-3919 (*1 *2 *2 *3) (-12 (-5 *2 (-1088 *7)) (-5 *3 (-525)) (-4 *7 (-884 *6 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-5 *1 (-299 *4 *5 *6 *7)))) (-3416 (*1 *2 *3) (-12 (-5 *3 (-1088 *6)) (-4 *6 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-1088 *7)) (-5 *1 (-299 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))) (-1878 (*1 *2 *3) (-12 (-5 *3 (-1088 *7)) (-4 *7 (-884 *6 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-5 *2 (-1088 *6)) (-5 *1 (-299 *4 *5 *6 *7)))) (-1296 (*1 *2 *3) (-12 (-5 *3 (-1088 *7)) (-4 *7 (-884 *6 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-5 *2 (-592 *5)) (-5 *1 (-299 *4 *5 *6 *7)))) (-3529 (*1 *2 *3 *4) (-12 (-5 *3 (-1088 *8)) (-5 *4 (-592 *6)) (-4 *6 (-789)) (-4 *8 (-884 *7 *5 *6)) (-4 *5 (-735)) (-4 *7 (-977)) (-5 *2 (-592 (-713))) (-5 *1 (-299 *5 *6 *7 *8)))) (-2340 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1088 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 *8)) (-4 *7 (-789)) (-4 *8 (-977)) (-4 *9 (-884 *8 *6 *7)) (-4 *6 (-735)) (-5 *2 (-1088 *8)) (-5 *1 (-299 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2340 ((-1088 |#3|) (-1088 |#4|) (-592 |#2|) (-592 |#3|))) (-15 -3529 ((-592 (-713)) (-1088 |#4|) (-592 |#2|))) (-15 -1296 ((-592 |#2|) (-1088 |#4|))) (-15 -1878 ((-1088 |#3|) (-1088 |#4|))) (-15 -3416 ((-1088 |#4|) (-1088 |#3|))) (-15 -3919 ((-1088 |#4|) (-1088 |#4|) (-525))) (-15 -2657 (|#3| (-525))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 14)) (-2005 (((-592 (-2 (|:| |gen| |#1|) (|:| -1618 (-525)))) $) 18)) (-3222 (((-3 $ "failed") $ $) NIL)) (-1613 (((-713) $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) NIL)) (-4105 ((|#1| $) NIL)) (-3538 ((|#1| $ (-525)) NIL)) (-2911 (((-525) $ (-525)) NIL)) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-1693 (($ (-1 |#1| |#1|) $) NIL)) (-2534 (($ (-1 (-525) (-525)) $) 10)) (-1289 (((-1075) $) NIL)) (-3833 (($ $ $) NIL (|has| (-525) (-734)))) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL) (($ |#1|) NIL)) (-3136 (((-525) |#1| $) NIL)) (-3364 (($) 15 T CONST)) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) 21 (|has| |#1| (-789)))) (-2871 (($ $) 11) (($ $ $) 20)) (-2860 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL) (($ (-525) |#1|) 19)))
(((-300 |#1|) (-13 (-21) (-660 (-525)) (-301 |#1| (-525)) (-10 -7 (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|))) (-1020)) (T -300))
NIL
(-13 (-21) (-660 (-525)) (-301 |#1| (-525)) (-10 -7 (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2755 (((-592 (-2 (|:| |gen| |#1|) (|:| -3096 |#2|))) $) 27)) (-1578 (((-3 $ "failed") $ $) 19)) (-1834 (((-713) $) 28)) (-2169 (($) 17 T CONST)) (-3077 (((-3 |#1| "failed") $) 32)) (-1572 ((|#1| $) 31)) (-1726 ((|#1| $ (-525)) 25)) (-4147 ((|#2| $ (-525)) 26)) (-2527 (($ (-1 |#1| |#1|) $) 22)) (-1460 (($ (-1 |#2| |#2|) $) 23)) (-2619 (((-1075) $) 9)) (-2893 (($ $ $) 21 (|has| |#2| (-734)))) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11) (($ |#1|) 33)) (-1568 ((|#2| |#1| $) 24)) (-3349 (($) 18 T CONST)) (-3955 (((-108) $ $) 6)) (-4047 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ |#2| |#1|) 29)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-2005 (((-592 (-2 (|:| |gen| |#1|) (|:| -1618 |#2|))) $) 27)) (-3222 (((-3 $ "failed") $ $) 19)) (-1613 (((-713) $) 28)) (-2475 (($) 17 T CONST)) (-1934 (((-3 |#1| "failed") $) 32)) (-4105 ((|#1| $) 31)) (-3538 ((|#1| $ (-525)) 25)) (-2911 ((|#2| $ (-525)) 26)) (-1693 (($ (-1 |#1| |#1|) $) 22)) (-2534 (($ (-1 |#2| |#2|) $) 23)) (-1289 (((-1075) $) 9)) (-3833 (($ $ $) 21 (|has| |#2| (-734)))) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11) (($ |#1|) 33)) (-3136 ((|#2| |#1| $) 24)) (-3364 (($) 18 T CONST)) (-2775 (((-108) $ $) 6)) (-2860 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ |#2| |#1|) 29)))
(((-301 |#1| |#2|) (-131) (-1020) (-126)) (T -301))
-((-4047 (*1 *1 *2 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-126)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-126)))) (-1834 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-126)) (-5 *2 (-713)))) (-2755 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-126)) (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -3096 *4)))))) (-4147 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-301 *4 *2)) (-4 *4 (-1020)) (-4 *2 (-126)))) (-1726 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-301 *2 *4)) (-4 *4 (-126)) (-4 *2 (-1020)))) (-1568 (*1 *2 *3 *1) (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-126)))) (-1460 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-126)))) (-2527 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-126)))) (-2893 (*1 *1 *1 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-126)) (-4 *3 (-734)))))
-(-13 (-126) (-968 |t#1|) (-10 -8 (-15 -4047 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1834 ((-713) $)) (-15 -2755 ((-592 (-2 (|:| |gen| |t#1|) (|:| -3096 |t#2|))) $)) (-15 -4147 (|t#2| $ (-525))) (-15 -1726 (|t#1| $ (-525))) (-15 -1568 (|t#2| |t#1| $)) (-15 -1460 ($ (-1 |t#2| |t#2|) $)) (-15 -2527 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-734)) (-15 -2893 ($ $ $)) |%noBranch|)))
+((-2860 (*1 *1 *2 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-126)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-126)))) (-1613 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-126)) (-5 *2 (-713)))) (-2005 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-126)) (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1618 *4)))))) (-2911 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-301 *4 *2)) (-4 *4 (-1020)) (-4 *2 (-126)))) (-3538 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-301 *2 *4)) (-4 *4 (-126)) (-4 *2 (-1020)))) (-3136 (*1 *2 *3 *1) (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-126)))) (-2534 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-126)))) (-1693 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-126)))) (-3833 (*1 *1 *1 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-126)) (-4 *3 (-734)))))
+(-13 (-126) (-968 |t#1|) (-10 -8 (-15 -2860 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1613 ((-713) $)) (-15 -2005 ((-592 (-2 (|:| |gen| |t#1|) (|:| -1618 |t#2|))) $)) (-15 -2911 (|t#2| $ (-525))) (-15 -3538 (|t#1| $ (-525))) (-15 -3136 (|t#2| |t#1| $)) (-15 -2534 ($ (-1 |t#2| |t#2|) $)) (-15 -1693 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-734)) (-15 -3833 ($ $ $)) |%noBranch|)))
(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-968 |#1|) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2755 (((-592 (-2 (|:| |gen| |#1|) (|:| -3096 (-713)))) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1834 (((-713) $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) NIL)) (-1572 ((|#1| $) NIL)) (-1726 ((|#1| $ (-525)) NIL)) (-4147 (((-713) $ (-525)) NIL)) (-2527 (($ (-1 |#1| |#1|) $) NIL)) (-1460 (($ (-1 (-713) (-713)) $) NIL)) (-2619 (((-1075) $) NIL)) (-2893 (($ $ $) NIL (|has| (-713) (-734)))) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL) (($ |#1|) NIL)) (-1568 (((-713) |#1| $) NIL)) (-3349 (($) NIL T CONST)) (-3955 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-713) |#1|) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-2005 (((-592 (-2 (|:| |gen| |#1|) (|:| -1618 (-713)))) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-1613 (((-713) $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) NIL)) (-4105 ((|#1| $) NIL)) (-3538 ((|#1| $ (-525)) NIL)) (-2911 (((-713) $ (-525)) NIL)) (-1693 (($ (-1 |#1| |#1|) $) NIL)) (-2534 (($ (-1 (-713) (-713)) $) NIL)) (-1289 (((-1075) $) NIL)) (-3833 (($ $ $) NIL (|has| (-713) (-734)))) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL) (($ |#1|) NIL)) (-3136 (((-713) |#1| $) NIL)) (-3364 (($) NIL T CONST)) (-2775 (((-108) $ $) NIL)) (-2860 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-713) |#1|) NIL)))
(((-302 |#1|) (-301 |#1| (-713)) (-1020)) (T -302))
NIL
(-301 |#1| (-713))
-((-1576 (($ $) 53)) (-2188 (($ $ |#2| |#3| $) 14)) (-2172 (($ (-1 |#3| |#3|) $) 35)) (-3007 (((-108) $) 27)) (-3019 ((|#2| $) 29)) (-1715 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-3658 ((|#2| $) 49)) (-1684 (((-592 |#2|) $) 38)) (-3716 (($ $ $ (-713)) 23)) (-4075 (($ $ |#2|) 42)))
-(((-303 |#1| |#2| |#3|) (-10 -8 (-15 -1576 (|#1| |#1|)) (-15 -3658 (|#2| |#1|)) (-15 -1715 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3716 (|#1| |#1| |#1| (-713))) (-15 -2188 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2172 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1684 ((-592 |#2|) |#1|)) (-15 -3019 (|#2| |#1|)) (-15 -3007 ((-108) |#1|)) (-15 -1715 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4075 (|#1| |#1| |#2|))) (-304 |#2| |#3|) (-977) (-734)) (T -303))
+((-3201 (($ $) 53)) (-1457 (($ $ |#2| |#3| $) 14)) (-1314 (($ (-1 |#3| |#3|) $) 35)) (-1399 (((-108) $) 27)) (-1407 ((|#2| $) 29)) (-1311 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-1661 ((|#2| $) 49)) (-3137 (((-592 |#2|) $) 38)) (-4042 (($ $ $ (-713)) 23)) (-2880 (($ $ |#2|) 42)))
+(((-303 |#1| |#2| |#3|) (-10 -8 (-15 -3201 (|#1| |#1|)) (-15 -1661 (|#2| |#1|)) (-15 -1311 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4042 (|#1| |#1| |#1| (-713))) (-15 -1457 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1314 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3137 ((-592 |#2|) |#1|)) (-15 -1407 (|#2| |#1|)) (-15 -1399 ((-108) |#1|)) (-15 -1311 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2880 (|#1| |#1| |#2|))) (-304 |#2| |#3|) (-977) (-734)) (T -303))
NIL
-(-10 -8 (-15 -1576 (|#1| |#1|)) (-15 -3658 (|#2| |#1|)) (-15 -1715 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3716 (|#1| |#1| |#1| (-713))) (-15 -2188 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2172 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1684 ((-592 |#2|) |#1|)) (-15 -3019 (|#2| |#1|)) (-15 -3007 ((-108) |#1|)) (-15 -1715 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4075 (|#1| |#1| |#2|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-4218 (($ $) 52 (|has| |#1| (-517)))) (-3171 (((-108) $) 54 (|has| |#1| (-517)))) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3077 (((-3 (-525) "failed") $) 90 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 88 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 87)) (-1572 (((-525) $) 91 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 89 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 86)) (-3063 (($ $) 60)) (-3457 (((-3 $ "failed") $) 34)) (-1576 (($ $) 75 (|has| |#1| (-429)))) (-2188 (($ $ |#1| |#2| $) 79)) (-1396 (((-108) $) 31)) (-3399 (((-713) $) 82)) (-1212 (((-108) $) 62)) (-2876 (($ |#1| |#2|) 61)) (-2870 ((|#2| $) 81)) (-2172 (($ (-1 |#2| |#2|) $) 80)) (-3165 (($ (-1 |#1| |#1|) $) 63)) (-3031 (($ $) 65)) (-3043 ((|#1| $) 66)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-3007 (((-108) $) 85)) (-3019 ((|#1| $) 84)) (-1715 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-517)))) (-2343 ((|#2| $) 64)) (-3658 ((|#1| $) 76 (|has| |#1| (-429)))) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47) (($ (-385 (-525))) 57 (-3254 (|has| |#1| (-968 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525))))))) (-1684 (((-592 |#1|) $) 83)) (-1568 ((|#1| $ |#2|) 59)) (-3637 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-3917 (((-713)) 29)) (-3716 (($ $ $ (-713)) 78 (|has| |#1| (-160)))) (-3325 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4075 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
+(-10 -8 (-15 -3201 (|#1| |#1|)) (-15 -1661 (|#2| |#1|)) (-15 -1311 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4042 (|#1| |#1| |#1| (-713))) (-15 -1457 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1314 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3137 ((-592 |#2|) |#1|)) (-15 -1407 (|#2| |#1|)) (-15 -1399 ((-108) |#1|)) (-15 -1311 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2880 (|#1| |#1| |#2|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-2433 (($ $) 52 (|has| |#1| (-517)))) (-1568 (((-108) $) 54 (|has| |#1| (-517)))) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1934 (((-3 (-525) "failed") $) 90 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 88 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 87)) (-4105 (((-525) $) 91 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 89 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 86)) (-1451 (($ $) 60)) (-3300 (((-3 $ "failed") $) 34)) (-3201 (($ $) 75 (|has| |#1| (-429)))) (-1457 (($ $ |#1| |#2| $) 79)) (-2278 (((-108) $) 31)) (-4025 (((-713) $) 82)) (-2457 (((-108) $) 62)) (-1272 (($ |#1| |#2|) 61)) (-1819 ((|#2| $) 81)) (-1314 (($ (-1 |#2| |#2|) $) 80)) (-2016 (($ (-1 |#1| |#1|) $) 63)) (-1418 (($ $) 65)) (-1430 ((|#1| $) 66)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1399 (((-108) $) 85)) (-1407 ((|#1| $) 84)) (-1311 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-517)))) (-3529 ((|#2| $) 64)) (-1661 ((|#1| $) 76 (|has| |#1| (-429)))) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47) (($ (-385 (-525))) 57 (-2067 (|has| |#1| (-968 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525))))))) (-3137 (((-592 |#1|) $) 83)) (-3136 ((|#1| $ |#2|) 59)) (-1463 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2448 (((-713)) 29)) (-4042 (($ $ $ (-713)) 78 (|has| |#1| (-160)))) (-1571 (((-108) $ $) 53 (|has| |#1| (-517)))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2880 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
(((-304 |#1| |#2|) (-131) (-977) (-734)) (T -304))
-((-3007 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-5 *2 (-108)))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)))) (-1684 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-5 *2 (-592 *3)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-5 *2 (-713)))) (-2870 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-2172 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)))) (-2188 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)))) (-3716 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-4 *3 (-160)))) (-1715 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-304 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)) (-4 *2 (-517)))) (-3658 (*1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)) (-4 *2 (-429)))) (-1576 (*1 *1 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)) (-4 *2 (-429)))))
-(-13 (-46 |t#1| |t#2|) (-389 |t#1|) (-10 -8 (-15 -3007 ((-108) $)) (-15 -3019 (|t#1| $)) (-15 -1684 ((-592 |t#1|) $)) (-15 -3399 ((-713) $)) (-15 -2870 (|t#2| $)) (-15 -2172 ($ (-1 |t#2| |t#2|) $)) (-15 -2188 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-160)) (-15 -3716 ($ $ $ (-713))) |%noBranch|) (IF (|has| |t#1| (-517)) (-15 -1715 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-15 -3658 (|t#1| $)) (-15 -1576 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3254 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3254 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-269) |has| |#1| (-517)) ((-389 |#1|) . T) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-2470 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2165 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4259))) (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-789))))) (-2458 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3991 (((-108) $ (-713)) NIL)) (-2034 (((-108) (-108)) NIL)) (-1430 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4259)))) (-1676 (($ (-1 (-108) |#1|) $) NIL)) (-3785 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2169 (($) NIL T CONST)) (-2700 (($ $) NIL (|has| $ (-6 -4259)))) (-3431 (($ $) NIL)) (-3972 (($ $) NIL (|has| |#1| (-1020)))) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3271 (($ |#1| $) NIL (|has| |#1| (-1020))) (($ (-1 (-108) |#1|) $) NIL)) (-1703 (($ |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4258)))) (-2301 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) NIL)) (-1932 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-1636 (($ $ (-525)) NIL)) (-2943 (((-713) $) NIL)) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-3416 (($ (-713) |#1|) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) NIL (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-2639 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1577 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-1262 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2531 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-2071 (($ (-592 |#1|)) NIL)) (-1872 ((|#1| $) NIL (|has| (-525) (-789)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1420 (($ $ |#1|) NIL (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-1356 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-3038 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-4098 (($ $ $ (-525)) NIL (|has| $ (-6 -4259)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) NIL)) (-4029 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2038 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-305 |#1|) (-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -2071 ($ (-592 |#1|))) (-15 -2943 ((-713) $)) (-15 -1636 ($ $ (-525))) (-15 -2034 ((-108) (-108))))) (-1128)) (T -305))
-((-2071 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-305 *3)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-305 *3)) (-4 *3 (-1128)))) (-1636 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-305 *3)) (-4 *3 (-1128)))) (-2034 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-305 *3)) (-4 *3 (-1128)))))
-(-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -2071 ($ (-592 |#1|))) (-15 -2943 ((-713) $)) (-15 -1636 ($ $ (-525))) (-15 -2034 ((-108) (-108)))))
-((-1259 (((-108) $) 42)) (-3098 (((-713)) 22)) (-2952 ((|#2| $) 46) (($ $ (-856)) 104)) (-1834 (((-713)) 98)) (-2064 (($ (-1174 |#2|)) 20)) (-1527 (((-108) $) 116)) (-2382 ((|#2| $) 48) (($ $ (-856)) 102)) (-2126 (((-1088 |#2|) $) NIL) (((-1088 $) $ (-856)) 95)) (-1283 (((-1088 |#2|) $) 83)) (-2577 (((-1088 |#2|) $) 80) (((-3 (-1088 |#2|) "failed") $ $) 77)) (-2324 (($ $ (-1088 |#2|)) 53)) (-2858 (((-775 (-856))) 28) (((-856)) 43)) (-3705 (((-128)) 25)) (-2343 (((-775 (-856)) $) 30) (((-856) $) 118)) (-2254 (($) 110)) (-2387 (((-1174 |#2|) $) NIL) (((-632 |#2|) (-1174 $)) 39)) (-3637 (($ $) NIL) (((-3 $ "failed") $) 86)) (-2081 (((-108) $) 41)))
-(((-306 |#1| |#2|) (-10 -8 (-15 -3637 ((-3 |#1| "failed") |#1|)) (-15 -1834 ((-713))) (-15 -3637 (|#1| |#1|)) (-15 -2577 ((-3 (-1088 |#2|) "failed") |#1| |#1|)) (-15 -2577 ((-1088 |#2|) |#1|)) (-15 -1283 ((-1088 |#2|) |#1|)) (-15 -2324 (|#1| |#1| (-1088 |#2|))) (-15 -1527 ((-108) |#1|)) (-15 -2254 (|#1|)) (-15 -2952 (|#1| |#1| (-856))) (-15 -2382 (|#1| |#1| (-856))) (-15 -2126 ((-1088 |#1|) |#1| (-856))) (-15 -2952 (|#2| |#1|)) (-15 -2382 (|#2| |#1|)) (-15 -2343 ((-856) |#1|)) (-15 -2858 ((-856))) (-15 -2126 ((-1088 |#2|) |#1|)) (-15 -2064 (|#1| (-1174 |#2|))) (-15 -2387 ((-632 |#2|) (-1174 |#1|))) (-15 -2387 ((-1174 |#2|) |#1|)) (-15 -3098 ((-713))) (-15 -2858 ((-775 (-856)))) (-15 -2343 ((-775 (-856)) |#1|)) (-15 -1259 ((-108) |#1|)) (-15 -2081 ((-108) |#1|)) (-15 -3705 ((-128)))) (-307 |#2|) (-341)) (T -306))
-((-3705 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-128)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-2858 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-775 (-856))) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-3098 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-2858 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-856)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-1834 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))))
-(-10 -8 (-15 -3637 ((-3 |#1| "failed") |#1|)) (-15 -1834 ((-713))) (-15 -3637 (|#1| |#1|)) (-15 -2577 ((-3 (-1088 |#2|) "failed") |#1| |#1|)) (-15 -2577 ((-1088 |#2|) |#1|)) (-15 -1283 ((-1088 |#2|) |#1|)) (-15 -2324 (|#1| |#1| (-1088 |#2|))) (-15 -1527 ((-108) |#1|)) (-15 -2254 (|#1|)) (-15 -2952 (|#1| |#1| (-856))) (-15 -2382 (|#1| |#1| (-856))) (-15 -2126 ((-1088 |#1|) |#1| (-856))) (-15 -2952 (|#2| |#1|)) (-15 -2382 (|#2| |#1|)) (-15 -2343 ((-856) |#1|)) (-15 -2858 ((-856))) (-15 -2126 ((-1088 |#2|) |#1|)) (-15 -2064 (|#1| (-1174 |#2|))) (-15 -2387 ((-632 |#2|) (-1174 |#1|))) (-15 -2387 ((-1174 |#2|) |#1|)) (-15 -3098 ((-713))) (-15 -2858 ((-775 (-856)))) (-15 -2343 ((-775 (-856)) |#1|)) (-15 -1259 ((-108) |#1|)) (-15 -2081 ((-108) |#1|)) (-15 -3705 ((-128))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-1259 (((-108) $) 94)) (-3098 (((-713)) 90)) (-2952 ((|#1| $) 140) (($ $ (-856)) 137 (|has| |#1| (-346)))) (-2971 (((-1102 (-856) (-713)) (-525)) 122 (|has| |#1| (-346)))) (-1578 (((-3 $ "failed") $ $) 19)) (-1286 (($ $) 73)) (-2669 (((-396 $) $) 72)) (-2193 (((-108) $ $) 59)) (-1834 (((-713)) 112 (|has| |#1| (-346)))) (-2169 (($) 17 T CONST)) (-3077 (((-3 |#1| "failed") $) 101)) (-1572 ((|#1| $) 100)) (-2064 (($ (-1174 |#1|)) 146)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-346)))) (-1747 (($ $ $) 55)) (-3457 (((-3 $ "failed") $) 34)) (-2502 (($) 109 (|has| |#1| (-346)))) (-1733 (($ $ $) 56)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 51)) (-2574 (($) 124 (|has| |#1| (-346)))) (-3704 (((-108) $) 125 (|has| |#1| (-346)))) (-3625 (($ $ (-713)) 87 (-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) 86 (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3673 (((-108) $) 71)) (-2581 (((-856) $) 127 (|has| |#1| (-346))) (((-775 (-856)) $) 84 (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1396 (((-108) $) 31)) (-1273 (($) 135 (|has| |#1| (-346)))) (-1527 (((-108) $) 134 (|has| |#1| (-346)))) (-2382 ((|#1| $) 141) (($ $ (-856)) 138 (|has| |#1| (-346)))) (-3844 (((-3 $ "failed") $) 113 (|has| |#1| (-346)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2126 (((-1088 |#1|) $) 145) (((-1088 $) $ (-856)) 139 (|has| |#1| (-346)))) (-3005 (((-856) $) 110 (|has| |#1| (-346)))) (-1283 (((-1088 |#1|) $) 131 (|has| |#1| (-346)))) (-2577 (((-1088 |#1|) $) 130 (|has| |#1| (-346))) (((-3 (-1088 |#1|) "failed") $ $) 129 (|has| |#1| (-346)))) (-2324 (($ $ (-1088 |#1|)) 132 (|has| |#1| (-346)))) (-2556 (($ $ $) 46) (($ (-592 $)) 45)) (-2619 (((-1075) $) 9)) (-2997 (($ $) 70)) (-2295 (($) 114 (|has| |#1| (-346)) CONST)) (-3555 (($ (-856)) 111 (|has| |#1| (-346)))) (-2703 (((-108) $) 93)) (-2093 (((-1039) $) 10)) (-3409 (($) 133 (|has| |#1| (-346)))) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2589 (($ $ $) 48) (($ (-592 $)) 47)) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) 121 (|has| |#1| (-346)))) (-2770 (((-396 $) $) 74)) (-2858 (((-775 (-856))) 91) (((-856)) 143)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1715 (((-3 $ "failed") $ $) 42)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-3684 (((-713) $) 58)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 57)) (-3877 (((-713) $) 126 (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) 85 (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3705 (((-128)) 99)) (-3376 (($ $) 118 (|has| |#1| (-346))) (($ $ (-713)) 116 (|has| |#1| (-346)))) (-2343 (((-775 (-856)) $) 92) (((-856) $) 142)) (-2756 (((-1088 |#1|)) 144)) (-2244 (($) 123 (|has| |#1| (-346)))) (-2254 (($) 136 (|has| |#1| (-346)))) (-2387 (((-1174 |#1|) $) 148) (((-632 |#1|) (-1174 $)) 147)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) 120 (|has| |#1| (-346)))) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ |#1|) 102)) (-3637 (($ $) 119 (|has| |#1| (-346))) (((-3 $ "failed") $) 83 (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3917 (((-713)) 29)) (-3094 (((-1174 $)) 150) (((-1174 $) (-856)) 149)) (-3325 (((-108) $ $) 39)) (-2081 (((-108) $) 95)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3127 (($ $) 89 (|has| |#1| (-346))) (($ $ (-713)) 88 (|has| |#1| (-346)))) (-2022 (($ $) 117 (|has| |#1| (-346))) (($ $ (-713)) 115 (|has| |#1| (-346)))) (-3955 (((-108) $ $) 6)) (-4075 (($ $ $) 64) (($ $ |#1|) 98)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+((-1399 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-5 *2 (-108)))) (-1407 (*1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-5 *2 (-592 *3)))) (-4025 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-5 *2 (-713)))) (-1819 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-1314 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)))) (-1457 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)))) (-4042 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-4 *3 (-160)))) (-1311 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-304 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)) (-4 *2 (-517)))) (-1661 (*1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)) (-4 *2 (-429)))) (-3201 (*1 *1 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)) (-4 *2 (-429)))))
+(-13 (-46 |t#1| |t#2|) (-389 |t#1|) (-10 -8 (-15 -1399 ((-108) $)) (-15 -1407 (|t#1| $)) (-15 -3137 ((-592 |t#1|) $)) (-15 -4025 ((-713) $)) (-15 -1819 (|t#2| $)) (-15 -1314 ($ (-1 |t#2| |t#2|) $)) (-15 -1457 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-160)) (-15 -4042 ($ $ $ (-713))) |%noBranch|) (IF (|has| |t#1| (-517)) (-15 -1311 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-15 -1661 (|t#1| $)) (-15 -3201 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -2067 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -2067 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-269) |has| |#1| (-517)) ((-389 |#1|) . T) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-2358 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2436 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4260))) (($ $) NIL (-12 (|has| $ (-6 -4260)) (|has| |#1| (-789))))) (-1842 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3779 (((-108) $ (-713)) NIL)) (-3454 (((-108) (-108)) NIL)) (-1233 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4260)))) (-3050 (($ (-1 (-108) |#1|) $) NIL)) (-2399 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2475 (($) NIL T CONST)) (-2670 (($ $) NIL (|has| $ (-6 -4260)))) (-1652 (($ $) NIL)) (-1793 (($ $) NIL (|has| |#1| (-1020)))) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-4205 (($ |#1| $) NIL (|has| |#1| (-1020))) (($ (-1 (-108) |#1|) $) NIL)) (-2698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3081 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) NIL)) (-3856 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-3937 (($ $ (-525)) NIL)) (-1317 (((-713) $) NIL)) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3324 (($ (-713) |#1|) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) NIL (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-3269 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3212 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3246 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2594 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-2643 (($ (-592 |#1|)) NIL)) (-1647 ((|#1| $) NIL (|has| (-525) (-789)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3453 (($ $ |#1|) NIL (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2818 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-2139 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3632 (($ $ $ (-525)) NIL (|has| $ (-6 -4260)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) NIL)) (-4190 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2035 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-305 |#1|) (-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -2643 ($ (-592 |#1|))) (-15 -1317 ((-713) $)) (-15 -3937 ($ $ (-525))) (-15 -3454 ((-108) (-108))))) (-1128)) (T -305))
+((-2643 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-305 *3)))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-305 *3)) (-4 *3 (-1128)))) (-3937 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-305 *3)) (-4 *3 (-1128)))) (-3454 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-305 *3)) (-4 *3 (-1128)))))
+(-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -2643 ($ (-592 |#1|))) (-15 -1317 ((-713) $)) (-15 -3937 ($ $ (-525))) (-15 -3454 ((-108) (-108)))))
+((-3214 (((-108) $) 42)) (-2132 (((-713)) 22)) (-2924 ((|#2| $) 46) (($ $ (-856)) 104)) (-1613 (((-713)) 98)) (-2580 (($ (-1174 |#2|)) 20)) (-1890 (((-108) $) 116)) (-2704 ((|#2| $) 48) (($ $ (-856)) 102)) (-2021 (((-1088 |#2|) $) NIL) (((-1088 $) $ (-856)) 95)) (-4162 (((-1088 |#2|) $) 83)) (-3955 (((-1088 |#2|) $) 80) (((-3 (-1088 |#2|) "failed") $ $) 77)) (-3323 (($ $ (-1088 |#2|)) 53)) (-1690 (((-775 (-856))) 28) (((-856)) 43)) (-3933 (((-128)) 25)) (-3529 (((-775 (-856)) $) 30) (((-856) $) 118)) (-3911 (($) 110)) (-2754 (((-1174 |#2|) $) NIL) (((-632 |#2|) (-1174 $)) 39)) (-1463 (($ $) NIL) (((-3 $ "failed") $) 86)) (-2738 (((-108) $) 41)))
+(((-306 |#1| |#2|) (-10 -8 (-15 -1463 ((-3 |#1| "failed") |#1|)) (-15 -1613 ((-713))) (-15 -1463 (|#1| |#1|)) (-15 -3955 ((-3 (-1088 |#2|) "failed") |#1| |#1|)) (-15 -3955 ((-1088 |#2|) |#1|)) (-15 -4162 ((-1088 |#2|) |#1|)) (-15 -3323 (|#1| |#1| (-1088 |#2|))) (-15 -1890 ((-108) |#1|)) (-15 -3911 (|#1|)) (-15 -2924 (|#1| |#1| (-856))) (-15 -2704 (|#1| |#1| (-856))) (-15 -2021 ((-1088 |#1|) |#1| (-856))) (-15 -2924 (|#2| |#1|)) (-15 -2704 (|#2| |#1|)) (-15 -3529 ((-856) |#1|)) (-15 -1690 ((-856))) (-15 -2021 ((-1088 |#2|) |#1|)) (-15 -2580 (|#1| (-1174 |#2|))) (-15 -2754 ((-632 |#2|) (-1174 |#1|))) (-15 -2754 ((-1174 |#2|) |#1|)) (-15 -2132 ((-713))) (-15 -1690 ((-775 (-856)))) (-15 -3529 ((-775 (-856)) |#1|)) (-15 -3214 ((-108) |#1|)) (-15 -2738 ((-108) |#1|)) (-15 -3933 ((-128)))) (-307 |#2|) (-341)) (T -306))
+((-3933 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-128)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-1690 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-775 (-856))) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-2132 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-1690 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-856)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-1613 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))))
+(-10 -8 (-15 -1463 ((-3 |#1| "failed") |#1|)) (-15 -1613 ((-713))) (-15 -1463 (|#1| |#1|)) (-15 -3955 ((-3 (-1088 |#2|) "failed") |#1| |#1|)) (-15 -3955 ((-1088 |#2|) |#1|)) (-15 -4162 ((-1088 |#2|) |#1|)) (-15 -3323 (|#1| |#1| (-1088 |#2|))) (-15 -1890 ((-108) |#1|)) (-15 -3911 (|#1|)) (-15 -2924 (|#1| |#1| (-856))) (-15 -2704 (|#1| |#1| (-856))) (-15 -2021 ((-1088 |#1|) |#1| (-856))) (-15 -2924 (|#2| |#1|)) (-15 -2704 (|#2| |#1|)) (-15 -3529 ((-856) |#1|)) (-15 -1690 ((-856))) (-15 -2021 ((-1088 |#2|) |#1|)) (-15 -2580 (|#1| (-1174 |#2|))) (-15 -2754 ((-632 |#2|) (-1174 |#1|))) (-15 -2754 ((-1174 |#2|) |#1|)) (-15 -2132 ((-713))) (-15 -1690 ((-775 (-856)))) (-15 -3529 ((-775 (-856)) |#1|)) (-15 -3214 ((-108) |#1|)) (-15 -2738 ((-108) |#1|)) (-15 -3933 ((-128))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-3214 (((-108) $) 94)) (-2132 (((-713)) 90)) (-2924 ((|#1| $) 140) (($ $ (-856)) 137 (|has| |#1| (-346)))) (-3395 (((-1102 (-856) (-713)) (-525)) 122 (|has| |#1| (-346)))) (-3222 (((-3 $ "failed") $ $) 19)) (-4195 (($ $) 73)) (-3586 (((-396 $) $) 72)) (-1507 (((-108) $ $) 59)) (-1613 (((-713)) 112 (|has| |#1| (-346)))) (-2475 (($) 17 T CONST)) (-1934 (((-3 |#1| "failed") $) 101)) (-4105 ((|#1| $) 100)) (-2580 (($ (-1174 |#1|)) 146)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-346)))) (-1356 (($ $ $) 55)) (-3300 (((-3 $ "failed") $) 34)) (-1903 (($) 109 (|has| |#1| (-346)))) (-1332 (($ $ $) 56)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 51)) (-3932 (($) 124 (|has| |#1| (-346)))) (-3920 (((-108) $) 125 (|has| |#1| (-346)))) (-1339 (($ $ (-713)) 87 (-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) 86 (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1798 (((-108) $) 71)) (-4000 (((-856) $) 127 (|has| |#1| (-346))) (((-775 (-856)) $) 84 (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2278 (((-108) $) 31)) (-3957 (($) 135 (|has| |#1| (-346)))) (-1890 (((-108) $) 134 (|has| |#1| (-346)))) (-2704 ((|#1| $) 141) (($ $ (-856)) 138 (|has| |#1| (-346)))) (-2878 (((-3 $ "failed") $) 113 (|has| |#1| (-346)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2021 (((-1088 |#1|) $) 145) (((-1088 $) $ (-856)) 139 (|has| |#1| (-346)))) (-3685 (((-856) $) 110 (|has| |#1| (-346)))) (-4162 (((-1088 |#1|) $) 131 (|has| |#1| (-346)))) (-3955 (((-1088 |#1|) $) 130 (|has| |#1| (-346))) (((-3 (-1088 |#1|) "failed") $ $) 129 (|has| |#1| (-346)))) (-3323 (($ $ (-1088 |#1|)) 132 (|has| |#1| (-346)))) (-2739 (($ $ $) 46) (($ (-592 $)) 45)) (-1289 (((-1075) $) 9)) (-1387 (($ $) 70)) (-2948 (($) 114 (|has| |#1| (-346)) CONST)) (-1722 (($ (-856)) 111 (|has| |#1| (-346)))) (-2700 (((-108) $) 93)) (-3993 (((-1039) $) 10)) (-3817 (($) 133 (|has| |#1| (-346)))) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2772 (($ $ $) 48) (($ (-592 $)) 47)) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) 121 (|has| |#1| (-346)))) (-4201 (((-396 $) $) 74)) (-1690 (((-775 (-856))) 91) (((-856)) 143)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1311 (((-3 $ "failed") $ $) 42)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1927 (((-713) $) 58)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 57)) (-2043 (((-713) $) 126 (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) 85 (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3933 (((-128)) 99)) (-2702 (($ $) 118 (|has| |#1| (-346))) (($ $ (-713)) 116 (|has| |#1| (-346)))) (-3529 (((-775 (-856)) $) 92) (((-856) $) 142)) (-2013 (((-1088 |#1|)) 144)) (-3823 (($) 123 (|has| |#1| (-346)))) (-3911 (($) 136 (|has| |#1| (-346)))) (-2754 (((-1174 |#1|) $) 148) (((-632 |#1|) (-1174 $)) 147)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) 120 (|has| |#1| (-346)))) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ |#1|) 102)) (-1463 (($ $) 119 (|has| |#1| (-346))) (((-3 $ "failed") $) 83 (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2448 (((-713)) 29)) (-2103 (((-1174 $)) 150) (((-1174 $) (-856)) 149)) (-1571 (((-108) $ $) 39)) (-2738 (((-108) $) 95)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2363 (($ $) 89 (|has| |#1| (-346))) (($ $ (-713)) 88 (|has| |#1| (-346)))) (-2401 (($ $) 117 (|has| |#1| (-346))) (($ $ (-713)) 115 (|has| |#1| (-346)))) (-2775 (((-108) $ $) 6)) (-2880 (($ $ $) 64) (($ $ |#1|) 98)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
(((-307 |#1|) (-131) (-341)) (T -307))
-((-3094 (*1 *2) (-12 (-4 *3 (-341)) (-5 *2 (-1174 *1)) (-4 *1 (-307 *3)))) (-3094 (*1 *2 *3) (-12 (-5 *3 (-856)) (-4 *4 (-341)) (-5 *2 (-1174 *1)) (-4 *1 (-307 *4)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1174 *3)))) (-2387 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-307 *4)) (-4 *4 (-341)) (-5 *2 (-632 *4)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-341)) (-4 *1 (-307 *3)))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1088 *3)))) (-2756 (*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1088 *3)))) (-2858 (*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-856)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-856)))) (-2382 (*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341)))) (-2126 (*1 *2 *1 *3) (-12 (-5 *3 (-856)) (-4 *4 (-346)) (-4 *4 (-341)) (-5 *2 (-1088 *1)) (-4 *1 (-307 *4)))) (-2382 (*1 *1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)))) (-2952 (*1 *1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)))) (-2254 (*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) (-1273 (*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-108)))) (-3409 (*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) (-2324 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 *3)) (-4 *3 (-346)) (-4 *1 (-307 *3)) (-4 *3 (-341)))) (-1283 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-1088 *3)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-1088 *3)))) (-2577 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-1088 *3)))))
-(-13 (-1191 |t#1|) (-968 |t#1|) (-10 -8 (-15 -3094 ((-1174 $))) (-15 -3094 ((-1174 $) (-856))) (-15 -2387 ((-1174 |t#1|) $)) (-15 -2387 ((-632 |t#1|) (-1174 $))) (-15 -2064 ($ (-1174 |t#1|))) (-15 -2126 ((-1088 |t#1|) $)) (-15 -2756 ((-1088 |t#1|))) (-15 -2858 ((-856))) (-15 -2343 ((-856) $)) (-15 -2382 (|t#1| $)) (-15 -2952 (|t#1| $)) (IF (|has| |t#1| (-346)) (PROGN (-6 (-327)) (-15 -2126 ((-1088 $) $ (-856))) (-15 -2382 ($ $ (-856))) (-15 -2952 ($ $ (-856))) (-15 -2254 ($)) (-15 -1273 ($)) (-15 -1527 ((-108) $)) (-15 -3409 ($)) (-15 -2324 ($ $ (-1088 |t#1|))) (-15 -1283 ((-1088 |t#1|) $)) (-15 -2577 ((-1088 |t#1|) $)) (-15 -2577 ((-3 (-1088 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3254 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) . T) ((-213) |has| |#1| (-346)) ((-223) . T) ((-269) . T) ((-286) . T) ((-1191 |#1|) . T) ((-341) . T) ((-380) -3254 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-346) |has| |#1| (-346)) ((-327) |has| |#1| (-346)) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-669) . T) ((-855) . T) ((-968 |#1|) . T) ((-983 #0#) . T) ((-983 |#1|) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1068) |has| |#1| (-346)) ((-1132) . T) ((-1181 |#1|) . T))
-((-4236 (((-108) $ $) NIL)) (-2146 (($ (-1091) $) 88)) (-2325 (($) 77)) (-4014 (((-1039) (-1039)) 11)) (-1433 (($) 78)) (-4025 (($) 90) (($ (-294 (-641))) 98) (($ (-294 (-643))) 94) (($ (-294 (-636))) 102) (($ (-294 (-357))) 109) (($ (-294 (-525))) 105) (($ (-294 (-157 (-357)))) 113)) (-2368 (($ (-1091) $) 89)) (-2098 (($ (-592 (-798))) 79)) (-2352 (((-1179) $) 75)) (-3840 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3642 (($ (-1039)) 51)) (-2594 (((-1024) $) 25)) (-1277 (($ (-1013 (-887 (-525))) $) 85) (($ (-1013 (-887 (-525))) (-887 (-525)) $) 86)) (-3422 (($ (-1039)) 87)) (-1785 (($ (-1091) $) 115) (($ (-1091) $ $) 116)) (-1822 (($ (-1092) (-592 (-1092))) 76)) (-4041 (($ (-1075)) 82) (($ (-592 (-1075))) 80)) (-1217 (((-798) $) 118)) (-3353 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1092)) (|:| |arrayIndex| (-592 (-887 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2465 (-798)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1092)) (|:| |rand| (-798)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1091)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2659 (-108)) (|:| -3284 (-2 (|:| |ints2Floats?| (-108)) (|:| -2465 (-798)))))) (|:| |blockBranch| (-592 $)) (|:| |commentBranch| (-592 (-1075))) (|:| |callBranch| (-1075)) (|:| |forBranch| (-2 (|:| -3196 (-1013 (-887 (-525)))) (|:| |span| (-887 (-525))) (|:| -3266 $))) (|:| |labelBranch| (-1039)) (|:| |loopBranch| (-2 (|:| |switch| (-1091)) (|:| -3266 $))) (|:| |commonBranch| (-2 (|:| -3257 (-1092)) (|:| |contents| (-592 (-1092))))) (|:| |printBranch| (-592 (-798)))) $) 44)) (-2983 (($ (-1075)) 187)) (-2542 (($ (-592 $)) 114)) (-2494 (($ (-1092) (-1075)) 120) (($ (-1092) (-294 (-643))) 160) (($ (-1092) (-294 (-641))) 161) (($ (-1092) (-294 (-636))) 162) (($ (-1092) (-632 (-643))) 123) (($ (-1092) (-632 (-641))) 126) (($ (-1092) (-632 (-636))) 129) (($ (-1092) (-1174 (-643))) 132) (($ (-1092) (-1174 (-641))) 135) (($ (-1092) (-1174 (-636))) 138) (($ (-1092) (-632 (-294 (-643)))) 141) (($ (-1092) (-632 (-294 (-641)))) 144) (($ (-1092) (-632 (-294 (-636)))) 147) (($ (-1092) (-1174 (-294 (-643)))) 150) (($ (-1092) (-1174 (-294 (-641)))) 153) (($ (-1092) (-1174 (-294 (-636)))) 156) (($ (-1092) (-592 (-887 (-525))) (-294 (-643))) 157) (($ (-1092) (-592 (-887 (-525))) (-294 (-641))) 158) (($ (-1092) (-592 (-887 (-525))) (-294 (-636))) 159) (($ (-1092) (-294 (-525))) 184) (($ (-1092) (-294 (-357))) 185) (($ (-1092) (-294 (-157 (-357)))) 186) (($ (-1092) (-632 (-294 (-525)))) 165) (($ (-1092) (-632 (-294 (-357)))) 168) (($ (-1092) (-632 (-294 (-157 (-357))))) 171) (($ (-1092) (-1174 (-294 (-525)))) 174) (($ (-1092) (-1174 (-294 (-357)))) 177) (($ (-1092) (-1174 (-294 (-157 (-357))))) 180) (($ (-1092) (-592 (-887 (-525))) (-294 (-525))) 181) (($ (-1092) (-592 (-887 (-525))) (-294 (-357))) 182) (($ (-1092) (-592 (-887 (-525))) (-294 (-157 (-357)))) 183)) (-3955 (((-108) $ $) NIL)))
-(((-308) (-13 (-1020) (-10 -8 (-15 -1217 ((-798) $)) (-15 -1277 ($ (-1013 (-887 (-525))) $)) (-15 -1277 ($ (-1013 (-887 (-525))) (-887 (-525)) $)) (-15 -2146 ($ (-1091) $)) (-15 -2368 ($ (-1091) $)) (-15 -3642 ($ (-1039))) (-15 -3422 ($ (-1039))) (-15 -4041 ($ (-1075))) (-15 -4041 ($ (-592 (-1075)))) (-15 -2983 ($ (-1075))) (-15 -4025 ($)) (-15 -4025 ($ (-294 (-641)))) (-15 -4025 ($ (-294 (-643)))) (-15 -4025 ($ (-294 (-636)))) (-15 -4025 ($ (-294 (-357)))) (-15 -4025 ($ (-294 (-525)))) (-15 -4025 ($ (-294 (-157 (-357))))) (-15 -1785 ($ (-1091) $)) (-15 -1785 ($ (-1091) $ $)) (-15 -2494 ($ (-1092) (-1075))) (-15 -2494 ($ (-1092) (-294 (-643)))) (-15 -2494 ($ (-1092) (-294 (-641)))) (-15 -2494 ($ (-1092) (-294 (-636)))) (-15 -2494 ($ (-1092) (-632 (-643)))) (-15 -2494 ($ (-1092) (-632 (-641)))) (-15 -2494 ($ (-1092) (-632 (-636)))) (-15 -2494 ($ (-1092) (-1174 (-643)))) (-15 -2494 ($ (-1092) (-1174 (-641)))) (-15 -2494 ($ (-1092) (-1174 (-636)))) (-15 -2494 ($ (-1092) (-632 (-294 (-643))))) (-15 -2494 ($ (-1092) (-632 (-294 (-641))))) (-15 -2494 ($ (-1092) (-632 (-294 (-636))))) (-15 -2494 ($ (-1092) (-1174 (-294 (-643))))) (-15 -2494 ($ (-1092) (-1174 (-294 (-641))))) (-15 -2494 ($ (-1092) (-1174 (-294 (-636))))) (-15 -2494 ($ (-1092) (-592 (-887 (-525))) (-294 (-643)))) (-15 -2494 ($ (-1092) (-592 (-887 (-525))) (-294 (-641)))) (-15 -2494 ($ (-1092) (-592 (-887 (-525))) (-294 (-636)))) (-15 -2494 ($ (-1092) (-294 (-525)))) (-15 -2494 ($ (-1092) (-294 (-357)))) (-15 -2494 ($ (-1092) (-294 (-157 (-357))))) (-15 -2494 ($ (-1092) (-632 (-294 (-525))))) (-15 -2494 ($ (-1092) (-632 (-294 (-357))))) (-15 -2494 ($ (-1092) (-632 (-294 (-157 (-357)))))) (-15 -2494 ($ (-1092) (-1174 (-294 (-525))))) (-15 -2494 ($ (-1092) (-1174 (-294 (-357))))) (-15 -2494 ($ (-1092) (-1174 (-294 (-157 (-357)))))) (-15 -2494 ($ (-1092) (-592 (-887 (-525))) (-294 (-525)))) (-15 -2494 ($ (-1092) (-592 (-887 (-525))) (-294 (-357)))) (-15 -2494 ($ (-1092) (-592 (-887 (-525))) (-294 (-157 (-357))))) (-15 -2542 ($ (-592 $))) (-15 -2325 ($)) (-15 -1433 ($)) (-15 -2098 ($ (-592 (-798)))) (-15 -1822 ($ (-1092) (-592 (-1092)))) (-15 -3840 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3353 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1092)) (|:| |arrayIndex| (-592 (-887 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2465 (-798)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1092)) (|:| |rand| (-798)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1091)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2659 (-108)) (|:| -3284 (-2 (|:| |ints2Floats?| (-108)) (|:| -2465 (-798)))))) (|:| |blockBranch| (-592 $)) (|:| |commentBranch| (-592 (-1075))) (|:| |callBranch| (-1075)) (|:| |forBranch| (-2 (|:| -3196 (-1013 (-887 (-525)))) (|:| |span| (-887 (-525))) (|:| -3266 $))) (|:| |labelBranch| (-1039)) (|:| |loopBranch| (-2 (|:| |switch| (-1091)) (|:| -3266 $))) (|:| |commonBranch| (-2 (|:| -3257 (-1092)) (|:| |contents| (-592 (-1092))))) (|:| |printBranch| (-592 (-798)))) $)) (-15 -2352 ((-1179) $)) (-15 -2594 ((-1024) $)) (-15 -4014 ((-1039) (-1039)))))) (T -308))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-308)))) (-1277 (*1 *1 *2 *1) (-12 (-5 *2 (-1013 (-887 (-525)))) (-5 *1 (-308)))) (-1277 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1013 (-887 (-525)))) (-5 *3 (-887 (-525))) (-5 *1 (-308)))) (-2146 (*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-308)))) (-2368 (*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-308)))) (-3642 (*1 *1 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-308)))) (-3422 (*1 *1 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-308)))) (-4041 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-308)))) (-4041 (*1 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-308)))) (-2983 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-308)))) (-4025 (*1 *1) (-5 *1 (-308))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-294 (-641))) (-5 *1 (-308)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-294 (-643))) (-5 *1 (-308)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-294 (-636))) (-5 *1 (-308)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-308)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-308)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1075)) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-643))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-641))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-636))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-643))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-641))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-636))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-643))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-641))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-636))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-643)))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-641)))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-636)))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-643)))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-641)))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-636)))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-294 (-643))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-294 (-641))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-294 (-636))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-525))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-357))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-157 (-357)))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-525)))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-357)))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-157 (-357))))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-525)))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-357)))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-157 (-357))))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-294 (-525))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-294 (-357))) (-5 *1 (-308)))) (-2494 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-294 (-157 (-357)))) (-5 *1 (-308)))) (-2542 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-5 *1 (-308)))) (-2325 (*1 *1) (-5 *1 (-308))) (-1433 (*1 *1) (-5 *1 (-308))) (-2098 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-308)))) (-1822 (*1 *1 *2 *3) (-12 (-5 *3 (-592 (-1092))) (-5 *2 (-1092)) (-5 *1 (-308)))) (-3840 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-308)))) (-3353 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1092)) (|:| |arrayIndex| (-592 (-887 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2465 (-798)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1092)) (|:| |rand| (-798)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1091)) (|:| |thenClause| (-308)) (|:| |elseClause| (-308)))) (|:| |returnBranch| (-2 (|:| -2659 (-108)) (|:| -3284 (-2 (|:| |ints2Floats?| (-108)) (|:| -2465 (-798)))))) (|:| |blockBranch| (-592 (-308))) (|:| |commentBranch| (-592 (-1075))) (|:| |callBranch| (-1075)) (|:| |forBranch| (-2 (|:| -3196 (-1013 (-887 (-525)))) (|:| |span| (-887 (-525))) (|:| -3266 (-308)))) (|:| |labelBranch| (-1039)) (|:| |loopBranch| (-2 (|:| |switch| (-1091)) (|:| -3266 (-308)))) (|:| |commonBranch| (-2 (|:| -3257 (-1092)) (|:| |contents| (-592 (-1092))))) (|:| |printBranch| (-592 (-798))))) (-5 *1 (-308)))) (-2352 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-308)))) (-2594 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-308)))) (-4014 (*1 *2 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-308)))))
-(-13 (-1020) (-10 -8 (-15 -1217 ((-798) $)) (-15 -1277 ($ (-1013 (-887 (-525))) $)) (-15 -1277 ($ (-1013 (-887 (-525))) (-887 (-525)) $)) (-15 -2146 ($ (-1091) $)) (-15 -2368 ($ (-1091) $)) (-15 -3642 ($ (-1039))) (-15 -3422 ($ (-1039))) (-15 -4041 ($ (-1075))) (-15 -4041 ($ (-592 (-1075)))) (-15 -2983 ($ (-1075))) (-15 -4025 ($)) (-15 -4025 ($ (-294 (-641)))) (-15 -4025 ($ (-294 (-643)))) (-15 -4025 ($ (-294 (-636)))) (-15 -4025 ($ (-294 (-357)))) (-15 -4025 ($ (-294 (-525)))) (-15 -4025 ($ (-294 (-157 (-357))))) (-15 -1785 ($ (-1091) $)) (-15 -1785 ($ (-1091) $ $)) (-15 -2494 ($ (-1092) (-1075))) (-15 -2494 ($ (-1092) (-294 (-643)))) (-15 -2494 ($ (-1092) (-294 (-641)))) (-15 -2494 ($ (-1092) (-294 (-636)))) (-15 -2494 ($ (-1092) (-632 (-643)))) (-15 -2494 ($ (-1092) (-632 (-641)))) (-15 -2494 ($ (-1092) (-632 (-636)))) (-15 -2494 ($ (-1092) (-1174 (-643)))) (-15 -2494 ($ (-1092) (-1174 (-641)))) (-15 -2494 ($ (-1092) (-1174 (-636)))) (-15 -2494 ($ (-1092) (-632 (-294 (-643))))) (-15 -2494 ($ (-1092) (-632 (-294 (-641))))) (-15 -2494 ($ (-1092) (-632 (-294 (-636))))) (-15 -2494 ($ (-1092) (-1174 (-294 (-643))))) (-15 -2494 ($ (-1092) (-1174 (-294 (-641))))) (-15 -2494 ($ (-1092) (-1174 (-294 (-636))))) (-15 -2494 ($ (-1092) (-592 (-887 (-525))) (-294 (-643)))) (-15 -2494 ($ (-1092) (-592 (-887 (-525))) (-294 (-641)))) (-15 -2494 ($ (-1092) (-592 (-887 (-525))) (-294 (-636)))) (-15 -2494 ($ (-1092) (-294 (-525)))) (-15 -2494 ($ (-1092) (-294 (-357)))) (-15 -2494 ($ (-1092) (-294 (-157 (-357))))) (-15 -2494 ($ (-1092) (-632 (-294 (-525))))) (-15 -2494 ($ (-1092) (-632 (-294 (-357))))) (-15 -2494 ($ (-1092) (-632 (-294 (-157 (-357)))))) (-15 -2494 ($ (-1092) (-1174 (-294 (-525))))) (-15 -2494 ($ (-1092) (-1174 (-294 (-357))))) (-15 -2494 ($ (-1092) (-1174 (-294 (-157 (-357)))))) (-15 -2494 ($ (-1092) (-592 (-887 (-525))) (-294 (-525)))) (-15 -2494 ($ (-1092) (-592 (-887 (-525))) (-294 (-357)))) (-15 -2494 ($ (-1092) (-592 (-887 (-525))) (-294 (-157 (-357))))) (-15 -2542 ($ (-592 $))) (-15 -2325 ($)) (-15 -1433 ($)) (-15 -2098 ($ (-592 (-798)))) (-15 -1822 ($ (-1092) (-592 (-1092)))) (-15 -3840 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3353 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1092)) (|:| |arrayIndex| (-592 (-887 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2465 (-798)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1092)) (|:| |rand| (-798)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1091)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2659 (-108)) (|:| -3284 (-2 (|:| |ints2Floats?| (-108)) (|:| -2465 (-798)))))) (|:| |blockBranch| (-592 $)) (|:| |commentBranch| (-592 (-1075))) (|:| |callBranch| (-1075)) (|:| |forBranch| (-2 (|:| -3196 (-1013 (-887 (-525)))) (|:| |span| (-887 (-525))) (|:| -3266 $))) (|:| |labelBranch| (-1039)) (|:| |loopBranch| (-2 (|:| |switch| (-1091)) (|:| -3266 $))) (|:| |commonBranch| (-2 (|:| -3257 (-1092)) (|:| |contents| (-592 (-1092))))) (|:| |printBranch| (-592 (-798)))) $)) (-15 -2352 ((-1179) $)) (-15 -2594 ((-1024) $)) (-15 -4014 ((-1039) (-1039)))))
-((-4236 (((-108) $ $) NIL)) (-4097 (((-108) $) 11)) (-2780 (($ |#1|) 8)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-2794 (($ |#1|) 9)) (-1217 (((-798) $) 17)) (-2771 ((|#1| $) 12)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 19)))
-(((-309 |#1|) (-13 (-789) (-10 -8 (-15 -2780 ($ |#1|)) (-15 -2794 ($ |#1|)) (-15 -4097 ((-108) $)) (-15 -2771 (|#1| $)))) (-789)) (T -309))
-((-2780 (*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789)))) (-2794 (*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-309 *3)) (-4 *3 (-789)))) (-2771 (*1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789)))))
-(-13 (-789) (-10 -8 (-15 -2780 ($ |#1|)) (-15 -2794 ($ |#1|)) (-15 -4097 ((-108) $)) (-15 -2771 (|#1| $))))
-((-4015 (((-308) (-1092) (-887 (-525))) 23)) (-3199 (((-308) (-1092) (-887 (-525))) 27)) (-2302 (((-308) (-1092) (-1013 (-887 (-525))) (-1013 (-887 (-525)))) 26) (((-308) (-1092) (-887 (-525)) (-887 (-525))) 24)) (-1556 (((-308) (-1092) (-887 (-525))) 31)))
-(((-310) (-10 -7 (-15 -4015 ((-308) (-1092) (-887 (-525)))) (-15 -2302 ((-308) (-1092) (-887 (-525)) (-887 (-525)))) (-15 -2302 ((-308) (-1092) (-1013 (-887 (-525))) (-1013 (-887 (-525))))) (-15 -3199 ((-308) (-1092) (-887 (-525)))) (-15 -1556 ((-308) (-1092) (-887 (-525)))))) (T -310))
-((-1556 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-887 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))) (-3199 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-887 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))) (-2302 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-1013 (-887 (-525)))) (-5 *2 (-308)) (-5 *1 (-310)))) (-2302 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-887 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))) (-4015 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-887 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))))
-(-10 -7 (-15 -4015 ((-308) (-1092) (-887 (-525)))) (-15 -2302 ((-308) (-1092) (-887 (-525)) (-887 (-525)))) (-15 -2302 ((-308) (-1092) (-1013 (-887 (-525))) (-1013 (-887 (-525))))) (-15 -3199 ((-308) (-1092) (-887 (-525)))) (-15 -1556 ((-308) (-1092) (-887 (-525)))))
-((-3165 (((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|)) 33)))
-(((-311 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3165 ((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|)))) (-341) (-1150 |#1|) (-1150 (-385 |#2|)) (-320 |#1| |#2| |#3|) (-341) (-1150 |#5|) (-1150 (-385 |#6|)) (-320 |#5| |#6| |#7|)) (T -311))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-314 *5 *6 *7 *8)) (-4 *5 (-341)) (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *9 (-341)) (-4 *10 (-1150 *9)) (-4 *11 (-1150 (-385 *10))) (-5 *2 (-314 *9 *10 *11 *12)) (-5 *1 (-311 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-320 *9 *10 *11)))))
-(-10 -7 (-15 -3165 ((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|))))
-((-1831 (((-108) $) 14)))
-(((-312 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1831 ((-108) |#1|))) (-313 |#2| |#3| |#4| |#5|) (-341) (-1150 |#2|) (-1150 (-385 |#3|)) (-320 |#2| |#3| |#4|)) (T -312))
-NIL
-(-10 -8 (-15 -1831 ((-108) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-1284 (($ $) 26)) (-1831 (((-108) $) 25)) (-2619 (((-1075) $) 9)) (-1763 (((-391 |#2| (-385 |#2|) |#3| |#4|) $) 32)) (-2093 (((-1039) $) 10)) (-3409 (((-3 |#4| "failed") $) 24)) (-4152 (($ (-391 |#2| (-385 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-525)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3262 (((-2 (|:| -1653 (-391 |#2| (-385 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-1217 (((-798) $) 11)) (-3349 (($) 18 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20)))
+((-2103 (*1 *2) (-12 (-4 *3 (-341)) (-5 *2 (-1174 *1)) (-4 *1 (-307 *3)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-856)) (-4 *4 (-341)) (-5 *2 (-1174 *1)) (-4 *1 (-307 *4)))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1174 *3)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-307 *4)) (-4 *4 (-341)) (-5 *2 (-632 *4)))) (-2580 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-341)) (-4 *1 (-307 *3)))) (-2021 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1088 *3)))) (-2013 (*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1088 *3)))) (-1690 (*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-856)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-856)))) (-2704 (*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341)))) (-2924 (*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341)))) (-2021 (*1 *2 *1 *3) (-12 (-5 *3 (-856)) (-4 *4 (-346)) (-4 *4 (-341)) (-5 *2 (-1088 *1)) (-4 *1 (-307 *4)))) (-2704 (*1 *1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)))) (-2924 (*1 *1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)))) (-3911 (*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) (-3957 (*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) (-1890 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-108)))) (-3817 (*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) (-3323 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 *3)) (-4 *3 (-346)) (-4 *1 (-307 *3)) (-4 *3 (-341)))) (-4162 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-1088 *3)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-1088 *3)))) (-3955 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-1088 *3)))))
+(-13 (-1191 |t#1|) (-968 |t#1|) (-10 -8 (-15 -2103 ((-1174 $))) (-15 -2103 ((-1174 $) (-856))) (-15 -2754 ((-1174 |t#1|) $)) (-15 -2754 ((-632 |t#1|) (-1174 $))) (-15 -2580 ($ (-1174 |t#1|))) (-15 -2021 ((-1088 |t#1|) $)) (-15 -2013 ((-1088 |t#1|))) (-15 -1690 ((-856))) (-15 -3529 ((-856) $)) (-15 -2704 (|t#1| $)) (-15 -2924 (|t#1| $)) (IF (|has| |t#1| (-346)) (PROGN (-6 (-327)) (-15 -2021 ((-1088 $) $ (-856))) (-15 -2704 ($ $ (-856))) (-15 -2924 ($ $ (-856))) (-15 -3911 ($)) (-15 -3957 ($)) (-15 -1890 ((-108) $)) (-15 -3817 ($)) (-15 -3323 ($ $ (-1088 |t#1|))) (-15 -4162 ((-1088 |t#1|) $)) (-15 -3955 ((-1088 |t#1|) $)) (-15 -3955 ((-3 (-1088 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -2067 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) . T) ((-213) |has| |#1| (-346)) ((-223) . T) ((-269) . T) ((-286) . T) ((-1191 |#1|) . T) ((-341) . T) ((-380) -2067 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-346) |has| |#1| (-346)) ((-327) |has| |#1| (-346)) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-669) . T) ((-855) . T) ((-968 |#1|) . T) ((-983 #0#) . T) ((-983 |#1|) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1068) |has| |#1| (-346)) ((-1132) . T) ((-1181 |#1|) . T))
+((-4087 (((-108) $ $) NIL)) (-2218 (($ (-1091) $) 88)) (-3116 (($) 77)) (-4017 (((-1039) (-1039)) 11)) (-1990 (($) 78)) (-4145 (($) 90) (($ (-294 (-641))) 98) (($ (-294 (-643))) 94) (($ (-294 (-636))) 102) (($ (-294 (-357))) 109) (($ (-294 (-525))) 105) (($ (-294 (-157 (-357)))) 113)) (-2586 (($ (-1091) $) 89)) (-2904 (($ (-592 (-798))) 79)) (-3619 (((-1179) $) 75)) (-4029 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1490 (($ (-1039)) 51)) (-4116 (((-1024) $) 25)) (-4078 (($ (-1013 (-887 (-525))) $) 85) (($ (-1013 (-887 (-525))) (-887 (-525)) $) 86)) (-3502 (($ (-1039)) 87)) (-3821 (($ (-1091) $) 115) (($ (-1091) $ $) 116)) (-1756 (($ (-1092) (-592 (-1092))) 76)) (-3524 (($ (-1075)) 82) (($ (-592 (-1075))) 80)) (-4100 (((-798) $) 118)) (-1582 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1092)) (|:| |arrayIndex| (-592 (-887 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -3423 (-798)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1092)) (|:| |rand| (-798)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1091)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3479 (-108)) (|:| -2219 (-2 (|:| |ints2Floats?| (-108)) (|:| -3423 (-798)))))) (|:| |blockBranch| (-592 $)) (|:| |commentBranch| (-592 (-1075))) (|:| |callBranch| (-1075)) (|:| |forBranch| (-2 (|:| -1777 (-1013 (-887 (-525)))) (|:| |span| (-887 (-525))) (|:| -2418 $))) (|:| |labelBranch| (-1039)) (|:| |loopBranch| (-2 (|:| |switch| (-1091)) (|:| -2418 $))) (|:| |commonBranch| (-2 (|:| -2411 (-1092)) (|:| |contents| (-592 (-1092))))) (|:| |printBranch| (-592 (-798)))) $) 44)) (-2822 (($ (-1075)) 187)) (-1821 (($ (-592 $)) 114)) (-1390 (($ (-1092) (-1075)) 120) (($ (-1092) (-294 (-643))) 160) (($ (-1092) (-294 (-641))) 161) (($ (-1092) (-294 (-636))) 162) (($ (-1092) (-632 (-643))) 123) (($ (-1092) (-632 (-641))) 126) (($ (-1092) (-632 (-636))) 129) (($ (-1092) (-1174 (-643))) 132) (($ (-1092) (-1174 (-641))) 135) (($ (-1092) (-1174 (-636))) 138) (($ (-1092) (-632 (-294 (-643)))) 141) (($ (-1092) (-632 (-294 (-641)))) 144) (($ (-1092) (-632 (-294 (-636)))) 147) (($ (-1092) (-1174 (-294 (-643)))) 150) (($ (-1092) (-1174 (-294 (-641)))) 153) (($ (-1092) (-1174 (-294 (-636)))) 156) (($ (-1092) (-592 (-887 (-525))) (-294 (-643))) 157) (($ (-1092) (-592 (-887 (-525))) (-294 (-641))) 158) (($ (-1092) (-592 (-887 (-525))) (-294 (-636))) 159) (($ (-1092) (-294 (-525))) 184) (($ (-1092) (-294 (-357))) 185) (($ (-1092) (-294 (-157 (-357)))) 186) (($ (-1092) (-632 (-294 (-525)))) 165) (($ (-1092) (-632 (-294 (-357)))) 168) (($ (-1092) (-632 (-294 (-157 (-357))))) 171) (($ (-1092) (-1174 (-294 (-525)))) 174) (($ (-1092) (-1174 (-294 (-357)))) 177) (($ (-1092) (-1174 (-294 (-157 (-357))))) 180) (($ (-1092) (-592 (-887 (-525))) (-294 (-525))) 181) (($ (-1092) (-592 (-887 (-525))) (-294 (-357))) 182) (($ (-1092) (-592 (-887 (-525))) (-294 (-157 (-357)))) 183)) (-2775 (((-108) $ $) NIL)))
+(((-308) (-13 (-1020) (-10 -8 (-15 -4100 ((-798) $)) (-15 -4078 ($ (-1013 (-887 (-525))) $)) (-15 -4078 ($ (-1013 (-887 (-525))) (-887 (-525)) $)) (-15 -2218 ($ (-1091) $)) (-15 -2586 ($ (-1091) $)) (-15 -1490 ($ (-1039))) (-15 -3502 ($ (-1039))) (-15 -3524 ($ (-1075))) (-15 -3524 ($ (-592 (-1075)))) (-15 -2822 ($ (-1075))) (-15 -4145 ($)) (-15 -4145 ($ (-294 (-641)))) (-15 -4145 ($ (-294 (-643)))) (-15 -4145 ($ (-294 (-636)))) (-15 -4145 ($ (-294 (-357)))) (-15 -4145 ($ (-294 (-525)))) (-15 -4145 ($ (-294 (-157 (-357))))) (-15 -3821 ($ (-1091) $)) (-15 -3821 ($ (-1091) $ $)) (-15 -1390 ($ (-1092) (-1075))) (-15 -1390 ($ (-1092) (-294 (-643)))) (-15 -1390 ($ (-1092) (-294 (-641)))) (-15 -1390 ($ (-1092) (-294 (-636)))) (-15 -1390 ($ (-1092) (-632 (-643)))) (-15 -1390 ($ (-1092) (-632 (-641)))) (-15 -1390 ($ (-1092) (-632 (-636)))) (-15 -1390 ($ (-1092) (-1174 (-643)))) (-15 -1390 ($ (-1092) (-1174 (-641)))) (-15 -1390 ($ (-1092) (-1174 (-636)))) (-15 -1390 ($ (-1092) (-632 (-294 (-643))))) (-15 -1390 ($ (-1092) (-632 (-294 (-641))))) (-15 -1390 ($ (-1092) (-632 (-294 (-636))))) (-15 -1390 ($ (-1092) (-1174 (-294 (-643))))) (-15 -1390 ($ (-1092) (-1174 (-294 (-641))))) (-15 -1390 ($ (-1092) (-1174 (-294 (-636))))) (-15 -1390 ($ (-1092) (-592 (-887 (-525))) (-294 (-643)))) (-15 -1390 ($ (-1092) (-592 (-887 (-525))) (-294 (-641)))) (-15 -1390 ($ (-1092) (-592 (-887 (-525))) (-294 (-636)))) (-15 -1390 ($ (-1092) (-294 (-525)))) (-15 -1390 ($ (-1092) (-294 (-357)))) (-15 -1390 ($ (-1092) (-294 (-157 (-357))))) (-15 -1390 ($ (-1092) (-632 (-294 (-525))))) (-15 -1390 ($ (-1092) (-632 (-294 (-357))))) (-15 -1390 ($ (-1092) (-632 (-294 (-157 (-357)))))) (-15 -1390 ($ (-1092) (-1174 (-294 (-525))))) (-15 -1390 ($ (-1092) (-1174 (-294 (-357))))) (-15 -1390 ($ (-1092) (-1174 (-294 (-157 (-357)))))) (-15 -1390 ($ (-1092) (-592 (-887 (-525))) (-294 (-525)))) (-15 -1390 ($ (-1092) (-592 (-887 (-525))) (-294 (-357)))) (-15 -1390 ($ (-1092) (-592 (-887 (-525))) (-294 (-157 (-357))))) (-15 -1821 ($ (-592 $))) (-15 -3116 ($)) (-15 -1990 ($)) (-15 -2904 ($ (-592 (-798)))) (-15 -1756 ($ (-1092) (-592 (-1092)))) (-15 -4029 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1582 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1092)) (|:| |arrayIndex| (-592 (-887 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -3423 (-798)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1092)) (|:| |rand| (-798)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1091)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3479 (-108)) (|:| -2219 (-2 (|:| |ints2Floats?| (-108)) (|:| -3423 (-798)))))) (|:| |blockBranch| (-592 $)) (|:| |commentBranch| (-592 (-1075))) (|:| |callBranch| (-1075)) (|:| |forBranch| (-2 (|:| -1777 (-1013 (-887 (-525)))) (|:| |span| (-887 (-525))) (|:| -2418 $))) (|:| |labelBranch| (-1039)) (|:| |loopBranch| (-2 (|:| |switch| (-1091)) (|:| -2418 $))) (|:| |commonBranch| (-2 (|:| -2411 (-1092)) (|:| |contents| (-592 (-1092))))) (|:| |printBranch| (-592 (-798)))) $)) (-15 -3619 ((-1179) $)) (-15 -4116 ((-1024) $)) (-15 -4017 ((-1039) (-1039)))))) (T -308))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-308)))) (-4078 (*1 *1 *2 *1) (-12 (-5 *2 (-1013 (-887 (-525)))) (-5 *1 (-308)))) (-4078 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1013 (-887 (-525)))) (-5 *3 (-887 (-525))) (-5 *1 (-308)))) (-2218 (*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-308)))) (-2586 (*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-308)))) (-1490 (*1 *1 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-308)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-308)))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-308)))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-308)))) (-2822 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-308)))) (-4145 (*1 *1) (-5 *1 (-308))) (-4145 (*1 *1 *2) (-12 (-5 *2 (-294 (-641))) (-5 *1 (-308)))) (-4145 (*1 *1 *2) (-12 (-5 *2 (-294 (-643))) (-5 *1 (-308)))) (-4145 (*1 *1 *2) (-12 (-5 *2 (-294 (-636))) (-5 *1 (-308)))) (-4145 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-308)))) (-4145 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-308)))) (-4145 (*1 *1 *2) (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-308)))) (-3821 (*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-308)))) (-3821 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1075)) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-643))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-641))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-636))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-643))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-641))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-636))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-643))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-641))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-636))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-643)))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-641)))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-636)))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-643)))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-641)))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-636)))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-294 (-643))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-294 (-641))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-294 (-636))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-525))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-357))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-157 (-357)))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-525)))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-357)))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-157 (-357))))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-525)))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-357)))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-157 (-357))))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-294 (-525))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-294 (-357))) (-5 *1 (-308)))) (-1390 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-294 (-157 (-357)))) (-5 *1 (-308)))) (-1821 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-5 *1 (-308)))) (-3116 (*1 *1) (-5 *1 (-308))) (-1990 (*1 *1) (-5 *1 (-308))) (-2904 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-308)))) (-1756 (*1 *1 *2 *3) (-12 (-5 *3 (-592 (-1092))) (-5 *2 (-1092)) (-5 *1 (-308)))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-308)))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1092)) (|:| |arrayIndex| (-592 (-887 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -3423 (-798)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1092)) (|:| |rand| (-798)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1091)) (|:| |thenClause| (-308)) (|:| |elseClause| (-308)))) (|:| |returnBranch| (-2 (|:| -3479 (-108)) (|:| -2219 (-2 (|:| |ints2Floats?| (-108)) (|:| -3423 (-798)))))) (|:| |blockBranch| (-592 (-308))) (|:| |commentBranch| (-592 (-1075))) (|:| |callBranch| (-1075)) (|:| |forBranch| (-2 (|:| -1777 (-1013 (-887 (-525)))) (|:| |span| (-887 (-525))) (|:| -2418 (-308)))) (|:| |labelBranch| (-1039)) (|:| |loopBranch| (-2 (|:| |switch| (-1091)) (|:| -2418 (-308)))) (|:| |commonBranch| (-2 (|:| -2411 (-1092)) (|:| |contents| (-592 (-1092))))) (|:| |printBranch| (-592 (-798))))) (-5 *1 (-308)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-308)))) (-4116 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-308)))) (-4017 (*1 *2 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-308)))))
+(-13 (-1020) (-10 -8 (-15 -4100 ((-798) $)) (-15 -4078 ($ (-1013 (-887 (-525))) $)) (-15 -4078 ($ (-1013 (-887 (-525))) (-887 (-525)) $)) (-15 -2218 ($ (-1091) $)) (-15 -2586 ($ (-1091) $)) (-15 -1490 ($ (-1039))) (-15 -3502 ($ (-1039))) (-15 -3524 ($ (-1075))) (-15 -3524 ($ (-592 (-1075)))) (-15 -2822 ($ (-1075))) (-15 -4145 ($)) (-15 -4145 ($ (-294 (-641)))) (-15 -4145 ($ (-294 (-643)))) (-15 -4145 ($ (-294 (-636)))) (-15 -4145 ($ (-294 (-357)))) (-15 -4145 ($ (-294 (-525)))) (-15 -4145 ($ (-294 (-157 (-357))))) (-15 -3821 ($ (-1091) $)) (-15 -3821 ($ (-1091) $ $)) (-15 -1390 ($ (-1092) (-1075))) (-15 -1390 ($ (-1092) (-294 (-643)))) (-15 -1390 ($ (-1092) (-294 (-641)))) (-15 -1390 ($ (-1092) (-294 (-636)))) (-15 -1390 ($ (-1092) (-632 (-643)))) (-15 -1390 ($ (-1092) (-632 (-641)))) (-15 -1390 ($ (-1092) (-632 (-636)))) (-15 -1390 ($ (-1092) (-1174 (-643)))) (-15 -1390 ($ (-1092) (-1174 (-641)))) (-15 -1390 ($ (-1092) (-1174 (-636)))) (-15 -1390 ($ (-1092) (-632 (-294 (-643))))) (-15 -1390 ($ (-1092) (-632 (-294 (-641))))) (-15 -1390 ($ (-1092) (-632 (-294 (-636))))) (-15 -1390 ($ (-1092) (-1174 (-294 (-643))))) (-15 -1390 ($ (-1092) (-1174 (-294 (-641))))) (-15 -1390 ($ (-1092) (-1174 (-294 (-636))))) (-15 -1390 ($ (-1092) (-592 (-887 (-525))) (-294 (-643)))) (-15 -1390 ($ (-1092) (-592 (-887 (-525))) (-294 (-641)))) (-15 -1390 ($ (-1092) (-592 (-887 (-525))) (-294 (-636)))) (-15 -1390 ($ (-1092) (-294 (-525)))) (-15 -1390 ($ (-1092) (-294 (-357)))) (-15 -1390 ($ (-1092) (-294 (-157 (-357))))) (-15 -1390 ($ (-1092) (-632 (-294 (-525))))) (-15 -1390 ($ (-1092) (-632 (-294 (-357))))) (-15 -1390 ($ (-1092) (-632 (-294 (-157 (-357)))))) (-15 -1390 ($ (-1092) (-1174 (-294 (-525))))) (-15 -1390 ($ (-1092) (-1174 (-294 (-357))))) (-15 -1390 ($ (-1092) (-1174 (-294 (-157 (-357)))))) (-15 -1390 ($ (-1092) (-592 (-887 (-525))) (-294 (-525)))) (-15 -1390 ($ (-1092) (-592 (-887 (-525))) (-294 (-357)))) (-15 -1390 ($ (-1092) (-592 (-887 (-525))) (-294 (-157 (-357))))) (-15 -1821 ($ (-592 $))) (-15 -3116 ($)) (-15 -1990 ($)) (-15 -2904 ($ (-592 (-798)))) (-15 -1756 ($ (-1092) (-592 (-1092)))) (-15 -4029 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1582 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1092)) (|:| |arrayIndex| (-592 (-887 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -3423 (-798)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1092)) (|:| |rand| (-798)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1091)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3479 (-108)) (|:| -2219 (-2 (|:| |ints2Floats?| (-108)) (|:| -3423 (-798)))))) (|:| |blockBranch| (-592 $)) (|:| |commentBranch| (-592 (-1075))) (|:| |callBranch| (-1075)) (|:| |forBranch| (-2 (|:| -1777 (-1013 (-887 (-525)))) (|:| |span| (-887 (-525))) (|:| -2418 $))) (|:| |labelBranch| (-1039)) (|:| |loopBranch| (-2 (|:| |switch| (-1091)) (|:| -2418 $))) (|:| |commonBranch| (-2 (|:| -2411 (-1092)) (|:| |contents| (-592 (-1092))))) (|:| |printBranch| (-592 (-798)))) $)) (-15 -3619 ((-1179) $)) (-15 -4116 ((-1024) $)) (-15 -4017 ((-1039) (-1039)))))
+((-4087 (((-108) $ $) NIL)) (-3620 (((-108) $) 11)) (-3638 (($ |#1|) 8)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-3649 (($ |#1|) 9)) (-4100 (((-798) $) 17)) (-2136 ((|#1| $) 12)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 19)))
+(((-309 |#1|) (-13 (-789) (-10 -8 (-15 -3638 ($ |#1|)) (-15 -3649 ($ |#1|)) (-15 -3620 ((-108) $)) (-15 -2136 (|#1| $)))) (-789)) (T -309))
+((-3638 (*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789)))) (-3649 (*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-309 *3)) (-4 *3 (-789)))) (-2136 (*1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789)))))
+(-13 (-789) (-10 -8 (-15 -3638 ($ |#1|)) (-15 -3649 ($ |#1|)) (-15 -3620 ((-108) $)) (-15 -2136 (|#1| $))))
+((-4027 (((-308) (-1092) (-887 (-525))) 23)) (-1812 (((-308) (-1092) (-887 (-525))) 27)) (-3095 (((-308) (-1092) (-1013 (-887 (-525))) (-1013 (-887 (-525)))) 26) (((-308) (-1092) (-887 (-525)) (-887 (-525))) 24)) (-1944 (((-308) (-1092) (-887 (-525))) 31)))
+(((-310) (-10 -7 (-15 -4027 ((-308) (-1092) (-887 (-525)))) (-15 -3095 ((-308) (-1092) (-887 (-525)) (-887 (-525)))) (-15 -3095 ((-308) (-1092) (-1013 (-887 (-525))) (-1013 (-887 (-525))))) (-15 -1812 ((-308) (-1092) (-887 (-525)))) (-15 -1944 ((-308) (-1092) (-887 (-525)))))) (T -310))
+((-1944 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-887 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))) (-1812 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-887 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))) (-3095 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-1013 (-887 (-525)))) (-5 *2 (-308)) (-5 *1 (-310)))) (-3095 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-887 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))) (-4027 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-887 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))))
+(-10 -7 (-15 -4027 ((-308) (-1092) (-887 (-525)))) (-15 -3095 ((-308) (-1092) (-887 (-525)) (-887 (-525)))) (-15 -3095 ((-308) (-1092) (-1013 (-887 (-525))) (-1013 (-887 (-525))))) (-15 -1812 ((-308) (-1092) (-887 (-525)))) (-15 -1944 ((-308) (-1092) (-887 (-525)))))
+((-2016 (((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|)) 33)))
+(((-311 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2016 ((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|)))) (-341) (-1150 |#1|) (-1150 (-385 |#2|)) (-320 |#1| |#2| |#3|) (-341) (-1150 |#5|) (-1150 (-385 |#6|)) (-320 |#5| |#6| |#7|)) (T -311))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-314 *5 *6 *7 *8)) (-4 *5 (-341)) (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *9 (-341)) (-4 *10 (-1150 *9)) (-4 *11 (-1150 (-385 *10))) (-5 *2 (-314 *9 *10 *11 *12)) (-5 *1 (-311 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-320 *9 *10 *11)))))
+(-10 -7 (-15 -2016 ((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|))))
+((-2091 (((-108) $) 14)))
+(((-312 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2091 ((-108) |#1|))) (-313 |#2| |#3| |#4| |#5|) (-341) (-1150 |#2|) (-1150 (-385 |#3|)) (-320 |#2| |#3| |#4|)) (T -312))
+NIL
+(-10 -8 (-15 -2091 ((-108) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3504 (($ $) 26)) (-2091 (((-108) $) 25)) (-1289 (((-1075) $) 9)) (-2654 (((-391 |#2| (-385 |#2|) |#3| |#4|) $) 32)) (-3993 (((-1039) $) 10)) (-3817 (((-3 |#4| "failed") $) 24)) (-2958 (($ (-391 |#2| (-385 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-525)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-4129 (((-2 (|:| -1466 (-391 |#2| (-385 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-4100 (((-798) $) 11)) (-3364 (($) 18 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20)))
(((-313 |#1| |#2| |#3| |#4|) (-131) (-341) (-1150 |t#1|) (-1150 (-385 |t#2|)) (-320 |t#1| |t#2| |t#3|)) (T -313))
-((-1763 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-391 *4 (-385 *4) *5 *6)))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-391 *4 (-385 *4) *5 *6)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-4 *3 (-341)) (-4 *1 (-313 *3 *4 *5 *6)))) (-4152 (*1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-4 *1 (-313 *3 *4 *5 *2)) (-4 *2 (-320 *3 *4 *5)))) (-4152 (*1 *1 *2 *2) (-12 (-4 *2 (-341)) (-4 *3 (-1150 *2)) (-4 *4 (-1150 (-385 *3))) (-4 *1 (-313 *2 *3 *4 *5)) (-4 *5 (-320 *2 *3 *4)))) (-4152 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-525)) (-4 *2 (-341)) (-4 *4 (-1150 *2)) (-4 *5 (-1150 (-385 *4))) (-4 *1 (-313 *2 *4 *5 *6)) (-4 *6 (-320 *2 *4 *5)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-2 (|:| -1653 (-391 *4 (-385 *4) *5 *6)) (|:| |principalPart| *6))))) (-1284 (*1 *1 *1) (-12 (-4 *1 (-313 *2 *3 *4 *5)) (-4 *2 (-341)) (-4 *3 (-1150 *2)) (-4 *4 (-1150 (-385 *3))) (-4 *5 (-320 *2 *3 *4)))) (-1831 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-108)))) (-3409 (*1 *2 *1) (|partial| -12 (-4 *1 (-313 *3 *4 *5 *2)) (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-4 *2 (-320 *3 *4 *5)))) (-4152 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-341)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 (-385 *3))) (-4 *1 (-313 *4 *3 *5 *2)) (-4 *2 (-320 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -1763 ((-391 |t#2| (-385 |t#2|) |t#3| |t#4|) $)) (-15 -4152 ($ (-391 |t#2| (-385 |t#2|) |t#3| |t#4|))) (-15 -4152 ($ |t#4|)) (-15 -4152 ($ |t#1| |t#1|)) (-15 -4152 ($ |t#1| |t#1| (-525))) (-15 -3262 ((-2 (|:| -1653 (-391 |t#2| (-385 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1284 ($ $)) (-15 -1831 ((-108) $)) (-15 -3409 ((-3 |t#4| "failed") $)) (-15 -4152 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+((-2654 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-391 *4 (-385 *4) *5 *6)))) (-2958 (*1 *1 *2) (-12 (-5 *2 (-391 *4 (-385 *4) *5 *6)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-4 *3 (-341)) (-4 *1 (-313 *3 *4 *5 *6)))) (-2958 (*1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-4 *1 (-313 *3 *4 *5 *2)) (-4 *2 (-320 *3 *4 *5)))) (-2958 (*1 *1 *2 *2) (-12 (-4 *2 (-341)) (-4 *3 (-1150 *2)) (-4 *4 (-1150 (-385 *3))) (-4 *1 (-313 *2 *3 *4 *5)) (-4 *5 (-320 *2 *3 *4)))) (-2958 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-525)) (-4 *2 (-341)) (-4 *4 (-1150 *2)) (-4 *5 (-1150 (-385 *4))) (-4 *1 (-313 *2 *4 *5 *6)) (-4 *6 (-320 *2 *4 *5)))) (-4129 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-2 (|:| -1466 (-391 *4 (-385 *4) *5 *6)) (|:| |principalPart| *6))))) (-3504 (*1 *1 *1) (-12 (-4 *1 (-313 *2 *3 *4 *5)) (-4 *2 (-341)) (-4 *3 (-1150 *2)) (-4 *4 (-1150 (-385 *3))) (-4 *5 (-320 *2 *3 *4)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-108)))) (-3817 (*1 *2 *1) (|partial| -12 (-4 *1 (-313 *3 *4 *5 *2)) (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-4 *2 (-320 *3 *4 *5)))) (-2958 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-341)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 (-385 *3))) (-4 *1 (-313 *4 *3 *5 *2)) (-4 *2 (-320 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -2654 ((-391 |t#2| (-385 |t#2|) |t#3| |t#4|) $)) (-15 -2958 ($ (-391 |t#2| (-385 |t#2|) |t#3| |t#4|))) (-15 -2958 ($ |t#4|)) (-15 -2958 ($ |t#1| |t#1|)) (-15 -2958 ($ |t#1| |t#1| (-525))) (-15 -4129 ((-2 (|:| -1466 (-391 |t#2| (-385 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3504 ($ $)) (-15 -2091 ((-108) $)) (-15 -3817 ((-3 |t#4| "failed") $)) (-15 -2958 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-1284 (($ $) 33)) (-1831 (((-108) $) NIL)) (-2619 (((-1075) $) NIL)) (-3106 (((-1174 |#4|) $) 125)) (-1763 (((-391 |#2| (-385 |#2|) |#3| |#4|) $) 31)) (-2093 (((-1039) $) NIL)) (-3409 (((-3 |#4| "failed") $) 36)) (-3226 (((-1174 |#4|) $) 118)) (-4152 (($ (-391 |#2| (-385 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-525)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3262 (((-2 (|:| -1653 (-391 |#2| (-385 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-1217 (((-798) $) 17)) (-3349 (($) 14 T CONST)) (-3955 (((-108) $ $) 20)) (-4061 (($ $) 27) (($ $ $) NIL)) (-4047 (($ $ $) 25)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 23)))
-(((-314 |#1| |#2| |#3| |#4|) (-13 (-313 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3226 ((-1174 |#4|) $)) (-15 -3106 ((-1174 |#4|) $)))) (-341) (-1150 |#1|) (-1150 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -314))
-((-3226 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-1174 *6)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *6 (-320 *3 *4 *5)))) (-3106 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-1174 *6)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *6 (-320 *3 *4 *5)))))
-(-13 (-313 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3226 ((-1174 |#4|) $)) (-15 -3106 ((-1174 |#4|) $))))
-((-2457 (($ $ (-1092) |#2|) NIL) (($ $ (-592 (-1092)) (-592 |#2|)) 20) (($ $ (-592 (-273 |#2|))) 15) (($ $ (-273 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-592 |#2|) (-592 |#2|)) NIL)) (-3406 (($ $ |#2|) 11)))
-(((-315 |#1| |#2|) (-10 -8 (-15 -3406 (|#1| |#1| |#2|)) (-15 -2457 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -2457 (|#1| |#1| |#2| |#2|)) (-15 -2457 (|#1| |#1| (-273 |#2|))) (-15 -2457 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2457 (|#1| |#1| (-592 (-1092)) (-592 |#2|))) (-15 -2457 (|#1| |#1| (-1092) |#2|))) (-316 |#2|) (-1020)) (T -315))
-NIL
-(-10 -8 (-15 -3406 (|#1| |#1| |#2|)) (-15 -2457 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -2457 (|#1| |#1| |#2| |#2|)) (-15 -2457 (|#1| |#1| (-273 |#2|))) (-15 -2457 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2457 (|#1| |#1| (-592 (-1092)) (-592 |#2|))) (-15 -2457 (|#1| |#1| (-1092) |#2|)))
-((-3165 (($ (-1 |#1| |#1|) $) 6)) (-2457 (($ $ (-1092) |#1|) 17 (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) 16 (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-592 (-273 |#1|))) 15 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 14 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-288 |#1|))) (($ $ (-592 |#1|) (-592 |#1|)) 12 (|has| |#1| (-288 |#1|)))) (-3406 (($ $ |#1|) 11 (|has| |#1| (-265 |#1| |#1|)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-3504 (($ $) 33)) (-2091 (((-108) $) NIL)) (-1289 (((-1075) $) NIL)) (-2196 (((-1174 |#4|) $) 125)) (-2654 (((-391 |#2| (-385 |#2|) |#3| |#4|) $) 31)) (-3993 (((-1039) $) NIL)) (-3817 (((-3 |#4| "failed") $) 36)) (-3852 (((-1174 |#4|) $) 118)) (-2958 (($ (-391 |#2| (-385 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-525)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-4129 (((-2 (|:| -1466 (-391 |#2| (-385 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4100 (((-798) $) 17)) (-3364 (($) 14 T CONST)) (-2775 (((-108) $ $) 20)) (-2871 (($ $) 27) (($ $ $) NIL)) (-2860 (($ $ $) 25)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 23)))
+(((-314 |#1| |#2| |#3| |#4|) (-13 (-313 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3852 ((-1174 |#4|) $)) (-15 -2196 ((-1174 |#4|) $)))) (-341) (-1150 |#1|) (-1150 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -314))
+((-3852 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-1174 *6)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *6 (-320 *3 *4 *5)))) (-2196 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-1174 *6)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *6 (-320 *3 *4 *5)))))
+(-13 (-313 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3852 ((-1174 |#4|) $)) (-15 -2196 ((-1174 |#4|) $))))
+((-2825 (($ $ (-1092) |#2|) NIL) (($ $ (-592 (-1092)) (-592 |#2|)) 20) (($ $ (-592 (-273 |#2|))) 15) (($ $ (-273 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-592 |#2|) (-592 |#2|)) NIL)) (-3431 (($ $ |#2|) 11)))
+(((-315 |#1| |#2|) (-10 -8 (-15 -3431 (|#1| |#1| |#2|)) (-15 -2825 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -2825 (|#1| |#1| |#2| |#2|)) (-15 -2825 (|#1| |#1| (-273 |#2|))) (-15 -2825 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2825 (|#1| |#1| (-592 (-1092)) (-592 |#2|))) (-15 -2825 (|#1| |#1| (-1092) |#2|))) (-316 |#2|) (-1020)) (T -315))
+NIL
+(-10 -8 (-15 -3431 (|#1| |#1| |#2|)) (-15 -2825 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -2825 (|#1| |#1| |#2| |#2|)) (-15 -2825 (|#1| |#1| (-273 |#2|))) (-15 -2825 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2825 (|#1| |#1| (-592 (-1092)) (-592 |#2|))) (-15 -2825 (|#1| |#1| (-1092) |#2|)))
+((-2016 (($ (-1 |#1| |#1|) $) 6)) (-2825 (($ $ (-1092) |#1|) 17 (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) 16 (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-592 (-273 |#1|))) 15 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 14 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-288 |#1|))) (($ $ (-592 |#1|) (-592 |#1|)) 12 (|has| |#1| (-288 |#1|)))) (-3431 (($ $ |#1|) 11 (|has| |#1| (-265 |#1| |#1|)))))
(((-316 |#1|) (-131) (-1020)) (T -316))
-((-3165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3)) (-4 *3 (-1020)))))
-(-13 (-10 -8 (-15 -3165 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-265 |t#1| |t#1|)) (-6 (-265 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-288 |t#1|)) (-6 (-288 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-486 (-1092) |t#1|)) (-6 (-486 (-1092) |t#1|)) |%noBranch|)))
+((-2016 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3)) (-4 *3 (-1020)))))
+(-13 (-10 -8 (-15 -2016 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-265 |t#1| |t#1|)) (-6 (-265 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-288 |t#1|)) (-6 (-288 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-486 (-1092) |t#1|)) (-6 (-486 (-1092) |t#1|)) |%noBranch|)))
(((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-486 (-1092) |#1|) |has| |#1| (-486 (-1092) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2897 (((-592 (-1092)) $) NIL)) (-4122 (((-108)) 91) (((-108) (-108)) 92)) (-2563 (((-592 (-565 $)) $) NIL)) (-1575 (($ $) NIL)) (-2804 (($ $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-3311 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-2782 (($ $) NIL)) (-1549 (($ $) NIL)) (-2780 (($ $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-565 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-294 |#3|)) 71) (((-3 $ "failed") (-1092)) 97) (((-3 $ "failed") (-294 (-525))) 59 (|has| |#3| (-968 (-525)))) (((-3 $ "failed") (-385 (-887 (-525)))) 65 (|has| |#3| (-968 (-525)))) (((-3 $ "failed") (-887 (-525))) 60 (|has| |#3| (-968 (-525)))) (((-3 $ "failed") (-294 (-357))) 89 (|has| |#3| (-968 (-357)))) (((-3 $ "failed") (-385 (-887 (-357)))) 83 (|has| |#3| (-968 (-357)))) (((-3 $ "failed") (-887 (-357))) 78 (|has| |#3| (-968 (-357))))) (-1572 (((-565 $) $) NIL) ((|#3| $) NIL) (($ (-294 |#3|)) 72) (($ (-1092)) 98) (($ (-294 (-525))) 61 (|has| |#3| (-968 (-525)))) (($ (-385 (-887 (-525)))) 66 (|has| |#3| (-968 (-525)))) (($ (-887 (-525))) 62 (|has| |#3| (-968 (-525)))) (($ (-294 (-357))) 90 (|has| |#3| (-968 (-357)))) (($ (-385 (-887 (-357)))) 84 (|has| |#3| (-968 (-357)))) (($ (-887 (-357))) 80 (|has| |#3| (-968 (-357))))) (-3457 (((-3 $ "failed") $) NIL)) (-3140 (($) 10)) (-3437 (($ $) NIL) (($ (-592 $)) NIL)) (-2059 (((-592 (-110)) $) NIL)) (-3930 (((-110) (-110)) NIL)) (-1396 (((-108) $) NIL)) (-1673 (((-108) $) NIL (|has| $ (-968 (-525))))) (-2541 (((-1088 $) (-565 $)) NIL (|has| $ (-977)))) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-3165 (($ (-1 $ $) (-565 $)) NIL)) (-1923 (((-3 (-565 $) "failed") $) NIL)) (-3133 (($ $) 94)) (-1517 (($ $) NIL)) (-2619 (((-1075) $) NIL)) (-2734 (((-592 (-565 $)) $) NIL)) (-3173 (($ (-110) $) 93) (($ (-110) (-592 $)) NIL)) (-3131 (((-108) $ (-110)) NIL) (((-108) $ (-1092)) NIL)) (-1794 (((-713) $) NIL)) (-2093 (((-1039) $) NIL)) (-2662 (((-108) $ $) NIL) (((-108) $ (-1092)) NIL)) (-3096 (($ $) NIL)) (-3699 (((-108) $) NIL (|has| $ (-968 (-525))))) (-2457 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1092) (-1 $ (-592 $))) NIL) (($ $ (-1092) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3406 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-3147 (($ $) NIL) (($ $ $) NIL)) (-3376 (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) NIL)) (-2756 (($ $) NIL (|has| $ (-977)))) (-1562 (($ $) NIL)) (-2794 (($ $) NIL)) (-1217 (((-798) $) NIL) (($ (-565 $)) NIL) (($ |#3|) NIL) (($ (-525)) NIL) (((-294 |#3|) $) 96)) (-3917 (((-713)) NIL)) (-1381 (($ $) NIL) (($ (-592 $)) NIL)) (-1960 (((-108) (-110)) NIL)) (-1492 (($ $) NIL)) (-1465 (($ $) NIL)) (-1479 (($ $) NIL)) (-2802 (($ $) NIL)) (-1619 (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3349 (($) 95 T CONST)) (-3359 (($) 24 T CONST)) (-2022 (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) NIL)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) NIL)) (-4061 (($ $ $) NIL) (($ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-856) $) NIL)))
-(((-317 |#1| |#2| |#3|) (-13 (-281) (-37 |#3|) (-968 |#3|) (-835 (-1092)) (-10 -8 (-15 -1572 ($ (-294 |#3|))) (-15 -3077 ((-3 $ "failed") (-294 |#3|))) (-15 -1572 ($ (-1092))) (-15 -3077 ((-3 $ "failed") (-1092))) (-15 -1217 ((-294 |#3|) $)) (IF (|has| |#3| (-968 (-525))) (PROGN (-15 -1572 ($ (-294 (-525)))) (-15 -3077 ((-3 $ "failed") (-294 (-525)))) (-15 -1572 ($ (-385 (-887 (-525))))) (-15 -3077 ((-3 $ "failed") (-385 (-887 (-525))))) (-15 -1572 ($ (-887 (-525)))) (-15 -3077 ((-3 $ "failed") (-887 (-525))))) |%noBranch|) (IF (|has| |#3| (-968 (-357))) (PROGN (-15 -1572 ($ (-294 (-357)))) (-15 -3077 ((-3 $ "failed") (-294 (-357)))) (-15 -1572 ($ (-385 (-887 (-357))))) (-15 -3077 ((-3 $ "failed") (-385 (-887 (-357))))) (-15 -1572 ($ (-887 (-357)))) (-15 -3077 ((-3 $ "failed") (-887 (-357))))) |%noBranch|) (-15 -2802 ($ $)) (-15 -2782 ($ $)) (-15 -3096 ($ $)) (-15 -1517 ($ $)) (-15 -3133 ($ $)) (-15 -2780 ($ $)) (-15 -2794 ($ $)) (-15 -2804 ($ $)) (-15 -1465 ($ $)) (-15 -1479 ($ $)) (-15 -1492 ($ $)) (-15 -1549 ($ $)) (-15 -1562 ($ $)) (-15 -1575 ($ $)) (-15 -3140 ($)) (-15 -2897 ((-592 (-1092)) $)) (-15 -4122 ((-108))) (-15 -4122 ((-108) (-108))))) (-592 (-1092)) (-592 (-1092)) (-365)) (T -317))
-((-1572 (*1 *1 *2) (-12 (-5 *2 (-294 *5)) (-4 *5 (-365)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 *5)) (-4 *5 (-365)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 *2)) (-14 *4 (-592 *2)) (-4 *5 (-365)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 *2)) (-14 *4 (-592 *2)) (-4 *5 (-365)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-294 *5)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-525)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-887 (-525)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-887 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-357)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-887 (-357)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-887 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-2802 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-2782 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-3096 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-1517 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-3133 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-2780 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-2794 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-2804 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-1465 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-1479 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-1492 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-1549 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-1562 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-1575 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-3140 (*1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-2897 (*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-317 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-365)))) (-4122 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-4122 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))))
-(-13 (-281) (-37 |#3|) (-968 |#3|) (-835 (-1092)) (-10 -8 (-15 -1572 ($ (-294 |#3|))) (-15 -3077 ((-3 $ "failed") (-294 |#3|))) (-15 -1572 ($ (-1092))) (-15 -3077 ((-3 $ "failed") (-1092))) (-15 -1217 ((-294 |#3|) $)) (IF (|has| |#3| (-968 (-525))) (PROGN (-15 -1572 ($ (-294 (-525)))) (-15 -3077 ((-3 $ "failed") (-294 (-525)))) (-15 -1572 ($ (-385 (-887 (-525))))) (-15 -3077 ((-3 $ "failed") (-385 (-887 (-525))))) (-15 -1572 ($ (-887 (-525)))) (-15 -3077 ((-3 $ "failed") (-887 (-525))))) |%noBranch|) (IF (|has| |#3| (-968 (-357))) (PROGN (-15 -1572 ($ (-294 (-357)))) (-15 -3077 ((-3 $ "failed") (-294 (-357)))) (-15 -1572 ($ (-385 (-887 (-357))))) (-15 -3077 ((-3 $ "failed") (-385 (-887 (-357))))) (-15 -1572 ($ (-887 (-357)))) (-15 -3077 ((-3 $ "failed") (-887 (-357))))) |%noBranch|) (-15 -2802 ($ $)) (-15 -2782 ($ $)) (-15 -3096 ($ $)) (-15 -1517 ($ $)) (-15 -3133 ($ $)) (-15 -2780 ($ $)) (-15 -2794 ($ $)) (-15 -2804 ($ $)) (-15 -1465 ($ $)) (-15 -1479 ($ $)) (-15 -1492 ($ $)) (-15 -1549 ($ $)) (-15 -1562 ($ $)) (-15 -1575 ($ $)) (-15 -3140 ($)) (-15 -2897 ((-592 (-1092)) $)) (-15 -4122 ((-108))) (-15 -4122 ((-108) (-108)))))
-((-3165 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-318 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3165 (|#8| (-1 |#5| |#1|) |#4|))) (-1132) (-1150 |#1|) (-1150 (-385 |#2|)) (-320 |#1| |#2| |#3|) (-1132) (-1150 |#5|) (-1150 (-385 |#6|)) (-320 |#5| |#6| |#7|)) (T -318))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1132)) (-4 *8 (-1132)) (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6))) (-4 *9 (-1150 *8)) (-4 *2 (-320 *8 *9 *10)) (-5 *1 (-318 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-320 *5 *6 *7)) (-4 *10 (-1150 (-385 *9))))))
-(-10 -7 (-15 -3165 (|#8| (-1 |#5| |#1|) |#4|)))
-((-2089 (((-2 (|:| |num| (-1174 |#3|)) (|:| |den| |#3|)) $) 38)) (-2064 (($ (-1174 (-385 |#3|)) (-1174 $)) NIL) (($ (-1174 (-385 |#3|))) NIL) (($ (-1174 |#3|) |#3|) 161)) (-1546 (((-1174 $) (-1174 $)) 145)) (-4146 (((-592 (-592 |#2|))) 119)) (-3647 (((-108) |#2| |#2|) 73)) (-1576 (($ $) 139)) (-3954 (((-713)) 31)) (-1272 (((-1174 $) (-1174 $)) 198)) (-2112 (((-592 (-887 |#2|)) (-1092)) 110)) (-1464 (((-108) $) 158)) (-1409 (((-108) $) 25) (((-108) $ |#2|) 29) (((-108) $ |#3|) 202)) (-2421 (((-3 |#3| "failed")) 50)) (-3590 (((-713)) 170)) (-3406 ((|#2| $ |#2| |#2|) 132)) (-1805 (((-3 |#3| "failed")) 68)) (-3376 (($ $ (-1 (-385 |#3|) (-385 |#3|)) (-713)) NIL) (($ $ (-1 (-385 |#3|) (-385 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-2255 (((-1174 $) (-1174 $)) 151)) (-2103 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1227 (((-108)) 33)))
-(((-319 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3376 (|#1| |#1|)) (-15 -3376 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -4146 ((-592 (-592 |#2|)))) (-15 -2112 ((-592 (-887 |#2|)) (-1092))) (-15 -2103 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2421 ((-3 |#3| "failed"))) (-15 -1805 ((-3 |#3| "failed"))) (-15 -3406 (|#2| |#1| |#2| |#2|)) (-15 -1576 (|#1| |#1|)) (-15 -2064 (|#1| (-1174 |#3|) |#3|)) (-15 -3376 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1409 ((-108) |#1| |#3|)) (-15 -1409 ((-108) |#1| |#2|)) (-15 -2089 ((-2 (|:| |num| (-1174 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1546 ((-1174 |#1|) (-1174 |#1|))) (-15 -1272 ((-1174 |#1|) (-1174 |#1|))) (-15 -2255 ((-1174 |#1|) (-1174 |#1|))) (-15 -1409 ((-108) |#1|)) (-15 -1464 ((-108) |#1|)) (-15 -3647 ((-108) |#2| |#2|)) (-15 -1227 ((-108))) (-15 -3590 ((-713))) (-15 -3954 ((-713))) (-15 -3376 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)))) (-15 -3376 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)) (-713))) (-15 -2064 (|#1| (-1174 (-385 |#3|)))) (-15 -2064 (|#1| (-1174 (-385 |#3|)) (-1174 |#1|)))) (-320 |#2| |#3| |#4|) (-1132) (-1150 |#2|) (-1150 (-385 |#3|))) (T -319))
-((-3954 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5))) (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) (-3590 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5))) (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) (-1227 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5))) (-5 *2 (-108)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) (-3647 (*1 *2 *3 *3) (-12 (-4 *3 (-1132)) (-4 *5 (-1150 *3)) (-4 *6 (-1150 (-385 *5))) (-5 *2 (-108)) (-5 *1 (-319 *4 *3 *5 *6)) (-4 *4 (-320 *3 *5 *6)))) (-1805 (*1 *2) (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1150 (-385 *2))) (-4 *2 (-1150 *4)) (-5 *1 (-319 *3 *4 *2 *5)) (-4 *3 (-320 *4 *2 *5)))) (-2421 (*1 *2) (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1150 (-385 *2))) (-4 *2 (-1150 *4)) (-5 *1 (-319 *3 *4 *2 *5)) (-4 *3 (-320 *4 *2 *5)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *5 (-1132)) (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6))) (-5 *2 (-592 (-887 *5))) (-5 *1 (-319 *4 *5 *6 *7)) (-4 *4 (-320 *5 *6 *7)))) (-4146 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5))) (-5 *2 (-592 (-592 *4))) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))))
-(-10 -8 (-15 -3376 (|#1| |#1|)) (-15 -3376 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -4146 ((-592 (-592 |#2|)))) (-15 -2112 ((-592 (-887 |#2|)) (-1092))) (-15 -2103 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2421 ((-3 |#3| "failed"))) (-15 -1805 ((-3 |#3| "failed"))) (-15 -3406 (|#2| |#1| |#2| |#2|)) (-15 -1576 (|#1| |#1|)) (-15 -2064 (|#1| (-1174 |#3|) |#3|)) (-15 -3376 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1409 ((-108) |#1| |#3|)) (-15 -1409 ((-108) |#1| |#2|)) (-15 -2089 ((-2 (|:| |num| (-1174 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1546 ((-1174 |#1|) (-1174 |#1|))) (-15 -1272 ((-1174 |#1|) (-1174 |#1|))) (-15 -2255 ((-1174 |#1|) (-1174 |#1|))) (-15 -1409 ((-108) |#1|)) (-15 -1464 ((-108) |#1|)) (-15 -3647 ((-108) |#2| |#2|)) (-15 -1227 ((-108))) (-15 -3590 ((-713))) (-15 -3954 ((-713))) (-15 -3376 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)))) (-15 -3376 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)) (-713))) (-15 -2064 (|#1| (-1174 (-385 |#3|)))) (-15 -2064 (|#1| (-1174 (-385 |#3|)) (-1174 |#1|))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2089 (((-2 (|:| |num| (-1174 |#2|)) (|:| |den| |#2|)) $) 196)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 93 (|has| (-385 |#2|) (-341)))) (-4218 (($ $) 94 (|has| (-385 |#2|) (-341)))) (-3171 (((-108) $) 96 (|has| (-385 |#2|) (-341)))) (-1627 (((-632 (-385 |#2|)) (-1174 $)) 46) (((-632 (-385 |#2|))) 61)) (-2952 (((-385 |#2|) $) 52)) (-2971 (((-1102 (-856) (-713)) (-525)) 147 (|has| (-385 |#2|) (-327)))) (-1578 (((-3 $ "failed") $ $) 19)) (-1286 (($ $) 113 (|has| (-385 |#2|) (-341)))) (-2669 (((-396 $) $) 114 (|has| (-385 |#2|) (-341)))) (-2193 (((-108) $ $) 104 (|has| (-385 |#2|) (-341)))) (-1834 (((-713)) 87 (|has| (-385 |#2|) (-346)))) (-2549 (((-108)) 213)) (-3934 (((-108) |#1|) 212) (((-108) |#2|) 211)) (-2169 (($) 17 T CONST)) (-3077 (((-3 (-525) "failed") $) 169 (|has| (-385 |#2|) (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 167 (|has| (-385 |#2|) (-968 (-385 (-525))))) (((-3 (-385 |#2|) "failed") $) 166)) (-1572 (((-525) $) 170 (|has| (-385 |#2|) (-968 (-525)))) (((-385 (-525)) $) 168 (|has| (-385 |#2|) (-968 (-385 (-525))))) (((-385 |#2|) $) 165)) (-2064 (($ (-1174 (-385 |#2|)) (-1174 $)) 48) (($ (-1174 (-385 |#2|))) 64) (($ (-1174 |#2|) |#2|) 189)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-385 |#2|) (-327)))) (-1747 (($ $ $) 108 (|has| (-385 |#2|) (-341)))) (-1906 (((-632 (-385 |#2|)) $ (-1174 $)) 53) (((-632 (-385 |#2|)) $) 59)) (-1994 (((-632 (-525)) (-632 $)) 164 (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 163 (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-385 |#2|))) (|:| |vec| (-1174 (-385 |#2|)))) (-632 $) (-1174 $)) 162) (((-632 (-385 |#2|)) (-632 $)) 161)) (-1546 (((-1174 $) (-1174 $)) 201)) (-1284 (($ |#3|) 158) (((-3 $ "failed") (-385 |#3|)) 155 (|has| (-385 |#2|) (-341)))) (-3457 (((-3 $ "failed") $) 34)) (-4146 (((-592 (-592 |#1|))) 182 (|has| |#1| (-346)))) (-3647 (((-108) |#1| |#1|) 217)) (-3622 (((-856)) 54)) (-2502 (($) 90 (|has| (-385 |#2|) (-346)))) (-3345 (((-108)) 210)) (-1254 (((-108) |#1|) 209) (((-108) |#2|) 208)) (-1733 (($ $ $) 107 (|has| (-385 |#2|) (-341)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 102 (|has| (-385 |#2|) (-341)))) (-1576 (($ $) 188)) (-2574 (($) 149 (|has| (-385 |#2|) (-327)))) (-3704 (((-108) $) 150 (|has| (-385 |#2|) (-327)))) (-3625 (($ $ (-713)) 141 (|has| (-385 |#2|) (-327))) (($ $) 140 (|has| (-385 |#2|) (-327)))) (-3673 (((-108) $) 115 (|has| (-385 |#2|) (-341)))) (-2581 (((-856) $) 152 (|has| (-385 |#2|) (-327))) (((-775 (-856)) $) 138 (|has| (-385 |#2|) (-327)))) (-1396 (((-108) $) 31)) (-3954 (((-713)) 220)) (-1272 (((-1174 $) (-1174 $)) 202)) (-2382 (((-385 |#2|) $) 51)) (-2112 (((-592 (-887 |#1|)) (-1092)) 183 (|has| |#1| (-341)))) (-3844 (((-3 $ "failed") $) 142 (|has| (-385 |#2|) (-327)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 111 (|has| (-385 |#2|) (-341)))) (-2126 ((|#3| $) 44 (|has| (-385 |#2|) (-341)))) (-3005 (((-856) $) 89 (|has| (-385 |#2|) (-346)))) (-1269 ((|#3| $) 156)) (-2556 (($ (-592 $)) 100 (|has| (-385 |#2|) (-341))) (($ $ $) 99 (|has| (-385 |#2|) (-341)))) (-2619 (((-1075) $) 9)) (-2548 (((-632 (-385 |#2|))) 197)) (-3350 (((-632 (-385 |#2|))) 199)) (-2997 (($ $) 116 (|has| (-385 |#2|) (-341)))) (-1414 (($ (-1174 |#2|) |#2|) 194)) (-2497 (((-632 (-385 |#2|))) 198)) (-4179 (((-632 (-385 |#2|))) 200)) (-2496 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-2355 (((-2 (|:| |num| (-1174 |#2|)) (|:| |den| |#2|)) $) 195)) (-2933 (((-1174 $)) 206)) (-2641 (((-1174 $)) 207)) (-1464 (((-108) $) 205)) (-1409 (((-108) $) 204) (((-108) $ |#1|) 192) (((-108) $ |#2|) 191)) (-2295 (($) 143 (|has| (-385 |#2|) (-327)) CONST)) (-3555 (($ (-856)) 88 (|has| (-385 |#2|) (-346)))) (-2421 (((-3 |#2| "failed")) 185)) (-2093 (((-1039) $) 10)) (-3590 (((-713)) 219)) (-3409 (($) 160)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 101 (|has| (-385 |#2|) (-341)))) (-2589 (($ (-592 $)) 98 (|has| (-385 |#2|) (-341))) (($ $ $) 97 (|has| (-385 |#2|) (-341)))) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) 146 (|has| (-385 |#2|) (-327)))) (-2770 (((-396 $) $) 112 (|has| (-385 |#2|) (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-385 |#2|) (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 109 (|has| (-385 |#2|) (-341)))) (-1715 (((-3 $ "failed") $ $) 92 (|has| (-385 |#2|) (-341)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 103 (|has| (-385 |#2|) (-341)))) (-3684 (((-713) $) 105 (|has| (-385 |#2|) (-341)))) (-3406 ((|#1| $ |#1| |#1|) 187)) (-1805 (((-3 |#2| "failed")) 186)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 106 (|has| (-385 |#2|) (-341)))) (-1975 (((-385 |#2|) (-1174 $)) 47) (((-385 |#2|)) 60)) (-3877 (((-713) $) 151 (|has| (-385 |#2|) (-327))) (((-3 (-713) "failed") $ $) 139 (|has| (-385 |#2|) (-327)))) (-3376 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) 123 (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) 122 (|has| (-385 |#2|) (-341))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-592 (-1092)) (-592 (-713))) 130 (-3254 (-3762 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092)))) (-3762 (|has| (-385 |#2|) (-835 (-1092))) (|has| (-385 |#2|) (-341))))) (($ $ (-1092) (-713)) 131 (-3254 (-3762 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092)))) (-3762 (|has| (-385 |#2|) (-835 (-1092))) (|has| (-385 |#2|) (-341))))) (($ $ (-592 (-1092))) 132 (-3254 (-3762 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092)))) (-3762 (|has| (-385 |#2|) (-835 (-1092))) (|has| (-385 |#2|) (-341))))) (($ $ (-1092)) 133 (-3254 (-3762 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092)))) (-3762 (|has| (-385 |#2|) (-835 (-1092))) (|has| (-385 |#2|) (-341))))) (($ $ (-713)) 135 (-3254 (-3762 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-3762 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) 137 (-3254 (-3762 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-3762 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-2725 (((-632 (-385 |#2|)) (-1174 $) (-1 (-385 |#2|) (-385 |#2|))) 154 (|has| (-385 |#2|) (-341)))) (-2756 ((|#3|) 159)) (-2244 (($) 148 (|has| (-385 |#2|) (-327)))) (-2387 (((-1174 (-385 |#2|)) $ (-1174 $)) 50) (((-632 (-385 |#2|)) (-1174 $) (-1174 $)) 49) (((-1174 (-385 |#2|)) $) 66) (((-632 (-385 |#2|)) (-1174 $)) 65)) (-3210 (((-1174 (-385 |#2|)) $) 63) (($ (-1174 (-385 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) 145 (|has| (-385 |#2|) (-327)))) (-2255 (((-1174 $) (-1174 $)) 203)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ (-385 |#2|)) 37) (($ (-385 (-525))) 86 (-3254 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-968 (-385 (-525)))))) (($ $) 91 (|has| (-385 |#2|) (-341)))) (-3637 (($ $) 144 (|has| (-385 |#2|) (-327))) (((-3 $ "failed") $) 43 (|has| (-385 |#2|) (-136)))) (-1304 ((|#3| $) 45)) (-3917 (((-713)) 29)) (-3539 (((-108)) 216)) (-2503 (((-108) |#1|) 215) (((-108) |#2|) 214)) (-3094 (((-1174 $)) 67)) (-3325 (((-108) $ $) 95 (|has| (-385 |#2|) (-341)))) (-2103 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-1227 (((-108)) 218)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 117 (|has| (-385 |#2|) (-341)))) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) 125 (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) 124 (|has| (-385 |#2|) (-341))) (($ $ (-592 (-1092)) (-592 (-713))) 126 (-3254 (-3762 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092)))) (-3762 (|has| (-385 |#2|) (-835 (-1092))) (|has| (-385 |#2|) (-341))))) (($ $ (-1092) (-713)) 127 (-3254 (-3762 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092)))) (-3762 (|has| (-385 |#2|) (-835 (-1092))) (|has| (-385 |#2|) (-341))))) (($ $ (-592 (-1092))) 128 (-3254 (-3762 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092)))) (-3762 (|has| (-385 |#2|) (-835 (-1092))) (|has| (-385 |#2|) (-341))))) (($ $ (-1092)) 129 (-3254 (-3762 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092)))) (-3762 (|has| (-385 |#2|) (-835 (-1092))) (|has| (-385 |#2|) (-341))))) (($ $ (-713)) 134 (-3254 (-3762 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-3762 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) 136 (-3254 (-3762 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-3762 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-3955 (((-108) $ $) 6)) (-4075 (($ $ $) 121 (|has| (-385 |#2|) (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 118 (|has| (-385 |#2|) (-341)))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 |#2|)) 39) (($ (-385 |#2|) $) 38) (($ (-385 (-525)) $) 120 (|has| (-385 |#2|) (-341))) (($ $ (-385 (-525))) 119 (|has| (-385 |#2|) (-341)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1296 (((-592 (-1092)) $) NIL)) (-2676 (((-108)) 91) (((-108) (-108)) 92)) (-1285 (((-592 (-565 $)) $) NIL)) (-1803 (($ $) NIL)) (-3659 (($ $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-3702 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-4211 (($ $) NIL)) (-1781 (($ $) NIL)) (-3638 (($ $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-565 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-294 |#3|)) 71) (((-3 $ "failed") (-1092)) 97) (((-3 $ "failed") (-294 (-525))) 59 (|has| |#3| (-968 (-525)))) (((-3 $ "failed") (-385 (-887 (-525)))) 65 (|has| |#3| (-968 (-525)))) (((-3 $ "failed") (-887 (-525))) 60 (|has| |#3| (-968 (-525)))) (((-3 $ "failed") (-294 (-357))) 89 (|has| |#3| (-968 (-357)))) (((-3 $ "failed") (-385 (-887 (-357)))) 83 (|has| |#3| (-968 (-357)))) (((-3 $ "failed") (-887 (-357))) 78 (|has| |#3| (-968 (-357))))) (-4105 (((-565 $) $) NIL) ((|#3| $) NIL) (($ (-294 |#3|)) 72) (($ (-1092)) 98) (($ (-294 (-525))) 61 (|has| |#3| (-968 (-525)))) (($ (-385 (-887 (-525)))) 66 (|has| |#3| (-968 (-525)))) (($ (-887 (-525))) 62 (|has| |#3| (-968 (-525)))) (($ (-294 (-357))) 90 (|has| |#3| (-968 (-357)))) (($ (-385 (-887 (-357)))) 84 (|has| |#3| (-968 (-357)))) (($ (-887 (-357))) 80 (|has| |#3| (-968 (-357))))) (-3300 (((-3 $ "failed") $) NIL)) (-4106 (($) 10)) (-3106 (($ $) NIL) (($ (-592 $)) NIL)) (-2531 (((-592 (-110)) $) NIL)) (-1386 (((-110) (-110)) NIL)) (-2278 (((-108) $) NIL)) (-3028 (((-108) $) NIL (|has| $ (-968 (-525))))) (-1808 (((-1088 $) (-565 $)) NIL (|has| $ (-977)))) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-2016 (($ (-1 $ $) (-565 $)) NIL)) (-1751 (((-3 (-565 $) "failed") $) NIL)) (-2243 (($ $) 94)) (-2533 (($ $) NIL)) (-1289 (((-1075) $) NIL)) (-4153 (((-592 (-565 $)) $) NIL)) (-4152 (($ (-110) $) 93) (($ (-110) (-592 $)) NIL)) (-2412 (((-108) $ (-110)) NIL) (((-108) $ (-1092)) NIL)) (-2934 (((-713) $) NIL)) (-3993 (((-1039) $) NIL)) (-3513 (((-108) $ $) NIL) (((-108) $ (-1092)) NIL)) (-1618 (($ $) NIL)) (-3864 (((-108) $) NIL (|has| $ (-968 (-525))))) (-2825 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1092) (-1 $ (-592 $))) NIL) (($ $ (-1092) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3431 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-2540 (($ $) NIL) (($ $ $) NIL)) (-2702 (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) NIL)) (-2013 (($ $) NIL (|has| $ (-977)))) (-1792 (($ $) NIL)) (-3649 (($ $) NIL)) (-4100 (((-798) $) NIL) (($ (-565 $)) NIL) (($ |#3|) NIL) (($ (-525)) NIL) (((-294 |#3|) $) 96)) (-2448 (((-713)) NIL)) (-2239 (($ $) NIL) (($ (-592 $)) NIL)) (-3954 (((-108) (-110)) NIL)) (-3853 (($ $) NIL)) (-3808 (($ $) NIL)) (-3820 (($ $) NIL)) (-2380 (($ $) NIL)) (-3706 (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3364 (($) 95 T CONST)) (-3375 (($) 24 T CONST)) (-2401 (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) NIL)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) NIL)) (-2871 (($ $ $) NIL) (($ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-856) $) NIL)))
+(((-317 |#1| |#2| |#3|) (-13 (-281) (-37 |#3|) (-968 |#3|) (-835 (-1092)) (-10 -8 (-15 -4105 ($ (-294 |#3|))) (-15 -1934 ((-3 $ "failed") (-294 |#3|))) (-15 -4105 ($ (-1092))) (-15 -1934 ((-3 $ "failed") (-1092))) (-15 -4100 ((-294 |#3|) $)) (IF (|has| |#3| (-968 (-525))) (PROGN (-15 -4105 ($ (-294 (-525)))) (-15 -1934 ((-3 $ "failed") (-294 (-525)))) (-15 -4105 ($ (-385 (-887 (-525))))) (-15 -1934 ((-3 $ "failed") (-385 (-887 (-525))))) (-15 -4105 ($ (-887 (-525)))) (-15 -1934 ((-3 $ "failed") (-887 (-525))))) |%noBranch|) (IF (|has| |#3| (-968 (-357))) (PROGN (-15 -4105 ($ (-294 (-357)))) (-15 -1934 ((-3 $ "failed") (-294 (-357)))) (-15 -4105 ($ (-385 (-887 (-357))))) (-15 -1934 ((-3 $ "failed") (-385 (-887 (-357))))) (-15 -4105 ($ (-887 (-357)))) (-15 -1934 ((-3 $ "failed") (-887 (-357))))) |%noBranch|) (-15 -2380 ($ $)) (-15 -4211 ($ $)) (-15 -1618 ($ $)) (-15 -2533 ($ $)) (-15 -2243 ($ $)) (-15 -3638 ($ $)) (-15 -3649 ($ $)) (-15 -3659 ($ $)) (-15 -3808 ($ $)) (-15 -3820 ($ $)) (-15 -3853 ($ $)) (-15 -1781 ($ $)) (-15 -1792 ($ $)) (-15 -1803 ($ $)) (-15 -4106 ($)) (-15 -1296 ((-592 (-1092)) $)) (-15 -2676 ((-108))) (-15 -2676 ((-108) (-108))))) (-592 (-1092)) (-592 (-1092)) (-365)) (T -317))
+((-4105 (*1 *1 *2) (-12 (-5 *2 (-294 *5)) (-4 *5 (-365)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 *5)) (-4 *5 (-365)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 *2)) (-14 *4 (-592 *2)) (-4 *5 (-365)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 *2)) (-14 *4 (-592 *2)) (-4 *5 (-365)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-294 *5)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-525)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-887 (-525)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-887 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-357)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-887 (-357)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-887 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-2380 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-4211 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-1618 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-2533 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-2243 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-3638 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-3649 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-3659 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-3808 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-3820 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-3853 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-1781 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-1792 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-1803 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-4106 (*1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092))) (-14 *3 (-592 (-1092))) (-4 *4 (-365)))) (-1296 (*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-317 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-365)))) (-2676 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))) (-2676 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365)))))
+(-13 (-281) (-37 |#3|) (-968 |#3|) (-835 (-1092)) (-10 -8 (-15 -4105 ($ (-294 |#3|))) (-15 -1934 ((-3 $ "failed") (-294 |#3|))) (-15 -4105 ($ (-1092))) (-15 -1934 ((-3 $ "failed") (-1092))) (-15 -4100 ((-294 |#3|) $)) (IF (|has| |#3| (-968 (-525))) (PROGN (-15 -4105 ($ (-294 (-525)))) (-15 -1934 ((-3 $ "failed") (-294 (-525)))) (-15 -4105 ($ (-385 (-887 (-525))))) (-15 -1934 ((-3 $ "failed") (-385 (-887 (-525))))) (-15 -4105 ($ (-887 (-525)))) (-15 -1934 ((-3 $ "failed") (-887 (-525))))) |%noBranch|) (IF (|has| |#3| (-968 (-357))) (PROGN (-15 -4105 ($ (-294 (-357)))) (-15 -1934 ((-3 $ "failed") (-294 (-357)))) (-15 -4105 ($ (-385 (-887 (-357))))) (-15 -1934 ((-3 $ "failed") (-385 (-887 (-357))))) (-15 -4105 ($ (-887 (-357)))) (-15 -1934 ((-3 $ "failed") (-887 (-357))))) |%noBranch|) (-15 -2380 ($ $)) (-15 -4211 ($ $)) (-15 -1618 ($ $)) (-15 -2533 ($ $)) (-15 -2243 ($ $)) (-15 -3638 ($ $)) (-15 -3649 ($ $)) (-15 -3659 ($ $)) (-15 -3808 ($ $)) (-15 -3820 ($ $)) (-15 -3853 ($ $)) (-15 -1781 ($ $)) (-15 -1792 ($ $)) (-15 -1803 ($ $)) (-15 -4106 ($)) (-15 -1296 ((-592 (-1092)) $)) (-15 -2676 ((-108))) (-15 -2676 ((-108) (-108)))))
+((-2016 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-318 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2016 (|#8| (-1 |#5| |#1|) |#4|))) (-1132) (-1150 |#1|) (-1150 (-385 |#2|)) (-320 |#1| |#2| |#3|) (-1132) (-1150 |#5|) (-1150 (-385 |#6|)) (-320 |#5| |#6| |#7|)) (T -318))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1132)) (-4 *8 (-1132)) (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6))) (-4 *9 (-1150 *8)) (-4 *2 (-320 *8 *9 *10)) (-5 *1 (-318 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-320 *5 *6 *7)) (-4 *10 (-1150 (-385 *9))))))
+(-10 -7 (-15 -2016 (|#8| (-1 |#5| |#1|) |#4|)))
+((-2823 (((-2 (|:| |num| (-1174 |#3|)) (|:| |den| |#3|)) $) 38)) (-2580 (($ (-1174 (-385 |#3|)) (-1174 $)) NIL) (($ (-1174 (-385 |#3|))) NIL) (($ (-1174 |#3|) |#3|) 161)) (-1630 (((-1174 $) (-1174 $)) 145)) (-2902 (((-592 (-592 |#2|))) 119)) (-1531 (((-108) |#2| |#2|) 73)) (-3201 (($ $) 139)) (-1635 (((-713)) 31)) (-3946 (((-1174 $) (-1174 $)) 198)) (-3024 (((-592 (-887 |#2|)) (-1092)) 110)) (-2570 (((-108) $) 158)) (-1991 (((-108) $) 25) (((-108) $ |#2|) 29) (((-108) $ |#3|) 202)) (-3051 (((-3 |#3| "failed")) 50)) (-2173 (((-713)) 170)) (-3431 ((|#2| $ |#2| |#2|) 132)) (-2981 (((-3 |#3| "failed")) 68)) (-2702 (($ $ (-1 (-385 |#3|) (-385 |#3|)) (-713)) NIL) (($ $ (-1 (-385 |#3|) (-385 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-3924 (((-1174 $) (-1174 $)) 151)) (-2951 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1940 (((-108)) 33)))
+(((-319 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2702 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2902 ((-592 (-592 |#2|)))) (-15 -3024 ((-592 (-887 |#2|)) (-1092))) (-15 -2951 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3051 ((-3 |#3| "failed"))) (-15 -2981 ((-3 |#3| "failed"))) (-15 -3431 (|#2| |#1| |#2| |#2|)) (-15 -3201 (|#1| |#1|)) (-15 -2580 (|#1| (-1174 |#3|) |#3|)) (-15 -2702 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1991 ((-108) |#1| |#3|)) (-15 -1991 ((-108) |#1| |#2|)) (-15 -2823 ((-2 (|:| |num| (-1174 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1630 ((-1174 |#1|) (-1174 |#1|))) (-15 -3946 ((-1174 |#1|) (-1174 |#1|))) (-15 -3924 ((-1174 |#1|) (-1174 |#1|))) (-15 -1991 ((-108) |#1|)) (-15 -2570 ((-108) |#1|)) (-15 -1531 ((-108) |#2| |#2|)) (-15 -1940 ((-108))) (-15 -2173 ((-713))) (-15 -1635 ((-713))) (-15 -2702 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)))) (-15 -2702 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)) (-713))) (-15 -2580 (|#1| (-1174 (-385 |#3|)))) (-15 -2580 (|#1| (-1174 (-385 |#3|)) (-1174 |#1|)))) (-320 |#2| |#3| |#4|) (-1132) (-1150 |#2|) (-1150 (-385 |#3|))) (T -319))
+((-1635 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5))) (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) (-2173 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5))) (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) (-1940 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5))) (-5 *2 (-108)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) (-1531 (*1 *2 *3 *3) (-12 (-4 *3 (-1132)) (-4 *5 (-1150 *3)) (-4 *6 (-1150 (-385 *5))) (-5 *2 (-108)) (-5 *1 (-319 *4 *3 *5 *6)) (-4 *4 (-320 *3 *5 *6)))) (-2981 (*1 *2) (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1150 (-385 *2))) (-4 *2 (-1150 *4)) (-5 *1 (-319 *3 *4 *2 *5)) (-4 *3 (-320 *4 *2 *5)))) (-3051 (*1 *2) (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1150 (-385 *2))) (-4 *2 (-1150 *4)) (-5 *1 (-319 *3 *4 *2 *5)) (-4 *3 (-320 *4 *2 *5)))) (-3024 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *5 (-1132)) (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6))) (-5 *2 (-592 (-887 *5))) (-5 *1 (-319 *4 *5 *6 *7)) (-4 *4 (-320 *5 *6 *7)))) (-2902 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5))) (-5 *2 (-592 (-592 *4))) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))))
+(-10 -8 (-15 -2702 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2902 ((-592 (-592 |#2|)))) (-15 -3024 ((-592 (-887 |#2|)) (-1092))) (-15 -2951 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3051 ((-3 |#3| "failed"))) (-15 -2981 ((-3 |#3| "failed"))) (-15 -3431 (|#2| |#1| |#2| |#2|)) (-15 -3201 (|#1| |#1|)) (-15 -2580 (|#1| (-1174 |#3|) |#3|)) (-15 -2702 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1991 ((-108) |#1| |#3|)) (-15 -1991 ((-108) |#1| |#2|)) (-15 -2823 ((-2 (|:| |num| (-1174 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1630 ((-1174 |#1|) (-1174 |#1|))) (-15 -3946 ((-1174 |#1|) (-1174 |#1|))) (-15 -3924 ((-1174 |#1|) (-1174 |#1|))) (-15 -1991 ((-108) |#1|)) (-15 -2570 ((-108) |#1|)) (-15 -1531 ((-108) |#2| |#2|)) (-15 -1940 ((-108))) (-15 -2173 ((-713))) (-15 -1635 ((-713))) (-15 -2702 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)))) (-15 -2702 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)) (-713))) (-15 -2580 (|#1| (-1174 (-385 |#3|)))) (-15 -2580 (|#1| (-1174 (-385 |#3|)) (-1174 |#1|))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-2823 (((-2 (|:| |num| (-1174 |#2|)) (|:| |den| |#2|)) $) 196)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 93 (|has| (-385 |#2|) (-341)))) (-2433 (($ $) 94 (|has| (-385 |#2|) (-341)))) (-1568 (((-108) $) 96 (|has| (-385 |#2|) (-341)))) (-3855 (((-632 (-385 |#2|)) (-1174 $)) 46) (((-632 (-385 |#2|))) 61)) (-2924 (((-385 |#2|) $) 52)) (-3395 (((-1102 (-856) (-713)) (-525)) 147 (|has| (-385 |#2|) (-327)))) (-3222 (((-3 $ "failed") $ $) 19)) (-4195 (($ $) 113 (|has| (-385 |#2|) (-341)))) (-3586 (((-396 $) $) 114 (|has| (-385 |#2|) (-341)))) (-1507 (((-108) $ $) 104 (|has| (-385 |#2|) (-341)))) (-1613 (((-713)) 87 (|has| (-385 |#2|) (-346)))) (-1910 (((-108)) 213)) (-1428 (((-108) |#1|) 212) (((-108) |#2|) 211)) (-2475 (($) 17 T CONST)) (-1934 (((-3 (-525) "failed") $) 169 (|has| (-385 |#2|) (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 167 (|has| (-385 |#2|) (-968 (-385 (-525))))) (((-3 (-385 |#2|) "failed") $) 166)) (-4105 (((-525) $) 170 (|has| (-385 |#2|) (-968 (-525)))) (((-385 (-525)) $) 168 (|has| (-385 |#2|) (-968 (-385 (-525))))) (((-385 |#2|) $) 165)) (-2580 (($ (-1174 (-385 |#2|)) (-1174 $)) 48) (($ (-1174 (-385 |#2|))) 64) (($ (-1174 |#2|) |#2|) 189)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-385 |#2|) (-327)))) (-1356 (($ $ $) 108 (|has| (-385 |#2|) (-341)))) (-1588 (((-632 (-385 |#2|)) $ (-1174 $)) 53) (((-632 (-385 |#2|)) $) 59)) (-3090 (((-632 (-525)) (-632 $)) 164 (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 163 (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-385 |#2|))) (|:| |vec| (-1174 (-385 |#2|)))) (-632 $) (-1174 $)) 162) (((-632 (-385 |#2|)) (-632 $)) 161)) (-1630 (((-1174 $) (-1174 $)) 201)) (-3504 (($ |#3|) 158) (((-3 $ "failed") (-385 |#3|)) 155 (|has| (-385 |#2|) (-341)))) (-3300 (((-3 $ "failed") $) 34)) (-2902 (((-592 (-592 |#1|))) 182 (|has| |#1| (-346)))) (-1531 (((-108) |#1| |#1|) 217)) (-3085 (((-856)) 54)) (-1903 (($) 90 (|has| (-385 |#2|) (-346)))) (-1746 (((-108)) 210)) (-1712 (((-108) |#1|) 209) (((-108) |#2|) 208)) (-1332 (($ $ $) 107 (|has| (-385 |#2|) (-341)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 102 (|has| (-385 |#2|) (-341)))) (-3201 (($ $) 188)) (-3932 (($) 149 (|has| (-385 |#2|) (-327)))) (-3920 (((-108) $) 150 (|has| (-385 |#2|) (-327)))) (-1339 (($ $ (-713)) 141 (|has| (-385 |#2|) (-327))) (($ $) 140 (|has| (-385 |#2|) (-327)))) (-1798 (((-108) $) 115 (|has| (-385 |#2|) (-341)))) (-4000 (((-856) $) 152 (|has| (-385 |#2|) (-327))) (((-775 (-856)) $) 138 (|has| (-385 |#2|) (-327)))) (-2278 (((-108) $) 31)) (-1635 (((-713)) 220)) (-3946 (((-1174 $) (-1174 $)) 202)) (-2704 (((-385 |#2|) $) 51)) (-3024 (((-592 (-887 |#1|)) (-1092)) 183 (|has| |#1| (-341)))) (-2878 (((-3 $ "failed") $) 142 (|has| (-385 |#2|) (-327)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 111 (|has| (-385 |#2|) (-341)))) (-2021 ((|#3| $) 44 (|has| (-385 |#2|) (-341)))) (-3685 (((-856) $) 89 (|has| (-385 |#2|) (-346)))) (-3492 ((|#3| $) 156)) (-2739 (($ (-592 $)) 100 (|has| (-385 |#2|) (-341))) (($ $ $) 99 (|has| (-385 |#2|) (-341)))) (-1289 (((-1075) $) 9)) (-1896 (((-632 (-385 |#2|))) 197)) (-1779 (((-632 (-385 |#2|))) 199)) (-1387 (($ $) 116 (|has| (-385 |#2|) (-341)))) (-2045 (($ (-1174 |#2|) |#2|) 194)) (-1419 (((-632 (-385 |#2|))) 198)) (-2050 (((-632 (-385 |#2|))) 200)) (-1410 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-3652 (((-2 (|:| |num| (-1174 |#2|)) (|:| |den| |#2|)) $) 195)) (-1218 (((-1174 $)) 206)) (-3295 (((-1174 $)) 207)) (-2570 (((-108) $) 205)) (-1991 (((-108) $) 204) (((-108) $ |#1|) 192) (((-108) $ |#2|) 191)) (-2948 (($) 143 (|has| (-385 |#2|) (-327)) CONST)) (-1722 (($ (-856)) 88 (|has| (-385 |#2|) (-346)))) (-3051 (((-3 |#2| "failed")) 185)) (-3993 (((-1039) $) 10)) (-2173 (((-713)) 219)) (-3817 (($) 160)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 101 (|has| (-385 |#2|) (-341)))) (-2772 (($ (-592 $)) 98 (|has| (-385 |#2|) (-341))) (($ $ $) 97 (|has| (-385 |#2|) (-341)))) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) 146 (|has| (-385 |#2|) (-327)))) (-4201 (((-396 $) $) 112 (|has| (-385 |#2|) (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-385 |#2|) (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 109 (|has| (-385 |#2|) (-341)))) (-1311 (((-3 $ "failed") $ $) 92 (|has| (-385 |#2|) (-341)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 103 (|has| (-385 |#2|) (-341)))) (-1927 (((-713) $) 105 (|has| (-385 |#2|) (-341)))) (-3431 ((|#1| $ |#1| |#1|) 187)) (-2981 (((-3 |#2| "failed")) 186)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 106 (|has| (-385 |#2|) (-341)))) (-4115 (((-385 |#2|) (-1174 $)) 47) (((-385 |#2|)) 60)) (-2043 (((-713) $) 151 (|has| (-385 |#2|) (-327))) (((-3 (-713) "failed") $ $) 139 (|has| (-385 |#2|) (-327)))) (-2702 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) 123 (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) 122 (|has| (-385 |#2|) (-341))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-592 (-1092)) (-592 (-713))) 130 (-2067 (-3944 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092)))) (-3944 (|has| (-385 |#2|) (-835 (-1092))) (|has| (-385 |#2|) (-341))))) (($ $ (-1092) (-713)) 131 (-2067 (-3944 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092)))) (-3944 (|has| (-385 |#2|) (-835 (-1092))) (|has| (-385 |#2|) (-341))))) (($ $ (-592 (-1092))) 132 (-2067 (-3944 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092)))) (-3944 (|has| (-385 |#2|) (-835 (-1092))) (|has| (-385 |#2|) (-341))))) (($ $ (-1092)) 133 (-2067 (-3944 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092)))) (-3944 (|has| (-385 |#2|) (-835 (-1092))) (|has| (-385 |#2|) (-341))))) (($ $ (-713)) 135 (-2067 (-3944 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-3944 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) 137 (-2067 (-3944 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-3944 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-2897 (((-632 (-385 |#2|)) (-1174 $) (-1 (-385 |#2|) (-385 |#2|))) 154 (|has| (-385 |#2|) (-341)))) (-2013 ((|#3|) 159)) (-3823 (($) 148 (|has| (-385 |#2|) (-327)))) (-2754 (((-1174 (-385 |#2|)) $ (-1174 $)) 50) (((-632 (-385 |#2|)) (-1174 $) (-1174 $)) 49) (((-1174 (-385 |#2|)) $) 66) (((-632 (-385 |#2|)) (-1174 $)) 65)) (-2069 (((-1174 (-385 |#2|)) $) 63) (($ (-1174 (-385 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) 145 (|has| (-385 |#2|) (-327)))) (-3924 (((-1174 $) (-1174 $)) 203)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ (-385 |#2|)) 37) (($ (-385 (-525))) 86 (-2067 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-968 (-385 (-525)))))) (($ $) 91 (|has| (-385 |#2|) (-341)))) (-1463 (($ $) 144 (|has| (-385 |#2|) (-327))) (((-3 $ "failed") $) 43 (|has| (-385 |#2|) (-136)))) (-3153 ((|#3| $) 45)) (-2448 (((-713)) 29)) (-2881 (((-108)) 216)) (-1461 (((-108) |#1|) 215) (((-108) |#2|) 214)) (-2103 (((-1174 $)) 67)) (-1571 (((-108) $ $) 95 (|has| (-385 |#2|) (-341)))) (-2951 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-1940 (((-108)) 218)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 117 (|has| (-385 |#2|) (-341)))) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) 125 (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) 124 (|has| (-385 |#2|) (-341))) (($ $ (-592 (-1092)) (-592 (-713))) 126 (-2067 (-3944 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092)))) (-3944 (|has| (-385 |#2|) (-835 (-1092))) (|has| (-385 |#2|) (-341))))) (($ $ (-1092) (-713)) 127 (-2067 (-3944 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092)))) (-3944 (|has| (-385 |#2|) (-835 (-1092))) (|has| (-385 |#2|) (-341))))) (($ $ (-592 (-1092))) 128 (-2067 (-3944 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092)))) (-3944 (|has| (-385 |#2|) (-835 (-1092))) (|has| (-385 |#2|) (-341))))) (($ $ (-1092)) 129 (-2067 (-3944 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092)))) (-3944 (|has| (-385 |#2|) (-835 (-1092))) (|has| (-385 |#2|) (-341))))) (($ $ (-713)) 134 (-2067 (-3944 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-3944 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) 136 (-2067 (-3944 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-3944 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-2775 (((-108) $ $) 6)) (-2880 (($ $ $) 121 (|has| (-385 |#2|) (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 118 (|has| (-385 |#2|) (-341)))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 |#2|)) 39) (($ (-385 |#2|) $) 38) (($ (-385 (-525)) $) 120 (|has| (-385 |#2|) (-341))) (($ $ (-385 (-525))) 119 (|has| (-385 |#2|) (-341)))))
(((-320 |#1| |#2| |#3|) (-131) (-1132) (-1150 |t#1|) (-1150 (-385 |t#2|))) (T -320))
-((-3954 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-713)))) (-3590 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-713)))) (-1227 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-3647 (*1 *2 *3 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-3539 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-2503 (*1 *2 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-2503 (*1 *2 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 (-385 *3))) (-5 *2 (-108)))) (-2549 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-3934 (*1 *2 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-3934 (*1 *2 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 (-385 *3))) (-5 *2 (-108)))) (-3345 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-1254 (*1 *2 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-1254 (*1 *2 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 (-385 *3))) (-5 *2 (-108)))) (-2641 (*1 *2) (-12 (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5)))) (-2933 (*1 *2) (-12 (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5)))) (-1464 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-1409 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-2255 (*1 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))))) (-1272 (*1 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))))) (-1546 (*1 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))))) (-4179 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-3350 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-2497 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-2548 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-2089 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-2 (|:| |num| (-1174 *4)) (|:| |den| *4))))) (-2355 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-2 (|:| |num| (-1174 *4)) (|:| |den| *4))))) (-1414 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1150 *4)) (-4 *4 (-1132)) (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1150 (-385 *3))))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5))) (-5 *2 (-2 (|:| |num| (-632 *5)) (|:| |den| *5))))) (-1409 (*1 *2 *1 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-1409 (*1 *2 *1 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 (-385 *3))) (-5 *2 (-108)))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))))) (-2064 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1150 *4)) (-4 *4 (-1132)) (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1150 (-385 *3))))) (-1576 (*1 *1 *1) (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1150 *2)) (-4 *4 (-1150 (-385 *3))))) (-3406 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1150 *2)) (-4 *4 (-1150 (-385 *3))))) (-1805 (*1 *2) (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1132)) (-4 *4 (-1150 (-385 *2))) (-4 *2 (-1150 *3)))) (-2421 (*1 *2) (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1132)) (-4 *4 (-1150 (-385 *2))) (-4 *2 (-1150 *3)))) (-2103 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1150 *4)) (-4 *4 (-1132)) (-4 *6 (-1150 (-385 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-320 *4 *5 *6)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5))) (-4 *4 (-341)) (-5 *2 (-592 (-887 *4))))) (-4146 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-4 *3 (-346)) (-5 *2 (-592 (-592 *3))))))
-(-13 (-667 (-385 |t#2|) |t#3|) (-10 -8 (-15 -3954 ((-713))) (-15 -3590 ((-713))) (-15 -1227 ((-108))) (-15 -3647 ((-108) |t#1| |t#1|)) (-15 -3539 ((-108))) (-15 -2503 ((-108) |t#1|)) (-15 -2503 ((-108) |t#2|)) (-15 -2549 ((-108))) (-15 -3934 ((-108) |t#1|)) (-15 -3934 ((-108) |t#2|)) (-15 -3345 ((-108))) (-15 -1254 ((-108) |t#1|)) (-15 -1254 ((-108) |t#2|)) (-15 -2641 ((-1174 $))) (-15 -2933 ((-1174 $))) (-15 -1464 ((-108) $)) (-15 -1409 ((-108) $)) (-15 -2255 ((-1174 $) (-1174 $))) (-15 -1272 ((-1174 $) (-1174 $))) (-15 -1546 ((-1174 $) (-1174 $))) (-15 -4179 ((-632 (-385 |t#2|)))) (-15 -3350 ((-632 (-385 |t#2|)))) (-15 -2497 ((-632 (-385 |t#2|)))) (-15 -2548 ((-632 (-385 |t#2|)))) (-15 -2089 ((-2 (|:| |num| (-1174 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2064 ($ (-1174 |t#2|) |t#2|)) (-15 -2355 ((-2 (|:| |num| (-1174 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1414 ($ (-1174 |t#2|) |t#2|)) (-15 -2496 ((-2 (|:| |num| (-632 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1409 ((-108) $ |t#1|)) (-15 -1409 ((-108) $ |t#2|)) (-15 -3376 ($ $ (-1 |t#2| |t#2|))) (-15 -2064 ($ (-1174 |t#2|) |t#2|)) (-15 -1576 ($ $)) (-15 -3406 (|t#1| $ |t#1| |t#1|)) (-15 -1805 ((-3 |t#2| "failed"))) (-15 -2421 ((-3 |t#2| "failed"))) (-15 -2103 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-341)) (-15 -2112 ((-592 (-887 |t#1|)) (-1092))) |%noBranch|) (IF (|has| |t#1| (-346)) (-15 -4146 ((-592 (-592 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) -3254 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-37 #1=(-385 |#2|)) . T) ((-37 $) -3254 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-97) . T) ((-107 #0# #0#) -3254 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3254 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-136))) ((-138) |has| (-385 |#2|) (-138)) ((-566 (-798)) . T) ((-160) . T) ((-567 |#3|) . T) ((-211 #1#) |has| (-385 |#2|) (-341)) ((-213) -3254 (|has| (-385 |#2|) (-327)) (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341)))) ((-223) -3254 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-269) -3254 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-286) -3254 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-341) -3254 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-380) |has| (-385 |#2|) (-327)) ((-346) -3254 (|has| (-385 |#2|) (-346)) (|has| (-385 |#2|) (-327))) ((-327) |has| (-385 |#2|) (-327)) ((-348 #1# |#3|) . T) ((-387 #1# |#3|) . T) ((-355 #1#) . T) ((-389 #1#) . T) ((-429) -3254 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-517) -3254 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-594 #0#) -3254 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-594 #1#) . T) ((-594 $) . T) ((-588 #1#) . T) ((-588 (-525)) |has| (-385 |#2|) (-588 (-525))) ((-660 #0#) -3254 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-660 #1#) . T) ((-660 $) -3254 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-667 #1# |#3|) . T) ((-669) . T) ((-835 (-1092)) -12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092)))) ((-855) -3254 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-968 (-385 (-525))) |has| (-385 |#2|) (-968 (-385 (-525)))) ((-968 #1#) . T) ((-968 (-525)) |has| (-385 |#2|) (-968 (-525))) ((-983 #0#) -3254 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-983 #1#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1068) |has| (-385 |#2|) (-327)) ((-1132) -3254 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1259 (((-108) $) NIL)) (-3098 (((-713)) NIL)) (-2952 (((-845 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-2971 (((-1102 (-856) (-713)) (-525)) NIL (|has| (-845 |#1|) (-346)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2193 (((-108) $ $) NIL)) (-1834 (((-713)) NIL (|has| (-845 |#1|) (-346)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-845 |#1|) "failed") $) NIL)) (-1572 (((-845 |#1|) $) NIL)) (-2064 (($ (-1174 (-845 |#1|))) NIL)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-845 |#1|) (-346)))) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($) NIL (|has| (-845 |#1|) (-346)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-2574 (($) NIL (|has| (-845 |#1|) (-346)))) (-3704 (((-108) $) NIL (|has| (-845 |#1|) (-346)))) (-3625 (($ $ (-713)) NIL (-3254 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346)))) (($ $) NIL (-3254 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-3673 (((-108) $) NIL)) (-2581 (((-856) $) NIL (|has| (-845 |#1|) (-346))) (((-775 (-856)) $) NIL (-3254 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-1396 (((-108) $) NIL)) (-1273 (($) NIL (|has| (-845 |#1|) (-346)))) (-1527 (((-108) $) NIL (|has| (-845 |#1|) (-346)))) (-2382 (((-845 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-3844 (((-3 $ "failed") $) NIL (|has| (-845 |#1|) (-346)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2126 (((-1088 (-845 |#1|)) $) NIL) (((-1088 $) $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-3005 (((-856) $) NIL (|has| (-845 |#1|) (-346)))) (-1283 (((-1088 (-845 |#1|)) $) NIL (|has| (-845 |#1|) (-346)))) (-2577 (((-1088 (-845 |#1|)) $) NIL (|has| (-845 |#1|) (-346))) (((-3 (-1088 (-845 |#1|)) "failed") $ $) NIL (|has| (-845 |#1|) (-346)))) (-2324 (($ $ (-1088 (-845 |#1|))) NIL (|has| (-845 |#1|) (-346)))) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2295 (($) NIL (|has| (-845 |#1|) (-346)) CONST)) (-3555 (($ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-2703 (((-108) $) NIL)) (-2093 (((-1039) $) NIL)) (-2119 (((-892 (-1039))) NIL)) (-3409 (($) NIL (|has| (-845 |#1|) (-346)))) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) NIL (|has| (-845 |#1|) (-346)))) (-2770 (((-396 $) $) NIL)) (-2858 (((-775 (-856))) NIL) (((-856)) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3877 (((-713) $) NIL (|has| (-845 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-3254 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-3705 (((-128)) NIL)) (-3376 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-2343 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-2756 (((-1088 (-845 |#1|))) NIL)) (-2244 (($) NIL (|has| (-845 |#1|) (-346)))) (-2254 (($) NIL (|has| (-845 |#1|) (-346)))) (-2387 (((-1174 (-845 |#1|)) $) NIL) (((-632 (-845 |#1|)) (-1174 $)) NIL)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| (-845 |#1|) (-346)))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-845 |#1|)) NIL)) (-3637 (($ $) NIL (|has| (-845 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3254 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-3917 (((-713)) NIL)) (-3094 (((-1174 $)) NIL) (((-1174 $) (-856)) NIL)) (-3325 (((-108) $ $) NIL)) (-2081 (((-108) $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-3127 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-2022 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL) (($ $ (-845 |#1|)) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-845 |#1|)) NIL) (($ (-845 |#1|) $) NIL)))
-(((-321 |#1| |#2|) (-13 (-307 (-845 |#1|)) (-10 -7 (-15 -2119 ((-892 (-1039)))))) (-856) (-856)) (T -321))
-((-2119 (*1 *2) (-12 (-5 *2 (-892 (-1039))) (-5 *1 (-321 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))))
-(-13 (-307 (-845 |#1|)) (-10 -7 (-15 -2119 ((-892 (-1039))))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 46)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1259 (((-108) $) NIL)) (-3098 (((-713)) NIL)) (-2952 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-2971 (((-1102 (-856) (-713)) (-525)) 43 (|has| |#1| (-346)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2193 (((-108) $ $) NIL)) (-1834 (((-713)) NIL (|has| |#1| (-346)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) 115)) (-1572 ((|#1| $) 86)) (-2064 (($ (-1174 |#1|)) 104)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-346)))) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($) 98 (|has| |#1| (-346)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-2574 (($) 130 (|has| |#1| (-346)))) (-3704 (((-108) $) 49 (|has| |#1| (-346)))) (-3625 (($ $ (-713)) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3673 (((-108) $) NIL)) (-2581 (((-856) $) 47 (|has| |#1| (-346))) (((-775 (-856)) $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1396 (((-108) $) NIL)) (-1273 (($) 132 (|has| |#1| (-346)))) (-1527 (((-108) $) NIL (|has| |#1| (-346)))) (-2382 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-3844 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2126 (((-1088 |#1|) $) 90) (((-1088 $) $ (-856)) NIL (|has| |#1| (-346)))) (-3005 (((-856) $) 140 (|has| |#1| (-346)))) (-1283 (((-1088 |#1|) $) NIL (|has| |#1| (-346)))) (-2577 (((-1088 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1088 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2324 (($ $ (-1088 |#1|)) NIL (|has| |#1| (-346)))) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) 147)) (-2295 (($) NIL (|has| |#1| (-346)) CONST)) (-3555 (($ (-856)) 71 (|has| |#1| (-346)))) (-2703 (((-108) $) 118)) (-2093 (((-1039) $) NIL)) (-2119 (((-892 (-1039))) 44)) (-3409 (($) 128 (|has| |#1| (-346)))) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) 93 (|has| |#1| (-346)))) (-2770 (((-396 $) $) NIL)) (-2858 (((-775 (-856))) 67) (((-856)) 68)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3877 (((-713) $) 131 (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) 125 (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3705 (((-128)) NIL)) (-3376 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2343 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-2756 (((-1088 |#1|)) 96)) (-2244 (($) 129 (|has| |#1| (-346)))) (-2254 (($) 137 (|has| |#1| (-346)))) (-2387 (((-1174 |#1|) $) 59) (((-632 |#1|) (-1174 $)) NIL)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-1217 (((-798) $) 143) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 75)) (-3637 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3917 (((-713)) 139)) (-3094 (((-1174 $)) 117) (((-1174 $) (-856)) 73)) (-3325 (((-108) $ $) NIL)) (-2081 (((-108) $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) 32 T CONST)) (-3359 (($) 19 T CONST)) (-3127 (($ $) 81 (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2022 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3955 (((-108) $ $) 48)) (-4075 (($ $ $) 145) (($ $ |#1|) 146)) (-4061 (($ $) 127) (($ $ $) NIL)) (-4047 (($ $ $) 61)) (** (($ $ (-856)) 149) (($ $ (-713)) 150) (($ $ (-525)) 148)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 77) (($ $ $) 76) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 144)))
-(((-322 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -2119 ((-892 (-1039)))))) (-327) (-1088 |#1|)) (T -322))
-((-2119 (*1 *2) (-12 (-5 *2 (-892 (-1039))) (-5 *1 (-322 *3 *4)) (-4 *3 (-327)) (-14 *4 (-1088 *3)))))
-(-13 (-307 |#1|) (-10 -7 (-15 -2119 ((-892 (-1039))))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1259 (((-108) $) NIL)) (-3098 (((-713)) NIL)) (-2952 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-2971 (((-1102 (-856) (-713)) (-525)) NIL (|has| |#1| (-346)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2193 (((-108) $ $) NIL)) (-1834 (((-713)) NIL (|has| |#1| (-346)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) NIL)) (-1572 ((|#1| $) NIL)) (-2064 (($ (-1174 |#1|)) NIL)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-346)))) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($) NIL (|has| |#1| (-346)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-2574 (($) NIL (|has| |#1| (-346)))) (-3704 (((-108) $) NIL (|has| |#1| (-346)))) (-3625 (($ $ (-713)) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3673 (((-108) $) NIL)) (-2581 (((-856) $) NIL (|has| |#1| (-346))) (((-775 (-856)) $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1396 (((-108) $) NIL)) (-1273 (($) NIL (|has| |#1| (-346)))) (-1527 (((-108) $) NIL (|has| |#1| (-346)))) (-2382 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-3844 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2126 (((-1088 |#1|) $) NIL) (((-1088 $) $ (-856)) NIL (|has| |#1| (-346)))) (-3005 (((-856) $) NIL (|has| |#1| (-346)))) (-1283 (((-1088 |#1|) $) NIL (|has| |#1| (-346)))) (-2577 (((-1088 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1088 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2324 (($ $ (-1088 |#1|)) NIL (|has| |#1| (-346)))) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2295 (($) NIL (|has| |#1| (-346)) CONST)) (-3555 (($ (-856)) NIL (|has| |#1| (-346)))) (-2703 (((-108) $) NIL)) (-2093 (((-1039) $) NIL)) (-2119 (((-892 (-1039))) NIL)) (-3409 (($) NIL (|has| |#1| (-346)))) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) NIL (|has| |#1| (-346)))) (-2770 (((-396 $) $) NIL)) (-2858 (((-775 (-856))) NIL) (((-856)) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3877 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3705 (((-128)) NIL)) (-3376 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2343 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-2756 (((-1088 |#1|)) NIL)) (-2244 (($) NIL (|has| |#1| (-346)))) (-2254 (($) NIL (|has| |#1| (-346)))) (-2387 (((-1174 |#1|) $) NIL) (((-632 |#1|) (-1174 $)) NIL)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) NIL)) (-3637 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3917 (((-713)) NIL)) (-3094 (((-1174 $)) NIL) (((-1174 $) (-856)) NIL)) (-3325 (((-108) $ $) NIL)) (-2081 (((-108) $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-3127 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2022 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-323 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -2119 ((-892 (-1039)))))) (-327) (-856)) (T -323))
-((-2119 (*1 *2) (-12 (-5 *2 (-892 (-1039))) (-5 *1 (-323 *3 *4)) (-4 *3 (-327)) (-14 *4 (-856)))))
-(-13 (-307 |#1|) (-10 -7 (-15 -2119 ((-892 (-1039))))))
-((-3125 (((-713) (-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039)))))) 42)) (-3579 (((-892 (-1039)) (-1088 |#1|)) 85)) (-3495 (((-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039))))) (-1088 |#1|)) 78)) (-3808 (((-632 |#1|) (-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039)))))) 86)) (-4173 (((-3 (-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039))))) "failed") (-856)) 13)) (-2198 (((-3 (-1088 |#1|) (-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039)))))) (-856)) 18)))
-(((-324 |#1|) (-10 -7 (-15 -3579 ((-892 (-1039)) (-1088 |#1|))) (-15 -3495 ((-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039))))) (-1088 |#1|))) (-15 -3808 ((-632 |#1|) (-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039))))))) (-15 -3125 ((-713) (-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039))))))) (-15 -4173 ((-3 (-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039))))) "failed") (-856))) (-15 -2198 ((-3 (-1088 |#1|) (-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039)))))) (-856)))) (-327)) (T -324))
-((-2198 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-3 (-1088 *4) (-1174 (-592 (-2 (|:| -3284 *4) (|:| -3555 (-1039))))))) (-5 *1 (-324 *4)) (-4 *4 (-327)))) (-4173 (*1 *2 *3) (|partial| -12 (-5 *3 (-856)) (-5 *2 (-1174 (-592 (-2 (|:| -3284 *4) (|:| -3555 (-1039)))))) (-5 *1 (-324 *4)) (-4 *4 (-327)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-1174 (-592 (-2 (|:| -3284 *4) (|:| -3555 (-1039)))))) (-4 *4 (-327)) (-5 *2 (-713)) (-5 *1 (-324 *4)))) (-3808 (*1 *2 *3) (-12 (-5 *3 (-1174 (-592 (-2 (|:| -3284 *4) (|:| -3555 (-1039)))))) (-4 *4 (-327)) (-5 *2 (-632 *4)) (-5 *1 (-324 *4)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327)) (-5 *2 (-1174 (-592 (-2 (|:| -3284 *4) (|:| -3555 (-1039)))))) (-5 *1 (-324 *4)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327)) (-5 *2 (-892 (-1039))) (-5 *1 (-324 *4)))))
-(-10 -7 (-15 -3579 ((-892 (-1039)) (-1088 |#1|))) (-15 -3495 ((-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039))))) (-1088 |#1|))) (-15 -3808 ((-632 |#1|) (-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039))))))) (-15 -3125 ((-713) (-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039))))))) (-15 -4173 ((-3 (-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039))))) "failed") (-856))) (-15 -2198 ((-3 (-1088 |#1|) (-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039)))))) (-856))))
-((-1217 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
-(((-325 |#1| |#2| |#3|) (-10 -7 (-15 -1217 (|#3| |#1|)) (-15 -1217 (|#1| |#3|))) (-307 |#2|) (-327) (-307 |#2|)) (T -325))
-((-1217 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *2 *4 *3)) (-4 *3 (-307 *4)))) (-1217 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *3 *4 *2)) (-4 *3 (-307 *4)))))
-(-10 -7 (-15 -1217 (|#3| |#1|)) (-15 -1217 (|#1| |#3|)))
-((-3704 (((-108) $) 52)) (-2581 (((-775 (-856)) $) 21) (((-856) $) 53)) (-3844 (((-3 $ "failed") $) 16)) (-2295 (($) 9)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 94)) (-3877 (((-3 (-713) "failed") $ $) 72) (((-713) $) 61)) (-3376 (($ $ (-713)) NIL) (($ $) 8)) (-2244 (($) 46)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) 34)) (-3637 (((-3 $ "failed") $) 40) (($ $) 39)))
-(((-326 |#1|) (-10 -8 (-15 -2581 ((-856) |#1|)) (-15 -3877 ((-713) |#1|)) (-15 -3704 ((-108) |#1|)) (-15 -2244 (|#1|)) (-15 -1940 ((-3 (-1174 |#1|) "failed") (-632 |#1|))) (-15 -3637 (|#1| |#1|)) (-15 -3376 (|#1| |#1|)) (-15 -3376 (|#1| |#1| (-713))) (-15 -2295 (|#1|)) (-15 -3844 ((-3 |#1| "failed") |#1|)) (-15 -3877 ((-3 (-713) "failed") |#1| |#1|)) (-15 -2581 ((-775 (-856)) |#1|)) (-15 -3637 ((-3 |#1| "failed") |#1|)) (-15 -1883 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|)))) (-327)) (T -326))
-NIL
-(-10 -8 (-15 -2581 ((-856) |#1|)) (-15 -3877 ((-713) |#1|)) (-15 -3704 ((-108) |#1|)) (-15 -2244 (|#1|)) (-15 -1940 ((-3 (-1174 |#1|) "failed") (-632 |#1|))) (-15 -3637 (|#1| |#1|)) (-15 -3376 (|#1| |#1|)) (-15 -3376 (|#1| |#1| (-713))) (-15 -2295 (|#1|)) (-15 -3844 ((-3 |#1| "failed") |#1|)) (-15 -3877 ((-3 (-713) "failed") |#1| |#1|)) (-15 -2581 ((-775 (-856)) |#1|)) (-15 -3637 ((-3 |#1| "failed") |#1|)) (-15 -1883 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-2971 (((-1102 (-856) (-713)) (-525)) 93)) (-1578 (((-3 $ "failed") $ $) 19)) (-1286 (($ $) 73)) (-2669 (((-396 $) $) 72)) (-2193 (((-108) $ $) 59)) (-1834 (((-713)) 103)) (-2169 (($) 17 T CONST)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-1747 (($ $ $) 55)) (-3457 (((-3 $ "failed") $) 34)) (-2502 (($) 106)) (-1733 (($ $ $) 56)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 51)) (-2574 (($) 91)) (-3704 (((-108) $) 90)) (-3625 (($ $) 79) (($ $ (-713)) 78)) (-3673 (((-108) $) 71)) (-2581 (((-775 (-856)) $) 81) (((-856) $) 88)) (-1396 (((-108) $) 31)) (-3844 (((-3 $ "failed") $) 102)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-3005 (((-856) $) 105)) (-2556 (($ $ $) 46) (($ (-592 $)) 45)) (-2619 (((-1075) $) 9)) (-2997 (($ $) 70)) (-2295 (($) 101 T CONST)) (-3555 (($ (-856)) 104)) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2589 (($ $ $) 48) (($ (-592 $)) 47)) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) 94)) (-2770 (((-396 $) $) 74)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1715 (((-3 $ "failed") $ $) 42)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-3684 (((-713) $) 58)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 57)) (-3877 (((-3 (-713) "failed") $ $) 80) (((-713) $) 89)) (-3376 (($ $ (-713)) 99) (($ $) 97)) (-2244 (($) 92)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) 95)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-3637 (((-3 $ "failed") $) 82) (($ $) 96)) (-3917 (((-713)) 29)) (-3325 (((-108) $ $) 39)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $ (-713)) 100) (($ $) 98)) (-3955 (((-108) $ $) 6)) (-4075 (($ $ $) 64)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
+((-1635 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-713)))) (-2173 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-713)))) (-1940 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-1531 (*1 *2 *3 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-2881 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-1461 (*1 *2 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-1461 (*1 *2 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 (-385 *3))) (-5 *2 (-108)))) (-1910 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-1428 (*1 *2 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-1428 (*1 *2 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 (-385 *3))) (-5 *2 (-108)))) (-1746 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-1712 (*1 *2 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-1712 (*1 *2 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 (-385 *3))) (-5 *2 (-108)))) (-3295 (*1 *2) (-12 (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5)))) (-1218 (*1 *2) (-12 (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5)))) (-2570 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-1991 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-3924 (*1 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))))) (-3946 (*1 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))))) (-1630 (*1 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))))) (-2050 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-1779 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-1419 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-1896 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-2 (|:| |num| (-1174 *4)) (|:| |den| *4))))) (-3652 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-2 (|:| |num| (-1174 *4)) (|:| |den| *4))))) (-2045 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1150 *4)) (-4 *4 (-1132)) (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1150 (-385 *3))))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5))) (-5 *2 (-2 (|:| |num| (-632 *5)) (|:| |den| *5))))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 (-385 *3))) (-5 *2 (-108)))) (-2702 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))))) (-2580 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1150 *4)) (-4 *4 (-1132)) (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1150 (-385 *3))))) (-3201 (*1 *1 *1) (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1150 *2)) (-4 *4 (-1150 (-385 *3))))) (-3431 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1150 *2)) (-4 *4 (-1150 (-385 *3))))) (-2981 (*1 *2) (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1132)) (-4 *4 (-1150 (-385 *2))) (-4 *2 (-1150 *3)))) (-3051 (*1 *2) (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1132)) (-4 *4 (-1150 (-385 *2))) (-4 *2 (-1150 *3)))) (-2951 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1150 *4)) (-4 *4 (-1132)) (-4 *6 (-1150 (-385 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-320 *4 *5 *6)))) (-3024 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5))) (-4 *4 (-341)) (-5 *2 (-592 (-887 *4))))) (-2902 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))) (-4 *3 (-346)) (-5 *2 (-592 (-592 *3))))))
+(-13 (-667 (-385 |t#2|) |t#3|) (-10 -8 (-15 -1635 ((-713))) (-15 -2173 ((-713))) (-15 -1940 ((-108))) (-15 -1531 ((-108) |t#1| |t#1|)) (-15 -2881 ((-108))) (-15 -1461 ((-108) |t#1|)) (-15 -1461 ((-108) |t#2|)) (-15 -1910 ((-108))) (-15 -1428 ((-108) |t#1|)) (-15 -1428 ((-108) |t#2|)) (-15 -1746 ((-108))) (-15 -1712 ((-108) |t#1|)) (-15 -1712 ((-108) |t#2|)) (-15 -3295 ((-1174 $))) (-15 -1218 ((-1174 $))) (-15 -2570 ((-108) $)) (-15 -1991 ((-108) $)) (-15 -3924 ((-1174 $) (-1174 $))) (-15 -3946 ((-1174 $) (-1174 $))) (-15 -1630 ((-1174 $) (-1174 $))) (-15 -2050 ((-632 (-385 |t#2|)))) (-15 -1779 ((-632 (-385 |t#2|)))) (-15 -1419 ((-632 (-385 |t#2|)))) (-15 -1896 ((-632 (-385 |t#2|)))) (-15 -2823 ((-2 (|:| |num| (-1174 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2580 ($ (-1174 |t#2|) |t#2|)) (-15 -3652 ((-2 (|:| |num| (-1174 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2045 ($ (-1174 |t#2|) |t#2|)) (-15 -1410 ((-2 (|:| |num| (-632 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1991 ((-108) $ |t#1|)) (-15 -1991 ((-108) $ |t#2|)) (-15 -2702 ($ $ (-1 |t#2| |t#2|))) (-15 -2580 ($ (-1174 |t#2|) |t#2|)) (-15 -3201 ($ $)) (-15 -3431 (|t#1| $ |t#1| |t#1|)) (-15 -2981 ((-3 |t#2| "failed"))) (-15 -3051 ((-3 |t#2| "failed"))) (-15 -2951 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-341)) (-15 -3024 ((-592 (-887 |t#1|)) (-1092))) |%noBranch|) (IF (|has| |t#1| (-346)) (-15 -2902 ((-592 (-592 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) -2067 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-37 #1=(-385 |#2|)) . T) ((-37 $) -2067 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-97) . T) ((-107 #0# #0#) -2067 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -2067 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-136))) ((-138) |has| (-385 |#2|) (-138)) ((-566 (-798)) . T) ((-160) . T) ((-567 |#3|) . T) ((-211 #1#) |has| (-385 |#2|) (-341)) ((-213) -2067 (|has| (-385 |#2|) (-327)) (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341)))) ((-223) -2067 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-269) -2067 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-286) -2067 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-341) -2067 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-380) |has| (-385 |#2|) (-327)) ((-346) -2067 (|has| (-385 |#2|) (-346)) (|has| (-385 |#2|) (-327))) ((-327) |has| (-385 |#2|) (-327)) ((-348 #1# |#3|) . T) ((-387 #1# |#3|) . T) ((-355 #1#) . T) ((-389 #1#) . T) ((-429) -2067 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-517) -2067 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-594 #0#) -2067 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-594 #1#) . T) ((-594 $) . T) ((-588 #1#) . T) ((-588 (-525)) |has| (-385 |#2|) (-588 (-525))) ((-660 #0#) -2067 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-660 #1#) . T) ((-660 $) -2067 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-667 #1# |#3|) . T) ((-669) . T) ((-835 (-1092)) -12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092)))) ((-855) -2067 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-968 (-385 (-525))) |has| (-385 |#2|) (-968 (-385 (-525)))) ((-968 #1#) . T) ((-968 (-525)) |has| (-385 |#2|) (-968 (-525))) ((-983 #0#) -2067 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-983 #1#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1068) |has| (-385 |#2|) (-327)) ((-1132) -2067 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3214 (((-108) $) NIL)) (-2132 (((-713)) NIL)) (-2924 (((-845 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-3395 (((-1102 (-856) (-713)) (-525)) NIL (|has| (-845 |#1|) (-346)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-1507 (((-108) $ $) NIL)) (-1613 (((-713)) NIL (|has| (-845 |#1|) (-346)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-845 |#1|) "failed") $) NIL)) (-4105 (((-845 |#1|) $) NIL)) (-2580 (($ (-1174 (-845 |#1|))) NIL)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-845 |#1|) (-346)))) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($) NIL (|has| (-845 |#1|) (-346)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-3932 (($) NIL (|has| (-845 |#1|) (-346)))) (-3920 (((-108) $) NIL (|has| (-845 |#1|) (-346)))) (-1339 (($ $ (-713)) NIL (-2067 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346)))) (($ $) NIL (-2067 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-1798 (((-108) $) NIL)) (-4000 (((-856) $) NIL (|has| (-845 |#1|) (-346))) (((-775 (-856)) $) NIL (-2067 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-2278 (((-108) $) NIL)) (-3957 (($) NIL (|has| (-845 |#1|) (-346)))) (-1890 (((-108) $) NIL (|has| (-845 |#1|) (-346)))) (-2704 (((-845 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-2878 (((-3 $ "failed") $) NIL (|has| (-845 |#1|) (-346)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2021 (((-1088 (-845 |#1|)) $) NIL) (((-1088 $) $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-3685 (((-856) $) NIL (|has| (-845 |#1|) (-346)))) (-4162 (((-1088 (-845 |#1|)) $) NIL (|has| (-845 |#1|) (-346)))) (-3955 (((-1088 (-845 |#1|)) $) NIL (|has| (-845 |#1|) (-346))) (((-3 (-1088 (-845 |#1|)) "failed") $ $) NIL (|has| (-845 |#1|) (-346)))) (-3323 (($ $ (-1088 (-845 |#1|))) NIL (|has| (-845 |#1|) (-346)))) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-2948 (($) NIL (|has| (-845 |#1|) (-346)) CONST)) (-1722 (($ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-2700 (((-108) $) NIL)) (-3993 (((-1039) $) NIL)) (-1969 (((-892 (-1039))) NIL)) (-3817 (($) NIL (|has| (-845 |#1|) (-346)))) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) NIL (|has| (-845 |#1|) (-346)))) (-4201 (((-396 $) $) NIL)) (-1690 (((-775 (-856))) NIL) (((-856)) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2043 (((-713) $) NIL (|has| (-845 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-2067 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-3933 (((-128)) NIL)) (-2702 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-3529 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-2013 (((-1088 (-845 |#1|))) NIL)) (-3823 (($) NIL (|has| (-845 |#1|) (-346)))) (-3911 (($) NIL (|has| (-845 |#1|) (-346)))) (-2754 (((-1174 (-845 |#1|)) $) NIL) (((-632 (-845 |#1|)) (-1174 $)) NIL)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| (-845 |#1|) (-346)))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-845 |#1|)) NIL)) (-1463 (($ $) NIL (|has| (-845 |#1|) (-346))) (((-3 $ "failed") $) NIL (-2067 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-2448 (((-713)) NIL)) (-2103 (((-1174 $)) NIL) (((-1174 $) (-856)) NIL)) (-1571 (((-108) $ $) NIL)) (-2738 (((-108) $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2363 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-2401 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ $) NIL) (($ $ (-845 |#1|)) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-845 |#1|)) NIL) (($ (-845 |#1|) $) NIL)))
+(((-321 |#1| |#2|) (-13 (-307 (-845 |#1|)) (-10 -7 (-15 -1969 ((-892 (-1039)))))) (-856) (-856)) (T -321))
+((-1969 (*1 *2) (-12 (-5 *2 (-892 (-1039))) (-5 *1 (-321 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))))
+(-13 (-307 (-845 |#1|)) (-10 -7 (-15 -1969 ((-892 (-1039))))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 46)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3214 (((-108) $) NIL)) (-2132 (((-713)) NIL)) (-2924 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-3395 (((-1102 (-856) (-713)) (-525)) 43 (|has| |#1| (-346)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-1507 (((-108) $ $) NIL)) (-1613 (((-713)) NIL (|has| |#1| (-346)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) 115)) (-4105 ((|#1| $) 86)) (-2580 (($ (-1174 |#1|)) 104)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-346)))) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($) 98 (|has| |#1| (-346)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-3932 (($) 130 (|has| |#1| (-346)))) (-3920 (((-108) $) 49 (|has| |#1| (-346)))) (-1339 (($ $ (-713)) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1798 (((-108) $) NIL)) (-4000 (((-856) $) 47 (|has| |#1| (-346))) (((-775 (-856)) $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2278 (((-108) $) NIL)) (-3957 (($) 132 (|has| |#1| (-346)))) (-1890 (((-108) $) NIL (|has| |#1| (-346)))) (-2704 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-2878 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2021 (((-1088 |#1|) $) 90) (((-1088 $) $ (-856)) NIL (|has| |#1| (-346)))) (-3685 (((-856) $) 140 (|has| |#1| (-346)))) (-4162 (((-1088 |#1|) $) NIL (|has| |#1| (-346)))) (-3955 (((-1088 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1088 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-3323 (($ $ (-1088 |#1|)) NIL (|has| |#1| (-346)))) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) 147)) (-2948 (($) NIL (|has| |#1| (-346)) CONST)) (-1722 (($ (-856)) 71 (|has| |#1| (-346)))) (-2700 (((-108) $) 118)) (-3993 (((-1039) $) NIL)) (-1969 (((-892 (-1039))) 44)) (-3817 (($) 128 (|has| |#1| (-346)))) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) 93 (|has| |#1| (-346)))) (-4201 (((-396 $) $) NIL)) (-1690 (((-775 (-856))) 67) (((-856)) 68)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2043 (((-713) $) 131 (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) 125 (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3933 (((-128)) NIL)) (-2702 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3529 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-2013 (((-1088 |#1|)) 96)) (-3823 (($) 129 (|has| |#1| (-346)))) (-3911 (($) 137 (|has| |#1| (-346)))) (-2754 (((-1174 |#1|) $) 59) (((-632 |#1|) (-1174 $)) NIL)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-4100 (((-798) $) 143) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 75)) (-1463 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2448 (((-713)) 139)) (-2103 (((-1174 $)) 117) (((-1174 $) (-856)) 73)) (-1571 (((-108) $ $) NIL)) (-2738 (((-108) $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) 32 T CONST)) (-3375 (($) 19 T CONST)) (-2363 (($ $) 81 (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2401 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2775 (((-108) $ $) 48)) (-2880 (($ $ $) 145) (($ $ |#1|) 146)) (-2871 (($ $) 127) (($ $ $) NIL)) (-2860 (($ $ $) 61)) (** (($ $ (-856)) 149) (($ $ (-713)) 150) (($ $ (-525)) 148)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 77) (($ $ $) 76) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 144)))
+(((-322 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -1969 ((-892 (-1039)))))) (-327) (-1088 |#1|)) (T -322))
+((-1969 (*1 *2) (-12 (-5 *2 (-892 (-1039))) (-5 *1 (-322 *3 *4)) (-4 *3 (-327)) (-14 *4 (-1088 *3)))))
+(-13 (-307 |#1|) (-10 -7 (-15 -1969 ((-892 (-1039))))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3214 (((-108) $) NIL)) (-2132 (((-713)) NIL)) (-2924 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-3395 (((-1102 (-856) (-713)) (-525)) NIL (|has| |#1| (-346)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-1507 (((-108) $ $) NIL)) (-1613 (((-713)) NIL (|has| |#1| (-346)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) NIL)) (-4105 ((|#1| $) NIL)) (-2580 (($ (-1174 |#1|)) NIL)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-346)))) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($) NIL (|has| |#1| (-346)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-3932 (($) NIL (|has| |#1| (-346)))) (-3920 (((-108) $) NIL (|has| |#1| (-346)))) (-1339 (($ $ (-713)) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1798 (((-108) $) NIL)) (-4000 (((-856) $) NIL (|has| |#1| (-346))) (((-775 (-856)) $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2278 (((-108) $) NIL)) (-3957 (($) NIL (|has| |#1| (-346)))) (-1890 (((-108) $) NIL (|has| |#1| (-346)))) (-2704 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-2878 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2021 (((-1088 |#1|) $) NIL) (((-1088 $) $ (-856)) NIL (|has| |#1| (-346)))) (-3685 (((-856) $) NIL (|has| |#1| (-346)))) (-4162 (((-1088 |#1|) $) NIL (|has| |#1| (-346)))) (-3955 (((-1088 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1088 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-3323 (($ $ (-1088 |#1|)) NIL (|has| |#1| (-346)))) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-2948 (($) NIL (|has| |#1| (-346)) CONST)) (-1722 (($ (-856)) NIL (|has| |#1| (-346)))) (-2700 (((-108) $) NIL)) (-3993 (((-1039) $) NIL)) (-1969 (((-892 (-1039))) NIL)) (-3817 (($) NIL (|has| |#1| (-346)))) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) NIL (|has| |#1| (-346)))) (-4201 (((-396 $) $) NIL)) (-1690 (((-775 (-856))) NIL) (((-856)) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2043 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3933 (((-128)) NIL)) (-2702 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3529 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-2013 (((-1088 |#1|)) NIL)) (-3823 (($) NIL (|has| |#1| (-346)))) (-3911 (($) NIL (|has| |#1| (-346)))) (-2754 (((-1174 |#1|) $) NIL) (((-632 |#1|) (-1174 $)) NIL)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) NIL)) (-1463 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2448 (((-713)) NIL)) (-2103 (((-1174 $)) NIL) (((-1174 $) (-856)) NIL)) (-1571 (((-108) $ $) NIL)) (-2738 (((-108) $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2363 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2401 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-323 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -1969 ((-892 (-1039)))))) (-327) (-856)) (T -323))
+((-1969 (*1 *2) (-12 (-5 *2 (-892 (-1039))) (-5 *1 (-323 *3 *4)) (-4 *3 (-327)) (-14 *4 (-856)))))
+(-13 (-307 |#1|) (-10 -7 (-15 -1969 ((-892 (-1039))))))
+((-2333 (((-713) (-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039)))))) 42)) (-2101 (((-892 (-1039)) (-1088 |#1|)) 85)) (-3672 (((-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039))))) (-1088 |#1|)) 78)) (-3723 (((-632 |#1|) (-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039)))))) 86)) (-3140 (((-3 (-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039))))) "failed") (-856)) 13)) (-1538 (((-3 (-1088 |#1|) (-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039)))))) (-856)) 18)))
+(((-324 |#1|) (-10 -7 (-15 -2101 ((-892 (-1039)) (-1088 |#1|))) (-15 -3672 ((-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039))))) (-1088 |#1|))) (-15 -3723 ((-632 |#1|) (-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039))))))) (-15 -2333 ((-713) (-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039))))))) (-15 -3140 ((-3 (-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039))))) "failed") (-856))) (-15 -1538 ((-3 (-1088 |#1|) (-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039)))))) (-856)))) (-327)) (T -324))
+((-1538 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-3 (-1088 *4) (-1174 (-592 (-2 (|:| -2219 *4) (|:| -1722 (-1039))))))) (-5 *1 (-324 *4)) (-4 *4 (-327)))) (-3140 (*1 *2 *3) (|partial| -12 (-5 *3 (-856)) (-5 *2 (-1174 (-592 (-2 (|:| -2219 *4) (|:| -1722 (-1039)))))) (-5 *1 (-324 *4)) (-4 *4 (-327)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-1174 (-592 (-2 (|:| -2219 *4) (|:| -1722 (-1039)))))) (-4 *4 (-327)) (-5 *2 (-713)) (-5 *1 (-324 *4)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-1174 (-592 (-2 (|:| -2219 *4) (|:| -1722 (-1039)))))) (-4 *4 (-327)) (-5 *2 (-632 *4)) (-5 *1 (-324 *4)))) (-3672 (*1 *2 *3) (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327)) (-5 *2 (-1174 (-592 (-2 (|:| -2219 *4) (|:| -1722 (-1039)))))) (-5 *1 (-324 *4)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327)) (-5 *2 (-892 (-1039))) (-5 *1 (-324 *4)))))
+(-10 -7 (-15 -2101 ((-892 (-1039)) (-1088 |#1|))) (-15 -3672 ((-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039))))) (-1088 |#1|))) (-15 -3723 ((-632 |#1|) (-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039))))))) (-15 -2333 ((-713) (-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039))))))) (-15 -3140 ((-3 (-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039))))) "failed") (-856))) (-15 -1538 ((-3 (-1088 |#1|) (-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039)))))) (-856))))
+((-4100 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
+(((-325 |#1| |#2| |#3|) (-10 -7 (-15 -4100 (|#3| |#1|)) (-15 -4100 (|#1| |#3|))) (-307 |#2|) (-327) (-307 |#2|)) (T -325))
+((-4100 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *2 *4 *3)) (-4 *3 (-307 *4)))) (-4100 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *3 *4 *2)) (-4 *3 (-307 *4)))))
+(-10 -7 (-15 -4100 (|#3| |#1|)) (-15 -4100 (|#1| |#3|)))
+((-3920 (((-108) $) 52)) (-4000 (((-775 (-856)) $) 21) (((-856) $) 53)) (-2878 (((-3 $ "failed") $) 16)) (-2948 (($) 9)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 94)) (-2043 (((-3 (-713) "failed") $ $) 72) (((-713) $) 61)) (-2702 (($ $ (-713)) NIL) (($ $) 8)) (-3823 (($) 46)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) 34)) (-1463 (((-3 $ "failed") $) 40) (($ $) 39)))
+(((-326 |#1|) (-10 -8 (-15 -4000 ((-856) |#1|)) (-15 -2043 ((-713) |#1|)) (-15 -3920 ((-108) |#1|)) (-15 -3823 (|#1|)) (-15 -3739 ((-3 (-1174 |#1|) "failed") (-632 |#1|))) (-15 -1463 (|#1| |#1|)) (-15 -2702 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-713))) (-15 -2948 (|#1|)) (-15 -2878 ((-3 |#1| "failed") |#1|)) (-15 -2043 ((-3 (-713) "failed") |#1| |#1|)) (-15 -4000 ((-775 (-856)) |#1|)) (-15 -1463 ((-3 |#1| "failed") |#1|)) (-15 -1379 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|)))) (-327)) (T -326))
+NIL
+(-10 -8 (-15 -4000 ((-856) |#1|)) (-15 -2043 ((-713) |#1|)) (-15 -3920 ((-108) |#1|)) (-15 -3823 (|#1|)) (-15 -3739 ((-3 (-1174 |#1|) "failed") (-632 |#1|))) (-15 -1463 (|#1| |#1|)) (-15 -2702 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-713))) (-15 -2948 (|#1|)) (-15 -2878 ((-3 |#1| "failed") |#1|)) (-15 -2043 ((-3 (-713) "failed") |#1| |#1|)) (-15 -4000 ((-775 (-856)) |#1|)) (-15 -1463 ((-3 |#1| "failed") |#1|)) (-15 -1379 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-3395 (((-1102 (-856) (-713)) (-525)) 93)) (-3222 (((-3 $ "failed") $ $) 19)) (-4195 (($ $) 73)) (-3586 (((-396 $) $) 72)) (-1507 (((-108) $ $) 59)) (-1613 (((-713)) 103)) (-2475 (($) 17 T CONST)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-1356 (($ $ $) 55)) (-3300 (((-3 $ "failed") $) 34)) (-1903 (($) 106)) (-1332 (($ $ $) 56)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 51)) (-3932 (($) 91)) (-3920 (((-108) $) 90)) (-1339 (($ $) 79) (($ $ (-713)) 78)) (-1798 (((-108) $) 71)) (-4000 (((-775 (-856)) $) 81) (((-856) $) 88)) (-2278 (((-108) $) 31)) (-2878 (((-3 $ "failed") $) 102)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-3685 (((-856) $) 105)) (-2739 (($ $ $) 46) (($ (-592 $)) 45)) (-1289 (((-1075) $) 9)) (-1387 (($ $) 70)) (-2948 (($) 101 T CONST)) (-1722 (($ (-856)) 104)) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2772 (($ $ $) 48) (($ (-592 $)) 47)) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) 94)) (-4201 (((-396 $) $) 74)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1311 (((-3 $ "failed") $ $) 42)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1927 (((-713) $) 58)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 57)) (-2043 (((-3 (-713) "failed") $ $) 80) (((-713) $) 89)) (-2702 (($ $ (-713)) 99) (($ $) 97)) (-3823 (($) 92)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) 95)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-1463 (((-3 $ "failed") $) 82) (($ $) 96)) (-2448 (((-713)) 29)) (-1571 (((-108) $ $) 39)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $ (-713)) 100) (($ $) 98)) (-2775 (((-108) $ $) 6)) (-2880 (($ $ $) 64)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
(((-327) (-131)) (T -327))
-((-3637 (*1 *1 *1) (-4 *1 (-327))) (-1940 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-327)) (-5 *2 (-1174 *1)))) (-3387 (*1 *2) (-12 (-4 *1 (-327)) (-5 *2 (-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))))) (-2971 (*1 *2 *3) (-12 (-4 *1 (-327)) (-5 *3 (-525)) (-5 *2 (-1102 (-856) (-713))))) (-2244 (*1 *1) (-4 *1 (-327))) (-2574 (*1 *1) (-4 *1 (-327))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-108)))) (-3877 (*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-713)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-856)))) (-3057 (*1 *2) (-12 (-4 *1 (-327)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-380) (-346) (-1068) (-213) (-10 -8 (-15 -3637 ($ $)) (-15 -1940 ((-3 (-1174 $) "failed") (-632 $))) (-15 -3387 ((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525)))))) (-15 -2971 ((-1102 (-856) (-713)) (-525))) (-15 -2244 ($)) (-15 -2574 ($)) (-15 -3704 ((-108) $)) (-15 -3877 ((-713) $)) (-15 -2581 ((-856) $)) (-15 -3057 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+((-1463 (*1 *1 *1) (-4 *1 (-327))) (-3739 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-327)) (-5 *2 (-1174 *1)))) (-3901 (*1 *2) (-12 (-4 *1 (-327)) (-5 *2 (-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))))) (-3395 (*1 *2 *3) (-12 (-4 *1 (-327)) (-5 *3 (-525)) (-5 *2 (-1102 (-856) (-713))))) (-3823 (*1 *1) (-4 *1 (-327))) (-3932 (*1 *1) (-4 *1 (-327))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-108)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-713)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-856)))) (-2928 (*1 *2) (-12 (-4 *1 (-327)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-380) (-346) (-1068) (-213) (-10 -8 (-15 -1463 ($ $)) (-15 -3739 ((-3 (-1174 $) "failed") (-632 $))) (-15 -3901 ((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525)))))) (-15 -3395 ((-1102 (-856) (-713)) (-525))) (-15 -3823 ($)) (-15 -3932 ($)) (-15 -3920 ((-108) $)) (-15 -2043 ((-713) $)) (-15 -4000 ((-856) $)) (-15 -2928 ((-3 "prime" "polynomial" "normal" "cyclic")))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-136) . T) ((-566 (-798)) . T) ((-160) . T) ((-213) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-380) . T) ((-346) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-855) . T) ((-983 #0#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1068) . T) ((-1132) . T))
-((-2868 (((-2 (|:| -3094 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|) 53)) (-2641 (((-2 (|:| -3094 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))) 51)))
-(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -2641 ((-2 (|:| -3094 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))))) (-15 -2868 ((-2 (|:| -3094 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|))) (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $)))) (-1150 |#1|) (-387 |#1| |#2|)) (T -328))
-((-2868 (*1 *2 *3) (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $))))) (-4 *4 (-1150 *3)) (-5 *2 (-2 (|:| -3094 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-2641 (*1 *2) (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $))))) (-4 *4 (-1150 *3)) (-5 *2 (-2 (|:| -3094 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
-(-10 -7 (-15 -2641 ((-2 (|:| -3094 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))))) (-15 -2868 ((-2 (|:| -3094 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1259 (((-108) $) NIL)) (-3098 (((-713)) NIL)) (-2952 (((-845 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-2971 (((-1102 (-856) (-713)) (-525)) NIL (|has| (-845 |#1|) (-346)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-3125 (((-713)) NIL)) (-2193 (((-108) $ $) NIL)) (-1834 (((-713)) NIL (|has| (-845 |#1|) (-346)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-845 |#1|) "failed") $) NIL)) (-1572 (((-845 |#1|) $) NIL)) (-2064 (($ (-1174 (-845 |#1|))) NIL)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-845 |#1|) (-346)))) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($) NIL (|has| (-845 |#1|) (-346)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-2574 (($) NIL (|has| (-845 |#1|) (-346)))) (-3704 (((-108) $) NIL (|has| (-845 |#1|) (-346)))) (-3625 (($ $ (-713)) NIL (-3254 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346)))) (($ $) NIL (-3254 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-3673 (((-108) $) NIL)) (-2581 (((-856) $) NIL (|has| (-845 |#1|) (-346))) (((-775 (-856)) $) NIL (-3254 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-1396 (((-108) $) NIL)) (-1273 (($) NIL (|has| (-845 |#1|) (-346)))) (-1527 (((-108) $) NIL (|has| (-845 |#1|) (-346)))) (-2382 (((-845 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-3844 (((-3 $ "failed") $) NIL (|has| (-845 |#1|) (-346)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2126 (((-1088 (-845 |#1|)) $) NIL) (((-1088 $) $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-3005 (((-856) $) NIL (|has| (-845 |#1|) (-346)))) (-1283 (((-1088 (-845 |#1|)) $) NIL (|has| (-845 |#1|) (-346)))) (-2577 (((-1088 (-845 |#1|)) $) NIL (|has| (-845 |#1|) (-346))) (((-3 (-1088 (-845 |#1|)) "failed") $ $) NIL (|has| (-845 |#1|) (-346)))) (-2324 (($ $ (-1088 (-845 |#1|))) NIL (|has| (-845 |#1|) (-346)))) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2295 (($) NIL (|has| (-845 |#1|) (-346)) CONST)) (-3555 (($ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-2703 (((-108) $) NIL)) (-2093 (((-1039) $) NIL)) (-1311 (((-1174 (-592 (-2 (|:| -3284 (-845 |#1|)) (|:| -3555 (-1039)))))) NIL)) (-3421 (((-632 (-845 |#1|))) NIL)) (-3409 (($) NIL (|has| (-845 |#1|) (-346)))) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) NIL (|has| (-845 |#1|) (-346)))) (-2770 (((-396 $) $) NIL)) (-2858 (((-775 (-856))) NIL) (((-856)) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3877 (((-713) $) NIL (|has| (-845 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-3254 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-3705 (((-128)) NIL)) (-3376 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-2343 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-2756 (((-1088 (-845 |#1|))) NIL)) (-2244 (($) NIL (|has| (-845 |#1|) (-346)))) (-2254 (($) NIL (|has| (-845 |#1|) (-346)))) (-2387 (((-1174 (-845 |#1|)) $) NIL) (((-632 (-845 |#1|)) (-1174 $)) NIL)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| (-845 |#1|) (-346)))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-845 |#1|)) NIL)) (-3637 (($ $) NIL (|has| (-845 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3254 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-3917 (((-713)) NIL)) (-3094 (((-1174 $)) NIL) (((-1174 $) (-856)) NIL)) (-3325 (((-108) $ $) NIL)) (-2081 (((-108) $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-3127 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-2022 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL) (($ $ (-845 |#1|)) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-845 |#1|)) NIL) (($ (-845 |#1|) $) NIL)))
-(((-329 |#1| |#2|) (-13 (-307 (-845 |#1|)) (-10 -7 (-15 -1311 ((-1174 (-592 (-2 (|:| -3284 (-845 |#1|)) (|:| -3555 (-1039))))))) (-15 -3421 ((-632 (-845 |#1|)))) (-15 -3125 ((-713))))) (-856) (-856)) (T -329))
-((-1311 (*1 *2) (-12 (-5 *2 (-1174 (-592 (-2 (|:| -3284 (-845 *3)) (|:| -3555 (-1039)))))) (-5 *1 (-329 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))) (-3421 (*1 *2) (-12 (-5 *2 (-632 (-845 *3))) (-5 *1 (-329 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))) (-3125 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-329 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))))
-(-13 (-307 (-845 |#1|)) (-10 -7 (-15 -1311 ((-1174 (-592 (-2 (|:| -3284 (-845 |#1|)) (|:| -3555 (-1039))))))) (-15 -3421 ((-632 (-845 |#1|)))) (-15 -3125 ((-713)))))
-((-4236 (((-108) $ $) 62)) (-1209 (((-108) $) 75)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1259 (((-108) $) NIL)) (-3098 (((-713)) NIL)) (-2952 ((|#1| $) 93) (($ $ (-856)) 91 (|has| |#1| (-346)))) (-2971 (((-1102 (-856) (-713)) (-525)) 149 (|has| |#1| (-346)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-3125 (((-713)) 90)) (-2193 (((-108) $ $) NIL)) (-1834 (((-713)) 163 (|has| |#1| (-346)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) 113)) (-1572 ((|#1| $) 92)) (-2064 (($ (-1174 |#1|)) 59)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) 189 (|has| |#1| (-346)))) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($) 159 (|has| |#1| (-346)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-2574 (($) 150 (|has| |#1| (-346)))) (-3704 (((-108) $) NIL (|has| |#1| (-346)))) (-3625 (($ $ (-713)) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3673 (((-108) $) NIL)) (-2581 (((-856) $) NIL (|has| |#1| (-346))) (((-775 (-856)) $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1396 (((-108) $) NIL)) (-1273 (($) 99 (|has| |#1| (-346)))) (-1527 (((-108) $) 176 (|has| |#1| (-346)))) (-2382 ((|#1| $) 95) (($ $ (-856)) 94 (|has| |#1| (-346)))) (-3844 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2126 (((-1088 |#1|) $) 190) (((-1088 $) $ (-856)) NIL (|has| |#1| (-346)))) (-3005 (((-856) $) 135 (|has| |#1| (-346)))) (-1283 (((-1088 |#1|) $) 74 (|has| |#1| (-346)))) (-2577 (((-1088 |#1|) $) 71 (|has| |#1| (-346))) (((-3 (-1088 |#1|) "failed") $ $) 83 (|has| |#1| (-346)))) (-2324 (($ $ (-1088 |#1|)) 70 (|has| |#1| (-346)))) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) 193)) (-2295 (($) NIL (|has| |#1| (-346)) CONST)) (-3555 (($ (-856)) 138 (|has| |#1| (-346)))) (-2703 (((-108) $) 109)) (-2093 (((-1039) $) NIL)) (-1311 (((-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039)))))) 84)) (-3421 (((-632 |#1|)) 88)) (-3409 (($) 97 (|has| |#1| (-346)))) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) 151 (|has| |#1| (-346)))) (-2770 (((-396 $) $) NIL)) (-2858 (((-775 (-856))) NIL) (((-856)) 152)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3877 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3705 (((-128)) NIL)) (-3376 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2343 (((-775 (-856)) $) NIL) (((-856) $) 63)) (-2756 (((-1088 |#1|)) 153)) (-2244 (($) 134 (|has| |#1| (-346)))) (-2254 (($) NIL (|has| |#1| (-346)))) (-2387 (((-1174 |#1|) $) 107) (((-632 |#1|) (-1174 $)) NIL)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-1217 (((-798) $) 125) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 58)) (-3637 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3917 (((-713)) 157)) (-3094 (((-1174 $)) 173) (((-1174 $) (-856)) 102)) (-3325 (((-108) $ $) NIL)) (-2081 (((-108) $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) 30 T CONST)) (-3359 (($) 22 T CONST)) (-3127 (($ $) 108 (|has| |#1| (-346))) (($ $ (-713)) 100 (|has| |#1| (-346)))) (-2022 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3955 (((-108) $ $) 184)) (-4075 (($ $ $) 105) (($ $ |#1|) 106)) (-4061 (($ $) 178) (($ $ $) 182)) (-4047 (($ $ $) 180)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 139)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 187) (($ $ $) 143) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 104)))
-(((-330 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -1311 ((-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039))))))) (-15 -3421 ((-632 |#1|))) (-15 -3125 ((-713))))) (-327) (-3 (-1088 |#1|) (-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039))))))) (T -330))
-((-1311 (*1 *2) (-12 (-5 *2 (-1174 (-592 (-2 (|:| -3284 *3) (|:| -3555 (-1039)))))) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1088 *3) *2)))) (-3421 (*1 *2) (-12 (-5 *2 (-632 *3)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1088 *3) (-1174 (-592 (-2 (|:| -3284 *3) (|:| -3555 (-1039))))))))) (-3125 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1088 *3) (-1174 (-592 (-2 (|:| -3284 *3) (|:| -3555 (-1039))))))))))
-(-13 (-307 |#1|) (-10 -7 (-15 -1311 ((-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039))))))) (-15 -3421 ((-632 |#1|))) (-15 -3125 ((-713)))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1259 (((-108) $) NIL)) (-3098 (((-713)) NIL)) (-2952 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-2971 (((-1102 (-856) (-713)) (-525)) NIL (|has| |#1| (-346)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-3125 (((-713)) NIL)) (-2193 (((-108) $ $) NIL)) (-1834 (((-713)) NIL (|has| |#1| (-346)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) NIL)) (-1572 ((|#1| $) NIL)) (-2064 (($ (-1174 |#1|)) NIL)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-346)))) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($) NIL (|has| |#1| (-346)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-2574 (($) NIL (|has| |#1| (-346)))) (-3704 (((-108) $) NIL (|has| |#1| (-346)))) (-3625 (($ $ (-713)) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3673 (((-108) $) NIL)) (-2581 (((-856) $) NIL (|has| |#1| (-346))) (((-775 (-856)) $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1396 (((-108) $) NIL)) (-1273 (($) NIL (|has| |#1| (-346)))) (-1527 (((-108) $) NIL (|has| |#1| (-346)))) (-2382 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-3844 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2126 (((-1088 |#1|) $) NIL) (((-1088 $) $ (-856)) NIL (|has| |#1| (-346)))) (-3005 (((-856) $) NIL (|has| |#1| (-346)))) (-1283 (((-1088 |#1|) $) NIL (|has| |#1| (-346)))) (-2577 (((-1088 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1088 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2324 (($ $ (-1088 |#1|)) NIL (|has| |#1| (-346)))) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2295 (($) NIL (|has| |#1| (-346)) CONST)) (-3555 (($ (-856)) NIL (|has| |#1| (-346)))) (-2703 (((-108) $) NIL)) (-2093 (((-1039) $) NIL)) (-1311 (((-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039)))))) NIL)) (-3421 (((-632 |#1|)) NIL)) (-3409 (($) NIL (|has| |#1| (-346)))) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) NIL (|has| |#1| (-346)))) (-2770 (((-396 $) $) NIL)) (-2858 (((-775 (-856))) NIL) (((-856)) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3877 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3705 (((-128)) NIL)) (-3376 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2343 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-2756 (((-1088 |#1|)) NIL)) (-2244 (($) NIL (|has| |#1| (-346)))) (-2254 (($) NIL (|has| |#1| (-346)))) (-2387 (((-1174 |#1|) $) NIL) (((-632 |#1|) (-1174 $)) NIL)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) NIL)) (-3637 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3917 (((-713)) NIL)) (-3094 (((-1174 $)) NIL) (((-1174 $) (-856)) NIL)) (-3325 (((-108) $ $) NIL)) (-2081 (((-108) $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-3127 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2022 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-331 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -1311 ((-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039))))))) (-15 -3421 ((-632 |#1|))) (-15 -3125 ((-713))))) (-327) (-856)) (T -331))
-((-1311 (*1 *2) (-12 (-5 *2 (-1174 (-592 (-2 (|:| -3284 *3) (|:| -3555 (-1039)))))) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-856)))) (-3421 (*1 *2) (-12 (-5 *2 (-632 *3)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-856)))) (-3125 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-856)))))
-(-13 (-307 |#1|) (-10 -7 (-15 -1311 ((-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039))))))) (-15 -3421 ((-632 |#1|))) (-15 -3125 ((-713)))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1259 (((-108) $) NIL)) (-3098 (((-713)) NIL)) (-2952 (((-845 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-2971 (((-1102 (-856) (-713)) (-525)) NIL (|has| (-845 |#1|) (-346)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2193 (((-108) $ $) NIL)) (-1834 (((-713)) NIL (|has| (-845 |#1|) (-346)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-845 |#1|) "failed") $) NIL)) (-1572 (((-845 |#1|) $) NIL)) (-2064 (($ (-1174 (-845 |#1|))) NIL)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-845 |#1|) (-346)))) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($) NIL (|has| (-845 |#1|) (-346)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-2574 (($) NIL (|has| (-845 |#1|) (-346)))) (-3704 (((-108) $) NIL (|has| (-845 |#1|) (-346)))) (-3625 (($ $ (-713)) NIL (-3254 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346)))) (($ $) NIL (-3254 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-3673 (((-108) $) NIL)) (-2581 (((-856) $) NIL (|has| (-845 |#1|) (-346))) (((-775 (-856)) $) NIL (-3254 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-1396 (((-108) $) NIL)) (-1273 (($) NIL (|has| (-845 |#1|) (-346)))) (-1527 (((-108) $) NIL (|has| (-845 |#1|) (-346)))) (-2382 (((-845 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-3844 (((-3 $ "failed") $) NIL (|has| (-845 |#1|) (-346)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2126 (((-1088 (-845 |#1|)) $) NIL) (((-1088 $) $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-3005 (((-856) $) NIL (|has| (-845 |#1|) (-346)))) (-1283 (((-1088 (-845 |#1|)) $) NIL (|has| (-845 |#1|) (-346)))) (-2577 (((-1088 (-845 |#1|)) $) NIL (|has| (-845 |#1|) (-346))) (((-3 (-1088 (-845 |#1|)) "failed") $ $) NIL (|has| (-845 |#1|) (-346)))) (-2324 (($ $ (-1088 (-845 |#1|))) NIL (|has| (-845 |#1|) (-346)))) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2295 (($) NIL (|has| (-845 |#1|) (-346)) CONST)) (-3555 (($ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-2703 (((-108) $) NIL)) (-2093 (((-1039) $) NIL)) (-3409 (($) NIL (|has| (-845 |#1|) (-346)))) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) NIL (|has| (-845 |#1|) (-346)))) (-2770 (((-396 $) $) NIL)) (-2858 (((-775 (-856))) NIL) (((-856)) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3877 (((-713) $) NIL (|has| (-845 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-3254 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-3705 (((-128)) NIL)) (-3376 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-2343 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-2756 (((-1088 (-845 |#1|))) NIL)) (-2244 (($) NIL (|has| (-845 |#1|) (-346)))) (-2254 (($) NIL (|has| (-845 |#1|) (-346)))) (-2387 (((-1174 (-845 |#1|)) $) NIL) (((-632 (-845 |#1|)) (-1174 $)) NIL)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| (-845 |#1|) (-346)))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-845 |#1|)) NIL)) (-3637 (($ $) NIL (|has| (-845 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3254 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-3917 (((-713)) NIL)) (-3094 (((-1174 $)) NIL) (((-1174 $) (-856)) NIL)) (-3325 (((-108) $ $) NIL)) (-2081 (((-108) $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-3127 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-2022 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL) (($ $ (-845 |#1|)) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-845 |#1|)) NIL) (($ (-845 |#1|) $) NIL)))
+((-1794 (((-2 (|:| -2103 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|) 53)) (-3295 (((-2 (|:| -2103 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))) 51)))
+(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -3295 ((-2 (|:| -2103 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))))) (-15 -1794 ((-2 (|:| -2103 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|))) (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $)))) (-1150 |#1|) (-387 |#1| |#2|)) (T -328))
+((-1794 (*1 *2 *3) (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $))))) (-4 *4 (-1150 *3)) (-5 *2 (-2 (|:| -2103 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-3295 (*1 *2) (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $))))) (-4 *4 (-1150 *3)) (-5 *2 (-2 (|:| -2103 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
+(-10 -7 (-15 -3295 ((-2 (|:| -2103 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))))) (-15 -1794 ((-2 (|:| -2103 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3214 (((-108) $) NIL)) (-2132 (((-713)) NIL)) (-2924 (((-845 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-3395 (((-1102 (-856) (-713)) (-525)) NIL (|has| (-845 |#1|) (-346)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-2333 (((-713)) NIL)) (-1507 (((-108) $ $) NIL)) (-1613 (((-713)) NIL (|has| (-845 |#1|) (-346)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-845 |#1|) "failed") $) NIL)) (-4105 (((-845 |#1|) $) NIL)) (-2580 (($ (-1174 (-845 |#1|))) NIL)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-845 |#1|) (-346)))) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($) NIL (|has| (-845 |#1|) (-346)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-3932 (($) NIL (|has| (-845 |#1|) (-346)))) (-3920 (((-108) $) NIL (|has| (-845 |#1|) (-346)))) (-1339 (($ $ (-713)) NIL (-2067 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346)))) (($ $) NIL (-2067 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-1798 (((-108) $) NIL)) (-4000 (((-856) $) NIL (|has| (-845 |#1|) (-346))) (((-775 (-856)) $) NIL (-2067 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-2278 (((-108) $) NIL)) (-3957 (($) NIL (|has| (-845 |#1|) (-346)))) (-1890 (((-108) $) NIL (|has| (-845 |#1|) (-346)))) (-2704 (((-845 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-2878 (((-3 $ "failed") $) NIL (|has| (-845 |#1|) (-346)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2021 (((-1088 (-845 |#1|)) $) NIL) (((-1088 $) $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-3685 (((-856) $) NIL (|has| (-845 |#1|) (-346)))) (-4162 (((-1088 (-845 |#1|)) $) NIL (|has| (-845 |#1|) (-346)))) (-3955 (((-1088 (-845 |#1|)) $) NIL (|has| (-845 |#1|) (-346))) (((-3 (-1088 (-845 |#1|)) "failed") $ $) NIL (|has| (-845 |#1|) (-346)))) (-3323 (($ $ (-1088 (-845 |#1|))) NIL (|has| (-845 |#1|) (-346)))) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-2948 (($) NIL (|has| (-845 |#1|) (-346)) CONST)) (-1722 (($ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-2700 (((-108) $) NIL)) (-3993 (((-1039) $) NIL)) (-3296 (((-1174 (-592 (-2 (|:| -2219 (-845 |#1|)) (|:| -1722 (-1039)))))) NIL)) (-4198 (((-632 (-845 |#1|))) NIL)) (-3817 (($) NIL (|has| (-845 |#1|) (-346)))) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) NIL (|has| (-845 |#1|) (-346)))) (-4201 (((-396 $) $) NIL)) (-1690 (((-775 (-856))) NIL) (((-856)) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2043 (((-713) $) NIL (|has| (-845 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-2067 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-3933 (((-128)) NIL)) (-2702 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-3529 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-2013 (((-1088 (-845 |#1|))) NIL)) (-3823 (($) NIL (|has| (-845 |#1|) (-346)))) (-3911 (($) NIL (|has| (-845 |#1|) (-346)))) (-2754 (((-1174 (-845 |#1|)) $) NIL) (((-632 (-845 |#1|)) (-1174 $)) NIL)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| (-845 |#1|) (-346)))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-845 |#1|)) NIL)) (-1463 (($ $) NIL (|has| (-845 |#1|) (-346))) (((-3 $ "failed") $) NIL (-2067 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-2448 (((-713)) NIL)) (-2103 (((-1174 $)) NIL) (((-1174 $) (-856)) NIL)) (-1571 (((-108) $ $) NIL)) (-2738 (((-108) $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2363 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-2401 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ $) NIL) (($ $ (-845 |#1|)) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-845 |#1|)) NIL) (($ (-845 |#1|) $) NIL)))
+(((-329 |#1| |#2|) (-13 (-307 (-845 |#1|)) (-10 -7 (-15 -3296 ((-1174 (-592 (-2 (|:| -2219 (-845 |#1|)) (|:| -1722 (-1039))))))) (-15 -4198 ((-632 (-845 |#1|)))) (-15 -2333 ((-713))))) (-856) (-856)) (T -329))
+((-3296 (*1 *2) (-12 (-5 *2 (-1174 (-592 (-2 (|:| -2219 (-845 *3)) (|:| -1722 (-1039)))))) (-5 *1 (-329 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))) (-4198 (*1 *2) (-12 (-5 *2 (-632 (-845 *3))) (-5 *1 (-329 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))) (-2333 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-329 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))))
+(-13 (-307 (-845 |#1|)) (-10 -7 (-15 -3296 ((-1174 (-592 (-2 (|:| -2219 (-845 |#1|)) (|:| -1722 (-1039))))))) (-15 -4198 ((-632 (-845 |#1|)))) (-15 -2333 ((-713)))))
+((-4087 (((-108) $ $) 62)) (-2414 (((-108) $) 75)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3214 (((-108) $) NIL)) (-2132 (((-713)) NIL)) (-2924 ((|#1| $) 93) (($ $ (-856)) 91 (|has| |#1| (-346)))) (-3395 (((-1102 (-856) (-713)) (-525)) 149 (|has| |#1| (-346)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-2333 (((-713)) 90)) (-1507 (((-108) $ $) NIL)) (-1613 (((-713)) 163 (|has| |#1| (-346)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) 113)) (-4105 ((|#1| $) 92)) (-2580 (($ (-1174 |#1|)) 59)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) 189 (|has| |#1| (-346)))) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($) 159 (|has| |#1| (-346)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-3932 (($) 150 (|has| |#1| (-346)))) (-3920 (((-108) $) NIL (|has| |#1| (-346)))) (-1339 (($ $ (-713)) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1798 (((-108) $) NIL)) (-4000 (((-856) $) NIL (|has| |#1| (-346))) (((-775 (-856)) $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2278 (((-108) $) NIL)) (-3957 (($) 99 (|has| |#1| (-346)))) (-1890 (((-108) $) 176 (|has| |#1| (-346)))) (-2704 ((|#1| $) 95) (($ $ (-856)) 94 (|has| |#1| (-346)))) (-2878 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2021 (((-1088 |#1|) $) 190) (((-1088 $) $ (-856)) NIL (|has| |#1| (-346)))) (-3685 (((-856) $) 135 (|has| |#1| (-346)))) (-4162 (((-1088 |#1|) $) 74 (|has| |#1| (-346)))) (-3955 (((-1088 |#1|) $) 71 (|has| |#1| (-346))) (((-3 (-1088 |#1|) "failed") $ $) 83 (|has| |#1| (-346)))) (-3323 (($ $ (-1088 |#1|)) 70 (|has| |#1| (-346)))) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) 193)) (-2948 (($) NIL (|has| |#1| (-346)) CONST)) (-1722 (($ (-856)) 138 (|has| |#1| (-346)))) (-2700 (((-108) $) 109)) (-3993 (((-1039) $) NIL)) (-3296 (((-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039)))))) 84)) (-4198 (((-632 |#1|)) 88)) (-3817 (($) 97 (|has| |#1| (-346)))) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) 151 (|has| |#1| (-346)))) (-4201 (((-396 $) $) NIL)) (-1690 (((-775 (-856))) NIL) (((-856)) 152)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2043 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3933 (((-128)) NIL)) (-2702 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3529 (((-775 (-856)) $) NIL) (((-856) $) 63)) (-2013 (((-1088 |#1|)) 153)) (-3823 (($) 134 (|has| |#1| (-346)))) (-3911 (($) NIL (|has| |#1| (-346)))) (-2754 (((-1174 |#1|) $) 107) (((-632 |#1|) (-1174 $)) NIL)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-4100 (((-798) $) 125) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 58)) (-1463 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2448 (((-713)) 157)) (-2103 (((-1174 $)) 173) (((-1174 $) (-856)) 102)) (-1571 (((-108) $ $) NIL)) (-2738 (((-108) $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) 30 T CONST)) (-3375 (($) 22 T CONST)) (-2363 (($ $) 108 (|has| |#1| (-346))) (($ $ (-713)) 100 (|has| |#1| (-346)))) (-2401 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2775 (((-108) $ $) 184)) (-2880 (($ $ $) 105) (($ $ |#1|) 106)) (-2871 (($ $) 178) (($ $ $) 182)) (-2860 (($ $ $) 180)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 139)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 187) (($ $ $) 143) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 104)))
+(((-330 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -3296 ((-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039))))))) (-15 -4198 ((-632 |#1|))) (-15 -2333 ((-713))))) (-327) (-3 (-1088 |#1|) (-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039))))))) (T -330))
+((-3296 (*1 *2) (-12 (-5 *2 (-1174 (-592 (-2 (|:| -2219 *3) (|:| -1722 (-1039)))))) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1088 *3) *2)))) (-4198 (*1 *2) (-12 (-5 *2 (-632 *3)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1088 *3) (-1174 (-592 (-2 (|:| -2219 *3) (|:| -1722 (-1039))))))))) (-2333 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1088 *3) (-1174 (-592 (-2 (|:| -2219 *3) (|:| -1722 (-1039))))))))))
+(-13 (-307 |#1|) (-10 -7 (-15 -3296 ((-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039))))))) (-15 -4198 ((-632 |#1|))) (-15 -2333 ((-713)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3214 (((-108) $) NIL)) (-2132 (((-713)) NIL)) (-2924 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-3395 (((-1102 (-856) (-713)) (-525)) NIL (|has| |#1| (-346)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-2333 (((-713)) NIL)) (-1507 (((-108) $ $) NIL)) (-1613 (((-713)) NIL (|has| |#1| (-346)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) NIL)) (-4105 ((|#1| $) NIL)) (-2580 (($ (-1174 |#1|)) NIL)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-346)))) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($) NIL (|has| |#1| (-346)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-3932 (($) NIL (|has| |#1| (-346)))) (-3920 (((-108) $) NIL (|has| |#1| (-346)))) (-1339 (($ $ (-713)) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1798 (((-108) $) NIL)) (-4000 (((-856) $) NIL (|has| |#1| (-346))) (((-775 (-856)) $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2278 (((-108) $) NIL)) (-3957 (($) NIL (|has| |#1| (-346)))) (-1890 (((-108) $) NIL (|has| |#1| (-346)))) (-2704 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-2878 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2021 (((-1088 |#1|) $) NIL) (((-1088 $) $ (-856)) NIL (|has| |#1| (-346)))) (-3685 (((-856) $) NIL (|has| |#1| (-346)))) (-4162 (((-1088 |#1|) $) NIL (|has| |#1| (-346)))) (-3955 (((-1088 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1088 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-3323 (($ $ (-1088 |#1|)) NIL (|has| |#1| (-346)))) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-2948 (($) NIL (|has| |#1| (-346)) CONST)) (-1722 (($ (-856)) NIL (|has| |#1| (-346)))) (-2700 (((-108) $) NIL)) (-3993 (((-1039) $) NIL)) (-3296 (((-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039)))))) NIL)) (-4198 (((-632 |#1|)) NIL)) (-3817 (($) NIL (|has| |#1| (-346)))) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) NIL (|has| |#1| (-346)))) (-4201 (((-396 $) $) NIL)) (-1690 (((-775 (-856))) NIL) (((-856)) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2043 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3933 (((-128)) NIL)) (-2702 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3529 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-2013 (((-1088 |#1|)) NIL)) (-3823 (($) NIL (|has| |#1| (-346)))) (-3911 (($) NIL (|has| |#1| (-346)))) (-2754 (((-1174 |#1|) $) NIL) (((-632 |#1|) (-1174 $)) NIL)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) NIL)) (-1463 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2448 (((-713)) NIL)) (-2103 (((-1174 $)) NIL) (((-1174 $) (-856)) NIL)) (-1571 (((-108) $ $) NIL)) (-2738 (((-108) $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2363 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2401 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-331 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -3296 ((-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039))))))) (-15 -4198 ((-632 |#1|))) (-15 -2333 ((-713))))) (-327) (-856)) (T -331))
+((-3296 (*1 *2) (-12 (-5 *2 (-1174 (-592 (-2 (|:| -2219 *3) (|:| -1722 (-1039)))))) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-856)))) (-4198 (*1 *2) (-12 (-5 *2 (-632 *3)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-856)))) (-2333 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-856)))))
+(-13 (-307 |#1|) (-10 -7 (-15 -3296 ((-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039))))))) (-15 -4198 ((-632 |#1|))) (-15 -2333 ((-713)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3214 (((-108) $) NIL)) (-2132 (((-713)) NIL)) (-2924 (((-845 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-3395 (((-1102 (-856) (-713)) (-525)) NIL (|has| (-845 |#1|) (-346)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-1507 (((-108) $ $) NIL)) (-1613 (((-713)) NIL (|has| (-845 |#1|) (-346)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-845 |#1|) "failed") $) NIL)) (-4105 (((-845 |#1|) $) NIL)) (-2580 (($ (-1174 (-845 |#1|))) NIL)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-845 |#1|) (-346)))) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($) NIL (|has| (-845 |#1|) (-346)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-3932 (($) NIL (|has| (-845 |#1|) (-346)))) (-3920 (((-108) $) NIL (|has| (-845 |#1|) (-346)))) (-1339 (($ $ (-713)) NIL (-2067 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346)))) (($ $) NIL (-2067 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-1798 (((-108) $) NIL)) (-4000 (((-856) $) NIL (|has| (-845 |#1|) (-346))) (((-775 (-856)) $) NIL (-2067 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-2278 (((-108) $) NIL)) (-3957 (($) NIL (|has| (-845 |#1|) (-346)))) (-1890 (((-108) $) NIL (|has| (-845 |#1|) (-346)))) (-2704 (((-845 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-2878 (((-3 $ "failed") $) NIL (|has| (-845 |#1|) (-346)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2021 (((-1088 (-845 |#1|)) $) NIL) (((-1088 $) $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-3685 (((-856) $) NIL (|has| (-845 |#1|) (-346)))) (-4162 (((-1088 (-845 |#1|)) $) NIL (|has| (-845 |#1|) (-346)))) (-3955 (((-1088 (-845 |#1|)) $) NIL (|has| (-845 |#1|) (-346))) (((-3 (-1088 (-845 |#1|)) "failed") $ $) NIL (|has| (-845 |#1|) (-346)))) (-3323 (($ $ (-1088 (-845 |#1|))) NIL (|has| (-845 |#1|) (-346)))) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-2948 (($) NIL (|has| (-845 |#1|) (-346)) CONST)) (-1722 (($ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-2700 (((-108) $) NIL)) (-3993 (((-1039) $) NIL)) (-3817 (($) NIL (|has| (-845 |#1|) (-346)))) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) NIL (|has| (-845 |#1|) (-346)))) (-4201 (((-396 $) $) NIL)) (-1690 (((-775 (-856))) NIL) (((-856)) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2043 (((-713) $) NIL (|has| (-845 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-2067 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-3933 (((-128)) NIL)) (-2702 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-3529 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-2013 (((-1088 (-845 |#1|))) NIL)) (-3823 (($) NIL (|has| (-845 |#1|) (-346)))) (-3911 (($) NIL (|has| (-845 |#1|) (-346)))) (-2754 (((-1174 (-845 |#1|)) $) NIL) (((-632 (-845 |#1|)) (-1174 $)) NIL)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| (-845 |#1|) (-346)))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-845 |#1|)) NIL)) (-1463 (($ $) NIL (|has| (-845 |#1|) (-346))) (((-3 $ "failed") $) NIL (-2067 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-2448 (((-713)) NIL)) (-2103 (((-1174 $)) NIL) (((-1174 $) (-856)) NIL)) (-1571 (((-108) $ $) NIL)) (-2738 (((-108) $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2363 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-2401 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ $) NIL) (($ $ (-845 |#1|)) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-845 |#1|)) NIL) (($ (-845 |#1|) $) NIL)))
(((-332 |#1| |#2|) (-307 (-845 |#1|)) (-856) (-856)) (T -332))
NIL
(-307 (-845 |#1|))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1259 (((-108) $) NIL)) (-3098 (((-713)) NIL)) (-2952 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-2971 (((-1102 (-856) (-713)) (-525)) 120 (|has| |#1| (-346)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2193 (((-108) $ $) NIL)) (-1834 (((-713)) 140 (|has| |#1| (-346)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) 93)) (-1572 ((|#1| $) 90)) (-2064 (($ (-1174 |#1|)) 85)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-346)))) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($) 82 (|has| |#1| (-346)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-2574 (($) 42 (|has| |#1| (-346)))) (-3704 (((-108) $) NIL (|has| |#1| (-346)))) (-3625 (($ $ (-713)) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3673 (((-108) $) NIL)) (-2581 (((-856) $) NIL (|has| |#1| (-346))) (((-775 (-856)) $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1396 (((-108) $) NIL)) (-1273 (($) 121 (|has| |#1| (-346)))) (-1527 (((-108) $) 74 (|has| |#1| (-346)))) (-2382 ((|#1| $) 39) (($ $ (-856)) 43 (|has| |#1| (-346)))) (-3844 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2126 (((-1088 |#1|) $) 65) (((-1088 $) $ (-856)) NIL (|has| |#1| (-346)))) (-3005 (((-856) $) 97 (|has| |#1| (-346)))) (-1283 (((-1088 |#1|) $) NIL (|has| |#1| (-346)))) (-2577 (((-1088 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1088 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2324 (($ $ (-1088 |#1|)) NIL (|has| |#1| (-346)))) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2295 (($) NIL (|has| |#1| (-346)) CONST)) (-3555 (($ (-856)) 95 (|has| |#1| (-346)))) (-2703 (((-108) $) 142)) (-2093 (((-1039) $) NIL)) (-3409 (($) 36 (|has| |#1| (-346)))) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) 115 (|has| |#1| (-346)))) (-2770 (((-396 $) $) NIL)) (-2858 (((-775 (-856))) NIL) (((-856)) 139)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3877 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3705 (((-128)) NIL)) (-3376 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2343 (((-775 (-856)) $) NIL) (((-856) $) 59)) (-2756 (((-1088 |#1|)) 88)) (-2244 (($) 126 (|has| |#1| (-346)))) (-2254 (($) NIL (|has| |#1| (-346)))) (-2387 (((-1174 |#1|) $) 53) (((-632 |#1|) (-1174 $)) NIL)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-1217 (((-798) $) 138) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 87)) (-3637 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3917 (((-713)) 144)) (-3094 (((-1174 $)) 109) (((-1174 $) (-856)) 49)) (-3325 (((-108) $ $) NIL)) (-2081 (((-108) $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) 111 T CONST)) (-3359 (($) 32 T CONST)) (-3127 (($ $) 68 (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2022 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3955 (((-108) $ $) 107)) (-4075 (($ $ $) 99) (($ $ |#1|) 100)) (-4061 (($ $) 80) (($ $ $) 105)) (-4047 (($ $ $) 103)) (** (($ $ (-856)) NIL) (($ $ (-713)) 44) (($ $ (-525)) 130)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 78) (($ $ $) 56) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3214 (((-108) $) NIL)) (-2132 (((-713)) NIL)) (-2924 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-3395 (((-1102 (-856) (-713)) (-525)) 120 (|has| |#1| (-346)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-1507 (((-108) $ $) NIL)) (-1613 (((-713)) 140 (|has| |#1| (-346)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) 93)) (-4105 ((|#1| $) 90)) (-2580 (($ (-1174 |#1|)) 85)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-346)))) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($) 82 (|has| |#1| (-346)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-3932 (($) 42 (|has| |#1| (-346)))) (-3920 (((-108) $) NIL (|has| |#1| (-346)))) (-1339 (($ $ (-713)) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1798 (((-108) $) NIL)) (-4000 (((-856) $) NIL (|has| |#1| (-346))) (((-775 (-856)) $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2278 (((-108) $) NIL)) (-3957 (($) 121 (|has| |#1| (-346)))) (-1890 (((-108) $) 74 (|has| |#1| (-346)))) (-2704 ((|#1| $) 39) (($ $ (-856)) 43 (|has| |#1| (-346)))) (-2878 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2021 (((-1088 |#1|) $) 65) (((-1088 $) $ (-856)) NIL (|has| |#1| (-346)))) (-3685 (((-856) $) 97 (|has| |#1| (-346)))) (-4162 (((-1088 |#1|) $) NIL (|has| |#1| (-346)))) (-3955 (((-1088 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1088 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-3323 (($ $ (-1088 |#1|)) NIL (|has| |#1| (-346)))) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-2948 (($) NIL (|has| |#1| (-346)) CONST)) (-1722 (($ (-856)) 95 (|has| |#1| (-346)))) (-2700 (((-108) $) 142)) (-3993 (((-1039) $) NIL)) (-3817 (($) 36 (|has| |#1| (-346)))) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) 115 (|has| |#1| (-346)))) (-4201 (((-396 $) $) NIL)) (-1690 (((-775 (-856))) NIL) (((-856)) 139)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2043 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3933 (((-128)) NIL)) (-2702 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3529 (((-775 (-856)) $) NIL) (((-856) $) 59)) (-2013 (((-1088 |#1|)) 88)) (-3823 (($) 126 (|has| |#1| (-346)))) (-3911 (($) NIL (|has| |#1| (-346)))) (-2754 (((-1174 |#1|) $) 53) (((-632 |#1|) (-1174 $)) NIL)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-4100 (((-798) $) 138) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 87)) (-1463 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2448 (((-713)) 144)) (-2103 (((-1174 $)) 109) (((-1174 $) (-856)) 49)) (-1571 (((-108) $ $) NIL)) (-2738 (((-108) $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) 111 T CONST)) (-3375 (($) 32 T CONST)) (-2363 (($ $) 68 (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2401 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2775 (((-108) $ $) 107)) (-2880 (($ $ $) 99) (($ $ |#1|) 100)) (-2871 (($ $) 80) (($ $ $) 105)) (-2860 (($ $ $) 103)) (** (($ $ (-856)) NIL) (($ $ (-713)) 44) (($ $ (-525)) 130)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 78) (($ $ $) 56) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
(((-333 |#1| |#2|) (-307 |#1|) (-327) (-1088 |#1|)) (T -333))
NIL
(-307 |#1|)
-((-4156 ((|#1| (-1088 |#2|)) 52)))
-(((-334 |#1| |#2|) (-10 -7 (-15 -4156 (|#1| (-1088 |#2|)))) (-13 (-380) (-10 -7 (-15 -1217 (|#1| |#2|)) (-15 -3005 ((-856) |#1|)) (-15 -3094 ((-1174 |#1|) (-856))) (-15 -3127 (|#1| |#1|)))) (-327)) (T -334))
-((-4156 (*1 *2 *3) (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327)) (-4 *2 (-13 (-380) (-10 -7 (-15 -1217 (*2 *4)) (-15 -3005 ((-856) *2)) (-15 -3094 ((-1174 *2) (-856))) (-15 -3127 (*2 *2))))) (-5 *1 (-334 *2 *4)))))
-(-10 -7 (-15 -4156 (|#1| (-1088 |#2|))))
-((-2425 (((-892 (-1088 |#1|)) (-1088 |#1|)) 36)) (-2502 (((-1088 |#1|) (-856) (-856)) 113) (((-1088 |#1|) (-856)) 112)) (-3704 (((-108) (-1088 |#1|)) 84)) (-2362 (((-856) (-856)) 71)) (-1743 (((-856) (-856)) 74)) (-3006 (((-856) (-856)) 69)) (-1527 (((-108) (-1088 |#1|)) 88)) (-2373 (((-3 (-1088 |#1|) "failed") (-1088 |#1|)) 101)) (-2850 (((-3 (-1088 |#1|) "failed") (-1088 |#1|)) 104)) (-3775 (((-3 (-1088 |#1|) "failed") (-1088 |#1|)) 103)) (-4026 (((-3 (-1088 |#1|) "failed") (-1088 |#1|)) 102)) (-3234 (((-3 (-1088 |#1|) "failed") (-1088 |#1|)) 98)) (-3480 (((-1088 |#1|) (-1088 |#1|)) 62)) (-2957 (((-1088 |#1|) (-856)) 107)) (-1570 (((-1088 |#1|) (-856)) 110)) (-1532 (((-1088 |#1|) (-856)) 109)) (-3771 (((-1088 |#1|) (-856)) 108)) (-2701 (((-1088 |#1|) (-856)) 105)))
-(((-335 |#1|) (-10 -7 (-15 -3704 ((-108) (-1088 |#1|))) (-15 -1527 ((-108) (-1088 |#1|))) (-15 -3006 ((-856) (-856))) (-15 -2362 ((-856) (-856))) (-15 -1743 ((-856) (-856))) (-15 -2701 ((-1088 |#1|) (-856))) (-15 -2957 ((-1088 |#1|) (-856))) (-15 -3771 ((-1088 |#1|) (-856))) (-15 -1532 ((-1088 |#1|) (-856))) (-15 -1570 ((-1088 |#1|) (-856))) (-15 -3234 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -2373 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -4026 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -3775 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -2850 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -2502 ((-1088 |#1|) (-856))) (-15 -2502 ((-1088 |#1|) (-856) (-856))) (-15 -3480 ((-1088 |#1|) (-1088 |#1|))) (-15 -2425 ((-892 (-1088 |#1|)) (-1088 |#1|)))) (-327)) (T -335))
-((-2425 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-892 (-1088 *4))) (-5 *1 (-335 *4)) (-5 *3 (-1088 *4)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-2502 (*1 *2 *3 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-2850 (*1 *2 *2) (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-3775 (*1 *2 *2) (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-4026 (*1 *2 *2) (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-2373 (*1 *2 *2) (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-3234 (*1 *2 *2) (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-1570 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-1532 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-3771 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-1743 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-335 *3)) (-4 *3 (-327)))) (-2362 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-335 *3)) (-4 *3 (-327)))) (-3006 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-335 *3)) (-4 *3 (-327)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-335 *4)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-335 *4)))))
-(-10 -7 (-15 -3704 ((-108) (-1088 |#1|))) (-15 -1527 ((-108) (-1088 |#1|))) (-15 -3006 ((-856) (-856))) (-15 -2362 ((-856) (-856))) (-15 -1743 ((-856) (-856))) (-15 -2701 ((-1088 |#1|) (-856))) (-15 -2957 ((-1088 |#1|) (-856))) (-15 -3771 ((-1088 |#1|) (-856))) (-15 -1532 ((-1088 |#1|) (-856))) (-15 -1570 ((-1088 |#1|) (-856))) (-15 -3234 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -2373 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -4026 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -3775 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -2850 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -2502 ((-1088 |#1|) (-856))) (-15 -2502 ((-1088 |#1|) (-856) (-856))) (-15 -3480 ((-1088 |#1|) (-1088 |#1|))) (-15 -2425 ((-892 (-1088 |#1|)) (-1088 |#1|))))
-((-2969 (((-3 (-592 |#3|) "failed") (-592 |#3|) |#3|) 34)))
-(((-336 |#1| |#2| |#3|) (-10 -7 (-15 -2969 ((-3 (-592 |#3|) "failed") (-592 |#3|) |#3|))) (-327) (-1150 |#1|) (-1150 |#2|)) (T -336))
-((-2969 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-1150 *4)) (-4 *4 (-327)) (-5 *1 (-336 *4 *5 *3)))))
-(-10 -7 (-15 -2969 ((-3 (-592 |#3|) "failed") (-592 |#3|) |#3|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1259 (((-108) $) NIL)) (-3098 (((-713)) NIL)) (-2952 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-2971 (((-1102 (-856) (-713)) (-525)) NIL (|has| |#1| (-346)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2193 (((-108) $ $) NIL)) (-1834 (((-713)) NIL (|has| |#1| (-346)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) NIL)) (-1572 ((|#1| $) NIL)) (-2064 (($ (-1174 |#1|)) NIL)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-346)))) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($) NIL (|has| |#1| (-346)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-2574 (($) NIL (|has| |#1| (-346)))) (-3704 (((-108) $) NIL (|has| |#1| (-346)))) (-3625 (($ $ (-713)) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3673 (((-108) $) NIL)) (-2581 (((-856) $) NIL (|has| |#1| (-346))) (((-775 (-856)) $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1396 (((-108) $) NIL)) (-1273 (($) NIL (|has| |#1| (-346)))) (-1527 (((-108) $) NIL (|has| |#1| (-346)))) (-2382 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-3844 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2126 (((-1088 |#1|) $) NIL) (((-1088 $) $ (-856)) NIL (|has| |#1| (-346)))) (-3005 (((-856) $) NIL (|has| |#1| (-346)))) (-1283 (((-1088 |#1|) $) NIL (|has| |#1| (-346)))) (-2577 (((-1088 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1088 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2324 (($ $ (-1088 |#1|)) NIL (|has| |#1| (-346)))) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2295 (($) NIL (|has| |#1| (-346)) CONST)) (-3555 (($ (-856)) NIL (|has| |#1| (-346)))) (-2703 (((-108) $) NIL)) (-2093 (((-1039) $) NIL)) (-3409 (($) NIL (|has| |#1| (-346)))) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) NIL (|has| |#1| (-346)))) (-2770 (((-396 $) $) NIL)) (-2858 (((-775 (-856))) NIL) (((-856)) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3877 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3705 (((-128)) NIL)) (-3376 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2343 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-2756 (((-1088 |#1|)) NIL)) (-2244 (($) NIL (|has| |#1| (-346)))) (-2254 (($) NIL (|has| |#1| (-346)))) (-2387 (((-1174 |#1|) $) NIL) (((-632 |#1|) (-1174 $)) NIL)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) NIL)) (-3637 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3917 (((-713)) NIL)) (-3094 (((-1174 $)) NIL) (((-1174 $) (-856)) NIL)) (-3325 (((-108) $ $) NIL)) (-2081 (((-108) $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-3127 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2022 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+((-2984 ((|#1| (-1088 |#2|)) 52)))
+(((-334 |#1| |#2|) (-10 -7 (-15 -2984 (|#1| (-1088 |#2|)))) (-13 (-380) (-10 -7 (-15 -4100 (|#1| |#2|)) (-15 -3685 ((-856) |#1|)) (-15 -2103 ((-1174 |#1|) (-856))) (-15 -2363 (|#1| |#1|)))) (-327)) (T -334))
+((-2984 (*1 *2 *3) (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327)) (-4 *2 (-13 (-380) (-10 -7 (-15 -4100 (*2 *4)) (-15 -3685 ((-856) *2)) (-15 -2103 ((-1174 *2) (-856))) (-15 -2363 (*2 *2))))) (-5 *1 (-334 *2 *4)))))
+(-10 -7 (-15 -2984 (|#1| (-1088 |#2|))))
+((-1962 (((-892 (-1088 |#1|)) (-1088 |#1|)) 36)) (-1903 (((-1088 |#1|) (-856) (-856)) 113) (((-1088 |#1|) (-856)) 112)) (-3920 (((-108) (-1088 |#1|)) 84)) (-3703 (((-856) (-856)) 71)) (-2507 (((-856) (-856)) 74)) (-3693 (((-856) (-856)) 69)) (-1890 (((-108) (-1088 |#1|)) 88)) (-2630 (((-3 (-1088 |#1|) "failed") (-1088 |#1|)) 101)) (-1610 (((-3 (-1088 |#1|) "failed") (-1088 |#1|)) 104)) (-3388 (((-3 (-1088 |#1|) "failed") (-1088 |#1|)) 103)) (-4157 (((-3 (-1088 |#1|) "failed") (-1088 |#1|)) 102)) (-3930 (((-3 (-1088 |#1|) "failed") (-1088 |#1|)) 98)) (-3528 (((-1088 |#1|) (-1088 |#1|)) 62)) (-3249 (((-1088 |#1|) (-856)) 107)) (-3158 (((-1088 |#1|) (-856)) 110)) (-1247 (((-1088 |#1|) (-856)) 109)) (-3355 (((-1088 |#1|) (-856)) 108)) (-2677 (((-1088 |#1|) (-856)) 105)))
+(((-335 |#1|) (-10 -7 (-15 -3920 ((-108) (-1088 |#1|))) (-15 -1890 ((-108) (-1088 |#1|))) (-15 -3693 ((-856) (-856))) (-15 -3703 ((-856) (-856))) (-15 -2507 ((-856) (-856))) (-15 -2677 ((-1088 |#1|) (-856))) (-15 -3249 ((-1088 |#1|) (-856))) (-15 -3355 ((-1088 |#1|) (-856))) (-15 -1247 ((-1088 |#1|) (-856))) (-15 -3158 ((-1088 |#1|) (-856))) (-15 -3930 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -2630 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -4157 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -3388 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -1610 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -1903 ((-1088 |#1|) (-856))) (-15 -1903 ((-1088 |#1|) (-856) (-856))) (-15 -3528 ((-1088 |#1|) (-1088 |#1|))) (-15 -1962 ((-892 (-1088 |#1|)) (-1088 |#1|)))) (-327)) (T -335))
+((-1962 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-892 (-1088 *4))) (-5 *1 (-335 *4)) (-5 *3 (-1088 *4)))) (-3528 (*1 *2 *2) (-12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-1903 (*1 *2 *3 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-1610 (*1 *2 *2) (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-3388 (*1 *2 *2) (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-4157 (*1 *2 *2) (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-2630 (*1 *2 *2) (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-3930 (*1 *2 *2) (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-3158 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-1247 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-2677 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-2507 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-335 *3)) (-4 *3 (-327)))) (-3703 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-335 *3)) (-4 *3 (-327)))) (-3693 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-335 *3)) (-4 *3 (-327)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-335 *4)))) (-3920 (*1 *2 *3) (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-335 *4)))))
+(-10 -7 (-15 -3920 ((-108) (-1088 |#1|))) (-15 -1890 ((-108) (-1088 |#1|))) (-15 -3693 ((-856) (-856))) (-15 -3703 ((-856) (-856))) (-15 -2507 ((-856) (-856))) (-15 -2677 ((-1088 |#1|) (-856))) (-15 -3249 ((-1088 |#1|) (-856))) (-15 -3355 ((-1088 |#1|) (-856))) (-15 -1247 ((-1088 |#1|) (-856))) (-15 -3158 ((-1088 |#1|) (-856))) (-15 -3930 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -2630 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -4157 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -3388 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -1610 ((-3 (-1088 |#1|) "failed") (-1088 |#1|))) (-15 -1903 ((-1088 |#1|) (-856))) (-15 -1903 ((-1088 |#1|) (-856) (-856))) (-15 -3528 ((-1088 |#1|) (-1088 |#1|))) (-15 -1962 ((-892 (-1088 |#1|)) (-1088 |#1|))))
+((-3373 (((-3 (-592 |#3|) "failed") (-592 |#3|) |#3|) 34)))
+(((-336 |#1| |#2| |#3|) (-10 -7 (-15 -3373 ((-3 (-592 |#3|) "failed") (-592 |#3|) |#3|))) (-327) (-1150 |#1|) (-1150 |#2|)) (T -336))
+((-3373 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-1150 *4)) (-4 *4 (-327)) (-5 *1 (-336 *4 *5 *3)))))
+(-10 -7 (-15 -3373 ((-3 (-592 |#3|) "failed") (-592 |#3|) |#3|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3214 (((-108) $) NIL)) (-2132 (((-713)) NIL)) (-2924 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-3395 (((-1102 (-856) (-713)) (-525)) NIL (|has| |#1| (-346)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-1507 (((-108) $ $) NIL)) (-1613 (((-713)) NIL (|has| |#1| (-346)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) NIL)) (-4105 ((|#1| $) NIL)) (-2580 (($ (-1174 |#1|)) NIL)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-346)))) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($) NIL (|has| |#1| (-346)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-3932 (($) NIL (|has| |#1| (-346)))) (-3920 (((-108) $) NIL (|has| |#1| (-346)))) (-1339 (($ $ (-713)) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1798 (((-108) $) NIL)) (-4000 (((-856) $) NIL (|has| |#1| (-346))) (((-775 (-856)) $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2278 (((-108) $) NIL)) (-3957 (($) NIL (|has| |#1| (-346)))) (-1890 (((-108) $) NIL (|has| |#1| (-346)))) (-2704 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-2878 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2021 (((-1088 |#1|) $) NIL) (((-1088 $) $ (-856)) NIL (|has| |#1| (-346)))) (-3685 (((-856) $) NIL (|has| |#1| (-346)))) (-4162 (((-1088 |#1|) $) NIL (|has| |#1| (-346)))) (-3955 (((-1088 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1088 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-3323 (($ $ (-1088 |#1|)) NIL (|has| |#1| (-346)))) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-2948 (($) NIL (|has| |#1| (-346)) CONST)) (-1722 (($ (-856)) NIL (|has| |#1| (-346)))) (-2700 (((-108) $) NIL)) (-3993 (((-1039) $) NIL)) (-3817 (($) NIL (|has| |#1| (-346)))) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) NIL (|has| |#1| (-346)))) (-4201 (((-396 $) $) NIL)) (-1690 (((-775 (-856))) NIL) (((-856)) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2043 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3933 (((-128)) NIL)) (-2702 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3529 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-2013 (((-1088 |#1|)) NIL)) (-3823 (($) NIL (|has| |#1| (-346)))) (-3911 (($) NIL (|has| |#1| (-346)))) (-2754 (((-1174 |#1|) $) NIL) (((-632 |#1|) (-1174 $)) NIL)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) NIL)) (-1463 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2448 (((-713)) NIL)) (-2103 (((-1174 $)) NIL) (((-1174 $) (-856)) NIL)) (-1571 (((-108) $ $) NIL)) (-2738 (((-108) $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2363 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2401 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-337 |#1| |#2|) (-307 |#1|) (-327) (-856)) (T -337))
NIL
(-307 |#1|)
-((-2946 (((-108) (-592 (-887 |#1|))) 34)) (-1988 (((-592 (-887 |#1|)) (-592 (-887 |#1|))) 46)) (-1383 (((-3 (-592 (-887 |#1|)) "failed") (-592 (-887 |#1|))) 41)))
-(((-338 |#1| |#2|) (-10 -7 (-15 -2946 ((-108) (-592 (-887 |#1|)))) (-15 -1383 ((-3 (-592 (-887 |#1|)) "failed") (-592 (-887 |#1|)))) (-15 -1988 ((-592 (-887 |#1|)) (-592 (-887 |#1|))))) (-429) (-592 (-1092))) (T -338))
-((-1988 (*1 *2 *2) (-12 (-5 *2 (-592 (-887 *3))) (-4 *3 (-429)) (-5 *1 (-338 *3 *4)) (-14 *4 (-592 (-1092))))) (-1383 (*1 *2 *2) (|partial| -12 (-5 *2 (-592 (-887 *3))) (-4 *3 (-429)) (-5 *1 (-338 *3 *4)) (-14 *4 (-592 (-1092))))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-429)) (-5 *2 (-108)) (-5 *1 (-338 *4 *5)) (-14 *5 (-592 (-1092))))))
-(-10 -7 (-15 -2946 ((-108) (-592 (-887 |#1|)))) (-15 -1383 ((-3 (-592 (-887 |#1|)) "failed") (-592 (-887 |#1|)))) (-15 -1988 ((-592 (-887 |#1|)) (-592 (-887 |#1|)))))
-((-4236 (((-108) $ $) NIL)) (-1834 (((-713) $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) NIL)) (-1572 ((|#1| $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1396 (((-108) $) 15)) (-1726 ((|#1| $ (-525)) NIL)) (-3084 (((-525) $ (-525)) NIL)) (-2527 (($ (-1 |#1| |#1|) $) 32)) (-2166 (($ (-1 (-525) (-525)) $) 24)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) 26)) (-2093 (((-1039) $) NIL)) (-3843 (((-592 (-2 (|:| |gen| |#1|) (|:| -3096 (-525)))) $) 28)) (-1499 (($ $ $) NIL)) (-1990 (($ $ $) NIL)) (-1217 (((-798) $) 38) (($ |#1|) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3359 (($) 9 T CONST)) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ |#1| (-525)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
-(((-339 |#1|) (-13 (-450) (-968 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-525))) (-15 -1834 ((-713) $)) (-15 -3084 ((-525) $ (-525))) (-15 -1726 (|#1| $ (-525))) (-15 -2166 ($ (-1 (-525) (-525)) $)) (-15 -2527 ($ (-1 |#1| |#1|) $)) (-15 -3843 ((-592 (-2 (|:| |gen| |#1|) (|:| -3096 (-525)))) $)))) (-1020)) (T -339))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1020)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1020)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1020)))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-339 *3)) (-4 *3 (-1020)))) (-3084 (*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-339 *3)) (-4 *3 (-1020)))) (-1726 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1020)))) (-2166 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-525) (-525))) (-5 *1 (-339 *3)) (-4 *3 (-1020)))) (-2527 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-339 *3)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -3096 (-525))))) (-5 *1 (-339 *3)) (-4 *3 (-1020)))))
-(-13 (-450) (-968 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-525))) (-15 -1834 ((-713) $)) (-15 -3084 ((-525) $ (-525))) (-15 -1726 (|#1| $ (-525))) (-15 -2166 ($ (-1 (-525) (-525)) $)) (-15 -2527 ($ (-1 |#1| |#1|) $)) (-15 -3843 ((-592 (-2 (|:| |gen| |#1|) (|:| -3096 (-525)))) $))))
-((-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 13)) (-4218 (($ $) 14)) (-2669 (((-396 $) $) 30)) (-3673 (((-108) $) 26)) (-2997 (($ $) 19)) (-2589 (($ $ $) 23) (($ (-592 $)) NIL)) (-2770 (((-396 $) $) 31)) (-1715 (((-3 $ "failed") $ $) 22)) (-3684 (((-713) $) 25)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 35)) (-3325 (((-108) $ $) 16)) (-4075 (($ $ $) 33)))
-(((-340 |#1|) (-10 -8 (-15 -4075 (|#1| |#1| |#1|)) (-15 -2997 (|#1| |#1|)) (-15 -3673 ((-108) |#1|)) (-15 -2669 ((-396 |#1|) |#1|)) (-15 -2770 ((-396 |#1|) |#1|)) (-15 -2818 ((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|)) (-15 -3684 ((-713) |#1|)) (-15 -2589 (|#1| (-592 |#1|))) (-15 -2589 (|#1| |#1| |#1|)) (-15 -3325 ((-108) |#1| |#1|)) (-15 -4218 (|#1| |#1|)) (-15 -2582 ((-2 (|:| -2841 |#1|) (|:| -4245 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1715 ((-3 |#1| "failed") |#1| |#1|))) (-341)) (T -340))
-NIL
-(-10 -8 (-15 -4075 (|#1| |#1| |#1|)) (-15 -2997 (|#1| |#1|)) (-15 -3673 ((-108) |#1|)) (-15 -2669 ((-396 |#1|) |#1|)) (-15 -2770 ((-396 |#1|) |#1|)) (-15 -2818 ((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|)) (-15 -3684 ((-713) |#1|)) (-15 -2589 (|#1| (-592 |#1|))) (-15 -2589 (|#1| |#1| |#1|)) (-15 -3325 ((-108) |#1| |#1|)) (-15 -4218 (|#1| |#1|)) (-15 -2582 ((-2 (|:| -2841 |#1|) (|:| -4245 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1715 ((-3 |#1| "failed") |#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-1578 (((-3 $ "failed") $ $) 19)) (-1286 (($ $) 73)) (-2669 (((-396 $) $) 72)) (-2193 (((-108) $ $) 59)) (-2169 (($) 17 T CONST)) (-1747 (($ $ $) 55)) (-3457 (((-3 $ "failed") $) 34)) (-1733 (($ $ $) 56)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 51)) (-3673 (((-108) $) 71)) (-1396 (((-108) $) 31)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2556 (($ $ $) 46) (($ (-592 $)) 45)) (-2619 (((-1075) $) 9)) (-2997 (($ $) 70)) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2589 (($ $ $) 48) (($ (-592 $)) 47)) (-2770 (((-396 $) $) 74)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1715 (((-3 $ "failed") $ $) 42)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-3684 (((-713) $) 58)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 57)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-3917 (((-713)) 29)) (-3325 (((-108) $ $) 39)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4075 (($ $ $) 64)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
+((-1349 (((-108) (-592 (-887 |#1|))) 34)) (-1219 (((-592 (-887 |#1|)) (-592 (-887 |#1|))) 46)) (-3894 (((-3 (-592 (-887 |#1|)) "failed") (-592 (-887 |#1|))) 41)))
+(((-338 |#1| |#2|) (-10 -7 (-15 -1349 ((-108) (-592 (-887 |#1|)))) (-15 -3894 ((-3 (-592 (-887 |#1|)) "failed") (-592 (-887 |#1|)))) (-15 -1219 ((-592 (-887 |#1|)) (-592 (-887 |#1|))))) (-429) (-592 (-1092))) (T -338))
+((-1219 (*1 *2 *2) (-12 (-5 *2 (-592 (-887 *3))) (-4 *3 (-429)) (-5 *1 (-338 *3 *4)) (-14 *4 (-592 (-1092))))) (-3894 (*1 *2 *2) (|partial| -12 (-5 *2 (-592 (-887 *3))) (-4 *3 (-429)) (-5 *1 (-338 *3 *4)) (-14 *4 (-592 (-1092))))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-429)) (-5 *2 (-108)) (-5 *1 (-338 *4 *5)) (-14 *5 (-592 (-1092))))))
+(-10 -7 (-15 -1349 ((-108) (-592 (-887 |#1|)))) (-15 -3894 ((-3 (-592 (-887 |#1|)) "failed") (-592 (-887 |#1|)))) (-15 -1219 ((-592 (-887 |#1|)) (-592 (-887 |#1|)))))
+((-4087 (((-108) $ $) NIL)) (-1613 (((-713) $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) NIL)) (-4105 ((|#1| $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-2278 (((-108) $) 15)) (-3538 ((|#1| $ (-525)) NIL)) (-2020 (((-525) $ (-525)) NIL)) (-1693 (($ (-1 |#1| |#1|) $) 32)) (-2447 (($ (-1 (-525) (-525)) $) 24)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) 26)) (-3993 (((-1039) $) NIL)) (-2868 (((-592 (-2 (|:| |gen| |#1|) (|:| -1618 (-525)))) $) 28)) (-3055 (($ $ $) NIL)) (-1242 (($ $ $) NIL)) (-4100 (((-798) $) 38) (($ |#1|) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3375 (($) 9 T CONST)) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ |#1| (-525)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
+(((-339 |#1|) (-13 (-450) (-968 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-525))) (-15 -1613 ((-713) $)) (-15 -2020 ((-525) $ (-525))) (-15 -3538 (|#1| $ (-525))) (-15 -2447 ($ (-1 (-525) (-525)) $)) (-15 -1693 ($ (-1 |#1| |#1|) $)) (-15 -2868 ((-592 (-2 (|:| |gen| |#1|) (|:| -1618 (-525)))) $)))) (-1020)) (T -339))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1020)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1020)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1020)))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-339 *3)) (-4 *3 (-1020)))) (-2020 (*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-339 *3)) (-4 *3 (-1020)))) (-3538 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1020)))) (-2447 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-525) (-525))) (-5 *1 (-339 *3)) (-4 *3 (-1020)))) (-1693 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-339 *3)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1618 (-525))))) (-5 *1 (-339 *3)) (-4 *3 (-1020)))))
+(-13 (-450) (-968 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-525))) (-15 -1613 ((-713) $)) (-15 -2020 ((-525) $ (-525))) (-15 -3538 (|#1| $ (-525))) (-15 -2447 ($ (-1 (-525) (-525)) $)) (-15 -1693 ($ (-1 |#1| |#1|) $)) (-15 -2868 ((-592 (-2 (|:| |gen| |#1|) (|:| -1618 (-525)))) $))))
+((-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 13)) (-2433 (($ $) 14)) (-3586 (((-396 $) $) 30)) (-1798 (((-108) $) 26)) (-1387 (($ $) 19)) (-2772 (($ $ $) 23) (($ (-592 $)) NIL)) (-4201 (((-396 $) $) 31)) (-1311 (((-3 $ "failed") $ $) 22)) (-1927 (((-713) $) 25)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 35)) (-1571 (((-108) $ $) 16)) (-2880 (($ $ $) 33)))
+(((-340 |#1|) (-10 -8 (-15 -2880 (|#1| |#1| |#1|)) (-15 -1387 (|#1| |#1|)) (-15 -1798 ((-108) |#1|)) (-15 -3586 ((-396 |#1|) |#1|)) (-15 -4201 ((-396 |#1|) |#1|)) (-15 -2494 ((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|)) (-15 -1927 ((-713) |#1|)) (-15 -2772 (|#1| (-592 |#1|))) (-15 -2772 (|#1| |#1| |#1|)) (-15 -1571 ((-108) |#1| |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -4011 ((-2 (|:| -1509 |#1|) (|:| -4246 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1311 ((-3 |#1| "failed") |#1| |#1|))) (-341)) (T -340))
+NIL
+(-10 -8 (-15 -2880 (|#1| |#1| |#1|)) (-15 -1387 (|#1| |#1|)) (-15 -1798 ((-108) |#1|)) (-15 -3586 ((-396 |#1|) |#1|)) (-15 -4201 ((-396 |#1|) |#1|)) (-15 -2494 ((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|)) (-15 -1927 ((-713) |#1|)) (-15 -2772 (|#1| (-592 |#1|))) (-15 -2772 (|#1| |#1| |#1|)) (-15 -1571 ((-108) |#1| |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -4011 ((-2 (|:| -1509 |#1|) (|:| -4246 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1311 ((-3 |#1| "failed") |#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-3222 (((-3 $ "failed") $ $) 19)) (-4195 (($ $) 73)) (-3586 (((-396 $) $) 72)) (-1507 (((-108) $ $) 59)) (-2475 (($) 17 T CONST)) (-1356 (($ $ $) 55)) (-3300 (((-3 $ "failed") $) 34)) (-1332 (($ $ $) 56)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 51)) (-1798 (((-108) $) 71)) (-2278 (((-108) $) 31)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2739 (($ $ $) 46) (($ (-592 $)) 45)) (-1289 (((-1075) $) 9)) (-1387 (($ $) 70)) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2772 (($ $ $) 48) (($ (-592 $)) 47)) (-4201 (((-396 $) $) 74)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1311 (((-3 $ "failed") $ $) 42)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1927 (((-713) $) 58)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 57)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-2448 (((-713)) 29)) (-1571 (((-108) $ $) 39)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2880 (($ $ $) 64)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
(((-341) (-131)) (T -341))
-((-4075 (*1 *1 *1 *1) (-4 *1 (-341))))
-(-13 (-286) (-1132) (-223) (-10 -8 (-15 -4075 ($ $ $)) (-6 -4256) (-6 -4250)))
+((-2880 (*1 *1 *1 *1) (-4 *1 (-341))))
+(-13 (-286) (-1132) (-223) (-10 -8 (-15 -2880 ($ $ $)) (-6 -4257) (-6 -4251)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-855) . T) ((-983 #0#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1132) . T))
-((-4236 (((-108) $ $) 7)) (-3529 ((|#2| $ |#2|) 13)) (-3897 (($ $ (-1075)) 18)) (-1364 ((|#2| $) 14)) (-3459 (($ |#1|) 20) (($ |#1| (-1075)) 19)) (-3257 ((|#1| $) 16)) (-2619 (((-1075) $) 9)) (-3249 (((-1075) $) 15)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-1512 (($ $) 17)) (-3955 (((-108) $ $) 6)))
+((-4087 (((-108) $ $) 7)) (-2773 ((|#2| $ |#2|) 13)) (-2220 (($ $ (-1075)) 18)) (-1754 ((|#2| $) 14)) (-2046 (($ |#1|) 20) (($ |#1| (-1075)) 19)) (-2411 ((|#1| $) 16)) (-1289 (((-1075) $) 9)) (-4022 (((-1075) $) 15)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3267 (($ $) 17)) (-2775 (((-108) $ $) 6)))
(((-342 |#1| |#2|) (-131) (-1020) (-1020)) (T -342))
-((-3459 (*1 *1 *2) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-3459 (*1 *1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *1 (-342 *2 *4)) (-4 *2 (-1020)) (-4 *4 (-1020)))) (-3897 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-342 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-1512 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *3 (-1020)) (-4 *2 (-1020)))) (-3249 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-5 *2 (-1075)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))) (-3529 (*1 *2 *1 *2) (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))))
-(-13 (-1020) (-10 -8 (-15 -3459 ($ |t#1|)) (-15 -3459 ($ |t#1| (-1075))) (-15 -3897 ($ $ (-1075))) (-15 -1512 ($ $)) (-15 -3257 (|t#1| $)) (-15 -3249 ((-1075) $)) (-15 -1364 (|t#2| $)) (-15 -3529 (|t#2| $ |t#2|))))
+((-2046 (*1 *1 *2) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-2046 (*1 *1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *1 (-342 *2 *4)) (-4 *2 (-1020)) (-4 *4 (-1020)))) (-2220 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-342 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-3267 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *3 (-1020)) (-4 *2 (-1020)))) (-4022 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-5 *2 (-1075)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))) (-2773 (*1 *2 *1 *2) (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))))
+(-13 (-1020) (-10 -8 (-15 -2046 ($ |t#1|)) (-15 -2046 ($ |t#1| (-1075))) (-15 -2220 ($ $ (-1075))) (-15 -3267 ($ $)) (-15 -2411 (|t#1| $)) (-15 -4022 ((-1075) $)) (-15 -1754 (|t#2| $)) (-15 -2773 (|t#2| $ |t#2|))))
(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-3529 ((|#1| $ |#1|) 30)) (-3897 (($ $ (-1075)) 22)) (-3712 (((-3 |#1| "failed") $) 29)) (-1364 ((|#1| $) 27)) (-3459 (($ (-366)) 21) (($ (-366) (-1075)) 20)) (-3257 (((-366) $) 24)) (-2619 (((-1075) $) NIL)) (-3249 (((-1075) $) 25)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 19)) (-1512 (($ $) 23)) (-3955 (((-108) $ $) 18)))
-(((-343 |#1|) (-13 (-342 (-366) |#1|) (-10 -8 (-15 -3712 ((-3 |#1| "failed") $)))) (-1020)) (T -343))
-((-3712 (*1 *2 *1) (|partial| -12 (-5 *1 (-343 *2)) (-4 *2 (-1020)))))
-(-13 (-342 (-366) |#1|) (-10 -8 (-15 -3712 ((-3 |#1| "failed") $))))
-((-3482 (((-1174 (-632 |#2|)) (-1174 $)) 61)) (-3060 (((-632 |#2|) (-1174 $)) 120)) (-2769 ((|#2| $) 32)) (-3420 (((-632 |#2|) $ (-1174 $)) 123)) (-1586 (((-3 $ "failed") $) 75)) (-1713 ((|#2| $) 35)) (-2269 (((-1088 |#2|) $) 83)) (-3777 ((|#2| (-1174 $)) 106)) (-2509 (((-1088 |#2|) $) 28)) (-1950 (((-108)) 100)) (-2064 (($ (-1174 |#2|) (-1174 $)) 113)) (-3457 (((-3 $ "failed") $) 79)) (-2026 (((-108)) 95)) (-2070 (((-108)) 90)) (-3545 (((-108)) 53)) (-2383 (((-632 |#2|) (-1174 $)) 118)) (-1312 ((|#2| $) 31)) (-1846 (((-632 |#2|) $ (-1174 $)) 122)) (-4106 (((-3 $ "failed") $) 73)) (-3807 ((|#2| $) 34)) (-1860 (((-1088 |#2|) $) 82)) (-3018 ((|#2| (-1174 $)) 104)) (-2379 (((-1088 |#2|) $) 26)) (-2256 (((-108)) 99)) (-2220 (((-108)) 92)) (-2861 (((-108)) 51)) (-3142 (((-108)) 87)) (-3322 (((-108)) 101)) (-2387 (((-1174 |#2|) $ (-1174 $)) NIL) (((-632 |#2|) (-1174 $) (-1174 $)) 111)) (-1252 (((-108)) 97)) (-1962 (((-592 (-1174 |#2|))) 86)) (-1218 (((-108)) 98)) (-3136 (((-108)) 96)) (-1541 (((-108)) 46)) (-3361 (((-108)) 102)))
-(((-344 |#1| |#2|) (-10 -8 (-15 -2269 ((-1088 |#2|) |#1|)) (-15 -1860 ((-1088 |#2|) |#1|)) (-15 -1962 ((-592 (-1174 |#2|)))) (-15 -1586 ((-3 |#1| "failed") |#1|)) (-15 -4106 ((-3 |#1| "failed") |#1|)) (-15 -3457 ((-3 |#1| "failed") |#1|)) (-15 -2070 ((-108))) (-15 -2220 ((-108))) (-15 -2026 ((-108))) (-15 -2861 ((-108))) (-15 -3545 ((-108))) (-15 -3142 ((-108))) (-15 -3361 ((-108))) (-15 -3322 ((-108))) (-15 -1950 ((-108))) (-15 -2256 ((-108))) (-15 -1541 ((-108))) (-15 -1218 ((-108))) (-15 -3136 ((-108))) (-15 -1252 ((-108))) (-15 -2509 ((-1088 |#2|) |#1|)) (-15 -2379 ((-1088 |#2|) |#1|)) (-15 -3060 ((-632 |#2|) (-1174 |#1|))) (-15 -2383 ((-632 |#2|) (-1174 |#1|))) (-15 -3777 (|#2| (-1174 |#1|))) (-15 -3018 (|#2| (-1174 |#1|))) (-15 -2064 (|#1| (-1174 |#2|) (-1174 |#1|))) (-15 -2387 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2387 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -1713 (|#2| |#1|)) (-15 -3807 (|#2| |#1|)) (-15 -2769 (|#2| |#1|)) (-15 -1312 (|#2| |#1|)) (-15 -3420 ((-632 |#2|) |#1| (-1174 |#1|))) (-15 -1846 ((-632 |#2|) |#1| (-1174 |#1|))) (-15 -3482 ((-1174 (-632 |#2|)) (-1174 |#1|)))) (-345 |#2|) (-160)) (T -344))
-((-1252 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3136 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1218 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1541 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2256 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1950 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3322 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3361 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3142 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3545 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2861 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2026 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2220 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2070 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1962 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-592 (-1174 *4))) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))))
-(-10 -8 (-15 -2269 ((-1088 |#2|) |#1|)) (-15 -1860 ((-1088 |#2|) |#1|)) (-15 -1962 ((-592 (-1174 |#2|)))) (-15 -1586 ((-3 |#1| "failed") |#1|)) (-15 -4106 ((-3 |#1| "failed") |#1|)) (-15 -3457 ((-3 |#1| "failed") |#1|)) (-15 -2070 ((-108))) (-15 -2220 ((-108))) (-15 -2026 ((-108))) (-15 -2861 ((-108))) (-15 -3545 ((-108))) (-15 -3142 ((-108))) (-15 -3361 ((-108))) (-15 -3322 ((-108))) (-15 -1950 ((-108))) (-15 -2256 ((-108))) (-15 -1541 ((-108))) (-15 -1218 ((-108))) (-15 -3136 ((-108))) (-15 -1252 ((-108))) (-15 -2509 ((-1088 |#2|) |#1|)) (-15 -2379 ((-1088 |#2|) |#1|)) (-15 -3060 ((-632 |#2|) (-1174 |#1|))) (-15 -2383 ((-632 |#2|) (-1174 |#1|))) (-15 -3777 (|#2| (-1174 |#1|))) (-15 -3018 (|#2| (-1174 |#1|))) (-15 -2064 (|#1| (-1174 |#2|) (-1174 |#1|))) (-15 -2387 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2387 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -1713 (|#2| |#1|)) (-15 -3807 (|#2| |#1|)) (-15 -2769 (|#2| |#1|)) (-15 -1312 (|#2| |#1|)) (-15 -3420 ((-632 |#2|) |#1| (-1174 |#1|))) (-15 -1846 ((-632 |#2|) |#1| (-1174 |#1|))) (-15 -3482 ((-1174 (-632 |#2|)) (-1174 |#1|))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2841 (((-3 $ "failed")) 37 (|has| |#1| (-517)))) (-1578 (((-3 $ "failed") $ $) 19)) (-3482 (((-1174 (-632 |#1|)) (-1174 $)) 78)) (-1604 (((-1174 $)) 81)) (-2169 (($) 17 T CONST)) (-1614 (((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed")) 40 (|has| |#1| (-517)))) (-3912 (((-3 $ "failed")) 38 (|has| |#1| (-517)))) (-3060 (((-632 |#1|) (-1174 $)) 65)) (-2769 ((|#1| $) 74)) (-3420 (((-632 |#1|) $ (-1174 $)) 76)) (-1586 (((-3 $ "failed") $) 45 (|has| |#1| (-517)))) (-2837 (($ $ (-856)) 28)) (-1713 ((|#1| $) 72)) (-2269 (((-1088 |#1|) $) 42 (|has| |#1| (-517)))) (-3777 ((|#1| (-1174 $)) 67)) (-2509 (((-1088 |#1|) $) 63)) (-1950 (((-108)) 57)) (-2064 (($ (-1174 |#1|) (-1174 $)) 69)) (-3457 (((-3 $ "failed") $) 47 (|has| |#1| (-517)))) (-3622 (((-856)) 80)) (-1370 (((-108)) 54)) (-3587 (($ $ (-856)) 33)) (-2026 (((-108)) 50)) (-2070 (((-108)) 48)) (-3545 (((-108)) 52)) (-3821 (((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed")) 41 (|has| |#1| (-517)))) (-2060 (((-3 $ "failed")) 39 (|has| |#1| (-517)))) (-2383 (((-632 |#1|) (-1174 $)) 66)) (-1312 ((|#1| $) 75)) (-1846 (((-632 |#1|) $ (-1174 $)) 77)) (-4106 (((-3 $ "failed") $) 46 (|has| |#1| (-517)))) (-2817 (($ $ (-856)) 29)) (-3807 ((|#1| $) 73)) (-1860 (((-1088 |#1|) $) 43 (|has| |#1| (-517)))) (-3018 ((|#1| (-1174 $)) 68)) (-2379 (((-1088 |#1|) $) 64)) (-2256 (((-108)) 58)) (-2619 (((-1075) $) 9)) (-2220 (((-108)) 49)) (-2861 (((-108)) 51)) (-3142 (((-108)) 53)) (-2093 (((-1039) $) 10)) (-3322 (((-108)) 56)) (-2387 (((-1174 |#1|) $ (-1174 $)) 71) (((-632 |#1|) (-1174 $) (-1174 $)) 70)) (-1432 (((-592 (-887 |#1|)) (-1174 $)) 79)) (-1990 (($ $ $) 25)) (-1252 (((-108)) 62)) (-1217 (((-798) $) 11)) (-1962 (((-592 (-1174 |#1|))) 44 (|has| |#1| (-517)))) (-3746 (($ $ $ $) 26)) (-1218 (((-108)) 60)) (-2597 (($ $ $) 24)) (-3136 (((-108)) 61)) (-1541 (((-108)) 59)) (-3361 (((-108)) 55)) (-3349 (($) 18 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 30)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-4087 (((-108) $ $) NIL)) (-2773 ((|#1| $ |#1|) 30)) (-2220 (($ $ (-1075)) 22)) (-4012 (((-3 |#1| "failed") $) 29)) (-1754 ((|#1| $) 27)) (-2046 (($ (-366)) 21) (($ (-366) (-1075)) 20)) (-2411 (((-366) $) 24)) (-1289 (((-1075) $) NIL)) (-4022 (((-1075) $) 25)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 19)) (-3267 (($ $) 23)) (-2775 (((-108) $ $) 18)))
+(((-343 |#1|) (-13 (-342 (-366) |#1|) (-10 -8 (-15 -4012 ((-3 |#1| "failed") $)))) (-1020)) (T -343))
+((-4012 (*1 *2 *1) (|partial| -12 (-5 *1 (-343 *2)) (-4 *2 (-1020)))))
+(-13 (-342 (-366) |#1|) (-10 -8 (-15 -4012 ((-3 |#1| "failed") $))))
+((-3551 (((-1174 (-632 |#2|)) (-1174 $)) 61)) (-2946 (((-632 |#2|) (-1174 $)) 120)) (-2126 ((|#2| $) 32)) (-4187 (((-632 |#2|) $ (-1174 $)) 123)) (-3322 (((-3 $ "failed") $) 75)) (-3447 ((|#2| $) 35)) (-4047 (((-1088 |#2|) $) 83)) (-3411 ((|#2| (-1174 $)) 106)) (-1521 (((-1088 |#2|) $) 28)) (-3838 (((-108)) 100)) (-2580 (($ (-1174 |#2|) (-1174 $)) 113)) (-3300 (((-3 $ "failed") $) 79)) (-3387 (((-108)) 95)) (-2634 (((-108)) 90)) (-2936 (((-108)) 53)) (-2713 (((-632 |#2|) (-1174 $)) 118)) (-3309 ((|#2| $) 31)) (-2222 (((-632 |#2|) $ (-1174 $)) 122)) (-3711 (((-3 $ "failed") $) 73)) (-3714 ((|#2| $) 34)) (-2357 (((-1088 |#2|) $) 82)) (-2623 ((|#2| (-1174 $)) 104)) (-2673 (((-1088 |#2|) $) 26)) (-3938 (((-108)) 99)) (-1780 (((-108)) 92)) (-1719 (((-108)) 51)) (-2490 (((-108)) 87)) (-1539 (((-108)) 101)) (-2754 (((-1174 |#2|) $ (-1174 $)) NIL) (((-632 |#2|) (-1174 $) (-1174 $)) 111)) (-1682 (((-108)) 97)) (-3974 (((-592 (-1174 |#2|))) 86)) (-1839 (((-108)) 98)) (-2453 (((-108)) 96)) (-1569 (((-108)) 46)) (-1886 (((-108)) 102)))
+(((-344 |#1| |#2|) (-10 -8 (-15 -4047 ((-1088 |#2|) |#1|)) (-15 -2357 ((-1088 |#2|) |#1|)) (-15 -3974 ((-592 (-1174 |#2|)))) (-15 -3322 ((-3 |#1| "failed") |#1|)) (-15 -3711 ((-3 |#1| "failed") |#1|)) (-15 -3300 ((-3 |#1| "failed") |#1|)) (-15 -2634 ((-108))) (-15 -1780 ((-108))) (-15 -3387 ((-108))) (-15 -1719 ((-108))) (-15 -2936 ((-108))) (-15 -2490 ((-108))) (-15 -1886 ((-108))) (-15 -1539 ((-108))) (-15 -3838 ((-108))) (-15 -3938 ((-108))) (-15 -1569 ((-108))) (-15 -1839 ((-108))) (-15 -2453 ((-108))) (-15 -1682 ((-108))) (-15 -1521 ((-1088 |#2|) |#1|)) (-15 -2673 ((-1088 |#2|) |#1|)) (-15 -2946 ((-632 |#2|) (-1174 |#1|))) (-15 -2713 ((-632 |#2|) (-1174 |#1|))) (-15 -3411 (|#2| (-1174 |#1|))) (-15 -2623 (|#2| (-1174 |#1|))) (-15 -2580 (|#1| (-1174 |#2|) (-1174 |#1|))) (-15 -2754 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2754 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -3447 (|#2| |#1|)) (-15 -3714 (|#2| |#1|)) (-15 -2126 (|#2| |#1|)) (-15 -3309 (|#2| |#1|)) (-15 -4187 ((-632 |#2|) |#1| (-1174 |#1|))) (-15 -2222 ((-632 |#2|) |#1| (-1174 |#1|))) (-15 -3551 ((-1174 (-632 |#2|)) (-1174 |#1|)))) (-345 |#2|) (-160)) (T -344))
+((-1682 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2453 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1839 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1569 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3938 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3838 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1539 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1886 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2490 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2936 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1719 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3387 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1780 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2634 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3974 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-592 (-1174 *4))) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))))
+(-10 -8 (-15 -4047 ((-1088 |#2|) |#1|)) (-15 -2357 ((-1088 |#2|) |#1|)) (-15 -3974 ((-592 (-1174 |#2|)))) (-15 -3322 ((-3 |#1| "failed") |#1|)) (-15 -3711 ((-3 |#1| "failed") |#1|)) (-15 -3300 ((-3 |#1| "failed") |#1|)) (-15 -2634 ((-108))) (-15 -1780 ((-108))) (-15 -3387 ((-108))) (-15 -1719 ((-108))) (-15 -2936 ((-108))) (-15 -2490 ((-108))) (-15 -1886 ((-108))) (-15 -1539 ((-108))) (-15 -3838 ((-108))) (-15 -3938 ((-108))) (-15 -1569 ((-108))) (-15 -1839 ((-108))) (-15 -2453 ((-108))) (-15 -1682 ((-108))) (-15 -1521 ((-1088 |#2|) |#1|)) (-15 -2673 ((-1088 |#2|) |#1|)) (-15 -2946 ((-632 |#2|) (-1174 |#1|))) (-15 -2713 ((-632 |#2|) (-1174 |#1|))) (-15 -3411 (|#2| (-1174 |#1|))) (-15 -2623 (|#2| (-1174 |#1|))) (-15 -2580 (|#1| (-1174 |#2|) (-1174 |#1|))) (-15 -2754 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2754 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -3447 (|#2| |#1|)) (-15 -3714 (|#2| |#1|)) (-15 -2126 (|#2| |#1|)) (-15 -3309 (|#2| |#1|)) (-15 -4187 ((-632 |#2|) |#1| (-1174 |#1|))) (-15 -2222 ((-632 |#2|) |#1| (-1174 |#1|))) (-15 -3551 ((-1174 (-632 |#2|)) (-1174 |#1|))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-1509 (((-3 $ "failed")) 37 (|has| |#1| (-517)))) (-3222 (((-3 $ "failed") $ $) 19)) (-3551 (((-1174 (-632 |#1|)) (-1174 $)) 78)) (-3651 (((-1174 $)) 81)) (-2475 (($) 17 T CONST)) (-3734 (((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed")) 40 (|has| |#1| (-517)))) (-2394 (((-3 $ "failed")) 38 (|has| |#1| (-517)))) (-2946 (((-632 |#1|) (-1174 $)) 65)) (-2126 ((|#1| $) 74)) (-4187 (((-632 |#1|) $ (-1174 $)) 76)) (-3322 (((-3 $ "failed") $) 45 (|has| |#1| (-517)))) (-1488 (($ $ (-856)) 28)) (-3447 ((|#1| $) 72)) (-4047 (((-1088 |#1|) $) 42 (|has| |#1| (-517)))) (-3411 ((|#1| (-1174 $)) 67)) (-1521 (((-1088 |#1|) $) 63)) (-3838 (((-108)) 57)) (-2580 (($ (-1174 |#1|) (-1174 $)) 69)) (-3300 (((-3 $ "failed") $) 47 (|has| |#1| (-517)))) (-3085 (((-856)) 80)) (-1822 (((-108)) 54)) (-2156 (($ $ (-856)) 33)) (-3387 (((-108)) 50)) (-2634 (((-108)) 48)) (-2936 (((-108)) 52)) (-2661 (((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed")) 41 (|has| |#1| (-517)))) (-2542 (((-3 $ "failed")) 39 (|has| |#1| (-517)))) (-2713 (((-632 |#1|) (-1174 $)) 66)) (-3309 ((|#1| $) 75)) (-2222 (((-632 |#1|) $ (-1174 $)) 77)) (-3711 (((-3 $ "failed") $) 46 (|has| |#1| (-517)))) (-2486 (($ $ (-856)) 29)) (-3714 ((|#1| $) 73)) (-2357 (((-1088 |#1|) $) 43 (|has| |#1| (-517)))) (-2623 ((|#1| (-1174 $)) 68)) (-2673 (((-1088 |#1|) $) 64)) (-3938 (((-108)) 58)) (-1289 (((-1075) $) 9)) (-1780 (((-108)) 49)) (-1719 (((-108)) 51)) (-2490 (((-108)) 53)) (-3993 (((-1039) $) 10)) (-1539 (((-108)) 56)) (-2754 (((-1174 |#1|) $ (-1174 $)) 71) (((-632 |#1|) (-1174 $) (-1174 $)) 70)) (-3600 (((-592 (-887 |#1|)) (-1174 $)) 79)) (-1242 (($ $ $) 25)) (-1682 (((-108)) 62)) (-4100 (((-798) $) 11)) (-3974 (((-592 (-1174 |#1|))) 44 (|has| |#1| (-517)))) (-3133 (($ $ $ $) 26)) (-1839 (((-108)) 60)) (-4148 (($ $ $) 24)) (-2453 (((-108)) 61)) (-1569 (((-108)) 59)) (-1886 (((-108)) 55)) (-3364 (($) 18 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 30)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-345 |#1|) (-131) (-160)) (T -345))
-((-1604 (*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1174 *1)) (-4 *1 (-345 *3)))) (-3622 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-856)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-592 (-887 *4))))) (-3482 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-1174 (-632 *4))))) (-1846 (*1 *2 *1 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-3420 (*1 *2 *1 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-1312 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-1713 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-2387 (*1 *2 *1 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-1174 *4)))) (-2387 (*1 *2 *3 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-2064 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-1174 *1)) (-4 *4 (-160)) (-4 *1 (-345 *4)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-3777 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-2383 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-2379 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1088 *3)))) (-2509 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1088 *3)))) (-1252 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3136 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1218 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1541 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2256 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1950 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3322 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3361 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1370 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3142 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3545 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2861 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2026 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2220 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2070 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3457 (*1 *1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-4106 (*1 *1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-1586 (*1 *1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-1962 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) (-5 *2 (-592 (-1174 *3))))) (-1860 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) (-5 *2 (-1088 *3)))) (-2269 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) (-5 *2 (-1088 *3)))) (-3821 (*1 *2) (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3094 (-592 *1)))) (-4 *1 (-345 *3)))) (-1614 (*1 *2) (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3094 (-592 *1)))) (-4 *1 (-345 *3)))) (-2060 (*1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))) (-3912 (*1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))) (-2841 (*1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))))
-(-13 (-687 |t#1|) (-10 -8 (-15 -1604 ((-1174 $))) (-15 -3622 ((-856))) (-15 -1432 ((-592 (-887 |t#1|)) (-1174 $))) (-15 -3482 ((-1174 (-632 |t#1|)) (-1174 $))) (-15 -1846 ((-632 |t#1|) $ (-1174 $))) (-15 -3420 ((-632 |t#1|) $ (-1174 $))) (-15 -1312 (|t#1| $)) (-15 -2769 (|t#1| $)) (-15 -3807 (|t#1| $)) (-15 -1713 (|t#1| $)) (-15 -2387 ((-1174 |t#1|) $ (-1174 $))) (-15 -2387 ((-632 |t#1|) (-1174 $) (-1174 $))) (-15 -2064 ($ (-1174 |t#1|) (-1174 $))) (-15 -3018 (|t#1| (-1174 $))) (-15 -3777 (|t#1| (-1174 $))) (-15 -2383 ((-632 |t#1|) (-1174 $))) (-15 -3060 ((-632 |t#1|) (-1174 $))) (-15 -2379 ((-1088 |t#1|) $)) (-15 -2509 ((-1088 |t#1|) $)) (-15 -1252 ((-108))) (-15 -3136 ((-108))) (-15 -1218 ((-108))) (-15 -1541 ((-108))) (-15 -2256 ((-108))) (-15 -1950 ((-108))) (-15 -3322 ((-108))) (-15 -3361 ((-108))) (-15 -1370 ((-108))) (-15 -3142 ((-108))) (-15 -3545 ((-108))) (-15 -2861 ((-108))) (-15 -2026 ((-108))) (-15 -2220 ((-108))) (-15 -2070 ((-108))) (IF (|has| |t#1| (-517)) (PROGN (-15 -3457 ((-3 $ "failed") $)) (-15 -4106 ((-3 $ "failed") $)) (-15 -1586 ((-3 $ "failed") $)) (-15 -1962 ((-592 (-1174 |t#1|)))) (-15 -1860 ((-1088 |t#1|) $)) (-15 -2269 ((-1088 |t#1|) $)) (-15 -3821 ((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed"))) (-15 -1614 ((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed"))) (-15 -2060 ((-3 $ "failed"))) (-15 -3912 ((-3 $ "failed"))) (-15 -2841 ((-3 $ "failed"))) (-6 -4255)) |%noBranch|)))
+((-3651 (*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1174 *1)) (-4 *1 (-345 *3)))) (-3085 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-856)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-592 (-887 *4))))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-1174 (-632 *4))))) (-2222 (*1 *2 *1 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-4187 (*1 *2 *1 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-2754 (*1 *2 *1 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-1174 *4)))) (-2754 (*1 *2 *3 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-2580 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-1174 *1)) (-4 *4 (-160)) (-4 *1 (-345 *4)))) (-2623 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-3411 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1088 *3)))) (-1521 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1088 *3)))) (-1682 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2453 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1839 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1569 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3938 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3838 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1539 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1886 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1822 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2490 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2936 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1719 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3387 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1780 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2634 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3300 (*1 *1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-3711 (*1 *1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-3322 (*1 *1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-3974 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) (-5 *2 (-592 (-1174 *3))))) (-2357 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) (-5 *2 (-1088 *3)))) (-4047 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) (-5 *2 (-1088 *3)))) (-2661 (*1 *2) (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2103 (-592 *1)))) (-4 *1 (-345 *3)))) (-3734 (*1 *2) (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2103 (-592 *1)))) (-4 *1 (-345 *3)))) (-2542 (*1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))) (-2394 (*1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))) (-1509 (*1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))))
+(-13 (-687 |t#1|) (-10 -8 (-15 -3651 ((-1174 $))) (-15 -3085 ((-856))) (-15 -3600 ((-592 (-887 |t#1|)) (-1174 $))) (-15 -3551 ((-1174 (-632 |t#1|)) (-1174 $))) (-15 -2222 ((-632 |t#1|) $ (-1174 $))) (-15 -4187 ((-632 |t#1|) $ (-1174 $))) (-15 -3309 (|t#1| $)) (-15 -2126 (|t#1| $)) (-15 -3714 (|t#1| $)) (-15 -3447 (|t#1| $)) (-15 -2754 ((-1174 |t#1|) $ (-1174 $))) (-15 -2754 ((-632 |t#1|) (-1174 $) (-1174 $))) (-15 -2580 ($ (-1174 |t#1|) (-1174 $))) (-15 -2623 (|t#1| (-1174 $))) (-15 -3411 (|t#1| (-1174 $))) (-15 -2713 ((-632 |t#1|) (-1174 $))) (-15 -2946 ((-632 |t#1|) (-1174 $))) (-15 -2673 ((-1088 |t#1|) $)) (-15 -1521 ((-1088 |t#1|) $)) (-15 -1682 ((-108))) (-15 -2453 ((-108))) (-15 -1839 ((-108))) (-15 -1569 ((-108))) (-15 -3938 ((-108))) (-15 -3838 ((-108))) (-15 -1539 ((-108))) (-15 -1886 ((-108))) (-15 -1822 ((-108))) (-15 -2490 ((-108))) (-15 -2936 ((-108))) (-15 -1719 ((-108))) (-15 -3387 ((-108))) (-15 -1780 ((-108))) (-15 -2634 ((-108))) (IF (|has| |t#1| (-517)) (PROGN (-15 -3300 ((-3 $ "failed") $)) (-15 -3711 ((-3 $ "failed") $)) (-15 -3322 ((-3 $ "failed") $)) (-15 -3974 ((-592 (-1174 |t#1|)))) (-15 -2357 ((-1088 |t#1|) $)) (-15 -4047 ((-1088 |t#1|) $)) (-15 -2661 ((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed"))) (-15 -3734 ((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed"))) (-15 -2542 ((-3 $ "failed"))) (-15 -2394 ((-3 $ "failed"))) (-15 -1509 ((-3 $ "failed"))) (-6 -4256)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-663) . T) ((-687 |#1|) . T) ((-704) . T) ((-983 |#1|) . T) ((-1020) . T))
-((-4236 (((-108) $ $) 7)) (-1834 (((-713)) 16)) (-2502 (($) 13)) (-3005 (((-856) $) 14)) (-2619 (((-1075) $) 9)) (-3555 (($ (-856)) 15)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3955 (((-108) $ $) 6)))
+((-4087 (((-108) $ $) 7)) (-1613 (((-713)) 16)) (-1903 (($) 13)) (-3685 (((-856) $) 14)) (-1289 (((-1075) $) 9)) (-1722 (($ (-856)) 15)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-2775 (((-108) $ $) 6)))
(((-346) (-131)) (T -346))
-((-1834 (*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-713)))) (-3555 (*1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-346)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-856)))) (-2502 (*1 *1) (-4 *1 (-346))))
-(-13 (-1020) (-10 -8 (-15 -1834 ((-713))) (-15 -3555 ($ (-856))) (-15 -3005 ((-856) $)) (-15 -2502 ($))))
+((-1613 (*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-713)))) (-1722 (*1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-346)))) (-3685 (*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-856)))) (-1903 (*1 *1) (-4 *1 (-346))))
+(-13 (-1020) (-10 -8 (-15 -1613 ((-713))) (-15 -1722 ($ (-856))) (-15 -3685 ((-856) $)) (-15 -1903 ($))))
(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-1627 (((-632 |#2|) (-1174 $)) 41)) (-2064 (($ (-1174 |#2|) (-1174 $)) 35)) (-1906 (((-632 |#2|) $ (-1174 $)) 43)) (-1975 ((|#2| (-1174 $)) 13)) (-2387 (((-1174 |#2|) $ (-1174 $)) NIL) (((-632 |#2|) (-1174 $) (-1174 $)) 25)))
-(((-347 |#1| |#2| |#3|) (-10 -8 (-15 -1627 ((-632 |#2|) (-1174 |#1|))) (-15 -1975 (|#2| (-1174 |#1|))) (-15 -2064 (|#1| (-1174 |#2|) (-1174 |#1|))) (-15 -2387 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2387 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -1906 ((-632 |#2|) |#1| (-1174 |#1|)))) (-348 |#2| |#3|) (-160) (-1150 |#2|)) (T -347))
+((-3855 (((-632 |#2|) (-1174 $)) 41)) (-2580 (($ (-1174 |#2|) (-1174 $)) 35)) (-1588 (((-632 |#2|) $ (-1174 $)) 43)) (-4115 ((|#2| (-1174 $)) 13)) (-2754 (((-1174 |#2|) $ (-1174 $)) NIL) (((-632 |#2|) (-1174 $) (-1174 $)) 25)))
+(((-347 |#1| |#2| |#3|) (-10 -8 (-15 -3855 ((-632 |#2|) (-1174 |#1|))) (-15 -4115 (|#2| (-1174 |#1|))) (-15 -2580 (|#1| (-1174 |#2|) (-1174 |#1|))) (-15 -2754 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2754 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -1588 ((-632 |#2|) |#1| (-1174 |#1|)))) (-348 |#2| |#3|) (-160) (-1150 |#2|)) (T -347))
NIL
-(-10 -8 (-15 -1627 ((-632 |#2|) (-1174 |#1|))) (-15 -1975 (|#2| (-1174 |#1|))) (-15 -2064 (|#1| (-1174 |#2|) (-1174 |#1|))) (-15 -2387 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2387 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -1906 ((-632 |#2|) |#1| (-1174 |#1|))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1627 (((-632 |#1|) (-1174 $)) 46)) (-2952 ((|#1| $) 52)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-2064 (($ (-1174 |#1|) (-1174 $)) 48)) (-1906 (((-632 |#1|) $ (-1174 $)) 53)) (-3457 (((-3 $ "failed") $) 34)) (-3622 (((-856)) 54)) (-1396 (((-108) $) 31)) (-2382 ((|#1| $) 51)) (-2126 ((|#2| $) 44 (|has| |#1| (-341)))) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1975 ((|#1| (-1174 $)) 47)) (-2387 (((-1174 |#1|) $ (-1174 $)) 50) (((-632 |#1|) (-1174 $) (-1174 $)) 49)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37)) (-3637 (((-3 $ "failed") $) 43 (|has| |#1| (-136)))) (-1304 ((|#2| $) 45)) (-3917 (((-713)) 29)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(-10 -8 (-15 -3855 ((-632 |#2|) (-1174 |#1|))) (-15 -4115 (|#2| (-1174 |#1|))) (-15 -2580 (|#1| (-1174 |#2|) (-1174 |#1|))) (-15 -2754 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2754 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -1588 ((-632 |#2|) |#1| (-1174 |#1|))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3855 (((-632 |#1|) (-1174 $)) 46)) (-2924 ((|#1| $) 52)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-2580 (($ (-1174 |#1|) (-1174 $)) 48)) (-1588 (((-632 |#1|) $ (-1174 $)) 53)) (-3300 (((-3 $ "failed") $) 34)) (-3085 (((-856)) 54)) (-2278 (((-108) $) 31)) (-2704 ((|#1| $) 51)) (-2021 ((|#2| $) 44 (|has| |#1| (-341)))) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4115 ((|#1| (-1174 $)) 47)) (-2754 (((-1174 |#1|) $ (-1174 $)) 50) (((-632 |#1|) (-1174 $) (-1174 $)) 49)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37)) (-1463 (((-3 $ "failed") $) 43 (|has| |#1| (-136)))) (-3153 ((|#2| $) 45)) (-2448 (((-713)) 29)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
(((-348 |#1| |#2|) (-131) (-160) (-1150 |t#1|)) (T -348))
-((-3622 (*1 *2) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1150 *3)) (-5 *2 (-856)))) (-1906 (*1 *2 *1 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1150 *4)) (-5 *2 (-632 *4)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1150 *2)) (-4 *2 (-160)))) (-2382 (*1 *2 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1150 *2)) (-4 *2 (-160)))) (-2387 (*1 *2 *1 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1150 *4)) (-5 *2 (-1174 *4)))) (-2387 (*1 *2 *3 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1150 *4)) (-5 *2 (-632 *4)))) (-2064 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-1174 *1)) (-4 *4 (-160)) (-4 *1 (-348 *4 *5)) (-4 *5 (-1150 *4)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *2 *4)) (-4 *4 (-1150 *2)) (-4 *2 (-160)))) (-1627 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1150 *4)) (-5 *2 (-632 *4)))) (-1304 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1150 *3)))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *3 (-341)) (-4 *2 (-1150 *3)))))
-(-13 (-37 |t#1|) (-10 -8 (-15 -3622 ((-856))) (-15 -1906 ((-632 |t#1|) $ (-1174 $))) (-15 -2952 (|t#1| $)) (-15 -2382 (|t#1| $)) (-15 -2387 ((-1174 |t#1|) $ (-1174 $))) (-15 -2387 ((-632 |t#1|) (-1174 $) (-1174 $))) (-15 -2064 ($ (-1174 |t#1|) (-1174 $))) (-15 -1975 (|t#1| (-1174 $))) (-15 -1627 ((-632 |t#1|) (-1174 $))) (-15 -1304 (|t#2| $)) (IF (|has| |t#1| (-341)) (-15 -2126 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|)))
+((-3085 (*1 *2) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1150 *3)) (-5 *2 (-856)))) (-1588 (*1 *2 *1 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1150 *4)) (-5 *2 (-632 *4)))) (-2924 (*1 *2 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1150 *2)) (-4 *2 (-160)))) (-2704 (*1 *2 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1150 *2)) (-4 *2 (-160)))) (-2754 (*1 *2 *1 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1150 *4)) (-5 *2 (-1174 *4)))) (-2754 (*1 *2 *3 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1150 *4)) (-5 *2 (-632 *4)))) (-2580 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-1174 *1)) (-4 *4 (-160)) (-4 *1 (-348 *4 *5)) (-4 *5 (-1150 *4)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *2 *4)) (-4 *4 (-1150 *2)) (-4 *2 (-160)))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1150 *4)) (-5 *2 (-632 *4)))) (-3153 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1150 *3)))) (-2021 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *3 (-341)) (-4 *2 (-1150 *3)))))
+(-13 (-37 |t#1|) (-10 -8 (-15 -3085 ((-856))) (-15 -1588 ((-632 |t#1|) $ (-1174 $))) (-15 -2924 (|t#1| $)) (-15 -2704 (|t#1| $)) (-15 -2754 ((-1174 |t#1|) $ (-1174 $))) (-15 -2754 ((-632 |t#1|) (-1174 $) (-1174 $))) (-15 -2580 ($ (-1174 |t#1|) (-1174 $))) (-15 -4115 (|t#1| (-1174 $))) (-15 -3855 ((-632 |t#1|) (-1174 $))) (-15 -3153 (|t#2| $)) (IF (|has| |t#1| (-341)) (-15 -2021 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) . T) ((-669) . T) ((-983 |#1|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-4192 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-1284 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3165 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
-(((-349 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3165 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1284 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4192 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1128) (-351 |#1|) (-1128) (-351 |#3|)) (T -349))
-((-4192 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-4 *2 (-351 *5)) (-5 *1 (-349 *6 *4 *5 *2)) (-4 *4 (-351 *6)))) (-1284 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-349 *5 *4 *2 *6)) (-4 *4 (-351 *5)) (-4 *6 (-351 *2)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *2 (-351 *6)) (-5 *1 (-349 *5 *4 *6 *2)) (-4 *4 (-351 *5)))))
-(-10 -7 (-15 -3165 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1284 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4192 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2470 (((-108) (-1 (-108) |#2| |#2|) $) NIL) (((-108) $) 18)) (-2165 (($ (-1 (-108) |#2| |#2|) $) NIL) (($ $) 28)) (-2458 (($ (-1 (-108) |#2| |#2|) $) 27) (($ $) 22)) (-3431 (($ $) 25)) (-1932 (((-525) (-1 (-108) |#2|) $) NIL) (((-525) |#2| $) 11) (((-525) |#2| $ (-525)) NIL)) (-1577 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-350 |#1| |#2|) (-10 -8 (-15 -2165 (|#1| |#1|)) (-15 -2165 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2470 ((-108) |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -1577 (|#1| |#1| |#1|)) (-15 -1932 ((-525) |#2| |#1| (-525))) (-15 -1932 ((-525) |#2| |#1|)) (-15 -1932 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -2470 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -2458 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3431 (|#1| |#1|)) (-15 -1577 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) (-351 |#2|) (-1128)) (T -350))
-NIL
-(-10 -8 (-15 -2165 (|#1| |#1|)) (-15 -2165 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2470 ((-108) |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -1577 (|#1| |#1| |#1|)) (-15 -1932 ((-525) |#2| |#1| (-525))) (-15 -1932 ((-525) |#2| |#1|)) (-15 -1932 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -2470 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -2458 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3431 (|#1| |#1|)) (-15 -1577 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3456 (((-1179) $ (-525) (-525)) 40 (|has| $ (-6 -4259)))) (-2470 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-2165 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4259))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4259))))) (-2458 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-3991 (((-108) $ (-713)) 8)) (-1430 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) 58 (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4258)))) (-2169 (($) 7 T CONST)) (-2700 (($ $) 90 (|has| $ (-6 -4259)))) (-3431 (($ $) 100)) (-1910 (($ $) 78 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1703 (($ |#1| $) 77 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4258)))) (-2301 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) 51)) (-1932 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1020)))) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3416 (($ (-713) |#1|) 69)) (-3924 (((-108) $ (-713)) 9)) (-3666 (((-525) $) 43 (|has| (-525) (-789)))) (-2638 (($ $ $) 87 (|has| |#1| (-789)))) (-1577 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1847 (((-525) $) 44 (|has| (-525) (-789)))) (-3662 (($ $ $) 86 (|has| |#1| (-789)))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2531 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-2628 (((-592 (-525)) $) 46)) (-2978 (((-108) (-525) $) 47)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1872 ((|#1| $) 42 (|has| (-525) (-789)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1420 (($ $ |#1|) 41 (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2167 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) 48)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1141 (-525))) 63)) (-3038 (($ $ (-525)) 62) (($ $ (-1141 (-525))) 61)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-4098 (($ $ $ (-525)) 91 (|has| $ (-6 -4259)))) (-1462 (($ $) 13)) (-3210 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 70)) (-2038 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) 84 (|has| |#1| (-789)))) (-3987 (((-108) $ $) 83 (|has| |#1| (-789)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3999 (((-108) $ $) 85 (|has| |#1| (-789)))) (-3978 (((-108) $ $) 82 (|has| |#1| (-789)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-2159 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3504 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-2016 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
+(((-349 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2016 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3504 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2159 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1128) (-351 |#1|) (-1128) (-351 |#3|)) (T -349))
+((-2159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-4 *2 (-351 *5)) (-5 *1 (-349 *6 *4 *5 *2)) (-4 *4 (-351 *6)))) (-3504 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-349 *5 *4 *2 *6)) (-4 *4 (-351 *5)) (-4 *6 (-351 *2)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *2 (-351 *6)) (-5 *1 (-349 *5 *4 *6 *2)) (-4 *4 (-351 *5)))))
+(-10 -7 (-15 -2016 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3504 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2159 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2358 (((-108) (-1 (-108) |#2| |#2|) $) NIL) (((-108) $) 18)) (-2436 (($ (-1 (-108) |#2| |#2|) $) NIL) (($ $) 28)) (-1842 (($ (-1 (-108) |#2| |#2|) $) 27) (($ $) 22)) (-1652 (($ $) 25)) (-3856 (((-525) (-1 (-108) |#2|) $) NIL) (((-525) |#2| $) 11) (((-525) |#2| $ (-525)) NIL)) (-3212 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-350 |#1| |#2|) (-10 -8 (-15 -2436 (|#1| |#1|)) (-15 -2436 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2358 ((-108) |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -3212 (|#1| |#1| |#1|)) (-15 -3856 ((-525) |#2| |#1| (-525))) (-15 -3856 ((-525) |#2| |#1|)) (-15 -3856 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -2358 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1842 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -3212 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) (-351 |#2|) (-1128)) (T -350))
+NIL
+(-10 -8 (-15 -2436 (|#1| |#1|)) (-15 -2436 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2358 ((-108) |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -3212 (|#1| |#1| |#1|)) (-15 -3856 ((-525) |#2| |#1| (-525))) (-15 -3856 ((-525) |#2| |#1|)) (-15 -3856 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -2358 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1842 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -3212 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3289 (((-1179) $ (-525) (-525)) 40 (|has| $ (-6 -4260)))) (-2358 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-2436 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4260))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4260))))) (-1842 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-3779 (((-108) $ (-713)) 8)) (-1233 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) 58 (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4259)))) (-2475 (($) 7 T CONST)) (-2670 (($ $) 90 (|has| $ (-6 -4260)))) (-1652 (($ $) 100)) (-1681 (($ $) 78 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2698 (($ |#1| $) 77 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4259)))) (-3081 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) 51)) (-3856 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1020)))) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-3324 (($ (-713) |#1|) 69)) (-2516 (((-108) $ (-713)) 9)) (-1732 (((-525) $) 43 (|has| (-525) (-789)))) (-3033 (($ $ $) 87 (|has| |#1| (-789)))) (-3212 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2231 (((-525) $) 44 (|has| (-525) (-789)))) (-1609 (($ $ $) 86 (|has| |#1| (-789)))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2594 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-3177 (((-592 (-525)) $) 46)) (-3461 (((-108) (-525) $) 47)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1647 ((|#1| $) 42 (|has| (-525) (-789)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-3453 (($ $ |#1|) 41 (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-2456 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) 48)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1141 (-525))) 63)) (-2139 (($ $ (-525)) 62) (($ $ (-1141 (-525))) 61)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3632 (($ $ $ (-525)) 91 (|has| $ (-6 -4260)))) (-2503 (($ $) 13)) (-2069 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 70)) (-2035 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) 84 (|has| |#1| (-789)))) (-2807 (((-108) $ $) 83 (|has| |#1| (-789)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2817 (((-108) $ $) 85 (|has| |#1| (-789)))) (-2795 (((-108) $ $) 82 (|has| |#1| (-789)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-351 |#1|) (-131) (-1128)) (T -351))
-((-1577 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1128)))) (-3431 (*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1128)))) (-2458 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1128)))) (-2470 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-351 *4)) (-4 *4 (-1128)) (-5 *2 (-108)))) (-1932 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-351 *4)) (-4 *4 (-1128)) (-5 *2 (-525)))) (-1932 (*1 *2 *3 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-1128)) (-4 *3 (-1020)) (-5 *2 (-525)))) (-1932 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-351 *3)) (-4 *3 (-1128)) (-4 *3 (-1020)))) (-1577 (*1 *1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1128)) (-4 *2 (-789)))) (-2458 (*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1128)) (-4 *2 (-789)))) (-2470 (*1 *2 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-1128)) (-4 *3 (-789)) (-5 *2 (-108)))) (-4098 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-525)) (|has| *1 (-6 -4259)) (-4 *1 (-351 *3)) (-4 *3 (-1128)))) (-2700 (*1 *1 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-351 *2)) (-4 *2 (-1128)))) (-2165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4259)) (-4 *1 (-351 *3)) (-4 *3 (-1128)))) (-2165 (*1 *1 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-351 *2)) (-4 *2 (-1128)) (-4 *2 (-789)))))
-(-13 (-597 |t#1|) (-10 -8 (-6 -4258) (-15 -1577 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -3431 ($ $)) (-15 -2458 ($ (-1 (-108) |t#1| |t#1|) $)) (-15 -2470 ((-108) (-1 (-108) |t#1| |t#1|) $)) (-15 -1932 ((-525) (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1020)) (PROGN (-15 -1932 ((-525) |t#1| $)) (-15 -1932 ((-525) |t#1| $ (-525)))) |%noBranch|) (IF (|has| |t#1| (-789)) (PROGN (-6 (-789)) (-15 -1577 ($ $ $)) (-15 -2458 ($ $)) (-15 -2470 ((-108) $))) |%noBranch|) (IF (|has| $ (-6 -4259)) (PROGN (-15 -4098 ($ $ $ (-525))) (-15 -2700 ($ $)) (-15 -2165 ($ (-1 (-108) |t#1| |t#1|) $)) (IF (|has| |t#1| (-789)) (-15 -2165 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-33) . T) ((-97) -3254 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-789)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1020) -3254 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-1128) . T))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2726 (((-592 |#1|) $) 32)) (-1656 (($ $ (-713)) 33)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-2579 (((-1196 |#1| |#2|) (-1196 |#1| |#2|) $) 36)) (-1276 (($ $) 34)) (-1530 (((-1196 |#1| |#2|) (-1196 |#1| |#2|) $) 37)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-2457 (($ $ |#1| $) 31) (($ $ (-592 |#1|) (-592 $)) 30)) (-2343 (((-713) $) 38)) (-1230 (($ $ $) 29)) (-1217 (((-798) $) 11) (($ |#1|) 41) (((-1187 |#1| |#2|) $) 40) (((-1196 |#1| |#2|) $) 39)) (-3244 ((|#2| (-1196 |#1| |#2|) $) 42)) (-3349 (($) 18 T CONST)) (-2927 (($ (-617 |#1|)) 35)) (-3955 (((-108) $ $) 6)) (-4075 (($ $ |#2|) 28 (|has| |#2| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+((-3212 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1128)))) (-1652 (*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1128)))) (-1842 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1128)))) (-2358 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-351 *4)) (-4 *4 (-1128)) (-5 *2 (-108)))) (-3856 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-351 *4)) (-4 *4 (-1128)) (-5 *2 (-525)))) (-3856 (*1 *2 *3 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-1128)) (-4 *3 (-1020)) (-5 *2 (-525)))) (-3856 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-351 *3)) (-4 *3 (-1128)) (-4 *3 (-1020)))) (-3212 (*1 *1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1128)) (-4 *2 (-789)))) (-1842 (*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1128)) (-4 *2 (-789)))) (-2358 (*1 *2 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-1128)) (-4 *3 (-789)) (-5 *2 (-108)))) (-3632 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-525)) (|has| *1 (-6 -4260)) (-4 *1 (-351 *3)) (-4 *3 (-1128)))) (-2670 (*1 *1 *1) (-12 (|has| *1 (-6 -4260)) (-4 *1 (-351 *2)) (-4 *2 (-1128)))) (-2436 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4260)) (-4 *1 (-351 *3)) (-4 *3 (-1128)))) (-2436 (*1 *1 *1) (-12 (|has| *1 (-6 -4260)) (-4 *1 (-351 *2)) (-4 *2 (-1128)) (-4 *2 (-789)))))
+(-13 (-597 |t#1|) (-10 -8 (-6 -4259) (-15 -3212 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -1652 ($ $)) (-15 -1842 ($ (-1 (-108) |t#1| |t#1|) $)) (-15 -2358 ((-108) (-1 (-108) |t#1| |t#1|) $)) (-15 -3856 ((-525) (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1020)) (PROGN (-15 -3856 ((-525) |t#1| $)) (-15 -3856 ((-525) |t#1| $ (-525)))) |%noBranch|) (IF (|has| |t#1| (-789)) (PROGN (-6 (-789)) (-15 -3212 ($ $ $)) (-15 -1842 ($ $)) (-15 -2358 ((-108) $))) |%noBranch|) (IF (|has| $ (-6 -4260)) (PROGN (-15 -3632 ($ $ $ (-525))) (-15 -2670 ($ $)) (-15 -2436 ($ (-1 (-108) |t#1| |t#1|) $)) (IF (|has| |t#1| (-789)) (-15 -2436 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-33) . T) ((-97) -2067 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-789)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1020) -2067 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-1128) . T))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-2668 (((-592 |#1|) $) 32)) (-4107 (($ $ (-713)) 33)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3976 (((-1196 |#1| |#2|) (-1196 |#1| |#2|) $) 36)) (-4064 (($ $) 34)) (-1225 (((-1196 |#1| |#2|) (-1196 |#1| |#2|) $) 37)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-2825 (($ $ |#1| $) 31) (($ $ (-592 |#1|) (-592 $)) 30)) (-3529 (((-713) $) 38)) (-4114 (($ $ $) 29)) (-4100 (((-798) $) 11) (($ |#1|) 41) (((-1187 |#1| |#2|) $) 40) (((-1196 |#1| |#2|) $) 39)) (-2681 ((|#2| (-1196 |#1| |#2|) $) 42)) (-3364 (($) 18 T CONST)) (-4200 (($ (-617 |#1|)) 35)) (-2775 (((-108) $ $) 6)) (-2880 (($ $ |#2|) 28 (|has| |#2| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
(((-352 |#1| |#2|) (-131) (-789) (-160)) (T -352))
-((-3244 (*1 *2 *3 *1) (-12 (-5 *3 (-1196 *4 *2)) (-4 *1 (-352 *4 *2)) (-4 *4 (-789)) (-4 *2 (-160)))) (-1217 (*1 *1 *2) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160)))) (-1217 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-1187 *3 *4)))) (-1217 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-1196 *3 *4)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-713)))) (-1530 (*1 *2 *2 *1) (-12 (-5 *2 (-1196 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-2579 (*1 *2 *2 *1) (-12 (-5 *2 (-1196 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-4 *1 (-352 *3 *4)) (-4 *4 (-160)))) (-1276 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160)))) (-1656 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-2726 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-592 *3)))) (-2457 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160)))) (-2457 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 *1)) (-4 *1 (-352 *4 *5)) (-4 *4 (-789)) (-4 *5 (-160)))))
-(-13 (-583 |t#2|) (-10 -8 (-15 -3244 (|t#2| (-1196 |t#1| |t#2|) $)) (-15 -1217 ($ |t#1|)) (-15 -1217 ((-1187 |t#1| |t#2|) $)) (-15 -1217 ((-1196 |t#1| |t#2|) $)) (-15 -2343 ((-713) $)) (-15 -1530 ((-1196 |t#1| |t#2|) (-1196 |t#1| |t#2|) $)) (-15 -2579 ((-1196 |t#1| |t#2|) (-1196 |t#1| |t#2|) $)) (-15 -2927 ($ (-617 |t#1|))) (-15 -1276 ($ $)) (-15 -1656 ($ $ (-713))) (-15 -2726 ((-592 |t#1|) $)) (-15 -2457 ($ $ |t#1| $)) (-15 -2457 ($ $ (-592 |t#1|) (-592 $)))))
+((-2681 (*1 *2 *3 *1) (-12 (-5 *3 (-1196 *4 *2)) (-4 *1 (-352 *4 *2)) (-4 *4 (-789)) (-4 *2 (-160)))) (-4100 (*1 *1 *2) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160)))) (-4100 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-1187 *3 *4)))) (-4100 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-1196 *3 *4)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-713)))) (-1225 (*1 *2 *2 *1) (-12 (-5 *2 (-1196 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-3976 (*1 *2 *2 *1) (-12 (-5 *2 (-1196 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-4200 (*1 *1 *2) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-4 *1 (-352 *3 *4)) (-4 *4 (-160)))) (-4064 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160)))) (-4107 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-592 *3)))) (-2825 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160)))) (-2825 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 *1)) (-4 *1 (-352 *4 *5)) (-4 *4 (-789)) (-4 *5 (-160)))))
+(-13 (-583 |t#2|) (-10 -8 (-15 -2681 (|t#2| (-1196 |t#1| |t#2|) $)) (-15 -4100 ($ |t#1|)) (-15 -4100 ((-1187 |t#1| |t#2|) $)) (-15 -4100 ((-1196 |t#1| |t#2|) $)) (-15 -3529 ((-713) $)) (-15 -1225 ((-1196 |t#1| |t#2|) (-1196 |t#1| |t#2|) $)) (-15 -3976 ((-1196 |t#1| |t#2|) (-1196 |t#1| |t#2|) $)) (-15 -4200 ($ (-617 |t#1|))) (-15 -4064 ($ $)) (-15 -4107 ($ $ (-713))) (-15 -2668 ((-592 |t#1|) $)) (-15 -2825 ($ $ |t#1| $)) (-15 -2825 ($ $ (-592 |t#1|) (-592 $)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#2|) . T) ((-583 |#2|) . T) ((-660 |#2|) . T) ((-983 |#2|) . T) ((-1020) . T))
-((-3770 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 24)) (-2642 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 13)) (-3319 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 22)))
-(((-353 |#1| |#2|) (-10 -7 (-15 -2642 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3319 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3770 (|#2| (-1 (-108) |#1| |#1|) |#2|))) (-1128) (-13 (-351 |#1|) (-10 -7 (-6 -4259)))) (T -353))
-((-3770 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-353 *4 *2)) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4259)))))) (-3319 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-353 *4 *2)) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4259)))))) (-2642 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-353 *4 *2)) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4259)))))))
-(-10 -7 (-15 -2642 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3319 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3770 (|#2| (-1 (-108) |#1| |#1|) |#2|)))
-((-1994 (((-632 |#2|) (-632 $)) NIL) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 22) (((-632 (-525)) (-632 $)) 14)))
-(((-354 |#1| |#2|) (-10 -8 (-15 -1994 ((-632 (-525)) (-632 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-632 |#2|) (-632 |#1|)))) (-355 |#2|) (-977)) (T -354))
-NIL
-(-10 -8 (-15 -1994 ((-632 (-525)) (-632 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-632 |#2|) (-632 |#1|))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-1994 (((-632 |#1|) (-632 $)) 36) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 35) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 43 (|has| |#1| (-588 (-525)))) (((-632 (-525)) (-632 $)) 42 (|has| |#1| (-588 (-525))))) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11) (($ (-525)) 28)) (-3917 (((-713)) 29)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-3344 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 24)) (-3304 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 13)) (-1508 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 22)))
+(((-353 |#1| |#2|) (-10 -7 (-15 -3304 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -1508 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3344 (|#2| (-1 (-108) |#1| |#1|) |#2|))) (-1128) (-13 (-351 |#1|) (-10 -7 (-6 -4260)))) (T -353))
+((-3344 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-353 *4 *2)) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4260)))))) (-1508 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-353 *4 *2)) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4260)))))) (-3304 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-353 *4 *2)) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4260)))))))
+(-10 -7 (-15 -3304 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -1508 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3344 (|#2| (-1 (-108) |#1| |#1|) |#2|)))
+((-3090 (((-632 |#2|) (-632 $)) NIL) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 22) (((-632 (-525)) (-632 $)) 14)))
+(((-354 |#1| |#2|) (-10 -8 (-15 -3090 ((-632 (-525)) (-632 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-632 |#2|) (-632 |#1|)))) (-355 |#2|) (-977)) (T -354))
+NIL
+(-10 -8 (-15 -3090 ((-632 (-525)) (-632 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-632 |#2|) (-632 |#1|))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3090 (((-632 |#1|) (-632 $)) 36) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 35) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 43 (|has| |#1| (-588 (-525)))) (((-632 (-525)) (-632 $)) 42 (|has| |#1| (-588 (-525))))) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11) (($ (-525)) 28)) (-2448 (((-713)) 29)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-355 |#1|) (-131) (-977)) (T -355))
NIL
(-13 (-588 |t#1|) (-10 -7 (IF (|has| |t#1| (-588 (-525))) (-6 (-588 (-525))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-669) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-3534 (((-592 (-273 (-887 (-157 |#1|)))) (-273 (-385 (-887 (-157 (-525))))) |#1|) 51) (((-592 (-273 (-887 (-157 |#1|)))) (-385 (-887 (-157 (-525)))) |#1|) 50) (((-592 (-592 (-273 (-887 (-157 |#1|))))) (-592 (-273 (-385 (-887 (-157 (-525)))))) |#1|) 47) (((-592 (-592 (-273 (-887 (-157 |#1|))))) (-592 (-385 (-887 (-157 (-525))))) |#1|) 41)) (-2706 (((-592 (-592 (-157 |#1|))) (-592 (-385 (-887 (-157 (-525))))) (-592 (-1092)) |#1|) 30) (((-592 (-157 |#1|)) (-385 (-887 (-157 (-525)))) |#1|) 18)))
-(((-356 |#1|) (-10 -7 (-15 -3534 ((-592 (-592 (-273 (-887 (-157 |#1|))))) (-592 (-385 (-887 (-157 (-525))))) |#1|)) (-15 -3534 ((-592 (-592 (-273 (-887 (-157 |#1|))))) (-592 (-273 (-385 (-887 (-157 (-525)))))) |#1|)) (-15 -3534 ((-592 (-273 (-887 (-157 |#1|)))) (-385 (-887 (-157 (-525)))) |#1|)) (-15 -3534 ((-592 (-273 (-887 (-157 |#1|)))) (-273 (-385 (-887 (-157 (-525))))) |#1|)) (-15 -2706 ((-592 (-157 |#1|)) (-385 (-887 (-157 (-525)))) |#1|)) (-15 -2706 ((-592 (-592 (-157 |#1|))) (-592 (-385 (-887 (-157 (-525))))) (-592 (-1092)) |#1|))) (-13 (-341) (-787))) (T -356))
-((-2706 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-385 (-887 (-157 (-525)))))) (-5 *4 (-592 (-1092))) (-5 *2 (-592 (-592 (-157 *5)))) (-5 *1 (-356 *5)) (-4 *5 (-13 (-341) (-787))))) (-2706 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 (-157 (-525))))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-3534 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-887 (-157 (-525)))))) (-5 *2 (-592 (-273 (-887 (-157 *4))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-3534 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 (-157 (-525))))) (-5 *2 (-592 (-273 (-887 (-157 *4))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-3534 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-273 (-385 (-887 (-157 (-525))))))) (-5 *2 (-592 (-592 (-273 (-887 (-157 *4)))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-3534 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-887 (-157 (-525)))))) (-5 *2 (-592 (-592 (-273 (-887 (-157 *4)))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))))
-(-10 -7 (-15 -3534 ((-592 (-592 (-273 (-887 (-157 |#1|))))) (-592 (-385 (-887 (-157 (-525))))) |#1|)) (-15 -3534 ((-592 (-592 (-273 (-887 (-157 |#1|))))) (-592 (-273 (-385 (-887 (-157 (-525)))))) |#1|)) (-15 -3534 ((-592 (-273 (-887 (-157 |#1|)))) (-385 (-887 (-157 (-525)))) |#1|)) (-15 -3534 ((-592 (-273 (-887 (-157 |#1|)))) (-273 (-385 (-887 (-157 (-525))))) |#1|)) (-15 -2706 ((-592 (-157 |#1|)) (-385 (-887 (-157 (-525)))) |#1|)) (-15 -2706 ((-592 (-592 (-157 |#1|))) (-592 (-385 (-887 (-157 (-525))))) (-592 (-1092)) |#1|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 33)) (-1548 (((-525) $) 55)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-3828 (($ $) 110)) (-1575 (($ $) 82)) (-2804 (($ $) 71)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2782 (($ $) 44)) (-2193 (((-108) $ $) NIL)) (-1549 (($ $) 80)) (-2780 (($ $) 69)) (-3855 (((-525) $) 64)) (-3506 (($ $ (-525)) 62)) (-1599 (($ $) NIL)) (-2836 (($ $) NIL)) (-2169 (($) NIL T CONST)) (-3384 (($ $) 112)) (-3077 (((-3 (-525) "failed") $) 189) (((-3 (-385 (-525)) "failed") $) 185)) (-1572 (((-525) $) 187) (((-385 (-525)) $) 183)) (-1747 (($ $ $) NIL)) (-3145 (((-525) $ $) 102)) (-3457 (((-3 $ "failed") $) 114)) (-1896 (((-385 (-525)) $ (-713)) 190) (((-385 (-525)) $ (-713) (-713)) 182)) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-3836 (((-856)) 73) (((-856) (-856)) 98 (|has| $ (-6 -4249)))) (-1222 (((-108) $) 106)) (-3140 (($) 40)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL)) (-1749 (((-1179) (-713)) 152)) (-1427 (((-1179)) 157) (((-1179) (-713)) 158)) (-3542 (((-1179)) 159) (((-1179) (-713)) 160)) (-1709 (((-1179)) 155) (((-1179) (-713)) 156)) (-2581 (((-525) $) 58)) (-1396 (((-108) $) 104)) (-2171 (($ $ (-525)) NIL)) (-1745 (($ $) 48)) (-2382 (($ $) NIL)) (-3256 (((-108) $) 35)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2638 (($ $ $) NIL) (($) NIL (-12 (-1850 (|has| $ (-6 -4241))) (-1850 (|has| $ (-6 -4249)))))) (-3662 (($ $ $) NIL) (($) 99 (-12 (-1850 (|has| $ (-6 -4241))) (-1850 (|has| $ (-6 -4249)))))) (-1914 (((-525) $) 17)) (-2699 (($) 87) (($ $) 92)) (-3133 (($) 91) (($ $) 93)) (-1517 (($ $) 83)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) 116)) (-2896 (((-856) (-525)) 43 (|has| $ (-6 -4249)))) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3628 (($ $) 53)) (-2487 (($ $) 109)) (-3299 (($ (-525) (-525)) 107) (($ (-525) (-525) (-856)) 108)) (-2770 (((-396 $) $) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-4193 (((-525) $) 19)) (-4217 (($) 94)) (-3096 (($ $) 79)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3780 (((-856)) 100) (((-856) (-856)) 101 (|has| $ (-6 -4249)))) (-3376 (($ $ (-713)) NIL) (($ $) 115)) (-1930 (((-856) (-525)) 47 (|has| $ (-6 -4249)))) (-1609 (($ $) NIL)) (-1447 (($ $) NIL)) (-1587 (($ $) NIL)) (-2815 (($ $) NIL)) (-1562 (($ $) 81)) (-2794 (($ $) 70)) (-3210 (((-357) $) 175) (((-205) $) 177) (((-827 (-357)) $) NIL) (((-1075) $) 162) (((-501) $) 173) (($ (-205)) 181)) (-1217 (((-798) $) 164) (($ (-525)) 186) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-525)) 186) (($ (-385 (-525))) NIL) (((-205) $) 178)) (-3917 (((-713)) NIL)) (-3074 (($ $) 111)) (-3293 (((-856)) 54) (((-856) (-856)) 66 (|has| $ (-6 -4249)))) (-3379 (((-856)) 103)) (-1649 (($ $) 86)) (-1492 (($ $) 46) (($ $ $) 52)) (-3325 (((-108) $ $) NIL)) (-1630 (($ $) 84)) (-1465 (($ $) 37)) (-1669 (($ $) NIL)) (-1522 (($ $) NIL)) (-2359 (($ $) NIL)) (-1537 (($ $) NIL)) (-1659 (($ $) NIL)) (-1506 (($ $) NIL)) (-1639 (($ $) 85)) (-1479 (($ $) 49)) (-2802 (($ $) 51)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) 34 T CONST)) (-3359 (($) 38 T CONST)) (-1388 (((-1075) $) 27) (((-1075) $ (-108)) 29) (((-1179) (-764) $) 30) (((-1179) (-764) $ (-108)) 31)) (-2022 (($ $ (-713)) NIL) (($ $) NIL)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 39)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 42)) (-4075 (($ $ $) 45) (($ $ (-525)) 41)) (-4061 (($ $) 36) (($ $ $) 50)) (-4047 (($ $ $) 61)) (** (($ $ (-856)) 67) (($ $ (-713)) NIL) (($ $ (-525)) 88) (($ $ (-385 (-525))) 125) (($ $ $) 117)) (* (($ (-856) $) 65) (($ (-713) $) NIL) (($ (-525) $) 68) (($ $ $) 60) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
-(((-357) (-13 (-382) (-213) (-567 (-1075)) (-770) (-566 (-205)) (-1114) (-567 (-501)) (-10 -8 (-15 -4075 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -1745 ($ $)) (-15 -3145 ((-525) $ $)) (-15 -3506 ($ $ (-525))) (-15 -1896 ((-385 (-525)) $ (-713))) (-15 -1896 ((-385 (-525)) $ (-713) (-713))) (-15 -2699 ($)) (-15 -3133 ($)) (-15 -4217 ($)) (-15 -1492 ($ $ $)) (-15 -2699 ($ $)) (-15 -3133 ($ $)) (-15 -3210 ($ (-205))) (-15 -3542 ((-1179))) (-15 -3542 ((-1179) (-713))) (-15 -1709 ((-1179))) (-15 -1709 ((-1179) (-713))) (-15 -1427 ((-1179))) (-15 -1427 ((-1179) (-713))) (-15 -1749 ((-1179) (-713))) (-6 -4249) (-6 -4241)))) (T -357))
-((** (*1 *1 *1 *1) (-5 *1 (-357))) (-4075 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) (-1745 (*1 *1 *1) (-5 *1 (-357))) (-3145 (*1 *2 *1 *1) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) (-3506 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) (-1896 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357)))) (-1896 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357)))) (-2699 (*1 *1) (-5 *1 (-357))) (-3133 (*1 *1) (-5 *1 (-357))) (-4217 (*1 *1) (-5 *1 (-357))) (-1492 (*1 *1 *1 *1) (-5 *1 (-357))) (-2699 (*1 *1 *1) (-5 *1 (-357))) (-3133 (*1 *1 *1) (-5 *1 (-357))) (-3210 (*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-357)))) (-3542 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-357)))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-357)))) (-1709 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-357)))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-357)))) (-1427 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-357)))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-357)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-357)))))
-(-13 (-382) (-213) (-567 (-1075)) (-770) (-566 (-205)) (-1114) (-567 (-501)) (-10 -8 (-15 -4075 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -1745 ($ $)) (-15 -3145 ((-525) $ $)) (-15 -3506 ($ $ (-525))) (-15 -1896 ((-385 (-525)) $ (-713))) (-15 -1896 ((-385 (-525)) $ (-713) (-713))) (-15 -2699 ($)) (-15 -3133 ($)) (-15 -4217 ($)) (-15 -1492 ($ $ $)) (-15 -2699 ($ $)) (-15 -3133 ($ $)) (-15 -3210 ($ (-205))) (-15 -3542 ((-1179))) (-15 -3542 ((-1179) (-713))) (-15 -1709 ((-1179))) (-15 -1709 ((-1179) (-713))) (-15 -1427 ((-1179))) (-15 -1427 ((-1179) (-713))) (-15 -1749 ((-1179) (-713))) (-6 -4249) (-6 -4241)))
-((-3922 (((-592 (-273 (-887 |#1|))) (-273 (-385 (-887 (-525)))) |#1|) 46) (((-592 (-273 (-887 |#1|))) (-385 (-887 (-525))) |#1|) 45) (((-592 (-592 (-273 (-887 |#1|)))) (-592 (-273 (-385 (-887 (-525))))) |#1|) 42) (((-592 (-592 (-273 (-887 |#1|)))) (-592 (-385 (-887 (-525)))) |#1|) 36)) (-1231 (((-592 |#1|) (-385 (-887 (-525))) |#1|) 20) (((-592 (-592 |#1|)) (-592 (-385 (-887 (-525)))) (-592 (-1092)) |#1|) 30)))
-(((-358 |#1|) (-10 -7 (-15 -3922 ((-592 (-592 (-273 (-887 |#1|)))) (-592 (-385 (-887 (-525)))) |#1|)) (-15 -3922 ((-592 (-592 (-273 (-887 |#1|)))) (-592 (-273 (-385 (-887 (-525))))) |#1|)) (-15 -3922 ((-592 (-273 (-887 |#1|))) (-385 (-887 (-525))) |#1|)) (-15 -3922 ((-592 (-273 (-887 |#1|))) (-273 (-385 (-887 (-525)))) |#1|)) (-15 -1231 ((-592 (-592 |#1|)) (-592 (-385 (-887 (-525)))) (-592 (-1092)) |#1|)) (-15 -1231 ((-592 |#1|) (-385 (-887 (-525))) |#1|))) (-13 (-787) (-341))) (T -358))
-((-1231 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-1231 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-385 (-887 (-525))))) (-5 *4 (-592 (-1092))) (-5 *2 (-592 (-592 *5))) (-5 *1 (-358 *5)) (-4 *5 (-13 (-787) (-341))))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-887 (-525))))) (-5 *2 (-592 (-273 (-887 *4)))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 (-525)))) (-5 *2 (-592 (-273 (-887 *4)))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-273 (-385 (-887 (-525)))))) (-5 *2 (-592 (-592 (-273 (-887 *4))))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-887 (-525))))) (-5 *2 (-592 (-592 (-273 (-887 *4))))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))))
-(-10 -7 (-15 -3922 ((-592 (-592 (-273 (-887 |#1|)))) (-592 (-385 (-887 (-525)))) |#1|)) (-15 -3922 ((-592 (-592 (-273 (-887 |#1|)))) (-592 (-273 (-385 (-887 (-525))))) |#1|)) (-15 -3922 ((-592 (-273 (-887 |#1|))) (-385 (-887 (-525))) |#1|)) (-15 -3922 ((-592 (-273 (-887 |#1|))) (-273 (-385 (-887 (-525)))) |#1|)) (-15 -1231 ((-592 (-592 |#1|)) (-592 (-385 (-887 (-525)))) (-592 (-1092)) |#1|)) (-15 -1231 ((-592 |#1|) (-385 (-887 (-525))) |#1|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#2| "failed") $) 26)) (-1572 ((|#2| $) 28)) (-3063 (($ $) NIL)) (-3399 (((-713) $) 10)) (-4144 (((-592 $) $) 20)) (-1212 (((-108) $) NIL)) (-2938 (($ |#2| |#1|) 18)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2074 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3031 ((|#2| $) 15)) (-3043 ((|#1| $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 45) (($ |#2|) 27)) (-1684 (((-592 |#1|) $) 17)) (-1568 ((|#1| $ |#2|) 47)) (-3349 (($) 29 T CONST)) (-1719 (((-592 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36)))
+((-2831 (((-592 (-273 (-887 (-157 |#1|)))) (-273 (-385 (-887 (-157 (-525))))) |#1|) 51) (((-592 (-273 (-887 (-157 |#1|)))) (-385 (-887 (-157 (-525)))) |#1|) 50) (((-592 (-592 (-273 (-887 (-157 |#1|))))) (-592 (-273 (-385 (-887 (-157 (-525)))))) |#1|) 47) (((-592 (-592 (-273 (-887 (-157 |#1|))))) (-592 (-385 (-887 (-157 (-525))))) |#1|) 41)) (-2729 (((-592 (-592 (-157 |#1|))) (-592 (-385 (-887 (-157 (-525))))) (-592 (-1092)) |#1|) 30) (((-592 (-157 |#1|)) (-385 (-887 (-157 (-525)))) |#1|) 18)))
+(((-356 |#1|) (-10 -7 (-15 -2831 ((-592 (-592 (-273 (-887 (-157 |#1|))))) (-592 (-385 (-887 (-157 (-525))))) |#1|)) (-15 -2831 ((-592 (-592 (-273 (-887 (-157 |#1|))))) (-592 (-273 (-385 (-887 (-157 (-525)))))) |#1|)) (-15 -2831 ((-592 (-273 (-887 (-157 |#1|)))) (-385 (-887 (-157 (-525)))) |#1|)) (-15 -2831 ((-592 (-273 (-887 (-157 |#1|)))) (-273 (-385 (-887 (-157 (-525))))) |#1|)) (-15 -2729 ((-592 (-157 |#1|)) (-385 (-887 (-157 (-525)))) |#1|)) (-15 -2729 ((-592 (-592 (-157 |#1|))) (-592 (-385 (-887 (-157 (-525))))) (-592 (-1092)) |#1|))) (-13 (-341) (-787))) (T -356))
+((-2729 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-385 (-887 (-157 (-525)))))) (-5 *4 (-592 (-1092))) (-5 *2 (-592 (-592 (-157 *5)))) (-5 *1 (-356 *5)) (-4 *5 (-13 (-341) (-787))))) (-2729 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 (-157 (-525))))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-2831 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-887 (-157 (-525)))))) (-5 *2 (-592 (-273 (-887 (-157 *4))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-2831 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 (-157 (-525))))) (-5 *2 (-592 (-273 (-887 (-157 *4))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-2831 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-273 (-385 (-887 (-157 (-525))))))) (-5 *2 (-592 (-592 (-273 (-887 (-157 *4)))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-2831 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-887 (-157 (-525)))))) (-5 *2 (-592 (-592 (-273 (-887 (-157 *4)))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))))
+(-10 -7 (-15 -2831 ((-592 (-592 (-273 (-887 (-157 |#1|))))) (-592 (-385 (-887 (-157 (-525))))) |#1|)) (-15 -2831 ((-592 (-592 (-273 (-887 (-157 |#1|))))) (-592 (-273 (-385 (-887 (-157 (-525)))))) |#1|)) (-15 -2831 ((-592 (-273 (-887 (-157 |#1|)))) (-385 (-887 (-157 (-525)))) |#1|)) (-15 -2831 ((-592 (-273 (-887 (-157 |#1|)))) (-273 (-385 (-887 (-157 (-525))))) |#1|)) (-15 -2729 ((-592 (-157 |#1|)) (-385 (-887 (-157 (-525)))) |#1|)) (-15 -2729 ((-592 (-592 (-157 |#1|))) (-592 (-385 (-887 (-157 (-525))))) (-592 (-1092)) |#1|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 33)) (-1653 (((-525) $) 55)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-2730 (($ $) 110)) (-1803 (($ $) 82)) (-3659 (($ $) 71)) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-4211 (($ $) 44)) (-1507 (((-108) $ $) NIL)) (-1781 (($ $) 80)) (-3638 (($ $) 69)) (-2971 (((-525) $) 64)) (-3164 (($ $ (-525)) 62)) (-1828 (($ $) NIL)) (-3698 (($ $) NIL)) (-2475 (($) NIL T CONST)) (-3869 (($ $) 112)) (-1934 (((-3 (-525) "failed") $) 189) (((-3 (-385 (-525)) "failed") $) 185)) (-4105 (((-525) $) 187) (((-385 (-525)) $) 183)) (-1356 (($ $ $) NIL)) (-2520 (((-525) $ $) 102)) (-3300 (((-3 $ "failed") $) 114)) (-1503 (((-385 (-525)) $ (-713)) 190) (((-385 (-525)) $ (-713) (-713)) 182)) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-2524 (((-856)) 73) (((-856) (-856)) 98 (|has| $ (-6 -4250)))) (-1889 (((-108) $) 106)) (-4106 (($) 40)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL)) (-2546 (((-1179) (-713)) 152)) (-3550 (((-1179)) 157) (((-1179) (-713)) 158)) (-2910 (((-1179)) 159) (((-1179) (-713)) 160)) (-3403 (((-1179)) 155) (((-1179) (-713)) 156)) (-4000 (((-525) $) 58)) (-2278 (((-108) $) 104)) (-1303 (($ $ (-525)) NIL)) (-2528 (($ $) 48)) (-2704 (($ $) NIL)) (-4079 (((-108) $) 35)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3033 (($ $ $) NIL) (($) NIL (-12 (-3272 (|has| $ (-6 -4242))) (-3272 (|has| $ (-6 -4250)))))) (-1609 (($ $ $) NIL) (($) 99 (-12 (-3272 (|has| $ (-6 -4242))) (-3272 (|has| $ (-6 -4250)))))) (-1741 (((-525) $) 17)) (-2660 (($) 87) (($ $) 92)) (-2243 (($) 91) (($ $) 93)) (-2533 (($ $) 83)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) 116)) (-3870 (((-856) (-525)) 43 (|has| $ (-6 -4250)))) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1372 (($ $) 53)) (-1340 (($ $) 109)) (-3536 (($ (-525) (-525)) 107) (($ (-525) (-525) (-856)) 108)) (-4201 (((-396 $) $) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2168 (((-525) $) 19)) (-2423 (($) 94)) (-1618 (($ $) 79)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-3444 (((-856)) 100) (((-856) (-856)) 101 (|has| $ (-6 -4250)))) (-2702 (($ $ (-713)) NIL) (($ $) 115)) (-1833 (((-856) (-525)) 47 (|has| $ (-6 -4250)))) (-1841 (($ $) NIL)) (-3798 (($ $) NIL)) (-1816 (($ $) NIL)) (-3678 (($ $) NIL)) (-1792 (($ $) 81)) (-3649 (($ $) 70)) (-2069 (((-357) $) 175) (((-205) $) 177) (((-827 (-357)) $) NIL) (((-1075) $) 162) (((-501) $) 173) (($ (-205)) 181)) (-4100 (((-798) $) 164) (($ (-525)) 186) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-525)) 186) (($ (-385 (-525))) NIL) (((-205) $) 178)) (-2448 (((-713)) NIL)) (-3064 (($ $) 111)) (-1373 (((-856)) 54) (((-856) (-856)) 66 (|has| $ (-6 -4250)))) (-3771 (((-856)) 103)) (-1876 (($ $) 86)) (-3853 (($ $) 46) (($ $ $) 52)) (-1571 (((-108) $ $) NIL)) (-1853 (($ $) 84)) (-3808 (($ $) 37)) (-1902 (($ $) NIL)) (-1760 (($ $) NIL)) (-3135 (($ $) NIL)) (-1770 (($ $) NIL)) (-1891 (($ $) NIL)) (-1748 (($ $) NIL)) (-1866 (($ $) 85)) (-3820 (($ $) 49)) (-2380 (($ $) 51)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) 34 T CONST)) (-3375 (($) 38 T CONST)) (-3660 (((-1075) $) 27) (((-1075) $ (-108)) 29) (((-1179) (-764) $) 30) (((-1179) (-764) $ (-108)) 31)) (-2401 (($ $ (-713)) NIL) (($ $) NIL)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 39)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 42)) (-2880 (($ $ $) 45) (($ $ (-525)) 41)) (-2871 (($ $) 36) (($ $ $) 50)) (-2860 (($ $ $) 61)) (** (($ $ (-856)) 67) (($ $ (-713)) NIL) (($ $ (-525)) 88) (($ $ (-385 (-525))) 125) (($ $ $) 117)) (* (($ (-856) $) 65) (($ (-713) $) NIL) (($ (-525) $) 68) (($ $ $) 60) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
+(((-357) (-13 (-382) (-213) (-567 (-1075)) (-770) (-566 (-205)) (-1114) (-567 (-501)) (-10 -8 (-15 -2880 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -2528 ($ $)) (-15 -2520 ((-525) $ $)) (-15 -3164 ($ $ (-525))) (-15 -1503 ((-385 (-525)) $ (-713))) (-15 -1503 ((-385 (-525)) $ (-713) (-713))) (-15 -2660 ($)) (-15 -2243 ($)) (-15 -2423 ($)) (-15 -3853 ($ $ $)) (-15 -2660 ($ $)) (-15 -2243 ($ $)) (-15 -2069 ($ (-205))) (-15 -2910 ((-1179))) (-15 -2910 ((-1179) (-713))) (-15 -3403 ((-1179))) (-15 -3403 ((-1179) (-713))) (-15 -3550 ((-1179))) (-15 -3550 ((-1179) (-713))) (-15 -2546 ((-1179) (-713))) (-6 -4250) (-6 -4242)))) (T -357))
+((** (*1 *1 *1 *1) (-5 *1 (-357))) (-2880 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) (-2528 (*1 *1 *1) (-5 *1 (-357))) (-2520 (*1 *2 *1 *1) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) (-3164 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) (-1503 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357)))) (-1503 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357)))) (-2660 (*1 *1) (-5 *1 (-357))) (-2243 (*1 *1) (-5 *1 (-357))) (-2423 (*1 *1) (-5 *1 (-357))) (-3853 (*1 *1 *1 *1) (-5 *1 (-357))) (-2660 (*1 *1 *1) (-5 *1 (-357))) (-2243 (*1 *1 *1) (-5 *1 (-357))) (-2069 (*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-357)))) (-2910 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-357)))) (-2910 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-357)))) (-3403 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-357)))) (-3403 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-357)))) (-3550 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-357)))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-357)))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-357)))))
+(-13 (-382) (-213) (-567 (-1075)) (-770) (-566 (-205)) (-1114) (-567 (-501)) (-10 -8 (-15 -2880 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -2528 ($ $)) (-15 -2520 ((-525) $ $)) (-15 -3164 ($ $ (-525))) (-15 -1503 ((-385 (-525)) $ (-713))) (-15 -1503 ((-385 (-525)) $ (-713) (-713))) (-15 -2660 ($)) (-15 -2243 ($)) (-15 -2423 ($)) (-15 -3853 ($ $ $)) (-15 -2660 ($ $)) (-15 -2243 ($ $)) (-15 -2069 ($ (-205))) (-15 -2910 ((-1179))) (-15 -2910 ((-1179) (-713))) (-15 -3403 ((-1179))) (-15 -3403 ((-1179) (-713))) (-15 -3550 ((-1179))) (-15 -3550 ((-1179) (-713))) (-15 -2546 ((-1179) (-713))) (-6 -4250) (-6 -4242)))
+((-2496 (((-592 (-273 (-887 |#1|))) (-273 (-385 (-887 (-525)))) |#1|) 46) (((-592 (-273 (-887 |#1|))) (-385 (-887 (-525))) |#1|) 45) (((-592 (-592 (-273 (-887 |#1|)))) (-592 (-273 (-385 (-887 (-525))))) |#1|) 42) (((-592 (-592 (-273 (-887 |#1|)))) (-592 (-385 (-887 (-525)))) |#1|) 36)) (-1970 (((-592 |#1|) (-385 (-887 (-525))) |#1|) 20) (((-592 (-592 |#1|)) (-592 (-385 (-887 (-525)))) (-592 (-1092)) |#1|) 30)))
+(((-358 |#1|) (-10 -7 (-15 -2496 ((-592 (-592 (-273 (-887 |#1|)))) (-592 (-385 (-887 (-525)))) |#1|)) (-15 -2496 ((-592 (-592 (-273 (-887 |#1|)))) (-592 (-273 (-385 (-887 (-525))))) |#1|)) (-15 -2496 ((-592 (-273 (-887 |#1|))) (-385 (-887 (-525))) |#1|)) (-15 -2496 ((-592 (-273 (-887 |#1|))) (-273 (-385 (-887 (-525)))) |#1|)) (-15 -1970 ((-592 (-592 |#1|)) (-592 (-385 (-887 (-525)))) (-592 (-1092)) |#1|)) (-15 -1970 ((-592 |#1|) (-385 (-887 (-525))) |#1|))) (-13 (-787) (-341))) (T -358))
+((-1970 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-1970 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-385 (-887 (-525))))) (-5 *4 (-592 (-1092))) (-5 *2 (-592 (-592 *5))) (-5 *1 (-358 *5)) (-4 *5 (-13 (-787) (-341))))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-887 (-525))))) (-5 *2 (-592 (-273 (-887 *4)))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 (-525)))) (-5 *2 (-592 (-273 (-887 *4)))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-273 (-385 (-887 (-525)))))) (-5 *2 (-592 (-592 (-273 (-887 *4))))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-887 (-525))))) (-5 *2 (-592 (-592 (-273 (-887 *4))))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))))
+(-10 -7 (-15 -2496 ((-592 (-592 (-273 (-887 |#1|)))) (-592 (-385 (-887 (-525)))) |#1|)) (-15 -2496 ((-592 (-592 (-273 (-887 |#1|)))) (-592 (-273 (-385 (-887 (-525))))) |#1|)) (-15 -2496 ((-592 (-273 (-887 |#1|))) (-385 (-887 (-525))) |#1|)) (-15 -2496 ((-592 (-273 (-887 |#1|))) (-273 (-385 (-887 (-525)))) |#1|)) (-15 -1970 ((-592 (-592 |#1|)) (-592 (-385 (-887 (-525)))) (-592 (-1092)) |#1|)) (-15 -1970 ((-592 |#1|) (-385 (-887 (-525))) |#1|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#2| "failed") $) 26)) (-4105 ((|#2| $) 28)) (-1451 (($ $) NIL)) (-4025 (((-713) $) 10)) (-2884 (((-592 $) $) 20)) (-2457 (((-108) $) NIL)) (-2885 (($ |#2| |#1|) 18)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2669 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-1418 ((|#2| $) 15)) (-1430 ((|#1| $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 45) (($ |#2|) 27)) (-3137 (((-592 |#1|) $) 17)) (-3136 ((|#1| $ |#2|) 47)) (-3364 (($) 29 T CONST)) (-3482 (((-592 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36)))
(((-359 |#1| |#2|) (-13 (-360 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-977) (-789)) (T -359))
((* (*1 *1 *2 *3) (-12 (-5 *1 (-359 *3 *2)) (-4 *3 (-977)) (-4 *2 (-789)))))
(-13 (-360 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3077 (((-3 |#2| "failed") $) 44)) (-1572 ((|#2| $) 43)) (-3063 (($ $) 30)) (-3399 (((-713) $) 34)) (-4144 (((-592 $) $) 35)) (-1212 (((-108) $) 38)) (-2938 (($ |#2| |#1|) 39)) (-3165 (($ (-1 |#1| |#1|) $) 40)) (-2074 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3031 ((|#2| $) 33)) (-3043 ((|#1| $) 32)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11) (($ |#2|) 45)) (-1684 (((-592 |#1|) $) 36)) (-1568 ((|#1| $ |#2|) 41)) (-3349 (($) 18 T CONST)) (-1719 (((-592 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1934 (((-3 |#2| "failed") $) 44)) (-4105 ((|#2| $) 43)) (-1451 (($ $) 30)) (-4025 (((-713) $) 34)) (-2884 (((-592 $) $) 35)) (-2457 (((-108) $) 38)) (-2885 (($ |#2| |#1|) 39)) (-2016 (($ (-1 |#1| |#1|) $) 40)) (-2669 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-1418 ((|#2| $) 33)) (-1430 ((|#1| $) 32)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11) (($ |#2|) 45)) (-3137 (((-592 |#1|) $) 36)) (-3136 ((|#1| $ |#2|) 41)) (-3364 (($) 18 T CONST)) (-3482 (((-592 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
(((-360 |#1| |#2|) (-131) (-977) (-1020)) (T -360))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-977)) (-4 *3 (-1020)))) (-1568 (*1 *2 *1 *3) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1020)) (-4 *2 (-977)))) (-3165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020)))) (-2938 (*1 *1 *2 *3) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1020)))) (-1212 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-108)))) (-1719 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-592 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1684 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-592 *3)))) (-4144 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-592 *1)) (-4 *1 (-360 *3 *4)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-713)))) (-3031 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1020)))) (-3043 (*1 *2 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1020)) (-4 *2 (-977)))) (-2074 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3063 (*1 *1 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-977)) (-4 *3 (-1020)))))
-(-13 (-107 |t#1| |t#1|) (-968 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1568 (|t#1| $ |t#2|)) (-15 -3165 ($ (-1 |t#1| |t#1|) $)) (-15 -2938 ($ |t#2| |t#1|)) (-15 -1212 ((-108) $)) (-15 -1719 ((-592 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1684 ((-592 |t#1|) $)) (-15 -4144 ((-592 $) $)) (-15 -3399 ((-713) $)) (-15 -3031 (|t#2| $)) (-15 -3043 (|t#1| $)) (-15 -2074 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3063 ($ $)) (IF (|has| |t#1| (-160)) (-6 (-660 |t#1|)) |%noBranch|)))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-977)) (-4 *3 (-1020)))) (-3136 (*1 *2 *1 *3) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1020)) (-4 *2 (-977)))) (-2016 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020)))) (-2885 (*1 *1 *2 *3) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1020)))) (-2457 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-108)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-592 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-592 *3)))) (-2884 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-592 *1)) (-4 *1 (-360 *3 *4)))) (-4025 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-713)))) (-1418 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1020)))) (-1430 (*1 *2 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1020)) (-4 *2 (-977)))) (-2669 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1451 (*1 *1 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-977)) (-4 *3 (-1020)))))
+(-13 (-107 |t#1| |t#1|) (-968 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3136 (|t#1| $ |t#2|)) (-15 -2016 ($ (-1 |t#1| |t#1|) $)) (-15 -2885 ($ |t#2| |t#1|)) (-15 -2457 ((-108) $)) (-15 -3482 ((-592 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3137 ((-592 |t#1|) $)) (-15 -2884 ((-592 $) $)) (-15 -4025 ((-713) $)) (-15 -1418 (|t#2| $)) (-15 -1430 (|t#1| $)) (-15 -2669 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1451 ($ $)) (IF (|has| |t#1| (-160)) (-6 (-660 |t#1|)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-660 |#1|) |has| |#1| (-160)) ((-968 |#2|) . T) ((-983 |#1|) . T) ((-1020) . T))
-((-3252 (((-1179) $) 7)) (-1217 (((-798) $) 8) (($ (-632 (-641))) 14) (($ (-592 (-308))) 13) (($ (-308)) 12) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 11)))
+((-2584 (((-1179) $) 7)) (-4100 (((-798) $) 8) (($ (-632 (-641))) 14) (($ (-592 (-308))) 13) (($ (-308)) 12) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 11)))
(((-361) (-131)) (T -361))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-632 (-641))) (-4 *1 (-361)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-361)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-361)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) (-4 *1 (-361)))))
-(-13 (-373) (-10 -8 (-15 -1217 ($ (-632 (-641)))) (-15 -1217 ($ (-592 (-308)))) (-15 -1217 ($ (-308))) (-15 -1217 ($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))))))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-632 (-641))) (-4 *1 (-361)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-361)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-361)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) (-4 *1 (-361)))))
+(-13 (-373) (-10 -8 (-15 -4100 ($ (-632 (-641)))) (-15 -4100 ($ (-592 (-308)))) (-15 -4100 ($ (-308))) (-15 -4100 ($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))))))
(((-566 (-798)) . T) ((-373) . T) ((-1128) . T))
-((-3077 (((-3 $ "failed") (-632 (-294 (-357)))) 21) (((-3 $ "failed") (-632 (-294 (-525)))) 19) (((-3 $ "failed") (-632 (-887 (-357)))) 17) (((-3 $ "failed") (-632 (-887 (-525)))) 15) (((-3 $ "failed") (-632 (-385 (-887 (-357))))) 13) (((-3 $ "failed") (-632 (-385 (-887 (-525))))) 11)) (-1572 (($ (-632 (-294 (-357)))) 22) (($ (-632 (-294 (-525)))) 20) (($ (-632 (-887 (-357)))) 18) (($ (-632 (-887 (-525)))) 16) (($ (-632 (-385 (-887 (-357))))) 14) (($ (-632 (-385 (-887 (-525))))) 12)) (-3252 (((-1179) $) 7)) (-1217 (((-798) $) 8) (($ (-592 (-308))) 25) (($ (-308)) 24) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 23)))
+((-1934 (((-3 $ "failed") (-632 (-294 (-357)))) 21) (((-3 $ "failed") (-632 (-294 (-525)))) 19) (((-3 $ "failed") (-632 (-887 (-357)))) 17) (((-3 $ "failed") (-632 (-887 (-525)))) 15) (((-3 $ "failed") (-632 (-385 (-887 (-357))))) 13) (((-3 $ "failed") (-632 (-385 (-887 (-525))))) 11)) (-4105 (($ (-632 (-294 (-357)))) 22) (($ (-632 (-294 (-525)))) 20) (($ (-632 (-887 (-357)))) 18) (($ (-632 (-887 (-525)))) 16) (($ (-632 (-385 (-887 (-357))))) 14) (($ (-632 (-385 (-887 (-525))))) 12)) (-2584 (((-1179) $) 7)) (-4100 (((-798) $) 8) (($ (-592 (-308))) 25) (($ (-308)) 24) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 23)))
(((-362) (-131)) (T -362))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-362)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-362)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) (-4 *1 (-362)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-357)))) (-4 *1 (-362)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-294 (-357)))) (-4 *1 (-362)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-4 *1 (-362)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-294 (-525)))) (-4 *1 (-362)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-632 (-887 (-357)))) (-4 *1 (-362)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-887 (-357)))) (-4 *1 (-362)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-632 (-887 (-525)))) (-4 *1 (-362)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-887 (-525)))) (-4 *1 (-362)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-887 (-357))))) (-4 *1 (-362)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-385 (-887 (-357))))) (-4 *1 (-362)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-887 (-525))))) (-4 *1 (-362)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-385 (-887 (-525))))) (-4 *1 (-362)))))
-(-13 (-373) (-10 -8 (-15 -1217 ($ (-592 (-308)))) (-15 -1217 ($ (-308))) (-15 -1217 ($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308)))))) (-15 -1572 ($ (-632 (-294 (-357))))) (-15 -3077 ((-3 $ "failed") (-632 (-294 (-357))))) (-15 -1572 ($ (-632 (-294 (-525))))) (-15 -3077 ((-3 $ "failed") (-632 (-294 (-525))))) (-15 -1572 ($ (-632 (-887 (-357))))) (-15 -3077 ((-3 $ "failed") (-632 (-887 (-357))))) (-15 -1572 ($ (-632 (-887 (-525))))) (-15 -3077 ((-3 $ "failed") (-632 (-887 (-525))))) (-15 -1572 ($ (-632 (-385 (-887 (-357)))))) (-15 -3077 ((-3 $ "failed") (-632 (-385 (-887 (-357)))))) (-15 -1572 ($ (-632 (-385 (-887 (-525)))))) (-15 -3077 ((-3 $ "failed") (-632 (-385 (-887 (-525))))))))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-362)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-362)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) (-4 *1 (-362)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-357)))) (-4 *1 (-362)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-294 (-357)))) (-4 *1 (-362)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-4 *1 (-362)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-294 (-525)))) (-4 *1 (-362)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-632 (-887 (-357)))) (-4 *1 (-362)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-887 (-357)))) (-4 *1 (-362)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-632 (-887 (-525)))) (-4 *1 (-362)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-887 (-525)))) (-4 *1 (-362)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-887 (-357))))) (-4 *1 (-362)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-385 (-887 (-357))))) (-4 *1 (-362)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-887 (-525))))) (-4 *1 (-362)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-385 (-887 (-525))))) (-4 *1 (-362)))))
+(-13 (-373) (-10 -8 (-15 -4100 ($ (-592 (-308)))) (-15 -4100 ($ (-308))) (-15 -4100 ($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308)))))) (-15 -4105 ($ (-632 (-294 (-357))))) (-15 -1934 ((-3 $ "failed") (-632 (-294 (-357))))) (-15 -4105 ($ (-632 (-294 (-525))))) (-15 -1934 ((-3 $ "failed") (-632 (-294 (-525))))) (-15 -4105 ($ (-632 (-887 (-357))))) (-15 -1934 ((-3 $ "failed") (-632 (-887 (-357))))) (-15 -4105 ($ (-632 (-887 (-525))))) (-15 -1934 ((-3 $ "failed") (-632 (-887 (-525))))) (-15 -4105 ($ (-632 (-385 (-887 (-357)))))) (-15 -1934 ((-3 $ "failed") (-632 (-385 (-887 (-357)))))) (-15 -4105 ($ (-632 (-385 (-887 (-525)))))) (-15 -1934 ((-3 $ "failed") (-632 (-385 (-887 (-525))))))))
(((-566 (-798)) . T) ((-373) . T) ((-1128) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3063 (($ $) NIL)) (-2876 (($ |#1| |#2|) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-3064 ((|#2| $) NIL)) (-3043 ((|#1| $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 28)) (-3349 (($) 12 T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-1451 (($ $) NIL)) (-1272 (($ |#1| |#2|) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2975 ((|#2| $) NIL)) (-1430 ((|#1| $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 28)) (-3364 (($) 12 T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
(((-363 |#1| |#2|) (-13 (-107 |#1| |#1|) (-481 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-160)) (-6 (-660 |#1|)) |%noBranch|))) (-977) (-789)) (T -363))
NIL
(-13 (-107 |#1| |#1|) (-481 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-160)) (-6 (-660 |#1|)) |%noBranch|)))
-((-4236 (((-108) $ $) NIL)) (-1834 (((-713) $) 59)) (-2169 (($) NIL T CONST)) (-2579 (((-3 $ "failed") $ $) 61)) (-3077 (((-3 |#1| "failed") $) NIL)) (-1572 ((|#1| $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1453 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-1396 (((-108) $) 15)) (-1726 ((|#1| $ (-525)) NIL)) (-3084 (((-713) $ (-525)) NIL)) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2527 (($ (-1 |#1| |#1|) $) 38)) (-2166 (($ (-1 (-713) (-713)) $) 35)) (-1530 (((-3 $ "failed") $ $) 50)) (-2619 (((-1075) $) NIL)) (-3346 (($ $ $) 26)) (-3634 (($ $ $) 24)) (-2093 (((-1039) $) NIL)) (-3843 (((-592 (-2 (|:| |gen| |#1|) (|:| -3096 (-713)))) $) 32)) (-2818 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-1217 (((-798) $) 22) (($ |#1|) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3359 (($) 9 T CONST)) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) 41)) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) 63 (|has| |#1| (-789)))) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ |#1| (-713)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
-(((-364 |#1|) (-13 (-669) (-968 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -3634 ($ $ $)) (-15 -3346 ($ $ $)) (-15 -1530 ((-3 $ "failed") $ $)) (-15 -2579 ((-3 $ "failed") $ $)) (-15 -2818 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1453 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1834 ((-713) $)) (-15 -3843 ((-592 (-2 (|:| |gen| |#1|) (|:| -3096 (-713)))) $)) (-15 -3084 ((-713) $ (-525))) (-15 -1726 (|#1| $ (-525))) (-15 -2166 ($ (-1 (-713) (-713)) $)) (-15 -2527 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|))) (-1020)) (T -364))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (-3634 (*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (-3346 (*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (-1530 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (-2579 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (-2818 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-364 *3)) (|:| |rm| (-364 *3)))) (-5 *1 (-364 *3)) (-4 *3 (-1020)))) (-1453 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-364 *3)) (|:| |mm| (-364 *3)) (|:| |rm| (-364 *3)))) (-5 *1 (-364 *3)) (-4 *3 (-1020)))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-364 *3)) (-4 *3 (-1020)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -3096 (-713))))) (-5 *1 (-364 *3)) (-4 *3 (-1020)))) (-3084 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-364 *4)) (-4 *4 (-1020)))) (-1726 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (-2166 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-713) (-713))) (-5 *1 (-364 *3)) (-4 *3 (-1020)))) (-2527 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-364 *3)))))
-(-13 (-669) (-968 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -3634 ($ $ $)) (-15 -3346 ($ $ $)) (-15 -1530 ((-3 $ "failed") $ $)) (-15 -2579 ((-3 $ "failed") $ $)) (-15 -2818 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1453 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1834 ((-713) $)) (-15 -3843 ((-592 (-2 (|:| |gen| |#1|) (|:| -3096 (-713)))) $)) (-15 -3084 ((-713) $ (-525))) (-15 -1726 (|#1| $ (-525))) (-15 -2166 ($ (-1 (-713) (-713)) $)) (-15 -2527 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3077 (((-3 (-525) "failed") $) 47)) (-1572 (((-525) $) 46)) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-2638 (($ $ $) 54)) (-3662 (($ $ $) 53)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1715 (((-3 $ "failed") $ $) 42)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-525)) 48)) (-3917 (((-713)) 29)) (-3325 (((-108) $ $) 39)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-4011 (((-108) $ $) 51)) (-3987 (((-108) $ $) 50)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 52)) (-3978 (((-108) $ $) 49)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-4087 (((-108) $ $) NIL)) (-1613 (((-713) $) 59)) (-2475 (($) NIL T CONST)) (-3976 (((-3 $ "failed") $ $) 61)) (-1934 (((-3 |#1| "failed") $) NIL)) (-4105 ((|#1| $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-2474 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2278 (((-108) $) 15)) (-3538 ((|#1| $ (-525)) NIL)) (-2020 (((-713) $ (-525)) NIL)) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-1693 (($ (-1 |#1| |#1|) $) 38)) (-2447 (($ (-1 (-713) (-713)) $) 35)) (-1225 (((-3 $ "failed") $ $) 50)) (-1289 (((-1075) $) NIL)) (-1759 (($ $ $) 26)) (-1433 (($ $ $) 24)) (-3993 (((-1039) $) NIL)) (-2868 (((-592 (-2 (|:| |gen| |#1|) (|:| -1618 (-713)))) $) 32)) (-2494 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-4100 (((-798) $) 22) (($ |#1|) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3375 (($) 9 T CONST)) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) 41)) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) 63 (|has| |#1| (-789)))) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ |#1| (-713)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
+(((-364 |#1|) (-13 (-669) (-968 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -1433 ($ $ $)) (-15 -1759 ($ $ $)) (-15 -1225 ((-3 $ "failed") $ $)) (-15 -3976 ((-3 $ "failed") $ $)) (-15 -2494 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2474 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1613 ((-713) $)) (-15 -2868 ((-592 (-2 (|:| |gen| |#1|) (|:| -1618 (-713)))) $)) (-15 -2020 ((-713) $ (-525))) (-15 -3538 (|#1| $ (-525))) (-15 -2447 ($ (-1 (-713) (-713)) $)) (-15 -1693 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|))) (-1020)) (T -364))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (-1433 (*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (-1759 (*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (-1225 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (-3976 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (-2494 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-364 *3)) (|:| |rm| (-364 *3)))) (-5 *1 (-364 *3)) (-4 *3 (-1020)))) (-2474 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-364 *3)) (|:| |mm| (-364 *3)) (|:| |rm| (-364 *3)))) (-5 *1 (-364 *3)) (-4 *3 (-1020)))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-364 *3)) (-4 *3 (-1020)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1618 (-713))))) (-5 *1 (-364 *3)) (-4 *3 (-1020)))) (-2020 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-364 *4)) (-4 *4 (-1020)))) (-3538 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (-2447 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-713) (-713))) (-5 *1 (-364 *3)) (-4 *3 (-1020)))) (-1693 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-364 *3)))))
+(-13 (-669) (-968 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -1433 ($ $ $)) (-15 -1759 ($ $ $)) (-15 -1225 ((-3 $ "failed") $ $)) (-15 -3976 ((-3 $ "failed") $ $)) (-15 -2494 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2474 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1613 ((-713) $)) (-15 -2868 ((-592 (-2 (|:| |gen| |#1|) (|:| -1618 (-713)))) $)) (-15 -2020 ((-713) $ (-525))) (-15 -3538 (|#1| $ (-525))) (-15 -2447 ($ (-1 (-713) (-713)) $)) (-15 -1693 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1934 (((-3 (-525) "failed") $) 47)) (-4105 (((-525) $) 46)) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-3033 (($ $ $) 54)) (-1609 (($ $ $) 53)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1311 (((-3 $ "failed") $ $) 42)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-525)) 48)) (-2448 (((-713)) 29)) (-1571 (((-108) $ $) 39)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2830 (((-108) $ $) 51)) (-2807 (((-108) $ $) 50)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 52)) (-2795 (((-108) $ $) 49)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-365) (-131)) (T -365))
NIL
(-13 (-517) (-789) (-968 (-525)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-269) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-789) . T) ((-968 (-525)) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-2283 (((-108) $) 20)) (-1330 (((-108) $) 19)) (-3416 (($ (-1075) (-1075) (-1075)) 21)) (-3257 (((-1075) $) 16)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3391 (($ (-1075) (-1075) (-1075)) 14)) (-2670 (((-1075) $) 17)) (-3394 (((-108) $) 18)) (-3235 (((-1075) $) 15)) (-1217 (((-798) $) 12) (($ (-1075)) 13) (((-1075) $) 9)) (-3955 (((-108) $ $) 7)))
+((-4087 (((-108) $ $) NIL)) (-4179 (((-108) $) 20)) (-2930 (((-108) $) 19)) (-3324 (($ (-1075) (-1075) (-1075)) 21)) (-2411 (((-1075) $) 16)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1575 (($ (-1075) (-1075) (-1075)) 14)) (-3594 (((-1075) $) 17)) (-3970 (((-108) $) 18)) (-3793 (((-1075) $) 15)) (-4100 (((-798) $) 12) (($ (-1075)) 13) (((-1075) $) 9)) (-2775 (((-108) $ $) 7)))
(((-366) (-367)) (T -366))
NIL
(-367)
-((-4236 (((-108) $ $) 7)) (-2283 (((-108) $) 14)) (-1330 (((-108) $) 15)) (-3416 (($ (-1075) (-1075) (-1075)) 13)) (-3257 (((-1075) $) 18)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-3391 (($ (-1075) (-1075) (-1075)) 20)) (-2670 (((-1075) $) 17)) (-3394 (((-108) $) 16)) (-3235 (((-1075) $) 19)) (-1217 (((-798) $) 11) (($ (-1075)) 22) (((-1075) $) 21)) (-3955 (((-108) $ $) 6)))
+((-4087 (((-108) $ $) 7)) (-4179 (((-108) $) 14)) (-2930 (((-108) $) 15)) (-3324 (($ (-1075) (-1075) (-1075)) 13)) (-2411 (((-1075) $) 18)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1575 (($ (-1075) (-1075) (-1075)) 20)) (-3594 (((-1075) $) 17)) (-3970 (((-108) $) 16)) (-3793 (((-1075) $) 19)) (-4100 (((-798) $) 11) (($ (-1075)) 22) (((-1075) $) 21)) (-2775 (((-108) $ $) 6)))
(((-367) (-131)) (T -367))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-367)))) (-1217 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1075)))) (-3391 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-367)))) (-3235 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1075)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1075)))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1075)))) (-3394 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))) (-2283 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))) (-3416 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-367)))))
-(-13 (-1020) (-10 -8 (-15 -1217 ($ (-1075))) (-15 -1217 ((-1075) $)) (-15 -3391 ($ (-1075) (-1075) (-1075))) (-15 -3235 ((-1075) $)) (-15 -3257 ((-1075) $)) (-15 -2670 ((-1075) $)) (-15 -3394 ((-108) $)) (-15 -1330 ((-108) $)) (-15 -2283 ((-108) $)) (-15 -3416 ($ (-1075) (-1075) (-1075)))))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-367)))) (-4100 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1075)))) (-1575 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-367)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1075)))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1075)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1075)))) (-3970 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))) (-2930 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))) (-4179 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))) (-3324 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-367)))))
+(-13 (-1020) (-10 -8 (-15 -4100 ($ (-1075))) (-15 -4100 ((-1075) $)) (-15 -1575 ($ (-1075) (-1075) (-1075))) (-15 -3793 ((-1075) $)) (-15 -2411 ((-1075) $)) (-15 -3594 ((-1075) $)) (-15 -3970 ((-108) $)) (-15 -2930 ((-108) $)) (-15 -4179 ((-108) $)) (-15 -3324 ($ (-1075) (-1075) (-1075)))))
(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-3979 (((-798) $) 50)) (-2169 (($) NIL T CONST)) (-2837 (($ $ (-856)) NIL)) (-3587 (($ $ (-856)) NIL)) (-2817 (($ $ (-856)) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3409 (($ (-713)) 26)) (-3705 (((-713)) 17)) (-2406 (((-798) $) 52)) (-1990 (($ $ $) NIL)) (-1217 (((-798) $) NIL)) (-3746 (($ $ $ $) NIL)) (-2597 (($ $ $) NIL)) (-3349 (($) 20 T CONST)) (-3955 (((-108) $ $) 28)) (-4061 (($ $) 34) (($ $ $) 36)) (-4047 (($ $ $) 37)) (** (($ $ (-856)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
-(((-368 |#1| |#2| |#3|) (-13 (-687 |#3|) (-10 -8 (-15 -3705 ((-713))) (-15 -2406 ((-798) $)) (-15 -3979 ((-798) $)) (-15 -3409 ($ (-713))))) (-713) (-713) (-160)) (T -368))
-((-3705 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-160)))) (-2406 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-160)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-160)))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-160)))))
-(-13 (-687 |#3|) (-10 -8 (-15 -3705 ((-713))) (-15 -2406 ((-798) $)) (-15 -3979 ((-798) $)) (-15 -3409 ($ (-713)))))
-((-1811 (((-1075)) 10)) (-2710 (((-1064 (-1075))) 28)) (-3228 (((-1179) (-1075)) 25) (((-1179) (-366)) 24)) (-3236 (((-1179)) 26)) (-3221 (((-1064 (-1075))) 27)))
-(((-369) (-10 -7 (-15 -3221 ((-1064 (-1075)))) (-15 -2710 ((-1064 (-1075)))) (-15 -3236 ((-1179))) (-15 -3228 ((-1179) (-366))) (-15 -3228 ((-1179) (-1075))) (-15 -1811 ((-1075))))) (T -369))
-((-1811 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-369)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-369)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1179)) (-5 *1 (-369)))) (-3236 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-369)))) (-2710 (*1 *2) (-12 (-5 *2 (-1064 (-1075))) (-5 *1 (-369)))) (-3221 (*1 *2) (-12 (-5 *2 (-1064 (-1075))) (-5 *1 (-369)))))
-(-10 -7 (-15 -3221 ((-1064 (-1075)))) (-15 -2710 ((-1064 (-1075)))) (-15 -3236 ((-1179))) (-15 -3228 ((-1179) (-366))) (-15 -3228 ((-1179) (-1075))) (-15 -1811 ((-1075))))
-((-2581 (((-713) (-314 |#1| |#2| |#3| |#4|)) 16)))
-(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2581 ((-713) (-314 |#1| |#2| |#3| |#4|)))) (-13 (-346) (-341)) (-1150 |#1|) (-1150 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -370))
-((-2581 (*1 *2 *3) (-12 (-5 *3 (-314 *4 *5 *6 *7)) (-4 *4 (-13 (-346) (-341))) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5))) (-4 *7 (-320 *4 *5 *6)) (-5 *2 (-713)) (-5 *1 (-370 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2581 ((-713) (-314 |#1| |#2| |#3| |#4|))))
-((-1217 (((-372) |#1|) 11)))
-(((-371 |#1|) (-10 -7 (-15 -1217 ((-372) |#1|))) (-1020)) (T -371))
-((-1217 (*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-371 *3)) (-4 *3 (-1020)))))
-(-10 -7 (-15 -1217 ((-372) |#1|)))
-((-4236 (((-108) $ $) NIL)) (-3730 (((-592 (-1075)) $ (-592 (-1075))) 38)) (-3504 (((-592 (-1075)) $ (-592 (-1075))) 39)) (-4170 (((-592 (-1075)) $ (-592 (-1075))) 40)) (-1458 (((-592 (-1075)) $) 35)) (-3416 (($) 23)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1590 (((-592 (-1075)) $) 36)) (-2138 (((-592 (-1075)) $) 37)) (-2736 (((-1179) $ (-525)) 33) (((-1179) $) 34)) (-3210 (($ (-798) (-525)) 30)) (-1217 (((-798) $) 42) (($ (-798)) 25)) (-3955 (((-108) $ $) NIL)))
-(((-372) (-13 (-1020) (-10 -8 (-15 -1217 ($ (-798))) (-15 -3210 ($ (-798) (-525))) (-15 -2736 ((-1179) $ (-525))) (-15 -2736 ((-1179) $)) (-15 -2138 ((-592 (-1075)) $)) (-15 -1590 ((-592 (-1075)) $)) (-15 -3416 ($)) (-15 -1458 ((-592 (-1075)) $)) (-15 -4170 ((-592 (-1075)) $ (-592 (-1075)))) (-15 -3504 ((-592 (-1075)) $ (-592 (-1075)))) (-15 -3730 ((-592 (-1075)) $ (-592 (-1075))))))) (T -372))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-372)))) (-3210 (*1 *1 *2 *3) (-12 (-5 *2 (-798)) (-5 *3 (-525)) (-5 *1 (-372)))) (-2736 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-372)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-372)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372)))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372)))) (-3416 (*1 *1) (-5 *1 (-372))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372)))) (-4170 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372)))) (-3504 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372)))) (-3730 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372)))))
-(-13 (-1020) (-10 -8 (-15 -1217 ($ (-798))) (-15 -3210 ($ (-798) (-525))) (-15 -2736 ((-1179) $ (-525))) (-15 -2736 ((-1179) $)) (-15 -2138 ((-592 (-1075)) $)) (-15 -1590 ((-592 (-1075)) $)) (-15 -3416 ($)) (-15 -1458 ((-592 (-1075)) $)) (-15 -4170 ((-592 (-1075)) $ (-592 (-1075)))) (-15 -3504 ((-592 (-1075)) $ (-592 (-1075)))) (-15 -3730 ((-592 (-1075)) $ (-592 (-1075))))))
-((-3252 (((-1179) $) 7)) (-1217 (((-798) $) 8)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-1868 (((-798) $) 50)) (-2475 (($) NIL T CONST)) (-1488 (($ $ (-856)) NIL)) (-2156 (($ $ (-856)) NIL)) (-2486 (($ $ (-856)) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-3817 (($ (-713)) 26)) (-3933 (((-713)) 17)) (-2927 (((-798) $) 52)) (-1242 (($ $ $) NIL)) (-4100 (((-798) $) NIL)) (-3133 (($ $ $ $) NIL)) (-4148 (($ $ $) NIL)) (-3364 (($) 20 T CONST)) (-2775 (((-108) $ $) 28)) (-2871 (($ $) 34) (($ $ $) 36)) (-2860 (($ $ $) 37)) (** (($ $ (-856)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
+(((-368 |#1| |#2| |#3|) (-13 (-687 |#3|) (-10 -8 (-15 -3933 ((-713))) (-15 -2927 ((-798) $)) (-15 -1868 ((-798) $)) (-15 -3817 ($ (-713))))) (-713) (-713) (-160)) (T -368))
+((-3933 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-160)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-160)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-160)))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-160)))))
+(-13 (-687 |#3|) (-10 -8 (-15 -3933 ((-713))) (-15 -2927 ((-798) $)) (-15 -1868 ((-798) $)) (-15 -3817 ($ (-713)))))
+((-1916 (((-1075)) 10)) (-2757 (((-1064 (-1075))) 28)) (-2563 (((-1179) (-1075)) 25) (((-1179) (-366)) 24)) (-2573 (((-1179)) 26)) (-1995 (((-1064 (-1075))) 27)))
+(((-369) (-10 -7 (-15 -1995 ((-1064 (-1075)))) (-15 -2757 ((-1064 (-1075)))) (-15 -2573 ((-1179))) (-15 -2563 ((-1179) (-366))) (-15 -2563 ((-1179) (-1075))) (-15 -1916 ((-1075))))) (T -369))
+((-1916 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-369)))) (-2563 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-369)))) (-2563 (*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1179)) (-5 *1 (-369)))) (-2573 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-369)))) (-2757 (*1 *2) (-12 (-5 *2 (-1064 (-1075))) (-5 *1 (-369)))) (-1995 (*1 *2) (-12 (-5 *2 (-1064 (-1075))) (-5 *1 (-369)))))
+(-10 -7 (-15 -1995 ((-1064 (-1075)))) (-15 -2757 ((-1064 (-1075)))) (-15 -2573 ((-1179))) (-15 -2563 ((-1179) (-366))) (-15 -2563 ((-1179) (-1075))) (-15 -1916 ((-1075))))
+((-4000 (((-713) (-314 |#1| |#2| |#3| |#4|)) 16)))
+(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4000 ((-713) (-314 |#1| |#2| |#3| |#4|)))) (-13 (-346) (-341)) (-1150 |#1|) (-1150 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -370))
+((-4000 (*1 *2 *3) (-12 (-5 *3 (-314 *4 *5 *6 *7)) (-4 *4 (-13 (-346) (-341))) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5))) (-4 *7 (-320 *4 *5 *6)) (-5 *2 (-713)) (-5 *1 (-370 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4000 ((-713) (-314 |#1| |#2| |#3| |#4|))))
+((-4100 (((-372) |#1|) 11)))
+(((-371 |#1|) (-10 -7 (-15 -4100 ((-372) |#1|))) (-1020)) (T -371))
+((-4100 (*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-371 *3)) (-4 *3 (-1020)))))
+(-10 -7 (-15 -4100 ((-372) |#1|)))
+((-4087 (((-108) $ $) NIL)) (-4204 (((-592 (-1075)) $ (-592 (-1075))) 38)) (-2587 (((-592 (-1075)) $ (-592 (-1075))) 39)) (-3108 (((-592 (-1075)) $ (-592 (-1075))) 40)) (-2514 (((-592 (-1075)) $) 35)) (-3324 (($) 23)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2679 (((-592 (-1075)) $) 36)) (-2144 (((-592 (-1075)) $) 37)) (-2701 (((-1179) $ (-525)) 33) (((-1179) $) 34)) (-2069 (($ (-798) (-525)) 30)) (-4100 (((-798) $) 42) (($ (-798)) 25)) (-2775 (((-108) $ $) NIL)))
+(((-372) (-13 (-1020) (-10 -8 (-15 -4100 ($ (-798))) (-15 -2069 ($ (-798) (-525))) (-15 -2701 ((-1179) $ (-525))) (-15 -2701 ((-1179) $)) (-15 -2144 ((-592 (-1075)) $)) (-15 -2679 ((-592 (-1075)) $)) (-15 -3324 ($)) (-15 -2514 ((-592 (-1075)) $)) (-15 -3108 ((-592 (-1075)) $ (-592 (-1075)))) (-15 -2587 ((-592 (-1075)) $ (-592 (-1075)))) (-15 -4204 ((-592 (-1075)) $ (-592 (-1075))))))) (T -372))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-372)))) (-2069 (*1 *1 *2 *3) (-12 (-5 *2 (-798)) (-5 *3 (-525)) (-5 *1 (-372)))) (-2701 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-372)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-372)))) (-2144 (*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372)))) (-3324 (*1 *1) (-5 *1 (-372))) (-2514 (*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372)))) (-3108 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372)))) (-2587 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372)))) (-4204 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372)))))
+(-13 (-1020) (-10 -8 (-15 -4100 ($ (-798))) (-15 -2069 ($ (-798) (-525))) (-15 -2701 ((-1179) $ (-525))) (-15 -2701 ((-1179) $)) (-15 -2144 ((-592 (-1075)) $)) (-15 -2679 ((-592 (-1075)) $)) (-15 -3324 ($)) (-15 -2514 ((-592 (-1075)) $)) (-15 -3108 ((-592 (-1075)) $ (-592 (-1075)))) (-15 -2587 ((-592 (-1075)) $ (-592 (-1075)))) (-15 -4204 ((-592 (-1075)) $ (-592 (-1075))))))
+((-2584 (((-1179) $) 7)) (-4100 (((-798) $) 8)))
(((-373) (-131)) (T -373))
-((-3252 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1179)))))
-(-13 (-1128) (-566 (-798)) (-10 -8 (-15 -3252 ((-1179) $))))
+((-2584 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1179)))))
+(-13 (-1128) (-566 (-798)) (-10 -8 (-15 -2584 ((-1179) $))))
(((-566 (-798)) . T) ((-1128) . T))
-((-3077 (((-3 $ "failed") (-294 (-357))) 21) (((-3 $ "failed") (-294 (-525))) 19) (((-3 $ "failed") (-887 (-357))) 17) (((-3 $ "failed") (-887 (-525))) 15) (((-3 $ "failed") (-385 (-887 (-357)))) 13) (((-3 $ "failed") (-385 (-887 (-525)))) 11)) (-1572 (($ (-294 (-357))) 22) (($ (-294 (-525))) 20) (($ (-887 (-357))) 18) (($ (-887 (-525))) 16) (($ (-385 (-887 (-357)))) 14) (($ (-385 (-887 (-525)))) 12)) (-3252 (((-1179) $) 7)) (-1217 (((-798) $) 8) (($ (-592 (-308))) 25) (($ (-308)) 24) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 23)))
+((-1934 (((-3 $ "failed") (-294 (-357))) 21) (((-3 $ "failed") (-294 (-525))) 19) (((-3 $ "failed") (-887 (-357))) 17) (((-3 $ "failed") (-887 (-525))) 15) (((-3 $ "failed") (-385 (-887 (-357)))) 13) (((-3 $ "failed") (-385 (-887 (-525)))) 11)) (-4105 (($ (-294 (-357))) 22) (($ (-294 (-525))) 20) (($ (-887 (-357))) 18) (($ (-887 (-525))) 16) (($ (-385 (-887 (-357)))) 14) (($ (-385 (-887 (-525)))) 12)) (-2584 (((-1179) $) 7)) (-4100 (((-798) $) 8) (($ (-592 (-308))) 25) (($ (-308)) 24) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 23)))
(((-374) (-131)) (T -374))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-374)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-374)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) (-4 *1 (-374)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-4 *1 (-374)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-357))) (-4 *1 (-374)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-4 *1 (-374)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-525))) (-4 *1 (-374)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-887 (-357))) (-4 *1 (-374)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-357))) (-4 *1 (-374)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-887 (-525))) (-4 *1 (-374)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-525))) (-4 *1 (-374)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-357)))) (-4 *1 (-374)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-887 (-357)))) (-4 *1 (-374)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-525)))) (-4 *1 (-374)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-887 (-525)))) (-4 *1 (-374)))))
-(-13 (-373) (-10 -8 (-15 -1217 ($ (-592 (-308)))) (-15 -1217 ($ (-308))) (-15 -1217 ($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308)))))) (-15 -1572 ($ (-294 (-357)))) (-15 -3077 ((-3 $ "failed") (-294 (-357)))) (-15 -1572 ($ (-294 (-525)))) (-15 -3077 ((-3 $ "failed") (-294 (-525)))) (-15 -1572 ($ (-887 (-357)))) (-15 -3077 ((-3 $ "failed") (-887 (-357)))) (-15 -1572 ($ (-887 (-525)))) (-15 -3077 ((-3 $ "failed") (-887 (-525)))) (-15 -1572 ($ (-385 (-887 (-357))))) (-15 -3077 ((-3 $ "failed") (-385 (-887 (-357))))) (-15 -1572 ($ (-385 (-887 (-525))))) (-15 -3077 ((-3 $ "failed") (-385 (-887 (-525)))))))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-374)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-374)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) (-4 *1 (-374)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-4 *1 (-374)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-357))) (-4 *1 (-374)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-4 *1 (-374)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-525))) (-4 *1 (-374)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-887 (-357))) (-4 *1 (-374)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-357))) (-4 *1 (-374)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-887 (-525))) (-4 *1 (-374)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-525))) (-4 *1 (-374)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-357)))) (-4 *1 (-374)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-887 (-357)))) (-4 *1 (-374)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-525)))) (-4 *1 (-374)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-887 (-525)))) (-4 *1 (-374)))))
+(-13 (-373) (-10 -8 (-15 -4100 ($ (-592 (-308)))) (-15 -4100 ($ (-308))) (-15 -4100 ($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308)))))) (-15 -4105 ($ (-294 (-357)))) (-15 -1934 ((-3 $ "failed") (-294 (-357)))) (-15 -4105 ($ (-294 (-525)))) (-15 -1934 ((-3 $ "failed") (-294 (-525)))) (-15 -4105 ($ (-887 (-357)))) (-15 -1934 ((-3 $ "failed") (-887 (-357)))) (-15 -4105 ($ (-887 (-525)))) (-15 -1934 ((-3 $ "failed") (-887 (-525)))) (-15 -4105 ($ (-385 (-887 (-357))))) (-15 -1934 ((-3 $ "failed") (-385 (-887 (-357))))) (-15 -4105 ($ (-385 (-887 (-525))))) (-15 -1934 ((-3 $ "failed") (-385 (-887 (-525)))))))
(((-566 (-798)) . T) ((-373) . T) ((-1128) . T))
-((-3576 (((-592 (-1075)) (-592 (-1075))) 9)) (-3252 (((-1179) (-366)) 27)) (-3103 (((-1024) (-1092) (-592 (-1092)) (-1095) (-592 (-1092))) 60) (((-1024) (-1092) (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092)))) (-592 (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092))))) (-592 (-1092)) (-1092)) 35) (((-1024) (-1092) (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092)))) (-592 (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092))))) (-592 (-1092))) 34)))
-(((-375) (-10 -7 (-15 -3103 ((-1024) (-1092) (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092)))) (-592 (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092))))) (-592 (-1092)))) (-15 -3103 ((-1024) (-1092) (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092)))) (-592 (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092))))) (-592 (-1092)) (-1092))) (-15 -3103 ((-1024) (-1092) (-592 (-1092)) (-1095) (-592 (-1092)))) (-15 -3252 ((-1179) (-366))) (-15 -3576 ((-592 (-1075)) (-592 (-1075)))))) (T -375))
-((-3576 (*1 *2 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-375)))) (-3252 (*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1179)) (-5 *1 (-375)))) (-3103 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-592 (-1092))) (-5 *5 (-1095)) (-5 *3 (-1092)) (-5 *2 (-1024)) (-5 *1 (-375)))) (-3103 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-592 (-592 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-592 (-3 (|:| |array| (-592 *3)) (|:| |scalar| (-1092))))) (-5 *6 (-592 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1024)) (-5 *1 (-375)))) (-3103 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-592 (-592 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-592 (-3 (|:| |array| (-592 *3)) (|:| |scalar| (-1092))))) (-5 *6 (-592 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1024)) (-5 *1 (-375)))))
-(-10 -7 (-15 -3103 ((-1024) (-1092) (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092)))) (-592 (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092))))) (-592 (-1092)))) (-15 -3103 ((-1024) (-1092) (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092)))) (-592 (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092))))) (-592 (-1092)) (-1092))) (-15 -3103 ((-1024) (-1092) (-592 (-1092)) (-1095) (-592 (-1092)))) (-15 -3252 ((-1179) (-366))) (-15 -3576 ((-592 (-1075)) (-592 (-1075)))))
-((-3252 (((-1179) $) 38)) (-1217 (((-798) $) 98) (($ (-308)) 100) (($ (-592 (-308))) 99) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 97) (($ (-294 (-643))) 54) (($ (-294 (-641))) 73) (($ (-294 (-636))) 86) (($ (-273 (-294 (-643)))) 68) (($ (-273 (-294 (-641)))) 81) (($ (-273 (-294 (-636)))) 94) (($ (-294 (-525))) 104) (($ (-294 (-357))) 117) (($ (-294 (-157 (-357)))) 130) (($ (-273 (-294 (-525)))) 112) (($ (-273 (-294 (-357)))) 125) (($ (-273 (-294 (-157 (-357))))) 138)))
-(((-376 |#1| |#2| |#3| |#4|) (-13 (-373) (-10 -8 (-15 -1217 ($ (-308))) (-15 -1217 ($ (-592 (-308)))) (-15 -1217 ($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308)))))) (-15 -1217 ($ (-294 (-643)))) (-15 -1217 ($ (-294 (-641)))) (-15 -1217 ($ (-294 (-636)))) (-15 -1217 ($ (-273 (-294 (-643))))) (-15 -1217 ($ (-273 (-294 (-641))))) (-15 -1217 ($ (-273 (-294 (-636))))) (-15 -1217 ($ (-294 (-525)))) (-15 -1217 ($ (-294 (-357)))) (-15 -1217 ($ (-294 (-157 (-357))))) (-15 -1217 ($ (-273 (-294 (-525))))) (-15 -1217 ($ (-273 (-294 (-357))))) (-15 -1217 ($ (-273 (-294 (-157 (-357)))))))) (-1092) (-3 (|:| |fst| (-412)) (|:| -1316 "void")) (-592 (-1092)) (-1096)) (T -376))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-308)) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-294 (-643))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-294 (-641))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-294 (-636))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-643)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-641)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-636)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-525)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-357)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-157 (-357))))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))))
-(-13 (-373) (-10 -8 (-15 -1217 ($ (-308))) (-15 -1217 ($ (-592 (-308)))) (-15 -1217 ($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308)))))) (-15 -1217 ($ (-294 (-643)))) (-15 -1217 ($ (-294 (-641)))) (-15 -1217 ($ (-294 (-636)))) (-15 -1217 ($ (-273 (-294 (-643))))) (-15 -1217 ($ (-273 (-294 (-641))))) (-15 -1217 ($ (-273 (-294 (-636))))) (-15 -1217 ($ (-294 (-525)))) (-15 -1217 ($ (-294 (-357)))) (-15 -1217 ($ (-294 (-157 (-357))))) (-15 -1217 ($ (-273 (-294 (-525))))) (-15 -1217 ($ (-273 (-294 (-357))))) (-15 -1217 ($ (-273 (-294 (-157 (-357))))))))
-((-4236 (((-108) $ $) NIL)) (-1293 ((|#2| $) 36)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-4185 (($ (-385 |#2|)) 85)) (-2748 (((-592 (-2 (|:| -4193 (-713)) (|:| -1340 |#2|) (|:| |num| |#2|))) $) 37)) (-3376 (($ $) 32) (($ $ (-713)) 34)) (-3210 (((-385 |#2|) $) 46)) (-1230 (($ (-592 (-2 (|:| -4193 (-713)) (|:| -1340 |#2|) (|:| |num| |#2|)))) 31)) (-1217 (((-798) $) 120)) (-2022 (($ $) 33) (($ $ (-713)) 35)) (-3955 (((-108) $ $) NIL)) (-4047 (($ |#2| $) 39)))
-(((-377 |#1| |#2|) (-13 (-1020) (-567 (-385 |#2|)) (-10 -8 (-15 -4047 ($ |#2| $)) (-15 -4185 ($ (-385 |#2|))) (-15 -1293 (|#2| $)) (-15 -2748 ((-592 (-2 (|:| -4193 (-713)) (|:| -1340 |#2|) (|:| |num| |#2|))) $)) (-15 -1230 ($ (-592 (-2 (|:| -4193 (-713)) (|:| -1340 |#2|) (|:| |num| |#2|))))) (-15 -3376 ($ $)) (-15 -2022 ($ $)) (-15 -3376 ($ $ (-713))) (-15 -2022 ($ $ (-713))))) (-13 (-341) (-138)) (-1150 |#1|)) (T -377))
-((-4047 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *2)) (-4 *2 (-1150 *3)))) (-4185 (*1 *1 *2) (-12 (-5 *2 (-385 *4)) (-4 *4 (-1150 *3)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)))) (-1293 (*1 *2 *1) (-12 (-4 *2 (-1150 *3)) (-5 *1 (-377 *3 *2)) (-4 *3 (-13 (-341) (-138))))) (-2748 (*1 *2 *1) (-12 (-4 *3 (-13 (-341) (-138))) (-5 *2 (-592 (-2 (|:| -4193 (-713)) (|:| -1340 *4) (|:| |num| *4)))) (-5 *1 (-377 *3 *4)) (-4 *4 (-1150 *3)))) (-1230 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -4193 (-713)) (|:| -1340 *4) (|:| |num| *4)))) (-4 *4 (-1150 *3)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)))) (-3376 (*1 *1 *1) (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3)) (-4 *3 (-1150 *2)))) (-2022 (*1 *1 *1) (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3)) (-4 *3 (-1150 *2)))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)) (-4 *4 (-1150 *3)))) (-2022 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)) (-4 *4 (-1150 *3)))))
-(-13 (-1020) (-567 (-385 |#2|)) (-10 -8 (-15 -4047 ($ |#2| $)) (-15 -4185 ($ (-385 |#2|))) (-15 -1293 (|#2| $)) (-15 -2748 ((-592 (-2 (|:| -4193 (-713)) (|:| -1340 |#2|) (|:| |num| |#2|))) $)) (-15 -1230 ($ (-592 (-2 (|:| -4193 (-713)) (|:| -1340 |#2|) (|:| |num| |#2|))))) (-15 -3376 ($ $)) (-15 -2022 ($ $)) (-15 -3376 ($ $ (-713))) (-15 -2022 ($ $ (-713)))))
-((-4236 (((-108) $ $) 9 (-3254 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))))) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 15 (|has| |#1| (-821 (-357)))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 14 (|has| |#1| (-821 (-525))))) (-2619 (((-1075) $) 13 (-3254 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))))) (-2093 (((-1039) $) 12 (-3254 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))))) (-1217 (((-798) $) 11 (-3254 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))))) (-3955 (((-108) $ $) 10 (-3254 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))))))
+((-2065 (((-592 (-1075)) (-592 (-1075))) 9)) (-2584 (((-1179) (-366)) 27)) (-2167 (((-1024) (-1092) (-592 (-1092)) (-1095) (-592 (-1092))) 60) (((-1024) (-1092) (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092)))) (-592 (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092))))) (-592 (-1092)) (-1092)) 35) (((-1024) (-1092) (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092)))) (-592 (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092))))) (-592 (-1092))) 34)))
+(((-375) (-10 -7 (-15 -2167 ((-1024) (-1092) (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092)))) (-592 (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092))))) (-592 (-1092)))) (-15 -2167 ((-1024) (-1092) (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092)))) (-592 (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092))))) (-592 (-1092)) (-1092))) (-15 -2167 ((-1024) (-1092) (-592 (-1092)) (-1095) (-592 (-1092)))) (-15 -2584 ((-1179) (-366))) (-15 -2065 ((-592 (-1075)) (-592 (-1075)))))) (T -375))
+((-2065 (*1 *2 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-375)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1179)) (-5 *1 (-375)))) (-2167 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-592 (-1092))) (-5 *5 (-1095)) (-5 *3 (-1092)) (-5 *2 (-1024)) (-5 *1 (-375)))) (-2167 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-592 (-592 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-592 (-3 (|:| |array| (-592 *3)) (|:| |scalar| (-1092))))) (-5 *6 (-592 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1024)) (-5 *1 (-375)))) (-2167 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-592 (-592 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-592 (-3 (|:| |array| (-592 *3)) (|:| |scalar| (-1092))))) (-5 *6 (-592 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1024)) (-5 *1 (-375)))))
+(-10 -7 (-15 -2167 ((-1024) (-1092) (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092)))) (-592 (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092))))) (-592 (-1092)))) (-15 -2167 ((-1024) (-1092) (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092)))) (-592 (-592 (-3 (|:| |array| (-592 (-1092))) (|:| |scalar| (-1092))))) (-592 (-1092)) (-1092))) (-15 -2167 ((-1024) (-1092) (-592 (-1092)) (-1095) (-592 (-1092)))) (-15 -2584 ((-1179) (-366))) (-15 -2065 ((-592 (-1075)) (-592 (-1075)))))
+((-2584 (((-1179) $) 38)) (-4100 (((-798) $) 98) (($ (-308)) 100) (($ (-592 (-308))) 99) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 97) (($ (-294 (-643))) 54) (($ (-294 (-641))) 73) (($ (-294 (-636))) 86) (($ (-273 (-294 (-643)))) 68) (($ (-273 (-294 (-641)))) 81) (($ (-273 (-294 (-636)))) 94) (($ (-294 (-525))) 104) (($ (-294 (-357))) 117) (($ (-294 (-157 (-357)))) 130) (($ (-273 (-294 (-525)))) 112) (($ (-273 (-294 (-357)))) 125) (($ (-273 (-294 (-157 (-357))))) 138)))
+(((-376 |#1| |#2| |#3| |#4|) (-13 (-373) (-10 -8 (-15 -4100 ($ (-308))) (-15 -4100 ($ (-592 (-308)))) (-15 -4100 ($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308)))))) (-15 -4100 ($ (-294 (-643)))) (-15 -4100 ($ (-294 (-641)))) (-15 -4100 ($ (-294 (-636)))) (-15 -4100 ($ (-273 (-294 (-643))))) (-15 -4100 ($ (-273 (-294 (-641))))) (-15 -4100 ($ (-273 (-294 (-636))))) (-15 -4100 ($ (-294 (-525)))) (-15 -4100 ($ (-294 (-357)))) (-15 -4100 ($ (-294 (-157 (-357))))) (-15 -4100 ($ (-273 (-294 (-525))))) (-15 -4100 ($ (-273 (-294 (-357))))) (-15 -4100 ($ (-273 (-294 (-157 (-357)))))))) (-1092) (-3 (|:| |fst| (-412)) (|:| -3408 "void")) (-592 (-1092)) (-1096)) (T -376))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-308)) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-294 (-643))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-294 (-641))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-294 (-636))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-643)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-641)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-636)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-525)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-357)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-157 (-357))))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-14 *5 (-592 (-1092))) (-14 *6 (-1096)))))
+(-13 (-373) (-10 -8 (-15 -4100 ($ (-308))) (-15 -4100 ($ (-592 (-308)))) (-15 -4100 ($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308)))))) (-15 -4100 ($ (-294 (-643)))) (-15 -4100 ($ (-294 (-641)))) (-15 -4100 ($ (-294 (-636)))) (-15 -4100 ($ (-273 (-294 (-643))))) (-15 -4100 ($ (-273 (-294 (-641))))) (-15 -4100 ($ (-273 (-294 (-636))))) (-15 -4100 ($ (-294 (-525)))) (-15 -4100 ($ (-294 (-357)))) (-15 -4100 ($ (-294 (-157 (-357))))) (-15 -4100 ($ (-273 (-294 (-525))))) (-15 -4100 ($ (-273 (-294 (-357))))) (-15 -4100 ($ (-273 (-294 (-157 (-357))))))))
+((-4087 (((-108) $ $) NIL)) (-1331 ((|#2| $) 36)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2112 (($ (-385 |#2|)) 85)) (-3068 (((-592 (-2 (|:| -2168 (-713)) (|:| -1423 |#2|) (|:| |num| |#2|))) $) 37)) (-2702 (($ $) 32) (($ $ (-713)) 34)) (-2069 (((-385 |#2|) $) 46)) (-4114 (($ (-592 (-2 (|:| -2168 (-713)) (|:| -1423 |#2|) (|:| |num| |#2|)))) 31)) (-4100 (((-798) $) 120)) (-2401 (($ $) 33) (($ $ (-713)) 35)) (-2775 (((-108) $ $) NIL)) (-2860 (($ |#2| $) 39)))
+(((-377 |#1| |#2|) (-13 (-1020) (-567 (-385 |#2|)) (-10 -8 (-15 -2860 ($ |#2| $)) (-15 -2112 ($ (-385 |#2|))) (-15 -1331 (|#2| $)) (-15 -3068 ((-592 (-2 (|:| -2168 (-713)) (|:| -1423 |#2|) (|:| |num| |#2|))) $)) (-15 -4114 ($ (-592 (-2 (|:| -2168 (-713)) (|:| -1423 |#2|) (|:| |num| |#2|))))) (-15 -2702 ($ $)) (-15 -2401 ($ $)) (-15 -2702 ($ $ (-713))) (-15 -2401 ($ $ (-713))))) (-13 (-341) (-138)) (-1150 |#1|)) (T -377))
+((-2860 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *2)) (-4 *2 (-1150 *3)))) (-2112 (*1 *1 *2) (-12 (-5 *2 (-385 *4)) (-4 *4 (-1150 *3)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)))) (-1331 (*1 *2 *1) (-12 (-4 *2 (-1150 *3)) (-5 *1 (-377 *3 *2)) (-4 *3 (-13 (-341) (-138))))) (-3068 (*1 *2 *1) (-12 (-4 *3 (-13 (-341) (-138))) (-5 *2 (-592 (-2 (|:| -2168 (-713)) (|:| -1423 *4) (|:| |num| *4)))) (-5 *1 (-377 *3 *4)) (-4 *4 (-1150 *3)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -2168 (-713)) (|:| -1423 *4) (|:| |num| *4)))) (-4 *4 (-1150 *3)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)))) (-2702 (*1 *1 *1) (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3)) (-4 *3 (-1150 *2)))) (-2401 (*1 *1 *1) (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3)) (-4 *3 (-1150 *2)))) (-2702 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)) (-4 *4 (-1150 *3)))) (-2401 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)) (-4 *4 (-1150 *3)))))
+(-13 (-1020) (-567 (-385 |#2|)) (-10 -8 (-15 -2860 ($ |#2| $)) (-15 -2112 ($ (-385 |#2|))) (-15 -1331 (|#2| $)) (-15 -3068 ((-592 (-2 (|:| -2168 (-713)) (|:| -1423 |#2|) (|:| |num| |#2|))) $)) (-15 -4114 ($ (-592 (-2 (|:| -2168 (-713)) (|:| -1423 |#2|) (|:| |num| |#2|))))) (-15 -2702 ($ $)) (-15 -2401 ($ $)) (-15 -2702 ($ $ (-713))) (-15 -2401 ($ $ (-713)))))
+((-4087 (((-108) $ $) 9 (-2067 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))))) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 15 (|has| |#1| (-821 (-357)))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 14 (|has| |#1| (-821 (-525))))) (-1289 (((-1075) $) 13 (-2067 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))))) (-3993 (((-1039) $) 12 (-2067 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))))) (-4100 (((-798) $) 11 (-2067 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))))) (-2775 (((-108) $ $) 10 (-2067 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))))))
(((-378 |#1|) (-131) (-1128)) (T -378))
NIL
(-13 (-1128) (-10 -7 (IF (|has| |t#1| (-821 (-525))) (-6 (-821 (-525))) |%noBranch|) (IF (|has| |t#1| (-821 (-357))) (-6 (-821 (-357))) |%noBranch|)))
-(((-97) -3254 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))) ((-566 (-798)) -3254 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))) ((-821 (-357)) |has| |#1| (-821 (-357))) ((-821 (-525)) |has| |#1| (-821 (-525))) ((-1020) -3254 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))) ((-1128) . T))
-((-3625 (($ $) 10) (($ $ (-713)) 11)))
-(((-379 |#1|) (-10 -8 (-15 -3625 (|#1| |#1| (-713))) (-15 -3625 (|#1| |#1|))) (-380)) (T -379))
+(((-97) -2067 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))) ((-566 (-798)) -2067 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))) ((-821 (-357)) |has| |#1| (-821 (-357))) ((-821 (-525)) |has| |#1| (-821 (-525))) ((-1020) -2067 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))) ((-1128) . T))
+((-1339 (($ $) 10) (($ $ (-713)) 11)))
+(((-379 |#1|) (-10 -8 (-15 -1339 (|#1| |#1| (-713))) (-15 -1339 (|#1| |#1|))) (-380)) (T -379))
NIL
-(-10 -8 (-15 -3625 (|#1| |#1| (-713))) (-15 -3625 (|#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-1578 (((-3 $ "failed") $ $) 19)) (-1286 (($ $) 73)) (-2669 (((-396 $) $) 72)) (-2193 (((-108) $ $) 59)) (-2169 (($) 17 T CONST)) (-1747 (($ $ $) 55)) (-3457 (((-3 $ "failed") $) 34)) (-1733 (($ $ $) 56)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 51)) (-3625 (($ $) 79) (($ $ (-713)) 78)) (-3673 (((-108) $) 71)) (-2581 (((-775 (-856)) $) 81)) (-1396 (((-108) $) 31)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2556 (($ $ $) 46) (($ (-592 $)) 45)) (-2619 (((-1075) $) 9)) (-2997 (($ $) 70)) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2589 (($ $ $) 48) (($ (-592 $)) 47)) (-2770 (((-396 $) $) 74)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1715 (((-3 $ "failed") $ $) 42)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-3684 (((-713) $) 58)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 57)) (-3877 (((-3 (-713) "failed") $ $) 80)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-3637 (((-3 $ "failed") $) 82)) (-3917 (((-713)) 29)) (-3325 (((-108) $ $) 39)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4075 (($ $ $) 64)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
+(-10 -8 (-15 -1339 (|#1| |#1| (-713))) (-15 -1339 (|#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-3222 (((-3 $ "failed") $ $) 19)) (-4195 (($ $) 73)) (-3586 (((-396 $) $) 72)) (-1507 (((-108) $ $) 59)) (-2475 (($) 17 T CONST)) (-1356 (($ $ $) 55)) (-3300 (((-3 $ "failed") $) 34)) (-1332 (($ $ $) 56)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 51)) (-1339 (($ $) 79) (($ $ (-713)) 78)) (-1798 (((-108) $) 71)) (-4000 (((-775 (-856)) $) 81)) (-2278 (((-108) $) 31)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2739 (($ $ $) 46) (($ (-592 $)) 45)) (-1289 (((-1075) $) 9)) (-1387 (($ $) 70)) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2772 (($ $ $) 48) (($ (-592 $)) 47)) (-4201 (((-396 $) $) 74)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1311 (((-3 $ "failed") $ $) 42)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1927 (((-713) $) 58)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 57)) (-2043 (((-3 (-713) "failed") $ $) 80)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-1463 (((-3 $ "failed") $) 82)) (-2448 (((-713)) 29)) (-1571 (((-108) $ $) 39)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2880 (($ $ $) 64)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
(((-380) (-131)) (T -380))
-((-2581 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-775 (-856))))) (-3877 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-380)) (-5 *2 (-713)))) (-3625 (*1 *1 *1) (-4 *1 (-380))) (-3625 (*1 *1 *1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-713)))))
-(-13 (-341) (-136) (-10 -8 (-15 -2581 ((-775 (-856)) $)) (-15 -3877 ((-3 (-713) "failed") $ $)) (-15 -3625 ($ $)) (-15 -3625 ($ $ (-713)))))
+((-4000 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-775 (-856))))) (-2043 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-380)) (-5 *2 (-713)))) (-1339 (*1 *1 *1) (-4 *1 (-380))) (-1339 (*1 *1 *1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-713)))))
+(-13 (-341) (-136) (-10 -8 (-15 -4000 ((-775 (-856)) $)) (-15 -2043 ((-3 (-713) "failed") $ $)) (-15 -1339 ($ $)) (-15 -1339 ($ $ (-713)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-136) . T) ((-566 (-798)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-855) . T) ((-983 #0#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1132) . T))
-((-3299 (($ (-525) (-525)) 11) (($ (-525) (-525) (-856)) NIL)) (-3780 (((-856)) 16) (((-856) (-856)) NIL)))
-(((-381 |#1|) (-10 -8 (-15 -3780 ((-856) (-856))) (-15 -3780 ((-856))) (-15 -3299 (|#1| (-525) (-525) (-856))) (-15 -3299 (|#1| (-525) (-525)))) (-382)) (T -381))
-((-3780 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-381 *3)) (-4 *3 (-382)))) (-3780 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-381 *3)) (-4 *3 (-382)))))
-(-10 -8 (-15 -3780 ((-856) (-856))) (-15 -3780 ((-856))) (-15 -3299 (|#1| (-525) (-525) (-856))) (-15 -3299 (|#1| (-525) (-525))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1548 (((-525) $) 89)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-3828 (($ $) 87)) (-1578 (((-3 $ "failed") $ $) 19)) (-1286 (($ $) 73)) (-2669 (((-396 $) $) 72)) (-2782 (($ $) 97)) (-2193 (((-108) $ $) 59)) (-3855 (((-525) $) 114)) (-2169 (($) 17 T CONST)) (-3384 (($ $) 86)) (-3077 (((-3 (-525) "failed") $) 102) (((-3 (-385 (-525)) "failed") $) 99)) (-1572 (((-525) $) 101) (((-385 (-525)) $) 98)) (-1747 (($ $ $) 55)) (-3457 (((-3 $ "failed") $) 34)) (-1733 (($ $ $) 56)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 51)) (-3673 (((-108) $) 71)) (-3836 (((-856)) 130) (((-856) (-856)) 127 (|has| $ (-6 -4249)))) (-1222 (((-108) $) 112)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 93)) (-2581 (((-525) $) 136)) (-1396 (((-108) $) 31)) (-2171 (($ $ (-525)) 96)) (-2382 (($ $) 92)) (-3256 (((-108) $) 113)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2638 (($ $ $) 111) (($) 124 (-12 (-1850 (|has| $ (-6 -4249))) (-1850 (|has| $ (-6 -4241)))))) (-3662 (($ $ $) 110) (($) 123 (-12 (-1850 (|has| $ (-6 -4249))) (-1850 (|has| $ (-6 -4241)))))) (-1914 (((-525) $) 133)) (-2556 (($ $ $) 46) (($ (-592 $)) 45)) (-2619 (((-1075) $) 9)) (-2997 (($ $) 70)) (-2896 (((-856) (-525)) 126 (|has| $ (-6 -4249)))) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2589 (($ $ $) 48) (($ (-592 $)) 47)) (-3628 (($ $) 88)) (-2487 (($ $) 90)) (-3299 (($ (-525) (-525)) 138) (($ (-525) (-525) (-856)) 137)) (-2770 (((-396 $) $) 74)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1715 (((-3 $ "failed") $ $) 42)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-4193 (((-525) $) 134)) (-3684 (((-713) $) 58)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 57)) (-3780 (((-856)) 131) (((-856) (-856)) 128 (|has| $ (-6 -4249)))) (-1930 (((-856) (-525)) 125 (|has| $ (-6 -4249)))) (-3210 (((-357) $) 105) (((-205) $) 104) (((-827 (-357)) $) 94)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ (-525)) 103) (($ (-385 (-525))) 100)) (-3917 (((-713)) 29)) (-3074 (($ $) 91)) (-3293 (((-856)) 132) (((-856) (-856)) 129 (|has| $ (-6 -4249)))) (-3379 (((-856)) 135)) (-3325 (((-108) $ $) 39)) (-2802 (($ $) 115)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-4011 (((-108) $ $) 108)) (-3987 (((-108) $ $) 107)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 109)) (-3978 (((-108) $ $) 106)) (-4075 (($ $ $) 64)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 95)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
+((-3536 (($ (-525) (-525)) 11) (($ (-525) (-525) (-856)) NIL)) (-3444 (((-856)) 16) (((-856) (-856)) NIL)))
+(((-381 |#1|) (-10 -8 (-15 -3444 ((-856) (-856))) (-15 -3444 ((-856))) (-15 -3536 (|#1| (-525) (-525) (-856))) (-15 -3536 (|#1| (-525) (-525)))) (-382)) (T -381))
+((-3444 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-381 *3)) (-4 *3 (-382)))) (-3444 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-381 *3)) (-4 *3 (-382)))))
+(-10 -8 (-15 -3444 ((-856) (-856))) (-15 -3444 ((-856))) (-15 -3536 (|#1| (-525) (-525) (-856))) (-15 -3536 (|#1| (-525) (-525))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-1653 (((-525) $) 89)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-2730 (($ $) 87)) (-3222 (((-3 $ "failed") $ $) 19)) (-4195 (($ $) 73)) (-3586 (((-396 $) $) 72)) (-4211 (($ $) 97)) (-1507 (((-108) $ $) 59)) (-2971 (((-525) $) 114)) (-2475 (($) 17 T CONST)) (-3869 (($ $) 86)) (-1934 (((-3 (-525) "failed") $) 102) (((-3 (-385 (-525)) "failed") $) 99)) (-4105 (((-525) $) 101) (((-385 (-525)) $) 98)) (-1356 (($ $ $) 55)) (-3300 (((-3 $ "failed") $) 34)) (-1332 (($ $ $) 56)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 51)) (-1798 (((-108) $) 71)) (-2524 (((-856)) 130) (((-856) (-856)) 127 (|has| $ (-6 -4250)))) (-1889 (((-108) $) 112)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 93)) (-4000 (((-525) $) 136)) (-2278 (((-108) $) 31)) (-1303 (($ $ (-525)) 96)) (-2704 (($ $) 92)) (-4079 (((-108) $) 113)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-3033 (($ $ $) 111) (($) 124 (-12 (-3272 (|has| $ (-6 -4250))) (-3272 (|has| $ (-6 -4242)))))) (-1609 (($ $ $) 110) (($) 123 (-12 (-3272 (|has| $ (-6 -4250))) (-3272 (|has| $ (-6 -4242)))))) (-1741 (((-525) $) 133)) (-2739 (($ $ $) 46) (($ (-592 $)) 45)) (-1289 (((-1075) $) 9)) (-1387 (($ $) 70)) (-3870 (((-856) (-525)) 126 (|has| $ (-6 -4250)))) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2772 (($ $ $) 48) (($ (-592 $)) 47)) (-1372 (($ $) 88)) (-1340 (($ $) 90)) (-3536 (($ (-525) (-525)) 138) (($ (-525) (-525) (-856)) 137)) (-4201 (((-396 $) $) 74)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1311 (((-3 $ "failed") $ $) 42)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2168 (((-525) $) 134)) (-1927 (((-713) $) 58)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 57)) (-3444 (((-856)) 131) (((-856) (-856)) 128 (|has| $ (-6 -4250)))) (-1833 (((-856) (-525)) 125 (|has| $ (-6 -4250)))) (-2069 (((-357) $) 105) (((-205) $) 104) (((-827 (-357)) $) 94)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ (-525)) 103) (($ (-385 (-525))) 100)) (-2448 (((-713)) 29)) (-3064 (($ $) 91)) (-1373 (((-856)) 132) (((-856) (-856)) 129 (|has| $ (-6 -4250)))) (-3771 (((-856)) 135)) (-1571 (((-108) $ $) 39)) (-2380 (($ $) 115)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2830 (((-108) $ $) 108)) (-2807 (((-108) $ $) 107)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 109)) (-2795 (((-108) $ $) 106)) (-2880 (($ $ $) 64)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 95)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
(((-382) (-131)) (T -382))
-((-3299 (*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-382)))) (-3299 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-856)) (-4 *1 (-382)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) (-3379 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856)))) (-4193 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) (-1914 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) (-3293 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856)))) (-3780 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856)))) (-3836 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856)))) (-3293 (*1 *2 *2) (-12 (-5 *2 (-856)) (|has| *1 (-6 -4249)) (-4 *1 (-382)))) (-3780 (*1 *2 *2) (-12 (-5 *2 (-856)) (|has| *1 (-6 -4249)) (-4 *1 (-382)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-856)) (|has| *1 (-6 -4249)) (-4 *1 (-382)))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-525)) (|has| *1 (-6 -4249)) (-4 *1 (-382)) (-5 *2 (-856)))) (-1930 (*1 *2 *3) (-12 (-5 *3 (-525)) (|has| *1 (-6 -4249)) (-4 *1 (-382)) (-5 *2 (-856)))) (-2638 (*1 *1) (-12 (-4 *1 (-382)) (-1850 (|has| *1 (-6 -4249))) (-1850 (|has| *1 (-6 -4241))))) (-3662 (*1 *1) (-12 (-4 *1 (-382)) (-1850 (|has| *1 (-6 -4249))) (-1850 (|has| *1 (-6 -4241))))))
-(-13 (-986) (-10 -8 (-6 -1454) (-15 -3299 ($ (-525) (-525))) (-15 -3299 ($ (-525) (-525) (-856))) (-15 -2581 ((-525) $)) (-15 -3379 ((-856))) (-15 -4193 ((-525) $)) (-15 -1914 ((-525) $)) (-15 -3293 ((-856))) (-15 -3780 ((-856))) (-15 -3836 ((-856))) (IF (|has| $ (-6 -4249)) (PROGN (-15 -3293 ((-856) (-856))) (-15 -3780 ((-856) (-856))) (-15 -3836 ((-856) (-856))) (-15 -2896 ((-856) (-525))) (-15 -1930 ((-856) (-525)))) |%noBranch|) (IF (|has| $ (-6 -4241)) |%noBranch| (IF (|has| $ (-6 -4249)) |%noBranch| (PROGN (-15 -2638 ($)) (-15 -3662 ($)))))))
+((-3536 (*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-382)))) (-3536 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-856)) (-4 *1 (-382)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) (-3771 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856)))) (-2168 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) (-1741 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) (-1373 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856)))) (-3444 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856)))) (-2524 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856)))) (-1373 (*1 *2 *2) (-12 (-5 *2 (-856)) (|has| *1 (-6 -4250)) (-4 *1 (-382)))) (-3444 (*1 *2 *2) (-12 (-5 *2 (-856)) (|has| *1 (-6 -4250)) (-4 *1 (-382)))) (-2524 (*1 *2 *2) (-12 (-5 *2 (-856)) (|has| *1 (-6 -4250)) (-4 *1 (-382)))) (-3870 (*1 *2 *3) (-12 (-5 *3 (-525)) (|has| *1 (-6 -4250)) (-4 *1 (-382)) (-5 *2 (-856)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-525)) (|has| *1 (-6 -4250)) (-4 *1 (-382)) (-5 *2 (-856)))) (-3033 (*1 *1) (-12 (-4 *1 (-382)) (-3272 (|has| *1 (-6 -4250))) (-3272 (|has| *1 (-6 -4242))))) (-1609 (*1 *1) (-12 (-4 *1 (-382)) (-3272 (|has| *1 (-6 -4250))) (-3272 (|has| *1 (-6 -4242))))))
+(-13 (-986) (-10 -8 (-6 -1485) (-15 -3536 ($ (-525) (-525))) (-15 -3536 ($ (-525) (-525) (-856))) (-15 -4000 ((-525) $)) (-15 -3771 ((-856))) (-15 -2168 ((-525) $)) (-15 -1741 ((-525) $)) (-15 -1373 ((-856))) (-15 -3444 ((-856))) (-15 -2524 ((-856))) (IF (|has| $ (-6 -4250)) (PROGN (-15 -1373 ((-856) (-856))) (-15 -3444 ((-856) (-856))) (-15 -2524 ((-856) (-856))) (-15 -3870 ((-856) (-525))) (-15 -1833 ((-856) (-525)))) |%noBranch|) (IF (|has| $ (-6 -4242)) |%noBranch| (IF (|has| $ (-6 -4250)) |%noBranch| (PROGN (-15 -3033 ($)) (-15 -1609 ($)))))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-798)) . T) ((-160) . T) ((-567 (-205)) . T) ((-567 (-357)) . T) ((-567 (-827 (-357))) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-787) . T) ((-789) . T) ((-821 (-357)) . T) ((-855) . T) ((-934) . T) ((-953) . T) ((-986) . T) ((-968 (-385 (-525))) . T) ((-968 (-525)) . T) ((-983 #0#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1132) . T))
-((-3165 (((-396 |#2|) (-1 |#2| |#1|) (-396 |#1|)) 20)))
-(((-383 |#1| |#2|) (-10 -7 (-15 -3165 ((-396 |#2|) (-1 |#2| |#1|) (-396 |#1|)))) (-517) (-517)) (T -383))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-396 *5)) (-4 *5 (-517)) (-4 *6 (-517)) (-5 *2 (-396 *6)) (-5 *1 (-383 *5 *6)))))
-(-10 -7 (-15 -3165 ((-396 |#2|) (-1 |#2| |#1|) (-396 |#1|))))
-((-3165 (((-385 |#2|) (-1 |#2| |#1|) (-385 |#1|)) 13)))
-(((-384 |#1| |#2|) (-10 -7 (-15 -3165 ((-385 |#2|) (-1 |#2| |#1|) (-385 |#1|)))) (-517) (-517)) (T -384))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-385 *5)) (-4 *5 (-517)) (-4 *6 (-517)) (-5 *2 (-385 *6)) (-5 *1 (-384 *5 *6)))))
-(-10 -7 (-15 -3165 ((-385 |#2|) (-1 |#2| |#1|) (-385 |#1|))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 13)) (-1548 ((|#1| $) 21 (|has| |#1| (-286)))) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2193 (((-108) $ $) NIL)) (-3855 (((-525) $) NIL (|has| |#1| (-762)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) 17) (((-3 (-1092) "failed") $) NIL (|has| |#1| (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) 70 (|has| |#1| (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525))))) (-1572 ((|#1| $) 15) (((-1092) $) NIL (|has| |#1| (-968 (-1092)))) (((-385 (-525)) $) 67 (|has| |#1| (-968 (-525)))) (((-525) $) NIL (|has| |#1| (-968 (-525))))) (-1747 (($ $ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) 50)) (-2502 (($) NIL (|has| |#1| (-510)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-1222 (((-108) $) NIL (|has| |#1| (-762)))) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| |#1| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| |#1| (-821 (-357))))) (-1396 (((-108) $) 64)) (-3858 (($ $) NIL)) (-3114 ((|#1| $) 71)) (-3844 (((-3 $ "failed") $) NIL (|has| |#1| (-1068)))) (-3256 (((-108) $) NIL (|has| |#1| (-762)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2295 (($) NIL (|has| |#1| (-1068)) CONST)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 97)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3628 (($ $) NIL (|has| |#1| (-286)))) (-2487 ((|#1| $) 28 (|has| |#1| (-510)))) (-3076 (((-396 (-1088 $)) (-1088 $)) 135 (|has| |#1| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) 131 (|has| |#1| (-844)))) (-2770 (((-396 $) $) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2457 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) |#1|) NIL (|has| |#1| (-486 (-1092) |#1|)))) (-3684 (((-713) $) NIL)) (-3406 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3376 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-4143 (($ $) NIL)) (-3123 ((|#1| $) 73)) (-3210 (((-827 (-525)) $) NIL (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| |#1| (-567 (-827 (-357))))) (((-501) $) NIL (|has| |#1| (-567 (-501)))) (((-357) $) NIL (|has| |#1| (-953))) (((-205) $) NIL (|has| |#1| (-953)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) 115 (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 10) (($ (-1092)) NIL (|has| |#1| (-968 (-1092))))) (-3637 (((-3 $ "failed") $) 99 (-3254 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-3917 (((-713)) 100)) (-3074 ((|#1| $) 26 (|has| |#1| (-510)))) (-3325 (((-108) $ $) NIL)) (-2802 (($ $) NIL (|has| |#1| (-762)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) 22 T CONST)) (-3359 (($) 8 T CONST)) (-1388 (((-1075) $) 43 (-12 (|has| |#1| (-510)) (|has| |#1| (-770)))) (((-1075) $ (-108)) 44 (-12 (|has| |#1| (-510)) (|has| |#1| (-770)))) (((-1179) (-764) $) 45 (-12 (|has| |#1| (-510)) (|has| |#1| (-770)))) (((-1179) (-764) $ (-108)) 46 (-12 (|has| |#1| (-510)) (|has| |#1| (-770))))) (-2022 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) 56)) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) 24 (|has| |#1| (-789)))) (-4075 (($ $ $) 126) (($ |#1| |#1|) 52)) (-4061 (($ $) 25) (($ $ $) 55)) (-4047 (($ $ $) 53)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 125)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 60) (($ $ $) 57) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
-(((-385 |#1|) (-13 (-925 |#1|) (-10 -7 (IF (|has| |#1| (-510)) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4245)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-6 -4256)) (-6 -4245) |%noBranch|) |%noBranch|) |%noBranch|))) (-517)) (T -385))
-NIL
-(-13 (-925 |#1|) (-10 -7 (IF (|has| |#1| (-510)) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4245)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-6 -4256)) (-6 -4245) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-1627 (((-632 |#2|) (-1174 $)) NIL) (((-632 |#2|)) 18)) (-2064 (($ (-1174 |#2|) (-1174 $)) NIL) (($ (-1174 |#2|)) 26)) (-1906 (((-632 |#2|) $ (-1174 $)) NIL) (((-632 |#2|) $) 22)) (-2126 ((|#3| $) 60)) (-1975 ((|#2| (-1174 $)) NIL) ((|#2|) 20)) (-2387 (((-1174 |#2|) $ (-1174 $)) NIL) (((-632 |#2|) (-1174 $) (-1174 $)) NIL) (((-1174 |#2|) $) NIL) (((-632 |#2|) (-1174 $)) 24)) (-3210 (((-1174 |#2|) $) 11) (($ (-1174 |#2|)) 13)) (-1304 ((|#3| $) 52)))
-(((-386 |#1| |#2| |#3|) (-10 -8 (-15 -1906 ((-632 |#2|) |#1|)) (-15 -1975 (|#2|)) (-15 -1627 ((-632 |#2|))) (-15 -3210 (|#1| (-1174 |#2|))) (-15 -3210 ((-1174 |#2|) |#1|)) (-15 -2064 (|#1| (-1174 |#2|))) (-15 -2387 ((-632 |#2|) (-1174 |#1|))) (-15 -2387 ((-1174 |#2|) |#1|)) (-15 -2126 (|#3| |#1|)) (-15 -1304 (|#3| |#1|)) (-15 -1627 ((-632 |#2|) (-1174 |#1|))) (-15 -1975 (|#2| (-1174 |#1|))) (-15 -2064 (|#1| (-1174 |#2|) (-1174 |#1|))) (-15 -2387 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2387 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -1906 ((-632 |#2|) |#1| (-1174 |#1|)))) (-387 |#2| |#3|) (-160) (-1150 |#2|)) (T -386))
-((-1627 (*1 *2) (-12 (-4 *4 (-160)) (-4 *5 (-1150 *4)) (-5 *2 (-632 *4)) (-5 *1 (-386 *3 *4 *5)) (-4 *3 (-387 *4 *5)))) (-1975 (*1 *2) (-12 (-4 *4 (-1150 *2)) (-4 *2 (-160)) (-5 *1 (-386 *3 *2 *4)) (-4 *3 (-387 *2 *4)))))
-(-10 -8 (-15 -1906 ((-632 |#2|) |#1|)) (-15 -1975 (|#2|)) (-15 -1627 ((-632 |#2|))) (-15 -3210 (|#1| (-1174 |#2|))) (-15 -3210 ((-1174 |#2|) |#1|)) (-15 -2064 (|#1| (-1174 |#2|))) (-15 -2387 ((-632 |#2|) (-1174 |#1|))) (-15 -2387 ((-1174 |#2|) |#1|)) (-15 -2126 (|#3| |#1|)) (-15 -1304 (|#3| |#1|)) (-15 -1627 ((-632 |#2|) (-1174 |#1|))) (-15 -1975 (|#2| (-1174 |#1|))) (-15 -2064 (|#1| (-1174 |#2|) (-1174 |#1|))) (-15 -2387 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2387 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -1906 ((-632 |#2|) |#1| (-1174 |#1|))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1627 (((-632 |#1|) (-1174 $)) 46) (((-632 |#1|)) 61)) (-2952 ((|#1| $) 52)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-2064 (($ (-1174 |#1|) (-1174 $)) 48) (($ (-1174 |#1|)) 64)) (-1906 (((-632 |#1|) $ (-1174 $)) 53) (((-632 |#1|) $) 59)) (-3457 (((-3 $ "failed") $) 34)) (-3622 (((-856)) 54)) (-1396 (((-108) $) 31)) (-2382 ((|#1| $) 51)) (-2126 ((|#2| $) 44 (|has| |#1| (-341)))) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1975 ((|#1| (-1174 $)) 47) ((|#1|) 60)) (-2387 (((-1174 |#1|) $ (-1174 $)) 50) (((-632 |#1|) (-1174 $) (-1174 $)) 49) (((-1174 |#1|) $) 66) (((-632 |#1|) (-1174 $)) 65)) (-3210 (((-1174 |#1|) $) 63) (($ (-1174 |#1|)) 62)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37)) (-3637 (((-3 $ "failed") $) 43 (|has| |#1| (-136)))) (-1304 ((|#2| $) 45)) (-3917 (((-713)) 29)) (-3094 (((-1174 $)) 67)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+((-2016 (((-396 |#2|) (-1 |#2| |#1|) (-396 |#1|)) 20)))
+(((-383 |#1| |#2|) (-10 -7 (-15 -2016 ((-396 |#2|) (-1 |#2| |#1|) (-396 |#1|)))) (-517) (-517)) (T -383))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-396 *5)) (-4 *5 (-517)) (-4 *6 (-517)) (-5 *2 (-396 *6)) (-5 *1 (-383 *5 *6)))))
+(-10 -7 (-15 -2016 ((-396 |#2|) (-1 |#2| |#1|) (-396 |#1|))))
+((-2016 (((-385 |#2|) (-1 |#2| |#1|) (-385 |#1|)) 13)))
+(((-384 |#1| |#2|) (-10 -7 (-15 -2016 ((-385 |#2|) (-1 |#2| |#1|) (-385 |#1|)))) (-517) (-517)) (T -384))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-385 *5)) (-4 *5 (-517)) (-4 *6 (-517)) (-5 *2 (-385 *6)) (-5 *1 (-384 *5 *6)))))
+(-10 -7 (-15 -2016 ((-385 |#2|) (-1 |#2| |#1|) (-385 |#1|))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 13)) (-1653 ((|#1| $) 21 (|has| |#1| (-286)))) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-1507 (((-108) $ $) NIL)) (-2971 (((-525) $) NIL (|has| |#1| (-762)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) 17) (((-3 (-1092) "failed") $) NIL (|has| |#1| (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) 70 (|has| |#1| (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525))))) (-4105 ((|#1| $) 15) (((-1092) $) NIL (|has| |#1| (-968 (-1092)))) (((-385 (-525)) $) 67 (|has| |#1| (-968 (-525)))) (((-525) $) NIL (|has| |#1| (-968 (-525))))) (-1356 (($ $ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) 50)) (-1903 (($) NIL (|has| |#1| (-510)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-1889 (((-108) $) NIL (|has| |#1| (-762)))) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| |#1| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| |#1| (-821 (-357))))) (-2278 (((-108) $) 64)) (-2999 (($ $) NIL)) (-4066 ((|#1| $) 71)) (-2878 (((-3 $ "failed") $) NIL (|has| |#1| (-1068)))) (-4079 (((-108) $) NIL (|has| |#1| (-762)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-2948 (($) NIL (|has| |#1| (-1068)) CONST)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 97)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1372 (($ $) NIL (|has| |#1| (-286)))) (-1340 ((|#1| $) 28 (|has| |#1| (-510)))) (-3089 (((-396 (-1088 $)) (-1088 $)) 135 (|has| |#1| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) 131 (|has| |#1| (-844)))) (-4201 (((-396 $) $) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2825 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) |#1|) NIL (|has| |#1| (-486 (-1092) |#1|)))) (-1927 (((-713) $) NIL)) (-3431 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2702 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2874 (($ $) NIL)) (-4080 ((|#1| $) 73)) (-2069 (((-827 (-525)) $) NIL (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| |#1| (-567 (-827 (-357))))) (((-501) $) NIL (|has| |#1| (-567 (-501)))) (((-357) $) NIL (|has| |#1| (-953))) (((-205) $) NIL (|has| |#1| (-953)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) 115 (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 10) (($ (-1092)) NIL (|has| |#1| (-968 (-1092))))) (-1463 (((-3 $ "failed") $) 99 (-2067 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2448 (((-713)) 100)) (-3064 ((|#1| $) 26 (|has| |#1| (-510)))) (-1571 (((-108) $ $) NIL)) (-2380 (($ $) NIL (|has| |#1| (-762)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) 22 T CONST)) (-3375 (($) 8 T CONST)) (-3660 (((-1075) $) 43 (-12 (|has| |#1| (-510)) (|has| |#1| (-770)))) (((-1075) $ (-108)) 44 (-12 (|has| |#1| (-510)) (|has| |#1| (-770)))) (((-1179) (-764) $) 45 (-12 (|has| |#1| (-510)) (|has| |#1| (-770)))) (((-1179) (-764) $ (-108)) 46 (-12 (|has| |#1| (-510)) (|has| |#1| (-770))))) (-2401 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) 56)) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) 24 (|has| |#1| (-789)))) (-2880 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2871 (($ $) 25) (($ $ $) 55)) (-2860 (($ $ $) 53)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 125)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 60) (($ $ $) 57) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
+(((-385 |#1|) (-13 (-925 |#1|) (-10 -7 (IF (|has| |#1| (-510)) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4246)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-6 -4257)) (-6 -4246) |%noBranch|) |%noBranch|) |%noBranch|))) (-517)) (T -385))
+NIL
+(-13 (-925 |#1|) (-10 -7 (IF (|has| |#1| (-510)) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4246)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-6 -4257)) (-6 -4246) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-3855 (((-632 |#2|) (-1174 $)) NIL) (((-632 |#2|)) 18)) (-2580 (($ (-1174 |#2|) (-1174 $)) NIL) (($ (-1174 |#2|)) 26)) (-1588 (((-632 |#2|) $ (-1174 $)) NIL) (((-632 |#2|) $) 22)) (-2021 ((|#3| $) 60)) (-4115 ((|#2| (-1174 $)) NIL) ((|#2|) 20)) (-2754 (((-1174 |#2|) $ (-1174 $)) NIL) (((-632 |#2|) (-1174 $) (-1174 $)) NIL) (((-1174 |#2|) $) NIL) (((-632 |#2|) (-1174 $)) 24)) (-2069 (((-1174 |#2|) $) 11) (($ (-1174 |#2|)) 13)) (-3153 ((|#3| $) 52)))
+(((-386 |#1| |#2| |#3|) (-10 -8 (-15 -1588 ((-632 |#2|) |#1|)) (-15 -4115 (|#2|)) (-15 -3855 ((-632 |#2|))) (-15 -2069 (|#1| (-1174 |#2|))) (-15 -2069 ((-1174 |#2|) |#1|)) (-15 -2580 (|#1| (-1174 |#2|))) (-15 -2754 ((-632 |#2|) (-1174 |#1|))) (-15 -2754 ((-1174 |#2|) |#1|)) (-15 -2021 (|#3| |#1|)) (-15 -3153 (|#3| |#1|)) (-15 -3855 ((-632 |#2|) (-1174 |#1|))) (-15 -4115 (|#2| (-1174 |#1|))) (-15 -2580 (|#1| (-1174 |#2|) (-1174 |#1|))) (-15 -2754 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2754 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -1588 ((-632 |#2|) |#1| (-1174 |#1|)))) (-387 |#2| |#3|) (-160) (-1150 |#2|)) (T -386))
+((-3855 (*1 *2) (-12 (-4 *4 (-160)) (-4 *5 (-1150 *4)) (-5 *2 (-632 *4)) (-5 *1 (-386 *3 *4 *5)) (-4 *3 (-387 *4 *5)))) (-4115 (*1 *2) (-12 (-4 *4 (-1150 *2)) (-4 *2 (-160)) (-5 *1 (-386 *3 *2 *4)) (-4 *3 (-387 *2 *4)))))
+(-10 -8 (-15 -1588 ((-632 |#2|) |#1|)) (-15 -4115 (|#2|)) (-15 -3855 ((-632 |#2|))) (-15 -2069 (|#1| (-1174 |#2|))) (-15 -2069 ((-1174 |#2|) |#1|)) (-15 -2580 (|#1| (-1174 |#2|))) (-15 -2754 ((-632 |#2|) (-1174 |#1|))) (-15 -2754 ((-1174 |#2|) |#1|)) (-15 -2021 (|#3| |#1|)) (-15 -3153 (|#3| |#1|)) (-15 -3855 ((-632 |#2|) (-1174 |#1|))) (-15 -4115 (|#2| (-1174 |#1|))) (-15 -2580 (|#1| (-1174 |#2|) (-1174 |#1|))) (-15 -2754 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2754 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -1588 ((-632 |#2|) |#1| (-1174 |#1|))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3855 (((-632 |#1|) (-1174 $)) 46) (((-632 |#1|)) 61)) (-2924 ((|#1| $) 52)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-2580 (($ (-1174 |#1|) (-1174 $)) 48) (($ (-1174 |#1|)) 64)) (-1588 (((-632 |#1|) $ (-1174 $)) 53) (((-632 |#1|) $) 59)) (-3300 (((-3 $ "failed") $) 34)) (-3085 (((-856)) 54)) (-2278 (((-108) $) 31)) (-2704 ((|#1| $) 51)) (-2021 ((|#2| $) 44 (|has| |#1| (-341)))) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4115 ((|#1| (-1174 $)) 47) ((|#1|) 60)) (-2754 (((-1174 |#1|) $ (-1174 $)) 50) (((-632 |#1|) (-1174 $) (-1174 $)) 49) (((-1174 |#1|) $) 66) (((-632 |#1|) (-1174 $)) 65)) (-2069 (((-1174 |#1|) $) 63) (($ (-1174 |#1|)) 62)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37)) (-1463 (((-3 $ "failed") $) 43 (|has| |#1| (-136)))) (-3153 ((|#2| $) 45)) (-2448 (((-713)) 29)) (-2103 (((-1174 $)) 67)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
(((-387 |#1| |#2|) (-131) (-160) (-1150 |t#1|)) (T -387))
-((-3094 (*1 *2) (-12 (-4 *3 (-160)) (-4 *4 (-1150 *3)) (-5 *2 (-1174 *1)) (-4 *1 (-387 *3 *4)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1150 *3)) (-5 *2 (-1174 *3)))) (-2387 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1150 *4)) (-5 *2 (-632 *4)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4)) (-4 *4 (-1150 *3)))) (-3210 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1150 *3)) (-5 *2 (-1174 *3)))) (-3210 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4)) (-4 *4 (-1150 *3)))) (-1627 (*1 *2) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1150 *3)) (-5 *2 (-632 *3)))) (-1975 (*1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1150 *2)) (-4 *2 (-160)))) (-1906 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1150 *3)) (-5 *2 (-632 *3)))))
-(-13 (-348 |t#1| |t#2|) (-10 -8 (-15 -3094 ((-1174 $))) (-15 -2387 ((-1174 |t#1|) $)) (-15 -2387 ((-632 |t#1|) (-1174 $))) (-15 -2064 ($ (-1174 |t#1|))) (-15 -3210 ((-1174 |t#1|) $)) (-15 -3210 ($ (-1174 |t#1|))) (-15 -1627 ((-632 |t#1|))) (-15 -1975 (|t#1|)) (-15 -1906 ((-632 |t#1|) $))))
+((-2103 (*1 *2) (-12 (-4 *3 (-160)) (-4 *4 (-1150 *3)) (-5 *2 (-1174 *1)) (-4 *1 (-387 *3 *4)))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1150 *3)) (-5 *2 (-1174 *3)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1150 *4)) (-5 *2 (-632 *4)))) (-2580 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4)) (-4 *4 (-1150 *3)))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1150 *3)) (-5 *2 (-1174 *3)))) (-2069 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4)) (-4 *4 (-1150 *3)))) (-3855 (*1 *2) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1150 *3)) (-5 *2 (-632 *3)))) (-4115 (*1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1150 *2)) (-4 *2 (-160)))) (-1588 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1150 *3)) (-5 *2 (-632 *3)))))
+(-13 (-348 |t#1| |t#2|) (-10 -8 (-15 -2103 ((-1174 $))) (-15 -2754 ((-1174 |t#1|) $)) (-15 -2754 ((-632 |t#1|) (-1174 $))) (-15 -2580 ($ (-1174 |t#1|))) (-15 -2069 ((-1174 |t#1|) $)) (-15 -2069 ($ (-1174 |t#1|))) (-15 -3855 ((-632 |t#1|))) (-15 -4115 (|t#1|)) (-15 -1588 ((-632 |t#1|) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-348 |#1| |#2|) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) . T) ((-669) . T) ((-983 |#1|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-3077 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) 27) (((-3 (-525) "failed") $) 19)) (-1572 ((|#2| $) NIL) (((-385 (-525)) $) 24) (((-525) $) 14)) (-1217 (($ |#2|) NIL) (($ (-385 (-525))) 22) (($ (-525)) 11)))
-(((-388 |#1| |#2|) (-10 -8 (-15 -1572 ((-525) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1217 (|#1| (-525))) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -1217 (|#1| |#2|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -1572 (|#2| |#1|))) (-389 |#2|) (-1128)) (T -388))
+((-1934 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) 27) (((-3 (-525) "failed") $) 19)) (-4105 ((|#2| $) NIL) (((-385 (-525)) $) 24) (((-525) $) 14)) (-4100 (($ |#2|) NIL) (($ (-385 (-525))) 22) (($ (-525)) 11)))
+(((-388 |#1| |#2|) (-10 -8 (-15 -4105 ((-525) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4100 (|#1| (-525))) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -4100 (|#1| |#2|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -4105 (|#2| |#1|))) (-389 |#2|) (-1128)) (T -388))
NIL
-(-10 -8 (-15 -1572 ((-525) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1217 (|#1| (-525))) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -1217 (|#1| |#2|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -1572 (|#2| |#1|)))
-((-3077 (((-3 |#1| "failed") $) 7) (((-3 (-385 (-525)) "failed") $) 16 (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) 13 (|has| |#1| (-968 (-525))))) (-1572 ((|#1| $) 8) (((-385 (-525)) $) 15 (|has| |#1| (-968 (-385 (-525))))) (((-525) $) 12 (|has| |#1| (-968 (-525))))) (-1217 (($ |#1|) 6) (($ (-385 (-525))) 17 (|has| |#1| (-968 (-385 (-525))))) (($ (-525)) 14 (|has| |#1| (-968 (-525))))))
+(-10 -8 (-15 -4105 ((-525) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4100 (|#1| (-525))) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -4100 (|#1| |#2|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -4105 (|#2| |#1|)))
+((-1934 (((-3 |#1| "failed") $) 7) (((-3 (-385 (-525)) "failed") $) 16 (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) 13 (|has| |#1| (-968 (-525))))) (-4105 ((|#1| $) 8) (((-385 (-525)) $) 15 (|has| |#1| (-968 (-385 (-525))))) (((-525) $) 12 (|has| |#1| (-968 (-525))))) (-4100 (($ |#1|) 6) (($ (-385 (-525))) 17 (|has| |#1| (-968 (-385 (-525))))) (($ (-525)) 14 (|has| |#1| (-968 (-525))))))
(((-389 |#1|) (-131) (-1128)) (T -389))
NIL
(-13 (-968 |t#1|) (-10 -7 (IF (|has| |t#1| (-968 (-525))) (-6 (-968 (-525))) |%noBranch|) (IF (|has| |t#1| (-968 (-385 (-525)))) (-6 (-968 (-385 (-525)))) |%noBranch|)))
(((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T))
-((-3165 (((-391 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-391 |#1| |#2| |#3| |#4|)) 33)))
-(((-390 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3165 ((-391 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-391 |#1| |#2| |#3| |#4|)))) (-286) (-925 |#1|) (-1150 |#2|) (-13 (-387 |#2| |#3|) (-968 |#2|)) (-286) (-925 |#5|) (-1150 |#6|) (-13 (-387 |#6| |#7|) (-968 |#6|))) (T -390))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-391 *5 *6 *7 *8)) (-4 *5 (-286)) (-4 *6 (-925 *5)) (-4 *7 (-1150 *6)) (-4 *8 (-13 (-387 *6 *7) (-968 *6))) (-4 *9 (-286)) (-4 *10 (-925 *9)) (-4 *11 (-1150 *10)) (-5 *2 (-391 *9 *10 *11 *12)) (-5 *1 (-390 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-387 *10 *11) (-968 *10))))))
-(-10 -7 (-15 -3165 ((-391 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-391 |#1| |#2| |#3| |#4|))))
-((-4236 (((-108) $ $) NIL)) (-2169 (($) NIL T CONST)) (-3457 (((-3 $ "failed") $) NIL)) (-2921 ((|#4| (-713) (-1174 |#4|)) 56)) (-1396 (((-108) $) NIL)) (-3114 (((-1174 |#4|) $) 17)) (-2382 ((|#2| $) 54)) (-3871 (($ $) 139)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) 100)) (-1763 (($ (-1174 |#4|)) 99)) (-2093 (((-1039) $) NIL)) (-3123 ((|#1| $) 18)) (-1499 (($ $ $) NIL)) (-1990 (($ $ $) NIL)) (-1217 (((-798) $) 134)) (-3094 (((-1174 |#4|) $) 129)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3359 (($) 11 T CONST)) (-3955 (((-108) $ $) 40)) (-4075 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 122)) (* (($ $ $) 121)))
-(((-391 |#1| |#2| |#3| |#4|) (-13 (-450) (-10 -8 (-15 -1763 ($ (-1174 |#4|))) (-15 -3094 ((-1174 |#4|) $)) (-15 -2382 (|#2| $)) (-15 -3114 ((-1174 |#4|) $)) (-15 -3123 (|#1| $)) (-15 -3871 ($ $)) (-15 -2921 (|#4| (-713) (-1174 |#4|))))) (-286) (-925 |#1|) (-1150 |#2|) (-13 (-387 |#2| |#3|) (-968 |#2|))) (T -391))
-((-1763 (*1 *1 *2) (-12 (-5 *2 (-1174 *6)) (-4 *6 (-13 (-387 *4 *5) (-968 *4))) (-4 *4 (-925 *3)) (-4 *5 (-1150 *4)) (-4 *3 (-286)) (-5 *1 (-391 *3 *4 *5 *6)))) (-3094 (*1 *2 *1) (-12 (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1150 *4)) (-5 *2 (-1174 *6)) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *6 (-13 (-387 *4 *5) (-968 *4))))) (-2382 (*1 *2 *1) (-12 (-4 *4 (-1150 *2)) (-4 *2 (-925 *3)) (-5 *1 (-391 *3 *2 *4 *5)) (-4 *3 (-286)) (-4 *5 (-13 (-387 *2 *4) (-968 *2))))) (-3114 (*1 *2 *1) (-12 (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1150 *4)) (-5 *2 (-1174 *6)) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *6 (-13 (-387 *4 *5) (-968 *4))))) (-3123 (*1 *2 *1) (-12 (-4 *3 (-925 *2)) (-4 *4 (-1150 *3)) (-4 *2 (-286)) (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-968 *3))))) (-3871 (*1 *1 *1) (-12 (-4 *2 (-286)) (-4 *3 (-925 *2)) (-4 *4 (-1150 *3)) (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-968 *3))))) (-2921 (*1 *2 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-1174 *2)) (-4 *5 (-286)) (-4 *6 (-925 *5)) (-4 *2 (-13 (-387 *6 *7) (-968 *6))) (-5 *1 (-391 *5 *6 *7 *2)) (-4 *7 (-1150 *6)))))
-(-13 (-450) (-10 -8 (-15 -1763 ($ (-1174 |#4|))) (-15 -3094 ((-1174 |#4|) $)) (-15 -2382 (|#2| $)) (-15 -3114 ((-1174 |#4|) $)) (-15 -3123 (|#1| $)) (-15 -3871 ($ $)) (-15 -2921 (|#4| (-713) (-1174 |#4|)))))
-((-4236 (((-108) $ $) NIL)) (-2169 (($) NIL T CONST)) (-3457 (((-3 $ "failed") $) NIL)) (-1396 (((-108) $) NIL)) (-2382 ((|#2| $) 61)) (-2231 (($ (-1174 |#4|)) 25) (($ (-391 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-968 |#2|)))) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 34)) (-3094 (((-1174 |#4|) $) 26)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3359 (($) 23 T CONST)) (-3955 (((-108) $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ $ $) 72)))
-(((-392 |#1| |#2| |#3| |#4| |#5|) (-13 (-669) (-10 -8 (-15 -3094 ((-1174 |#4|) $)) (-15 -2382 (|#2| $)) (-15 -2231 ($ (-1174 |#4|))) (IF (|has| |#4| (-968 |#2|)) (-15 -2231 ($ (-391 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-286) (-925 |#1|) (-1150 |#2|) (-387 |#2| |#3|) (-1174 |#4|)) (T -392))
-((-3094 (*1 *2 *1) (-12 (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1150 *4)) (-5 *2 (-1174 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7)) (-4 *6 (-387 *4 *5)) (-14 *7 *2))) (-2382 (*1 *2 *1) (-12 (-4 *4 (-1150 *2)) (-4 *2 (-925 *3)) (-5 *1 (-392 *3 *2 *4 *5 *6)) (-4 *3 (-286)) (-4 *5 (-387 *2 *4)) (-14 *6 (-1174 *5)))) (-2231 (*1 *1 *2) (-12 (-5 *2 (-1174 *6)) (-4 *6 (-387 *4 *5)) (-4 *4 (-925 *3)) (-4 *5 (-1150 *4)) (-4 *3 (-286)) (-5 *1 (-392 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2231 (*1 *1 *2) (-12 (-5 *2 (-391 *3 *4 *5 *6)) (-4 *6 (-968 *4)) (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1150 *4)) (-4 *6 (-387 *4 *5)) (-14 *7 (-1174 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7)))))
-(-13 (-669) (-10 -8 (-15 -3094 ((-1174 |#4|) $)) (-15 -2382 (|#2| $)) (-15 -2231 ($ (-1174 |#4|))) (IF (|has| |#4| (-968 |#2|)) (-15 -2231 ($ (-391 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-3165 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
-(((-393 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3165 (|#3| (-1 |#4| |#2|) |#1|))) (-395 |#2|) (-160) (-395 |#4|) (-160)) (T -393))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-4 *2 (-395 *6)) (-5 *1 (-393 *4 *5 *2 *6)) (-4 *4 (-395 *5)))))
-(-10 -7 (-15 -3165 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2841 (((-3 $ "failed")) 86)) (-3482 (((-1174 (-632 |#2|)) (-1174 $)) NIL) (((-1174 (-632 |#2|))) 91)) (-1614 (((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed")) 85)) (-3912 (((-3 $ "failed")) 84)) (-3060 (((-632 |#2|) (-1174 $)) NIL) (((-632 |#2|)) 102)) (-3420 (((-632 |#2|) $ (-1174 $)) NIL) (((-632 |#2|) $) 110)) (-3082 (((-1088 (-887 |#2|))) 55)) (-3777 ((|#2| (-1174 $)) NIL) ((|#2|) 106)) (-2064 (($ (-1174 |#2|) (-1174 $)) NIL) (($ (-1174 |#2|)) 113)) (-3821 (((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed")) 83)) (-2060 (((-3 $ "failed")) 75)) (-2383 (((-632 |#2|) (-1174 $)) NIL) (((-632 |#2|)) 100)) (-1846 (((-632 |#2|) $ (-1174 $)) NIL) (((-632 |#2|) $) 108)) (-2436 (((-1088 (-887 |#2|))) 54)) (-3018 ((|#2| (-1174 $)) NIL) ((|#2|) 104)) (-2387 (((-1174 |#2|) $ (-1174 $)) NIL) (((-632 |#2|) (-1174 $) (-1174 $)) NIL) (((-1174 |#2|) $) NIL) (((-632 |#2|) (-1174 $)) 112)) (-3210 (((-1174 |#2|) $) 96) (($ (-1174 |#2|)) 98)) (-1432 (((-592 (-887 |#2|)) (-1174 $)) NIL) (((-592 (-887 |#2|))) 94)) (-1814 (($ (-632 |#2|) $) 90)))
-(((-394 |#1| |#2|) (-10 -8 (-15 -1814 (|#1| (-632 |#2|) |#1|)) (-15 -3082 ((-1088 (-887 |#2|)))) (-15 -2436 ((-1088 (-887 |#2|)))) (-15 -3420 ((-632 |#2|) |#1|)) (-15 -1846 ((-632 |#2|) |#1|)) (-15 -3060 ((-632 |#2|))) (-15 -2383 ((-632 |#2|))) (-15 -3777 (|#2|)) (-15 -3018 (|#2|)) (-15 -3210 (|#1| (-1174 |#2|))) (-15 -3210 ((-1174 |#2|) |#1|)) (-15 -2064 (|#1| (-1174 |#2|))) (-15 -1432 ((-592 (-887 |#2|)))) (-15 -3482 ((-1174 (-632 |#2|)))) (-15 -2387 ((-632 |#2|) (-1174 |#1|))) (-15 -2387 ((-1174 |#2|) |#1|)) (-15 -2841 ((-3 |#1| "failed"))) (-15 -3912 ((-3 |#1| "failed"))) (-15 -2060 ((-3 |#1| "failed"))) (-15 -1614 ((-3 (-2 (|:| |particular| |#1|) (|:| -3094 (-592 |#1|))) "failed"))) (-15 -3821 ((-3 (-2 (|:| |particular| |#1|) (|:| -3094 (-592 |#1|))) "failed"))) (-15 -3060 ((-632 |#2|) (-1174 |#1|))) (-15 -2383 ((-632 |#2|) (-1174 |#1|))) (-15 -3777 (|#2| (-1174 |#1|))) (-15 -3018 (|#2| (-1174 |#1|))) (-15 -2064 (|#1| (-1174 |#2|) (-1174 |#1|))) (-15 -2387 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2387 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -3420 ((-632 |#2|) |#1| (-1174 |#1|))) (-15 -1846 ((-632 |#2|) |#1| (-1174 |#1|))) (-15 -3482 ((-1174 (-632 |#2|)) (-1174 |#1|))) (-15 -1432 ((-592 (-887 |#2|)) (-1174 |#1|)))) (-395 |#2|) (-160)) (T -394))
-((-3482 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1174 (-632 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-1432 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-592 (-887 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-3018 (*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2)))) (-3777 (*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2)))) (-2383 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-3060 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-2436 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1088 (-887 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-3082 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1088 (-887 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))))
-(-10 -8 (-15 -1814 (|#1| (-632 |#2|) |#1|)) (-15 -3082 ((-1088 (-887 |#2|)))) (-15 -2436 ((-1088 (-887 |#2|)))) (-15 -3420 ((-632 |#2|) |#1|)) (-15 -1846 ((-632 |#2|) |#1|)) (-15 -3060 ((-632 |#2|))) (-15 -2383 ((-632 |#2|))) (-15 -3777 (|#2|)) (-15 -3018 (|#2|)) (-15 -3210 (|#1| (-1174 |#2|))) (-15 -3210 ((-1174 |#2|) |#1|)) (-15 -2064 (|#1| (-1174 |#2|))) (-15 -1432 ((-592 (-887 |#2|)))) (-15 -3482 ((-1174 (-632 |#2|)))) (-15 -2387 ((-632 |#2|) (-1174 |#1|))) (-15 -2387 ((-1174 |#2|) |#1|)) (-15 -2841 ((-3 |#1| "failed"))) (-15 -3912 ((-3 |#1| "failed"))) (-15 -2060 ((-3 |#1| "failed"))) (-15 -1614 ((-3 (-2 (|:| |particular| |#1|) (|:| -3094 (-592 |#1|))) "failed"))) (-15 -3821 ((-3 (-2 (|:| |particular| |#1|) (|:| -3094 (-592 |#1|))) "failed"))) (-15 -3060 ((-632 |#2|) (-1174 |#1|))) (-15 -2383 ((-632 |#2|) (-1174 |#1|))) (-15 -3777 (|#2| (-1174 |#1|))) (-15 -3018 (|#2| (-1174 |#1|))) (-15 -2064 (|#1| (-1174 |#2|) (-1174 |#1|))) (-15 -2387 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2387 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -3420 ((-632 |#2|) |#1| (-1174 |#1|))) (-15 -1846 ((-632 |#2|) |#1| (-1174 |#1|))) (-15 -3482 ((-1174 (-632 |#2|)) (-1174 |#1|))) (-15 -1432 ((-592 (-887 |#2|)) (-1174 |#1|))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2841 (((-3 $ "failed")) 37 (|has| |#1| (-517)))) (-1578 (((-3 $ "failed") $ $) 19)) (-3482 (((-1174 (-632 |#1|)) (-1174 $)) 78) (((-1174 (-632 |#1|))) 100)) (-1604 (((-1174 $)) 81)) (-2169 (($) 17 T CONST)) (-1614 (((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed")) 40 (|has| |#1| (-517)))) (-3912 (((-3 $ "failed")) 38 (|has| |#1| (-517)))) (-3060 (((-632 |#1|) (-1174 $)) 65) (((-632 |#1|)) 92)) (-2769 ((|#1| $) 74)) (-3420 (((-632 |#1|) $ (-1174 $)) 76) (((-632 |#1|) $) 90)) (-1586 (((-3 $ "failed") $) 45 (|has| |#1| (-517)))) (-3082 (((-1088 (-887 |#1|))) 88 (|has| |#1| (-341)))) (-2837 (($ $ (-856)) 28)) (-1713 ((|#1| $) 72)) (-2269 (((-1088 |#1|) $) 42 (|has| |#1| (-517)))) (-3777 ((|#1| (-1174 $)) 67) ((|#1|) 94)) (-2509 (((-1088 |#1|) $) 63)) (-1950 (((-108)) 57)) (-2064 (($ (-1174 |#1|) (-1174 $)) 69) (($ (-1174 |#1|)) 98)) (-3457 (((-3 $ "failed") $) 47 (|has| |#1| (-517)))) (-3622 (((-856)) 80)) (-1370 (((-108)) 54)) (-3587 (($ $ (-856)) 33)) (-2026 (((-108)) 50)) (-2070 (((-108)) 48)) (-3545 (((-108)) 52)) (-3821 (((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed")) 41 (|has| |#1| (-517)))) (-2060 (((-3 $ "failed")) 39 (|has| |#1| (-517)))) (-2383 (((-632 |#1|) (-1174 $)) 66) (((-632 |#1|)) 93)) (-1312 ((|#1| $) 75)) (-1846 (((-632 |#1|) $ (-1174 $)) 77) (((-632 |#1|) $) 91)) (-4106 (((-3 $ "failed") $) 46 (|has| |#1| (-517)))) (-2436 (((-1088 (-887 |#1|))) 89 (|has| |#1| (-341)))) (-2817 (($ $ (-856)) 29)) (-3807 ((|#1| $) 73)) (-1860 (((-1088 |#1|) $) 43 (|has| |#1| (-517)))) (-3018 ((|#1| (-1174 $)) 68) ((|#1|) 95)) (-2379 (((-1088 |#1|) $) 64)) (-2256 (((-108)) 58)) (-2619 (((-1075) $) 9)) (-2220 (((-108)) 49)) (-2861 (((-108)) 51)) (-3142 (((-108)) 53)) (-2093 (((-1039) $) 10)) (-3322 (((-108)) 56)) (-3406 ((|#1| $ (-525)) 101)) (-2387 (((-1174 |#1|) $ (-1174 $)) 71) (((-632 |#1|) (-1174 $) (-1174 $)) 70) (((-1174 |#1|) $) 103) (((-632 |#1|) (-1174 $)) 102)) (-3210 (((-1174 |#1|) $) 97) (($ (-1174 |#1|)) 96)) (-1432 (((-592 (-887 |#1|)) (-1174 $)) 79) (((-592 (-887 |#1|))) 99)) (-1990 (($ $ $) 25)) (-1252 (((-108)) 62)) (-1217 (((-798) $) 11)) (-3094 (((-1174 $)) 104)) (-1962 (((-592 (-1174 |#1|))) 44 (|has| |#1| (-517)))) (-3746 (($ $ $ $) 26)) (-1218 (((-108)) 60)) (-1814 (($ (-632 |#1|) $) 87)) (-2597 (($ $ $) 24)) (-3136 (((-108)) 61)) (-1541 (((-108)) 59)) (-3361 (((-108)) 55)) (-3349 (($) 18 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 30)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-2016 (((-391 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-391 |#1| |#2| |#3| |#4|)) 33)))
+(((-390 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2016 ((-391 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-391 |#1| |#2| |#3| |#4|)))) (-286) (-925 |#1|) (-1150 |#2|) (-13 (-387 |#2| |#3|) (-968 |#2|)) (-286) (-925 |#5|) (-1150 |#6|) (-13 (-387 |#6| |#7|) (-968 |#6|))) (T -390))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-391 *5 *6 *7 *8)) (-4 *5 (-286)) (-4 *6 (-925 *5)) (-4 *7 (-1150 *6)) (-4 *8 (-13 (-387 *6 *7) (-968 *6))) (-4 *9 (-286)) (-4 *10 (-925 *9)) (-4 *11 (-1150 *10)) (-5 *2 (-391 *9 *10 *11 *12)) (-5 *1 (-390 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-387 *10 *11) (-968 *10))))))
+(-10 -7 (-15 -2016 ((-391 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-391 |#1| |#2| |#3| |#4|))))
+((-4087 (((-108) $ $) NIL)) (-2475 (($) NIL T CONST)) (-3300 (((-3 $ "failed") $) NIL)) (-4135 ((|#4| (-713) (-1174 |#4|)) 56)) (-2278 (((-108) $) NIL)) (-4066 (((-1174 |#4|) $) 17)) (-2704 ((|#2| $) 54)) (-1988 (($ $) 139)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) 100)) (-2654 (($ (-1174 |#4|)) 99)) (-3993 (((-1039) $) NIL)) (-4080 ((|#1| $) 18)) (-3055 (($ $ $) NIL)) (-1242 (($ $ $) NIL)) (-4100 (((-798) $) 134)) (-2103 (((-1174 |#4|) $) 129)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3375 (($) 11 T CONST)) (-2775 (((-108) $ $) 40)) (-2880 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 122)) (* (($ $ $) 121)))
+(((-391 |#1| |#2| |#3| |#4|) (-13 (-450) (-10 -8 (-15 -2654 ($ (-1174 |#4|))) (-15 -2103 ((-1174 |#4|) $)) (-15 -2704 (|#2| $)) (-15 -4066 ((-1174 |#4|) $)) (-15 -4080 (|#1| $)) (-15 -1988 ($ $)) (-15 -4135 (|#4| (-713) (-1174 |#4|))))) (-286) (-925 |#1|) (-1150 |#2|) (-13 (-387 |#2| |#3|) (-968 |#2|))) (T -391))
+((-2654 (*1 *1 *2) (-12 (-5 *2 (-1174 *6)) (-4 *6 (-13 (-387 *4 *5) (-968 *4))) (-4 *4 (-925 *3)) (-4 *5 (-1150 *4)) (-4 *3 (-286)) (-5 *1 (-391 *3 *4 *5 *6)))) (-2103 (*1 *2 *1) (-12 (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1150 *4)) (-5 *2 (-1174 *6)) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *6 (-13 (-387 *4 *5) (-968 *4))))) (-2704 (*1 *2 *1) (-12 (-4 *4 (-1150 *2)) (-4 *2 (-925 *3)) (-5 *1 (-391 *3 *2 *4 *5)) (-4 *3 (-286)) (-4 *5 (-13 (-387 *2 *4) (-968 *2))))) (-4066 (*1 *2 *1) (-12 (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1150 *4)) (-5 *2 (-1174 *6)) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *6 (-13 (-387 *4 *5) (-968 *4))))) (-4080 (*1 *2 *1) (-12 (-4 *3 (-925 *2)) (-4 *4 (-1150 *3)) (-4 *2 (-286)) (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-968 *3))))) (-1988 (*1 *1 *1) (-12 (-4 *2 (-286)) (-4 *3 (-925 *2)) (-4 *4 (-1150 *3)) (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-968 *3))))) (-4135 (*1 *2 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-1174 *2)) (-4 *5 (-286)) (-4 *6 (-925 *5)) (-4 *2 (-13 (-387 *6 *7) (-968 *6))) (-5 *1 (-391 *5 *6 *7 *2)) (-4 *7 (-1150 *6)))))
+(-13 (-450) (-10 -8 (-15 -2654 ($ (-1174 |#4|))) (-15 -2103 ((-1174 |#4|) $)) (-15 -2704 (|#2| $)) (-15 -4066 ((-1174 |#4|) $)) (-15 -4080 (|#1| $)) (-15 -1988 ($ $)) (-15 -4135 (|#4| (-713) (-1174 |#4|)))))
+((-4087 (((-108) $ $) NIL)) (-2475 (($) NIL T CONST)) (-3300 (((-3 $ "failed") $) NIL)) (-2278 (((-108) $) NIL)) (-2704 ((|#2| $) 61)) (-1888 (($ (-1174 |#4|)) 25) (($ (-391 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-968 |#2|)))) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 34)) (-2103 (((-1174 |#4|) $) 26)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3375 (($) 23 T CONST)) (-2775 (((-108) $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ $ $) 72)))
+(((-392 |#1| |#2| |#3| |#4| |#5|) (-13 (-669) (-10 -8 (-15 -2103 ((-1174 |#4|) $)) (-15 -2704 (|#2| $)) (-15 -1888 ($ (-1174 |#4|))) (IF (|has| |#4| (-968 |#2|)) (-15 -1888 ($ (-391 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-286) (-925 |#1|) (-1150 |#2|) (-387 |#2| |#3|) (-1174 |#4|)) (T -392))
+((-2103 (*1 *2 *1) (-12 (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1150 *4)) (-5 *2 (-1174 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7)) (-4 *6 (-387 *4 *5)) (-14 *7 *2))) (-2704 (*1 *2 *1) (-12 (-4 *4 (-1150 *2)) (-4 *2 (-925 *3)) (-5 *1 (-392 *3 *2 *4 *5 *6)) (-4 *3 (-286)) (-4 *5 (-387 *2 *4)) (-14 *6 (-1174 *5)))) (-1888 (*1 *1 *2) (-12 (-5 *2 (-1174 *6)) (-4 *6 (-387 *4 *5)) (-4 *4 (-925 *3)) (-4 *5 (-1150 *4)) (-4 *3 (-286)) (-5 *1 (-392 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1888 (*1 *1 *2) (-12 (-5 *2 (-391 *3 *4 *5 *6)) (-4 *6 (-968 *4)) (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1150 *4)) (-4 *6 (-387 *4 *5)) (-14 *7 (-1174 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7)))))
+(-13 (-669) (-10 -8 (-15 -2103 ((-1174 |#4|) $)) (-15 -2704 (|#2| $)) (-15 -1888 ($ (-1174 |#4|))) (IF (|has| |#4| (-968 |#2|)) (-15 -1888 ($ (-391 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-2016 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
+(((-393 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2016 (|#3| (-1 |#4| |#2|) |#1|))) (-395 |#2|) (-160) (-395 |#4|) (-160)) (T -393))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-4 *2 (-395 *6)) (-5 *1 (-393 *4 *5 *2 *6)) (-4 *4 (-395 *5)))))
+(-10 -7 (-15 -2016 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1509 (((-3 $ "failed")) 86)) (-3551 (((-1174 (-632 |#2|)) (-1174 $)) NIL) (((-1174 (-632 |#2|))) 91)) (-3734 (((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed")) 85)) (-2394 (((-3 $ "failed")) 84)) (-2946 (((-632 |#2|) (-1174 $)) NIL) (((-632 |#2|)) 102)) (-4187 (((-632 |#2|) $ (-1174 $)) NIL) (((-632 |#2|) $) 110)) (-3141 (((-1088 (-887 |#2|))) 55)) (-3411 ((|#2| (-1174 $)) NIL) ((|#2|) 106)) (-2580 (($ (-1174 |#2|) (-1174 $)) NIL) (($ (-1174 |#2|)) 113)) (-2661 (((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed")) 83)) (-2542 (((-3 $ "failed")) 75)) (-2713 (((-632 |#2|) (-1174 $)) NIL) (((-632 |#2|)) 100)) (-2222 (((-632 |#2|) $ (-1174 $)) NIL) (((-632 |#2|) $) 108)) (-2056 (((-1088 (-887 |#2|))) 54)) (-2623 ((|#2| (-1174 $)) NIL) ((|#2|) 104)) (-2754 (((-1174 |#2|) $ (-1174 $)) NIL) (((-632 |#2|) (-1174 $) (-1174 $)) NIL) (((-1174 |#2|) $) NIL) (((-632 |#2|) (-1174 $)) 112)) (-2069 (((-1174 |#2|) $) 96) (($ (-1174 |#2|)) 98)) (-3600 (((-592 (-887 |#2|)) (-1174 $)) NIL) (((-592 (-887 |#2|))) 94)) (-1590 (($ (-632 |#2|) $) 90)))
+(((-394 |#1| |#2|) (-10 -8 (-15 -1590 (|#1| (-632 |#2|) |#1|)) (-15 -3141 ((-1088 (-887 |#2|)))) (-15 -2056 ((-1088 (-887 |#2|)))) (-15 -4187 ((-632 |#2|) |#1|)) (-15 -2222 ((-632 |#2|) |#1|)) (-15 -2946 ((-632 |#2|))) (-15 -2713 ((-632 |#2|))) (-15 -3411 (|#2|)) (-15 -2623 (|#2|)) (-15 -2069 (|#1| (-1174 |#2|))) (-15 -2069 ((-1174 |#2|) |#1|)) (-15 -2580 (|#1| (-1174 |#2|))) (-15 -3600 ((-592 (-887 |#2|)))) (-15 -3551 ((-1174 (-632 |#2|)))) (-15 -2754 ((-632 |#2|) (-1174 |#1|))) (-15 -2754 ((-1174 |#2|) |#1|)) (-15 -1509 ((-3 |#1| "failed"))) (-15 -2394 ((-3 |#1| "failed"))) (-15 -2542 ((-3 |#1| "failed"))) (-15 -3734 ((-3 (-2 (|:| |particular| |#1|) (|:| -2103 (-592 |#1|))) "failed"))) (-15 -2661 ((-3 (-2 (|:| |particular| |#1|) (|:| -2103 (-592 |#1|))) "failed"))) (-15 -2946 ((-632 |#2|) (-1174 |#1|))) (-15 -2713 ((-632 |#2|) (-1174 |#1|))) (-15 -3411 (|#2| (-1174 |#1|))) (-15 -2623 (|#2| (-1174 |#1|))) (-15 -2580 (|#1| (-1174 |#2|) (-1174 |#1|))) (-15 -2754 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2754 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -4187 ((-632 |#2|) |#1| (-1174 |#1|))) (-15 -2222 ((-632 |#2|) |#1| (-1174 |#1|))) (-15 -3551 ((-1174 (-632 |#2|)) (-1174 |#1|))) (-15 -3600 ((-592 (-887 |#2|)) (-1174 |#1|)))) (-395 |#2|) (-160)) (T -394))
+((-3551 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1174 (-632 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-3600 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-592 (-887 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-2623 (*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2)))) (-3411 (*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2)))) (-2713 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-2946 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-2056 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1088 (-887 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-3141 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1088 (-887 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))))
+(-10 -8 (-15 -1590 (|#1| (-632 |#2|) |#1|)) (-15 -3141 ((-1088 (-887 |#2|)))) (-15 -2056 ((-1088 (-887 |#2|)))) (-15 -4187 ((-632 |#2|) |#1|)) (-15 -2222 ((-632 |#2|) |#1|)) (-15 -2946 ((-632 |#2|))) (-15 -2713 ((-632 |#2|))) (-15 -3411 (|#2|)) (-15 -2623 (|#2|)) (-15 -2069 (|#1| (-1174 |#2|))) (-15 -2069 ((-1174 |#2|) |#1|)) (-15 -2580 (|#1| (-1174 |#2|))) (-15 -3600 ((-592 (-887 |#2|)))) (-15 -3551 ((-1174 (-632 |#2|)))) (-15 -2754 ((-632 |#2|) (-1174 |#1|))) (-15 -2754 ((-1174 |#2|) |#1|)) (-15 -1509 ((-3 |#1| "failed"))) (-15 -2394 ((-3 |#1| "failed"))) (-15 -2542 ((-3 |#1| "failed"))) (-15 -3734 ((-3 (-2 (|:| |particular| |#1|) (|:| -2103 (-592 |#1|))) "failed"))) (-15 -2661 ((-3 (-2 (|:| |particular| |#1|) (|:| -2103 (-592 |#1|))) "failed"))) (-15 -2946 ((-632 |#2|) (-1174 |#1|))) (-15 -2713 ((-632 |#2|) (-1174 |#1|))) (-15 -3411 (|#2| (-1174 |#1|))) (-15 -2623 (|#2| (-1174 |#1|))) (-15 -2580 (|#1| (-1174 |#2|) (-1174 |#1|))) (-15 -2754 ((-632 |#2|) (-1174 |#1|) (-1174 |#1|))) (-15 -2754 ((-1174 |#2|) |#1| (-1174 |#1|))) (-15 -4187 ((-632 |#2|) |#1| (-1174 |#1|))) (-15 -2222 ((-632 |#2|) |#1| (-1174 |#1|))) (-15 -3551 ((-1174 (-632 |#2|)) (-1174 |#1|))) (-15 -3600 ((-592 (-887 |#2|)) (-1174 |#1|))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-1509 (((-3 $ "failed")) 37 (|has| |#1| (-517)))) (-3222 (((-3 $ "failed") $ $) 19)) (-3551 (((-1174 (-632 |#1|)) (-1174 $)) 78) (((-1174 (-632 |#1|))) 100)) (-3651 (((-1174 $)) 81)) (-2475 (($) 17 T CONST)) (-3734 (((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed")) 40 (|has| |#1| (-517)))) (-2394 (((-3 $ "failed")) 38 (|has| |#1| (-517)))) (-2946 (((-632 |#1|) (-1174 $)) 65) (((-632 |#1|)) 92)) (-2126 ((|#1| $) 74)) (-4187 (((-632 |#1|) $ (-1174 $)) 76) (((-632 |#1|) $) 90)) (-3322 (((-3 $ "failed") $) 45 (|has| |#1| (-517)))) (-3141 (((-1088 (-887 |#1|))) 88 (|has| |#1| (-341)))) (-1488 (($ $ (-856)) 28)) (-3447 ((|#1| $) 72)) (-4047 (((-1088 |#1|) $) 42 (|has| |#1| (-517)))) (-3411 ((|#1| (-1174 $)) 67) ((|#1|) 94)) (-1521 (((-1088 |#1|) $) 63)) (-3838 (((-108)) 57)) (-2580 (($ (-1174 |#1|) (-1174 $)) 69) (($ (-1174 |#1|)) 98)) (-3300 (((-3 $ "failed") $) 47 (|has| |#1| (-517)))) (-3085 (((-856)) 80)) (-1822 (((-108)) 54)) (-2156 (($ $ (-856)) 33)) (-3387 (((-108)) 50)) (-2634 (((-108)) 48)) (-2936 (((-108)) 52)) (-2661 (((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed")) 41 (|has| |#1| (-517)))) (-2542 (((-3 $ "failed")) 39 (|has| |#1| (-517)))) (-2713 (((-632 |#1|) (-1174 $)) 66) (((-632 |#1|)) 93)) (-3309 ((|#1| $) 75)) (-2222 (((-632 |#1|) $ (-1174 $)) 77) (((-632 |#1|) $) 91)) (-3711 (((-3 $ "failed") $) 46 (|has| |#1| (-517)))) (-2056 (((-1088 (-887 |#1|))) 89 (|has| |#1| (-341)))) (-2486 (($ $ (-856)) 29)) (-3714 ((|#1| $) 73)) (-2357 (((-1088 |#1|) $) 43 (|has| |#1| (-517)))) (-2623 ((|#1| (-1174 $)) 68) ((|#1|) 95)) (-2673 (((-1088 |#1|) $) 64)) (-3938 (((-108)) 58)) (-1289 (((-1075) $) 9)) (-1780 (((-108)) 49)) (-1719 (((-108)) 51)) (-2490 (((-108)) 53)) (-3993 (((-1039) $) 10)) (-1539 (((-108)) 56)) (-3431 ((|#1| $ (-525)) 101)) (-2754 (((-1174 |#1|) $ (-1174 $)) 71) (((-632 |#1|) (-1174 $) (-1174 $)) 70) (((-1174 |#1|) $) 103) (((-632 |#1|) (-1174 $)) 102)) (-2069 (((-1174 |#1|) $) 97) (($ (-1174 |#1|)) 96)) (-3600 (((-592 (-887 |#1|)) (-1174 $)) 79) (((-592 (-887 |#1|))) 99)) (-1242 (($ $ $) 25)) (-1682 (((-108)) 62)) (-4100 (((-798) $) 11)) (-2103 (((-1174 $)) 104)) (-3974 (((-592 (-1174 |#1|))) 44 (|has| |#1| (-517)))) (-3133 (($ $ $ $) 26)) (-1839 (((-108)) 60)) (-1590 (($ (-632 |#1|) $) 87)) (-4148 (($ $ $) 24)) (-2453 (((-108)) 61)) (-1569 (((-108)) 59)) (-1886 (((-108)) 55)) (-3364 (($) 18 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 30)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-395 |#1|) (-131) (-160)) (T -395))
-((-3094 (*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1174 *1)) (-4 *1 (-395 *3)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1174 *3)))) (-2387 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-395 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-3406 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-395 *2)) (-4 *2 (-160)))) (-3482 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1174 (-632 *3))))) (-1432 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-592 (-887 *3))))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3)))) (-3210 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1174 *3)))) (-3210 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3)))) (-3018 (*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))) (-3777 (*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))) (-2383 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-3060 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-3420 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-2436 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341)) (-5 *2 (-1088 (-887 *3))))) (-3082 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341)) (-5 *2 (-1088 (-887 *3))))) (-1814 (*1 *1 *2 *1) (-12 (-5 *2 (-632 *3)) (-4 *1 (-395 *3)) (-4 *3 (-160)))))
-(-13 (-345 |t#1|) (-10 -8 (-15 -3094 ((-1174 $))) (-15 -2387 ((-1174 |t#1|) $)) (-15 -2387 ((-632 |t#1|) (-1174 $))) (-15 -3406 (|t#1| $ (-525))) (-15 -3482 ((-1174 (-632 |t#1|)))) (-15 -1432 ((-592 (-887 |t#1|)))) (-15 -2064 ($ (-1174 |t#1|))) (-15 -3210 ((-1174 |t#1|) $)) (-15 -3210 ($ (-1174 |t#1|))) (-15 -3018 (|t#1|)) (-15 -3777 (|t#1|)) (-15 -2383 ((-632 |t#1|))) (-15 -3060 ((-632 |t#1|))) (-15 -1846 ((-632 |t#1|) $)) (-15 -3420 ((-632 |t#1|) $)) (IF (|has| |t#1| (-341)) (PROGN (-15 -2436 ((-1088 (-887 |t#1|)))) (-15 -3082 ((-1088 (-887 |t#1|))))) |%noBranch|) (-15 -1814 ($ (-632 |t#1|) $))))
+((-2103 (*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1174 *1)) (-4 *1 (-395 *3)))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1174 *3)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-395 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-3431 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-395 *2)) (-4 *2 (-160)))) (-3551 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1174 (-632 *3))))) (-3600 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-592 (-887 *3))))) (-2580 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3)))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1174 *3)))) (-2069 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3)))) (-2623 (*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))) (-3411 (*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))) (-2713 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-2946 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-2222 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-2056 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341)) (-5 *2 (-1088 (-887 *3))))) (-3141 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341)) (-5 *2 (-1088 (-887 *3))))) (-1590 (*1 *1 *2 *1) (-12 (-5 *2 (-632 *3)) (-4 *1 (-395 *3)) (-4 *3 (-160)))))
+(-13 (-345 |t#1|) (-10 -8 (-15 -2103 ((-1174 $))) (-15 -2754 ((-1174 |t#1|) $)) (-15 -2754 ((-632 |t#1|) (-1174 $))) (-15 -3431 (|t#1| $ (-525))) (-15 -3551 ((-1174 (-632 |t#1|)))) (-15 -3600 ((-592 (-887 |t#1|)))) (-15 -2580 ($ (-1174 |t#1|))) (-15 -2069 ((-1174 |t#1|) $)) (-15 -2069 ($ (-1174 |t#1|))) (-15 -2623 (|t#1|)) (-15 -3411 (|t#1|)) (-15 -2713 ((-632 |t#1|))) (-15 -2946 ((-632 |t#1|))) (-15 -2222 ((-632 |t#1|) $)) (-15 -4187 ((-632 |t#1|) $)) (IF (|has| |t#1| (-341)) (PROGN (-15 -2056 ((-1088 (-887 |t#1|)))) (-15 -3141 ((-1088 (-887 |t#1|))))) |%noBranch|) (-15 -1590 ($ (-632 |t#1|) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-345 |#1|) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-663) . T) ((-687 |#1|) . T) ((-704) . T) ((-983 |#1|) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 42)) (-1640 (($ $) 57)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 146)) (-4218 (($ $) NIL)) (-3171 (((-108) $) 36)) (-2841 ((|#1| $) 13)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL (|has| |#1| (-1132)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-1132)))) (-3184 (($ |#1| (-525)) 31)) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 116)) (-1572 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 55)) (-3457 (((-3 $ "failed") $) 131)) (-1514 (((-3 (-385 (-525)) "failed") $) 63 (|has| |#1| (-510)))) (-3933 (((-108) $) 59 (|has| |#1| (-510)))) (-3303 (((-385 (-525)) $) 70 (|has| |#1| (-510)))) (-3107 (($ |#1| (-525)) 33)) (-3673 (((-108) $) 152 (|has| |#1| (-1132)))) (-1396 (((-108) $) 43)) (-3873 (((-713) $) 38)) (-3612 (((-3 "nil" "sqfr" "irred" "prime") $ (-525)) 137)) (-1726 ((|#1| $ (-525)) 136)) (-1389 (((-525) $ (-525)) 135)) (-1697 (($ |#1| (-525)) 30)) (-3165 (($ (-1 |#1| |#1|) $) 143)) (-3449 (($ |#1| (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525))))) 58)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2619 (((-1075) $) NIL)) (-2715 (($ |#1| (-525)) 32)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-429)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) 147 (|has| |#1| (-429)))) (-2331 (($ |#1| (-525) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-3843 (((-592 (-2 (|:| -2770 |#1|) (|:| -4193 (-525)))) $) 54)) (-4157 (((-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))) $) 12)) (-2770 (((-396 $) $) NIL (|has| |#1| (-1132)))) (-1715 (((-3 $ "failed") $ $) 138)) (-4193 (((-525) $) 132)) (-3751 ((|#1| $) 56)) (-2457 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 79 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) 85 (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) |#1|) NIL (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) $) NIL (|has| |#1| (-486 (-1092) $))) (($ $ (-592 (-1092)) (-592 $)) 86 (|has| |#1| (-486 (-1092) $))) (($ $ (-592 (-273 $))) 82 (|has| |#1| (-288 $))) (($ $ (-273 $)) NIL (|has| |#1| (-288 $))) (($ $ $ $) NIL (|has| |#1| (-288 $))) (($ $ (-592 $) (-592 $)) NIL (|has| |#1| (-288 $)))) (-3406 (($ $ |#1|) 71 (|has| |#1| (-265 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-265 $ $)))) (-3376 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-3210 (((-501) $) 27 (|has| |#1| (-567 (-501)))) (((-357) $) 92 (|has| |#1| (-953))) (((-205) $) 95 (|has| |#1| (-953)))) (-1217 (((-798) $) 114) (($ (-525)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525)))))) (-3917 (((-713)) 48)) (-3325 (((-108) $ $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 40 T CONST)) (-3359 (($) 39 T CONST)) (-2022 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3955 (((-108) $ $) 96)) (-4061 (($ $) 128) (($ $ $) NIL)) (-4047 (($ $ $) 140)) (** (($ $ (-856)) NIL) (($ $ (-713)) 102)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL)))
-(((-396 |#1|) (-13 (-517) (-211 |#1|) (-37 |#1|) (-316 |#1|) (-389 |#1|) (-10 -8 (-15 -3751 (|#1| $)) (-15 -4193 ((-525) $)) (-15 -3449 ($ |#1| (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))))) (-15 -4157 ((-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))) $)) (-15 -1697 ($ |#1| (-525))) (-15 -3843 ((-592 (-2 (|:| -2770 |#1|) (|:| -4193 (-525)))) $)) (-15 -2715 ($ |#1| (-525))) (-15 -1389 ((-525) $ (-525))) (-15 -1726 (|#1| $ (-525))) (-15 -3612 ((-3 "nil" "sqfr" "irred" "prime") $ (-525))) (-15 -3873 ((-713) $)) (-15 -3107 ($ |#1| (-525))) (-15 -3184 ($ |#1| (-525))) (-15 -2331 ($ |#1| (-525) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2841 (|#1| $)) (-15 -1640 ($ $)) (-15 -3165 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-429)) (-6 (-429)) |%noBranch|) (IF (|has| |#1| (-953)) (-6 (-953)) |%noBranch|) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -3933 ((-108) $)) (-15 -3303 ((-385 (-525)) $)) (-15 -1514 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-265 $ $)) (-6 (-265 $ $)) |%noBranch|) (IF (|has| |#1| (-288 $)) (-6 (-288 $)) |%noBranch|) (IF (|has| |#1| (-486 (-1092) $)) (-6 (-486 (-1092) $)) |%noBranch|))) (-517)) (T -396))
-((-3165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-517)) (-5 *1 (-396 *3)))) (-3751 (*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-3449 (*1 *1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-525))))) (-4 *2 (-517)) (-5 *1 (-396 *2)))) (-4157 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-525))))) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-1697 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -2770 *3) (|:| -4193 (-525))))) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-2715 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1389 (*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-1726 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3612 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-396 *4)) (-4 *4 (-517)))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-3107 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3184 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-2331 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-525)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-2841 (*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1640 (*1 *1 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517)))) (-1514 (*1 *2 *1) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517)))))
-(-13 (-517) (-211 |#1|) (-37 |#1|) (-316 |#1|) (-389 |#1|) (-10 -8 (-15 -3751 (|#1| $)) (-15 -4193 ((-525) $)) (-15 -3449 ($ |#1| (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))))) (-15 -4157 ((-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))) $)) (-15 -1697 ($ |#1| (-525))) (-15 -3843 ((-592 (-2 (|:| -2770 |#1|) (|:| -4193 (-525)))) $)) (-15 -2715 ($ |#1| (-525))) (-15 -1389 ((-525) $ (-525))) (-15 -1726 (|#1| $ (-525))) (-15 -3612 ((-3 "nil" "sqfr" "irred" "prime") $ (-525))) (-15 -3873 ((-713) $)) (-15 -3107 ($ |#1| (-525))) (-15 -3184 ($ |#1| (-525))) (-15 -2331 ($ |#1| (-525) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2841 (|#1| $)) (-15 -1640 ($ $)) (-15 -3165 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-429)) (-6 (-429)) |%noBranch|) (IF (|has| |#1| (-953)) (-6 (-953)) |%noBranch|) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -3933 ((-108) $)) (-15 -3303 ((-385 (-525)) $)) (-15 -1514 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-265 $ $)) (-6 (-265 $ $)) |%noBranch|) (IF (|has| |#1| (-288 $)) (-6 (-288 $)) |%noBranch|) (IF (|has| |#1| (-486 (-1092) $)) (-6 (-486 (-1092) $)) |%noBranch|)))
-((-1833 (((-396 |#1|) (-396 |#1|) (-1 (-396 |#1|) |#1|)) 21)) (-3569 (((-396 |#1|) (-396 |#1|) (-396 |#1|)) 16)))
-(((-397 |#1|) (-10 -7 (-15 -1833 ((-396 |#1|) (-396 |#1|) (-1 (-396 |#1|) |#1|))) (-15 -3569 ((-396 |#1|) (-396 |#1|) (-396 |#1|)))) (-517)) (T -397))
-((-3569 (*1 *2 *2 *2) (-12 (-5 *2 (-396 *3)) (-4 *3 (-517)) (-5 *1 (-397 *3)))) (-1833 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-396 *4) *4)) (-4 *4 (-517)) (-5 *2 (-396 *4)) (-5 *1 (-397 *4)))))
-(-10 -7 (-15 -1833 ((-396 |#1|) (-396 |#1|) (-1 (-396 |#1|) |#1|))) (-15 -3569 ((-396 |#1|) (-396 |#1|) (-396 |#1|))))
-((-3756 ((|#2| |#2|) 166)) (-3826 (((-3 (|:| |%expansion| (-291 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-108)) 57)))
-(((-398 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3826 ((-3 (|:| |%expansion| (-291 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-108))) (-15 -3756 (|#2| |#2|))) (-13 (-429) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1114) (-408 |#1|)) (-1092) |#2|) (T -398))
-((-3756 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-398 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1114) (-408 *3))) (-14 *4 (-1092)) (-14 *5 *2))) (-3826 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |%expansion| (-291 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075)))))) (-5 *1 (-398 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1114) (-408 *5))) (-14 *6 (-1092)) (-14 *7 *3))))
-(-10 -7 (-15 -3826 ((-3 (|:| |%expansion| (-291 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-108))) (-15 -3756 (|#2| |#2|)))
-((-3165 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-399 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3165 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-977) (-789)) (-408 |#1|) (-13 (-977) (-789)) (-408 |#3|)) (T -399))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-977) (-789))) (-4 *6 (-13 (-977) (-789))) (-4 *2 (-408 *6)) (-5 *1 (-399 *5 *4 *6 *2)) (-4 *4 (-408 *5)))))
-(-10 -7 (-15 -3165 (|#4| (-1 |#3| |#1|) |#2|)))
-((-3756 ((|#2| |#2|) 90)) (-1583 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-108) (-1075)) 48)) (-1233 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-108) (-1075)) 154)))
-(((-400 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1583 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-108) (-1075))) (-15 -1233 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-108) (-1075))) (-15 -3756 (|#2| |#2|))) (-13 (-429) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1114) (-408 |#1|) (-10 -8 (-15 -1217 ($ |#3|)))) (-787) (-13 (-1152 |#2| |#3|) (-341) (-1114) (-10 -8 (-15 -3376 ($ $)) (-15 -1206 ($ $)))) (-916 |#4|) (-1092)) (T -400))
-((-3756 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-4 *2 (-13 (-27) (-1114) (-408 *3) (-10 -8 (-15 -1217 ($ *4))))) (-4 *4 (-787)) (-4 *5 (-13 (-1152 *2 *4) (-341) (-1114) (-10 -8 (-15 -3376 ($ $)) (-15 -1206 ($ $))))) (-5 *1 (-400 *3 *2 *4 *5 *6 *7)) (-4 *6 (-916 *5)) (-14 *7 (-1092)))) (-1233 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-4 *3 (-13 (-27) (-1114) (-408 *6) (-10 -8 (-15 -1217 ($ *7))))) (-4 *7 (-787)) (-4 *8 (-13 (-1152 *3 *7) (-341) (-1114) (-10 -8 (-15 -3376 ($ $)) (-15 -1206 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075)))))) (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1075)) (-4 *9 (-916 *8)) (-14 *10 (-1092)))) (-1583 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-4 *3 (-13 (-27) (-1114) (-408 *6) (-10 -8 (-15 -1217 ($ *7))))) (-4 *7 (-787)) (-4 *8 (-13 (-1152 *3 *7) (-341) (-1114) (-10 -8 (-15 -3376 ($ $)) (-15 -1206 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075)))))) (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1075)) (-4 *9 (-916 *8)) (-14 *10 (-1092)))))
-(-10 -7 (-15 -1583 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-108) (-1075))) (-15 -1233 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-108) (-1075))) (-15 -3756 (|#2| |#2|)))
-((-4192 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-1284 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3165 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-401 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3165 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1284 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4192 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1020) (-403 |#1|) (-1020) (-403 |#3|)) (T -401))
-((-4192 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1020)) (-4 *5 (-1020)) (-4 *2 (-403 *5)) (-5 *1 (-401 *6 *4 *5 *2)) (-4 *4 (-403 *6)))) (-1284 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1020)) (-4 *2 (-1020)) (-5 *1 (-401 *5 *4 *2 *6)) (-4 *4 (-403 *5)) (-4 *6 (-403 *2)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-403 *6)) (-5 *1 (-401 *5 *4 *6 *2)) (-4 *4 (-403 *5)))))
-(-10 -7 (-15 -3165 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1284 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4192 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2622 (($) 44)) (-2600 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3703 (($ $ $) 39)) (-2267 (((-108) $ $) 28)) (-1834 (((-713)) 47)) (-2839 (($ (-592 |#2|)) 20) (($) NIL)) (-2502 (($) 53)) (-2638 ((|#2| $) 61)) (-3662 ((|#2| $) 59)) (-3005 (((-856) $) 55)) (-2099 (($ $ $) 35)) (-3555 (($ (-856)) 50)) (-1535 (($ $ |#2|) NIL) (($ $ $) 38)) (-2110 (((-713) (-1 (-108) |#2|) $) NIL) (((-713) |#2| $) 26)) (-1230 (($ (-592 |#2|)) 24)) (-1574 (($ $) 46)) (-1217 (((-798) $) 33)) (-3037 (((-713) $) 21)) (-3240 (($ (-592 |#2|)) 19) (($) NIL)) (-3955 (((-108) $ $) 16)) (-3978 (((-108) $ $) 13)))
-(((-402 |#1| |#2|) (-10 -8 (-15 -1834 ((-713))) (-15 -3555 (|#1| (-856))) (-15 -3005 ((-856) |#1|)) (-15 -2502 (|#1|)) (-15 -2638 (|#2| |#1|)) (-15 -3662 (|#2| |#1|)) (-15 -2622 (|#1|)) (-15 -1574 (|#1| |#1|)) (-15 -3037 ((-713) |#1|)) (-15 -3955 ((-108) |#1| |#1|)) (-15 -1217 ((-798) |#1|)) (-15 -3978 ((-108) |#1| |#1|)) (-15 -3240 (|#1|)) (-15 -3240 (|#1| (-592 |#2|))) (-15 -2839 (|#1|)) (-15 -2839 (|#1| (-592 |#2|))) (-15 -2099 (|#1| |#1| |#1|)) (-15 -1535 (|#1| |#1| |#1|)) (-15 -1535 (|#1| |#1| |#2|)) (-15 -3703 (|#1| |#1| |#1|)) (-15 -2267 ((-108) |#1| |#1|)) (-15 -2600 (|#1| |#1| |#1|)) (-15 -2600 (|#1| |#1| |#2|)) (-15 -2600 (|#1| |#2| |#1|)) (-15 -1230 (|#1| (-592 |#2|))) (-15 -2110 ((-713) |#2| |#1|)) (-15 -2110 ((-713) (-1 (-108) |#2|) |#1|))) (-403 |#2|) (-1020)) (T -402))
-((-1834 (*1 *2) (-12 (-4 *4 (-1020)) (-5 *2 (-713)) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4)))))
-(-10 -8 (-15 -1834 ((-713))) (-15 -3555 (|#1| (-856))) (-15 -3005 ((-856) |#1|)) (-15 -2502 (|#1|)) (-15 -2638 (|#2| |#1|)) (-15 -3662 (|#2| |#1|)) (-15 -2622 (|#1|)) (-15 -1574 (|#1| |#1|)) (-15 -3037 ((-713) |#1|)) (-15 -3955 ((-108) |#1| |#1|)) (-15 -1217 ((-798) |#1|)) (-15 -3978 ((-108) |#1| |#1|)) (-15 -3240 (|#1|)) (-15 -3240 (|#1| (-592 |#2|))) (-15 -2839 (|#1|)) (-15 -2839 (|#1| (-592 |#2|))) (-15 -2099 (|#1| |#1| |#1|)) (-15 -1535 (|#1| |#1| |#1|)) (-15 -1535 (|#1| |#1| |#2|)) (-15 -3703 (|#1| |#1| |#1|)) (-15 -2267 ((-108) |#1| |#1|)) (-15 -2600 (|#1| |#1| |#1|)) (-15 -2600 (|#1| |#1| |#2|)) (-15 -2600 (|#1| |#2| |#1|)) (-15 -1230 (|#1| (-592 |#2|))) (-15 -2110 ((-713) |#2| |#1|)) (-15 -2110 ((-713) (-1 (-108) |#2|) |#1|)))
-((-4236 (((-108) $ $) 19)) (-2622 (($) 67 (|has| |#1| (-346)))) (-2600 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3703 (($ $ $) 78)) (-2267 (((-108) $ $) 79)) (-3991 (((-108) $ (-713)) 8)) (-1834 (((-713)) 61 (|has| |#1| (-346)))) (-2839 (($ (-592 |#1|)) 74) (($) 73)) (-1676 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4258)))) (-2169 (($) 7 T CONST)) (-1910 (($ $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-3271 (($ |#1| $) 47 (|has| $ (-6 -4258))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4258)))) (-1703 (($ |#1| $) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4258)))) (-2502 (($) 64 (|has| |#1| (-346)))) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) 9)) (-2638 ((|#1| $) 65 (|has| |#1| (-789)))) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-3662 ((|#1| $) 66 (|has| |#1| (-789)))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35)) (-3005 (((-856) $) 63 (|has| |#1| (-346)))) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22)) (-2099 (($ $ $) 75)) (-2992 ((|#1| $) 39)) (-1262 (($ |#1| $) 40)) (-3555 (($ (-856)) 62 (|has| |#1| (-346)))) (-2093 (((-1039) $) 21)) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-4127 ((|#1| $) 41)) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-1535 (($ $ |#1|) 77) (($ $ $) 76)) (-1760 (($) 49) (($ (-592 |#1|)) 48)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-3210 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 50)) (-1574 (($ $) 68 (|has| |#1| (-346)))) (-1217 (((-798) $) 18)) (-3037 (((-713) $) 69)) (-3240 (($ (-592 |#1|)) 72) (($) 71)) (-1956 (($ (-592 |#1|)) 42)) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20)) (-3978 (((-108) $ $) 70)) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 42)) (-3969 (($ $) 57)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 146)) (-2433 (($ $) NIL)) (-1568 (((-108) $) 36)) (-1509 ((|#1| $) 13)) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL (|has| |#1| (-1132)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-1132)))) (-1675 (($ |#1| (-525)) 31)) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 116)) (-4105 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 55)) (-3300 (((-3 $ "failed") $) 131)) (-3306 (((-3 (-385 (-525)) "failed") $) 63 (|has| |#1| (-510)))) (-1417 (((-108) $) 59 (|has| |#1| (-510)))) (-1367 (((-385 (-525)) $) 70 (|has| |#1| (-510)))) (-2206 (($ |#1| (-525)) 33)) (-1798 (((-108) $) 152 (|has| |#1| (-1132)))) (-2278 (((-108) $) 43)) (-2004 (((-713) $) 38)) (-2420 (((-3 "nil" "sqfr" "irred" "prime") $ (-525)) 137)) (-3538 ((|#1| $ (-525)) 136)) (-3670 (((-525) $ (-525)) 135)) (-3273 (($ |#1| (-525)) 30)) (-2016 (($ (-1 |#1| |#1|) $) 143)) (-3225 (($ |#1| (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525))))) 58)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1289 (((-1075) $) NIL)) (-2813 (($ |#1| (-525)) 32)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-429)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) 147 (|has| |#1| (-429)))) (-3392 (($ |#1| (-525) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-2868 (((-592 (-2 (|:| -4201 |#1|) (|:| -2168 (-525)))) $) 54)) (-2994 (((-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))) $) 12)) (-4201 (((-396 $) $) NIL (|has| |#1| (-1132)))) (-1311 (((-3 $ "failed") $ $) 138)) (-2168 (((-525) $) 132)) (-2361 ((|#1| $) 56)) (-2825 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 79 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) 85 (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) |#1|) NIL (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) $) NIL (|has| |#1| (-486 (-1092) $))) (($ $ (-592 (-1092)) (-592 $)) 86 (|has| |#1| (-486 (-1092) $))) (($ $ (-592 (-273 $))) 82 (|has| |#1| (-288 $))) (($ $ (-273 $)) NIL (|has| |#1| (-288 $))) (($ $ $ $) NIL (|has| |#1| (-288 $))) (($ $ (-592 $) (-592 $)) NIL (|has| |#1| (-288 $)))) (-3431 (($ $ |#1|) 71 (|has| |#1| (-265 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-265 $ $)))) (-2702 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-2069 (((-501) $) 27 (|has| |#1| (-567 (-501)))) (((-357) $) 92 (|has| |#1| (-953))) (((-205) $) 95 (|has| |#1| (-953)))) (-4100 (((-798) $) 114) (($ (-525)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525)))))) (-2448 (((-713)) 48)) (-1571 (((-108) $ $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 40 T CONST)) (-3375 (($) 39 T CONST)) (-2401 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2775 (((-108) $ $) 96)) (-2871 (($ $) 128) (($ $ $) NIL)) (-2860 (($ $ $) 140)) (** (($ $ (-856)) NIL) (($ $ (-713)) 102)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL)))
+(((-396 |#1|) (-13 (-517) (-211 |#1|) (-37 |#1|) (-316 |#1|) (-389 |#1|) (-10 -8 (-15 -2361 (|#1| $)) (-15 -2168 ((-525) $)) (-15 -3225 ($ |#1| (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))))) (-15 -2994 ((-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))) $)) (-15 -3273 ($ |#1| (-525))) (-15 -2868 ((-592 (-2 (|:| -4201 |#1|) (|:| -2168 (-525)))) $)) (-15 -2813 ($ |#1| (-525))) (-15 -3670 ((-525) $ (-525))) (-15 -3538 (|#1| $ (-525))) (-15 -2420 ((-3 "nil" "sqfr" "irred" "prime") $ (-525))) (-15 -2004 ((-713) $)) (-15 -2206 ($ |#1| (-525))) (-15 -1675 ($ |#1| (-525))) (-15 -3392 ($ |#1| (-525) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1509 (|#1| $)) (-15 -3969 ($ $)) (-15 -2016 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-429)) (-6 (-429)) |%noBranch|) (IF (|has| |#1| (-953)) (-6 (-953)) |%noBranch|) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -1417 ((-108) $)) (-15 -1367 ((-385 (-525)) $)) (-15 -3306 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-265 $ $)) (-6 (-265 $ $)) |%noBranch|) (IF (|has| |#1| (-288 $)) (-6 (-288 $)) |%noBranch|) (IF (|has| |#1| (-486 (-1092) $)) (-6 (-486 (-1092) $)) |%noBranch|))) (-517)) (T -396))
+((-2016 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-517)) (-5 *1 (-396 *3)))) (-2361 (*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-2168 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-3225 (*1 *1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-525))))) (-4 *2 (-517)) (-5 *1 (-396 *2)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-525))))) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-3273 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -4201 *3) (|:| -2168 (-525))))) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-2813 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3670 (*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-3538 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-2420 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-396 *4)) (-4 *4 (-517)))) (-2004 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-2206 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1675 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3392 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-525)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1509 (*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3969 (*1 *1 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517)))) (-3306 (*1 *2 *1) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517)))))
+(-13 (-517) (-211 |#1|) (-37 |#1|) (-316 |#1|) (-389 |#1|) (-10 -8 (-15 -2361 (|#1| $)) (-15 -2168 ((-525) $)) (-15 -3225 ($ |#1| (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))))) (-15 -2994 ((-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))) $)) (-15 -3273 ($ |#1| (-525))) (-15 -2868 ((-592 (-2 (|:| -4201 |#1|) (|:| -2168 (-525)))) $)) (-15 -2813 ($ |#1| (-525))) (-15 -3670 ((-525) $ (-525))) (-15 -3538 (|#1| $ (-525))) (-15 -2420 ((-3 "nil" "sqfr" "irred" "prime") $ (-525))) (-15 -2004 ((-713) $)) (-15 -2206 ($ |#1| (-525))) (-15 -1675 ($ |#1| (-525))) (-15 -3392 ($ |#1| (-525) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1509 (|#1| $)) (-15 -3969 ($ $)) (-15 -2016 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-429)) (-6 (-429)) |%noBranch|) (IF (|has| |#1| (-953)) (-6 (-953)) |%noBranch|) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -1417 ((-108) $)) (-15 -1367 ((-385 (-525)) $)) (-15 -3306 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-265 $ $)) (-6 (-265 $ $)) |%noBranch|) (IF (|has| |#1| (-288 $)) (-6 (-288 $)) |%noBranch|) (IF (|has| |#1| (-486 (-1092) $)) (-6 (-486 (-1092) $)) |%noBranch|)))
+((-2109 (((-396 |#1|) (-396 |#1|) (-1 (-396 |#1|) |#1|)) 21)) (-2014 (((-396 |#1|) (-396 |#1|) (-396 |#1|)) 16)))
+(((-397 |#1|) (-10 -7 (-15 -2109 ((-396 |#1|) (-396 |#1|) (-1 (-396 |#1|) |#1|))) (-15 -2014 ((-396 |#1|) (-396 |#1|) (-396 |#1|)))) (-517)) (T -397))
+((-2014 (*1 *2 *2 *2) (-12 (-5 *2 (-396 *3)) (-4 *3 (-517)) (-5 *1 (-397 *3)))) (-2109 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-396 *4) *4)) (-4 *4 (-517)) (-5 *2 (-396 *4)) (-5 *1 (-397 *4)))))
+(-10 -7 (-15 -2109 ((-396 |#1|) (-396 |#1|) (-1 (-396 |#1|) |#1|))) (-15 -2014 ((-396 |#1|) (-396 |#1|) (-396 |#1|))))
+((-3199 ((|#2| |#2|) 166)) (-2709 (((-3 (|:| |%expansion| (-291 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-108)) 57)))
+(((-398 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2709 ((-3 (|:| |%expansion| (-291 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-108))) (-15 -3199 (|#2| |#2|))) (-13 (-429) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1114) (-408 |#1|)) (-1092) |#2|) (T -398))
+((-3199 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-398 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1114) (-408 *3))) (-14 *4 (-1092)) (-14 *5 *2))) (-2709 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |%expansion| (-291 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075)))))) (-5 *1 (-398 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1114) (-408 *5))) (-14 *6 (-1092)) (-14 *7 *3))))
+(-10 -7 (-15 -2709 ((-3 (|:| |%expansion| (-291 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-108))) (-15 -3199 (|#2| |#2|)))
+((-2016 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-399 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2016 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-977) (-789)) (-408 |#1|) (-13 (-977) (-789)) (-408 |#3|)) (T -399))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-977) (-789))) (-4 *6 (-13 (-977) (-789))) (-4 *2 (-408 *6)) (-5 *1 (-399 *5 *4 *6 *2)) (-4 *4 (-408 *5)))))
+(-10 -7 (-15 -2016 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3199 ((|#2| |#2|) 90)) (-3279 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-108) (-1075)) 48)) (-1211 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-108) (-1075)) 154)))
+(((-400 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3279 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-108) (-1075))) (-15 -1211 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-108) (-1075))) (-15 -3199 (|#2| |#2|))) (-13 (-429) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1114) (-408 |#1|) (-10 -8 (-15 -4100 ($ |#3|)))) (-787) (-13 (-1152 |#2| |#3|) (-341) (-1114) (-10 -8 (-15 -2702 ($ $)) (-15 -2367 ($ $)))) (-916 |#4|) (-1092)) (T -400))
+((-3199 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-4 *2 (-13 (-27) (-1114) (-408 *3) (-10 -8 (-15 -4100 ($ *4))))) (-4 *4 (-787)) (-4 *5 (-13 (-1152 *2 *4) (-341) (-1114) (-10 -8 (-15 -2702 ($ $)) (-15 -2367 ($ $))))) (-5 *1 (-400 *3 *2 *4 *5 *6 *7)) (-4 *6 (-916 *5)) (-14 *7 (-1092)))) (-1211 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-4 *3 (-13 (-27) (-1114) (-408 *6) (-10 -8 (-15 -4100 ($ *7))))) (-4 *7 (-787)) (-4 *8 (-13 (-1152 *3 *7) (-341) (-1114) (-10 -8 (-15 -2702 ($ $)) (-15 -2367 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075)))))) (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1075)) (-4 *9 (-916 *8)) (-14 *10 (-1092)))) (-3279 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-4 *3 (-13 (-27) (-1114) (-408 *6) (-10 -8 (-15 -4100 ($ *7))))) (-4 *7 (-787)) (-4 *8 (-13 (-1152 *3 *7) (-341) (-1114) (-10 -8 (-15 -2702 ($ $)) (-15 -2367 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075)))))) (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1075)) (-4 *9 (-916 *8)) (-14 *10 (-1092)))))
+(-10 -7 (-15 -3279 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-108) (-1075))) (-15 -1211 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))) |#2| (-108) (-1075))) (-15 -3199 (|#2| |#2|)))
+((-2159 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3504 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2016 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-401 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2016 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3504 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2159 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1020) (-403 |#1|) (-1020) (-403 |#3|)) (T -401))
+((-2159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1020)) (-4 *5 (-1020)) (-4 *2 (-403 *5)) (-5 *1 (-401 *6 *4 *5 *2)) (-4 *4 (-403 *6)))) (-3504 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1020)) (-4 *2 (-1020)) (-5 *1 (-401 *5 *4 *2 *6)) (-4 *4 (-403 *5)) (-4 *6 (-403 *2)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-403 *6)) (-5 *1 (-401 *5 *4 *6 *2)) (-4 *4 (-403 *5)))))
+(-10 -7 (-15 -2016 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3504 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2159 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-1320 (($) 44)) (-1705 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3907 (($ $ $) 39)) (-4026 (((-108) $ $) 28)) (-1613 (((-713)) 47)) (-2805 (($ (-592 |#2|)) 20) (($) NIL)) (-1903 (($) 53)) (-4207 (((-108) $ $) 13)) (-3033 ((|#2| $) 61)) (-1609 ((|#2| $) 59)) (-3685 (((-856) $) 55)) (-2913 (($ $ $) 35)) (-1722 (($ (-856)) 50)) (-1292 (($ $ |#2|) NIL) (($ $ $) 38)) (-4002 (((-713) (-1 (-108) |#2|) $) NIL) (((-713) |#2| $) 26)) (-4114 (($ (-592 |#2|)) 24)) (-3189 (($ $) 46)) (-4100 (((-798) $) 33)) (-2763 (((-713) $) 21)) (-2180 (($ (-592 |#2|)) 19) (($) NIL)) (-2775 (((-108) $ $) 16)))
+(((-402 |#1| |#2|) (-10 -8 (-15 -1613 ((-713))) (-15 -1722 (|#1| (-856))) (-15 -3685 ((-856) |#1|)) (-15 -1903 (|#1|)) (-15 -3033 (|#2| |#1|)) (-15 -1609 (|#2| |#1|)) (-15 -1320 (|#1|)) (-15 -3189 (|#1| |#1|)) (-15 -2763 ((-713) |#1|)) (-15 -2775 ((-108) |#1| |#1|)) (-15 -4100 ((-798) |#1|)) (-15 -4207 ((-108) |#1| |#1|)) (-15 -2180 (|#1|)) (-15 -2180 (|#1| (-592 |#2|))) (-15 -2805 (|#1|)) (-15 -2805 (|#1| (-592 |#2|))) (-15 -2913 (|#1| |#1| |#1|)) (-15 -1292 (|#1| |#1| |#1|)) (-15 -1292 (|#1| |#1| |#2|)) (-15 -3907 (|#1| |#1| |#1|)) (-15 -4026 ((-108) |#1| |#1|)) (-15 -1705 (|#1| |#1| |#1|)) (-15 -1705 (|#1| |#1| |#2|)) (-15 -1705 (|#1| |#2| |#1|)) (-15 -4114 (|#1| (-592 |#2|))) (-15 -4002 ((-713) |#2| |#1|)) (-15 -4002 ((-713) (-1 (-108) |#2|) |#1|))) (-403 |#2|) (-1020)) (T -402))
+((-1613 (*1 *2) (-12 (-4 *4 (-1020)) (-5 *2 (-713)) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4)))))
+(-10 -8 (-15 -1613 ((-713))) (-15 -1722 (|#1| (-856))) (-15 -3685 ((-856) |#1|)) (-15 -1903 (|#1|)) (-15 -3033 (|#2| |#1|)) (-15 -1609 (|#2| |#1|)) (-15 -1320 (|#1|)) (-15 -3189 (|#1| |#1|)) (-15 -2763 ((-713) |#1|)) (-15 -2775 ((-108) |#1| |#1|)) (-15 -4100 ((-798) |#1|)) (-15 -4207 ((-108) |#1| |#1|)) (-15 -2180 (|#1|)) (-15 -2180 (|#1| (-592 |#2|))) (-15 -2805 (|#1|)) (-15 -2805 (|#1| (-592 |#2|))) (-15 -2913 (|#1| |#1| |#1|)) (-15 -1292 (|#1| |#1| |#1|)) (-15 -1292 (|#1| |#1| |#2|)) (-15 -3907 (|#1| |#1| |#1|)) (-15 -4026 ((-108) |#1| |#1|)) (-15 -1705 (|#1| |#1| |#1|)) (-15 -1705 (|#1| |#1| |#2|)) (-15 -1705 (|#1| |#2| |#1|)) (-15 -4114 (|#1| (-592 |#2|))) (-15 -4002 ((-713) |#2| |#1|)) (-15 -4002 ((-713) (-1 (-108) |#2|) |#1|)))
+((-4087 (((-108) $ $) 19)) (-1320 (($) 67 (|has| |#1| (-346)))) (-1705 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3907 (($ $ $) 78)) (-4026 (((-108) $ $) 79)) (-3779 (((-108) $ (-713)) 8)) (-1613 (((-713)) 61 (|has| |#1| (-346)))) (-2805 (($ (-592 |#1|)) 74) (($) 73)) (-3050 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4259)))) (-2475 (($) 7 T CONST)) (-1681 (($ $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-4205 (($ |#1| $) 47 (|has| $ (-6 -4259))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4259)))) (-2698 (($ |#1| $) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4259)))) (-1903 (($) 64 (|has| |#1| (-346)))) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-4207 (((-108) $ $) 70)) (-2516 (((-108) $ (-713)) 9)) (-3033 ((|#1| $) 65 (|has| |#1| (-789)))) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-1609 ((|#1| $) 66 (|has| |#1| (-789)))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35)) (-3685 (((-856) $) 63 (|has| |#1| (-346)))) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22)) (-2913 (($ $ $) 75)) (-3577 ((|#1| $) 39)) (-3246 (($ |#1| $) 40)) (-1722 (($ (-856)) 62 (|has| |#1| (-346)))) (-3993 (((-1039) $) 21)) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-2724 ((|#1| $) 41)) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-1292 (($ $ |#1|) 77) (($ $ $) 76)) (-2637 (($) 49) (($ (-592 |#1|)) 48)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-2069 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 50)) (-3189 (($ $) 68 (|has| |#1| (-346)))) (-4100 (((-798) $) 18)) (-2763 (((-713) $) 69)) (-2180 (($ (-592 |#1|)) 72) (($) 71)) (-3905 (($ (-592 |#1|)) 42)) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20)) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-403 |#1|) (-131) (-1020)) (T -403))
-((-3037 (*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-1020)) (-5 *2 (-713)))) (-1574 (*1 *1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1020)) (-4 *2 (-346)))) (-2622 (*1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-346)) (-4 *2 (-1020)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1020)) (-4 *2 (-789)))) (-2638 (*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1020)) (-4 *2 (-789)))))
-(-13 (-209 |t#1|) (-1018 |t#1|) (-10 -8 (-6 -4258) (-15 -3037 ((-713) $)) (IF (|has| |t#1| (-346)) (PROGN (-6 (-346)) (-15 -1574 ($ $)) (-15 -2622 ($))) |%noBranch|) (IF (|has| |t#1| (-789)) (PROGN (-15 -3662 (|t#1| $)) (-15 -2638 (|t#1| $))) |%noBranch|)))
+((-2763 (*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-1020)) (-5 *2 (-713)))) (-3189 (*1 *1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1020)) (-4 *2 (-346)))) (-1320 (*1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-346)) (-4 *2 (-1020)))) (-1609 (*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1020)) (-4 *2 (-789)))) (-3033 (*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1020)) (-4 *2 (-789)))))
+(-13 (-209 |t#1|) (-1018 |t#1|) (-10 -8 (-6 -4259) (-15 -2763 ((-713) $)) (IF (|has| |t#1| (-346)) (PROGN (-6 (-346)) (-15 -3189 ($ $)) (-15 -1320 ($))) |%noBranch|) (IF (|has| |t#1| (-789)) (PROGN (-15 -1609 (|t#1| $)) (-15 -3033 (|t#1| $))) |%noBranch|)))
(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-566 (-798)) . T) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-209 |#1|) . T) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-346) |has| |#1| (-346)) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1018 |#1|) . T) ((-1020) . T) ((-1128) . T))
-((-1893 (((-542 |#2|) |#2| (-1092)) 36)) (-3267 (((-542 |#2|) |#2| (-1092)) 20)) (-2550 ((|#2| |#2| (-1092)) 25)))
-(((-404 |#1| |#2|) (-10 -7 (-15 -3267 ((-542 |#2|) |#2| (-1092))) (-15 -1893 ((-542 |#2|) |#2| (-1092))) (-15 -2550 (|#2| |#2| (-1092)))) (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1114) (-29 |#1|))) (T -404))
-((-2550 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *1 (-404 *4 *2)) (-4 *2 (-13 (-1114) (-29 *4))))) (-1893 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5))))) (-3267 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5))))))
-(-10 -7 (-15 -3267 ((-542 |#2|) |#2| (-1092))) (-15 -1893 ((-542 |#2|) |#2| (-1092))) (-15 -2550 (|#2| |#2| (-1092))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3457 (((-3 $ "failed") $) NIL)) (-1396 (((-108) $) NIL)) (-2403 (($ |#2| |#1|) 35)) (-3055 (($ |#2| |#1|) 33)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-309 |#2|)) 25)) (-3917 (((-713)) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 10 T CONST)) (-3359 (($) 16 T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) 34)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-405 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4245)) (IF (|has| |#1| (-6 -4245)) (-6 -4245) |%noBranch|) |%noBranch|) (-15 -1217 ($ |#1|)) (-15 -1217 ($ (-309 |#2|))) (-15 -2403 ($ |#2| |#1|)) (-15 -3055 ($ |#2| |#1|)))) (-13 (-160) (-37 (-385 (-525)))) (-13 (-789) (-21))) (T -405))
-((-1217 (*1 *1 *2) (-12 (-5 *1 (-405 *2 *3)) (-4 *2 (-13 (-160) (-37 (-385 (-525))))) (-4 *3 (-13 (-789) (-21))))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-309 *4)) (-4 *4 (-13 (-789) (-21))) (-5 *1 (-405 *3 *4)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))))) (-2403 (*1 *1 *2 *3) (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))) (-4 *2 (-13 (-789) (-21))))) (-3055 (*1 *1 *2 *3) (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))) (-4 *2 (-13 (-789) (-21))))))
-(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4245)) (IF (|has| |#1| (-6 -4245)) (-6 -4245) |%noBranch|) |%noBranch|) (-15 -1217 ($ |#1|)) (-15 -1217 ($ (-309 |#2|))) (-15 -2403 ($ |#2| |#1|)) (-15 -3055 ($ |#2| |#1|))))
-((-1206 (((-3 |#2| (-592 |#2|)) |#2| (-1092)) 109)))
-(((-406 |#1| |#2|) (-10 -7 (-15 -1206 ((-3 |#2| (-592 |#2|)) |#2| (-1092)))) (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1114) (-893) (-29 |#1|))) (T -406))
-((-1206 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 *3 (-592 *3))) (-5 *1 (-406 *5 *3)) (-4 *3 (-13 (-1114) (-893) (-29 *5))))))
-(-10 -7 (-15 -1206 ((-3 |#2| (-592 |#2|)) |#2| (-1092))))
-((-2897 (((-592 (-1092)) $) 72)) (-2744 (((-385 (-1088 $)) $ (-565 $)) 273)) (-3311 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) 237)) (-3077 (((-3 (-565 $) "failed") $) NIL) (((-3 (-1092) "failed") $) 75) (((-3 (-525) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-385 (-887 |#2|)) "failed") $) 324) (((-3 (-887 |#2|) "failed") $) 235) (((-3 (-385 (-525)) "failed") $) NIL)) (-1572 (((-565 $) $) NIL) (((-1092) $) 30) (((-525) $) NIL) ((|#2| $) 231) (((-385 (-887 |#2|)) $) 305) (((-887 |#2|) $) 232) (((-385 (-525)) $) NIL)) (-3930 (((-110) (-110)) 47)) (-3858 (($ $) 87)) (-1923 (((-3 (-565 $) "failed") $) 228)) (-2734 (((-592 (-565 $)) $) 229)) (-1334 (((-3 (-592 $) "failed") $) 247)) (-1687 (((-3 (-2 (|:| |val| $) (|:| -4193 (-525))) "failed") $) 254)) (-2001 (((-3 (-592 $) "failed") $) 245)) (-2056 (((-3 (-2 (|:| -3244 (-525)) (|:| |var| (-565 $))) "failed") $) 264)) (-2121 (((-3 (-2 (|:| |var| (-565 $)) (|:| -4193 (-525))) "failed") $) 251) (((-3 (-2 (|:| |var| (-565 $)) (|:| -4193 (-525))) "failed") $ (-110)) 217) (((-3 (-2 (|:| |var| (-565 $)) (|:| -4193 (-525))) "failed") $ (-1092)) 219)) (-3007 (((-108) $) 19)) (-3019 ((|#2| $) 21)) (-2457 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) 236) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ (-592 $)))) 96) (($ $ (-1092) (-1 $ (-592 $))) NIL) (($ $ (-1092) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1092)) 57) (($ $ (-592 (-1092))) 240) (($ $) 241) (($ $ (-110) $ (-1092)) 60) (($ $ (-592 (-110)) (-592 $) (-1092)) 67) (($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ $))) 107) (($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ (-592 $)))) 242) (($ $ (-1092) (-713) (-1 $ (-592 $))) 94) (($ $ (-1092) (-713) (-1 $ $)) 93)) (-3406 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) 106)) (-3376 (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) 238)) (-4143 (($ $) 284)) (-3210 (((-827 (-525)) $) 257) (((-827 (-357)) $) 261) (($ (-396 $)) 320) (((-501) $) NIL)) (-1217 (((-798) $) 239) (($ (-565 $)) 84) (($ (-1092)) 26) (($ |#2|) NIL) (($ (-1044 |#2| (-565 $))) NIL) (($ (-385 |#2|)) 289) (($ (-887 (-385 |#2|))) 329) (($ (-385 (-887 (-385 |#2|)))) 301) (($ (-385 (-887 |#2|))) 295) (($ $) NIL) (($ (-887 |#2|)) 185) (($ (-385 (-525))) 334) (($ (-525)) NIL)) (-3917 (((-713)) 79)) (-1960 (((-108) (-110)) 41)) (-2194 (($ (-1092) $) 33) (($ (-1092) $ $) 34) (($ (-1092) $ $ $) 35) (($ (-1092) $ $ $ $) 36) (($ (-1092) (-592 $)) 39)) (* (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-856) $) NIL)))
-(((-407 |#1| |#2|) (-10 -8 (-15 * (|#1| (-856) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3917 ((-713))) (-15 -1217 (|#1| (-525))) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -3210 ((-501) |#1|)) (-15 -1572 ((-887 |#2|) |#1|)) (-15 -3077 ((-3 (-887 |#2|) "failed") |#1|)) (-15 -1217 (|#1| (-887 |#2|))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1217 (|#1| |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -1572 ((-385 (-887 |#2|)) |#1|)) (-15 -3077 ((-3 (-385 (-887 |#2|)) "failed") |#1|)) (-15 -1217 (|#1| (-385 (-887 |#2|)))) (-15 -2744 ((-385 (-1088 |#1|)) |#1| (-565 |#1|))) (-15 -1217 (|#1| (-385 (-887 (-385 |#2|))))) (-15 -1217 (|#1| (-887 (-385 |#2|)))) (-15 -1217 (|#1| (-385 |#2|))) (-15 -4143 (|#1| |#1|)) (-15 -3210 (|#1| (-396 |#1|))) (-15 -2457 (|#1| |#1| (-1092) (-713) (-1 |#1| |#1|))) (-15 -2457 (|#1| |#1| (-1092) (-713) (-1 |#1| (-592 |#1|)))) (-15 -2457 (|#1| |#1| (-592 (-1092)) (-592 (-713)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2457 (|#1| |#1| (-592 (-1092)) (-592 (-713)) (-592 (-1 |#1| |#1|)))) (-15 -1687 ((-3 (-2 (|:| |val| |#1|) (|:| -4193 (-525))) "failed") |#1|)) (-15 -2121 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -4193 (-525))) "failed") |#1| (-1092))) (-15 -2121 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -4193 (-525))) "failed") |#1| (-110))) (-15 -3858 (|#1| |#1|)) (-15 -1217 (|#1| (-1044 |#2| (-565 |#1|)))) (-15 -2056 ((-3 (-2 (|:| -3244 (-525)) (|:| |var| (-565 |#1|))) "failed") |#1|)) (-15 -2001 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -2121 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -4193 (-525))) "failed") |#1|)) (-15 -1334 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -2457 (|#1| |#1| (-592 (-110)) (-592 |#1|) (-1092))) (-15 -2457 (|#1| |#1| (-110) |#1| (-1092))) (-15 -2457 (|#1| |#1|)) (-15 -2457 (|#1| |#1| (-592 (-1092)))) (-15 -2457 (|#1| |#1| (-1092))) (-15 -2194 (|#1| (-1092) (-592 |#1|))) (-15 -2194 (|#1| (-1092) |#1| |#1| |#1| |#1|)) (-15 -2194 (|#1| (-1092) |#1| |#1| |#1|)) (-15 -2194 (|#1| (-1092) |#1| |#1|)) (-15 -2194 (|#1| (-1092) |#1|)) (-15 -2897 ((-592 (-1092)) |#1|)) (-15 -3019 (|#2| |#1|)) (-15 -3007 ((-108) |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -1217 (|#1| |#2|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-525) |#1|)) (-15 -3210 ((-827 (-357)) |#1|)) (-15 -3210 ((-827 (-525)) |#1|)) (-15 -1572 ((-1092) |#1|)) (-15 -3077 ((-3 (-1092) "failed") |#1|)) (-15 -1217 (|#1| (-1092))) (-15 -2457 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2457 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -2457 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2457 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -2457 (|#1| |#1| (-1092) (-1 |#1| |#1|))) (-15 -2457 (|#1| |#1| (-1092) (-1 |#1| (-592 |#1|)))) (-15 -2457 (|#1| |#1| (-592 (-1092)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2457 (|#1| |#1| (-592 (-1092)) (-592 (-1 |#1| |#1|)))) (-15 -1960 ((-108) (-110))) (-15 -3930 ((-110) (-110))) (-15 -2734 ((-592 (-565 |#1|)) |#1|)) (-15 -1923 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -3311 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -3311 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3311 (|#1| |#1| (-273 |#1|))) (-15 -3406 (|#1| (-110) (-592 |#1|))) (-15 -3406 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3406 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3406 (|#1| (-110) |#1| |#1|)) (-15 -3406 (|#1| (-110) |#1|)) (-15 -2457 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2457 (|#1| |#1| |#1| |#1|)) (-15 -2457 (|#1| |#1| (-273 |#1|))) (-15 -2457 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2457 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -2457 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -1572 ((-565 |#1|) |#1|)) (-15 -3077 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -1217 (|#1| (-565 |#1|))) (-15 -1217 ((-798) |#1|))) (-408 |#2|) (-789)) (T -407))
-((-3930 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *4 (-789)) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-407 *4 *5)) (-4 *4 (-408 *5)))) (-3917 (*1 *2) (-12 (-4 *4 (-789)) (-5 *2 (-713)) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))))
-(-10 -8 (-15 * (|#1| (-856) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3917 ((-713))) (-15 -1217 (|#1| (-525))) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -3210 ((-501) |#1|)) (-15 -1572 ((-887 |#2|) |#1|)) (-15 -3077 ((-3 (-887 |#2|) "failed") |#1|)) (-15 -1217 (|#1| (-887 |#2|))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1217 (|#1| |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -1572 ((-385 (-887 |#2|)) |#1|)) (-15 -3077 ((-3 (-385 (-887 |#2|)) "failed") |#1|)) (-15 -1217 (|#1| (-385 (-887 |#2|)))) (-15 -2744 ((-385 (-1088 |#1|)) |#1| (-565 |#1|))) (-15 -1217 (|#1| (-385 (-887 (-385 |#2|))))) (-15 -1217 (|#1| (-887 (-385 |#2|)))) (-15 -1217 (|#1| (-385 |#2|))) (-15 -4143 (|#1| |#1|)) (-15 -3210 (|#1| (-396 |#1|))) (-15 -2457 (|#1| |#1| (-1092) (-713) (-1 |#1| |#1|))) (-15 -2457 (|#1| |#1| (-1092) (-713) (-1 |#1| (-592 |#1|)))) (-15 -2457 (|#1| |#1| (-592 (-1092)) (-592 (-713)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2457 (|#1| |#1| (-592 (-1092)) (-592 (-713)) (-592 (-1 |#1| |#1|)))) (-15 -1687 ((-3 (-2 (|:| |val| |#1|) (|:| -4193 (-525))) "failed") |#1|)) (-15 -2121 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -4193 (-525))) "failed") |#1| (-1092))) (-15 -2121 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -4193 (-525))) "failed") |#1| (-110))) (-15 -3858 (|#1| |#1|)) (-15 -1217 (|#1| (-1044 |#2| (-565 |#1|)))) (-15 -2056 ((-3 (-2 (|:| -3244 (-525)) (|:| |var| (-565 |#1|))) "failed") |#1|)) (-15 -2001 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -2121 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -4193 (-525))) "failed") |#1|)) (-15 -1334 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -2457 (|#1| |#1| (-592 (-110)) (-592 |#1|) (-1092))) (-15 -2457 (|#1| |#1| (-110) |#1| (-1092))) (-15 -2457 (|#1| |#1|)) (-15 -2457 (|#1| |#1| (-592 (-1092)))) (-15 -2457 (|#1| |#1| (-1092))) (-15 -2194 (|#1| (-1092) (-592 |#1|))) (-15 -2194 (|#1| (-1092) |#1| |#1| |#1| |#1|)) (-15 -2194 (|#1| (-1092) |#1| |#1| |#1|)) (-15 -2194 (|#1| (-1092) |#1| |#1|)) (-15 -2194 (|#1| (-1092) |#1|)) (-15 -2897 ((-592 (-1092)) |#1|)) (-15 -3019 (|#2| |#1|)) (-15 -3007 ((-108) |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -1217 (|#1| |#2|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-525) |#1|)) (-15 -3210 ((-827 (-357)) |#1|)) (-15 -3210 ((-827 (-525)) |#1|)) (-15 -1572 ((-1092) |#1|)) (-15 -3077 ((-3 (-1092) "failed") |#1|)) (-15 -1217 (|#1| (-1092))) (-15 -2457 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2457 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -2457 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2457 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -2457 (|#1| |#1| (-1092) (-1 |#1| |#1|))) (-15 -2457 (|#1| |#1| (-1092) (-1 |#1| (-592 |#1|)))) (-15 -2457 (|#1| |#1| (-592 (-1092)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2457 (|#1| |#1| (-592 (-1092)) (-592 (-1 |#1| |#1|)))) (-15 -1960 ((-108) (-110))) (-15 -3930 ((-110) (-110))) (-15 -2734 ((-592 (-565 |#1|)) |#1|)) (-15 -1923 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -3311 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -3311 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3311 (|#1| |#1| (-273 |#1|))) (-15 -3406 (|#1| (-110) (-592 |#1|))) (-15 -3406 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3406 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3406 (|#1| (-110) |#1| |#1|)) (-15 -3406 (|#1| (-110) |#1|)) (-15 -2457 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2457 (|#1| |#1| |#1| |#1|)) (-15 -2457 (|#1| |#1| (-273 |#1|))) (-15 -2457 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2457 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -2457 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -1572 ((-565 |#1|) |#1|)) (-15 -3077 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -1217 (|#1| (-565 |#1|))) (-15 -1217 ((-798) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 116 (|has| |#1| (-25)))) (-2897 (((-592 (-1092)) $) 203)) (-2744 (((-385 (-1088 $)) $ (-565 $)) 171 (|has| |#1| (-517)))) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 143 (|has| |#1| (-517)))) (-4218 (($ $) 144 (|has| |#1| (-517)))) (-3171 (((-108) $) 146 (|has| |#1| (-517)))) (-2563 (((-592 (-565 $)) $) 44)) (-1578 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3311 (($ $ (-273 $)) 56) (($ $ (-592 (-273 $))) 55) (($ $ (-592 (-565 $)) (-592 $)) 54)) (-1286 (($ $) 163 (|has| |#1| (-517)))) (-2669 (((-396 $) $) 164 (|has| |#1| (-517)))) (-2193 (((-108) $ $) 154 (|has| |#1| (-517)))) (-2169 (($) 102 (-3254 (|has| |#1| (-1032)) (|has| |#1| (-25))) CONST)) (-3077 (((-3 (-565 $) "failed") $) 69) (((-3 (-1092) "failed") $) 216) (((-3 (-525) "failed") $) 209 (|has| |#1| (-968 (-525)))) (((-3 |#1| "failed") $) 207) (((-3 (-385 (-887 |#1|)) "failed") $) 169 (|has| |#1| (-517))) (((-3 (-887 |#1|) "failed") $) 123 (|has| |#1| (-977))) (((-3 (-385 (-525)) "failed") $) 95 (-3254 (-12 (|has| |#1| (-968 (-525))) (|has| |#1| (-517))) (|has| |#1| (-968 (-385 (-525))))))) (-1572 (((-565 $) $) 68) (((-1092) $) 215) (((-525) $) 210 (|has| |#1| (-968 (-525)))) ((|#1| $) 206) (((-385 (-887 |#1|)) $) 168 (|has| |#1| (-517))) (((-887 |#1|) $) 122 (|has| |#1| (-977))) (((-385 (-525)) $) 94 (-3254 (-12 (|has| |#1| (-968 (-525))) (|has| |#1| (-517))) (|has| |#1| (-968 (-385 (-525))))))) (-1747 (($ $ $) 158 (|has| |#1| (-517)))) (-1994 (((-632 (-525)) (-632 $)) 137 (-3762 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 136 (-3762 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 135 (|has| |#1| (-977))) (((-632 |#1|) (-632 $)) 134 (|has| |#1| (-977)))) (-3457 (((-3 $ "failed") $) 105 (|has| |#1| (-1032)))) (-1733 (($ $ $) 157 (|has| |#1| (-517)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 152 (|has| |#1| (-517)))) (-3673 (((-108) $) 165 (|has| |#1| (-517)))) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 212 (|has| |#1| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 211 (|has| |#1| (-821 (-357))))) (-3437 (($ $) 51) (($ (-592 $)) 50)) (-2059 (((-592 (-110)) $) 43)) (-3930 (((-110) (-110)) 42)) (-1396 (((-108) $) 103 (|has| |#1| (-1032)))) (-1673 (((-108) $) 22 (|has| $ (-968 (-525))))) (-3858 (($ $) 186 (|has| |#1| (-977)))) (-3114 (((-1044 |#1| (-565 $)) $) 187 (|has| |#1| (-977)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 161 (|has| |#1| (-517)))) (-2541 (((-1088 $) (-565 $)) 25 (|has| $ (-977)))) (-2638 (($ $ $) 13)) (-3662 (($ $ $) 14)) (-3165 (($ (-1 $ $) (-565 $)) 36)) (-1923 (((-3 (-565 $) "failed") $) 46)) (-2556 (($ (-592 $)) 150 (|has| |#1| (-517))) (($ $ $) 149 (|has| |#1| (-517)))) (-2619 (((-1075) $) 9)) (-2734 (((-592 (-565 $)) $) 45)) (-3173 (($ (-110) $) 38) (($ (-110) (-592 $)) 37)) (-1334 (((-3 (-592 $) "failed") $) 192 (|has| |#1| (-1032)))) (-1687 (((-3 (-2 (|:| |val| $) (|:| -4193 (-525))) "failed") $) 183 (|has| |#1| (-977)))) (-2001 (((-3 (-592 $) "failed") $) 190 (|has| |#1| (-25)))) (-2056 (((-3 (-2 (|:| -3244 (-525)) (|:| |var| (-565 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2121 (((-3 (-2 (|:| |var| (-565 $)) (|:| -4193 (-525))) "failed") $) 191 (|has| |#1| (-1032))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -4193 (-525))) "failed") $ (-110)) 185 (|has| |#1| (-977))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -4193 (-525))) "failed") $ (-1092)) 184 (|has| |#1| (-977)))) (-3131 (((-108) $ (-110)) 40) (((-108) $ (-1092)) 39)) (-2997 (($ $) 107 (-3254 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-1794 (((-713) $) 47)) (-2093 (((-1039) $) 10)) (-3007 (((-108) $) 205)) (-3019 ((|#1| $) 204)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 151 (|has| |#1| (-517)))) (-2589 (($ (-592 $)) 148 (|has| |#1| (-517))) (($ $ $) 147 (|has| |#1| (-517)))) (-2662 (((-108) $ $) 35) (((-108) $ (-1092)) 34)) (-2770 (((-396 $) $) 162 (|has| |#1| (-517)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-517))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 159 (|has| |#1| (-517)))) (-1715 (((-3 $ "failed") $ $) 142 (|has| |#1| (-517)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 153 (|has| |#1| (-517)))) (-3699 (((-108) $) 23 (|has| $ (-968 (-525))))) (-2457 (($ $ (-565 $) $) 67) (($ $ (-592 (-565 $)) (-592 $)) 66) (($ $ (-592 (-273 $))) 65) (($ $ (-273 $)) 64) (($ $ $ $) 63) (($ $ (-592 $) (-592 $)) 62) (($ $ (-592 (-1092)) (-592 (-1 $ $))) 33) (($ $ (-592 (-1092)) (-592 (-1 $ (-592 $)))) 32) (($ $ (-1092) (-1 $ (-592 $))) 31) (($ $ (-1092) (-1 $ $)) 30) (($ $ (-592 (-110)) (-592 (-1 $ $))) 29) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 28) (($ $ (-110) (-1 $ (-592 $))) 27) (($ $ (-110) (-1 $ $)) 26) (($ $ (-1092)) 197 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1092))) 196 (|has| |#1| (-567 (-501)))) (($ $) 195 (|has| |#1| (-567 (-501)))) (($ $ (-110) $ (-1092)) 194 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-110)) (-592 $) (-1092)) 193 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ $))) 182 (|has| |#1| (-977))) (($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ (-592 $)))) 181 (|has| |#1| (-977))) (($ $ (-1092) (-713) (-1 $ (-592 $))) 180 (|has| |#1| (-977))) (($ $ (-1092) (-713) (-1 $ $)) 179 (|has| |#1| (-977)))) (-3684 (((-713) $) 155 (|has| |#1| (-517)))) (-3406 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-592 $)) 57)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 156 (|has| |#1| (-517)))) (-3147 (($ $) 49) (($ $ $) 48)) (-3376 (($ $ (-592 (-1092)) (-592 (-713))) 128 (|has| |#1| (-977))) (($ $ (-1092) (-713)) 127 (|has| |#1| (-977))) (($ $ (-592 (-1092))) 126 (|has| |#1| (-977))) (($ $ (-1092)) 125 (|has| |#1| (-977)))) (-4143 (($ $) 176 (|has| |#1| (-517)))) (-3123 (((-1044 |#1| (-565 $)) $) 177 (|has| |#1| (-517)))) (-2756 (($ $) 24 (|has| $ (-977)))) (-3210 (((-827 (-525)) $) 214 (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) 213 (|has| |#1| (-567 (-827 (-357))))) (($ (-396 $)) 178 (|has| |#1| (-517))) (((-501) $) 97 (|has| |#1| (-567 (-501))))) (-1499 (($ $ $) 111 (|has| |#1| (-450)))) (-1990 (($ $ $) 112 (|has| |#1| (-450)))) (-1217 (((-798) $) 11) (($ (-565 $)) 70) (($ (-1092)) 217) (($ |#1|) 208) (($ (-1044 |#1| (-565 $))) 188 (|has| |#1| (-977))) (($ (-385 |#1|)) 174 (|has| |#1| (-517))) (($ (-887 (-385 |#1|))) 173 (|has| |#1| (-517))) (($ (-385 (-887 (-385 |#1|)))) 172 (|has| |#1| (-517))) (($ (-385 (-887 |#1|))) 170 (|has| |#1| (-517))) (($ $) 141 (|has| |#1| (-517))) (($ (-887 |#1|)) 124 (|has| |#1| (-977))) (($ (-385 (-525))) 96 (-3254 (|has| |#1| (-517)) (-12 (|has| |#1| (-968 (-525))) (|has| |#1| (-517))) (|has| |#1| (-968 (-385 (-525)))))) (($ (-525)) 93 (-3254 (|has| |#1| (-977)) (|has| |#1| (-968 (-525)))))) (-3637 (((-3 $ "failed") $) 138 (|has| |#1| (-136)))) (-3917 (((-713)) 133 (|has| |#1| (-977)))) (-1381 (($ $) 53) (($ (-592 $)) 52)) (-1960 (((-108) (-110)) 41)) (-3325 (((-108) $ $) 145 (|has| |#1| (-517)))) (-2194 (($ (-1092) $) 202) (($ (-1092) $ $) 201) (($ (-1092) $ $ $) 200) (($ (-1092) $ $ $ $) 199) (($ (-1092) (-592 $)) 198)) (-1619 (($ $ (-525)) 110 (-3254 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) 104 (|has| |#1| (-1032))) (($ $ (-856)) 100 (|has| |#1| (-1032)))) (-3349 (($) 115 (|has| |#1| (-25)) CONST)) (-3359 (($) 101 (|has| |#1| (-1032)) CONST)) (-2022 (($ $ (-592 (-1092)) (-592 (-713))) 132 (|has| |#1| (-977))) (($ $ (-1092) (-713)) 131 (|has| |#1| (-977))) (($ $ (-592 (-1092))) 130 (|has| |#1| (-977))) (($ $ (-1092)) 129 (|has| |#1| (-977)))) (-4011 (((-108) $ $) 16)) (-3987 (((-108) $ $) 17)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 15)) (-3978 (((-108) $ $) 18)) (-4075 (($ (-1044 |#1| (-565 $)) (-1044 |#1| (-565 $))) 175 (|has| |#1| (-517))) (($ $ $) 108 (-3254 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-4061 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-4047 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-525)) 109 (-3254 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) 106 (|has| |#1| (-1032))) (($ $ (-856)) 99 (|has| |#1| (-1032)))) (* (($ (-385 (-525)) $) 167 (|has| |#1| (-517))) (($ $ (-385 (-525))) 166 (|has| |#1| (-517))) (($ |#1| $) 140 (|has| |#1| (-160))) (($ $ |#1|) 139 (|has| |#1| (-160))) (($ (-525) $) 121 (|has| |#1| (-21))) (($ (-713) $) 117 (|has| |#1| (-25))) (($ (-856) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1032)))))
+((-1471 (((-542 |#2|) |#2| (-1092)) 36)) (-4163 (((-542 |#2|) |#2| (-1092)) 20)) (-1917 ((|#2| |#2| (-1092)) 25)))
+(((-404 |#1| |#2|) (-10 -7 (-15 -4163 ((-542 |#2|) |#2| (-1092))) (-15 -1471 ((-542 |#2|) |#2| (-1092))) (-15 -1917 (|#2| |#2| (-1092)))) (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1114) (-29 |#1|))) (T -404))
+((-1917 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *1 (-404 *4 *2)) (-4 *2 (-13 (-1114) (-29 *4))))) (-1471 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5))))) (-4163 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5))))))
+(-10 -7 (-15 -4163 ((-542 |#2|) |#2| (-1092))) (-15 -1471 ((-542 |#2|) |#2| (-1092))) (-15 -1917 (|#2| |#2| (-1092))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-3300 (((-3 $ "failed") $) NIL)) (-2278 (((-108) $) NIL)) (-2900 (($ |#2| |#1|) 35)) (-2912 (($ |#2| |#1|) 33)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-309 |#2|)) 25)) (-2448 (((-713)) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 10 T CONST)) (-3375 (($) 16 T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) 34)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-405 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4246)) (IF (|has| |#1| (-6 -4246)) (-6 -4246) |%noBranch|) |%noBranch|) (-15 -4100 ($ |#1|)) (-15 -4100 ($ (-309 |#2|))) (-15 -2900 ($ |#2| |#1|)) (-15 -2912 ($ |#2| |#1|)))) (-13 (-160) (-37 (-385 (-525)))) (-13 (-789) (-21))) (T -405))
+((-4100 (*1 *1 *2) (-12 (-5 *1 (-405 *2 *3)) (-4 *2 (-13 (-160) (-37 (-385 (-525))))) (-4 *3 (-13 (-789) (-21))))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-309 *4)) (-4 *4 (-13 (-789) (-21))) (-5 *1 (-405 *3 *4)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))))) (-2900 (*1 *1 *2 *3) (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))) (-4 *2 (-13 (-789) (-21))))) (-2912 (*1 *1 *2 *3) (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))) (-4 *2 (-13 (-789) (-21))))))
+(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4246)) (IF (|has| |#1| (-6 -4246)) (-6 -4246) |%noBranch|) |%noBranch|) (-15 -4100 ($ |#1|)) (-15 -4100 ($ (-309 |#2|))) (-15 -2900 ($ |#2| |#1|)) (-15 -2912 ($ |#2| |#1|))))
+((-2367 (((-3 |#2| (-592 |#2|)) |#2| (-1092)) 109)))
+(((-406 |#1| |#2|) (-10 -7 (-15 -2367 ((-3 |#2| (-592 |#2|)) |#2| (-1092)))) (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1114) (-893) (-29 |#1|))) (T -406))
+((-2367 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 *3 (-592 *3))) (-5 *1 (-406 *5 *3)) (-4 *3 (-13 (-1114) (-893) (-29 *5))))))
+(-10 -7 (-15 -2367 ((-3 |#2| (-592 |#2|)) |#2| (-1092))))
+((-1296 (((-592 (-1092)) $) 72)) (-4169 (((-385 (-1088 $)) $ (-565 $)) 273)) (-3702 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) 237)) (-1934 (((-3 (-565 $) "failed") $) NIL) (((-3 (-1092) "failed") $) 75) (((-3 (-525) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-385 (-887 |#2|)) "failed") $) 324) (((-3 (-887 |#2|) "failed") $) 235) (((-3 (-385 (-525)) "failed") $) NIL)) (-4105 (((-565 $) $) NIL) (((-1092) $) 30) (((-525) $) NIL) ((|#2| $) 231) (((-385 (-887 |#2|)) $) 305) (((-887 |#2|) $) 232) (((-385 (-525)) $) NIL)) (-1386 (((-110) (-110)) 47)) (-2999 (($ $) 87)) (-1751 (((-3 (-565 $) "failed") $) 228)) (-4153 (((-592 (-565 $)) $) 229)) (-2977 (((-3 (-592 $) "failed") $) 247)) (-3159 (((-3 (-2 (|:| |val| $) (|:| -2168 (-525))) "failed") $) 254)) (-3165 (((-3 (-592 $) "failed") $) 245)) (-2502 (((-3 (-2 (|:| -2681 (-525)) (|:| |var| (-565 $))) "failed") $) 264)) (-1986 (((-3 (-2 (|:| |var| (-565 $)) (|:| -2168 (-525))) "failed") $) 251) (((-3 (-2 (|:| |var| (-565 $)) (|:| -2168 (-525))) "failed") $ (-110)) 217) (((-3 (-2 (|:| |var| (-565 $)) (|:| -2168 (-525))) "failed") $ (-1092)) 219)) (-1399 (((-108) $) 19)) (-1407 ((|#2| $) 21)) (-2825 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) 236) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ (-592 $)))) 96) (($ $ (-1092) (-1 $ (-592 $))) NIL) (($ $ (-1092) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1092)) 57) (($ $ (-592 (-1092))) 240) (($ $) 241) (($ $ (-110) $ (-1092)) 60) (($ $ (-592 (-110)) (-592 $) (-1092)) 67) (($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ $))) 107) (($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ (-592 $)))) 242) (($ $ (-1092) (-713) (-1 $ (-592 $))) 94) (($ $ (-1092) (-713) (-1 $ $)) 93)) (-3431 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) 106)) (-2702 (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) 238)) (-2874 (($ $) 284)) (-2069 (((-827 (-525)) $) 257) (((-827 (-357)) $) 261) (($ (-396 $)) 320) (((-501) $) NIL)) (-4100 (((-798) $) 239) (($ (-565 $)) 84) (($ (-1092)) 26) (($ |#2|) NIL) (($ (-1044 |#2| (-565 $))) NIL) (($ (-385 |#2|)) 289) (($ (-887 (-385 |#2|))) 329) (($ (-385 (-887 (-385 |#2|)))) 301) (($ (-385 (-887 |#2|))) 295) (($ $) NIL) (($ (-887 |#2|)) 185) (($ (-385 (-525))) 334) (($ (-525)) NIL)) (-2448 (((-713)) 79)) (-3954 (((-108) (-110)) 41)) (-4040 (($ (-1092) $) 33) (($ (-1092) $ $) 34) (($ (-1092) $ $ $) 35) (($ (-1092) $ $ $ $) 36) (($ (-1092) (-592 $)) 39)) (* (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-856) $) NIL)))
+(((-407 |#1| |#2|) (-10 -8 (-15 * (|#1| (-856) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2448 ((-713))) (-15 -4100 (|#1| (-525))) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -2069 ((-501) |#1|)) (-15 -4105 ((-887 |#2|) |#1|)) (-15 -1934 ((-3 (-887 |#2|) "failed") |#1|)) (-15 -4100 (|#1| (-887 |#2|))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4100 (|#1| |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -4105 ((-385 (-887 |#2|)) |#1|)) (-15 -1934 ((-3 (-385 (-887 |#2|)) "failed") |#1|)) (-15 -4100 (|#1| (-385 (-887 |#2|)))) (-15 -4169 ((-385 (-1088 |#1|)) |#1| (-565 |#1|))) (-15 -4100 (|#1| (-385 (-887 (-385 |#2|))))) (-15 -4100 (|#1| (-887 (-385 |#2|)))) (-15 -4100 (|#1| (-385 |#2|))) (-15 -2874 (|#1| |#1|)) (-15 -2069 (|#1| (-396 |#1|))) (-15 -2825 (|#1| |#1| (-1092) (-713) (-1 |#1| |#1|))) (-15 -2825 (|#1| |#1| (-1092) (-713) (-1 |#1| (-592 |#1|)))) (-15 -2825 (|#1| |#1| (-592 (-1092)) (-592 (-713)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2825 (|#1| |#1| (-592 (-1092)) (-592 (-713)) (-592 (-1 |#1| |#1|)))) (-15 -3159 ((-3 (-2 (|:| |val| |#1|) (|:| -2168 (-525))) "failed") |#1|)) (-15 -1986 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -2168 (-525))) "failed") |#1| (-1092))) (-15 -1986 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -2168 (-525))) "failed") |#1| (-110))) (-15 -2999 (|#1| |#1|)) (-15 -4100 (|#1| (-1044 |#2| (-565 |#1|)))) (-15 -2502 ((-3 (-2 (|:| -2681 (-525)) (|:| |var| (-565 |#1|))) "failed") |#1|)) (-15 -3165 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -1986 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -2168 (-525))) "failed") |#1|)) (-15 -2977 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -2825 (|#1| |#1| (-592 (-110)) (-592 |#1|) (-1092))) (-15 -2825 (|#1| |#1| (-110) |#1| (-1092))) (-15 -2825 (|#1| |#1|)) (-15 -2825 (|#1| |#1| (-592 (-1092)))) (-15 -2825 (|#1| |#1| (-1092))) (-15 -4040 (|#1| (-1092) (-592 |#1|))) (-15 -4040 (|#1| (-1092) |#1| |#1| |#1| |#1|)) (-15 -4040 (|#1| (-1092) |#1| |#1| |#1|)) (-15 -4040 (|#1| (-1092) |#1| |#1|)) (-15 -4040 (|#1| (-1092) |#1|)) (-15 -1296 ((-592 (-1092)) |#1|)) (-15 -1407 (|#2| |#1|)) (-15 -1399 ((-108) |#1|)) (-15 -4105 (|#2| |#1|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -4100 (|#1| |#2|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-525) |#1|)) (-15 -2069 ((-827 (-357)) |#1|)) (-15 -2069 ((-827 (-525)) |#1|)) (-15 -4105 ((-1092) |#1|)) (-15 -1934 ((-3 (-1092) "failed") |#1|)) (-15 -4100 (|#1| (-1092))) (-15 -2825 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2825 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -2825 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2825 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -2825 (|#1| |#1| (-1092) (-1 |#1| |#1|))) (-15 -2825 (|#1| |#1| (-1092) (-1 |#1| (-592 |#1|)))) (-15 -2825 (|#1| |#1| (-592 (-1092)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2825 (|#1| |#1| (-592 (-1092)) (-592 (-1 |#1| |#1|)))) (-15 -3954 ((-108) (-110))) (-15 -1386 ((-110) (-110))) (-15 -4153 ((-592 (-565 |#1|)) |#1|)) (-15 -1751 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -3702 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -3702 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3702 (|#1| |#1| (-273 |#1|))) (-15 -3431 (|#1| (-110) (-592 |#1|))) (-15 -3431 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3431 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3431 (|#1| (-110) |#1| |#1|)) (-15 -3431 (|#1| (-110) |#1|)) (-15 -2825 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2825 (|#1| |#1| |#1| |#1|)) (-15 -2825 (|#1| |#1| (-273 |#1|))) (-15 -2825 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2825 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -2825 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -4105 ((-565 |#1|) |#1|)) (-15 -1934 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -4100 (|#1| (-565 |#1|))) (-15 -4100 ((-798) |#1|))) (-408 |#2|) (-789)) (T -407))
+((-1386 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *4 (-789)) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-407 *4 *5)) (-4 *4 (-408 *5)))) (-2448 (*1 *2) (-12 (-4 *4 (-789)) (-5 *2 (-713)) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))))
+(-10 -8 (-15 * (|#1| (-856) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2448 ((-713))) (-15 -4100 (|#1| (-525))) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -2069 ((-501) |#1|)) (-15 -4105 ((-887 |#2|) |#1|)) (-15 -1934 ((-3 (-887 |#2|) "failed") |#1|)) (-15 -4100 (|#1| (-887 |#2|))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4100 (|#1| |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -4105 ((-385 (-887 |#2|)) |#1|)) (-15 -1934 ((-3 (-385 (-887 |#2|)) "failed") |#1|)) (-15 -4100 (|#1| (-385 (-887 |#2|)))) (-15 -4169 ((-385 (-1088 |#1|)) |#1| (-565 |#1|))) (-15 -4100 (|#1| (-385 (-887 (-385 |#2|))))) (-15 -4100 (|#1| (-887 (-385 |#2|)))) (-15 -4100 (|#1| (-385 |#2|))) (-15 -2874 (|#1| |#1|)) (-15 -2069 (|#1| (-396 |#1|))) (-15 -2825 (|#1| |#1| (-1092) (-713) (-1 |#1| |#1|))) (-15 -2825 (|#1| |#1| (-1092) (-713) (-1 |#1| (-592 |#1|)))) (-15 -2825 (|#1| |#1| (-592 (-1092)) (-592 (-713)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2825 (|#1| |#1| (-592 (-1092)) (-592 (-713)) (-592 (-1 |#1| |#1|)))) (-15 -3159 ((-3 (-2 (|:| |val| |#1|) (|:| -2168 (-525))) "failed") |#1|)) (-15 -1986 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -2168 (-525))) "failed") |#1| (-1092))) (-15 -1986 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -2168 (-525))) "failed") |#1| (-110))) (-15 -2999 (|#1| |#1|)) (-15 -4100 (|#1| (-1044 |#2| (-565 |#1|)))) (-15 -2502 ((-3 (-2 (|:| -2681 (-525)) (|:| |var| (-565 |#1|))) "failed") |#1|)) (-15 -3165 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -1986 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -2168 (-525))) "failed") |#1|)) (-15 -2977 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -2825 (|#1| |#1| (-592 (-110)) (-592 |#1|) (-1092))) (-15 -2825 (|#1| |#1| (-110) |#1| (-1092))) (-15 -2825 (|#1| |#1|)) (-15 -2825 (|#1| |#1| (-592 (-1092)))) (-15 -2825 (|#1| |#1| (-1092))) (-15 -4040 (|#1| (-1092) (-592 |#1|))) (-15 -4040 (|#1| (-1092) |#1| |#1| |#1| |#1|)) (-15 -4040 (|#1| (-1092) |#1| |#1| |#1|)) (-15 -4040 (|#1| (-1092) |#1| |#1|)) (-15 -4040 (|#1| (-1092) |#1|)) (-15 -1296 ((-592 (-1092)) |#1|)) (-15 -1407 (|#2| |#1|)) (-15 -1399 ((-108) |#1|)) (-15 -4105 (|#2| |#1|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -4100 (|#1| |#2|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-525) |#1|)) (-15 -2069 ((-827 (-357)) |#1|)) (-15 -2069 ((-827 (-525)) |#1|)) (-15 -4105 ((-1092) |#1|)) (-15 -1934 ((-3 (-1092) "failed") |#1|)) (-15 -4100 (|#1| (-1092))) (-15 -2825 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2825 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -2825 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2825 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -2825 (|#1| |#1| (-1092) (-1 |#1| |#1|))) (-15 -2825 (|#1| |#1| (-1092) (-1 |#1| (-592 |#1|)))) (-15 -2825 (|#1| |#1| (-592 (-1092)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2825 (|#1| |#1| (-592 (-1092)) (-592 (-1 |#1| |#1|)))) (-15 -3954 ((-108) (-110))) (-15 -1386 ((-110) (-110))) (-15 -4153 ((-592 (-565 |#1|)) |#1|)) (-15 -1751 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -3702 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -3702 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3702 (|#1| |#1| (-273 |#1|))) (-15 -3431 (|#1| (-110) (-592 |#1|))) (-15 -3431 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3431 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3431 (|#1| (-110) |#1| |#1|)) (-15 -3431 (|#1| (-110) |#1|)) (-15 -2825 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2825 (|#1| |#1| |#1| |#1|)) (-15 -2825 (|#1| |#1| (-273 |#1|))) (-15 -2825 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2825 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -2825 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -4105 ((-565 |#1|) |#1|)) (-15 -1934 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -4100 (|#1| (-565 |#1|))) (-15 -4100 ((-798) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 116 (|has| |#1| (-25)))) (-1296 (((-592 (-1092)) $) 203)) (-4169 (((-385 (-1088 $)) $ (-565 $)) 171 (|has| |#1| (-517)))) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 143 (|has| |#1| (-517)))) (-2433 (($ $) 144 (|has| |#1| (-517)))) (-1568 (((-108) $) 146 (|has| |#1| (-517)))) (-1285 (((-592 (-565 $)) $) 44)) (-3222 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3702 (($ $ (-273 $)) 56) (($ $ (-592 (-273 $))) 55) (($ $ (-592 (-565 $)) (-592 $)) 54)) (-4195 (($ $) 163 (|has| |#1| (-517)))) (-3586 (((-396 $) $) 164 (|has| |#1| (-517)))) (-1507 (((-108) $ $) 154 (|has| |#1| (-517)))) (-2475 (($) 102 (-2067 (|has| |#1| (-1032)) (|has| |#1| (-25))) CONST)) (-1934 (((-3 (-565 $) "failed") $) 69) (((-3 (-1092) "failed") $) 216) (((-3 (-525) "failed") $) 209 (|has| |#1| (-968 (-525)))) (((-3 |#1| "failed") $) 207) (((-3 (-385 (-887 |#1|)) "failed") $) 169 (|has| |#1| (-517))) (((-3 (-887 |#1|) "failed") $) 123 (|has| |#1| (-977))) (((-3 (-385 (-525)) "failed") $) 95 (-2067 (-12 (|has| |#1| (-968 (-525))) (|has| |#1| (-517))) (|has| |#1| (-968 (-385 (-525))))))) (-4105 (((-565 $) $) 68) (((-1092) $) 215) (((-525) $) 210 (|has| |#1| (-968 (-525)))) ((|#1| $) 206) (((-385 (-887 |#1|)) $) 168 (|has| |#1| (-517))) (((-887 |#1|) $) 122 (|has| |#1| (-977))) (((-385 (-525)) $) 94 (-2067 (-12 (|has| |#1| (-968 (-525))) (|has| |#1| (-517))) (|has| |#1| (-968 (-385 (-525))))))) (-1356 (($ $ $) 158 (|has| |#1| (-517)))) (-3090 (((-632 (-525)) (-632 $)) 137 (-3944 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 136 (-3944 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 135 (|has| |#1| (-977))) (((-632 |#1|) (-632 $)) 134 (|has| |#1| (-977)))) (-3300 (((-3 $ "failed") $) 105 (|has| |#1| (-1032)))) (-1332 (($ $ $) 157 (|has| |#1| (-517)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 152 (|has| |#1| (-517)))) (-1798 (((-108) $) 165 (|has| |#1| (-517)))) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 212 (|has| |#1| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 211 (|has| |#1| (-821 (-357))))) (-3106 (($ $) 51) (($ (-592 $)) 50)) (-2531 (((-592 (-110)) $) 43)) (-1386 (((-110) (-110)) 42)) (-2278 (((-108) $) 103 (|has| |#1| (-1032)))) (-3028 (((-108) $) 22 (|has| $ (-968 (-525))))) (-2999 (($ $) 186 (|has| |#1| (-977)))) (-4066 (((-1044 |#1| (-565 $)) $) 187 (|has| |#1| (-977)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 161 (|has| |#1| (-517)))) (-1808 (((-1088 $) (-565 $)) 25 (|has| $ (-977)))) (-3033 (($ $ $) 13)) (-1609 (($ $ $) 14)) (-2016 (($ (-1 $ $) (-565 $)) 36)) (-1751 (((-3 (-565 $) "failed") $) 46)) (-2739 (($ (-592 $)) 150 (|has| |#1| (-517))) (($ $ $) 149 (|has| |#1| (-517)))) (-1289 (((-1075) $) 9)) (-4153 (((-592 (-565 $)) $) 45)) (-4152 (($ (-110) $) 38) (($ (-110) (-592 $)) 37)) (-2977 (((-3 (-592 $) "failed") $) 192 (|has| |#1| (-1032)))) (-3159 (((-3 (-2 (|:| |val| $) (|:| -2168 (-525))) "failed") $) 183 (|has| |#1| (-977)))) (-3165 (((-3 (-592 $) "failed") $) 190 (|has| |#1| (-25)))) (-2502 (((-3 (-2 (|:| -2681 (-525)) (|:| |var| (-565 $))) "failed") $) 189 (|has| |#1| (-25)))) (-1986 (((-3 (-2 (|:| |var| (-565 $)) (|:| -2168 (-525))) "failed") $) 191 (|has| |#1| (-1032))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -2168 (-525))) "failed") $ (-110)) 185 (|has| |#1| (-977))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -2168 (-525))) "failed") $ (-1092)) 184 (|has| |#1| (-977)))) (-2412 (((-108) $ (-110)) 40) (((-108) $ (-1092)) 39)) (-1387 (($ $) 107 (-2067 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-2934 (((-713) $) 47)) (-3993 (((-1039) $) 10)) (-1399 (((-108) $) 205)) (-1407 ((|#1| $) 204)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 151 (|has| |#1| (-517)))) (-2772 (($ (-592 $)) 148 (|has| |#1| (-517))) (($ $ $) 147 (|has| |#1| (-517)))) (-3513 (((-108) $ $) 35) (((-108) $ (-1092)) 34)) (-4201 (((-396 $) $) 162 (|has| |#1| (-517)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-517))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 159 (|has| |#1| (-517)))) (-1311 (((-3 $ "failed") $ $) 142 (|has| |#1| (-517)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 153 (|has| |#1| (-517)))) (-3864 (((-108) $) 23 (|has| $ (-968 (-525))))) (-2825 (($ $ (-565 $) $) 67) (($ $ (-592 (-565 $)) (-592 $)) 66) (($ $ (-592 (-273 $))) 65) (($ $ (-273 $)) 64) (($ $ $ $) 63) (($ $ (-592 $) (-592 $)) 62) (($ $ (-592 (-1092)) (-592 (-1 $ $))) 33) (($ $ (-592 (-1092)) (-592 (-1 $ (-592 $)))) 32) (($ $ (-1092) (-1 $ (-592 $))) 31) (($ $ (-1092) (-1 $ $)) 30) (($ $ (-592 (-110)) (-592 (-1 $ $))) 29) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 28) (($ $ (-110) (-1 $ (-592 $))) 27) (($ $ (-110) (-1 $ $)) 26) (($ $ (-1092)) 197 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1092))) 196 (|has| |#1| (-567 (-501)))) (($ $) 195 (|has| |#1| (-567 (-501)))) (($ $ (-110) $ (-1092)) 194 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-110)) (-592 $) (-1092)) 193 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ $))) 182 (|has| |#1| (-977))) (($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ (-592 $)))) 181 (|has| |#1| (-977))) (($ $ (-1092) (-713) (-1 $ (-592 $))) 180 (|has| |#1| (-977))) (($ $ (-1092) (-713) (-1 $ $)) 179 (|has| |#1| (-977)))) (-1927 (((-713) $) 155 (|has| |#1| (-517)))) (-3431 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-592 $)) 57)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 156 (|has| |#1| (-517)))) (-2540 (($ $) 49) (($ $ $) 48)) (-2702 (($ $ (-592 (-1092)) (-592 (-713))) 128 (|has| |#1| (-977))) (($ $ (-1092) (-713)) 127 (|has| |#1| (-977))) (($ $ (-592 (-1092))) 126 (|has| |#1| (-977))) (($ $ (-1092)) 125 (|has| |#1| (-977)))) (-2874 (($ $) 176 (|has| |#1| (-517)))) (-4080 (((-1044 |#1| (-565 $)) $) 177 (|has| |#1| (-517)))) (-2013 (($ $) 24 (|has| $ (-977)))) (-2069 (((-827 (-525)) $) 214 (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) 213 (|has| |#1| (-567 (-827 (-357))))) (($ (-396 $)) 178 (|has| |#1| (-517))) (((-501) $) 97 (|has| |#1| (-567 (-501))))) (-3055 (($ $ $) 111 (|has| |#1| (-450)))) (-1242 (($ $ $) 112 (|has| |#1| (-450)))) (-4100 (((-798) $) 11) (($ (-565 $)) 70) (($ (-1092)) 217) (($ |#1|) 208) (($ (-1044 |#1| (-565 $))) 188 (|has| |#1| (-977))) (($ (-385 |#1|)) 174 (|has| |#1| (-517))) (($ (-887 (-385 |#1|))) 173 (|has| |#1| (-517))) (($ (-385 (-887 (-385 |#1|)))) 172 (|has| |#1| (-517))) (($ (-385 (-887 |#1|))) 170 (|has| |#1| (-517))) (($ $) 141 (|has| |#1| (-517))) (($ (-887 |#1|)) 124 (|has| |#1| (-977))) (($ (-385 (-525))) 96 (-2067 (|has| |#1| (-517)) (-12 (|has| |#1| (-968 (-525))) (|has| |#1| (-517))) (|has| |#1| (-968 (-385 (-525)))))) (($ (-525)) 93 (-2067 (|has| |#1| (-977)) (|has| |#1| (-968 (-525)))))) (-1463 (((-3 $ "failed") $) 138 (|has| |#1| (-136)))) (-2448 (((-713)) 133 (|has| |#1| (-977)))) (-2239 (($ $) 53) (($ (-592 $)) 52)) (-3954 (((-108) (-110)) 41)) (-1571 (((-108) $ $) 145 (|has| |#1| (-517)))) (-4040 (($ (-1092) $) 202) (($ (-1092) $ $) 201) (($ (-1092) $ $ $) 200) (($ (-1092) $ $ $ $) 199) (($ (-1092) (-592 $)) 198)) (-3706 (($ $ (-525)) 110 (-2067 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) 104 (|has| |#1| (-1032))) (($ $ (-856)) 100 (|has| |#1| (-1032)))) (-3364 (($) 115 (|has| |#1| (-25)) CONST)) (-3375 (($) 101 (|has| |#1| (-1032)) CONST)) (-2401 (($ $ (-592 (-1092)) (-592 (-713))) 132 (|has| |#1| (-977))) (($ $ (-1092) (-713)) 131 (|has| |#1| (-977))) (($ $ (-592 (-1092))) 130 (|has| |#1| (-977))) (($ $ (-1092)) 129 (|has| |#1| (-977)))) (-2830 (((-108) $ $) 16)) (-2807 (((-108) $ $) 17)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 15)) (-2795 (((-108) $ $) 18)) (-2880 (($ (-1044 |#1| (-565 $)) (-1044 |#1| (-565 $))) 175 (|has| |#1| (-517))) (($ $ $) 108 (-2067 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-2871 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-2860 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-525)) 109 (-2067 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) 106 (|has| |#1| (-1032))) (($ $ (-856)) 99 (|has| |#1| (-1032)))) (* (($ (-385 (-525)) $) 167 (|has| |#1| (-517))) (($ $ (-385 (-525))) 166 (|has| |#1| (-517))) (($ |#1| $) 140 (|has| |#1| (-160))) (($ $ |#1|) 139 (|has| |#1| (-160))) (($ (-525) $) 121 (|has| |#1| (-21))) (($ (-713) $) 117 (|has| |#1| (-25))) (($ (-856) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1032)))))
(((-408 |#1|) (-131) (-789)) (T -408))
-((-3007 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-108)))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-592 (-1092))))) (-2194 (*1 *1 *2 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-2194 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-2194 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-2194 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-2194 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-592 *1)) (-4 *1 (-408 *4)) (-4 *4 (-789)))) (-2457 (*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-567 (-501))))) (-2457 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1092))) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-567 (-501))))) (-2457 (*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-567 (-501))))) (-2457 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1092)) (-4 *1 (-408 *4)) (-4 *4 (-789)) (-4 *4 (-567 (-501))))) (-2457 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 *1)) (-5 *4 (-1092)) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-567 (-501))))) (-1334 (*1 *2 *1) (|partial| -12 (-4 *3 (-1032)) (-4 *3 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-408 *3)))) (-2121 (*1 *2 *1) (|partial| -12 (-4 *3 (-1032)) (-4 *3 (-789)) (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -4193 (-525)))) (-4 *1 (-408 *3)))) (-2001 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-408 *3)))) (-2056 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -3244 (-525)) (|:| |var| (-565 *1)))) (-4 *1 (-408 *3)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-1044 *3 (-565 *1))) (-4 *3 (-977)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-3114 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *3 (-789)) (-5 *2 (-1044 *3 (-565 *1))) (-4 *1 (-408 *3)))) (-3858 (*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-977)))) (-2121 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-4 *4 (-977)) (-4 *4 (-789)) (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -4193 (-525)))) (-4 *1 (-408 *4)))) (-2121 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1092)) (-4 *4 (-977)) (-4 *4 (-789)) (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -4193 (-525)))) (-4 *1 (-408 *4)))) (-1687 (*1 *2 *1) (|partial| -12 (-4 *3 (-977)) (-4 *3 (-789)) (-5 *2 (-2 (|:| |val| *1) (|:| -4193 (-525)))) (-4 *1 (-408 *3)))) (-2457 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-592 (-713))) (-5 *4 (-592 (-1 *1 *1))) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-977)))) (-2457 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-592 (-713))) (-5 *4 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-977)))) (-2457 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-713)) (-5 *4 (-1 *1 (-592 *1))) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-977)))) (-2457 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-713)) (-5 *4 (-1 *1 *1)) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-977)))) (-3210 (*1 *1 *2) (-12 (-5 *2 (-396 *1)) (-4 *1 (-408 *3)) (-4 *3 (-517)) (-4 *3 (-789)))) (-3123 (*1 *2 *1) (-12 (-4 *3 (-517)) (-4 *3 (-789)) (-5 *2 (-1044 *3 (-565 *1))) (-4 *1 (-408 *3)))) (-4143 (*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-517)))) (-4075 (*1 *1 *2 *2) (-12 (-5 *2 (-1044 *3 (-565 *1))) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-385 *3)) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-887 (-385 *3))) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-385 *3)))) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-2744 (*1 *2 *1 *3) (-12 (-5 *3 (-565 *1)) (-4 *1 (-408 *4)) (-4 *4 (-789)) (-4 *4 (-517)) (-5 *2 (-385 (-1088 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-1032)))))
-(-13 (-281) (-968 (-1092)) (-819 |t#1|) (-378 |t#1|) (-389 |t#1|) (-10 -8 (-15 -3007 ((-108) $)) (-15 -3019 (|t#1| $)) (-15 -2897 ((-592 (-1092)) $)) (-15 -2194 ($ (-1092) $)) (-15 -2194 ($ (-1092) $ $)) (-15 -2194 ($ (-1092) $ $ $)) (-15 -2194 ($ (-1092) $ $ $ $)) (-15 -2194 ($ (-1092) (-592 $))) (IF (|has| |t#1| (-567 (-501))) (PROGN (-6 (-567 (-501))) (-15 -2457 ($ $ (-1092))) (-15 -2457 ($ $ (-592 (-1092)))) (-15 -2457 ($ $)) (-15 -2457 ($ $ (-110) $ (-1092))) (-15 -2457 ($ $ (-592 (-110)) (-592 $) (-1092)))) |%noBranch|) (IF (|has| |t#1| (-1032)) (PROGN (-6 (-669)) (-15 ** ($ $ (-713))) (-15 -1334 ((-3 (-592 $) "failed") $)) (-15 -2121 ((-3 (-2 (|:| |var| (-565 $)) (|:| -4193 (-525))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-450)) (-6 (-450)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2001 ((-3 (-592 $) "failed") $)) (-15 -2056 ((-3 (-2 (|:| -3244 (-525)) (|:| |var| (-565 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-977)) (PROGN (-6 (-977)) (-6 (-968 (-887 |t#1|))) (-6 (-835 (-1092))) (-6 (-355 |t#1|)) (-15 -1217 ($ (-1044 |t#1| (-565 $)))) (-15 -3114 ((-1044 |t#1| (-565 $)) $)) (-15 -3858 ($ $)) (-15 -2121 ((-3 (-2 (|:| |var| (-565 $)) (|:| -4193 (-525))) "failed") $ (-110))) (-15 -2121 ((-3 (-2 (|:| |var| (-565 $)) (|:| -4193 (-525))) "failed") $ (-1092))) (-15 -1687 ((-3 (-2 (|:| |val| $) (|:| -4193 (-525))) "failed") $)) (-15 -2457 ($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ $)))) (-15 -2457 ($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ (-592 $))))) (-15 -2457 ($ $ (-1092) (-713) (-1 $ (-592 $)))) (-15 -2457 ($ $ (-1092) (-713) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-6 (-341)) (-6 (-968 (-385 (-887 |t#1|)))) (-15 -3210 ($ (-396 $))) (-15 -3123 ((-1044 |t#1| (-565 $)) $)) (-15 -4143 ($ $)) (-15 -4075 ($ (-1044 |t#1| (-565 $)) (-1044 |t#1| (-565 $)))) (-15 -1217 ($ (-385 |t#1|))) (-15 -1217 ($ (-887 (-385 |t#1|)))) (-15 -1217 ($ (-385 (-887 (-385 |t#1|))))) (-15 -2744 ((-385 (-1088 $)) $ (-565 $))) (IF (|has| |t#1| (-968 (-525))) (-6 (-968 (-385 (-525)))) |%noBranch|)) |%noBranch|)))
-(((-21) -3254 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-21))) ((-23) -3254 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3254 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-385 (-525))) |has| |#1| (-517)) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-517)) ((-107 |#1| |#1|) |has| |#1| (-160)) ((-107 $ $) |has| |#1| (-517)) ((-126) -3254 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-21))) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) |has| |#1| (-517)) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-827 (-357))) |has| |#1| (-567 (-827 (-357)))) ((-567 (-827 (-525))) |has| |#1| (-567 (-827 (-525)))) ((-223) |has| |#1| (-517)) ((-269) |has| |#1| (-517)) ((-286) |has| |#1| (-517)) ((-288 $) . T) ((-281) . T) ((-341) |has| |#1| (-517)) ((-355 |#1|) |has| |#1| (-977)) ((-378 |#1|) . T) ((-389 |#1|) . T) ((-429) |has| |#1| (-517)) ((-450) |has| |#1| (-450)) ((-486 (-565 $) $) . T) ((-486 $ $) . T) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-517)) ((-594 |#1|) |has| |#1| (-160)) ((-594 $) -3254 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-588 (-525)) -12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) ((-588 |#1|) |has| |#1| (-977)) ((-660 #0#) |has| |#1| (-517)) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) -3254 (|has| |#1| (-1032)) (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-450)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-789) . T) ((-835 (-1092)) |has| |#1| (-977)) ((-821 (-357)) |has| |#1| (-821 (-357))) ((-821 (-525)) |has| |#1| (-821 (-525))) ((-819 |#1|) . T) ((-855) |has| |#1| (-517)) ((-968 (-385 (-525))) -3254 (|has| |#1| (-968 (-385 (-525)))) (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525))))) ((-968 (-385 (-887 |#1|))) |has| |#1| (-517)) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 (-565 $)) . T) ((-968 (-887 |#1|)) |has| |#1| (-977)) ((-968 (-1092)) . T) ((-968 |#1|) . T) ((-983 #0#) |has| |#1| (-517)) ((-983 |#1|) |has| |#1| (-160)) ((-983 $) |has| |#1| (-517)) ((-977) -3254 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-984) -3254 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-1032) -3254 (|has| |#1| (-1032)) (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-450)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-1020) . T) ((-1128) . T) ((-1132) |has| |#1| (-517)))
-((-2821 ((|#2| |#2| |#2|) 33)) (-3930 (((-110) (-110)) 44)) (-3119 ((|#2| |#2|) 66)) (-2984 ((|#2| |#2|) 69)) (-2640 ((|#2| |#2|) 32)) (-4090 ((|#2| |#2| |#2|) 35)) (-3305 ((|#2| |#2| |#2|) 37)) (-3033 ((|#2| |#2| |#2|) 34)) (-3116 ((|#2| |#2| |#2|) 36)) (-1960 (((-108) (-110)) 42)) (-1426 ((|#2| |#2|) 39)) (-1873 ((|#2| |#2|) 38)) (-2802 ((|#2| |#2|) 27)) (-3477 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2402 ((|#2| |#2| |#2|) 31)))
-(((-409 |#1| |#2|) (-10 -7 (-15 -1960 ((-108) (-110))) (-15 -3930 ((-110) (-110))) (-15 -2802 (|#2| |#2|)) (-15 -3477 (|#2| |#2|)) (-15 -3477 (|#2| |#2| |#2|)) (-15 -2402 (|#2| |#2| |#2|)) (-15 -2640 (|#2| |#2|)) (-15 -2821 (|#2| |#2| |#2|)) (-15 -3033 (|#2| |#2| |#2|)) (-15 -4090 (|#2| |#2| |#2|)) (-15 -3116 (|#2| |#2| |#2|)) (-15 -3305 (|#2| |#2| |#2|)) (-15 -1873 (|#2| |#2|)) (-15 -1426 (|#2| |#2|)) (-15 -2984 (|#2| |#2|)) (-15 -3119 (|#2| |#2|))) (-13 (-789) (-517)) (-408 |#1|)) (T -409))
-((-3119 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2984 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1426 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1873 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3305 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3116 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-4090 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3033 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2821 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2640 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2402 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3477 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2802 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *4)) (-4 *4 (-408 *3)))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-409 *4 *5)) (-4 *5 (-408 *4)))))
-(-10 -7 (-15 -1960 ((-108) (-110))) (-15 -3930 ((-110) (-110))) (-15 -2802 (|#2| |#2|)) (-15 -3477 (|#2| |#2|)) (-15 -3477 (|#2| |#2| |#2|)) (-15 -2402 (|#2| |#2| |#2|)) (-15 -2640 (|#2| |#2|)) (-15 -2821 (|#2| |#2| |#2|)) (-15 -3033 (|#2| |#2| |#2|)) (-15 -4090 (|#2| |#2| |#2|)) (-15 -3116 (|#2| |#2| |#2|)) (-15 -3305 (|#2| |#2| |#2|)) (-15 -1873 (|#2| |#2|)) (-15 -1426 (|#2| |#2|)) (-15 -2984 (|#2| |#2|)) (-15 -3119 (|#2| |#2|)))
-((-2574 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1088 |#2|)) (|:| |pol2| (-1088 |#2|)) (|:| |prim| (-1088 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-592 (-1088 |#2|))) (|:| |prim| (-1088 |#2|))) (-592 |#2|)) 61)))
-(((-410 |#1| |#2|) (-10 -7 (-15 -2574 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-592 (-1088 |#2|))) (|:| |prim| (-1088 |#2|))) (-592 |#2|))) (IF (|has| |#2| (-27)) (-15 -2574 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1088 |#2|)) (|:| |pol2| (-1088 |#2|)) (|:| |prim| (-1088 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-517) (-789) (-138)) (-408 |#1|)) (T -410))
-((-2574 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-517) (-789) (-138))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1088 *3)) (|:| |pol2| (-1088 *3)) (|:| |prim| (-1088 *3)))) (-5 *1 (-410 *4 *3)) (-4 *3 (-27)) (-4 *3 (-408 *4)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4)) (-4 *4 (-13 (-517) (-789) (-138))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-592 (-1088 *5))) (|:| |prim| (-1088 *5)))) (-5 *1 (-410 *4 *5)))))
-(-10 -7 (-15 -2574 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-592 (-1088 |#2|))) (|:| |prim| (-1088 |#2|))) (-592 |#2|))) (IF (|has| |#2| (-27)) (-15 -2574 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1088 |#2|)) (|:| |pol2| (-1088 |#2|)) (|:| |prim| (-1088 |#2|))) |#2| |#2|)) |%noBranch|))
-((-4118 (((-1179)) 19)) (-3478 (((-1088 (-385 (-525))) |#2| (-565 |#2|)) 41) (((-385 (-525)) |#2|) 25)))
-(((-411 |#1| |#2|) (-10 -7 (-15 -3478 ((-385 (-525)) |#2|)) (-15 -3478 ((-1088 (-385 (-525))) |#2| (-565 |#2|))) (-15 -4118 ((-1179)))) (-13 (-789) (-517) (-968 (-525))) (-408 |#1|)) (T -411))
-((-4118 (*1 *2) (-12 (-4 *3 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-1179)) (-5 *1 (-411 *3 *4)) (-4 *4 (-408 *3)))) (-3478 (*1 *2 *3 *4) (-12 (-5 *4 (-565 *3)) (-4 *3 (-408 *5)) (-4 *5 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-1088 (-385 (-525)))) (-5 *1 (-411 *5 *3)))) (-3478 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-411 *4 *3)) (-4 *3 (-408 *4)))))
-(-10 -7 (-15 -3478 ((-385 (-525)) |#2|)) (-15 -3478 ((-1088 (-385 (-525))) |#2| (-565 |#2|))) (-15 -4118 ((-1179))))
-((-1271 (((-108) $) 28)) (-3623 (((-108) $) 30)) (-3841 (((-108) $) 31)) (-2475 (((-108) $) 34)) (-3594 (((-108) $) 29)) (-1558 (((-108) $) 33)) (-1217 (((-798) $) 18) (($ (-1075)) 27) (($ (-1092)) 23) (((-1092) $) 22) (((-1024) $) 21)) (-2483 (((-108) $) 32)) (-3955 (((-108) $ $) 15)))
-(((-412) (-13 (-566 (-798)) (-10 -8 (-15 -1217 ($ (-1075))) (-15 -1217 ($ (-1092))) (-15 -1217 ((-1092) $)) (-15 -1217 ((-1024) $)) (-15 -1271 ((-108) $)) (-15 -3594 ((-108) $)) (-15 -3841 ((-108) $)) (-15 -1558 ((-108) $)) (-15 -2475 ((-108) $)) (-15 -2483 ((-108) $)) (-15 -3623 ((-108) $)) (-15 -3955 ((-108) $ $))))) (T -412))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-412)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-412)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-412)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-412)))) (-1271 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3955 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
-(-13 (-566 (-798)) (-10 -8 (-15 -1217 ($ (-1075))) (-15 -1217 ($ (-1092))) (-15 -1217 ((-1092) $)) (-15 -1217 ((-1024) $)) (-15 -1271 ((-108) $)) (-15 -3594 ((-108) $)) (-15 -3841 ((-108) $)) (-15 -1558 ((-108) $)) (-15 -2475 ((-108) $)) (-15 -2483 ((-108) $)) (-15 -3623 ((-108) $)) (-15 -3955 ((-108) $ $))))
-((-3830 (((-3 (-396 (-1088 (-385 (-525)))) "failed") |#3|) 70)) (-3582 (((-396 |#3|) |#3|) 34)) (-3513 (((-3 (-396 (-1088 (-47))) "failed") |#3|) 46 (|has| |#2| (-968 (-47))))) (-4036 (((-3 (|:| |overq| (-1088 (-385 (-525)))) (|:| |overan| (-1088 (-47))) (|:| -4159 (-108))) |#3|) 37)))
-(((-413 |#1| |#2| |#3|) (-10 -7 (-15 -3582 ((-396 |#3|) |#3|)) (-15 -3830 ((-3 (-396 (-1088 (-385 (-525)))) "failed") |#3|)) (-15 -4036 ((-3 (|:| |overq| (-1088 (-385 (-525)))) (|:| |overan| (-1088 (-47))) (|:| -4159 (-108))) |#3|)) (IF (|has| |#2| (-968 (-47))) (-15 -3513 ((-3 (-396 (-1088 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-517) (-789) (-968 (-525))) (-408 |#1|) (-1150 |#2|)) (T -413))
-((-3513 (*1 *2 *3) (|partial| -12 (-4 *5 (-968 (-47))) (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-396 (-1088 (-47)))) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1150 *5)))) (-4036 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-3 (|:| |overq| (-1088 (-385 (-525)))) (|:| |overan| (-1088 (-47))) (|:| -4159 (-108)))) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1150 *5)))) (-3830 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-396 (-1088 (-385 (-525))))) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1150 *5)))) (-3582 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-396 *3)) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1150 *5)))))
-(-10 -7 (-15 -3582 ((-396 |#3|) |#3|)) (-15 -3830 ((-3 (-396 (-1088 (-385 (-525)))) "failed") |#3|)) (-15 -4036 ((-3 (|:| |overq| (-1088 (-385 (-525)))) (|:| |overan| (-1088 (-47))) (|:| -4159 (-108))) |#3|)) (IF (|has| |#2| (-968 (-47))) (-15 -3513 ((-3 (-396 (-1088 (-47))) "failed") |#3|)) |%noBranch|))
-((-4236 (((-108) $ $) NIL)) (-3529 (((-1075) $ (-1075)) NIL)) (-3897 (($ $ (-1075)) NIL)) (-1364 (((-1075) $) NIL)) (-3287 (((-366) (-366) (-366)) 17) (((-366) (-366)) 15)) (-3459 (($ (-366)) NIL) (($ (-366) (-1075)) NIL)) (-3257 (((-366) $) NIL)) (-2619 (((-1075) $) NIL)) (-3249 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3885 (((-1179) (-1075)) 9)) (-2113 (((-1179) (-1075)) 10)) (-2478 (((-1179)) 11)) (-1217 (((-798) $) NIL)) (-1512 (($ $) 35)) (-3955 (((-108) $ $) NIL)))
-(((-414) (-13 (-342 (-366) (-1075)) (-10 -7 (-15 -3287 ((-366) (-366) (-366))) (-15 -3287 ((-366) (-366))) (-15 -3885 ((-1179) (-1075))) (-15 -2113 ((-1179) (-1075))) (-15 -2478 ((-1179)))))) (T -414))
-((-3287 (*1 *2 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414)))) (-3287 (*1 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414)))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-414)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-414)))) (-2478 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-414)))))
-(-13 (-342 (-366) (-1075)) (-10 -7 (-15 -3287 ((-366) (-366) (-366))) (-15 -3287 ((-366) (-366))) (-15 -3885 ((-1179) (-1075))) (-15 -2113 ((-1179) (-1075))) (-15 -2478 ((-1179)))))
-((-4236 (((-108) $ $) NIL)) (-1571 (((-3 (|:| |fst| (-412)) (|:| -1316 "void")) $) 11)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1266 (($) 32)) (-2972 (($) 38)) (-3899 (($) 34)) (-4087 (($) 36)) (-2826 (($) 33)) (-3961 (($) 35)) (-3445 (($) 37)) (-3949 (((-108) $) 8)) (-1963 (((-592 (-887 (-525))) $) 19)) (-1230 (($ (-3 (|:| |fst| (-412)) (|:| -1316 "void")) (-592 (-1092)) (-108)) 27) (($ (-3 (|:| |fst| (-412)) (|:| -1316 "void")) (-592 (-887 (-525))) (-108)) 28)) (-1217 (((-798) $) 23) (($ (-412)) 29)) (-3955 (((-108) $ $) NIL)))
-(((-415) (-13 (-1020) (-10 -8 (-15 -1217 ((-798) $)) (-15 -1217 ($ (-412))) (-15 -1571 ((-3 (|:| |fst| (-412)) (|:| -1316 "void")) $)) (-15 -1963 ((-592 (-887 (-525))) $)) (-15 -3949 ((-108) $)) (-15 -1230 ($ (-3 (|:| |fst| (-412)) (|:| -1316 "void")) (-592 (-1092)) (-108))) (-15 -1230 ($ (-3 (|:| |fst| (-412)) (|:| -1316 "void")) (-592 (-887 (-525))) (-108))) (-15 -1266 ($)) (-15 -2826 ($)) (-15 -3899 ($)) (-15 -2972 ($)) (-15 -3961 ($)) (-15 -4087 ($)) (-15 -3445 ($))))) (T -415))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-415)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-412)) (-5 *1 (-415)))) (-1571 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-5 *1 (-415)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-592 (-887 (-525)))) (-5 *1 (-415)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-415)))) (-1230 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-5 *3 (-592 (-1092))) (-5 *4 (-108)) (-5 *1 (-415)))) (-1230 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-108)) (-5 *1 (-415)))) (-1266 (*1 *1) (-5 *1 (-415))) (-2826 (*1 *1) (-5 *1 (-415))) (-3899 (*1 *1) (-5 *1 (-415))) (-2972 (*1 *1) (-5 *1 (-415))) (-3961 (*1 *1) (-5 *1 (-415))) (-4087 (*1 *1) (-5 *1 (-415))) (-3445 (*1 *1) (-5 *1 (-415))))
-(-13 (-1020) (-10 -8 (-15 -1217 ((-798) $)) (-15 -1217 ($ (-412))) (-15 -1571 ((-3 (|:| |fst| (-412)) (|:| -1316 "void")) $)) (-15 -1963 ((-592 (-887 (-525))) $)) (-15 -3949 ((-108) $)) (-15 -1230 ($ (-3 (|:| |fst| (-412)) (|:| -1316 "void")) (-592 (-1092)) (-108))) (-15 -1230 ($ (-3 (|:| |fst| (-412)) (|:| -1316 "void")) (-592 (-887 (-525))) (-108))) (-15 -1266 ($)) (-15 -2826 ($)) (-15 -3899 ($)) (-15 -2972 ($)) (-15 -3961 ($)) (-15 -4087 ($)) (-15 -3445 ($))))
-((-4236 (((-108) $ $) NIL)) (-3257 (((-1092) $) 8)) (-2619 (((-1075) $) 16)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 11)) (-3955 (((-108) $ $) 13)))
-(((-416 |#1|) (-13 (-1020) (-10 -8 (-15 -3257 ((-1092) $)))) (-1092)) (T -416))
-((-3257 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-416 *3)) (-14 *3 *2))))
-(-13 (-1020) (-10 -8 (-15 -3257 ((-1092) $))))
-((-3252 (((-1179) $) 7)) (-1217 (((-798) $) 8) (($ (-1174 (-641))) 14) (($ (-592 (-308))) 13) (($ (-308)) 12) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 11)))
+((-1399 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-108)))) (-1407 (*1 *2 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)))) (-1296 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-592 (-1092))))) (-4040 (*1 *1 *2 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-4040 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-4040 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-4040 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-4040 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-592 *1)) (-4 *1 (-408 *4)) (-4 *4 (-789)))) (-2825 (*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-567 (-501))))) (-2825 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1092))) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-567 (-501))))) (-2825 (*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-567 (-501))))) (-2825 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1092)) (-4 *1 (-408 *4)) (-4 *4 (-789)) (-4 *4 (-567 (-501))))) (-2825 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 *1)) (-5 *4 (-1092)) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-567 (-501))))) (-2977 (*1 *2 *1) (|partial| -12 (-4 *3 (-1032)) (-4 *3 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-408 *3)))) (-1986 (*1 *2 *1) (|partial| -12 (-4 *3 (-1032)) (-4 *3 (-789)) (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -2168 (-525)))) (-4 *1 (-408 *3)))) (-3165 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-408 *3)))) (-2502 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -2681 (-525)) (|:| |var| (-565 *1)))) (-4 *1 (-408 *3)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-1044 *3 (-565 *1))) (-4 *3 (-977)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-4066 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *3 (-789)) (-5 *2 (-1044 *3 (-565 *1))) (-4 *1 (-408 *3)))) (-2999 (*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-977)))) (-1986 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-4 *4 (-977)) (-4 *4 (-789)) (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -2168 (-525)))) (-4 *1 (-408 *4)))) (-1986 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1092)) (-4 *4 (-977)) (-4 *4 (-789)) (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -2168 (-525)))) (-4 *1 (-408 *4)))) (-3159 (*1 *2 *1) (|partial| -12 (-4 *3 (-977)) (-4 *3 (-789)) (-5 *2 (-2 (|:| |val| *1) (|:| -2168 (-525)))) (-4 *1 (-408 *3)))) (-2825 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-592 (-713))) (-5 *4 (-592 (-1 *1 *1))) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-977)))) (-2825 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-592 (-713))) (-5 *4 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-977)))) (-2825 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-713)) (-5 *4 (-1 *1 (-592 *1))) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-977)))) (-2825 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-713)) (-5 *4 (-1 *1 *1)) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-977)))) (-2069 (*1 *1 *2) (-12 (-5 *2 (-396 *1)) (-4 *1 (-408 *3)) (-4 *3 (-517)) (-4 *3 (-789)))) (-4080 (*1 *2 *1) (-12 (-4 *3 (-517)) (-4 *3 (-789)) (-5 *2 (-1044 *3 (-565 *1))) (-4 *1 (-408 *3)))) (-2874 (*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-517)))) (-2880 (*1 *1 *2 *2) (-12 (-5 *2 (-1044 *3 (-565 *1))) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-385 *3)) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-887 (-385 *3))) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-385 *3)))) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-4169 (*1 *2 *1 *3) (-12 (-5 *3 (-565 *1)) (-4 *1 (-408 *4)) (-4 *4 (-789)) (-4 *4 (-517)) (-5 *2 (-385 (-1088 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-1032)))))
+(-13 (-281) (-968 (-1092)) (-819 |t#1|) (-378 |t#1|) (-389 |t#1|) (-10 -8 (-15 -1399 ((-108) $)) (-15 -1407 (|t#1| $)) (-15 -1296 ((-592 (-1092)) $)) (-15 -4040 ($ (-1092) $)) (-15 -4040 ($ (-1092) $ $)) (-15 -4040 ($ (-1092) $ $ $)) (-15 -4040 ($ (-1092) $ $ $ $)) (-15 -4040 ($ (-1092) (-592 $))) (IF (|has| |t#1| (-567 (-501))) (PROGN (-6 (-567 (-501))) (-15 -2825 ($ $ (-1092))) (-15 -2825 ($ $ (-592 (-1092)))) (-15 -2825 ($ $)) (-15 -2825 ($ $ (-110) $ (-1092))) (-15 -2825 ($ $ (-592 (-110)) (-592 $) (-1092)))) |%noBranch|) (IF (|has| |t#1| (-1032)) (PROGN (-6 (-669)) (-15 ** ($ $ (-713))) (-15 -2977 ((-3 (-592 $) "failed") $)) (-15 -1986 ((-3 (-2 (|:| |var| (-565 $)) (|:| -2168 (-525))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-450)) (-6 (-450)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3165 ((-3 (-592 $) "failed") $)) (-15 -2502 ((-3 (-2 (|:| -2681 (-525)) (|:| |var| (-565 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-977)) (PROGN (-6 (-977)) (-6 (-968 (-887 |t#1|))) (-6 (-835 (-1092))) (-6 (-355 |t#1|)) (-15 -4100 ($ (-1044 |t#1| (-565 $)))) (-15 -4066 ((-1044 |t#1| (-565 $)) $)) (-15 -2999 ($ $)) (-15 -1986 ((-3 (-2 (|:| |var| (-565 $)) (|:| -2168 (-525))) "failed") $ (-110))) (-15 -1986 ((-3 (-2 (|:| |var| (-565 $)) (|:| -2168 (-525))) "failed") $ (-1092))) (-15 -3159 ((-3 (-2 (|:| |val| $) (|:| -2168 (-525))) "failed") $)) (-15 -2825 ($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ $)))) (-15 -2825 ($ $ (-592 (-1092)) (-592 (-713)) (-592 (-1 $ (-592 $))))) (-15 -2825 ($ $ (-1092) (-713) (-1 $ (-592 $)))) (-15 -2825 ($ $ (-1092) (-713) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-6 (-341)) (-6 (-968 (-385 (-887 |t#1|)))) (-15 -2069 ($ (-396 $))) (-15 -4080 ((-1044 |t#1| (-565 $)) $)) (-15 -2874 ($ $)) (-15 -2880 ($ (-1044 |t#1| (-565 $)) (-1044 |t#1| (-565 $)))) (-15 -4100 ($ (-385 |t#1|))) (-15 -4100 ($ (-887 (-385 |t#1|)))) (-15 -4100 ($ (-385 (-887 (-385 |t#1|))))) (-15 -4169 ((-385 (-1088 $)) $ (-565 $))) (IF (|has| |t#1| (-968 (-525))) (-6 (-968 (-385 (-525)))) |%noBranch|)) |%noBranch|)))
+(((-21) -2067 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-21))) ((-23) -2067 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2067 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-385 (-525))) |has| |#1| (-517)) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-517)) ((-107 |#1| |#1|) |has| |#1| (-160)) ((-107 $ $) |has| |#1| (-517)) ((-126) -2067 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-21))) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) |has| |#1| (-517)) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-827 (-357))) |has| |#1| (-567 (-827 (-357)))) ((-567 (-827 (-525))) |has| |#1| (-567 (-827 (-525)))) ((-223) |has| |#1| (-517)) ((-269) |has| |#1| (-517)) ((-286) |has| |#1| (-517)) ((-288 $) . T) ((-281) . T) ((-341) |has| |#1| (-517)) ((-355 |#1|) |has| |#1| (-977)) ((-378 |#1|) . T) ((-389 |#1|) . T) ((-429) |has| |#1| (-517)) ((-450) |has| |#1| (-450)) ((-486 (-565 $) $) . T) ((-486 $ $) . T) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-517)) ((-594 |#1|) |has| |#1| (-160)) ((-594 $) -2067 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-588 (-525)) -12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) ((-588 |#1|) |has| |#1| (-977)) ((-660 #0#) |has| |#1| (-517)) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) -2067 (|has| |#1| (-1032)) (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-450)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-789) . T) ((-835 (-1092)) |has| |#1| (-977)) ((-821 (-357)) |has| |#1| (-821 (-357))) ((-821 (-525)) |has| |#1| (-821 (-525))) ((-819 |#1|) . T) ((-855) |has| |#1| (-517)) ((-968 (-385 (-525))) -2067 (|has| |#1| (-968 (-385 (-525)))) (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525))))) ((-968 (-385 (-887 |#1|))) |has| |#1| (-517)) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 (-565 $)) . T) ((-968 (-887 |#1|)) |has| |#1| (-977)) ((-968 (-1092)) . T) ((-968 |#1|) . T) ((-983 #0#) |has| |#1| (-517)) ((-983 |#1|) |has| |#1| (-160)) ((-983 $) |has| |#1| (-517)) ((-977) -2067 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-984) -2067 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-1032) -2067 (|has| |#1| (-1032)) (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-450)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-1020) . T) ((-1128) . T) ((-1132) |has| |#1| (-517)))
+((-2527 ((|#2| |#2| |#2|) 33)) (-1386 (((-110) (-110)) 44)) (-2293 ((|#2| |#2|) 66)) (-3510 ((|#2| |#2|) 69)) (-3284 ((|#2| |#2|) 32)) (-3553 ((|#2| |#2| |#2|) 35)) (-1384 ((|#2| |#2| |#2|) 37)) (-2735 ((|#2| |#2| |#2|) 34)) (-2273 ((|#2| |#2| |#2|) 36)) (-3954 (((-108) (-110)) 42)) (-3541 ((|#2| |#2|) 39)) (-1287 ((|#2| |#2|) 38)) (-2380 ((|#2| |#2|) 27)) (-3496 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2892 ((|#2| |#2| |#2|) 31)))
+(((-409 |#1| |#2|) (-10 -7 (-15 -3954 ((-108) (-110))) (-15 -1386 ((-110) (-110))) (-15 -2380 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -3496 (|#2| |#2| |#2|)) (-15 -2892 (|#2| |#2| |#2|)) (-15 -3284 (|#2| |#2|)) (-15 -2527 (|#2| |#2| |#2|)) (-15 -2735 (|#2| |#2| |#2|)) (-15 -3553 (|#2| |#2| |#2|)) (-15 -2273 (|#2| |#2| |#2|)) (-15 -1384 (|#2| |#2| |#2|)) (-15 -1287 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -3510 (|#2| |#2|)) (-15 -2293 (|#2| |#2|))) (-13 (-789) (-517)) (-408 |#1|)) (T -409))
+((-2293 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3510 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3541 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1287 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1384 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2273 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3553 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2735 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2527 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3284 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2892 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3496 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2380 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1386 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *4)) (-4 *4 (-408 *3)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-409 *4 *5)) (-4 *5 (-408 *4)))))
+(-10 -7 (-15 -3954 ((-108) (-110))) (-15 -1386 ((-110) (-110))) (-15 -2380 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -3496 (|#2| |#2| |#2|)) (-15 -2892 (|#2| |#2| |#2|)) (-15 -3284 (|#2| |#2|)) (-15 -2527 (|#2| |#2| |#2|)) (-15 -2735 (|#2| |#2| |#2|)) (-15 -3553 (|#2| |#2| |#2|)) (-15 -2273 (|#2| |#2| |#2|)) (-15 -1384 (|#2| |#2| |#2|)) (-15 -1287 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -3510 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)))
+((-3932 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1088 |#2|)) (|:| |pol2| (-1088 |#2|)) (|:| |prim| (-1088 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-592 (-1088 |#2|))) (|:| |prim| (-1088 |#2|))) (-592 |#2|)) 61)))
+(((-410 |#1| |#2|) (-10 -7 (-15 -3932 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-592 (-1088 |#2|))) (|:| |prim| (-1088 |#2|))) (-592 |#2|))) (IF (|has| |#2| (-27)) (-15 -3932 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1088 |#2|)) (|:| |pol2| (-1088 |#2|)) (|:| |prim| (-1088 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-517) (-789) (-138)) (-408 |#1|)) (T -410))
+((-3932 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-517) (-789) (-138))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1088 *3)) (|:| |pol2| (-1088 *3)) (|:| |prim| (-1088 *3)))) (-5 *1 (-410 *4 *3)) (-4 *3 (-27)) (-4 *3 (-408 *4)))) (-3932 (*1 *2 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4)) (-4 *4 (-13 (-517) (-789) (-138))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-592 (-1088 *5))) (|:| |prim| (-1088 *5)))) (-5 *1 (-410 *4 *5)))))
+(-10 -7 (-15 -3932 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-592 (-1088 |#2|))) (|:| |prim| (-1088 |#2|))) (-592 |#2|))) (IF (|has| |#2| (-27)) (-15 -3932 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1088 |#2|)) (|:| |pol2| (-1088 |#2|)) (|:| |prim| (-1088 |#2|))) |#2| |#2|)) |%noBranch|))
+((-2640 (((-1179)) 19)) (-3508 (((-1088 (-385 (-525))) |#2| (-565 |#2|)) 41) (((-385 (-525)) |#2|) 25)))
+(((-411 |#1| |#2|) (-10 -7 (-15 -3508 ((-385 (-525)) |#2|)) (-15 -3508 ((-1088 (-385 (-525))) |#2| (-565 |#2|))) (-15 -2640 ((-1179)))) (-13 (-789) (-517) (-968 (-525))) (-408 |#1|)) (T -411))
+((-2640 (*1 *2) (-12 (-4 *3 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-1179)) (-5 *1 (-411 *3 *4)) (-4 *4 (-408 *3)))) (-3508 (*1 *2 *3 *4) (-12 (-5 *4 (-565 *3)) (-4 *3 (-408 *5)) (-4 *5 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-1088 (-385 (-525)))) (-5 *1 (-411 *5 *3)))) (-3508 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-411 *4 *3)) (-4 *3 (-408 *4)))))
+(-10 -7 (-15 -3508 ((-385 (-525)) |#2|)) (-15 -3508 ((-1088 (-385 (-525))) |#2| (-565 |#2|))) (-15 -2640 ((-1179))))
+((-3934 (((-108) $) 28)) (-2508 (((-108) $) 30)) (-2849 (((-108) $) 31)) (-2421 (((-108) $) 34)) (-2215 (((-108) $) 29)) (-1963 (((-108) $) 33)) (-4100 (((-798) $) 18) (($ (-1075)) 27) (($ (-1092)) 23) (((-1092) $) 22) (((-1024) $) 21)) (-2488 (((-108) $) 32)) (-2775 (((-108) $ $) 15)))
+(((-412) (-13 (-566 (-798)) (-10 -8 (-15 -4100 ($ (-1075))) (-15 -4100 ($ (-1092))) (-15 -4100 ((-1092) $)) (-15 -4100 ((-1024) $)) (-15 -3934 ((-108) $)) (-15 -2215 ((-108) $)) (-15 -2849 ((-108) $)) (-15 -1963 ((-108) $)) (-15 -2421 ((-108) $)) (-15 -2488 ((-108) $)) (-15 -2508 ((-108) $)) (-15 -2775 ((-108) $ $))))) (T -412))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-412)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-412)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-412)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-412)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2488 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2775 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -4100 ($ (-1075))) (-15 -4100 ($ (-1092))) (-15 -4100 ((-1092) $)) (-15 -4100 ((-1024) $)) (-15 -3934 ((-108) $)) (-15 -2215 ((-108) $)) (-15 -2849 ((-108) $)) (-15 -1963 ((-108) $)) (-15 -2421 ((-108) $)) (-15 -2488 ((-108) $)) (-15 -2508 ((-108) $)) (-15 -2775 ((-108) $ $))))
+((-2748 (((-3 (-396 (-1088 (-385 (-525)))) "failed") |#3|) 70)) (-2119 (((-396 |#3|) |#3|) 34)) (-2638 (((-3 (-396 (-1088 (-47))) "failed") |#3|) 46 (|has| |#2| (-968 (-47))))) (-1227 (((-3 (|:| |overq| (-1088 (-385 (-525)))) (|:| |overan| (-1088 (-47))) (|:| -1669 (-108))) |#3|) 37)))
+(((-413 |#1| |#2| |#3|) (-10 -7 (-15 -2119 ((-396 |#3|) |#3|)) (-15 -2748 ((-3 (-396 (-1088 (-385 (-525)))) "failed") |#3|)) (-15 -1227 ((-3 (|:| |overq| (-1088 (-385 (-525)))) (|:| |overan| (-1088 (-47))) (|:| -1669 (-108))) |#3|)) (IF (|has| |#2| (-968 (-47))) (-15 -2638 ((-3 (-396 (-1088 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-517) (-789) (-968 (-525))) (-408 |#1|) (-1150 |#2|)) (T -413))
+((-2638 (*1 *2 *3) (|partial| -12 (-4 *5 (-968 (-47))) (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-396 (-1088 (-47)))) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1150 *5)))) (-1227 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-3 (|:| |overq| (-1088 (-385 (-525)))) (|:| |overan| (-1088 (-47))) (|:| -1669 (-108)))) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1150 *5)))) (-2748 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-396 (-1088 (-385 (-525))))) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1150 *5)))) (-2119 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-396 *3)) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1150 *5)))))
+(-10 -7 (-15 -2119 ((-396 |#3|) |#3|)) (-15 -2748 ((-3 (-396 (-1088 (-385 (-525)))) "failed") |#3|)) (-15 -1227 ((-3 (|:| |overq| (-1088 (-385 (-525)))) (|:| |overan| (-1088 (-47))) (|:| -1669 (-108))) |#3|)) (IF (|has| |#2| (-968 (-47))) (-15 -2638 ((-3 (-396 (-1088 (-47))) "failed") |#3|)) |%noBranch|))
+((-4087 (((-108) $ $) NIL)) (-2773 (((-1075) $ (-1075)) NIL)) (-2220 (($ $ (-1075)) NIL)) (-1754 (((-1075) $) NIL)) (-1310 (((-366) (-366) (-366)) 17) (((-366) (-366)) 15)) (-2046 (($ (-366)) NIL) (($ (-366) (-1075)) NIL)) (-2411 (((-366) $) NIL)) (-1289 (((-1075) $) NIL)) (-4022 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2116 (((-1179) (-1075)) 9)) (-3036 (((-1179) (-1075)) 10)) (-2441 (((-1179)) 11)) (-4100 (((-798) $) NIL)) (-3267 (($ $) 35)) (-2775 (((-108) $ $) NIL)))
+(((-414) (-13 (-342 (-366) (-1075)) (-10 -7 (-15 -1310 ((-366) (-366) (-366))) (-15 -1310 ((-366) (-366))) (-15 -2116 ((-1179) (-1075))) (-15 -3036 ((-1179) (-1075))) (-15 -2441 ((-1179)))))) (T -414))
+((-1310 (*1 *2 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414)))) (-1310 (*1 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-414)))) (-3036 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-414)))) (-2441 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-414)))))
+(-13 (-342 (-366) (-1075)) (-10 -7 (-15 -1310 ((-366) (-366) (-366))) (-15 -1310 ((-366) (-366))) (-15 -2116 ((-1179) (-1075))) (-15 -3036 ((-1179) (-1075))) (-15 -2441 ((-1179)))))
+((-4087 (((-108) $ $) NIL)) (-3168 (((-3 (|:| |fst| (-412)) (|:| -3408 "void")) $) 11)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-3876 (($) 32)) (-3406 (($) 38)) (-2242 (($) 34)) (-3519 (($) 36)) (-1385 (($) 33)) (-1689 (($) 35)) (-3183 (($) 37)) (-1570 (((-108) $) 8)) (-3986 (((-592 (-887 (-525))) $) 19)) (-4114 (($ (-3 (|:| |fst| (-412)) (|:| -3408 "void")) (-592 (-1092)) (-108)) 27) (($ (-3 (|:| |fst| (-412)) (|:| -3408 "void")) (-592 (-887 (-525))) (-108)) 28)) (-4100 (((-798) $) 23) (($ (-412)) 29)) (-2775 (((-108) $ $) NIL)))
+(((-415) (-13 (-1020) (-10 -8 (-15 -4100 ((-798) $)) (-15 -4100 ($ (-412))) (-15 -3168 ((-3 (|:| |fst| (-412)) (|:| -3408 "void")) $)) (-15 -3986 ((-592 (-887 (-525))) $)) (-15 -1570 ((-108) $)) (-15 -4114 ($ (-3 (|:| |fst| (-412)) (|:| -3408 "void")) (-592 (-1092)) (-108))) (-15 -4114 ($ (-3 (|:| |fst| (-412)) (|:| -3408 "void")) (-592 (-887 (-525))) (-108))) (-15 -3876 ($)) (-15 -1385 ($)) (-15 -2242 ($)) (-15 -3406 ($)) (-15 -1689 ($)) (-15 -3519 ($)) (-15 -3183 ($))))) (T -415))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-415)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-412)) (-5 *1 (-415)))) (-3168 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-5 *1 (-415)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-592 (-887 (-525)))) (-5 *1 (-415)))) (-1570 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-415)))) (-4114 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-5 *3 (-592 (-1092))) (-5 *4 (-108)) (-5 *1 (-415)))) (-4114 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-108)) (-5 *1 (-415)))) (-3876 (*1 *1) (-5 *1 (-415))) (-1385 (*1 *1) (-5 *1 (-415))) (-2242 (*1 *1) (-5 *1 (-415))) (-3406 (*1 *1) (-5 *1 (-415))) (-1689 (*1 *1) (-5 *1 (-415))) (-3519 (*1 *1) (-5 *1 (-415))) (-3183 (*1 *1) (-5 *1 (-415))))
+(-13 (-1020) (-10 -8 (-15 -4100 ((-798) $)) (-15 -4100 ($ (-412))) (-15 -3168 ((-3 (|:| |fst| (-412)) (|:| -3408 "void")) $)) (-15 -3986 ((-592 (-887 (-525))) $)) (-15 -1570 ((-108) $)) (-15 -4114 ($ (-3 (|:| |fst| (-412)) (|:| -3408 "void")) (-592 (-1092)) (-108))) (-15 -4114 ($ (-3 (|:| |fst| (-412)) (|:| -3408 "void")) (-592 (-887 (-525))) (-108))) (-15 -3876 ($)) (-15 -1385 ($)) (-15 -2242 ($)) (-15 -3406 ($)) (-15 -1689 ($)) (-15 -3519 ($)) (-15 -3183 ($))))
+((-4087 (((-108) $ $) NIL)) (-2411 (((-1092) $) 8)) (-1289 (((-1075) $) 16)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 11)) (-2775 (((-108) $ $) 13)))
+(((-416 |#1|) (-13 (-1020) (-10 -8 (-15 -2411 ((-1092) $)))) (-1092)) (T -416))
+((-2411 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-416 *3)) (-14 *3 *2))))
+(-13 (-1020) (-10 -8 (-15 -2411 ((-1092) $))))
+((-2584 (((-1179) $) 7)) (-4100 (((-798) $) 8) (($ (-1174 (-641))) 14) (($ (-592 (-308))) 13) (($ (-308)) 12) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 11)))
(((-417) (-131)) (T -417))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1174 (-641))) (-4 *1 (-417)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-417)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-417)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) (-4 *1 (-417)))))
-(-13 (-373) (-10 -8 (-15 -1217 ($ (-1174 (-641)))) (-15 -1217 ($ (-592 (-308)))) (-15 -1217 ($ (-308))) (-15 -1217 ($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))))))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1174 (-641))) (-4 *1 (-417)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-417)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-417)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) (-4 *1 (-417)))))
+(-13 (-373) (-10 -8 (-15 -4100 ($ (-1174 (-641)))) (-15 -4100 ($ (-592 (-308)))) (-15 -4100 ($ (-308))) (-15 -4100 ($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))))))
(((-566 (-798)) . T) ((-373) . T) ((-1128) . T))
-((-3077 (((-3 $ "failed") (-1174 (-294 (-357)))) 21) (((-3 $ "failed") (-1174 (-294 (-525)))) 19) (((-3 $ "failed") (-1174 (-887 (-357)))) 17) (((-3 $ "failed") (-1174 (-887 (-525)))) 15) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 13) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 11)) (-1572 (($ (-1174 (-294 (-357)))) 22) (($ (-1174 (-294 (-525)))) 20) (($ (-1174 (-887 (-357)))) 18) (($ (-1174 (-887 (-525)))) 16) (($ (-1174 (-385 (-887 (-357))))) 14) (($ (-1174 (-385 (-887 (-525))))) 12)) (-3252 (((-1179) $) 7)) (-1217 (((-798) $) 8) (($ (-592 (-308))) 25) (($ (-308)) 24) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) 23)))
+((-1934 (((-3 $ "failed") (-1174 (-294 (-357)))) 21) (((-3 $ "failed") (-1174 (-294 (-525)))) 19) (((-3 $ "failed") (-1174 (-887 (-357)))) 17) (((-3 $ "failed") (-1174 (-887 (-525)))) 15) (((-3 $ "failed") (-1174 (-385 (-887 (-357))))) 13) (((-3 $ "failed") (-1174 (-385 (-887 (-525))))) 11)) (-4105 (($ (-1174 (-294 (-357)))) 22) (($ (-1174 (-294 (-525)))) 20) (($ (-1174 (-887 (-357)))) 18) (($ (-1174 (-887 (-525)))) 16) (($ (-1174 (-385 (-887 (-357))))) 14) (($ (-1174 (-385 (-887 (-525))))) 12)) (-2584 (((-1179) $) 7)) (-4100 (((-798) $) 8) (($ (-592 (-308))) 25) (($ (-308)) 24) (($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) 23)))
(((-418) (-131)) (T -418))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-418)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-418)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308))))) (-4 *1 (-418)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-1174 (-294 (-357)))) (-4 *1 (-418)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-1174 (-294 (-357)))) (-4 *1 (-418)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-1174 (-294 (-525)))) (-4 *1 (-418)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-1174 (-294 (-525)))) (-4 *1 (-418)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-1174 (-887 (-357)))) (-4 *1 (-418)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-1174 (-887 (-357)))) (-4 *1 (-418)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-1174 (-887 (-525)))) (-4 *1 (-418)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-1174 (-887 (-525)))) (-4 *1 (-418)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-1174 (-385 (-887 (-357))))) (-4 *1 (-418)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-1174 (-385 (-887 (-357))))) (-4 *1 (-418)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-1174 (-385 (-887 (-525))))) (-4 *1 (-418)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-1174 (-385 (-887 (-525))))) (-4 *1 (-418)))))
-(-13 (-373) (-10 -8 (-15 -1217 ($ (-592 (-308)))) (-15 -1217 ($ (-308))) (-15 -1217 ($ (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308)))))) (-15 -1572 ($ (-1174 (-294 (-357))))) (-15 -3077 ((-3 $ "failed") (-1174 (-294 (-357))))) (-15 -1572 ($ (-1174 (-294 (-525))))) (-15 -3077 ((-3 $ "failed") (-1174 (-294 (-525))))) (-15 -1572 ($ (-1174 (-887 (-357))))) (-15 -3077 ((-3 $ "failed") (-1174 (-887 (-357))))) (-15 -1572 ($ (-1174 (-887 (-525))))) (-15 -3077 ((-3 $ "failed") (-1174 (-887 (-525))))) (-15 -1572 ($ (-1174 (-385 (-887 (-357)))))) (-15 -3077 ((-3 $ "failed") (-1174 (-385 (-887 (-357)))))) (-15 -1572 ($ (-1174 (-385 (-887 (-525)))))) (-15 -3077 ((-3 $ "failed") (-1174 (-385 (-887 (-525))))))))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-418)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-418)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308))))) (-4 *1 (-418)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-1174 (-294 (-357)))) (-4 *1 (-418)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-1174 (-294 (-357)))) (-4 *1 (-418)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-1174 (-294 (-525)))) (-4 *1 (-418)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-1174 (-294 (-525)))) (-4 *1 (-418)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-1174 (-887 (-357)))) (-4 *1 (-418)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-1174 (-887 (-357)))) (-4 *1 (-418)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-1174 (-887 (-525)))) (-4 *1 (-418)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-1174 (-887 (-525)))) (-4 *1 (-418)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-1174 (-385 (-887 (-357))))) (-4 *1 (-418)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-1174 (-385 (-887 (-357))))) (-4 *1 (-418)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-1174 (-385 (-887 (-525))))) (-4 *1 (-418)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-1174 (-385 (-887 (-525))))) (-4 *1 (-418)))))
+(-13 (-373) (-10 -8 (-15 -4100 ($ (-592 (-308)))) (-15 -4100 ($ (-308))) (-15 -4100 ($ (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308)))))) (-15 -4105 ($ (-1174 (-294 (-357))))) (-15 -1934 ((-3 $ "failed") (-1174 (-294 (-357))))) (-15 -4105 ($ (-1174 (-294 (-525))))) (-15 -1934 ((-3 $ "failed") (-1174 (-294 (-525))))) (-15 -4105 ($ (-1174 (-887 (-357))))) (-15 -1934 ((-3 $ "failed") (-1174 (-887 (-357))))) (-15 -4105 ($ (-1174 (-887 (-525))))) (-15 -1934 ((-3 $ "failed") (-1174 (-887 (-525))))) (-15 -4105 ($ (-1174 (-385 (-887 (-357)))))) (-15 -1934 ((-3 $ "failed") (-1174 (-385 (-887 (-357)))))) (-15 -4105 ($ (-1174 (-385 (-887 (-525)))))) (-15 -1934 ((-3 $ "failed") (-1174 (-385 (-887 (-525))))))))
(((-566 (-798)) . T) ((-373) . T) ((-1128) . T))
-((-1472 (((-108)) 17)) (-2567 (((-108) (-108)) 18)) (-3100 (((-108)) 13)) (-1359 (((-108) (-108)) 14)) (-3215 (((-108)) 15)) (-2707 (((-108) (-108)) 16)) (-3161 (((-856) (-856)) 21) (((-856)) 20)) (-3873 (((-713) (-592 (-2 (|:| -2770 |#1|) (|:| -2343 (-525))))) 42)) (-2947 (((-856) (-856)) 23) (((-856)) 22)) (-4223 (((-2 (|:| -1742 (-525)) (|:| -3843 (-592 |#1|))) |#1|) 62)) (-3449 (((-396 |#1|) (-2 (|:| |contp| (-525)) (|:| -3843 (-592 (-2 (|:| |irr| |#1|) (|:| -1616 (-525))))))) 126)) (-3405 (((-2 (|:| |contp| (-525)) (|:| -3843 (-592 (-2 (|:| |irr| |#1|) (|:| -1616 (-525)))))) |#1| (-108)) 152)) (-2635 (((-396 |#1|) |#1| (-713) (-713)) 165) (((-396 |#1|) |#1| (-592 (-713)) (-713)) 162) (((-396 |#1|) |#1| (-592 (-713))) 164) (((-396 |#1|) |#1| (-713)) 163) (((-396 |#1|) |#1|) 161)) (-2895 (((-3 |#1| "failed") (-856) |#1| (-592 (-713)) (-713) (-108)) 167) (((-3 |#1| "failed") (-856) |#1| (-592 (-713)) (-713)) 168) (((-3 |#1| "failed") (-856) |#1| (-592 (-713))) 170) (((-3 |#1| "failed") (-856) |#1| (-713)) 169) (((-3 |#1| "failed") (-856) |#1|) 171)) (-2770 (((-396 |#1|) |#1| (-713) (-713)) 160) (((-396 |#1|) |#1| (-592 (-713)) (-713)) 156) (((-396 |#1|) |#1| (-592 (-713))) 158) (((-396 |#1|) |#1| (-713)) 157) (((-396 |#1|) |#1|) 155)) (-1580 (((-108) |#1|) 37)) (-3247 (((-680 (-713)) (-592 (-2 (|:| -2770 |#1|) (|:| -2343 (-525))))) 67)) (-1366 (((-2 (|:| |contp| (-525)) (|:| -3843 (-592 (-2 (|:| |irr| |#1|) (|:| -1616 (-525)))))) |#1| (-108) (-1022 (-713)) (-713)) 154)))
-(((-419 |#1|) (-10 -7 (-15 -3449 ((-396 |#1|) (-2 (|:| |contp| (-525)) (|:| -3843 (-592 (-2 (|:| |irr| |#1|) (|:| -1616 (-525)))))))) (-15 -3247 ((-680 (-713)) (-592 (-2 (|:| -2770 |#1|) (|:| -2343 (-525)))))) (-15 -2947 ((-856))) (-15 -2947 ((-856) (-856))) (-15 -3161 ((-856))) (-15 -3161 ((-856) (-856))) (-15 -3873 ((-713) (-592 (-2 (|:| -2770 |#1|) (|:| -2343 (-525)))))) (-15 -4223 ((-2 (|:| -1742 (-525)) (|:| -3843 (-592 |#1|))) |#1|)) (-15 -1472 ((-108))) (-15 -2567 ((-108) (-108))) (-15 -3100 ((-108))) (-15 -1359 ((-108) (-108))) (-15 -1580 ((-108) |#1|)) (-15 -3215 ((-108))) (-15 -2707 ((-108) (-108))) (-15 -2770 ((-396 |#1|) |#1|)) (-15 -2770 ((-396 |#1|) |#1| (-713))) (-15 -2770 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -2770 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -2770 ((-396 |#1|) |#1| (-713) (-713))) (-15 -2635 ((-396 |#1|) |#1|)) (-15 -2635 ((-396 |#1|) |#1| (-713))) (-15 -2635 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -2635 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -2635 ((-396 |#1|) |#1| (-713) (-713))) (-15 -2895 ((-3 |#1| "failed") (-856) |#1|)) (-15 -2895 ((-3 |#1| "failed") (-856) |#1| (-713))) (-15 -2895 ((-3 |#1| "failed") (-856) |#1| (-592 (-713)))) (-15 -2895 ((-3 |#1| "failed") (-856) |#1| (-592 (-713)) (-713))) (-15 -2895 ((-3 |#1| "failed") (-856) |#1| (-592 (-713)) (-713) (-108))) (-15 -3405 ((-2 (|:| |contp| (-525)) (|:| -3843 (-592 (-2 (|:| |irr| |#1|) (|:| -1616 (-525)))))) |#1| (-108))) (-15 -1366 ((-2 (|:| |contp| (-525)) (|:| -3843 (-592 (-2 (|:| |irr| |#1|) (|:| -1616 (-525)))))) |#1| (-108) (-1022 (-713)) (-713)))) (-1150 (-525))) (T -419))
-((-1366 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-1022 (-713))) (-5 *6 (-713)) (-5 *2 (-2 (|:| |contp| (-525)) (|:| -3843 (-592 (-2 (|:| |irr| *3) (|:| -1616 (-525))))))) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-3405 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-525)) (|:| -3843 (-592 (-2 (|:| |irr| *3) (|:| -1616 (-525))))))) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2895 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-856)) (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *6 (-108)) (-5 *1 (-419 *2)) (-4 *2 (-1150 (-525))))) (-2895 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-856)) (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *1 (-419 *2)) (-4 *2 (-1150 (-525))))) (-2895 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-856)) (-5 *4 (-592 (-713))) (-5 *1 (-419 *2)) (-4 *2 (-1150 (-525))))) (-2895 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-856)) (-5 *4 (-713)) (-5 *1 (-419 *2)) (-4 *2 (-1150 (-525))))) (-2895 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-856)) (-5 *1 (-419 *2)) (-4 *2 (-1150 (-525))))) (-2635 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2635 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2635 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2635 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2635 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2770 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2770 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2770 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2770 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2770 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2707 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-3215 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-1580 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-1359 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-3100 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2567 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-1472 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-4223 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1742 (-525)) (|:| -3843 (-592 *3)))) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -2770 *4) (|:| -2343 (-525))))) (-4 *4 (-1150 (-525))) (-5 *2 (-713)) (-5 *1 (-419 *4)))) (-3161 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-3161 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2947 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2947 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-3247 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -2770 *4) (|:| -2343 (-525))))) (-4 *4 (-1150 (-525))) (-5 *2 (-680 (-713))) (-5 *1 (-419 *4)))) (-3449 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-525)) (|:| -3843 (-592 (-2 (|:| |irr| *4) (|:| -1616 (-525))))))) (-4 *4 (-1150 (-525))) (-5 *2 (-396 *4)) (-5 *1 (-419 *4)))))
-(-10 -7 (-15 -3449 ((-396 |#1|) (-2 (|:| |contp| (-525)) (|:| -3843 (-592 (-2 (|:| |irr| |#1|) (|:| -1616 (-525)))))))) (-15 -3247 ((-680 (-713)) (-592 (-2 (|:| -2770 |#1|) (|:| -2343 (-525)))))) (-15 -2947 ((-856))) (-15 -2947 ((-856) (-856))) (-15 -3161 ((-856))) (-15 -3161 ((-856) (-856))) (-15 -3873 ((-713) (-592 (-2 (|:| -2770 |#1|) (|:| -2343 (-525)))))) (-15 -4223 ((-2 (|:| -1742 (-525)) (|:| -3843 (-592 |#1|))) |#1|)) (-15 -1472 ((-108))) (-15 -2567 ((-108) (-108))) (-15 -3100 ((-108))) (-15 -1359 ((-108) (-108))) (-15 -1580 ((-108) |#1|)) (-15 -3215 ((-108))) (-15 -2707 ((-108) (-108))) (-15 -2770 ((-396 |#1|) |#1|)) (-15 -2770 ((-396 |#1|) |#1| (-713))) (-15 -2770 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -2770 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -2770 ((-396 |#1|) |#1| (-713) (-713))) (-15 -2635 ((-396 |#1|) |#1|)) (-15 -2635 ((-396 |#1|) |#1| (-713))) (-15 -2635 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -2635 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -2635 ((-396 |#1|) |#1| (-713) (-713))) (-15 -2895 ((-3 |#1| "failed") (-856) |#1|)) (-15 -2895 ((-3 |#1| "failed") (-856) |#1| (-713))) (-15 -2895 ((-3 |#1| "failed") (-856) |#1| (-592 (-713)))) (-15 -2895 ((-3 |#1| "failed") (-856) |#1| (-592 (-713)) (-713))) (-15 -2895 ((-3 |#1| "failed") (-856) |#1| (-592 (-713)) (-713) (-108))) (-15 -3405 ((-2 (|:| |contp| (-525)) (|:| -3843 (-592 (-2 (|:| |irr| |#1|) (|:| -1616 (-525)))))) |#1| (-108))) (-15 -1366 ((-2 (|:| |contp| (-525)) (|:| -3843 (-592 (-2 (|:| |irr| |#1|) (|:| -1616 (-525)))))) |#1| (-108) (-1022 (-713)) (-713))))
-((-3554 (((-525) |#2|) 48) (((-525) |#2| (-713)) 47)) (-3433 (((-525) |#2|) 55)) (-3148 ((|#3| |#2|) 25)) (-2382 ((|#3| |#2| (-856)) 14)) (-4178 ((|#3| |#2|) 15)) (-1885 ((|#3| |#2|) 9)) (-1794 ((|#3| |#2|) 10)) (-3071 ((|#3| |#2| (-856)) 62) ((|#3| |#2|) 30)) (-3312 (((-525) |#2|) 57)))
-(((-420 |#1| |#2| |#3|) (-10 -7 (-15 -3312 ((-525) |#2|)) (-15 -3071 (|#3| |#2|)) (-15 -3071 (|#3| |#2| (-856))) (-15 -3433 ((-525) |#2|)) (-15 -3554 ((-525) |#2| (-713))) (-15 -3554 ((-525) |#2|)) (-15 -2382 (|#3| |#2| (-856))) (-15 -3148 (|#3| |#2|)) (-15 -1885 (|#3| |#2|)) (-15 -1794 (|#3| |#2|)) (-15 -4178 (|#3| |#2|))) (-977) (-1150 |#1|) (-13 (-382) (-968 |#1|) (-341) (-1114) (-263))) (T -420))
-((-4178 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1150 *4)))) (-1794 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1150 *4)))) (-1885 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1150 *4)))) (-3148 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1150 *4)))) (-2382 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-4 *5 (-977)) (-4 *2 (-13 (-382) (-968 *5) (-341) (-1114) (-263))) (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1150 *5)))) (-3554 (*1 *2 *3) (-12 (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) (-4 *3 (-1150 *4)) (-4 *5 (-13 (-382) (-968 *4) (-341) (-1114) (-263))))) (-3554 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *5 *3 *6)) (-4 *3 (-1150 *5)) (-4 *6 (-13 (-382) (-968 *5) (-341) (-1114) (-263))))) (-3433 (*1 *2 *3) (-12 (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) (-4 *3 (-1150 *4)) (-4 *5 (-13 (-382) (-968 *4) (-341) (-1114) (-263))))) (-3071 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-4 *5 (-977)) (-4 *2 (-13 (-382) (-968 *5) (-341) (-1114) (-263))) (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1150 *5)))) (-3071 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1150 *4)))) (-3312 (*1 *2 *3) (-12 (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) (-4 *3 (-1150 *4)) (-4 *5 (-13 (-382) (-968 *4) (-341) (-1114) (-263))))))
-(-10 -7 (-15 -3312 ((-525) |#2|)) (-15 -3071 (|#3| |#2|)) (-15 -3071 (|#3| |#2| (-856))) (-15 -3433 ((-525) |#2|)) (-15 -3554 ((-525) |#2| (-713))) (-15 -3554 ((-525) |#2|)) (-15 -2382 (|#3| |#2| (-856))) (-15 -3148 (|#3| |#2|)) (-15 -1885 (|#3| |#2|)) (-15 -1794 (|#3| |#2|)) (-15 -4178 (|#3| |#2|)))
-((-1931 ((|#2| (-1174 |#1|)) 36)) (-1701 ((|#2| |#2| |#1|) 49)) (-2504 ((|#2| |#2| |#1|) 41)) (-3431 ((|#2| |#2|) 38)) (-3892 (((-108) |#2|) 30)) (-3710 (((-592 |#2|) (-856) (-396 |#2|)) 17)) (-2895 ((|#2| (-856) (-396 |#2|)) 21)) (-3247 (((-680 (-713)) (-396 |#2|)) 25)))
-(((-421 |#1| |#2|) (-10 -7 (-15 -3892 ((-108) |#2|)) (-15 -1931 (|#2| (-1174 |#1|))) (-15 -3431 (|#2| |#2|)) (-15 -2504 (|#2| |#2| |#1|)) (-15 -1701 (|#2| |#2| |#1|)) (-15 -3247 ((-680 (-713)) (-396 |#2|))) (-15 -2895 (|#2| (-856) (-396 |#2|))) (-15 -3710 ((-592 |#2|) (-856) (-396 |#2|)))) (-977) (-1150 |#1|)) (T -421))
-((-3710 (*1 *2 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-396 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-977)) (-5 *2 (-592 *6)) (-5 *1 (-421 *5 *6)))) (-2895 (*1 *2 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-396 *2)) (-4 *2 (-1150 *5)) (-5 *1 (-421 *5 *2)) (-4 *5 (-977)))) (-3247 (*1 *2 *3) (-12 (-5 *3 (-396 *5)) (-4 *5 (-1150 *4)) (-4 *4 (-977)) (-5 *2 (-680 (-713))) (-5 *1 (-421 *4 *5)))) (-1701 (*1 *2 *2 *3) (-12 (-4 *3 (-977)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1150 *3)))) (-2504 (*1 *2 *2 *3) (-12 (-4 *3 (-977)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1150 *3)))) (-3431 (*1 *2 *2) (-12 (-4 *3 (-977)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1150 *3)))) (-1931 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-977)) (-4 *2 (-1150 *4)) (-5 *1 (-421 *4 *2)))) (-3892 (*1 *2 *3) (-12 (-4 *4 (-977)) (-5 *2 (-108)) (-5 *1 (-421 *4 *3)) (-4 *3 (-1150 *4)))))
-(-10 -7 (-15 -3892 ((-108) |#2|)) (-15 -1931 (|#2| (-1174 |#1|))) (-15 -3431 (|#2| |#2|)) (-15 -2504 (|#2| |#2| |#1|)) (-15 -1701 (|#2| |#2| |#1|)) (-15 -3247 ((-680 (-713)) (-396 |#2|))) (-15 -2895 (|#2| (-856) (-396 |#2|))) (-15 -3710 ((-592 |#2|) (-856) (-396 |#2|))))
-((-3659 (((-713)) 41)) (-1888 (((-713)) 23 (|has| |#1| (-382))) (((-713) (-713)) 22 (|has| |#1| (-382)))) (-1734 (((-525) |#1|) 18 (|has| |#1| (-382)))) (-2690 (((-525) |#1|) 20 (|has| |#1| (-382)))) (-2223 (((-713)) 40) (((-713) (-713)) 39)) (-3309 ((|#1| (-713) (-525)) 29)) (-3779 (((-1179)) 43)))
-(((-422 |#1|) (-10 -7 (-15 -3309 (|#1| (-713) (-525))) (-15 -2223 ((-713) (-713))) (-15 -2223 ((-713))) (-15 -3659 ((-713))) (-15 -3779 ((-1179))) (IF (|has| |#1| (-382)) (PROGN (-15 -2690 ((-525) |#1|)) (-15 -1734 ((-525) |#1|)) (-15 -1888 ((-713) (-713))) (-15 -1888 ((-713)))) |%noBranch|)) (-977)) (T -422))
-((-1888 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))) (-1888 (*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))) (-1734 (*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))) (-2690 (*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))) (-3779 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-422 *3)) (-4 *3 (-977)))) (-3659 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-977)))) (-2223 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-977)))) (-2223 (*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-977)))) (-3309 (*1 *2 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-525)) (-5 *1 (-422 *2)) (-4 *2 (-977)))))
-(-10 -7 (-15 -3309 (|#1| (-713) (-525))) (-15 -2223 ((-713) (-713))) (-15 -2223 ((-713))) (-15 -3659 ((-713))) (-15 -3779 ((-1179))) (IF (|has| |#1| (-382)) (PROGN (-15 -2690 ((-525) |#1|)) (-15 -1734 ((-525) |#1|)) (-15 -1888 ((-713) (-713))) (-15 -1888 ((-713)))) |%noBranch|))
-((-2027 (((-592 (-525)) (-525)) 61)) (-3673 (((-108) (-157 (-525))) 65)) (-2770 (((-396 (-157 (-525))) (-157 (-525))) 60)))
-(((-423) (-10 -7 (-15 -2770 ((-396 (-157 (-525))) (-157 (-525)))) (-15 -2027 ((-592 (-525)) (-525))) (-15 -3673 ((-108) (-157 (-525)))))) (T -423))
-((-3673 (*1 *2 *3) (-12 (-5 *3 (-157 (-525))) (-5 *2 (-108)) (-5 *1 (-423)))) (-2027 (*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-423)) (-5 *3 (-525)))) (-2770 (*1 *2 *3) (-12 (-5 *2 (-396 (-157 (-525)))) (-5 *1 (-423)) (-5 *3 (-157 (-525))))))
-(-10 -7 (-15 -2770 ((-396 (-157 (-525))) (-157 (-525)))) (-15 -2027 ((-592 (-525)) (-525))) (-15 -3673 ((-108) (-157 (-525)))))
-((-3230 ((|#4| |#4| (-592 |#4|)) 61)) (-3921 (((-592 |#4|) (-592 |#4|) (-1075) (-1075)) 17) (((-592 |#4|) (-592 |#4|) (-1075)) 16) (((-592 |#4|) (-592 |#4|)) 11)))
-(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3230 (|#4| |#4| (-592 |#4|))) (-15 -3921 ((-592 |#4|) (-592 |#4|))) (-15 -3921 ((-592 |#4|) (-592 |#4|) (-1075))) (-15 -3921 ((-592 |#4|) (-592 |#4|) (-1075) (-1075)))) (-286) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -424))
-((-3921 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1075)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *7)))) (-3921 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1075)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *7)))) (-3921 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-424 *3 *4 *5 *6)))) (-3230 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *2)))))
-(-10 -7 (-15 -3230 (|#4| |#4| (-592 |#4|))) (-15 -3921 ((-592 |#4|) (-592 |#4|))) (-15 -3921 ((-592 |#4|) (-592 |#4|) (-1075))) (-15 -3921 ((-592 |#4|) (-592 |#4|) (-1075) (-1075))))
-((-1793 (((-592 (-592 |#4|)) (-592 |#4|) (-108)) 73) (((-592 (-592 |#4|)) (-592 |#4|)) 72) (((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|) (-108)) 66) (((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|)) 67)) (-2357 (((-592 (-592 |#4|)) (-592 |#4|) (-108)) 42) (((-592 (-592 |#4|)) (-592 |#4|)) 63)))
-(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2357 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -2357 ((-592 (-592 |#4|)) (-592 |#4|) (-108))) (-15 -1793 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|))) (-15 -1793 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|) (-108))) (-15 -1793 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -1793 ((-592 (-592 |#4|)) (-592 |#4|) (-108)))) (-13 (-286) (-138)) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -425))
-((-1793 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-592 (-592 *8))) (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))) (-1793 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-1793 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-592 (-592 *8))) (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))) (-1793 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-2357 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-592 (-592 *8))) (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))) (-2357 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
-(-10 -7 (-15 -2357 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -2357 ((-592 (-592 |#4|)) (-592 |#4|) (-108))) (-15 -1793 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|))) (-15 -1793 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|) (-108))) (-15 -1793 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -1793 ((-592 (-592 |#4|)) (-592 |#4|) (-108))))
-((-3129 (((-713) |#4|) 12)) (-3794 (((-592 (-2 (|:| |totdeg| (-713)) (|:| -3101 |#4|))) |#4| (-713) (-592 (-2 (|:| |totdeg| (-713)) (|:| -3101 |#4|)))) 31)) (-2348 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-2843 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1473 ((|#4| |#4| (-592 |#4|)) 40)) (-3802 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-592 |#4|)) 70)) (-2039 (((-1179) |#4|) 42)) (-2890 (((-1179) (-592 |#4|)) 51)) (-2082 (((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525)) 48)) (-3058 (((-1179) (-525)) 79)) (-3435 (((-592 |#4|) (-592 |#4|)) 77)) (-3327 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-713)) (|:| -3101 |#4|)) |#4| (-713)) 25)) (-2647 (((-525) |#4|) 78)) (-1591 ((|#4| |#4|) 29)) (-3321 (((-592 |#4|) (-592 |#4|) (-525) (-525)) 56)) (-1813 (((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525) (-525)) 89)) (-3197 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-4234 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-1566 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-3072 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2903 (((-108) |#2| |#2|) 57)) (-2886 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-4180 (((-108) |#2| |#2| |#2| |#2|) 60)) (-3347 ((|#4| |#4| (-592 |#4|)) 71)))
-(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3347 (|#4| |#4| (-592 |#4|))) (-15 -1473 (|#4| |#4| (-592 |#4|))) (-15 -3321 ((-592 |#4|) (-592 |#4|) (-525) (-525))) (-15 -4234 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2903 ((-108) |#2| |#2|)) (-15 -4180 ((-108) |#2| |#2| |#2| |#2|)) (-15 -2886 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3072 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1566 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3802 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-592 |#4|))) (-15 -1591 (|#4| |#4|)) (-15 -3794 ((-592 (-2 (|:| |totdeg| (-713)) (|:| -3101 |#4|))) |#4| (-713) (-592 (-2 (|:| |totdeg| (-713)) (|:| -3101 |#4|))))) (-15 -2843 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2348 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3435 ((-592 |#4|) (-592 |#4|))) (-15 -2647 ((-525) |#4|)) (-15 -2039 ((-1179) |#4|)) (-15 -2082 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525))) (-15 -1813 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525) (-525))) (-15 -2890 ((-1179) (-592 |#4|))) (-15 -3058 ((-1179) (-525))) (-15 -3197 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3327 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-713)) (|:| -3101 |#4|)) |#4| (-713))) (-15 -3129 ((-713) |#4|))) (-429) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -426))
-((-3129 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713)) (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))) (-3327 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-713)) (|:| -3101 *4))) (-5 *5 (-713)) (-4 *4 (-884 *6 *7 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-426 *6 *7 *8 *4)))) (-3197 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-735)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1179)) (-5 *1 (-426 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1179)) (-5 *1 (-426 *4 *5 *6 *7)))) (-1813 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-735)) (-4 *4 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *4)))) (-2082 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-735)) (-4 *4 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *4)))) (-2039 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1179)) (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))) (-2647 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-525)) (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))) (-3435 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))) (-2348 (*1 *2 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-735)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))) (-2843 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-735)) (-4 *2 (-884 *4 *5 *6)) (-5 *1 (-426 *4 *5 *6 *2)) (-4 *4 (-429)) (-4 *6 (-789)))) (-3794 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-592 (-2 (|:| |totdeg| (-713)) (|:| -3101 *3)))) (-5 *4 (-713)) (-4 *3 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *3)))) (-1591 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *2)) (-4 *2 (-884 *3 *4 *5)))) (-3802 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-426 *5 *6 *7 *3)))) (-1566 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-713)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-735)) (-4 *6 (-884 *4 *3 *5)) (-4 *4 (-429)) (-4 *5 (-789)) (-5 *1 (-426 *4 *3 *5 *6)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-735)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))) (-2886 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-735)) (-4 *3 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *3)))) (-4180 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-884 *4 *3 *5)))) (-2903 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-884 *4 *3 *5)))) (-4234 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-735)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))) (-3321 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-525)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *7)))) (-1473 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2)))) (-3347 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2)))))
-(-10 -7 (-15 -3347 (|#4| |#4| (-592 |#4|))) (-15 -1473 (|#4| |#4| (-592 |#4|))) (-15 -3321 ((-592 |#4|) (-592 |#4|) (-525) (-525))) (-15 -4234 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2903 ((-108) |#2| |#2|)) (-15 -4180 ((-108) |#2| |#2| |#2| |#2|)) (-15 -2886 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3072 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1566 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3802 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-592 |#4|))) (-15 -1591 (|#4| |#4|)) (-15 -3794 ((-592 (-2 (|:| |totdeg| (-713)) (|:| -3101 |#4|))) |#4| (-713) (-592 (-2 (|:| |totdeg| (-713)) (|:| -3101 |#4|))))) (-15 -2843 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2348 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3435 ((-592 |#4|) (-592 |#4|))) (-15 -2647 ((-525) |#4|)) (-15 -2039 ((-1179) |#4|)) (-15 -2082 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525))) (-15 -1813 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525) (-525))) (-15 -2890 ((-1179) (-592 |#4|))) (-15 -3058 ((-1179) (-525))) (-15 -3197 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3327 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-713)) (|:| -3101 |#4|)) |#4| (-713))) (-15 -3129 ((-713) |#4|)))
-((-3540 ((|#4| |#4| (-592 |#4|)) 22 (|has| |#1| (-341)))) (-1988 (((-592 |#4|) (-592 |#4|) (-1075) (-1075)) 41) (((-592 |#4|) (-592 |#4|) (-1075)) 40) (((-592 |#4|) (-592 |#4|)) 35)))
-(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1988 ((-592 |#4|) (-592 |#4|))) (-15 -1988 ((-592 |#4|) (-592 |#4|) (-1075))) (-15 -1988 ((-592 |#4|) (-592 |#4|) (-1075) (-1075))) (IF (|has| |#1| (-341)) (-15 -3540 (|#4| |#4| (-592 |#4|))) |%noBranch|)) (-429) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -427))
-((-3540 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-341)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-427 *4 *5 *6 *2)))) (-1988 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1075)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-427 *4 *5 *6 *7)))) (-1988 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1075)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-427 *4 *5 *6 *7)))) (-1988 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-427 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1988 ((-592 |#4|) (-592 |#4|))) (-15 -1988 ((-592 |#4|) (-592 |#4|) (-1075))) (-15 -1988 ((-592 |#4|) (-592 |#4|) (-1075) (-1075))) (IF (|has| |#1| (-341)) (-15 -3540 (|#4| |#4| (-592 |#4|))) |%noBranch|))
-((-2556 (($ $ $) 14) (($ (-592 $)) 21)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 41)) (-2589 (($ $ $) NIL) (($ (-592 $)) 22)))
-(((-428 |#1|) (-10 -8 (-15 -1883 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|))) (-15 -2556 (|#1| (-592 |#1|))) (-15 -2556 (|#1| |#1| |#1|)) (-15 -2589 (|#1| (-592 |#1|))) (-15 -2589 (|#1| |#1| |#1|))) (-429)) (T -428))
-NIL
-(-10 -8 (-15 -1883 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|))) (-15 -2556 (|#1| (-592 |#1|))) (-15 -2556 (|#1| |#1| |#1|)) (-15 -2589 (|#1| (-592 |#1|))) (-15 -2589 (|#1| |#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-2556 (($ $ $) 46) (($ (-592 $)) 45)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2589 (($ $ $) 48) (($ (-592 $)) 47)) (-1715 (((-3 $ "failed") $ $) 42)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-3917 (((-713)) 29)) (-3325 (((-108) $ $) 39)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-1882 (((-108)) 17)) (-3863 (((-108) (-108)) 18)) (-2150 (((-108)) 13)) (-2854 (((-108) (-108)) 14)) (-1957 (((-108)) 15)) (-2737 (((-108) (-108)) 16)) (-1475 (((-856) (-856)) 21) (((-856)) 20)) (-2004 (((-713) (-592 (-2 (|:| -4201 |#1|) (|:| -3529 (-525))))) 42)) (-1359 (((-856) (-856)) 23) (((-856)) 22)) (-2481 (((-2 (|:| -2497 (-525)) (|:| -2868 (-592 |#1|))) |#1|) 62)) (-3225 (((-396 |#1|) (-2 (|:| |contp| (-525)) (|:| -2868 (-592 (-2 (|:| |irr| |#1|) (|:| -3750 (-525))))))) 126)) (-4096 (((-2 (|:| |contp| (-525)) (|:| -2868 (-592 (-2 (|:| |irr| |#1|) (|:| -3750 (-525)))))) |#1| (-108)) 152)) (-3243 (((-396 |#1|) |#1| (-713) (-713)) 165) (((-396 |#1|) |#1| (-592 (-713)) (-713)) 162) (((-396 |#1|) |#1| (-592 (-713))) 164) (((-396 |#1|) |#1| (-713)) 163) (((-396 |#1|) |#1|) 161)) (-3858 (((-3 |#1| "failed") (-856) |#1| (-592 (-713)) (-713) (-108)) 167) (((-3 |#1| "failed") (-856) |#1| (-592 (-713)) (-713)) 168) (((-3 |#1| "failed") (-856) |#1| (-592 (-713))) 170) (((-3 |#1| "failed") (-856) |#1| (-713)) 169) (((-3 |#1| "failed") (-856) |#1|) 171)) (-4201 (((-396 |#1|) |#1| (-713) (-713)) 160) (((-396 |#1|) |#1| (-592 (-713)) (-713)) 156) (((-396 |#1|) |#1| (-592 (-713))) 158) (((-396 |#1|) |#1| (-713)) 157) (((-396 |#1|) |#1|) 155)) (-3244 (((-108) |#1|) 37)) (-4001 (((-680 (-713)) (-592 (-2 (|:| -4201 |#1|) (|:| -3529 (-525))))) 67)) (-1785 (((-2 (|:| |contp| (-525)) (|:| -2868 (-592 (-2 (|:| |irr| |#1|) (|:| -3750 (-525)))))) |#1| (-108) (-1022 (-713)) (-713)) 154)))
+(((-419 |#1|) (-10 -7 (-15 -3225 ((-396 |#1|) (-2 (|:| |contp| (-525)) (|:| -2868 (-592 (-2 (|:| |irr| |#1|) (|:| -3750 (-525)))))))) (-15 -4001 ((-680 (-713)) (-592 (-2 (|:| -4201 |#1|) (|:| -3529 (-525)))))) (-15 -1359 ((-856))) (-15 -1359 ((-856) (-856))) (-15 -1475 ((-856))) (-15 -1475 ((-856) (-856))) (-15 -2004 ((-713) (-592 (-2 (|:| -4201 |#1|) (|:| -3529 (-525)))))) (-15 -2481 ((-2 (|:| -2497 (-525)) (|:| -2868 (-592 |#1|))) |#1|)) (-15 -1882 ((-108))) (-15 -3863 ((-108) (-108))) (-15 -2150 ((-108))) (-15 -2854 ((-108) (-108))) (-15 -3244 ((-108) |#1|)) (-15 -1957 ((-108))) (-15 -2737 ((-108) (-108))) (-15 -4201 ((-396 |#1|) |#1|)) (-15 -4201 ((-396 |#1|) |#1| (-713))) (-15 -4201 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -4201 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -4201 ((-396 |#1|) |#1| (-713) (-713))) (-15 -3243 ((-396 |#1|) |#1|)) (-15 -3243 ((-396 |#1|) |#1| (-713))) (-15 -3243 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -3243 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -3243 ((-396 |#1|) |#1| (-713) (-713))) (-15 -3858 ((-3 |#1| "failed") (-856) |#1|)) (-15 -3858 ((-3 |#1| "failed") (-856) |#1| (-713))) (-15 -3858 ((-3 |#1| "failed") (-856) |#1| (-592 (-713)))) (-15 -3858 ((-3 |#1| "failed") (-856) |#1| (-592 (-713)) (-713))) (-15 -3858 ((-3 |#1| "failed") (-856) |#1| (-592 (-713)) (-713) (-108))) (-15 -4096 ((-2 (|:| |contp| (-525)) (|:| -2868 (-592 (-2 (|:| |irr| |#1|) (|:| -3750 (-525)))))) |#1| (-108))) (-15 -1785 ((-2 (|:| |contp| (-525)) (|:| -2868 (-592 (-2 (|:| |irr| |#1|) (|:| -3750 (-525)))))) |#1| (-108) (-1022 (-713)) (-713)))) (-1150 (-525))) (T -419))
+((-1785 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-1022 (-713))) (-5 *6 (-713)) (-5 *2 (-2 (|:| |contp| (-525)) (|:| -2868 (-592 (-2 (|:| |irr| *3) (|:| -3750 (-525))))))) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-4096 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-525)) (|:| -2868 (-592 (-2 (|:| |irr| *3) (|:| -3750 (-525))))))) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-3858 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-856)) (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *6 (-108)) (-5 *1 (-419 *2)) (-4 *2 (-1150 (-525))))) (-3858 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-856)) (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *1 (-419 *2)) (-4 *2 (-1150 (-525))))) (-3858 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-856)) (-5 *4 (-592 (-713))) (-5 *1 (-419 *2)) (-4 *2 (-1150 (-525))))) (-3858 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-856)) (-5 *4 (-713)) (-5 *1 (-419 *2)) (-4 *2 (-1150 (-525))))) (-3858 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-856)) (-5 *1 (-419 *2)) (-4 *2 (-1150 (-525))))) (-3243 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-3243 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-3243 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-3243 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-3243 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-4201 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-4201 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-4201 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2737 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-1957 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-3244 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2854 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2150 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-3863 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-1882 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2481 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2497 (-525)) (|:| -2868 (-592 *3)))) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -4201 *4) (|:| -3529 (-525))))) (-4 *4 (-1150 (-525))) (-5 *2 (-713)) (-5 *1 (-419 *4)))) (-1475 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-1475 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-1359 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-1359 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))) (-4001 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -4201 *4) (|:| -3529 (-525))))) (-4 *4 (-1150 (-525))) (-5 *2 (-680 (-713))) (-5 *1 (-419 *4)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-525)) (|:| -2868 (-592 (-2 (|:| |irr| *4) (|:| -3750 (-525))))))) (-4 *4 (-1150 (-525))) (-5 *2 (-396 *4)) (-5 *1 (-419 *4)))))
+(-10 -7 (-15 -3225 ((-396 |#1|) (-2 (|:| |contp| (-525)) (|:| -2868 (-592 (-2 (|:| |irr| |#1|) (|:| -3750 (-525)))))))) (-15 -4001 ((-680 (-713)) (-592 (-2 (|:| -4201 |#1|) (|:| -3529 (-525)))))) (-15 -1359 ((-856))) (-15 -1359 ((-856) (-856))) (-15 -1475 ((-856))) (-15 -1475 ((-856) (-856))) (-15 -2004 ((-713) (-592 (-2 (|:| -4201 |#1|) (|:| -3529 (-525)))))) (-15 -2481 ((-2 (|:| -2497 (-525)) (|:| -2868 (-592 |#1|))) |#1|)) (-15 -1882 ((-108))) (-15 -3863 ((-108) (-108))) (-15 -2150 ((-108))) (-15 -2854 ((-108) (-108))) (-15 -3244 ((-108) |#1|)) (-15 -1957 ((-108))) (-15 -2737 ((-108) (-108))) (-15 -4201 ((-396 |#1|) |#1|)) (-15 -4201 ((-396 |#1|) |#1| (-713))) (-15 -4201 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -4201 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -4201 ((-396 |#1|) |#1| (-713) (-713))) (-15 -3243 ((-396 |#1|) |#1|)) (-15 -3243 ((-396 |#1|) |#1| (-713))) (-15 -3243 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -3243 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -3243 ((-396 |#1|) |#1| (-713) (-713))) (-15 -3858 ((-3 |#1| "failed") (-856) |#1|)) (-15 -3858 ((-3 |#1| "failed") (-856) |#1| (-713))) (-15 -3858 ((-3 |#1| "failed") (-856) |#1| (-592 (-713)))) (-15 -3858 ((-3 |#1| "failed") (-856) |#1| (-592 (-713)) (-713))) (-15 -3858 ((-3 |#1| "failed") (-856) |#1| (-592 (-713)) (-713) (-108))) (-15 -4096 ((-2 (|:| |contp| (-525)) (|:| -2868 (-592 (-2 (|:| |irr| |#1|) (|:| -3750 (-525)))))) |#1| (-108))) (-15 -1785 ((-2 (|:| |contp| (-525)) (|:| -2868 (-592 (-2 (|:| |irr| |#1|) (|:| -3750 (-525)))))) |#1| (-108) (-1022 (-713)) (-713))))
+((-3020 (((-525) |#2|) 48) (((-525) |#2| (-713)) 47)) (-1259 (((-525) |#2|) 55)) (-2549 ((|#3| |#2|) 25)) (-2704 ((|#3| |#2| (-856)) 14)) (-4128 ((|#3| |#2|) 15)) (-1400 ((|#3| |#2|) 9)) (-2934 ((|#3| |#2|) 10)) (-3031 ((|#3| |#2| (-856)) 62) ((|#3| |#2|) 30)) (-1437 (((-525) |#2|) 57)))
+(((-420 |#1| |#2| |#3|) (-10 -7 (-15 -1437 ((-525) |#2|)) (-15 -3031 (|#3| |#2|)) (-15 -3031 (|#3| |#2| (-856))) (-15 -1259 ((-525) |#2|)) (-15 -3020 ((-525) |#2| (-713))) (-15 -3020 ((-525) |#2|)) (-15 -2704 (|#3| |#2| (-856))) (-15 -2549 (|#3| |#2|)) (-15 -1400 (|#3| |#2|)) (-15 -2934 (|#3| |#2|)) (-15 -4128 (|#3| |#2|))) (-977) (-1150 |#1|) (-13 (-382) (-968 |#1|) (-341) (-1114) (-263))) (T -420))
+((-4128 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1150 *4)))) (-2934 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1150 *4)))) (-1400 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1150 *4)))) (-2549 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1150 *4)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-4 *5 (-977)) (-4 *2 (-13 (-382) (-968 *5) (-341) (-1114) (-263))) (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1150 *5)))) (-3020 (*1 *2 *3) (-12 (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) (-4 *3 (-1150 *4)) (-4 *5 (-13 (-382) (-968 *4) (-341) (-1114) (-263))))) (-3020 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *5 *3 *6)) (-4 *3 (-1150 *5)) (-4 *6 (-13 (-382) (-968 *5) (-341) (-1114) (-263))))) (-1259 (*1 *2 *3) (-12 (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) (-4 *3 (-1150 *4)) (-4 *5 (-13 (-382) (-968 *4) (-341) (-1114) (-263))))) (-3031 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-4 *5 (-977)) (-4 *2 (-13 (-382) (-968 *5) (-341) (-1114) (-263))) (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1150 *5)))) (-3031 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1150 *4)))) (-1437 (*1 *2 *3) (-12 (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) (-4 *3 (-1150 *4)) (-4 *5 (-13 (-382) (-968 *4) (-341) (-1114) (-263))))))
+(-10 -7 (-15 -1437 ((-525) |#2|)) (-15 -3031 (|#3| |#2|)) (-15 -3031 (|#3| |#2| (-856))) (-15 -1259 ((-525) |#2|)) (-15 -3020 ((-525) |#2| (-713))) (-15 -3020 ((-525) |#2|)) (-15 -2704 (|#3| |#2| (-856))) (-15 -2549 (|#3| |#2|)) (-15 -1400 (|#3| |#2|)) (-15 -2934 (|#3| |#2|)) (-15 -4128 (|#3| |#2|)))
+((-1845 ((|#2| (-1174 |#1|)) 36)) (-3325 ((|#2| |#2| |#1|) 49)) (-1472 ((|#2| |#2| |#1|) 41)) (-1652 ((|#2| |#2|) 38)) (-2171 (((-108) |#2|) 30)) (-3987 (((-592 |#2|) (-856) (-396 |#2|)) 17)) (-3858 ((|#2| (-856) (-396 |#2|)) 21)) (-4001 (((-680 (-713)) (-396 |#2|)) 25)))
+(((-421 |#1| |#2|) (-10 -7 (-15 -2171 ((-108) |#2|)) (-15 -1845 (|#2| (-1174 |#1|))) (-15 -1652 (|#2| |#2|)) (-15 -1472 (|#2| |#2| |#1|)) (-15 -3325 (|#2| |#2| |#1|)) (-15 -4001 ((-680 (-713)) (-396 |#2|))) (-15 -3858 (|#2| (-856) (-396 |#2|))) (-15 -3987 ((-592 |#2|) (-856) (-396 |#2|)))) (-977) (-1150 |#1|)) (T -421))
+((-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-396 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-977)) (-5 *2 (-592 *6)) (-5 *1 (-421 *5 *6)))) (-3858 (*1 *2 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-396 *2)) (-4 *2 (-1150 *5)) (-5 *1 (-421 *5 *2)) (-4 *5 (-977)))) (-4001 (*1 *2 *3) (-12 (-5 *3 (-396 *5)) (-4 *5 (-1150 *4)) (-4 *4 (-977)) (-5 *2 (-680 (-713))) (-5 *1 (-421 *4 *5)))) (-3325 (*1 *2 *2 *3) (-12 (-4 *3 (-977)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1150 *3)))) (-1472 (*1 *2 *2 *3) (-12 (-4 *3 (-977)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1150 *3)))) (-1652 (*1 *2 *2) (-12 (-4 *3 (-977)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1150 *3)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-977)) (-4 *2 (-1150 *4)) (-5 *1 (-421 *4 *2)))) (-2171 (*1 *2 *3) (-12 (-4 *4 (-977)) (-5 *2 (-108)) (-5 *1 (-421 *4 *3)) (-4 *3 (-1150 *4)))))
+(-10 -7 (-15 -2171 ((-108) |#2|)) (-15 -1845 (|#2| (-1174 |#1|))) (-15 -1652 (|#2| |#2|)) (-15 -1472 (|#2| |#2| |#1|)) (-15 -3325 (|#2| |#2| |#1|)) (-15 -4001 ((-680 (-713)) (-396 |#2|))) (-15 -3858 (|#2| (-856) (-396 |#2|))) (-15 -3987 ((-592 |#2|) (-856) (-396 |#2|))))
+((-1674 (((-713)) 41)) (-1420 (((-713)) 23 (|has| |#1| (-382))) (((-713) (-713)) 22 (|has| |#1| (-382)))) (-3597 (((-525) |#1|) 18 (|has| |#1| (-382)))) (-2581 (((-525) |#1|) 20 (|has| |#1| (-382)))) (-1800 (((-713)) 40) (((-713) (-713)) 39)) (-1414 ((|#1| (-713) (-525)) 29)) (-3433 (((-1179)) 43)))
+(((-422 |#1|) (-10 -7 (-15 -1414 (|#1| (-713) (-525))) (-15 -1800 ((-713) (-713))) (-15 -1800 ((-713))) (-15 -1674 ((-713))) (-15 -3433 ((-1179))) (IF (|has| |#1| (-382)) (PROGN (-15 -2581 ((-525) |#1|)) (-15 -3597 ((-525) |#1|)) (-15 -1420 ((-713) (-713))) (-15 -1420 ((-713)))) |%noBranch|)) (-977)) (T -422))
+((-1420 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))) (-1420 (*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))) (-3597 (*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))) (-2581 (*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))) (-3433 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-422 *3)) (-4 *3 (-977)))) (-1674 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-977)))) (-1800 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-977)))) (-1800 (*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-977)))) (-1414 (*1 *2 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-525)) (-5 *1 (-422 *2)) (-4 *2 (-977)))))
+(-10 -7 (-15 -1414 (|#1| (-713) (-525))) (-15 -1800 ((-713) (-713))) (-15 -1800 ((-713))) (-15 -1674 ((-713))) (-15 -3433 ((-1179))) (IF (|has| |#1| (-382)) (PROGN (-15 -2581 ((-525) |#1|)) (-15 -3597 ((-525) |#1|)) (-15 -1420 ((-713) (-713))) (-15 -1420 ((-713)))) |%noBranch|))
+((-3398 (((-592 (-525)) (-525)) 61)) (-1798 (((-108) (-157 (-525))) 65)) (-4201 (((-396 (-157 (-525))) (-157 (-525))) 60)))
+(((-423) (-10 -7 (-15 -4201 ((-396 (-157 (-525))) (-157 (-525)))) (-15 -3398 ((-592 (-525)) (-525))) (-15 -1798 ((-108) (-157 (-525)))))) (T -423))
+((-1798 (*1 *2 *3) (-12 (-5 *3 (-157 (-525))) (-5 *2 (-108)) (-5 *1 (-423)))) (-3398 (*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-423)) (-5 *3 (-525)))) (-4201 (*1 *2 *3) (-12 (-5 *2 (-396 (-157 (-525)))) (-5 *1 (-423)) (-5 *3 (-157 (-525))))))
+(-10 -7 (-15 -4201 ((-396 (-157 (-525))) (-157 (-525)))) (-15 -3398 ((-592 (-525)) (-525))) (-15 -1798 ((-108) (-157 (-525)))))
+((-3886 ((|#4| |#4| (-592 |#4|)) 61)) (-2485 (((-592 |#4|) (-592 |#4|) (-1075) (-1075)) 17) (((-592 |#4|) (-592 |#4|) (-1075)) 16) (((-592 |#4|) (-592 |#4|)) 11)))
+(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3886 (|#4| |#4| (-592 |#4|))) (-15 -2485 ((-592 |#4|) (-592 |#4|))) (-15 -2485 ((-592 |#4|) (-592 |#4|) (-1075))) (-15 -2485 ((-592 |#4|) (-592 |#4|) (-1075) (-1075)))) (-286) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -424))
+((-2485 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1075)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *7)))) (-2485 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1075)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *7)))) (-2485 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-424 *3 *4 *5 *6)))) (-3886 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3886 (|#4| |#4| (-592 |#4|))) (-15 -2485 ((-592 |#4|) (-592 |#4|))) (-15 -2485 ((-592 |#4|) (-592 |#4|) (-1075))) (-15 -2485 ((-592 |#4|) (-592 |#4|) (-1075) (-1075))))
+((-2899 (((-592 (-592 |#4|)) (-592 |#4|) (-108)) 73) (((-592 (-592 |#4|)) (-592 |#4|)) 72) (((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|) (-108)) 66) (((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|)) 67)) (-3663 (((-592 (-592 |#4|)) (-592 |#4|) (-108)) 42) (((-592 (-592 |#4|)) (-592 |#4|)) 63)))
+(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3663 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -3663 ((-592 (-592 |#4|)) (-592 |#4|) (-108))) (-15 -2899 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|))) (-15 -2899 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|) (-108))) (-15 -2899 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -2899 ((-592 (-592 |#4|)) (-592 |#4|) (-108)))) (-13 (-286) (-138)) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -425))
+((-2899 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-592 (-592 *8))) (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))) (-2899 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-2899 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-592 (-592 *8))) (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))) (-2899 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-3663 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-592 (-592 *8))) (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))) (-3663 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
+(-10 -7 (-15 -3663 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -3663 ((-592 (-592 |#4|)) (-592 |#4|) (-108))) (-15 -2899 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|))) (-15 -2899 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|) (-108))) (-15 -2899 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -2899 ((-592 (-592 |#4|)) (-592 |#4|) (-108))))
+((-2382 (((-713) |#4|) 12)) (-3585 (((-592 (-2 (|:| |totdeg| (-713)) (|:| -2158 |#4|))) |#4| (-713) (-592 (-2 (|:| |totdeg| (-713)) (|:| -2158 |#4|)))) 31)) (-3579 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-1529 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1895 ((|#4| |#4| (-592 |#4|)) 40)) (-3668 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-592 |#4|)) 70)) (-3503 (((-1179) |#4|) 42)) (-3802 (((-1179) (-592 |#4|)) 51)) (-2747 (((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525)) 48)) (-2938 (((-1179) (-525)) 79)) (-1280 (((-592 |#4|) (-592 |#4|)) 77)) (-1597 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-713)) (|:| -2158 |#4|)) |#4| (-713)) 25)) (-3356 (((-525) |#4|) 78)) (-3357 ((|#4| |#4|) 29)) (-1527 (((-592 |#4|) (-592 |#4|) (-525) (-525)) 56)) (-1933 (((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525) (-525)) 89)) (-1788 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2588 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-3113 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-3045 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3927 (((-108) |#2| |#2|) 57)) (-1972 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2060 (((-108) |#2| |#2| |#2| |#2|) 60)) (-1769 ((|#4| |#4| (-592 |#4|)) 71)))
+(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1769 (|#4| |#4| (-592 |#4|))) (-15 -1895 (|#4| |#4| (-592 |#4|))) (-15 -1527 ((-592 |#4|) (-592 |#4|) (-525) (-525))) (-15 -2588 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3927 ((-108) |#2| |#2|)) (-15 -2060 ((-108) |#2| |#2| |#2| |#2|)) (-15 -1972 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3045 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3113 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3668 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-592 |#4|))) (-15 -3357 (|#4| |#4|)) (-15 -3585 ((-592 (-2 (|:| |totdeg| (-713)) (|:| -2158 |#4|))) |#4| (-713) (-592 (-2 (|:| |totdeg| (-713)) (|:| -2158 |#4|))))) (-15 -1529 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3579 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1280 ((-592 |#4|) (-592 |#4|))) (-15 -3356 ((-525) |#4|)) (-15 -3503 ((-1179) |#4|)) (-15 -2747 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525))) (-15 -1933 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525) (-525))) (-15 -3802 ((-1179) (-592 |#4|))) (-15 -2938 ((-1179) (-525))) (-15 -1788 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1597 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-713)) (|:| -2158 |#4|)) |#4| (-713))) (-15 -2382 ((-713) |#4|))) (-429) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -426))
+((-2382 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713)) (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))) (-1597 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-713)) (|:| -2158 *4))) (-5 *5 (-713)) (-4 *4 (-884 *6 *7 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-426 *6 *7 *8 *4)))) (-1788 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-735)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))) (-2938 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1179)) (-5 *1 (-426 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1179)) (-5 *1 (-426 *4 *5 *6 *7)))) (-1933 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-735)) (-4 *4 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *4)))) (-2747 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-735)) (-4 *4 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *4)))) (-3503 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1179)) (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))) (-3356 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-525)) (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))) (-1280 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))) (-3579 (*1 *2 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-735)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-735)) (-4 *2 (-884 *4 *5 *6)) (-5 *1 (-426 *4 *5 *6 *2)) (-4 *4 (-429)) (-4 *6 (-789)))) (-3585 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-592 (-2 (|:| |totdeg| (-713)) (|:| -2158 *3)))) (-5 *4 (-713)) (-4 *3 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *3)))) (-3357 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *2)) (-4 *2 (-884 *3 *4 *5)))) (-3668 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-426 *5 *6 *7 *3)))) (-3113 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-713)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-735)) (-4 *6 (-884 *4 *3 *5)) (-4 *4 (-429)) (-4 *5 (-789)) (-5 *1 (-426 *4 *3 *5 *6)))) (-3045 (*1 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-735)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))) (-1972 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-735)) (-4 *3 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *3)))) (-2060 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-884 *4 *3 *5)))) (-3927 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-884 *4 *3 *5)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-735)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))) (-1527 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-525)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *7)))) (-1895 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2)))) (-1769 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2)))))
+(-10 -7 (-15 -1769 (|#4| |#4| (-592 |#4|))) (-15 -1895 (|#4| |#4| (-592 |#4|))) (-15 -1527 ((-592 |#4|) (-592 |#4|) (-525) (-525))) (-15 -2588 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3927 ((-108) |#2| |#2|)) (-15 -2060 ((-108) |#2| |#2| |#2| |#2|)) (-15 -1972 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3045 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3113 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3668 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-592 |#4|))) (-15 -3357 (|#4| |#4|)) (-15 -3585 ((-592 (-2 (|:| |totdeg| (-713)) (|:| -2158 |#4|))) |#4| (-713) (-592 (-2 (|:| |totdeg| (-713)) (|:| -2158 |#4|))))) (-15 -1529 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3579 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1280 ((-592 |#4|) (-592 |#4|))) (-15 -3356 ((-525) |#4|)) (-15 -3503 ((-1179) |#4|)) (-15 -2747 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525))) (-15 -1933 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525) (-525))) (-15 -3802 ((-1179) (-592 |#4|))) (-15 -2938 ((-1179) (-525))) (-15 -1788 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1597 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-713)) (|:| -2158 |#4|)) |#4| (-713))) (-15 -2382 ((-713) |#4|)))
+((-2891 ((|#4| |#4| (-592 |#4|)) 22 (|has| |#1| (-341)))) (-1219 (((-592 |#4|) (-592 |#4|) (-1075) (-1075)) 41) (((-592 |#4|) (-592 |#4|) (-1075)) 40) (((-592 |#4|) (-592 |#4|)) 35)))
+(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1219 ((-592 |#4|) (-592 |#4|))) (-15 -1219 ((-592 |#4|) (-592 |#4|) (-1075))) (-15 -1219 ((-592 |#4|) (-592 |#4|) (-1075) (-1075))) (IF (|has| |#1| (-341)) (-15 -2891 (|#4| |#4| (-592 |#4|))) |%noBranch|)) (-429) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -427))
+((-2891 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-341)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-427 *4 *5 *6 *2)))) (-1219 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1075)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-427 *4 *5 *6 *7)))) (-1219 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1075)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-427 *4 *5 *6 *7)))) (-1219 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-427 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1219 ((-592 |#4|) (-592 |#4|))) (-15 -1219 ((-592 |#4|) (-592 |#4|) (-1075))) (-15 -1219 ((-592 |#4|) (-592 |#4|) (-1075) (-1075))) (IF (|has| |#1| (-341)) (-15 -2891 (|#4| |#4| (-592 |#4|))) |%noBranch|))
+((-2739 (($ $ $) 14) (($ (-592 $)) 21)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 41)) (-2772 (($ $ $) NIL) (($ (-592 $)) 22)))
+(((-428 |#1|) (-10 -8 (-15 -1379 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|))) (-15 -2739 (|#1| (-592 |#1|))) (-15 -2739 (|#1| |#1| |#1|)) (-15 -2772 (|#1| (-592 |#1|))) (-15 -2772 (|#1| |#1| |#1|))) (-429)) (T -428))
+NIL
+(-10 -8 (-15 -1379 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|))) (-15 -2739 (|#1| (-592 |#1|))) (-15 -2739 (|#1| |#1| |#1|)) (-15 -2772 (|#1| (-592 |#1|))) (-15 -2772 (|#1| |#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-2739 (($ $ $) 46) (($ (-592 $)) 45)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2772 (($ $ $) 48) (($ (-592 $)) 47)) (-1311 (((-3 $ "failed") $ $) 42)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-2448 (((-713)) 29)) (-1571 (((-108) $ $) 39)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-429) (-131)) (T -429))
-((-2589 (*1 *1 *1 *1) (-4 *1 (-429))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429)))) (-2556 (*1 *1 *1 *1) (-4 *1 (-429))) (-2556 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429)))) (-1883 (*1 *2 *2 *2) (-12 (-5 *2 (-1088 *1)) (-4 *1 (-429)))))
-(-13 (-517) (-10 -8 (-15 -2589 ($ $ $)) (-15 -2589 ($ (-592 $))) (-15 -2556 ($ $ $)) (-15 -2556 ($ (-592 $))) (-15 -1883 ((-1088 $) (-1088 $) (-1088 $)))))
+((-2772 (*1 *1 *1 *1) (-4 *1 (-429))) (-2772 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429)))) (-2739 (*1 *1 *1 *1) (-4 *1 (-429))) (-2739 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429)))) (-1379 (*1 *2 *2 *2) (-12 (-5 *2 (-1088 *1)) (-4 *1 (-429)))))
+(-13 (-517) (-10 -8 (-15 -2772 ($ $ $)) (-15 -2772 ($ (-592 $))) (-15 -2739 ($ $ $)) (-15 -2739 ($ (-592 $))) (-15 -1379 ((-1088 $) (-1088 $) (-1088 $)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-269) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2841 (((-3 $ "failed")) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-3482 (((-1174 (-632 (-385 (-887 |#1|)))) (-1174 $)) NIL) (((-1174 (-632 (-385 (-887 |#1|))))) NIL)) (-1604 (((-1174 $)) NIL)) (-2169 (($) NIL T CONST)) (-1614 (((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed")) NIL)) (-3912 (((-3 $ "failed")) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-3060 (((-632 (-385 (-887 |#1|))) (-1174 $)) NIL) (((-632 (-385 (-887 |#1|)))) NIL)) (-2769 (((-385 (-887 |#1|)) $) NIL)) (-3420 (((-632 (-385 (-887 |#1|))) $ (-1174 $)) NIL) (((-632 (-385 (-887 |#1|))) $) NIL)) (-1586 (((-3 $ "failed") $) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-3082 (((-1088 (-887 (-385 (-887 |#1|))))) NIL (|has| (-385 (-887 |#1|)) (-341))) (((-1088 (-385 (-887 |#1|)))) 84 (|has| |#1| (-517)))) (-2837 (($ $ (-856)) NIL)) (-1713 (((-385 (-887 |#1|)) $) NIL)) (-2269 (((-1088 (-385 (-887 |#1|))) $) 82 (|has| (-385 (-887 |#1|)) (-517)))) (-3777 (((-385 (-887 |#1|)) (-1174 $)) NIL) (((-385 (-887 |#1|))) NIL)) (-2509 (((-1088 (-385 (-887 |#1|))) $) NIL)) (-1950 (((-108)) NIL)) (-2064 (($ (-1174 (-385 (-887 |#1|))) (-1174 $)) 103) (($ (-1174 (-385 (-887 |#1|)))) NIL)) (-3457 (((-3 $ "failed") $) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-3622 (((-856)) NIL)) (-1370 (((-108)) NIL)) (-3587 (($ $ (-856)) NIL)) (-2026 (((-108)) NIL)) (-2070 (((-108)) NIL)) (-3545 (((-108)) NIL)) (-3821 (((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed")) NIL)) (-2060 (((-3 $ "failed")) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-2383 (((-632 (-385 (-887 |#1|))) (-1174 $)) NIL) (((-632 (-385 (-887 |#1|)))) NIL)) (-1312 (((-385 (-887 |#1|)) $) NIL)) (-1846 (((-632 (-385 (-887 |#1|))) $ (-1174 $)) NIL) (((-632 (-385 (-887 |#1|))) $) NIL)) (-4106 (((-3 $ "failed") $) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-2436 (((-1088 (-887 (-385 (-887 |#1|))))) NIL (|has| (-385 (-887 |#1|)) (-341))) (((-1088 (-385 (-887 |#1|)))) 83 (|has| |#1| (-517)))) (-2817 (($ $ (-856)) NIL)) (-3807 (((-385 (-887 |#1|)) $) NIL)) (-1860 (((-1088 (-385 (-887 |#1|))) $) 77 (|has| (-385 (-887 |#1|)) (-517)))) (-3018 (((-385 (-887 |#1|)) (-1174 $)) NIL) (((-385 (-887 |#1|))) NIL)) (-2379 (((-1088 (-385 (-887 |#1|))) $) NIL)) (-2256 (((-108)) NIL)) (-2619 (((-1075) $) NIL)) (-2220 (((-108)) NIL)) (-2861 (((-108)) NIL)) (-3142 (((-108)) NIL)) (-2093 (((-1039) $) NIL)) (-3690 (((-385 (-887 |#1|)) $ $) 71 (|has| |#1| (-517)))) (-1239 (((-385 (-887 |#1|)) $) 93 (|has| |#1| (-517)))) (-3248 (((-385 (-887 |#1|)) $) 95 (|has| |#1| (-517)))) (-2674 (((-1088 (-385 (-887 |#1|))) $) 88 (|has| |#1| (-517)))) (-3547 (((-385 (-887 |#1|))) 72 (|has| |#1| (-517)))) (-3560 (((-385 (-887 |#1|)) $ $) 64 (|has| |#1| (-517)))) (-3443 (((-385 (-887 |#1|)) $) 92 (|has| |#1| (-517)))) (-1959 (((-385 (-887 |#1|)) $) 94 (|has| |#1| (-517)))) (-3820 (((-1088 (-385 (-887 |#1|))) $) 87 (|has| |#1| (-517)))) (-4205 (((-385 (-887 |#1|))) 68 (|has| |#1| (-517)))) (-3603 (($) 101) (($ (-1092)) 107) (($ (-1174 (-1092))) 106) (($ (-1174 $)) 96) (($ (-1092) (-1174 $)) 105) (($ (-1174 (-1092)) (-1174 $)) 104)) (-3322 (((-108)) NIL)) (-3406 (((-385 (-887 |#1|)) $ (-525)) NIL)) (-2387 (((-1174 (-385 (-887 |#1|))) $ (-1174 $)) 98) (((-632 (-385 (-887 |#1|))) (-1174 $) (-1174 $)) NIL) (((-1174 (-385 (-887 |#1|))) $) 40) (((-632 (-385 (-887 |#1|))) (-1174 $)) NIL)) (-3210 (((-1174 (-385 (-887 |#1|))) $) NIL) (($ (-1174 (-385 (-887 |#1|)))) 37)) (-1432 (((-592 (-887 (-385 (-887 |#1|)))) (-1174 $)) NIL) (((-592 (-887 (-385 (-887 |#1|))))) NIL) (((-592 (-887 |#1|)) (-1174 $)) 99 (|has| |#1| (-517))) (((-592 (-887 |#1|))) 100 (|has| |#1| (-517)))) (-1990 (($ $ $) NIL)) (-1252 (((-108)) NIL)) (-1217 (((-798) $) NIL) (($ (-1174 (-385 (-887 |#1|)))) NIL)) (-3094 (((-1174 $)) 60)) (-1962 (((-592 (-1174 (-385 (-887 |#1|))))) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-3746 (($ $ $ $) NIL)) (-1218 (((-108)) NIL)) (-1814 (($ (-632 (-385 (-887 |#1|))) $) NIL)) (-2597 (($ $ $) NIL)) (-3136 (((-108)) NIL)) (-1541 (((-108)) NIL)) (-3361 (((-108)) NIL)) (-3349 (($) NIL T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) 97)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 56) (($ $ (-385 (-887 |#1|))) NIL) (($ (-385 (-887 |#1|)) $) NIL) (($ (-1059 |#2| (-385 (-887 |#1|))) $) NIL)))
-(((-430 |#1| |#2| |#3| |#4|) (-13 (-395 (-385 (-887 |#1|))) (-594 (-1059 |#2| (-385 (-887 |#1|)))) (-10 -8 (-15 -1217 ($ (-1174 (-385 (-887 |#1|))))) (-15 -3821 ((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed"))) (-15 -1614 ((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed"))) (-15 -3603 ($)) (-15 -3603 ($ (-1092))) (-15 -3603 ($ (-1174 (-1092)))) (-15 -3603 ($ (-1174 $))) (-15 -3603 ($ (-1092) (-1174 $))) (-15 -3603 ($ (-1174 (-1092)) (-1174 $))) (IF (|has| |#1| (-517)) (PROGN (-15 -2436 ((-1088 (-385 (-887 |#1|))))) (-15 -3820 ((-1088 (-385 (-887 |#1|))) $)) (-15 -3443 ((-385 (-887 |#1|)) $)) (-15 -1959 ((-385 (-887 |#1|)) $)) (-15 -3082 ((-1088 (-385 (-887 |#1|))))) (-15 -2674 ((-1088 (-385 (-887 |#1|))) $)) (-15 -1239 ((-385 (-887 |#1|)) $)) (-15 -3248 ((-385 (-887 |#1|)) $)) (-15 -3560 ((-385 (-887 |#1|)) $ $)) (-15 -4205 ((-385 (-887 |#1|)))) (-15 -3690 ((-385 (-887 |#1|)) $ $)) (-15 -3547 ((-385 (-887 |#1|)))) (-15 -1432 ((-592 (-887 |#1|)) (-1174 $))) (-15 -1432 ((-592 (-887 |#1|))))) |%noBranch|))) (-160) (-856) (-592 (-1092)) (-1174 (-632 |#1|))) (T -430))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1174 (-385 (-887 *3)))) (-4 *3 (-160)) (-14 *6 (-1174 (-632 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))))) (-3821 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-430 *3 *4 *5 *6)) (|:| -3094 (-592 (-430 *3 *4 *5 *6))))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-1614 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-430 *3 *4 *5 *6)) (|:| -3094 (-592 (-430 *3 *4 *5 *6))))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-3603 (*1 *1) (-12 (-5 *1 (-430 *2 *3 *4 *5)) (-4 *2 (-160)) (-14 *3 (-856)) (-14 *4 (-592 (-1092))) (-14 *5 (-1174 (-632 *2))))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 *2)) (-14 *6 (-1174 (-632 *3))))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-1174 (-1092))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-1174 (-430 *3 *4 *5 *6))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-3603 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-430 *4 *5 *6 *7))) (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-160)) (-14 *5 (-856)) (-14 *6 (-592 *2)) (-14 *7 (-1174 (-632 *4))))) (-3603 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 (-1092))) (-5 *3 (-1174 (-430 *4 *5 *6 *7))) (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-160)) (-14 *5 (-856)) (-14 *6 (-592 (-1092))) (-14 *7 (-1174 (-632 *4))))) (-2436 (*1 *2) (-12 (-5 *2 (-1088 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-3820 (*1 *2 *1) (-12 (-5 *2 (-1088 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-1959 (*1 *2 *1) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-3082 (*1 *2) (-12 (-5 *2 (-1088 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-1088 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-1239 (*1 *2 *1) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-3248 (*1 *2 *1) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-3560 (*1 *2 *1 *1) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-4205 (*1 *2) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-3690 (*1 *2 *1 *1) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-3547 (*1 *2) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-1174 (-430 *4 *5 *6 *7))) (-5 *2 (-592 (-887 *4))) (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-517)) (-4 *4 (-160)) (-14 *5 (-856)) (-14 *6 (-592 (-1092))) (-14 *7 (-1174 (-632 *4))))) (-1432 (*1 *2) (-12 (-5 *2 (-592 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
-(-13 (-395 (-385 (-887 |#1|))) (-594 (-1059 |#2| (-385 (-887 |#1|)))) (-10 -8 (-15 -1217 ($ (-1174 (-385 (-887 |#1|))))) (-15 -3821 ((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed"))) (-15 -1614 ((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed"))) (-15 -3603 ($)) (-15 -3603 ($ (-1092))) (-15 -3603 ($ (-1174 (-1092)))) (-15 -3603 ($ (-1174 $))) (-15 -3603 ($ (-1092) (-1174 $))) (-15 -3603 ($ (-1174 (-1092)) (-1174 $))) (IF (|has| |#1| (-517)) (PROGN (-15 -2436 ((-1088 (-385 (-887 |#1|))))) (-15 -3820 ((-1088 (-385 (-887 |#1|))) $)) (-15 -3443 ((-385 (-887 |#1|)) $)) (-15 -1959 ((-385 (-887 |#1|)) $)) (-15 -3082 ((-1088 (-385 (-887 |#1|))))) (-15 -2674 ((-1088 (-385 (-887 |#1|))) $)) (-15 -1239 ((-385 (-887 |#1|)) $)) (-15 -3248 ((-385 (-887 |#1|)) $)) (-15 -3560 ((-385 (-887 |#1|)) $ $)) (-15 -4205 ((-385 (-887 |#1|)))) (-15 -3690 ((-385 (-887 |#1|)) $ $)) (-15 -3547 ((-385 (-887 |#1|)))) (-15 -1432 ((-592 (-887 |#1|)) (-1174 $))) (-15 -1432 ((-592 (-887 |#1|))))) |%noBranch|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 13)) (-2897 (((-592 (-800 |#1|)) $) 75)) (-2744 (((-1088 $) $ (-800 |#1|)) 46) (((-1088 |#2|) $) 118)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-4218 (($ $) NIL (|has| |#2| (-517)))) (-3171 (((-108) $) NIL (|has| |#2| (-517)))) (-3212 (((-713) $) 21) (((-713) $ (-592 (-800 |#1|))) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-1286 (($ $) NIL (|has| |#2| (-429)))) (-2669 (((-396 $) $) NIL (|has| |#2| (-429)))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#2| "failed") $) 44) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-800 |#1|) "failed") $) NIL)) (-1572 ((|#2| $) 42) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-800 |#1|) $) NIL)) (-3377 (($ $ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-1415 (($ $ (-592 (-525))) 80)) (-3063 (($ $) 68)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1576 (($ $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-3052 (((-592 $) $) NIL)) (-3673 (((-108) $) NIL (|has| |#2| (-844)))) (-2188 (($ $ |#2| |#3| $) NIL)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) 58)) (-2887 (($ (-1088 |#2|) (-800 |#1|)) 123) (($ (-1088 $) (-800 |#1|)) 52)) (-4144 (((-592 $) $) NIL)) (-1212 (((-108) $) 59)) (-2876 (($ |#2| |#3|) 28) (($ $ (-800 |#1|) (-713)) 30) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ (-800 |#1|)) NIL)) (-2870 ((|#3| $) NIL) (((-713) $ (-800 |#1|)) 50) (((-592 (-713)) $ (-592 (-800 |#1|))) 57)) (-2638 (($ $ $) NIL (|has| |#2| (-789)))) (-3662 (($ $ $) NIL (|has| |#2| (-789)))) (-2172 (($ (-1 |#3| |#3|) $) NIL)) (-3165 (($ (-1 |#2| |#2|) $) NIL)) (-2431 (((-3 (-800 |#1|) "failed") $) 39)) (-3031 (($ $) NIL)) (-3043 ((|#2| $) 41)) (-2556 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2619 (((-1075) $) NIL)) (-1334 (((-3 (-592 $) "failed") $) NIL)) (-2001 (((-3 (-592 $) "failed") $) NIL)) (-2121 (((-3 (-2 (|:| |var| (-800 |#1|)) (|:| -4193 (-713))) "failed") $) NIL)) (-2093 (((-1039) $) NIL)) (-3007 (((-108) $) 40)) (-3019 ((|#2| $) 116)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#2| (-429)))) (-2589 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) 128 (|has| |#2| (-429)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-2770 (((-396 $) $) NIL (|has| |#2| (-844)))) (-1715 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-2457 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-800 |#1|) |#2|) 87) (($ $ (-592 (-800 |#1|)) (-592 |#2|)) 90) (($ $ (-800 |#1|) $) 85) (($ $ (-592 (-800 |#1|)) (-592 $)) 106)) (-1975 (($ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-3376 (($ $ (-800 |#1|)) 53) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-2343 ((|#3| $) 67) (((-713) $ (-800 |#1|)) 37) (((-592 (-713)) $ (-592 (-800 |#1|))) 56)) (-3210 (((-827 (-357)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-800 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-3658 ((|#2| $) 125 (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844))))) (-1217 (((-798) $) 145) (($ (-525)) NIL) (($ |#2|) 86) (($ (-800 |#1|)) 31) (($ (-385 (-525))) NIL (-3254 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-1684 (((-592 |#2|) $) NIL)) (-1568 ((|#2| $ |#3|) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#2| (-136))))) (-3917 (((-713)) NIL)) (-3716 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-3325 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 17 T CONST)) (-3359 (($) 25 T CONST)) (-2022 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-4011 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4075 (($ $ |#2|) 64 (|has| |#2| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) 111)) (** (($ $ (-856)) NIL) (($ $ (-713)) 109)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 29) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
-(((-431 |#1| |#2| |#3|) (-13 (-884 |#2| |#3| (-800 |#1|)) (-10 -8 (-15 -1415 ($ $ (-592 (-525)))))) (-592 (-1092)) (-977) (-218 (-3522 |#1|) (-713))) (T -431))
-((-1415 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-14 *3 (-592 (-1092))) (-5 *1 (-431 *3 *4 *5)) (-4 *4 (-977)) (-4 *5 (-218 (-3522 *3) (-713))))))
-(-13 (-884 |#2| |#3| (-800 |#1|)) (-10 -8 (-15 -1415 ($ $ (-592 (-525))))))
-((-1664 (((-108) |#1| (-592 |#2|)) 69)) (-2185 (((-3 (-1174 (-592 |#2|)) "failed") (-713) |#1| (-592 |#2|)) 78)) (-3492 (((-3 (-592 |#2|) "failed") |#2| |#1| (-1174 (-592 |#2|))) 80)) (-2692 ((|#2| |#2| |#1|) 28)) (-2807 (((-713) |#2| (-592 |#2|)) 20)))
-(((-432 |#1| |#2|) (-10 -7 (-15 -2692 (|#2| |#2| |#1|)) (-15 -2807 ((-713) |#2| (-592 |#2|))) (-15 -2185 ((-3 (-1174 (-592 |#2|)) "failed") (-713) |#1| (-592 |#2|))) (-15 -3492 ((-3 (-592 |#2|) "failed") |#2| |#1| (-1174 (-592 |#2|)))) (-15 -1664 ((-108) |#1| (-592 |#2|)))) (-286) (-1150 |#1|)) (T -432))
-((-1664 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *5)) (-4 *5 (-1150 *3)) (-4 *3 (-286)) (-5 *2 (-108)) (-5 *1 (-432 *3 *5)))) (-3492 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1174 (-592 *3))) (-4 *4 (-286)) (-5 *2 (-592 *3)) (-5 *1 (-432 *4 *3)) (-4 *3 (-1150 *4)))) (-2185 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-713)) (-4 *4 (-286)) (-4 *6 (-1150 *4)) (-5 *2 (-1174 (-592 *6))) (-5 *1 (-432 *4 *6)) (-5 *5 (-592 *6)))) (-2807 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-286)) (-5 *2 (-713)) (-5 *1 (-432 *5 *3)))) (-2692 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-5 *1 (-432 *3 *2)) (-4 *2 (-1150 *3)))))
-(-10 -7 (-15 -2692 (|#2| |#2| |#1|)) (-15 -2807 ((-713) |#2| (-592 |#2|))) (-15 -2185 ((-3 (-1174 (-592 |#2|)) "failed") (-713) |#1| (-592 |#2|))) (-15 -3492 ((-3 (-592 |#2|) "failed") |#2| |#1| (-1174 (-592 |#2|)))) (-15 -1664 ((-108) |#1| (-592 |#2|))))
-((-2770 (((-396 |#5|) |#5|) 24)))
-(((-433 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2770 ((-396 |#5|) |#5|))) (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $)) (-15 -2499 ((-3 $ "failed") (-1092))))) (-735) (-517) (-517) (-884 |#4| |#2| |#1|)) (T -433))
-((-2770 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $)) (-15 -2499 ((-3 $ "failed") (-1092)))))) (-4 *5 (-735)) (-4 *7 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-433 *4 *5 *6 *7 *3)) (-4 *6 (-517)) (-4 *3 (-884 *7 *5 *4)))))
-(-10 -7 (-15 -2770 ((-396 |#5|) |#5|)))
-((-2809 ((|#3|) 37)) (-1883 (((-1088 |#4|) (-1088 |#4|) (-1088 |#4|)) 33)))
-(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1883 ((-1088 |#4|) (-1088 |#4|) (-1088 |#4|))) (-15 -2809 (|#3|))) (-735) (-789) (-844) (-884 |#3| |#1| |#2|)) (T -434))
-((-2809 (*1 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-844)) (-5 *1 (-434 *3 *4 *2 *5)) (-4 *5 (-884 *2 *3 *4)))) (-1883 (*1 *2 *2 *2) (-12 (-5 *2 (-1088 *6)) (-4 *6 (-884 *5 *3 *4)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-844)) (-5 *1 (-434 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1883 ((-1088 |#4|) (-1088 |#4|) (-1088 |#4|))) (-15 -2809 (|#3|)))
-((-2770 (((-396 (-1088 |#1|)) (-1088 |#1|)) 43)))
-(((-435 |#1|) (-10 -7 (-15 -2770 ((-396 (-1088 |#1|)) (-1088 |#1|)))) (-286)) (T -435))
-((-2770 (*1 *2 *3) (-12 (-4 *4 (-286)) (-5 *2 (-396 (-1088 *4))) (-5 *1 (-435 *4)) (-5 *3 (-1088 *4)))))
-(-10 -7 (-15 -2770 ((-396 (-1088 |#1|)) (-1088 |#1|))))
-((-2950 (((-51) |#2| (-1092) (-273 |#2|) (-1141 (-713))) 42) (((-51) (-1 |#2| (-525)) (-273 |#2|) (-1141 (-713))) 41) (((-51) |#2| (-1092) (-273 |#2|)) 35) (((-51) (-1 |#2| (-525)) (-273 |#2|)) 28)) (-2598 (((-51) |#2| (-1092) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525))) 80) (((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525))) 79) (((-51) |#2| (-1092) (-273 |#2|) (-1141 (-525))) 78) (((-51) (-1 |#2| (-525)) (-273 |#2|) (-1141 (-525))) 77) (((-51) |#2| (-1092) (-273 |#2|)) 72) (((-51) (-1 |#2| (-525)) (-273 |#2|)) 71)) (-2973 (((-51) |#2| (-1092) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525))) 66) (((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525))) 64)) (-2962 (((-51) |#2| (-1092) (-273 |#2|) (-1141 (-525))) 48) (((-51) (-1 |#2| (-525)) (-273 |#2|) (-1141 (-525))) 47)))
-(((-436 |#1| |#2|) (-10 -7 (-15 -2950 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -2950 ((-51) |#2| (-1092) (-273 |#2|))) (-15 -2950 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1141 (-713)))) (-15 -2950 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-713)))) (-15 -2962 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1141 (-525)))) (-15 -2962 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-525)))) (-15 -2973 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525)))) (-15 -2973 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525)))) (-15 -2598 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -2598 ((-51) |#2| (-1092) (-273 |#2|))) (-15 -2598 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1141 (-525)))) (-15 -2598 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-525)))) (-15 -2598 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525)))) (-15 -2598 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525))))) (-13 (-517) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1114) (-408 |#1|))) (T -436))
-((-2598 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-385 (-525)))) (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1114) (-408 *8))) (-4 *8 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *8 *3)))) (-2598 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8)) (-5 *5 (-1141 (-385 (-525)))) (-5 *6 (-385 (-525))) (-4 *8 (-13 (-27) (-1114) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *8)))) (-2598 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-525))) (-4 *3 (-13 (-27) (-1114) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) (-2598 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1141 (-525))) (-4 *7 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) (-2598 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *3)))) (-2598 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6)) (-4 *6 (-13 (-27) (-1114) (-408 *5))) (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *5 *6)))) (-2973 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-385 (-525)))) (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1114) (-408 *8))) (-4 *8 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *8 *3)))) (-2973 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8)) (-5 *5 (-1141 (-385 (-525)))) (-5 *6 (-385 (-525))) (-4 *8 (-13 (-27) (-1114) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *8)))) (-2962 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-525))) (-4 *3 (-13 (-27) (-1114) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) (-2962 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1141 (-525))) (-4 *7 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) (-2950 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-713))) (-4 *3 (-13 (-27) (-1114) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) (-2950 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1141 (-713))) (-4 *7 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) (-2950 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *3)))) (-2950 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6)) (-4 *6 (-13 (-27) (-1114) (-408 *5))) (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *5 *6)))))
-(-10 -7 (-15 -2950 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -2950 ((-51) |#2| (-1092) (-273 |#2|))) (-15 -2950 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1141 (-713)))) (-15 -2950 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-713)))) (-15 -2962 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1141 (-525)))) (-15 -2962 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-525)))) (-15 -2973 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525)))) (-15 -2973 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525)))) (-15 -2598 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -2598 ((-51) |#2| (-1092) (-273 |#2|))) (-15 -2598 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1141 (-525)))) (-15 -2598 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-525)))) (-15 -2598 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525)))) (-15 -2598 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525)))))
-((-2692 ((|#2| |#2| |#1|) 15)) (-2681 (((-592 |#2|) |#2| (-592 |#2|) |#1| (-856)) 69)) (-3222 (((-2 (|:| |plist| (-592 |#2|)) (|:| |modulo| |#1|)) |#2| (-592 |#2|) |#1| (-856)) 60)))
-(((-437 |#1| |#2|) (-10 -7 (-15 -3222 ((-2 (|:| |plist| (-592 |#2|)) (|:| |modulo| |#1|)) |#2| (-592 |#2|) |#1| (-856))) (-15 -2681 ((-592 |#2|) |#2| (-592 |#2|) |#1| (-856))) (-15 -2692 (|#2| |#2| |#1|))) (-286) (-1150 |#1|)) (T -437))
-((-2692 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1150 *3)))) (-2681 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-592 *3)) (-5 *5 (-856)) (-4 *3 (-1150 *4)) (-4 *4 (-286)) (-5 *1 (-437 *4 *3)))) (-3222 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-856)) (-4 *5 (-286)) (-4 *3 (-1150 *5)) (-5 *2 (-2 (|:| |plist| (-592 *3)) (|:| |modulo| *5))) (-5 *1 (-437 *5 *3)) (-5 *4 (-592 *3)))))
-(-10 -7 (-15 -3222 ((-2 (|:| |plist| (-592 |#2|)) (|:| |modulo| |#1|)) |#2| (-592 |#2|) |#1| (-856))) (-15 -2681 ((-592 |#2|) |#2| (-592 |#2|) |#1| (-856))) (-15 -2692 (|#2| |#2| |#1|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 28)) (-4083 (($ |#3|) 25)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3063 (($ $) 32)) (-3890 (($ |#2| |#4| $) 33)) (-2876 (($ |#2| (-656 |#3| |#4| |#5|)) 24)) (-3031 (((-656 |#3| |#4| |#5|) $) 15)) (-2360 ((|#3| $) 19)) (-3366 ((|#4| $) 17)) (-3043 ((|#2| $) 29)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-1502 (($ |#2| |#3| |#4|) 26)) (-3349 (($) 36 T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) 34)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-438 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-660 |#6|) (-660 |#2|) (-10 -8 (-15 -3043 (|#2| $)) (-15 -3031 ((-656 |#3| |#4| |#5|) $)) (-15 -3366 (|#4| $)) (-15 -2360 (|#3| $)) (-15 -3063 ($ $)) (-15 -2876 ($ |#2| (-656 |#3| |#4| |#5|))) (-15 -4083 ($ |#3|)) (-15 -1502 ($ |#2| |#3| |#4|)) (-15 -3890 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-592 (-1092)) (-160) (-789) (-218 (-3522 |#1|) (-713)) (-1 (-108) (-2 (|:| -3555 |#3|) (|:| -4193 |#4|)) (-2 (|:| -3555 |#3|) (|:| -4193 |#4|))) (-884 |#2| |#4| (-800 |#1|))) (T -438))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-592 (-1092))) (-4 *4 (-160)) (-4 *6 (-218 (-3522 *3) (-713))) (-14 *7 (-1 (-108) (-2 (|:| -3555 *5) (|:| -4193 *6)) (-2 (|:| -3555 *5) (|:| -4193 *6)))) (-5 *1 (-438 *3 *4 *5 *6 *7 *2)) (-4 *5 (-789)) (-4 *2 (-884 *4 *6 (-800 *3))))) (-3043 (*1 *2 *1) (-12 (-14 *3 (-592 (-1092))) (-4 *5 (-218 (-3522 *3) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -3555 *4) (|:| -4193 *5)) (-2 (|:| -3555 *4) (|:| -4193 *5)))) (-4 *2 (-160)) (-5 *1 (-438 *3 *2 *4 *5 *6 *7)) (-4 *4 (-789)) (-4 *7 (-884 *2 *5 (-800 *3))))) (-3031 (*1 *2 *1) (-12 (-14 *3 (-592 (-1092))) (-4 *4 (-160)) (-4 *6 (-218 (-3522 *3) (-713))) (-14 *7 (-1 (-108) (-2 (|:| -3555 *5) (|:| -4193 *6)) (-2 (|:| -3555 *5) (|:| -4193 *6)))) (-5 *2 (-656 *5 *6 *7)) (-5 *1 (-438 *3 *4 *5 *6 *7 *8)) (-4 *5 (-789)) (-4 *8 (-884 *4 *6 (-800 *3))))) (-3366 (*1 *2 *1) (-12 (-14 *3 (-592 (-1092))) (-4 *4 (-160)) (-14 *6 (-1 (-108) (-2 (|:| -3555 *5) (|:| -4193 *2)) (-2 (|:| -3555 *5) (|:| -4193 *2)))) (-4 *2 (-218 (-3522 *3) (-713))) (-5 *1 (-438 *3 *4 *5 *2 *6 *7)) (-4 *5 (-789)) (-4 *7 (-884 *4 *2 (-800 *3))))) (-2360 (*1 *2 *1) (-12 (-14 *3 (-592 (-1092))) (-4 *4 (-160)) (-4 *5 (-218 (-3522 *3) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -3555 *2) (|:| -4193 *5)) (-2 (|:| -3555 *2) (|:| -4193 *5)))) (-4 *2 (-789)) (-5 *1 (-438 *3 *4 *2 *5 *6 *7)) (-4 *7 (-884 *4 *5 (-800 *3))))) (-3063 (*1 *1 *1) (-12 (-14 *2 (-592 (-1092))) (-4 *3 (-160)) (-4 *5 (-218 (-3522 *2) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -3555 *4) (|:| -4193 *5)) (-2 (|:| -3555 *4) (|:| -4193 *5)))) (-5 *1 (-438 *2 *3 *4 *5 *6 *7)) (-4 *4 (-789)) (-4 *7 (-884 *3 *5 (-800 *2))))) (-2876 (*1 *1 *2 *3) (-12 (-5 *3 (-656 *5 *6 *7)) (-4 *5 (-789)) (-4 *6 (-218 (-3522 *4) (-713))) (-14 *7 (-1 (-108) (-2 (|:| -3555 *5) (|:| -4193 *6)) (-2 (|:| -3555 *5) (|:| -4193 *6)))) (-14 *4 (-592 (-1092))) (-4 *2 (-160)) (-5 *1 (-438 *4 *2 *5 *6 *7 *8)) (-4 *8 (-884 *2 *6 (-800 *4))))) (-4083 (*1 *1 *2) (-12 (-14 *3 (-592 (-1092))) (-4 *4 (-160)) (-4 *5 (-218 (-3522 *3) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -3555 *2) (|:| -4193 *5)) (-2 (|:| -3555 *2) (|:| -4193 *5)))) (-5 *1 (-438 *3 *4 *2 *5 *6 *7)) (-4 *2 (-789)) (-4 *7 (-884 *4 *5 (-800 *3))))) (-1502 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-592 (-1092))) (-4 *2 (-160)) (-4 *4 (-218 (-3522 *5) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -3555 *3) (|:| -4193 *4)) (-2 (|:| -3555 *3) (|:| -4193 *4)))) (-5 *1 (-438 *5 *2 *3 *4 *6 *7)) (-4 *3 (-789)) (-4 *7 (-884 *2 *4 (-800 *5))))) (-3890 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-592 (-1092))) (-4 *2 (-160)) (-4 *3 (-218 (-3522 *4) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -3555 *5) (|:| -4193 *3)) (-2 (|:| -3555 *5) (|:| -4193 *3)))) (-5 *1 (-438 *4 *2 *5 *3 *6 *7)) (-4 *5 (-789)) (-4 *7 (-884 *2 *3 (-800 *4))))))
-(-13 (-660 |#6|) (-660 |#2|) (-10 -8 (-15 -3043 (|#2| $)) (-15 -3031 ((-656 |#3| |#4| |#5|) $)) (-15 -3366 (|#4| $)) (-15 -2360 (|#3| $)) (-15 -3063 ($ $)) (-15 -2876 ($ |#2| (-656 |#3| |#4| |#5|))) (-15 -4083 ($ |#3|)) (-15 -1502 ($ |#2| |#3| |#4|)) (-15 -3890 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-2882 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
-(((-439 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2882 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-735) (-789) (-517) (-884 |#3| |#1| |#2|) (-13 (-968 (-385 (-525))) (-341) (-10 -8 (-15 -1217 ($ |#4|)) (-15 -3114 (|#4| $)) (-15 -3123 (|#4| $))))) (T -439))
-((-2882 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-789)) (-4 *5 (-735)) (-4 *6 (-517)) (-4 *7 (-884 *6 *5 *3)) (-5 *1 (-439 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-968 (-385 (-525))) (-341) (-10 -8 (-15 -1217 ($ *7)) (-15 -3114 (*7 $)) (-15 -3123 (*7 $))))))))
-(-10 -7 (-15 -2882 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-4236 (((-108) $ $) NIL)) (-2897 (((-592 |#3|) $) 41)) (-2437 (((-108) $) NIL)) (-2750 (((-108) $) NIL (|has| |#1| (-517)))) (-2458 (((-2 (|:| |under| $) (|:| -2487 $) (|:| |upper| $)) $ |#3|) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-3785 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-2169 (($) NIL T CONST)) (-4089 (((-108) $) NIL (|has| |#1| (-517)))) (-2480 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1207 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3339 (((-108) $) NIL (|has| |#1| (-517)))) (-3767 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-3333 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-3077 (((-3 $ "failed") (-592 |#4|)) 47)) (-1572 (($ (-592 |#4|)) NIL)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020))))) (-1703 (($ |#4| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-1607 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-1284 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4258))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4258)))) (-3440 (((-592 |#4|) $) 18 (|has| $ (-6 -4258)))) (-3153 ((|#3| $) 45)) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 |#4|) $) 14 (|has| $ (-6 -4258)))) (-2004 (((-108) |#4| $) 26 (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020))))) (-2284 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#4| |#4|) $) 21)) (-1598 (((-592 |#3|) $) NIL)) (-3919 (((-108) |#3| $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL)) (-1806 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2093 (((-1039) $) NIL)) (-1983 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3944 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) 39)) (-2512 (($) 17)) (-2110 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) 16)) (-3210 (((-501) $) NIL (|has| |#4| (-567 (-501)))) (($ (-592 |#4|)) 49)) (-1230 (($ (-592 |#4|)) 13)) (-3264 (($ $ |#3|) NIL)) (-1425 (($ $ |#3|) NIL)) (-4008 (($ $ |#3|) NIL)) (-1217 (((-798) $) 38) (((-592 |#4|) $) 48)) (-3029 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 30)) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-440 |#1| |#2| |#3| |#4|) (-13 (-909 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3210 ($ (-592 |#4|))) (-6 -4258) (-6 -4259))) (-977) (-735) (-789) (-991 |#1| |#2| |#3|)) (T -440))
-((-3210 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-440 *3 *4 *5 *6)))))
-(-13 (-909 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3210 ($ (-592 |#4|))) (-6 -4258) (-6 -4259)))
-((-3349 (($) 11)) (-3359 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-441 |#1| |#2| |#3|) (-10 -8 (-15 -3359 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3349 (|#1|))) (-442 |#2| |#3|) (-160) (-23)) (T -441))
-NIL
-(-10 -8 (-15 -3359 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3349 (|#1|)))
-((-4236 (((-108) $ $) 7)) (-3077 (((-3 |#1| "failed") $) 26)) (-1572 ((|#1| $) 25)) (-1683 (($ $ $) 23)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-2343 ((|#2| $) 19)) (-1217 (((-798) $) 11) (($ |#1|) 27)) (-3349 (($) 18 T CONST)) (-3359 (($) 24 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 15) (($ $ $) 13)) (-4047 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1509 (((-3 $ "failed")) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-3551 (((-1174 (-632 (-385 (-887 |#1|)))) (-1174 $)) NIL) (((-1174 (-632 (-385 (-887 |#1|))))) NIL)) (-3651 (((-1174 $)) NIL)) (-2475 (($) NIL T CONST)) (-3734 (((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed")) NIL)) (-2394 (((-3 $ "failed")) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-2946 (((-632 (-385 (-887 |#1|))) (-1174 $)) NIL) (((-632 (-385 (-887 |#1|)))) NIL)) (-2126 (((-385 (-887 |#1|)) $) NIL)) (-4187 (((-632 (-385 (-887 |#1|))) $ (-1174 $)) NIL) (((-632 (-385 (-887 |#1|))) $) NIL)) (-3322 (((-3 $ "failed") $) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-3141 (((-1088 (-887 (-385 (-887 |#1|))))) NIL (|has| (-385 (-887 |#1|)) (-341))) (((-1088 (-385 (-887 |#1|)))) 84 (|has| |#1| (-517)))) (-1488 (($ $ (-856)) NIL)) (-3447 (((-385 (-887 |#1|)) $) NIL)) (-4047 (((-1088 (-385 (-887 |#1|))) $) 82 (|has| (-385 (-887 |#1|)) (-517)))) (-3411 (((-385 (-887 |#1|)) (-1174 $)) NIL) (((-385 (-887 |#1|))) NIL)) (-1521 (((-1088 (-385 (-887 |#1|))) $) NIL)) (-3838 (((-108)) NIL)) (-2580 (($ (-1174 (-385 (-887 |#1|))) (-1174 $)) 103) (($ (-1174 (-385 (-887 |#1|)))) NIL)) (-3300 (((-3 $ "failed") $) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-3085 (((-856)) NIL)) (-1822 (((-108)) NIL)) (-2156 (($ $ (-856)) NIL)) (-3387 (((-108)) NIL)) (-2634 (((-108)) NIL)) (-2936 (((-108)) NIL)) (-2661 (((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed")) NIL)) (-2542 (((-3 $ "failed")) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-2713 (((-632 (-385 (-887 |#1|))) (-1174 $)) NIL) (((-632 (-385 (-887 |#1|)))) NIL)) (-3309 (((-385 (-887 |#1|)) $) NIL)) (-2222 (((-632 (-385 (-887 |#1|))) $ (-1174 $)) NIL) (((-632 (-385 (-887 |#1|))) $) NIL)) (-3711 (((-3 $ "failed") $) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-2056 (((-1088 (-887 (-385 (-887 |#1|))))) NIL (|has| (-385 (-887 |#1|)) (-341))) (((-1088 (-385 (-887 |#1|)))) 83 (|has| |#1| (-517)))) (-2486 (($ $ (-856)) NIL)) (-3714 (((-385 (-887 |#1|)) $) NIL)) (-2357 (((-1088 (-385 (-887 |#1|))) $) 77 (|has| (-385 (-887 |#1|)) (-517)))) (-2623 (((-385 (-887 |#1|)) (-1174 $)) NIL) (((-385 (-887 |#1|))) NIL)) (-2673 (((-1088 (-385 (-887 |#1|))) $) NIL)) (-3938 (((-108)) NIL)) (-1289 (((-1075) $) NIL)) (-1780 (((-108)) NIL)) (-1719 (((-108)) NIL)) (-2490 (((-108)) NIL)) (-3993 (((-1039) $) NIL)) (-3774 (((-385 (-887 |#1|)) $ $) 71 (|has| |#1| (-517)))) (-2328 (((-385 (-887 |#1|)) $) 93 (|has| |#1| (-517)))) (-4013 (((-385 (-887 |#1|)) $) 95 (|has| |#1| (-517)))) (-3634 (((-1088 (-385 (-887 |#1|))) $) 88 (|has| |#1| (-517)))) (-2955 (((-385 (-887 |#1|))) 72 (|has| |#1| (-517)))) (-3073 (((-385 (-887 |#1|)) $ $) 64 (|has| |#1| (-517)))) (-3160 (((-385 (-887 |#1|)) $) 92 (|has| |#1| (-517)))) (-3942 (((-385 (-887 |#1|)) $) 94 (|has| |#1| (-517)))) (-2652 (((-1088 (-385 (-887 |#1|))) $) 87 (|has| |#1| (-517)))) (-2283 (((-385 (-887 |#1|))) 68 (|has| |#1| (-517)))) (-2312 (($) 101) (($ (-1092)) 107) (($ (-1174 (-1092))) 106) (($ (-1174 $)) 96) (($ (-1092) (-1174 $)) 105) (($ (-1174 (-1092)) (-1174 $)) 104)) (-1539 (((-108)) NIL)) (-3431 (((-385 (-887 |#1|)) $ (-525)) NIL)) (-2754 (((-1174 (-385 (-887 |#1|))) $ (-1174 $)) 98) (((-632 (-385 (-887 |#1|))) (-1174 $) (-1174 $)) NIL) (((-1174 (-385 (-887 |#1|))) $) 40) (((-632 (-385 (-887 |#1|))) (-1174 $)) NIL)) (-2069 (((-1174 (-385 (-887 |#1|))) $) NIL) (($ (-1174 (-385 (-887 |#1|)))) 37)) (-3600 (((-592 (-887 (-385 (-887 |#1|)))) (-1174 $)) NIL) (((-592 (-887 (-385 (-887 |#1|))))) NIL) (((-592 (-887 |#1|)) (-1174 $)) 99 (|has| |#1| (-517))) (((-592 (-887 |#1|))) 100 (|has| |#1| (-517)))) (-1242 (($ $ $) NIL)) (-1682 (((-108)) NIL)) (-4100 (((-798) $) NIL) (($ (-1174 (-385 (-887 |#1|)))) NIL)) (-2103 (((-1174 $)) 60)) (-3974 (((-592 (-1174 (-385 (-887 |#1|))))) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-3133 (($ $ $ $) NIL)) (-1839 (((-108)) NIL)) (-1590 (($ (-632 (-385 (-887 |#1|))) $) NIL)) (-4148 (($ $ $) NIL)) (-2453 (((-108)) NIL)) (-1569 (((-108)) NIL)) (-1886 (((-108)) NIL)) (-3364 (($) NIL T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) 97)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 56) (($ $ (-385 (-887 |#1|))) NIL) (($ (-385 (-887 |#1|)) $) NIL) (($ (-1059 |#2| (-385 (-887 |#1|))) $) NIL)))
+(((-430 |#1| |#2| |#3| |#4|) (-13 (-395 (-385 (-887 |#1|))) (-594 (-1059 |#2| (-385 (-887 |#1|)))) (-10 -8 (-15 -4100 ($ (-1174 (-385 (-887 |#1|))))) (-15 -2661 ((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed"))) (-15 -3734 ((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed"))) (-15 -2312 ($)) (-15 -2312 ($ (-1092))) (-15 -2312 ($ (-1174 (-1092)))) (-15 -2312 ($ (-1174 $))) (-15 -2312 ($ (-1092) (-1174 $))) (-15 -2312 ($ (-1174 (-1092)) (-1174 $))) (IF (|has| |#1| (-517)) (PROGN (-15 -2056 ((-1088 (-385 (-887 |#1|))))) (-15 -2652 ((-1088 (-385 (-887 |#1|))) $)) (-15 -3160 ((-385 (-887 |#1|)) $)) (-15 -3942 ((-385 (-887 |#1|)) $)) (-15 -3141 ((-1088 (-385 (-887 |#1|))))) (-15 -3634 ((-1088 (-385 (-887 |#1|))) $)) (-15 -2328 ((-385 (-887 |#1|)) $)) (-15 -4013 ((-385 (-887 |#1|)) $)) (-15 -3073 ((-385 (-887 |#1|)) $ $)) (-15 -2283 ((-385 (-887 |#1|)))) (-15 -3774 ((-385 (-887 |#1|)) $ $)) (-15 -2955 ((-385 (-887 |#1|)))) (-15 -3600 ((-592 (-887 |#1|)) (-1174 $))) (-15 -3600 ((-592 (-887 |#1|))))) |%noBranch|))) (-160) (-856) (-592 (-1092)) (-1174 (-632 |#1|))) (T -430))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1174 (-385 (-887 *3)))) (-4 *3 (-160)) (-14 *6 (-1174 (-632 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))))) (-2661 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-430 *3 *4 *5 *6)) (|:| -2103 (-592 (-430 *3 *4 *5 *6))))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-3734 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-430 *3 *4 *5 *6)) (|:| -2103 (-592 (-430 *3 *4 *5 *6))))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-2312 (*1 *1) (-12 (-5 *1 (-430 *2 *3 *4 *5)) (-4 *2 (-160)) (-14 *3 (-856)) (-14 *4 (-592 (-1092))) (-14 *5 (-1174 (-632 *2))))) (-2312 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 *2)) (-14 *6 (-1174 (-632 *3))))) (-2312 (*1 *1 *2) (-12 (-5 *2 (-1174 (-1092))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-2312 (*1 *1 *2) (-12 (-5 *2 (-1174 (-430 *3 *4 *5 *6))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-2312 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-430 *4 *5 *6 *7))) (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-160)) (-14 *5 (-856)) (-14 *6 (-592 *2)) (-14 *7 (-1174 (-632 *4))))) (-2312 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 (-1092))) (-5 *3 (-1174 (-430 *4 *5 *6 *7))) (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-160)) (-14 *5 (-856)) (-14 *6 (-592 (-1092))) (-14 *7 (-1174 (-632 *4))))) (-2056 (*1 *2) (-12 (-5 *2 (-1088 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-1088 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-3160 (*1 *2 *1) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-3141 (*1 *2) (-12 (-5 *2 (-1088 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-1088 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-2328 (*1 *2 *1) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-4013 (*1 *2 *1) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-3073 (*1 *2 *1 *1) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-2283 (*1 *2) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-3774 (*1 *2 *1 *1) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-2955 (*1 *2) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-1174 (-430 *4 *5 *6 *7))) (-5 *2 (-592 (-887 *4))) (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-517)) (-4 *4 (-160)) (-14 *5 (-856)) (-14 *6 (-592 (-1092))) (-14 *7 (-1174 (-632 *4))))) (-3600 (*1 *2) (-12 (-5 *2 (-592 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
+(-13 (-395 (-385 (-887 |#1|))) (-594 (-1059 |#2| (-385 (-887 |#1|)))) (-10 -8 (-15 -4100 ($ (-1174 (-385 (-887 |#1|))))) (-15 -2661 ((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed"))) (-15 -3734 ((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed"))) (-15 -2312 ($)) (-15 -2312 ($ (-1092))) (-15 -2312 ($ (-1174 (-1092)))) (-15 -2312 ($ (-1174 $))) (-15 -2312 ($ (-1092) (-1174 $))) (-15 -2312 ($ (-1174 (-1092)) (-1174 $))) (IF (|has| |#1| (-517)) (PROGN (-15 -2056 ((-1088 (-385 (-887 |#1|))))) (-15 -2652 ((-1088 (-385 (-887 |#1|))) $)) (-15 -3160 ((-385 (-887 |#1|)) $)) (-15 -3942 ((-385 (-887 |#1|)) $)) (-15 -3141 ((-1088 (-385 (-887 |#1|))))) (-15 -3634 ((-1088 (-385 (-887 |#1|))) $)) (-15 -2328 ((-385 (-887 |#1|)) $)) (-15 -4013 ((-385 (-887 |#1|)) $)) (-15 -3073 ((-385 (-887 |#1|)) $ $)) (-15 -2283 ((-385 (-887 |#1|)))) (-15 -3774 ((-385 (-887 |#1|)) $ $)) (-15 -2955 ((-385 (-887 |#1|)))) (-15 -3600 ((-592 (-887 |#1|)) (-1174 $))) (-15 -3600 ((-592 (-887 |#1|))))) |%noBranch|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 13)) (-1296 (((-592 (-800 |#1|)) $) 75)) (-4169 (((-1088 $) $ (-800 |#1|)) 46) (((-1088 |#2|) $) 118)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-2433 (($ $) NIL (|has| |#2| (-517)))) (-1568 (((-108) $) NIL (|has| |#2| (-517)))) (-1928 (((-713) $) 21) (((-713) $ (-592 (-800 |#1|))) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-4195 (($ $) NIL (|has| |#2| (-429)))) (-3586 (((-396 $) $) NIL (|has| |#2| (-429)))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#2| "failed") $) 44) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-800 |#1|) "failed") $) NIL)) (-4105 ((|#2| $) 42) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-800 |#1|) $) NIL)) (-3801 (($ $ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-2066 (($ $ (-592 (-525))) 80)) (-1451 (($ $) 68)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3201 (($ $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-1441 (((-592 $) $) NIL)) (-1798 (((-108) $) NIL (|has| |#2| (-844)))) (-1457 (($ $ |#2| |#3| $) NIL)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) 58)) (-1284 (($ (-1088 |#2|) (-800 |#1|)) 123) (($ (-1088 $) (-800 |#1|)) 52)) (-2884 (((-592 $) $) NIL)) (-2457 (((-108) $) 59)) (-1272 (($ |#2| |#3|) 28) (($ $ (-800 |#1|) (-713)) 30) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ (-800 |#1|)) NIL)) (-1819 ((|#3| $) NIL) (((-713) $ (-800 |#1|)) 50) (((-592 (-713)) $ (-592 (-800 |#1|))) 57)) (-3033 (($ $ $) NIL (|has| |#2| (-789)))) (-1609 (($ $ $) NIL (|has| |#2| (-789)))) (-1314 (($ (-1 |#3| |#3|) $) NIL)) (-2016 (($ (-1 |#2| |#2|) $) NIL)) (-2018 (((-3 (-800 |#1|) "failed") $) 39)) (-1418 (($ $) NIL)) (-1430 ((|#2| $) 41)) (-2739 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-1289 (((-1075) $) NIL)) (-2977 (((-3 (-592 $) "failed") $) NIL)) (-3165 (((-3 (-592 $) "failed") $) NIL)) (-1986 (((-3 (-2 (|:| |var| (-800 |#1|)) (|:| -2168 (-713))) "failed") $) NIL)) (-3993 (((-1039) $) NIL)) (-1399 (((-108) $) 40)) (-1407 ((|#2| $) 116)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#2| (-429)))) (-2772 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) 128 (|has| |#2| (-429)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-4201 (((-396 $) $) NIL (|has| |#2| (-844)))) (-1311 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-2825 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-800 |#1|) |#2|) 87) (($ $ (-592 (-800 |#1|)) (-592 |#2|)) 90) (($ $ (-800 |#1|) $) 85) (($ $ (-592 (-800 |#1|)) (-592 $)) 106)) (-4115 (($ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-2702 (($ $ (-800 |#1|)) 53) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3529 ((|#3| $) 67) (((-713) $ (-800 |#1|)) 37) (((-592 (-713)) $ (-592 (-800 |#1|))) 56)) (-2069 (((-827 (-357)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-800 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-1661 ((|#2| $) 125 (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844))))) (-4100 (((-798) $) 145) (($ (-525)) NIL) (($ |#2|) 86) (($ (-800 |#1|)) 31) (($ (-385 (-525))) NIL (-2067 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-3137 (((-592 |#2|) $) NIL)) (-3136 ((|#2| $ |#3|) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#2| (-136))))) (-2448 (((-713)) NIL)) (-4042 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-1571 (((-108) $ $) NIL (|has| |#2| (-517)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 17 T CONST)) (-3375 (($) 25 T CONST)) (-2401 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-2830 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2880 (($ $ |#2|) 64 (|has| |#2| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) 111)) (** (($ $ (-856)) NIL) (($ $ (-713)) 109)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 29) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
+(((-431 |#1| |#2| |#3|) (-13 (-884 |#2| |#3| (-800 |#1|)) (-10 -8 (-15 -2066 ($ $ (-592 (-525)))))) (-592 (-1092)) (-977) (-218 (-2827 |#1|) (-713))) (T -431))
+((-2066 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-14 *3 (-592 (-1092))) (-5 *1 (-431 *3 *4 *5)) (-4 *4 (-977)) (-4 *5 (-218 (-2827 *3) (-713))))))
+(-13 (-884 |#2| |#3| (-800 |#1|)) (-10 -8 (-15 -2066 ($ $ (-592 (-525))))))
+((-4186 (((-108) |#1| (-592 |#2|)) 69)) (-1426 (((-3 (-1174 (-592 |#2|)) "failed") (-713) |#1| (-592 |#2|)) 78)) (-3641 (((-3 (-592 |#2|) "failed") |#2| |#1| (-1174 (-592 |#2|))) 80)) (-2600 ((|#2| |#2| |#1|) 28)) (-2405 (((-713) |#2| (-592 |#2|)) 20)))
+(((-432 |#1| |#2|) (-10 -7 (-15 -2600 (|#2| |#2| |#1|)) (-15 -2405 ((-713) |#2| (-592 |#2|))) (-15 -1426 ((-3 (-1174 (-592 |#2|)) "failed") (-713) |#1| (-592 |#2|))) (-15 -3641 ((-3 (-592 |#2|) "failed") |#2| |#1| (-1174 (-592 |#2|)))) (-15 -4186 ((-108) |#1| (-592 |#2|)))) (-286) (-1150 |#1|)) (T -432))
+((-4186 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *5)) (-4 *5 (-1150 *3)) (-4 *3 (-286)) (-5 *2 (-108)) (-5 *1 (-432 *3 *5)))) (-3641 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1174 (-592 *3))) (-4 *4 (-286)) (-5 *2 (-592 *3)) (-5 *1 (-432 *4 *3)) (-4 *3 (-1150 *4)))) (-1426 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-713)) (-4 *4 (-286)) (-4 *6 (-1150 *4)) (-5 *2 (-1174 (-592 *6))) (-5 *1 (-432 *4 *6)) (-5 *5 (-592 *6)))) (-2405 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-286)) (-5 *2 (-713)) (-5 *1 (-432 *5 *3)))) (-2600 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-5 *1 (-432 *3 *2)) (-4 *2 (-1150 *3)))))
+(-10 -7 (-15 -2600 (|#2| |#2| |#1|)) (-15 -2405 ((-713) |#2| (-592 |#2|))) (-15 -1426 ((-3 (-1174 (-592 |#2|)) "failed") (-713) |#1| (-592 |#2|))) (-15 -3641 ((-3 (-592 |#2|) "failed") |#2| |#1| (-1174 (-592 |#2|)))) (-15 -4186 ((-108) |#1| (-592 |#2|))))
+((-4201 (((-396 |#5|) |#5|) 24)))
+(((-433 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4201 ((-396 |#5|) |#5|))) (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $)) (-15 -3469 ((-3 $ "failed") (-1092))))) (-735) (-517) (-517) (-884 |#4| |#2| |#1|)) (T -433))
+((-4201 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $)) (-15 -3469 ((-3 $ "failed") (-1092)))))) (-4 *5 (-735)) (-4 *7 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-433 *4 *5 *6 *7 *3)) (-4 *6 (-517)) (-4 *3 (-884 *7 *5 *4)))))
+(-10 -7 (-15 -4201 ((-396 |#5|) |#5|)))
+((-2428 ((|#3|) 37)) (-1379 (((-1088 |#4|) (-1088 |#4|) (-1088 |#4|)) 33)))
+(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1379 ((-1088 |#4|) (-1088 |#4|) (-1088 |#4|))) (-15 -2428 (|#3|))) (-735) (-789) (-844) (-884 |#3| |#1| |#2|)) (T -434))
+((-2428 (*1 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-844)) (-5 *1 (-434 *3 *4 *2 *5)) (-4 *5 (-884 *2 *3 *4)))) (-1379 (*1 *2 *2 *2) (-12 (-5 *2 (-1088 *6)) (-4 *6 (-884 *5 *3 *4)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-844)) (-5 *1 (-434 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1379 ((-1088 |#4|) (-1088 |#4|) (-1088 |#4|))) (-15 -2428 (|#3|)))
+((-4201 (((-396 (-1088 |#1|)) (-1088 |#1|)) 43)))
+(((-435 |#1|) (-10 -7 (-15 -4201 ((-396 (-1088 |#1|)) (-1088 |#1|)))) (-286)) (T -435))
+((-4201 (*1 *2 *3) (-12 (-4 *4 (-286)) (-5 *2 (-396 (-1088 *4))) (-5 *1 (-435 *4)) (-5 *3 (-1088 *4)))))
+(-10 -7 (-15 -4201 ((-396 (-1088 |#1|)) (-1088 |#1|))))
+((-1350 (((-51) |#2| (-1092) (-273 |#2|) (-1141 (-713))) 42) (((-51) (-1 |#2| (-525)) (-273 |#2|) (-1141 (-713))) 41) (((-51) |#2| (-1092) (-273 |#2|)) 35) (((-51) (-1 |#2| (-525)) (-273 |#2|)) 28)) (-2996 (((-51) |#2| (-1092) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525))) 80) (((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525))) 79) (((-51) |#2| (-1092) (-273 |#2|) (-1141 (-525))) 78) (((-51) (-1 |#2| (-525)) (-273 |#2|) (-1141 (-525))) 77) (((-51) |#2| (-1092) (-273 |#2|)) 72) (((-51) (-1 |#2| (-525)) (-273 |#2|)) 71)) (-1368 (((-51) |#2| (-1092) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525))) 66) (((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525))) 64)) (-1361 (((-51) |#2| (-1092) (-273 |#2|) (-1141 (-525))) 48) (((-51) (-1 |#2| (-525)) (-273 |#2|) (-1141 (-525))) 47)))
+(((-436 |#1| |#2|) (-10 -7 (-15 -1350 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -1350 ((-51) |#2| (-1092) (-273 |#2|))) (-15 -1350 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1141 (-713)))) (-15 -1350 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-713)))) (-15 -1361 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1141 (-525)))) (-15 -1361 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-525)))) (-15 -1368 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525)))) (-15 -1368 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525)))) (-15 -2996 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -2996 ((-51) |#2| (-1092) (-273 |#2|))) (-15 -2996 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1141 (-525)))) (-15 -2996 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-525)))) (-15 -2996 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525)))) (-15 -2996 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525))))) (-13 (-517) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1114) (-408 |#1|))) (T -436))
+((-2996 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-385 (-525)))) (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1114) (-408 *8))) (-4 *8 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *8 *3)))) (-2996 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8)) (-5 *5 (-1141 (-385 (-525)))) (-5 *6 (-385 (-525))) (-4 *8 (-13 (-27) (-1114) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *8)))) (-2996 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-525))) (-4 *3 (-13 (-27) (-1114) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) (-2996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1141 (-525))) (-4 *7 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) (-2996 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *3)))) (-2996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6)) (-4 *6 (-13 (-27) (-1114) (-408 *5))) (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *5 *6)))) (-1368 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-385 (-525)))) (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1114) (-408 *8))) (-4 *8 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *8 *3)))) (-1368 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8)) (-5 *5 (-1141 (-385 (-525)))) (-5 *6 (-385 (-525))) (-4 *8 (-13 (-27) (-1114) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *8)))) (-1361 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-525))) (-4 *3 (-13 (-27) (-1114) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) (-1361 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1141 (-525))) (-4 *7 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) (-1350 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-713))) (-4 *3 (-13 (-27) (-1114) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) (-1350 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1141 (-713))) (-4 *7 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) (-1350 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *3)))) (-1350 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6)) (-4 *6 (-13 (-27) (-1114) (-408 *5))) (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *5 *6)))))
+(-10 -7 (-15 -1350 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -1350 ((-51) |#2| (-1092) (-273 |#2|))) (-15 -1350 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1141 (-713)))) (-15 -1350 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-713)))) (-15 -1361 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1141 (-525)))) (-15 -1361 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-525)))) (-15 -1368 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525)))) (-15 -1368 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525)))) (-15 -2996 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -2996 ((-51) |#2| (-1092) (-273 |#2|))) (-15 -2996 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1141 (-525)))) (-15 -2996 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-525)))) (-15 -2996 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525)))) (-15 -2996 ((-51) |#2| (-1092) (-273 |#2|) (-1141 (-385 (-525))) (-385 (-525)))))
+((-2600 ((|#2| |#2| |#1|) 15)) (-3687 (((-592 |#2|) |#2| (-592 |#2|) |#1| (-856)) 69)) (-2002 (((-2 (|:| |plist| (-592 |#2|)) (|:| |modulo| |#1|)) |#2| (-592 |#2|) |#1| (-856)) 60)))
+(((-437 |#1| |#2|) (-10 -7 (-15 -2002 ((-2 (|:| |plist| (-592 |#2|)) (|:| |modulo| |#1|)) |#2| (-592 |#2|) |#1| (-856))) (-15 -3687 ((-592 |#2|) |#2| (-592 |#2|) |#1| (-856))) (-15 -2600 (|#2| |#2| |#1|))) (-286) (-1150 |#1|)) (T -437))
+((-2600 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1150 *3)))) (-3687 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-592 *3)) (-5 *5 (-856)) (-4 *3 (-1150 *4)) (-4 *4 (-286)) (-5 *1 (-437 *4 *3)))) (-2002 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-856)) (-4 *5 (-286)) (-4 *3 (-1150 *5)) (-5 *2 (-2 (|:| |plist| (-592 *3)) (|:| |modulo| *5))) (-5 *1 (-437 *5 *3)) (-5 *4 (-592 *3)))))
+(-10 -7 (-15 -2002 ((-2 (|:| |plist| (-592 |#2|)) (|:| |modulo| |#1|)) |#2| (-592 |#2|) |#1| (-856))) (-15 -3687 ((-592 |#2|) |#2| (-592 |#2|) |#1| (-856))) (-15 -2600 (|#2| |#2| |#1|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 28)) (-3473 (($ |#3|) 25)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-1451 (($ $) 32)) (-2153 (($ |#2| |#4| $) 33)) (-1272 (($ |#2| (-656 |#3| |#4| |#5|)) 24)) (-1418 (((-656 |#3| |#4| |#5|) $) 15)) (-3682 ((|#3| $) 19)) (-3735 ((|#4| $) 17)) (-1430 ((|#2| $) 29)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-3100 (($ |#2| |#3| |#4|) 26)) (-3364 (($) 36 T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) 34)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-438 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-660 |#6|) (-660 |#2|) (-10 -8 (-15 -1430 (|#2| $)) (-15 -1418 ((-656 |#3| |#4| |#5|) $)) (-15 -3735 (|#4| $)) (-15 -3682 (|#3| $)) (-15 -1451 ($ $)) (-15 -1272 ($ |#2| (-656 |#3| |#4| |#5|))) (-15 -3473 ($ |#3|)) (-15 -3100 ($ |#2| |#3| |#4|)) (-15 -2153 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-592 (-1092)) (-160) (-789) (-218 (-2827 |#1|) (-713)) (-1 (-108) (-2 (|:| -1722 |#3|) (|:| -2168 |#4|)) (-2 (|:| -1722 |#3|) (|:| -2168 |#4|))) (-884 |#2| |#4| (-800 |#1|))) (T -438))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-592 (-1092))) (-4 *4 (-160)) (-4 *6 (-218 (-2827 *3) (-713))) (-14 *7 (-1 (-108) (-2 (|:| -1722 *5) (|:| -2168 *6)) (-2 (|:| -1722 *5) (|:| -2168 *6)))) (-5 *1 (-438 *3 *4 *5 *6 *7 *2)) (-4 *5 (-789)) (-4 *2 (-884 *4 *6 (-800 *3))))) (-1430 (*1 *2 *1) (-12 (-14 *3 (-592 (-1092))) (-4 *5 (-218 (-2827 *3) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -1722 *4) (|:| -2168 *5)) (-2 (|:| -1722 *4) (|:| -2168 *5)))) (-4 *2 (-160)) (-5 *1 (-438 *3 *2 *4 *5 *6 *7)) (-4 *4 (-789)) (-4 *7 (-884 *2 *5 (-800 *3))))) (-1418 (*1 *2 *1) (-12 (-14 *3 (-592 (-1092))) (-4 *4 (-160)) (-4 *6 (-218 (-2827 *3) (-713))) (-14 *7 (-1 (-108) (-2 (|:| -1722 *5) (|:| -2168 *6)) (-2 (|:| -1722 *5) (|:| -2168 *6)))) (-5 *2 (-656 *5 *6 *7)) (-5 *1 (-438 *3 *4 *5 *6 *7 *8)) (-4 *5 (-789)) (-4 *8 (-884 *4 *6 (-800 *3))))) (-3735 (*1 *2 *1) (-12 (-14 *3 (-592 (-1092))) (-4 *4 (-160)) (-14 *6 (-1 (-108) (-2 (|:| -1722 *5) (|:| -2168 *2)) (-2 (|:| -1722 *5) (|:| -2168 *2)))) (-4 *2 (-218 (-2827 *3) (-713))) (-5 *1 (-438 *3 *4 *5 *2 *6 *7)) (-4 *5 (-789)) (-4 *7 (-884 *4 *2 (-800 *3))))) (-3682 (*1 *2 *1) (-12 (-14 *3 (-592 (-1092))) (-4 *4 (-160)) (-4 *5 (-218 (-2827 *3) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -1722 *2) (|:| -2168 *5)) (-2 (|:| -1722 *2) (|:| -2168 *5)))) (-4 *2 (-789)) (-5 *1 (-438 *3 *4 *2 *5 *6 *7)) (-4 *7 (-884 *4 *5 (-800 *3))))) (-1451 (*1 *1 *1) (-12 (-14 *2 (-592 (-1092))) (-4 *3 (-160)) (-4 *5 (-218 (-2827 *2) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -1722 *4) (|:| -2168 *5)) (-2 (|:| -1722 *4) (|:| -2168 *5)))) (-5 *1 (-438 *2 *3 *4 *5 *6 *7)) (-4 *4 (-789)) (-4 *7 (-884 *3 *5 (-800 *2))))) (-1272 (*1 *1 *2 *3) (-12 (-5 *3 (-656 *5 *6 *7)) (-4 *5 (-789)) (-4 *6 (-218 (-2827 *4) (-713))) (-14 *7 (-1 (-108) (-2 (|:| -1722 *5) (|:| -2168 *6)) (-2 (|:| -1722 *5) (|:| -2168 *6)))) (-14 *4 (-592 (-1092))) (-4 *2 (-160)) (-5 *1 (-438 *4 *2 *5 *6 *7 *8)) (-4 *8 (-884 *2 *6 (-800 *4))))) (-3473 (*1 *1 *2) (-12 (-14 *3 (-592 (-1092))) (-4 *4 (-160)) (-4 *5 (-218 (-2827 *3) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -1722 *2) (|:| -2168 *5)) (-2 (|:| -1722 *2) (|:| -2168 *5)))) (-5 *1 (-438 *3 *4 *2 *5 *6 *7)) (-4 *2 (-789)) (-4 *7 (-884 *4 *5 (-800 *3))))) (-3100 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-592 (-1092))) (-4 *2 (-160)) (-4 *4 (-218 (-2827 *5) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -1722 *3) (|:| -2168 *4)) (-2 (|:| -1722 *3) (|:| -2168 *4)))) (-5 *1 (-438 *5 *2 *3 *4 *6 *7)) (-4 *3 (-789)) (-4 *7 (-884 *2 *4 (-800 *5))))) (-2153 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-592 (-1092))) (-4 *2 (-160)) (-4 *3 (-218 (-2827 *4) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -1722 *5) (|:| -2168 *3)) (-2 (|:| -1722 *5) (|:| -2168 *3)))) (-5 *1 (-438 *4 *2 *5 *3 *6 *7)) (-4 *5 (-789)) (-4 *7 (-884 *2 *3 (-800 *4))))))
+(-13 (-660 |#6|) (-660 |#2|) (-10 -8 (-15 -1430 (|#2| $)) (-15 -1418 ((-656 |#3| |#4| |#5|) $)) (-15 -3735 (|#4| $)) (-15 -3682 (|#3| $)) (-15 -1451 ($ $)) (-15 -1272 ($ |#2| (-656 |#3| |#4| |#5|))) (-15 -3473 ($ |#3|)) (-15 -3100 ($ |#2| |#3| |#4|)) (-15 -2153 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-1932 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
+(((-439 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1932 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-735) (-789) (-517) (-884 |#3| |#1| |#2|) (-13 (-968 (-385 (-525))) (-341) (-10 -8 (-15 -4100 ($ |#4|)) (-15 -4066 (|#4| $)) (-15 -4080 (|#4| $))))) (T -439))
+((-1932 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-789)) (-4 *5 (-735)) (-4 *6 (-517)) (-4 *7 (-884 *6 *5 *3)) (-5 *1 (-439 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-968 (-385 (-525))) (-341) (-10 -8 (-15 -4100 ($ *7)) (-15 -4066 (*7 $)) (-15 -4080 (*7 $))))))))
+(-10 -7 (-15 -1932 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-4087 (((-108) $ $) NIL)) (-1296 (((-592 |#3|) $) 41)) (-2071 (((-108) $) NIL)) (-3093 (((-108) $) NIL (|has| |#1| (-517)))) (-1842 (((-2 (|:| |under| $) (|:| -1340 $) (|:| |upper| $)) $ |#3|) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-2399 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-2475 (($) NIL T CONST)) (-3542 (((-108) $) NIL (|has| |#1| (-517)))) (-2462 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2390 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1698 (((-108) $) NIL (|has| |#1| (-517)))) (-3308 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1655 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1934 (((-3 $ "failed") (-592 |#4|)) 47)) (-4105 (($ (-592 |#4|)) NIL)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020))))) (-2698 (($ |#4| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-3681 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-3504 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4259))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4259)))) (-2175 (((-592 |#4|) $) 18 (|has| $ (-6 -4259)))) (-2577 ((|#3| $) 45)) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 |#4|) $) 14 (|has| $ (-6 -4259)))) (-3198 (((-108) |#4| $) 26 (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020))))) (-3069 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#4| |#4|) $) 21)) (-3435 (((-592 |#3|) $) NIL)) (-2468 (((-108) |#3| $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL)) (-2991 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-3993 (((-1039) $) NIL)) (-4202 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-1518 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) 39)) (-1558 (($) 17)) (-4002 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) 16)) (-2069 (((-501) $) NIL (|has| |#4| (-567 (-501)))) (($ (-592 |#4|)) 49)) (-4114 (($ (-592 |#4|)) 13)) (-4151 (($ $ |#3|) NIL)) (-3522 (($ $ |#3|) NIL)) (-3963 (($ $ |#3|) NIL)) (-4100 (((-798) $) 38) (((-592 |#4|) $) 48)) (-2706 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 30)) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-440 |#1| |#2| |#3| |#4|) (-13 (-909 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2069 ($ (-592 |#4|))) (-6 -4259) (-6 -4260))) (-977) (-735) (-789) (-991 |#1| |#2| |#3|)) (T -440))
+((-2069 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-440 *3 *4 *5 *6)))))
+(-13 (-909 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2069 ($ (-592 |#4|))) (-6 -4259) (-6 -4260)))
+((-3364 (($) 11)) (-3375 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-441 |#1| |#2| |#3|) (-10 -8 (-15 -3375 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3364 (|#1|))) (-442 |#2| |#3|) (-160) (-23)) (T -441))
+NIL
+(-10 -8 (-15 -3375 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3364 (|#1|)))
+((-4087 (((-108) $ $) 7)) (-1934 (((-3 |#1| "failed") $) 26)) (-4105 ((|#1| $) 25)) (-3125 (($ $ $) 23)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-3529 ((|#2| $) 19)) (-4100 (((-798) $) 11) (($ |#1|) 27)) (-3364 (($) 18 T CONST)) (-3375 (($) 24 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 15) (($ $ $) 13)) (-2860 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-442 |#1| |#2|) (-131) (-160) (-23)) (T -442))
-((-3359 (*1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-1683 (*1 *1 *1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))))
-(-13 (-447 |t#1| |t#2|) (-968 |t#1|) (-10 -8 (-15 (-3359) ($) -2709) (-15 -1683 ($ $ $))))
+((-3375 (*1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-3125 (*1 *1 *1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))))
+(-13 (-447 |t#1| |t#2|) (-968 |t#1|) (-10 -8 (-15 (-3375) ($) -2247) (-15 -3125 ($ $ $))))
(((-97) . T) ((-566 (-798)) . T) ((-447 |#1| |#2|) . T) ((-968 |#1|) . T) ((-1020) . T))
-((-3295 (((-1174 (-1174 (-525))) (-1174 (-1174 (-525))) (-856)) 18)) (-4181 (((-1174 (-1174 (-525))) (-856)) 16)))
-(((-443) (-10 -7 (-15 -3295 ((-1174 (-1174 (-525))) (-1174 (-1174 (-525))) (-856))) (-15 -4181 ((-1174 (-1174 (-525))) (-856))))) (T -443))
-((-4181 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1174 (-1174 (-525)))) (-5 *1 (-443)))) (-3295 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-1174 (-525)))) (-5 *3 (-856)) (-5 *1 (-443)))))
-(-10 -7 (-15 -3295 ((-1174 (-1174 (-525))) (-1174 (-1174 (-525))) (-856))) (-15 -4181 ((-1174 (-1174 (-525))) (-856))))
-((-3605 (((-525) (-525)) 30) (((-525)) 22)) (-1493 (((-525) (-525)) 26) (((-525)) 18)) (-1550 (((-525) (-525)) 28) (((-525)) 20)) (-3734 (((-108) (-108)) 12) (((-108)) 10)) (-3887 (((-108) (-108)) 11) (((-108)) 9)) (-4066 (((-108) (-108)) 24) (((-108)) 15)))
-(((-444) (-10 -7 (-15 -3887 ((-108))) (-15 -3734 ((-108))) (-15 -3887 ((-108) (-108))) (-15 -3734 ((-108) (-108))) (-15 -4066 ((-108))) (-15 -1550 ((-525))) (-15 -1493 ((-525))) (-15 -3605 ((-525))) (-15 -4066 ((-108) (-108))) (-15 -1550 ((-525) (-525))) (-15 -1493 ((-525) (-525))) (-15 -3605 ((-525) (-525))))) (T -444))
-((-3605 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-1550 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-4066 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-3605 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-1493 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-1550 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-4066 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-3734 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-3887 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-3734 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-3887 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))))
-(-10 -7 (-15 -3887 ((-108))) (-15 -3734 ((-108))) (-15 -3887 ((-108) (-108))) (-15 -3734 ((-108) (-108))) (-15 -4066 ((-108))) (-15 -1550 ((-525))) (-15 -1493 ((-525))) (-15 -3605 ((-525))) (-15 -4066 ((-108) (-108))) (-15 -1550 ((-525) (-525))) (-15 -1493 ((-525) (-525))) (-15 -3605 ((-525) (-525))))
-((-4236 (((-108) $ $) NIL)) (-3306 (((-592 (-357)) $) 28) (((-592 (-357)) $ (-592 (-357))) 95)) (-3091 (((-592 (-1015 (-357))) $) 16) (((-592 (-1015 (-357))) $ (-592 (-1015 (-357)))) 92)) (-3982 (((-592 (-592 (-878 (-205)))) (-592 (-592 (-878 (-205)))) (-592 (-809))) 44)) (-2191 (((-592 (-592 (-878 (-205)))) $) 88)) (-2568 (((-1179) $ (-878 (-205)) (-809)) 107)) (-2317 (($ $) 87) (($ (-592 (-592 (-878 (-205))))) 98) (($ (-592 (-592 (-878 (-205)))) (-592 (-809)) (-592 (-809)) (-592 (-856))) 97) (($ (-592 (-592 (-878 (-205)))) (-592 (-809)) (-592 (-809)) (-592 (-856)) (-592 (-242))) 99)) (-2619 (((-1075) $) NIL)) (-3364 (((-525) $) 69)) (-2093 (((-1039) $) NIL)) (-1766 (($) 96)) (-3580 (((-592 (-205)) (-592 (-592 (-878 (-205))))) 54)) (-3177 (((-1179) $ (-592 (-878 (-205))) (-809) (-809) (-856)) 101) (((-1179) $ (-878 (-205))) 103) (((-1179) $ (-878 (-205)) (-809) (-809) (-856)) 102)) (-1217 (((-798) $) 113) (($ (-592 (-592 (-878 (-205))))) 108)) (-2833 (((-1179) $ (-878 (-205))) 106)) (-3955 (((-108) $ $) NIL)))
-(((-445) (-13 (-1020) (-10 -8 (-15 -1766 ($)) (-15 -2317 ($ $)) (-15 -2317 ($ (-592 (-592 (-878 (-205)))))) (-15 -2317 ($ (-592 (-592 (-878 (-205)))) (-592 (-809)) (-592 (-809)) (-592 (-856)))) (-15 -2317 ($ (-592 (-592 (-878 (-205)))) (-592 (-809)) (-592 (-809)) (-592 (-856)) (-592 (-242)))) (-15 -2191 ((-592 (-592 (-878 (-205)))) $)) (-15 -3364 ((-525) $)) (-15 -3091 ((-592 (-1015 (-357))) $)) (-15 -3091 ((-592 (-1015 (-357))) $ (-592 (-1015 (-357))))) (-15 -3306 ((-592 (-357)) $)) (-15 -3306 ((-592 (-357)) $ (-592 (-357)))) (-15 -3177 ((-1179) $ (-592 (-878 (-205))) (-809) (-809) (-856))) (-15 -3177 ((-1179) $ (-878 (-205)))) (-15 -3177 ((-1179) $ (-878 (-205)) (-809) (-809) (-856))) (-15 -2833 ((-1179) $ (-878 (-205)))) (-15 -2568 ((-1179) $ (-878 (-205)) (-809))) (-15 -1217 ($ (-592 (-592 (-878 (-205)))))) (-15 -1217 ((-798) $)) (-15 -3982 ((-592 (-592 (-878 (-205)))) (-592 (-592 (-878 (-205)))) (-592 (-809)))) (-15 -3580 ((-592 (-205)) (-592 (-592 (-878 (-205))))))))) (T -445))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-445)))) (-1766 (*1 *1) (-5 *1 (-445))) (-2317 (*1 *1 *1) (-5 *1 (-445))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-445)))) (-2317 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *3 (-592 (-809))) (-5 *4 (-592 (-856))) (-5 *1 (-445)))) (-2317 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *3 (-592 (-809))) (-5 *4 (-592 (-856))) (-5 *5 (-592 (-242))) (-5 *1 (-445)))) (-2191 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-445)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-445)))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-445)))) (-3091 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-445)))) (-3306 (*1 *2 *1) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445)))) (-3306 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445)))) (-3177 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-592 (-878 (-205)))) (-5 *4 (-809)) (-5 *5 (-856)) (-5 *2 (-1179)) (-5 *1 (-445)))) (-3177 (*1 *2 *1 *3) (-12 (-5 *3 (-878 (-205))) (-5 *2 (-1179)) (-5 *1 (-445)))) (-3177 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-878 (-205))) (-5 *4 (-809)) (-5 *5 (-856)) (-5 *2 (-1179)) (-5 *1 (-445)))) (-2833 (*1 *2 *1 *3) (-12 (-5 *3 (-878 (-205))) (-5 *2 (-1179)) (-5 *1 (-445)))) (-2568 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878 (-205))) (-5 *4 (-809)) (-5 *2 (-1179)) (-5 *1 (-445)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-445)))) (-3982 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *3 (-592 (-809))) (-5 *1 (-445)))) (-3580 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *2 (-592 (-205))) (-5 *1 (-445)))))
-(-13 (-1020) (-10 -8 (-15 -1766 ($)) (-15 -2317 ($ $)) (-15 -2317 ($ (-592 (-592 (-878 (-205)))))) (-15 -2317 ($ (-592 (-592 (-878 (-205)))) (-592 (-809)) (-592 (-809)) (-592 (-856)))) (-15 -2317 ($ (-592 (-592 (-878 (-205)))) (-592 (-809)) (-592 (-809)) (-592 (-856)) (-592 (-242)))) (-15 -2191 ((-592 (-592 (-878 (-205)))) $)) (-15 -3364 ((-525) $)) (-15 -3091 ((-592 (-1015 (-357))) $)) (-15 -3091 ((-592 (-1015 (-357))) $ (-592 (-1015 (-357))))) (-15 -3306 ((-592 (-357)) $)) (-15 -3306 ((-592 (-357)) $ (-592 (-357)))) (-15 -3177 ((-1179) $ (-592 (-878 (-205))) (-809) (-809) (-856))) (-15 -3177 ((-1179) $ (-878 (-205)))) (-15 -3177 ((-1179) $ (-878 (-205)) (-809) (-809) (-856))) (-15 -2833 ((-1179) $ (-878 (-205)))) (-15 -2568 ((-1179) $ (-878 (-205)) (-809))) (-15 -1217 ($ (-592 (-592 (-878 (-205)))))) (-15 -1217 ((-798) $)) (-15 -3982 ((-592 (-592 (-878 (-205)))) (-592 (-592 (-878 (-205)))) (-592 (-809)))) (-15 -3580 ((-592 (-205)) (-592 (-592 (-878 (-205))))))))
-((-4061 (($ $) NIL) (($ $ $) 11)))
-(((-446 |#1| |#2| |#3|) (-10 -8 (-15 -4061 (|#1| |#1| |#1|)) (-15 -4061 (|#1| |#1|))) (-447 |#2| |#3|) (-160) (-23)) (T -446))
-NIL
-(-10 -8 (-15 -4061 (|#1| |#1| |#1|)) (-15 -4061 (|#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-2343 ((|#2| $) 19)) (-1217 (((-798) $) 11)) (-3349 (($) 18 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 15) (($ $ $) 13)) (-4047 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-1391 (((-1174 (-1174 (-525))) (-1174 (-1174 (-525))) (-856)) 18)) (-2072 (((-1174 (-1174 (-525))) (-856)) 16)))
+(((-443) (-10 -7 (-15 -1391 ((-1174 (-1174 (-525))) (-1174 (-1174 (-525))) (-856))) (-15 -2072 ((-1174 (-1174 (-525))) (-856))))) (T -443))
+((-2072 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1174 (-1174 (-525)))) (-5 *1 (-443)))) (-1391 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-1174 (-525)))) (-5 *3 (-856)) (-5 *1 (-443)))))
+(-10 -7 (-15 -1391 ((-1174 (-1174 (-525))) (-1174 (-1174 (-525))) (-856))) (-15 -2072 ((-1174 (-1174 (-525))) (-856))))
+((-2336 (((-525) (-525)) 30) (((-525)) 22)) (-3951 (((-525) (-525)) 26) (((-525)) 18)) (-1664 (((-525) (-525)) 28) (((-525)) 20)) (-1212 (((-108) (-108)) 12) (((-108)) 10)) (-2127 (((-108) (-108)) 11) (((-108)) 9)) (-3314 (((-108) (-108)) 24) (((-108)) 15)))
+(((-444) (-10 -7 (-15 -2127 ((-108))) (-15 -1212 ((-108))) (-15 -2127 ((-108) (-108))) (-15 -1212 ((-108) (-108))) (-15 -3314 ((-108))) (-15 -1664 ((-525))) (-15 -3951 ((-525))) (-15 -2336 ((-525))) (-15 -3314 ((-108) (-108))) (-15 -1664 ((-525) (-525))) (-15 -3951 ((-525) (-525))) (-15 -2336 ((-525) (-525))))) (T -444))
+((-2336 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-3951 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-1664 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-3314 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-2336 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-3951 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-1664 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-3314 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-1212 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-2127 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-1212 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-2127 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))))
+(-10 -7 (-15 -2127 ((-108))) (-15 -1212 ((-108))) (-15 -2127 ((-108) (-108))) (-15 -1212 ((-108) (-108))) (-15 -3314 ((-108))) (-15 -1664 ((-525))) (-15 -3951 ((-525))) (-15 -2336 ((-525))) (-15 -3314 ((-108) (-108))) (-15 -1664 ((-525) (-525))) (-15 -3951 ((-525) (-525))) (-15 -2336 ((-525) (-525))))
+((-4087 (((-108) $ $) NIL)) (-1526 (((-592 (-357)) $) 28) (((-592 (-357)) $ (-592 (-357))) 95)) (-2073 (((-592 (-1015 (-357))) $) 16) (((-592 (-1015 (-357))) $ (-592 (-1015 (-357)))) 92)) (-1905 (((-592 (-592 (-878 (-205)))) (-592 (-592 (-878 (-205)))) (-592 (-809))) 44)) (-1486 (((-592 (-592 (-878 (-205)))) $) 88)) (-4112 (((-1179) $ (-878 (-205)) (-809)) 107)) (-3233 (($ $) 87) (($ (-592 (-592 (-878 (-205))))) 98) (($ (-592 (-592 (-878 (-205)))) (-592 (-809)) (-592 (-809)) (-592 (-856))) 97) (($ (-592 (-592 (-878 (-205)))) (-592 (-809)) (-592 (-809)) (-592 (-856)) (-592 (-242))) 99)) (-1289 (((-1075) $) NIL)) (-1556 (((-525) $) 69)) (-3993 (((-1039) $) NIL)) (-2683 (($) 96)) (-2110 (((-592 (-205)) (-592 (-592 (-878 (-205))))) 54)) (-1617 (((-1179) $ (-592 (-878 (-205))) (-809) (-809) (-856)) 101) (((-1179) $ (-878 (-205))) 103) (((-1179) $ (-878 (-205)) (-809) (-809) (-856)) 102)) (-4100 (((-798) $) 113) (($ (-592 (-592 (-878 (-205))))) 108)) (-1459 (((-1179) $ (-878 (-205))) 106)) (-2775 (((-108) $ $) NIL)))
+(((-445) (-13 (-1020) (-10 -8 (-15 -2683 ($)) (-15 -3233 ($ $)) (-15 -3233 ($ (-592 (-592 (-878 (-205)))))) (-15 -3233 ($ (-592 (-592 (-878 (-205)))) (-592 (-809)) (-592 (-809)) (-592 (-856)))) (-15 -3233 ($ (-592 (-592 (-878 (-205)))) (-592 (-809)) (-592 (-809)) (-592 (-856)) (-592 (-242)))) (-15 -1486 ((-592 (-592 (-878 (-205)))) $)) (-15 -1556 ((-525) $)) (-15 -2073 ((-592 (-1015 (-357))) $)) (-15 -2073 ((-592 (-1015 (-357))) $ (-592 (-1015 (-357))))) (-15 -1526 ((-592 (-357)) $)) (-15 -1526 ((-592 (-357)) $ (-592 (-357)))) (-15 -1617 ((-1179) $ (-592 (-878 (-205))) (-809) (-809) (-856))) (-15 -1617 ((-1179) $ (-878 (-205)))) (-15 -1617 ((-1179) $ (-878 (-205)) (-809) (-809) (-856))) (-15 -1459 ((-1179) $ (-878 (-205)))) (-15 -4112 ((-1179) $ (-878 (-205)) (-809))) (-15 -4100 ($ (-592 (-592 (-878 (-205)))))) (-15 -4100 ((-798) $)) (-15 -1905 ((-592 (-592 (-878 (-205)))) (-592 (-592 (-878 (-205)))) (-592 (-809)))) (-15 -2110 ((-592 (-205)) (-592 (-592 (-878 (-205))))))))) (T -445))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-445)))) (-2683 (*1 *1) (-5 *1 (-445))) (-3233 (*1 *1 *1) (-5 *1 (-445))) (-3233 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-445)))) (-3233 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *3 (-592 (-809))) (-5 *4 (-592 (-856))) (-5 *1 (-445)))) (-3233 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *3 (-592 (-809))) (-5 *4 (-592 (-856))) (-5 *5 (-592 (-242))) (-5 *1 (-445)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-445)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-445)))) (-2073 (*1 *2 *1) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-445)))) (-2073 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-445)))) (-1526 (*1 *2 *1) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445)))) (-1526 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445)))) (-1617 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-592 (-878 (-205)))) (-5 *4 (-809)) (-5 *5 (-856)) (-5 *2 (-1179)) (-5 *1 (-445)))) (-1617 (*1 *2 *1 *3) (-12 (-5 *3 (-878 (-205))) (-5 *2 (-1179)) (-5 *1 (-445)))) (-1617 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-878 (-205))) (-5 *4 (-809)) (-5 *5 (-856)) (-5 *2 (-1179)) (-5 *1 (-445)))) (-1459 (*1 *2 *1 *3) (-12 (-5 *3 (-878 (-205))) (-5 *2 (-1179)) (-5 *1 (-445)))) (-4112 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878 (-205))) (-5 *4 (-809)) (-5 *2 (-1179)) (-5 *1 (-445)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-445)))) (-1905 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *3 (-592 (-809))) (-5 *1 (-445)))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *2 (-592 (-205))) (-5 *1 (-445)))))
+(-13 (-1020) (-10 -8 (-15 -2683 ($)) (-15 -3233 ($ $)) (-15 -3233 ($ (-592 (-592 (-878 (-205)))))) (-15 -3233 ($ (-592 (-592 (-878 (-205)))) (-592 (-809)) (-592 (-809)) (-592 (-856)))) (-15 -3233 ($ (-592 (-592 (-878 (-205)))) (-592 (-809)) (-592 (-809)) (-592 (-856)) (-592 (-242)))) (-15 -1486 ((-592 (-592 (-878 (-205)))) $)) (-15 -1556 ((-525) $)) (-15 -2073 ((-592 (-1015 (-357))) $)) (-15 -2073 ((-592 (-1015 (-357))) $ (-592 (-1015 (-357))))) (-15 -1526 ((-592 (-357)) $)) (-15 -1526 ((-592 (-357)) $ (-592 (-357)))) (-15 -1617 ((-1179) $ (-592 (-878 (-205))) (-809) (-809) (-856))) (-15 -1617 ((-1179) $ (-878 (-205)))) (-15 -1617 ((-1179) $ (-878 (-205)) (-809) (-809) (-856))) (-15 -1459 ((-1179) $ (-878 (-205)))) (-15 -4112 ((-1179) $ (-878 (-205)) (-809))) (-15 -4100 ($ (-592 (-592 (-878 (-205)))))) (-15 -4100 ((-798) $)) (-15 -1905 ((-592 (-592 (-878 (-205)))) (-592 (-592 (-878 (-205)))) (-592 (-809)))) (-15 -2110 ((-592 (-205)) (-592 (-592 (-878 (-205))))))))
+((-2871 (($ $) NIL) (($ $ $) 11)))
+(((-446 |#1| |#2| |#3|) (-10 -8 (-15 -2871 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|))) (-447 |#2| |#3|) (-160) (-23)) (T -446))
+NIL
+(-10 -8 (-15 -2871 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-3529 ((|#2| $) 19)) (-4100 (((-798) $) 11)) (-3364 (($) 18 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 15) (($ $ $) 13)) (-2860 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-447 |#1| |#2|) (-131) (-160) (-23)) (T -447))
-((-2343 (*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-160)) (-4 *2 (-23)))) (-3349 (*1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-4061 (*1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-4047 (*1 *1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-4061 (*1 *1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))))
-(-13 (-1020) (-10 -8 (-15 -2343 (|t#2| $)) (-15 (-3349) ($) -2709) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4061 ($ $)) (-15 -4047 ($ $ $)) (-15 -4061 ($ $ $))))
+((-3529 (*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-160)) (-4 *2 (-23)))) (-3364 (*1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-2871 (*1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-2860 (*1 *1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-2871 (*1 *1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))))
+(-13 (-1020) (-10 -8 (-15 -3529 (|t#2| $)) (-15 (-3364) ($) -2247) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2871 ($ $)) (-15 -2860 ($ $ $)) (-15 -2871 ($ $ $))))
(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-2438 (((-3 (-592 (-457 |#1| |#2|)) "failed") (-592 (-457 |#1| |#2|)) (-592 (-800 |#1|))) 93)) (-3925 (((-592 (-592 (-227 |#1| |#2|))) (-592 (-227 |#1| |#2|)) (-592 (-800 |#1|))) 91)) (-3213 (((-2 (|:| |dpolys| (-592 (-227 |#1| |#2|))) (|:| |coords| (-592 (-525)))) (-592 (-227 |#1| |#2|)) (-592 (-800 |#1|))) 61)))
-(((-448 |#1| |#2| |#3|) (-10 -7 (-15 -3925 ((-592 (-592 (-227 |#1| |#2|))) (-592 (-227 |#1| |#2|)) (-592 (-800 |#1|)))) (-15 -2438 ((-3 (-592 (-457 |#1| |#2|)) "failed") (-592 (-457 |#1| |#2|)) (-592 (-800 |#1|)))) (-15 -3213 ((-2 (|:| |dpolys| (-592 (-227 |#1| |#2|))) (|:| |coords| (-592 (-525)))) (-592 (-227 |#1| |#2|)) (-592 (-800 |#1|))))) (-592 (-1092)) (-429) (-429)) (T -448))
-((-3213 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-800 *5))) (-14 *5 (-592 (-1092))) (-4 *6 (-429)) (-5 *2 (-2 (|:| |dpolys| (-592 (-227 *5 *6))) (|:| |coords| (-592 (-525))))) (-5 *1 (-448 *5 *6 *7)) (-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429)))) (-2438 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-592 (-800 *4))) (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *1 (-448 *4 *5 *6)) (-4 *6 (-429)))) (-3925 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-800 *5))) (-14 *5 (-592 (-1092))) (-4 *6 (-429)) (-5 *2 (-592 (-592 (-227 *5 *6)))) (-5 *1 (-448 *5 *6 *7)) (-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429)))))
-(-10 -7 (-15 -3925 ((-592 (-592 (-227 |#1| |#2|))) (-592 (-227 |#1| |#2|)) (-592 (-800 |#1|)))) (-15 -2438 ((-3 (-592 (-457 |#1| |#2|)) "failed") (-592 (-457 |#1| |#2|)) (-592 (-800 |#1|)))) (-15 -3213 ((-2 (|:| |dpolys| (-592 (-227 |#1| |#2|))) (|:| |coords| (-592 (-525)))) (-592 (-227 |#1| |#2|)) (-592 (-800 |#1|)))))
-((-3457 (((-3 $ "failed") $) 11)) (-1499 (($ $ $) 20)) (-1990 (($ $ $) 21)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 14)) (-4075 (($ $ $) 9)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 19)))
-(((-449 |#1|) (-10 -8 (-15 -1990 (|#1| |#1| |#1|)) (-15 -1499 (|#1| |#1| |#1|)) (-15 -1619 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 -4075 (|#1| |#1| |#1|)) (-15 -3457 ((-3 |#1| "failed") |#1|)) (-15 -1619 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -1619 (|#1| |#1| (-856))) (-15 ** (|#1| |#1| (-856)))) (-450)) (T -449))
-NIL
-(-10 -8 (-15 -1990 (|#1| |#1| |#1|)) (-15 -1499 (|#1| |#1| |#1|)) (-15 -1619 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 -4075 (|#1| |#1| |#1|)) (-15 -3457 ((-3 |#1| "failed") |#1|)) (-15 -1619 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -1619 (|#1| |#1| (-856))) (-15 ** (|#1| |#1| (-856))))
-((-4236 (((-108) $ $) 7)) (-2169 (($) 20 T CONST)) (-3457 (((-3 $ "failed") $) 16)) (-1396 (((-108) $) 19)) (-2619 (((-1075) $) 9)) (-2997 (($ $) 27)) (-2093 (((-1039) $) 10)) (-1499 (($ $ $) 23)) (-1990 (($ $ $) 22)) (-1217 (((-798) $) 11)) (-1619 (($ $ (-856)) 13) (($ $ (-713)) 17) (($ $ (-525)) 24)) (-3359 (($) 21 T CONST)) (-3955 (((-108) $ $) 6)) (-4075 (($ $ $) 26)) (** (($ $ (-856)) 14) (($ $ (-713)) 18) (($ $ (-525)) 25)) (* (($ $ $) 15)))
+((-2080 (((-3 (-592 (-457 |#1| |#2|)) "failed") (-592 (-457 |#1| |#2|)) (-592 (-800 |#1|))) 93)) (-2526 (((-592 (-592 (-227 |#1| |#2|))) (-592 (-227 |#1| |#2|)) (-592 (-800 |#1|))) 91)) (-1938 (((-2 (|:| |dpolys| (-592 (-227 |#1| |#2|))) (|:| |coords| (-592 (-525)))) (-592 (-227 |#1| |#2|)) (-592 (-800 |#1|))) 61)))
+(((-448 |#1| |#2| |#3|) (-10 -7 (-15 -2526 ((-592 (-592 (-227 |#1| |#2|))) (-592 (-227 |#1| |#2|)) (-592 (-800 |#1|)))) (-15 -2080 ((-3 (-592 (-457 |#1| |#2|)) "failed") (-592 (-457 |#1| |#2|)) (-592 (-800 |#1|)))) (-15 -1938 ((-2 (|:| |dpolys| (-592 (-227 |#1| |#2|))) (|:| |coords| (-592 (-525)))) (-592 (-227 |#1| |#2|)) (-592 (-800 |#1|))))) (-592 (-1092)) (-429) (-429)) (T -448))
+((-1938 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-800 *5))) (-14 *5 (-592 (-1092))) (-4 *6 (-429)) (-5 *2 (-2 (|:| |dpolys| (-592 (-227 *5 *6))) (|:| |coords| (-592 (-525))))) (-5 *1 (-448 *5 *6 *7)) (-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429)))) (-2080 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-592 (-800 *4))) (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *1 (-448 *4 *5 *6)) (-4 *6 (-429)))) (-2526 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-800 *5))) (-14 *5 (-592 (-1092))) (-4 *6 (-429)) (-5 *2 (-592 (-592 (-227 *5 *6)))) (-5 *1 (-448 *5 *6 *7)) (-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429)))))
+(-10 -7 (-15 -2526 ((-592 (-592 (-227 |#1| |#2|))) (-592 (-227 |#1| |#2|)) (-592 (-800 |#1|)))) (-15 -2080 ((-3 (-592 (-457 |#1| |#2|)) "failed") (-592 (-457 |#1| |#2|)) (-592 (-800 |#1|)))) (-15 -1938 ((-2 (|:| |dpolys| (-592 (-227 |#1| |#2|))) (|:| |coords| (-592 (-525)))) (-592 (-227 |#1| |#2|)) (-592 (-800 |#1|)))))
+((-3300 (((-3 $ "failed") $) 11)) (-3055 (($ $ $) 20)) (-1242 (($ $ $) 21)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 14)) (-2880 (($ $ $) 9)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 19)))
+(((-449 |#1|) (-10 -8 (-15 -1242 (|#1| |#1| |#1|)) (-15 -3055 (|#1| |#1| |#1|)) (-15 -3706 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 -2880 (|#1| |#1| |#1|)) (-15 -3300 ((-3 |#1| "failed") |#1|)) (-15 -3706 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -3706 (|#1| |#1| (-856))) (-15 ** (|#1| |#1| (-856)))) (-450)) (T -449))
+NIL
+(-10 -8 (-15 -1242 (|#1| |#1| |#1|)) (-15 -3055 (|#1| |#1| |#1|)) (-15 -3706 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 -2880 (|#1| |#1| |#1|)) (-15 -3300 ((-3 |#1| "failed") |#1|)) (-15 -3706 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -3706 (|#1| |#1| (-856))) (-15 ** (|#1| |#1| (-856))))
+((-4087 (((-108) $ $) 7)) (-2475 (($) 20 T CONST)) (-3300 (((-3 $ "failed") $) 16)) (-2278 (((-108) $) 19)) (-1289 (((-1075) $) 9)) (-1387 (($ $) 27)) (-3993 (((-1039) $) 10)) (-3055 (($ $ $) 23)) (-1242 (($ $ $) 22)) (-4100 (((-798) $) 11)) (-3706 (($ $ (-856)) 13) (($ $ (-713)) 17) (($ $ (-525)) 24)) (-3375 (($) 21 T CONST)) (-2775 (((-108) $ $) 6)) (-2880 (($ $ $) 26)) (** (($ $ (-856)) 14) (($ $ (-713)) 18) (($ $ (-525)) 25)) (* (($ $ $) 15)))
(((-450) (-131)) (T -450))
-((-2997 (*1 *1 *1) (-4 *1 (-450))) (-4075 (*1 *1 *1 *1) (-4 *1 (-450))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525)))) (-1619 (*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525)))) (-1499 (*1 *1 *1 *1) (-4 *1 (-450))) (-1990 (*1 *1 *1 *1) (-4 *1 (-450))))
-(-13 (-669) (-10 -8 (-15 -2997 ($ $)) (-15 -4075 ($ $ $)) (-15 ** ($ $ (-525))) (-15 -1619 ($ $ (-525))) (-6 -4255) (-15 -1499 ($ $ $)) (-15 -1990 ($ $ $))))
+((-1387 (*1 *1 *1) (-4 *1 (-450))) (-2880 (*1 *1 *1 *1) (-4 *1 (-450))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525)))) (-3706 (*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525)))) (-3055 (*1 *1 *1 *1) (-4 *1 (-450))) (-1242 (*1 *1 *1 *1) (-4 *1 (-450))))
+(-13 (-669) (-10 -8 (-15 -1387 ($ $)) (-15 -2880 ($ $ $)) (-15 ** ($ $ (-525))) (-15 -3706 ($ $ (-525))) (-6 -4256) (-15 -3055 ($ $ $)) (-15 -1242 ($ $ $))))
(((-97) . T) ((-566 (-798)) . T) ((-669) . T) ((-1032) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2897 (((-592 (-1005)) $) NIL)) (-2499 (((-1092) $) 17)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-3828 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-2755 (((-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) NIL)) (-1575 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2804 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL (|has| |#1| (-341)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2782 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2193 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1549 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2780 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2598 (($ (-713) (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-1599 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2169 (($) NIL T CONST)) (-1747 (($ $ $) NIL (|has| |#1| (-341)))) (-3063 (($ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1733 (($ $ $) NIL (|has| |#1| (-341)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3673 (((-108) $) NIL (|has| |#1| (-341)))) (-2398 (((-108) $) NIL)) (-3140 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2581 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) NIL)) (-1396 (((-108) $) NIL)) (-2171 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3326 (($ $ (-856)) NIL) (($ $ (-385 (-525))) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-385 (-525))) NIL) (($ $ (-1005) (-385 (-525))) NIL) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) NIL)) (-3165 (($ (-1 |#1| |#1|) $) 22)) (-1517 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL (|has| |#1| (-341)))) (-1206 (($ $) 26 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) 33 (-3254 (-12 (|has| |#1| (-15 -1206 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -2897 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114))))) (($ $ (-1170 |#2|)) 27 (|has| |#1| (-37 (-385 (-525)))))) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2770 (((-396 $) $) NIL (|has| |#1| (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-3931 (($ $ (-385 (-525))) NIL)) (-1715 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-3096 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2457 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-3684 (((-713) $) NIL (|has| |#1| (-341)))) (-3406 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1032)))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-341)))) (-3376 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) 25 (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $ (-1170 |#2|)) 15)) (-2343 (((-385 (-525)) $) NIL)) (-1609 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1447 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1587 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1562 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2794 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1489 (($ $) NIL)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1170 |#2|)) NIL) (($ (-1159 |#1| |#2| |#3|)) 9) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-1568 ((|#1| $ (-385 (-525))) NIL)) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) NIL)) (-1340 ((|#1| $) 18)) (-1649 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1630 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1669 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1522 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1454 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1217 (|#1| (-1092))))))) (-2359 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1537 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1659 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1506 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1639 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1479 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) 24)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-451 |#1| |#2| |#3|) (-13 (-1155 |#1|) (-10 -8 (-15 -1217 ($ (-1170 |#2|))) (-15 -1217 ($ (-1159 |#1| |#2| |#3|))) (-15 -3376 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1206 ($ $ (-1170 |#2|))) |%noBranch|))) (-977) (-1092) |#1|) (T -451))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-451 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-977)) (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-451 *3 *4 *5)))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-451 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-1206 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-451 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
-(-13 (-1155 |#1|) (-10 -8 (-15 -1217 ($ (-1170 |#2|))) (-15 -1217 ($ (-1159 |#1| |#2| |#3|))) (-15 -3376 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1206 ($ $ (-1170 |#2|))) |%noBranch|)))
-((-4236 (((-108) $ $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1675 (($) NIL) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-3456 (((-1179) $ |#1| |#1|) NIL (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 ((|#2| $ |#1| |#2|) 18)) (-1676 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-2591 (((-3 |#2| "failed") |#1| $) 19)) (-2169 (($) NIL T CONST)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-3271 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (|has| $ (-6 -4258))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-3 |#2| "failed") |#1| $) 16)) (-1703 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-1284 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (|has| $ (-6 -4258))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-2301 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#2| $ |#1|) NIL)) (-3440 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) NIL)) (-3666 ((|#1| $) NIL (|has| |#1| (-789)))) (-2694 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-1847 ((|#1| $) NIL (|has| |#1| (-789)))) (-2284 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4259))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-2356 (((-592 |#1|) $) NIL)) (-2239 (((-108) |#1| $) NIL)) (-2992 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-1262 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-2628 (((-592 |#1|) $) NIL)) (-2978 (((-108) |#1| $) NIL)) (-2093 (((-1039) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1872 ((|#2| $) NIL (|has| |#1| (-789)))) (-1983 (((-3 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) "failed") (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL)) (-1420 (($ $ |#2|) NIL (|has| $ (-6 -4259)))) (-4127 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-3944 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-3341 (((-592 |#2|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1760 (($) NIL) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-2110 (((-713) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-713) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-567 (-501))))) (-1230 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-1217 (((-798) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-1956 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-3029 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1296 (((-592 (-1005)) $) NIL)) (-3469 (((-1092) $) 17)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-2730 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-2005 (((-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) NIL)) (-1803 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3659 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL (|has| |#1| (-341)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-341)))) (-4211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1507 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1781 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3638 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2996 (($ (-713) (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-1828 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3698 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2475 (($) NIL T CONST)) (-1356 (($ $ $) NIL (|has| |#1| (-341)))) (-1451 (($ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1332 (($ $ $) NIL (|has| |#1| (-341)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-1798 (((-108) $) NIL (|has| |#1| (-341)))) (-2853 (((-108) $) NIL)) (-4106 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4000 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) NIL)) (-2278 (((-108) $) NIL)) (-1303 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1585 (($ $ (-856)) NIL) (($ $ (-385 (-525))) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-385 (-525))) NIL) (($ $ (-1005) (-385 (-525))) NIL) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) NIL)) (-2016 (($ (-1 |#1| |#1|) $) 22)) (-2533 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL (|has| |#1| (-341)))) (-2367 (($ $) 26 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) 33 (-2067 (-12 (|has| |#1| (-15 -2367 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -1296 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114))))) (($ $ (-1170 |#2|)) 27 (|has| |#1| (-37 (-385 (-525)))))) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4201 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-1397 (($ $ (-385 (-525))) NIL)) (-1311 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1618 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2825 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-1927 (((-713) $) NIL (|has| |#1| (-341)))) (-3431 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1032)))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-341)))) (-2702 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) 25 (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $ (-1170 |#2|)) 15)) (-3529 (((-385 (-525)) $) NIL)) (-1841 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1816 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3678 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1792 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3649 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3926 (($ $) NIL)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1170 |#2|)) NIL) (($ (-1159 |#1| |#2| |#3|)) 9) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-3136 ((|#1| $ (-385 (-525))) NIL)) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) NIL)) (-1423 ((|#1| $) 18)) (-1876 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3853 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1853 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1902 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1760 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1485 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -4100 (|#1| (-1092))))))) (-3135 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1891 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1748 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1866 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3820 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) 24)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-451 |#1| |#2| |#3|) (-13 (-1155 |#1|) (-10 -8 (-15 -4100 ($ (-1170 |#2|))) (-15 -4100 ($ (-1159 |#1| |#2| |#3|))) (-15 -2702 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2367 ($ $ (-1170 |#2|))) |%noBranch|))) (-977) (-1092) |#1|) (T -451))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-451 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-977)) (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-451 *3 *4 *5)))) (-2702 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-451 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2367 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-451 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
+(-13 (-1155 |#1|) (-10 -8 (-15 -4100 ($ (-1170 |#2|))) (-15 -4100 ($ (-1159 |#1| |#2| |#3|))) (-15 -2702 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2367 ($ $ (-1170 |#2|))) |%noBranch|)))
+((-4087 (((-108) $ $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3311 (($) NIL) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-3289 (((-1179) $ |#1| |#1|) NIL (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 ((|#2| $ |#1| |#2|) 18)) (-3050 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-1515 (((-3 |#2| "failed") |#1| $) 19)) (-2475 (($) NIL T CONST)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-4205 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (|has| $ (-6 -4259))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-3 |#2| "failed") |#1| $) 16)) (-2698 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3504 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (|has| $ (-6 -4259))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3081 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#2| $ |#1|) NIL)) (-2175 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) NIL)) (-1732 ((|#1| $) NIL (|has| |#1| (-789)))) (-2617 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-2231 ((|#1| $) NIL (|has| |#1| (-789)))) (-3069 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4260))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1398 (((-592 |#1|) $) NIL)) (-3770 (((-108) |#1| $) NIL)) (-3577 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-3246 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-3177 (((-592 |#1|) $) NIL)) (-3461 (((-108) |#1| $) NIL)) (-3993 (((-1039) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1647 ((|#2| $) NIL (|has| |#1| (-789)))) (-4202 (((-3 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) "failed") (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL)) (-3453 (($ $ |#2|) NIL (|has| $ (-6 -4260)))) (-2724 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-1518 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-1717 (((-592 |#2|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2637 (($) NIL) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-4002 (((-713) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-713) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-567 (-501))))) (-4114 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-4100 (((-798) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-3905 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-2706 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
(((-452 |#1| |#2| |#3| |#4|) (-1105 |#1| |#2|) (-1020) (-1020) (-1105 |#1| |#2|) |#2|) (T -452))
NIL
(-1105 |#1| |#2|)
-((-4236 (((-108) $ $) NIL)) (-1463 (((-592 (-2 (|:| -2719 $) (|:| -3459 (-592 |#4|)))) (-592 |#4|)) NIL)) (-1589 (((-592 $) (-592 |#4|)) NIL)) (-2897 (((-592 |#3|) $) NIL)) (-2437 (((-108) $) NIL)) (-2750 (((-108) $) NIL (|has| |#1| (-517)))) (-3950 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2495 ((|#4| |#4| $) NIL)) (-2458 (((-2 (|:| |under| $) (|:| -2487 $) (|:| |upper| $)) $ |#3|) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-3785 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2169 (($) NIL T CONST)) (-4089 (((-108) $) 26 (|has| |#1| (-517)))) (-2480 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1207 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3339 (((-108) $) NIL (|has| |#1| (-517)))) (-2712 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3767 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-3333 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-3077 (((-3 $ "failed") (-592 |#4|)) NIL)) (-1572 (($ (-592 |#4|)) NIL)) (-1886 (((-3 $ "failed") $) 39)) (-3901 ((|#4| |#4| $) NIL)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020))))) (-1703 (($ |#4| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-1607 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-1961 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2834 ((|#4| |#4| $) NIL)) (-1284 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4258))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4258))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1877 (((-2 (|:| -2719 (-592 |#4|)) (|:| -3459 (-592 |#4|))) $) NIL)) (-3440 (((-592 |#4|) $) 16 (|has| $ (-6 -4258)))) (-2633 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3153 ((|#3| $) 33)) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 |#4|) $) 17 (|has| $ (-6 -4258)))) (-2004 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020))))) (-2284 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#4| |#4|) $) 21)) (-1598 (((-592 |#3|) $) NIL)) (-3919 (((-108) |#3| $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL)) (-1717 (((-3 |#4| "failed") $) 37)) (-3159 (((-592 |#4|) $) NIL)) (-2686 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2423 ((|#4| |#4| $) NIL)) (-2338 (((-108) $ $) NIL)) (-1806 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2696 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3872 ((|#4| |#4| $) NIL)) (-2093 (((-1039) $) NIL)) (-1872 (((-3 |#4| "failed") $) 35)) (-1983 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3044 (((-3 $ "failed") $ |#4|) 47)) (-3931 (($ $ |#4|) NIL)) (-3944 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) 15)) (-2512 (($) 13)) (-2343 (((-713) $) NIL)) (-2110 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) 12)) (-3210 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-1230 (($ (-592 |#4|)) 20)) (-3264 (($ $ |#3|) 42)) (-1425 (($ $ |#3|) 44)) (-1320 (($ $) NIL)) (-4008 (($ $ |#3|) NIL)) (-1217 (((-798) $) 31) (((-592 |#4|) $) 40)) (-3735 (((-713) $) NIL (|has| |#3| (-346)))) (-1622 (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4027 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-3029 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-1221 (((-592 |#3|) $) NIL)) (-2081 (((-108) |#3| $) NIL)) (-3955 (((-108) $ $) NIL)) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL)) (-2562 (((-592 (-2 (|:| -2682 $) (|:| -2046 (-592 |#4|)))) (-592 |#4|)) NIL)) (-3347 (((-592 $) (-592 |#4|)) NIL)) (-1296 (((-592 |#3|) $) NIL)) (-2071 (((-108) $) NIL)) (-3093 (((-108) $) NIL (|has| |#1| (-517)))) (-1587 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1402 ((|#4| |#4| $) NIL)) (-1842 (((-2 (|:| |under| $) (|:| -1340 $) (|:| |upper| $)) $ |#3|) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-2399 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2475 (($) NIL T CONST)) (-3542 (((-108) $) 26 (|has| |#1| (-517)))) (-2462 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2390 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1698 (((-108) $) NIL (|has| |#1| (-517)))) (-2783 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3308 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1655 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1934 (((-3 $ "failed") (-592 |#4|)) NIL)) (-4105 (($ (-592 |#4|)) NIL)) (-1659 (((-3 $ "failed") $) 39)) (-2268 ((|#4| |#4| $) NIL)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020))))) (-2698 (($ |#4| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-3681 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-3964 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-1469 ((|#4| |#4| $) NIL)) (-3504 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4259))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4259))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1329 (((-2 (|:| -2682 (-592 |#4|)) (|:| -2046 (-592 |#4|))) $) NIL)) (-2175 (((-592 |#4|) $) 16 (|has| $ (-6 -4259)))) (-3221 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2577 ((|#3| $) 33)) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 |#4|) $) 17 (|has| $ (-6 -4259)))) (-3198 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020))))) (-3069 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#4| |#4|) $) 21)) (-3435 (((-592 |#3|) $) NIL)) (-2468 (((-108) |#3| $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL)) (-2718 (((-3 |#4| "failed") $) 37)) (-1455 (((-592 |#4|) $) NIL)) (-3732 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3076 ((|#4| |#4| $) NIL)) (-3472 (((-108) $ $) NIL)) (-2991 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2635 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1998 ((|#4| |#4| $) NIL)) (-3993 (((-1039) $) NIL)) (-1647 (((-3 |#4| "failed") $) 35)) (-4202 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2821 (((-3 $ "failed") $ |#4|) 47)) (-1397 (($ $ |#4|) NIL)) (-1518 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) 15)) (-1558 (($) 13)) (-3529 (((-713) $) NIL)) (-4002 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) 12)) (-2069 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-4114 (($ (-592 |#4|)) 20)) (-4151 (($ $ |#3|) 42)) (-3522 (($ $ |#3|) 44)) (-1411 (($ $) NIL)) (-3963 (($ $ |#3|) NIL)) (-4100 (((-798) $) 31) (((-592 |#4|) $) 40)) (-1223 (((-713) $) NIL (|has| |#3| (-346)))) (-3799 (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4170 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-2706 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-1874 (((-592 |#3|) $) NIL)) (-2738 (((-108) |#3| $) NIL)) (-2775 (((-108) $ $) NIL)) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
(((-453 |#1| |#2| |#3| |#4|) (-1122 |#1| |#2| |#3| |#4|) (-517) (-735) (-789) (-991 |#1| |#2| |#3|)) (T -453))
NIL
(-1122 |#1| |#2| |#3| |#4|)
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2193 (((-108) $ $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL)) (-1572 (((-525) $) NIL) (((-385 (-525)) $) NIL)) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-3140 (($) 18)) (-1396 (((-108) $) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2770 (((-396 $) $) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3210 (((-357) $) 22) (((-205) $) 25) (((-385 (-1088 (-525))) $) 19) (((-501) $) 52)) (-1217 (((-798) $) 50) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (((-205) $) 24) (((-357) $) 21)) (-3917 (((-713)) NIL)) (-3325 (((-108) $ $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) 36 T CONST)) (-3359 (($) 11 T CONST)) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
-(((-454) (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))) (-953) (-566 (-205)) (-566 (-357)) (-567 (-385 (-1088 (-525)))) (-567 (-501)) (-10 -8 (-15 -3140 ($))))) (T -454))
-((-3140 (*1 *1) (-5 *1 (-454))))
-(-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))) (-953) (-566 (-205)) (-566 (-357)) (-567 (-385 (-1088 (-525)))) (-567 (-501)) (-10 -8 (-15 -3140 ($))))
-((-4236 (((-108) $ $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1675 (($) NIL) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-3456 (((-1179) $ |#1| |#1|) NIL (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 ((|#2| $ |#1| |#2|) 16)) (-1676 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-2591 (((-3 |#2| "failed") |#1| $) 20)) (-2169 (($) NIL T CONST)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-3271 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (|has| $ (-6 -4258))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-3 |#2| "failed") |#1| $) 18)) (-1703 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-1284 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (|has| $ (-6 -4258))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-2301 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#2| $ |#1|) NIL)) (-3440 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) NIL)) (-3666 ((|#1| $) NIL (|has| |#1| (-789)))) (-2694 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-1847 ((|#1| $) NIL (|has| |#1| (-789)))) (-2284 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4259))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-2356 (((-592 |#1|) $) 13)) (-2239 (((-108) |#1| $) NIL)) (-2992 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-1262 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-2628 (((-592 |#1|) $) NIL)) (-2978 (((-108) |#1| $) NIL)) (-2093 (((-1039) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1872 ((|#2| $) NIL (|has| |#1| (-789)))) (-1983 (((-3 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) "failed") (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL)) (-1420 (($ $ |#2|) NIL (|has| $ (-6 -4259)))) (-4127 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-3944 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-3341 (((-592 |#2|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) 19)) (-3406 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1760 (($) NIL) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-2110 (((-713) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-713) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-567 (-501))))) (-1230 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-1217 (((-798) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-1956 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-3029 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 11 (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3522 (((-713) $) 15 (|has| $ (-6 -4258)))))
-(((-455 |#1| |#2| |#3|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -4258))) (-1020) (-1020) (-1075)) (T -455))
-NIL
-(-13 (-1105 |#1| |#2|) (-10 -7 (-6 -4258)))
-((-2455 (((-525) (-525) (-525)) 7)) (-1996 (((-108) (-525) (-525) (-525) (-525)) 11)) (-3715 (((-1174 (-592 (-525))) (-713) (-713)) 23)))
-(((-456) (-10 -7 (-15 -2455 ((-525) (-525) (-525))) (-15 -1996 ((-108) (-525) (-525) (-525) (-525))) (-15 -3715 ((-1174 (-592 (-525))) (-713) (-713))))) (T -456))
-((-3715 (*1 *2 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1174 (-592 (-525)))) (-5 *1 (-456)))) (-1996 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-456)))) (-2455 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-456)))))
-(-10 -7 (-15 -2455 ((-525) (-525) (-525))) (-15 -1996 ((-108) (-525) (-525) (-525) (-525))) (-15 -3715 ((-1174 (-592 (-525))) (-713) (-713))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2897 (((-592 (-800 |#1|)) $) NIL)) (-2744 (((-1088 $) $ (-800 |#1|)) NIL) (((-1088 |#2|) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-4218 (($ $) NIL (|has| |#2| (-517)))) (-3171 (((-108) $) NIL (|has| |#2| (-517)))) (-3212 (((-713) $) NIL) (((-713) $ (-592 (-800 |#1|))) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-1286 (($ $) NIL (|has| |#2| (-429)))) (-2669 (((-396 $) $) NIL (|has| |#2| (-429)))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-800 |#1|) "failed") $) NIL)) (-1572 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-800 |#1|) $) NIL)) (-3377 (($ $ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-1415 (($ $ (-592 (-525))) NIL)) (-3063 (($ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1576 (($ $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-3052 (((-592 $) $) NIL)) (-3673 (((-108) $) NIL (|has| |#2| (-844)))) (-2188 (($ $ |#2| (-458 (-3522 |#1|) (-713)) $) NIL)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) NIL)) (-2887 (($ (-1088 |#2|) (-800 |#1|)) NIL) (($ (-1088 $) (-800 |#1|)) NIL)) (-4144 (((-592 $) $) NIL)) (-1212 (((-108) $) NIL)) (-2876 (($ |#2| (-458 (-3522 |#1|) (-713))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ (-800 |#1|)) NIL)) (-2870 (((-458 (-3522 |#1|) (-713)) $) NIL) (((-713) $ (-800 |#1|)) NIL) (((-592 (-713)) $ (-592 (-800 |#1|))) NIL)) (-2638 (($ $ $) NIL (|has| |#2| (-789)))) (-3662 (($ $ $) NIL (|has| |#2| (-789)))) (-2172 (($ (-1 (-458 (-3522 |#1|) (-713)) (-458 (-3522 |#1|) (-713))) $) NIL)) (-3165 (($ (-1 |#2| |#2|) $) NIL)) (-2431 (((-3 (-800 |#1|) "failed") $) NIL)) (-3031 (($ $) NIL)) (-3043 ((|#2| $) NIL)) (-2556 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2619 (((-1075) $) NIL)) (-1334 (((-3 (-592 $) "failed") $) NIL)) (-2001 (((-3 (-592 $) "failed") $) NIL)) (-2121 (((-3 (-2 (|:| |var| (-800 |#1|)) (|:| -4193 (-713))) "failed") $) NIL)) (-2093 (((-1039) $) NIL)) (-3007 (((-108) $) NIL)) (-3019 ((|#2| $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#2| (-429)))) (-2589 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-2770 (((-396 $) $) NIL (|has| |#2| (-844)))) (-1715 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-2457 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-800 |#1|) |#2|) NIL) (($ $ (-592 (-800 |#1|)) (-592 |#2|)) NIL) (($ $ (-800 |#1|) $) NIL) (($ $ (-592 (-800 |#1|)) (-592 $)) NIL)) (-1975 (($ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-3376 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-2343 (((-458 (-3522 |#1|) (-713)) $) NIL) (((-713) $ (-800 |#1|)) NIL) (((-592 (-713)) $ (-592 (-800 |#1|))) NIL)) (-3210 (((-827 (-357)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-800 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-3658 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844))))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-800 |#1|)) NIL) (($ (-385 (-525))) NIL (-3254 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-1684 (((-592 |#2|) $) NIL)) (-1568 ((|#2| $ (-458 (-3522 |#1|) (-713))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#2| (-136))))) (-3917 (((-713)) NIL)) (-3716 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-3325 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-4011 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4075 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-457 |#1| |#2|) (-13 (-884 |#2| (-458 (-3522 |#1|) (-713)) (-800 |#1|)) (-10 -8 (-15 -1415 ($ $ (-592 (-525)))))) (-592 (-1092)) (-977)) (T -457))
-((-1415 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-457 *3 *4)) (-14 *3 (-592 (-1092))) (-4 *4 (-977)))))
-(-13 (-884 |#2| (-458 (-3522 |#1|) (-713)) (-800 |#1|)) (-10 -8 (-15 -1415 ($ $ (-592 (-525))))))
-((-4236 (((-108) $ $) NIL (|has| |#2| (-1020)))) (-1209 (((-108) $) NIL (|has| |#2| (-126)))) (-4083 (($ (-856)) NIL (|has| |#2| (-977)))) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-3167 (($ $ $) NIL (|has| |#2| (-735)))) (-1578 (((-3 $ "failed") $ $) NIL (|has| |#2| (-126)))) (-3991 (((-108) $ (-713)) NIL)) (-1834 (((-713)) NIL (|has| |#2| (-346)))) (-3855 (((-525) $) NIL (|has| |#2| (-787)))) (-1430 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4259)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1020)))) (-1572 (((-525) $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) ((|#2| $) NIL (|has| |#2| (-1020)))) (-1994 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL (|has| |#2| (-977))) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-977)))) (-3457 (((-3 $ "failed") $) NIL (|has| |#2| (-669)))) (-2502 (($) NIL (|has| |#2| (-346)))) (-2301 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#2| $ (-525)) 11)) (-1222 (((-108) $) NIL (|has| |#2| (-787)))) (-3440 (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-1396 (((-108) $) NIL (|has| |#2| (-669)))) (-3256 (((-108) $) NIL (|has| |#2| (-787)))) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) NIL (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (-3254 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2694 (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (-3254 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2284 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#2| |#2|) $) NIL)) (-3005 (((-856) $) NIL (|has| |#2| (-346)))) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#2| (-1020)))) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-3555 (($ (-856)) NIL (|has| |#2| (-346)))) (-2093 (((-1039) $) NIL (|has| |#2| (-1020)))) (-1872 ((|#2| $) NIL (|has| (-525) (-789)))) (-1420 (($ $ |#2|) NIL (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-3341 (((-592 |#2|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) NIL)) (-2047 ((|#2| $ $) NIL (|has| |#2| (-977)))) (-2816 (($ (-1174 |#2|)) NIL)) (-3705 (((-128)) NIL (|has| |#2| (-341)))) (-3376 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-977)))) (-2110 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-1462 (($ $) NIL)) (-1217 (((-1174 |#2|) $) NIL) (($ (-525)) NIL (-3254 (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) (|has| |#2| (-977)))) (($ (-385 (-525))) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (($ |#2|) NIL (|has| |#2| (-1020))) (((-798) $) NIL (|has| |#2| (-566 (-798))))) (-3917 (((-713)) NIL (|has| |#2| (-977)))) (-3029 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-2802 (($ $) NIL (|has| |#2| (-787)))) (-1619 (($ $ (-713)) NIL (|has| |#2| (-669))) (($ $ (-856)) NIL (|has| |#2| (-669)))) (-3349 (($) NIL (|has| |#2| (-126)) CONST)) (-3359 (($) NIL (|has| |#2| (-669)) CONST)) (-2022 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-977)))) (-4011 (((-108) $ $) NIL (-3254 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3987 (((-108) $ $) NIL (-3254 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3955 (((-108) $ $) NIL (|has| |#2| (-1020)))) (-3999 (((-108) $ $) NIL (-3254 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3978 (((-108) $ $) 15 (-3254 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-4075 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4061 (($ $ $) NIL (|has| |#2| (-977))) (($ $) NIL (|has| |#2| (-977)))) (-4047 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-713)) NIL (|has| |#2| (-669))) (($ $ (-856)) NIL (|has| |#2| (-669)))) (* (($ (-525) $) NIL (|has| |#2| (-977))) (($ $ $) NIL (|has| |#2| (-669))) (($ $ |#2|) NIL (|has| |#2| (-669))) (($ |#2| $) NIL (|has| |#2| (-669))) (($ (-713) $) NIL (|has| |#2| (-126))) (($ (-856) $) NIL (|has| |#2| (-25)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-1507 (((-108) $ $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL)) (-4105 (((-525) $) NIL) (((-385 (-525)) $) NIL)) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-4106 (($) 18)) (-2278 (((-108) $) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-4201 (((-396 $) $) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2069 (((-357) $) 22) (((-205) $) 25) (((-385 (-1088 (-525))) $) 19) (((-501) $) 52)) (-4100 (((-798) $) 50) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (((-205) $) 24) (((-357) $) 21)) (-2448 (((-713)) NIL)) (-1571 (((-108) $ $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) 36 T CONST)) (-3375 (($) 11 T CONST)) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
+(((-454) (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))) (-953) (-566 (-205)) (-566 (-357)) (-567 (-385 (-1088 (-525)))) (-567 (-501)) (-10 -8 (-15 -4106 ($))))) (T -454))
+((-4106 (*1 *1) (-5 *1 (-454))))
+(-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))) (-953) (-566 (-205)) (-566 (-357)) (-567 (-385 (-1088 (-525)))) (-567 (-501)) (-10 -8 (-15 -4106 ($))))
+((-4087 (((-108) $ $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3311 (($) NIL) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-3289 (((-1179) $ |#1| |#1|) NIL (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 ((|#2| $ |#1| |#2|) 16)) (-3050 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-1515 (((-3 |#2| "failed") |#1| $) 20)) (-2475 (($) NIL T CONST)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-4205 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (|has| $ (-6 -4259))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-3 |#2| "failed") |#1| $) 18)) (-2698 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3504 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (|has| $ (-6 -4259))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3081 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#2| $ |#1|) NIL)) (-2175 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) NIL)) (-1732 ((|#1| $) NIL (|has| |#1| (-789)))) (-2617 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-2231 ((|#1| $) NIL (|has| |#1| (-789)))) (-3069 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4260))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1398 (((-592 |#1|) $) 13)) (-3770 (((-108) |#1| $) NIL)) (-3577 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-3246 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-3177 (((-592 |#1|) $) NIL)) (-3461 (((-108) |#1| $) NIL)) (-3993 (((-1039) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1647 ((|#2| $) NIL (|has| |#1| (-789)))) (-4202 (((-3 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) "failed") (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL)) (-3453 (($ $ |#2|) NIL (|has| $ (-6 -4260)))) (-2724 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-1518 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-1717 (((-592 |#2|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) 19)) (-3431 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2637 (($) NIL) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-4002 (((-713) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-713) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-567 (-501))))) (-4114 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-4100 (((-798) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-3905 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-2706 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 11 (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-2827 (((-713) $) 15 (|has| $ (-6 -4259)))))
+(((-455 |#1| |#2| |#3|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -4259))) (-1020) (-1020) (-1075)) (T -455))
+NIL
+(-13 (-1105 |#1| |#2|) (-10 -7 (-6 -4259)))
+((-2244 (((-525) (-525) (-525)) 7)) (-3111 (((-108) (-525) (-525) (-525) (-525)) 11)) (-4065 (((-1174 (-592 (-525))) (-713) (-713)) 23)))
+(((-456) (-10 -7 (-15 -2244 ((-525) (-525) (-525))) (-15 -3111 ((-108) (-525) (-525) (-525) (-525))) (-15 -4065 ((-1174 (-592 (-525))) (-713) (-713))))) (T -456))
+((-4065 (*1 *2 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1174 (-592 (-525)))) (-5 *1 (-456)))) (-3111 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-456)))) (-2244 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-456)))))
+(-10 -7 (-15 -2244 ((-525) (-525) (-525))) (-15 -3111 ((-108) (-525) (-525) (-525) (-525))) (-15 -4065 ((-1174 (-592 (-525))) (-713) (-713))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1296 (((-592 (-800 |#1|)) $) NIL)) (-4169 (((-1088 $) $ (-800 |#1|)) NIL) (((-1088 |#2|) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-2433 (($ $) NIL (|has| |#2| (-517)))) (-1568 (((-108) $) NIL (|has| |#2| (-517)))) (-1928 (((-713) $) NIL) (((-713) $ (-592 (-800 |#1|))) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-4195 (($ $) NIL (|has| |#2| (-429)))) (-3586 (((-396 $) $) NIL (|has| |#2| (-429)))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-800 |#1|) "failed") $) NIL)) (-4105 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-800 |#1|) $) NIL)) (-3801 (($ $ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-2066 (($ $ (-592 (-525))) NIL)) (-1451 (($ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3201 (($ $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-1441 (((-592 $) $) NIL)) (-1798 (((-108) $) NIL (|has| |#2| (-844)))) (-1457 (($ $ |#2| (-458 (-2827 |#1|) (-713)) $) NIL)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) NIL)) (-1284 (($ (-1088 |#2|) (-800 |#1|)) NIL) (($ (-1088 $) (-800 |#1|)) NIL)) (-2884 (((-592 $) $) NIL)) (-2457 (((-108) $) NIL)) (-1272 (($ |#2| (-458 (-2827 |#1|) (-713))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ (-800 |#1|)) NIL)) (-1819 (((-458 (-2827 |#1|) (-713)) $) NIL) (((-713) $ (-800 |#1|)) NIL) (((-592 (-713)) $ (-592 (-800 |#1|))) NIL)) (-3033 (($ $ $) NIL (|has| |#2| (-789)))) (-1609 (($ $ $) NIL (|has| |#2| (-789)))) (-1314 (($ (-1 (-458 (-2827 |#1|) (-713)) (-458 (-2827 |#1|) (-713))) $) NIL)) (-2016 (($ (-1 |#2| |#2|) $) NIL)) (-2018 (((-3 (-800 |#1|) "failed") $) NIL)) (-1418 (($ $) NIL)) (-1430 ((|#2| $) NIL)) (-2739 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-1289 (((-1075) $) NIL)) (-2977 (((-3 (-592 $) "failed") $) NIL)) (-3165 (((-3 (-592 $) "failed") $) NIL)) (-1986 (((-3 (-2 (|:| |var| (-800 |#1|)) (|:| -2168 (-713))) "failed") $) NIL)) (-3993 (((-1039) $) NIL)) (-1399 (((-108) $) NIL)) (-1407 ((|#2| $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#2| (-429)))) (-2772 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-4201 (((-396 $) $) NIL (|has| |#2| (-844)))) (-1311 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-2825 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-800 |#1|) |#2|) NIL) (($ $ (-592 (-800 |#1|)) (-592 |#2|)) NIL) (($ $ (-800 |#1|) $) NIL) (($ $ (-592 (-800 |#1|)) (-592 $)) NIL)) (-4115 (($ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-2702 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3529 (((-458 (-2827 |#1|) (-713)) $) NIL) (((-713) $ (-800 |#1|)) NIL) (((-592 (-713)) $ (-592 (-800 |#1|))) NIL)) (-2069 (((-827 (-357)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-800 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-1661 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844))))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-800 |#1|)) NIL) (($ (-385 (-525))) NIL (-2067 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-3137 (((-592 |#2|) $) NIL)) (-3136 ((|#2| $ (-458 (-2827 |#1|) (-713))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#2| (-136))))) (-2448 (((-713)) NIL)) (-4042 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-1571 (((-108) $ $) NIL (|has| |#2| (-517)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-2830 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2880 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-457 |#1| |#2|) (-13 (-884 |#2| (-458 (-2827 |#1|) (-713)) (-800 |#1|)) (-10 -8 (-15 -2066 ($ $ (-592 (-525)))))) (-592 (-1092)) (-977)) (T -457))
+((-2066 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-457 *3 *4)) (-14 *3 (-592 (-1092))) (-4 *4 (-977)))))
+(-13 (-884 |#2| (-458 (-2827 |#1|) (-713)) (-800 |#1|)) (-10 -8 (-15 -2066 ($ $ (-592 (-525))))))
+((-4087 (((-108) $ $) NIL (|has| |#2| (-1020)))) (-2414 (((-108) $) NIL (|has| |#2| (-126)))) (-3473 (($ (-856)) NIL (|has| |#2| (-977)))) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-1525 (($ $ $) NIL (|has| |#2| (-735)))) (-3222 (((-3 $ "failed") $ $) NIL (|has| |#2| (-126)))) (-3779 (((-108) $ (-713)) NIL)) (-1613 (((-713)) NIL (|has| |#2| (-346)))) (-2971 (((-525) $) NIL (|has| |#2| (-787)))) (-1233 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4260)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1020)))) (-4105 (((-525) $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) ((|#2| $) NIL (|has| |#2| (-1020)))) (-3090 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL (|has| |#2| (-977))) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-977)))) (-3300 (((-3 $ "failed") $) NIL (|has| |#2| (-669)))) (-1903 (($) NIL (|has| |#2| (-346)))) (-3081 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#2| $ (-525)) 11)) (-1889 (((-108) $) NIL (|has| |#2| (-787)))) (-2175 (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-2278 (((-108) $) NIL (|has| |#2| (-669)))) (-4079 (((-108) $) NIL (|has| |#2| (-787)))) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) NIL (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (-2067 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2617 (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (-2067 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3069 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#2| |#2|) $) NIL)) (-3685 (((-856) $) NIL (|has| |#2| (-346)))) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#2| (-1020)))) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-1722 (($ (-856)) NIL (|has| |#2| (-346)))) (-3993 (((-1039) $) NIL (|has| |#2| (-1020)))) (-1647 ((|#2| $) NIL (|has| (-525) (-789)))) (-3453 (($ $ |#2|) NIL (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-1717 (((-592 |#2|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) NIL)) (-3584 ((|#2| $ $) NIL (|has| |#2| (-977)))) (-4238 (($ (-1174 |#2|)) NIL)) (-3933 (((-128)) NIL (|has| |#2| (-341)))) (-2702 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-977)))) (-4002 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-2503 (($ $) NIL)) (-4100 (((-1174 |#2|) $) NIL) (($ (-525)) NIL (-2067 (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) (|has| |#2| (-977)))) (($ (-385 (-525))) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (($ |#2|) NIL (|has| |#2| (-1020))) (((-798) $) NIL (|has| |#2| (-566 (-798))))) (-2448 (((-713)) NIL (|has| |#2| (-977)))) (-2706 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2380 (($ $) NIL (|has| |#2| (-787)))) (-3706 (($ $ (-713)) NIL (|has| |#2| (-669))) (($ $ (-856)) NIL (|has| |#2| (-669)))) (-3364 (($) NIL (|has| |#2| (-126)) CONST)) (-3375 (($) NIL (|has| |#2| (-669)) CONST)) (-2401 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-977)))) (-2830 (((-108) $ $) NIL (-2067 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2807 (((-108) $ $) NIL (-2067 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2775 (((-108) $ $) NIL (|has| |#2| (-1020)))) (-2817 (((-108) $ $) NIL (-2067 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2795 (((-108) $ $) 15 (-2067 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2880 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-2871 (($ $ $) NIL (|has| |#2| (-977))) (($ $) NIL (|has| |#2| (-977)))) (-2860 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-713)) NIL (|has| |#2| (-669))) (($ $ (-856)) NIL (|has| |#2| (-669)))) (* (($ (-525) $) NIL (|has| |#2| (-977))) (($ $ $) NIL (|has| |#2| (-669))) (($ $ |#2|) NIL (|has| |#2| (-669))) (($ |#2| $) NIL (|has| |#2| (-669))) (($ (-713) $) NIL (|has| |#2| (-126))) (($ (-856) $) NIL (|has| |#2| (-25)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
(((-458 |#1| |#2|) (-218 |#1| |#2|) (-713) (-735)) (T -458))
NIL
(-218 |#1| |#2|)
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3991 (((-108) $ (-713)) NIL)) (-2169 (($) NIL T CONST)) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) NIL)) (-2639 (($ $ $) 32)) (-1577 (($ $ $) 31)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3662 ((|#1| $) 26)) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2992 ((|#1| $) 27)) (-1262 (($ |#1| $) 10)) (-1450 (($ (-592 |#1|)) 12)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-4127 ((|#1| $) 23)) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) 9)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) NIL)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-1956 (($ (-592 |#1|)) 29)) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3522 (((-713) $) 21 (|has| $ (-6 -4258)))))
-(((-459 |#1|) (-13 (-902 |#1|) (-10 -8 (-15 -1450 ($ (-592 |#1|))))) (-789)) (T -459))
-((-1450 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-459 *3)))))
-(-13 (-902 |#1|) (-10 -8 (-15 -1450 ($ (-592 |#1|)))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-1284 (($ $) 69)) (-1831 (((-108) $) NIL)) (-2619 (((-1075) $) NIL)) (-1763 (((-391 |#2| (-385 |#2|) |#3| |#4|) $) 44)) (-2093 (((-1039) $) NIL)) (-3409 (((-3 |#4| "failed") $) 107)) (-4152 (($ (-391 |#2| (-385 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-525)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3262 (((-2 (|:| -1653 (-391 |#2| (-385 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-1217 (((-798) $) 102)) (-3349 (($) 33 T CONST)) (-3955 (((-108) $ $) 109)) (-4061 (($ $) 72) (($ $ $) NIL)) (-4047 (($ $ $) 70)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 73)))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3779 (((-108) $ (-713)) NIL)) (-2475 (($) NIL T CONST)) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) NIL)) (-3269 (($ $ $) 32)) (-3212 (($ $ $) 31)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1609 ((|#1| $) 26)) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3577 ((|#1| $) 27)) (-3246 (($ |#1| $) 10)) (-2446 (($ (-592 |#1|)) 12)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-2724 ((|#1| $) 23)) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) 9)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) NIL)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3905 (($ (-592 |#1|)) 29)) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2827 (((-713) $) 21 (|has| $ (-6 -4259)))))
+(((-459 |#1|) (-13 (-902 |#1|) (-10 -8 (-15 -2446 ($ (-592 |#1|))))) (-789)) (T -459))
+((-2446 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-459 *3)))))
+(-13 (-902 |#1|) (-10 -8 (-15 -2446 ($ (-592 |#1|)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-3504 (($ $) 69)) (-2091 (((-108) $) NIL)) (-1289 (((-1075) $) NIL)) (-2654 (((-391 |#2| (-385 |#2|) |#3| |#4|) $) 44)) (-3993 (((-1039) $) NIL)) (-3817 (((-3 |#4| "failed") $) 107)) (-2958 (($ (-391 |#2| (-385 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-525)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-4129 (((-2 (|:| -1466 (-391 |#2| (-385 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-4100 (((-798) $) 102)) (-3364 (($) 33 T CONST)) (-2775 (((-108) $ $) 109)) (-2871 (($ $) 72) (($ $ $) NIL)) (-2860 (($ $ $) 70)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 73)))
(((-460 |#1| |#2| |#3| |#4|) (-313 |#1| |#2| |#3| |#4|) (-341) (-1150 |#1|) (-1150 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -460))
NIL
(-313 |#1| |#2| |#3| |#4|)
-((-2995 (((-525) (-592 (-525))) 30)) (-1294 ((|#1| (-592 |#1|)) 56)) (-2232 (((-592 |#1|) (-592 |#1|)) 57)) (-1987 (((-592 |#1|) (-592 |#1|)) 59)) (-2589 ((|#1| (-592 |#1|)) 58)) (-3658 (((-592 (-525)) (-592 |#1|)) 33)))
-(((-461 |#1|) (-10 -7 (-15 -2589 (|#1| (-592 |#1|))) (-15 -1294 (|#1| (-592 |#1|))) (-15 -1987 ((-592 |#1|) (-592 |#1|))) (-15 -2232 ((-592 |#1|) (-592 |#1|))) (-15 -3658 ((-592 (-525)) (-592 |#1|))) (-15 -2995 ((-525) (-592 (-525))))) (-1150 (-525))) (T -461))
-((-2995 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-525)) (-5 *1 (-461 *4)) (-4 *4 (-1150 *2)))) (-3658 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1150 (-525))) (-5 *2 (-592 (-525))) (-5 *1 (-461 *4)))) (-2232 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1150 (-525))) (-5 *1 (-461 *3)))) (-1987 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1150 (-525))) (-5 *1 (-461 *3)))) (-1294 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1150 (-525))))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1150 (-525))))))
-(-10 -7 (-15 -2589 (|#1| (-592 |#1|))) (-15 -1294 (|#1| (-592 |#1|))) (-15 -1987 ((-592 |#1|) (-592 |#1|))) (-15 -2232 ((-592 |#1|) (-592 |#1|))) (-15 -3658 ((-592 (-525)) (-592 |#1|))) (-15 -2995 ((-525) (-592 (-525)))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1548 (((-525) $) NIL (|has| (-525) (-286)))) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-2193 (((-108) $ $) NIL)) (-3855 (((-525) $) NIL (|has| (-525) (-762)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL) (((-3 (-1092) "failed") $) NIL (|has| (-525) (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-525) (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-525) (-968 (-525))))) (-1572 (((-525) $) NIL) (((-1092) $) NIL (|has| (-525) (-968 (-1092)))) (((-385 (-525)) $) NIL (|has| (-525) (-968 (-525)))) (((-525) $) NIL (|has| (-525) (-968 (-525))))) (-1747 (($ $ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($) NIL (|has| (-525) (-510)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-1222 (((-108) $) NIL (|has| (-525) (-762)))) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-525) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-525) (-821 (-357))))) (-1396 (((-108) $) NIL)) (-3858 (($ $) NIL)) (-3114 (((-525) $) NIL)) (-3844 (((-3 $ "failed") $) NIL (|has| (-525) (-1068)))) (-3256 (((-108) $) NIL (|has| (-525) (-762)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2638 (($ $ $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| (-525) (-789)))) (-3165 (($ (-1 (-525) (-525)) $) NIL)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2295 (($) NIL (|has| (-525) (-1068)) CONST)) (-4206 (($ (-385 (-525))) 9)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3628 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) NIL)) (-2487 (((-525) $) NIL (|has| (-525) (-510)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-2770 (((-396 $) $) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2457 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1092)) (-592 (-525))) NIL (|has| (-525) (-486 (-1092) (-525)))) (($ $ (-1092) (-525)) NIL (|has| (-525) (-486 (-1092) (-525))))) (-3684 (((-713) $) NIL)) (-3406 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3376 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1092)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4143 (($ $) NIL)) (-3123 (((-525) $) NIL)) (-3210 (((-827 (-525)) $) NIL (|has| (-525) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-525) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-953))) (((-205) $) NIL (|has| (-525) (-953)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-844))))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 8) (($ (-525)) NIL) (($ (-1092)) NIL (|has| (-525) (-968 (-1092)))) (((-385 (-525)) $) NIL) (((-936 16) $) 10)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| (-525) (-844))) (|has| (-525) (-136))))) (-3917 (((-713)) NIL)) (-3074 (((-525) $) NIL (|has| (-525) (-510)))) (-3325 (((-108) $ $) NIL)) (-2802 (($ $) NIL (|has| (-525) (-762)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1092)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4011 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3987 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3978 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4075 (($ $ $) NIL) (($ (-525) (-525)) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL)))
-(((-462) (-13 (-925 (-525)) (-10 -8 (-15 -1217 ((-385 (-525)) $)) (-15 -1217 ((-936 16) $)) (-15 -3628 ((-385 (-525)) $)) (-15 -4206 ($ (-385 (-525))))))) (T -462))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-936 16)) (-5 *1 (-462)))) (-3628 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))) (-4206 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))))
-(-13 (-925 (-525)) (-10 -8 (-15 -1217 ((-385 (-525)) $)) (-15 -1217 ((-936 16) $)) (-15 -3628 ((-385 (-525)) $)) (-15 -4206 ($ (-385 (-525))))))
-((-2694 (((-592 |#2|) $) 23)) (-2004 (((-108) |#2| $) 28)) (-3944 (((-108) (-1 (-108) |#2|) $) 21)) (-2457 (($ $ (-592 (-273 |#2|))) 13) (($ $ (-273 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-592 |#2|) (-592 |#2|)) NIL)) (-2110 (((-713) (-1 (-108) |#2|) $) 22) (((-713) |#2| $) 26)) (-1217 (((-798) $) 37)) (-3029 (((-108) (-1 (-108) |#2|) $) 20)) (-3955 (((-108) $ $) 31)) (-3522 (((-713) $) 17)))
-(((-463 |#1| |#2|) (-10 -8 (-15 -1217 ((-798) |#1|)) (-15 -3955 ((-108) |#1| |#1|)) (-15 -2457 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -2457 (|#1| |#1| |#2| |#2|)) (-15 -2457 (|#1| |#1| (-273 |#2|))) (-15 -2457 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2004 ((-108) |#2| |#1|)) (-15 -2110 ((-713) |#2| |#1|)) (-15 -2694 ((-592 |#2|) |#1|)) (-15 -2110 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3944 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3029 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3522 ((-713) |#1|))) (-464 |#2|) (-1128)) (T -463))
-NIL
-(-10 -8 (-15 -1217 ((-798) |#1|)) (-15 -3955 ((-108) |#1| |#1|)) (-15 -2457 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -2457 (|#1| |#1| |#2| |#2|)) (-15 -2457 (|#1| |#1| (-273 |#2|))) (-15 -2457 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2004 ((-108) |#2| |#1|)) (-15 -2110 ((-713) |#2| |#1|)) (-15 -2694 ((-592 |#2|) |#1|)) (-15 -2110 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3944 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3029 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3522 ((-713) |#1|)))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3991 (((-108) $ (-713)) 8)) (-2169 (($) 7 T CONST)) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) 9)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-3608 (((-525) (-592 (-525))) 30)) (-1341 ((|#1| (-592 |#1|)) 56)) (-1899 (((-592 |#1|) (-592 |#1|)) 57)) (-1210 (((-592 |#1|) (-592 |#1|)) 59)) (-2772 ((|#1| (-592 |#1|)) 58)) (-1661 (((-592 (-525)) (-592 |#1|)) 33)))
+(((-461 |#1|) (-10 -7 (-15 -2772 (|#1| (-592 |#1|))) (-15 -1341 (|#1| (-592 |#1|))) (-15 -1210 ((-592 |#1|) (-592 |#1|))) (-15 -1899 ((-592 |#1|) (-592 |#1|))) (-15 -1661 ((-592 (-525)) (-592 |#1|))) (-15 -3608 ((-525) (-592 (-525))))) (-1150 (-525))) (T -461))
+((-3608 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-525)) (-5 *1 (-461 *4)) (-4 *4 (-1150 *2)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1150 (-525))) (-5 *2 (-592 (-525))) (-5 *1 (-461 *4)))) (-1899 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1150 (-525))) (-5 *1 (-461 *3)))) (-1210 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1150 (-525))) (-5 *1 (-461 *3)))) (-1341 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1150 (-525))))) (-2772 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1150 (-525))))))
+(-10 -7 (-15 -2772 (|#1| (-592 |#1|))) (-15 -1341 (|#1| (-592 |#1|))) (-15 -1210 ((-592 |#1|) (-592 |#1|))) (-15 -1899 ((-592 |#1|) (-592 |#1|))) (-15 -1661 ((-592 (-525)) (-592 |#1|))) (-15 -3608 ((-525) (-592 (-525)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1653 (((-525) $) NIL (|has| (-525) (-286)))) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-1507 (((-108) $ $) NIL)) (-2971 (((-525) $) NIL (|has| (-525) (-762)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL) (((-3 (-1092) "failed") $) NIL (|has| (-525) (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-525) (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-525) (-968 (-525))))) (-4105 (((-525) $) NIL) (((-1092) $) NIL (|has| (-525) (-968 (-1092)))) (((-385 (-525)) $) NIL (|has| (-525) (-968 (-525)))) (((-525) $) NIL (|has| (-525) (-968 (-525))))) (-1356 (($ $ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($) NIL (|has| (-525) (-510)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-1889 (((-108) $) NIL (|has| (-525) (-762)))) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-525) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-525) (-821 (-357))))) (-2278 (((-108) $) NIL)) (-2999 (($ $) NIL)) (-4066 (((-525) $) NIL)) (-2878 (((-3 $ "failed") $) NIL (|has| (-525) (-1068)))) (-4079 (((-108) $) NIL (|has| (-525) (-762)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3033 (($ $ $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| (-525) (-789)))) (-2016 (($ (-1 (-525) (-525)) $) NIL)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-2948 (($) NIL (|has| (-525) (-1068)) CONST)) (-2294 (($ (-385 (-525))) 9)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1372 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) NIL)) (-1340 (((-525) $) NIL (|has| (-525) (-510)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-4201 (((-396 $) $) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2825 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1092)) (-592 (-525))) NIL (|has| (-525) (-486 (-1092) (-525)))) (($ $ (-1092) (-525)) NIL (|has| (-525) (-486 (-1092) (-525))))) (-1927 (((-713) $) NIL)) (-3431 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2702 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1092)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-2874 (($ $) NIL)) (-4080 (((-525) $) NIL)) (-2069 (((-827 (-525)) $) NIL (|has| (-525) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-525) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-953))) (((-205) $) NIL (|has| (-525) (-953)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-844))))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 8) (($ (-525)) NIL) (($ (-1092)) NIL (|has| (-525) (-968 (-1092)))) (((-385 (-525)) $) NIL) (((-936 16) $) 10)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| (-525) (-844))) (|has| (-525) (-136))))) (-2448 (((-713)) NIL)) (-3064 (((-525) $) NIL (|has| (-525) (-510)))) (-1571 (((-108) $ $) NIL)) (-2380 (($ $) NIL (|has| (-525) (-762)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1092)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-2830 (((-108) $ $) NIL (|has| (-525) (-789)))) (-2807 (((-108) $ $) NIL (|has| (-525) (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| (-525) (-789)))) (-2795 (((-108) $ $) NIL (|has| (-525) (-789)))) (-2880 (($ $ $) NIL) (($ (-525) (-525)) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL)))
+(((-462) (-13 (-925 (-525)) (-10 -8 (-15 -4100 ((-385 (-525)) $)) (-15 -4100 ((-936 16) $)) (-15 -1372 ((-385 (-525)) $)) (-15 -2294 ($ (-385 (-525))))))) (T -462))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-936 16)) (-5 *1 (-462)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))) (-2294 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))))
+(-13 (-925 (-525)) (-10 -8 (-15 -4100 ((-385 (-525)) $)) (-15 -4100 ((-936 16) $)) (-15 -1372 ((-385 (-525)) $)) (-15 -2294 ($ (-385 (-525))))))
+((-2617 (((-592 |#2|) $) 23)) (-3198 (((-108) |#2| $) 28)) (-1518 (((-108) (-1 (-108) |#2|) $) 21)) (-2825 (($ $ (-592 (-273 |#2|))) 13) (($ $ (-273 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-592 |#2|) (-592 |#2|)) NIL)) (-4002 (((-713) (-1 (-108) |#2|) $) 22) (((-713) |#2| $) 26)) (-4100 (((-798) $) 37)) (-2706 (((-108) (-1 (-108) |#2|) $) 20)) (-2775 (((-108) $ $) 31)) (-2827 (((-713) $) 17)))
+(((-463 |#1| |#2|) (-10 -8 (-15 -4100 ((-798) |#1|)) (-15 -2775 ((-108) |#1| |#1|)) (-15 -2825 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -2825 (|#1| |#1| |#2| |#2|)) (-15 -2825 (|#1| |#1| (-273 |#2|))) (-15 -2825 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -3198 ((-108) |#2| |#1|)) (-15 -4002 ((-713) |#2| |#1|)) (-15 -2617 ((-592 |#2|) |#1|)) (-15 -4002 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -1518 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2706 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2827 ((-713) |#1|))) (-464 |#2|) (-1128)) (T -463))
+NIL
+(-10 -8 (-15 -4100 ((-798) |#1|)) (-15 -2775 ((-108) |#1| |#1|)) (-15 -2825 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -2825 (|#1| |#1| |#2| |#2|)) (-15 -2825 (|#1| |#1| (-273 |#2|))) (-15 -2825 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -3198 ((-108) |#2| |#1|)) (-15 -4002 ((-713) |#2| |#1|)) (-15 -2617 ((-592 |#2|) |#1|)) (-15 -4002 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -1518 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2706 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2827 ((-713) |#1|)))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3779 (((-108) $ (-713)) 8)) (-2475 (($) 7 T CONST)) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) 9)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-464 |#1|) (-131) (-1128)) (T -464))
-((-3165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-464 *3)) (-4 *3 (-1128)))) (-2284 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4259)) (-4 *1 (-464 *3)) (-4 *3 (-1128)))) (-3029 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4258)) (-4 *1 (-464 *4)) (-4 *4 (-1128)) (-5 *2 (-108)))) (-3944 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4258)) (-4 *1 (-464 *4)) (-4 *4 (-1128)) (-5 *2 (-108)))) (-2110 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4258)) (-4 *1 (-464 *4)) (-4 *4 (-1128)) (-5 *2 (-713)))) (-3440 (*1 *2 *1) (-12 (|has| *1 (-6 -4258)) (-4 *1 (-464 *3)) (-4 *3 (-1128)) (-5 *2 (-592 *3)))) (-2694 (*1 *2 *1) (-12 (|has| *1 (-6 -4258)) (-4 *1 (-464 *3)) (-4 *3 (-1128)) (-5 *2 (-592 *3)))) (-2110 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4258)) (-4 *1 (-464 *3)) (-4 *3 (-1128)) (-4 *3 (-1020)) (-5 *2 (-713)))) (-2004 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4258)) (-4 *1 (-464 *3)) (-4 *3 (-1128)) (-4 *3 (-1020)) (-5 *2 (-108)))))
-(-13 (-33) (-10 -8 (IF (|has| |t#1| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) (IF (|has| |t#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |t#1| (-1020)) (IF (|has| |t#1| (-288 |t#1|)) (-6 (-288 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3165 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4259)) (-15 -2284 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4258)) (PROGN (-15 -3029 ((-108) (-1 (-108) |t#1|) $)) (-15 -3944 ((-108) (-1 (-108) |t#1|) $)) (-15 -2110 ((-713) (-1 (-108) |t#1|) $)) (-15 -3440 ((-592 |t#1|) $)) (-15 -2694 ((-592 |t#1|) $)) (IF (|has| |t#1| (-1020)) (PROGN (-15 -2110 ((-713) |t#1| $)) (-15 -2004 ((-108) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
-((-1575 (($ $) 15)) (-1549 (($ $) 24)) (-1599 (($ $) 12)) (-1609 (($ $) 10)) (-1587 (($ $) 17)) (-1562 (($ $) 22)))
-(((-465 |#1|) (-10 -8 (-15 -1562 (|#1| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -1609 (|#1| |#1|)) (-15 -1599 (|#1| |#1|)) (-15 -1549 (|#1| |#1|)) (-15 -1575 (|#1| |#1|))) (-466)) (T -465))
-NIL
-(-10 -8 (-15 -1562 (|#1| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -1609 (|#1| |#1|)) (-15 -1599 (|#1| |#1|)) (-15 -1549 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)))
-((-1575 (($ $) 11)) (-1549 (($ $) 10)) (-1599 (($ $) 9)) (-1609 (($ $) 8)) (-1587 (($ $) 7)) (-1562 (($ $) 6)))
+((-2016 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-464 *3)) (-4 *3 (-1128)))) (-3069 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4260)) (-4 *1 (-464 *3)) (-4 *3 (-1128)))) (-2706 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4259)) (-4 *1 (-464 *4)) (-4 *4 (-1128)) (-5 *2 (-108)))) (-1518 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4259)) (-4 *1 (-464 *4)) (-4 *4 (-1128)) (-5 *2 (-108)))) (-4002 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4259)) (-4 *1 (-464 *4)) (-4 *4 (-1128)) (-5 *2 (-713)))) (-2175 (*1 *2 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-464 *3)) (-4 *3 (-1128)) (-5 *2 (-592 *3)))) (-2617 (*1 *2 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-464 *3)) (-4 *3 (-1128)) (-5 *2 (-592 *3)))) (-4002 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-464 *3)) (-4 *3 (-1128)) (-4 *3 (-1020)) (-5 *2 (-713)))) (-3198 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-464 *3)) (-4 *3 (-1128)) (-4 *3 (-1020)) (-5 *2 (-108)))))
+(-13 (-33) (-10 -8 (IF (|has| |t#1| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) (IF (|has| |t#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |t#1| (-1020)) (IF (|has| |t#1| (-288 |t#1|)) (-6 (-288 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2016 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4260)) (-15 -3069 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4259)) (PROGN (-15 -2706 ((-108) (-1 (-108) |t#1|) $)) (-15 -1518 ((-108) (-1 (-108) |t#1|) $)) (-15 -4002 ((-713) (-1 (-108) |t#1|) $)) (-15 -2175 ((-592 |t#1|) $)) (-15 -2617 ((-592 |t#1|) $)) (IF (|has| |t#1| (-1020)) (PROGN (-15 -4002 ((-713) |t#1| $)) (-15 -3198 ((-108) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
+((-1803 (($ $) 15)) (-1781 (($ $) 24)) (-1828 (($ $) 12)) (-1841 (($ $) 10)) (-1816 (($ $) 17)) (-1792 (($ $) 22)))
+(((-465 |#1|) (-10 -8 (-15 -1792 (|#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -1781 (|#1| |#1|)) (-15 -1803 (|#1| |#1|))) (-466)) (T -465))
+NIL
+(-10 -8 (-15 -1792 (|#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -1781 (|#1| |#1|)) (-15 -1803 (|#1| |#1|)))
+((-1803 (($ $) 11)) (-1781 (($ $) 10)) (-1828 (($ $) 9)) (-1841 (($ $) 8)) (-1816 (($ $) 7)) (-1792 (($ $) 6)))
(((-466) (-131)) (T -466))
-((-1575 (*1 *1 *1) (-4 *1 (-466))) (-1549 (*1 *1 *1) (-4 *1 (-466))) (-1599 (*1 *1 *1) (-4 *1 (-466))) (-1609 (*1 *1 *1) (-4 *1 (-466))) (-1587 (*1 *1 *1) (-4 *1 (-466))) (-1562 (*1 *1 *1) (-4 *1 (-466))))
-(-13 (-10 -8 (-15 -1562 ($ $)) (-15 -1587 ($ $)) (-15 -1609 ($ $)) (-15 -1599 ($ $)) (-15 -1549 ($ $)) (-15 -1575 ($ $))))
-((-2770 (((-396 |#4|) |#4| (-1 (-396 |#2|) |#2|)) 42)))
-(((-467 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2770 ((-396 |#4|) |#4| (-1 (-396 |#2|) |#2|)))) (-341) (-1150 |#1|) (-13 (-341) (-138) (-667 |#1| |#2|)) (-1150 |#3|)) (T -467))
-((-2770 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341)) (-4 *7 (-13 (-341) (-138) (-667 *5 *6))) (-5 *2 (-396 *3)) (-5 *1 (-467 *5 *6 *7 *3)) (-4 *3 (-1150 *7)))))
-(-10 -7 (-15 -2770 ((-396 |#4|) |#4| (-1 (-396 |#2|) |#2|))))
-((-4236 (((-108) $ $) NIL)) (-3709 (((-592 $) (-1088 $) (-1092)) NIL) (((-592 $) (-1088 $)) NIL) (((-592 $) (-887 $)) NIL)) (-4058 (($ (-1088 $) (-1092)) NIL) (($ (-1088 $)) NIL) (($ (-887 $)) NIL)) (-1209 (((-108) $) 39)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-2675 (((-108) $ $) 64)) (-2563 (((-592 (-565 $)) $) 48)) (-1578 (((-3 $ "failed") $ $) NIL)) (-3311 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2782 (($ $) NIL)) (-2193 (((-108) $ $) NIL)) (-2169 (($) NIL T CONST)) (-3419 (((-592 $) (-1088 $) (-1092)) NIL) (((-592 $) (-1088 $)) NIL) (((-592 $) (-887 $)) NIL)) (-2964 (($ (-1088 $) (-1092)) NIL) (($ (-1088 $)) NIL) (($ (-887 $)) NIL)) (-3077 (((-3 (-565 $) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL)) (-1572 (((-565 $) $) NIL) (((-525) $) NIL) (((-385 (-525)) $) 50)) (-1747 (($ $ $) NIL)) (-1994 (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3407 (-632 (-385 (-525)))) (|:| |vec| (-1174 (-385 (-525))))) (-632 $) (-1174 $)) NIL) (((-632 (-385 (-525))) (-632 $)) NIL)) (-1284 (($ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-3437 (($ $) NIL) (($ (-592 $)) NIL)) (-2059 (((-592 (-110)) $) NIL)) (-3930 (((-110) (-110)) NIL)) (-1396 (((-108) $) 42)) (-1673 (((-108) $) NIL (|has| $ (-968 (-525))))) (-3114 (((-1044 (-525) (-565 $)) $) 37)) (-2171 (($ $ (-525)) NIL)) (-2382 (((-1088 $) (-1088 $) (-565 $)) 78) (((-1088 $) (-1088 $) (-592 (-565 $))) 55) (($ $ (-565 $)) 67) (($ $ (-592 (-565 $))) 68)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2541 (((-1088 $) (-565 $)) 65 (|has| $ (-977)))) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-3165 (($ (-1 $ $) (-565 $)) NIL)) (-1923 (((-3 (-565 $) "failed") $) NIL)) (-2556 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2734 (((-592 (-565 $)) $) NIL)) (-3173 (($ (-110) $) NIL) (($ (-110) (-592 $)) NIL)) (-3131 (((-108) $ (-110)) NIL) (((-108) $ (-1092)) NIL)) (-2997 (($ $) NIL)) (-1794 (((-713) $) NIL)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2662 (((-108) $ $) NIL) (((-108) $ (-1092)) NIL)) (-2770 (((-396 $) $) NIL)) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3699 (((-108) $) NIL (|has| $ (-968 (-525))))) (-2457 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1092) (-1 $ (-592 $))) NIL) (($ $ (-1092) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3684 (((-713) $) NIL)) (-3406 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3147 (($ $) NIL) (($ $ $) NIL)) (-3376 (($ $ (-713)) NIL) (($ $) 36)) (-3123 (((-1044 (-525) (-565 $)) $) 20)) (-2756 (($ $) NIL (|has| $ (-977)))) (-3210 (((-357) $) 92) (((-205) $) 100) (((-157 (-357)) $) 108)) (-1217 (((-798) $) NIL) (($ (-565 $)) NIL) (($ (-385 (-525))) NIL) (($ $) NIL) (($ (-525)) NIL) (($ (-1044 (-525) (-565 $))) 21)) (-3917 (((-713)) NIL)) (-1381 (($ $) NIL) (($ (-592 $)) NIL)) (-1960 (((-108) (-110)) 84)) (-3325 (((-108) $ $) NIL)) (-1619 (($ $ (-525)) NIL) (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3349 (($) 10 T CONST)) (-3359 (($) 22 T CONST)) (-2022 (($ $ (-713)) NIL) (($ $) NIL)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 24)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) NIL)) (-4075 (($ $ $) 44)) (-4061 (($ $ $) NIL) (($ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-385 (-525))) NIL) (($ $ (-525)) 46) (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (* (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ $ $) 27) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-856) $) NIL)))
-(((-468) (-13 (-281) (-27) (-968 (-525)) (-968 (-385 (-525))) (-588 (-525)) (-953) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -1217 ($ (-1044 (-525) (-565 $)))) (-15 -3114 ((-1044 (-525) (-565 $)) $)) (-15 -3123 ((-1044 (-525) (-565 $)) $)) (-15 -1284 ($ $)) (-15 -2675 ((-108) $ $)) (-15 -2382 ((-1088 $) (-1088 $) (-565 $))) (-15 -2382 ((-1088 $) (-1088 $) (-592 (-565 $)))) (-15 -2382 ($ $ (-565 $))) (-15 -2382 ($ $ (-592 (-565 $))))))) (T -468))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1044 (-525) (-565 (-468)))) (-5 *1 (-468)))) (-3114 (*1 *2 *1) (-12 (-5 *2 (-1044 (-525) (-565 (-468)))) (-5 *1 (-468)))) (-3123 (*1 *2 *1) (-12 (-5 *2 (-1044 (-525) (-565 (-468)))) (-5 *1 (-468)))) (-1284 (*1 *1 *1) (-5 *1 (-468))) (-2675 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-468)))) (-2382 (*1 *2 *2 *3) (-12 (-5 *2 (-1088 (-468))) (-5 *3 (-565 (-468))) (-5 *1 (-468)))) (-2382 (*1 *2 *2 *3) (-12 (-5 *2 (-1088 (-468))) (-5 *3 (-592 (-565 (-468)))) (-5 *1 (-468)))) (-2382 (*1 *1 *1 *2) (-12 (-5 *2 (-565 (-468))) (-5 *1 (-468)))) (-2382 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-565 (-468)))) (-5 *1 (-468)))))
-(-13 (-281) (-27) (-968 (-525)) (-968 (-385 (-525))) (-588 (-525)) (-953) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -1217 ($ (-1044 (-525) (-565 $)))) (-15 -3114 ((-1044 (-525) (-565 $)) $)) (-15 -3123 ((-1044 (-525) (-565 $)) $)) (-15 -1284 ($ $)) (-15 -2675 ((-108) $ $)) (-15 -2382 ((-1088 $) (-1088 $) (-565 $))) (-15 -2382 ((-1088 $) (-1088 $) (-592 (-565 $)))) (-15 -2382 ($ $ (-565 $))) (-15 -2382 ($ $ (-592 (-565 $))))))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-2470 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2165 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4259))) (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-789))))) (-2458 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 ((|#1| $ (-525) |#1|) 25 (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2169 (($) NIL T CONST)) (-2700 (($ $) NIL (|has| $ (-6 -4259)))) (-3431 (($ $) NIL)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1703 (($ |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4258)))) (-2301 ((|#1| $ (-525) |#1|) 22 (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) 21)) (-1932 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-3416 (($ (-713) |#1|) 14)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) 12 (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-1577 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1847 (((-525) $) 23 (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2284 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2531 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1872 ((|#1| $) NIL (|has| (-525) (-789)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1420 (($ $ |#1|) 10 (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) 13)) (-3406 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 24) (($ $ (-1141 (-525))) NIL)) (-3038 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-4098 (($ $ $ (-525)) NIL (|has| $ (-6 -4259)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) NIL)) (-2038 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3522 (((-713) $) 9 (|has| $ (-6 -4258)))))
+((-1803 (*1 *1 *1) (-4 *1 (-466))) (-1781 (*1 *1 *1) (-4 *1 (-466))) (-1828 (*1 *1 *1) (-4 *1 (-466))) (-1841 (*1 *1 *1) (-4 *1 (-466))) (-1816 (*1 *1 *1) (-4 *1 (-466))) (-1792 (*1 *1 *1) (-4 *1 (-466))))
+(-13 (-10 -8 (-15 -1792 ($ $)) (-15 -1816 ($ $)) (-15 -1841 ($ $)) (-15 -1828 ($ $)) (-15 -1781 ($ $)) (-15 -1803 ($ $))))
+((-4201 (((-396 |#4|) |#4| (-1 (-396 |#2|) |#2|)) 42)))
+(((-467 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4201 ((-396 |#4|) |#4| (-1 (-396 |#2|) |#2|)))) (-341) (-1150 |#1|) (-13 (-341) (-138) (-667 |#1| |#2|)) (-1150 |#3|)) (T -467))
+((-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341)) (-4 *7 (-13 (-341) (-138) (-667 *5 *6))) (-5 *2 (-396 *3)) (-5 *1 (-467 *5 *6 *7 *3)) (-4 *3 (-1150 *7)))))
+(-10 -7 (-15 -4201 ((-396 |#4|) |#4| (-1 (-396 |#2|) |#2|))))
+((-4087 (((-108) $ $) NIL)) (-3975 (((-592 $) (-1088 $) (-1092)) NIL) (((-592 $) (-1088 $)) NIL) (((-592 $) (-887 $)) NIL)) (-3238 (($ (-1088 $) (-1092)) NIL) (($ (-1088 $)) NIL) (($ (-887 $)) NIL)) (-2414 (((-108) $) 39)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3647 (((-108) $ $) 64)) (-1285 (((-592 (-565 $)) $) 48)) (-3222 (((-3 $ "failed") $ $) NIL)) (-3702 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-4211 (($ $) NIL)) (-1507 (((-108) $ $) NIL)) (-2475 (($) NIL T CONST)) (-4178 (((-592 $) (-1088 $) (-1092)) NIL) (((-592 $) (-1088 $)) NIL) (((-592 $) (-887 $)) NIL)) (-3317 (($ (-1088 $) (-1092)) NIL) (($ (-1088 $)) NIL) (($ (-887 $)) NIL)) (-1934 (((-3 (-565 $) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL)) (-4105 (((-565 $) $) NIL) (((-525) $) NIL) (((-385 (-525)) $) 50)) (-1356 (($ $ $) NIL)) (-3090 (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -4108 (-632 (-385 (-525)))) (|:| |vec| (-1174 (-385 (-525))))) (-632 $) (-1174 $)) NIL) (((-632 (-385 (-525))) (-632 $)) NIL)) (-3504 (($ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-3106 (($ $) NIL) (($ (-592 $)) NIL)) (-2531 (((-592 (-110)) $) NIL)) (-1386 (((-110) (-110)) NIL)) (-2278 (((-108) $) 42)) (-3028 (((-108) $) NIL (|has| $ (-968 (-525))))) (-4066 (((-1044 (-525) (-565 $)) $) 37)) (-1303 (($ $ (-525)) NIL)) (-2704 (((-1088 $) (-1088 $) (-565 $)) 78) (((-1088 $) (-1088 $) (-592 (-565 $))) 55) (($ $ (-565 $)) 67) (($ $ (-592 (-565 $))) 68)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1808 (((-1088 $) (-565 $)) 65 (|has| $ (-977)))) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-2016 (($ (-1 $ $) (-565 $)) NIL)) (-1751 (((-3 (-565 $) "failed") $) NIL)) (-2739 (($ (-592 $)) NIL) (($ $ $) NIL)) (-1289 (((-1075) $) NIL)) (-4153 (((-592 (-565 $)) $) NIL)) (-4152 (($ (-110) $) NIL) (($ (-110) (-592 $)) NIL)) (-2412 (((-108) $ (-110)) NIL) (((-108) $ (-1092)) NIL)) (-1387 (($ $) NIL)) (-2934 (((-713) $) NIL)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ (-592 $)) NIL) (($ $ $) NIL)) (-3513 (((-108) $ $) NIL) (((-108) $ (-1092)) NIL)) (-4201 (((-396 $) $) NIL)) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3864 (((-108) $) NIL (|has| $ (-968 (-525))))) (-2825 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1092)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1092) (-1 $ (-592 $))) NIL) (($ $ (-1092) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-1927 (((-713) $) NIL)) (-3431 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2540 (($ $) NIL) (($ $ $) NIL)) (-2702 (($ $ (-713)) NIL) (($ $) 36)) (-4080 (((-1044 (-525) (-565 $)) $) 20)) (-2013 (($ $) NIL (|has| $ (-977)))) (-2069 (((-357) $) 92) (((-205) $) 100) (((-157 (-357)) $) 108)) (-4100 (((-798) $) NIL) (($ (-565 $)) NIL) (($ (-385 (-525))) NIL) (($ $) NIL) (($ (-525)) NIL) (($ (-1044 (-525) (-565 $))) 21)) (-2448 (((-713)) NIL)) (-2239 (($ $) NIL) (($ (-592 $)) NIL)) (-3954 (((-108) (-110)) 84)) (-1571 (((-108) $ $) NIL)) (-3706 (($ $ (-525)) NIL) (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3364 (($) 10 T CONST)) (-3375 (($) 22 T CONST)) (-2401 (($ $ (-713)) NIL) (($ $) NIL)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 24)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) NIL)) (-2880 (($ $ $) 44)) (-2871 (($ $ $) NIL) (($ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-385 (-525))) NIL) (($ $ (-525)) 46) (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (* (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ $ $) 27) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-856) $) NIL)))
+(((-468) (-13 (-281) (-27) (-968 (-525)) (-968 (-385 (-525))) (-588 (-525)) (-953) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -4100 ($ (-1044 (-525) (-565 $)))) (-15 -4066 ((-1044 (-525) (-565 $)) $)) (-15 -4080 ((-1044 (-525) (-565 $)) $)) (-15 -3504 ($ $)) (-15 -3647 ((-108) $ $)) (-15 -2704 ((-1088 $) (-1088 $) (-565 $))) (-15 -2704 ((-1088 $) (-1088 $) (-592 (-565 $)))) (-15 -2704 ($ $ (-565 $))) (-15 -2704 ($ $ (-592 (-565 $))))))) (T -468))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1044 (-525) (-565 (-468)))) (-5 *1 (-468)))) (-4066 (*1 *2 *1) (-12 (-5 *2 (-1044 (-525) (-565 (-468)))) (-5 *1 (-468)))) (-4080 (*1 *2 *1) (-12 (-5 *2 (-1044 (-525) (-565 (-468)))) (-5 *1 (-468)))) (-3504 (*1 *1 *1) (-5 *1 (-468))) (-3647 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-468)))) (-2704 (*1 *2 *2 *3) (-12 (-5 *2 (-1088 (-468))) (-5 *3 (-565 (-468))) (-5 *1 (-468)))) (-2704 (*1 *2 *2 *3) (-12 (-5 *2 (-1088 (-468))) (-5 *3 (-592 (-565 (-468)))) (-5 *1 (-468)))) (-2704 (*1 *1 *1 *2) (-12 (-5 *2 (-565 (-468))) (-5 *1 (-468)))) (-2704 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-565 (-468)))) (-5 *1 (-468)))))
+(-13 (-281) (-27) (-968 (-525)) (-968 (-385 (-525))) (-588 (-525)) (-953) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -4100 ($ (-1044 (-525) (-565 $)))) (-15 -4066 ((-1044 (-525) (-565 $)) $)) (-15 -4080 ((-1044 (-525) (-565 $)) $)) (-15 -3504 ($ $)) (-15 -3647 ((-108) $ $)) (-15 -2704 ((-1088 $) (-1088 $) (-565 $))) (-15 -2704 ((-1088 $) (-1088 $) (-592 (-565 $)))) (-15 -2704 ($ $ (-565 $))) (-15 -2704 ($ $ (-592 (-565 $))))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-2358 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2436 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4260))) (($ $) NIL (-12 (|has| $ (-6 -4260)) (|has| |#1| (-789))))) (-1842 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 ((|#1| $ (-525) |#1|) 25 (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2475 (($) NIL T CONST)) (-2670 (($ $) NIL (|has| $ (-6 -4260)))) (-1652 (($ $) NIL)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3081 ((|#1| $ (-525) |#1|) 22 (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) 21)) (-3856 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3324 (($ (-713) |#1|) 14)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) 12 (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-3212 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2231 (((-525) $) 23 (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-3069 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2594 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1647 ((|#1| $) NIL (|has| (-525) (-789)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3453 (($ $ |#1|) 10 (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) 13)) (-3431 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 24) (($ $ (-1141 (-525))) NIL)) (-2139 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3632 (($ $ $ (-525)) NIL (|has| $ (-6 -4260)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) NIL)) (-2035 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2827 (((-713) $) 9 (|has| $ (-6 -4259)))))
(((-469 |#1| |#2|) (-19 |#1|) (-1128) (-525)) (T -469))
NIL
(-19 |#1|)
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 ((|#1| $ (-525) (-525) |#1|) NIL)) (-3028 (($ $ (-525) (-469 |#1| |#3|)) NIL)) (-1925 (($ $ (-525) (-469 |#1| |#2|)) NIL)) (-2169 (($) NIL T CONST)) (-2631 (((-469 |#1| |#3|) $ (-525)) NIL)) (-2301 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2222 ((|#1| $ (-525) (-525)) NIL)) (-3440 (((-592 |#1|) $) NIL)) (-1632 (((-713) $) NIL)) (-3416 (($ (-713) (-713) |#1|) NIL)) (-1644 (((-713) $) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-2391 (((-525) $) NIL)) (-1237 (((-525) $) NIL)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3446 (((-525) $) NIL)) (-3757 (((-525) $) NIL)) (-2284 (($ (-1 |#1| |#1|) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1420 (($ $ |#1|) NIL)) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) NIL)) (-1808 (((-469 |#1| |#2|) $ (-525)) NIL)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2695 (($ $ (-525) (-469 |#1| |#3|)) NIL)) (-1773 (($ $ (-525) (-469 |#1| |#2|)) NIL)) (-2475 (($) NIL T CONST)) (-3209 (((-469 |#1| |#3|) $ (-525)) NIL)) (-3081 ((|#1| $ (-525) (-525) |#1|) NIL)) (-3017 ((|#1| $ (-525) (-525)) NIL)) (-2175 (((-592 |#1|) $) NIL)) (-2720 (((-713) $) NIL)) (-3324 (($ (-713) (-713) |#1|) NIL)) (-2731 (((-713) $) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-2797 (((-525) $) NIL)) (-2307 (((-525) $) NIL)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3194 (((-525) $) NIL)) (-3210 (((-525) $) NIL)) (-3069 (($ (-1 |#1| |#1|) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3453 (($ $ |#1|) NIL)) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) NIL)) (-1881 (((-469 |#1| |#2|) $ (-525)) NIL)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
(((-470 |#1| |#2| |#3|) (-55 |#1| (-469 |#1| |#3|) (-469 |#1| |#2|)) (-1128) (-525) (-525)) (T -470))
NIL
(-55 |#1| (-469 |#1| |#3|) (-469 |#1| |#2|))
-((-2327 (((-592 (-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-713) (-713)) 27)) (-4157 (((-592 (-1088 |#1|)) |#1| (-713) (-713) (-713)) 34)) (-4109 (((-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-592 |#3|) (-592 (-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-713)) 85)))
-(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -4157 ((-592 (-1088 |#1|)) |#1| (-713) (-713) (-713))) (-15 -2327 ((-592 (-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-713) (-713))) (-15 -4109 ((-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-592 |#3|) (-592 (-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-713)))) (-327) (-1150 |#1|) (-1150 |#2|)) (T -471))
-((-4109 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-2 (|:| -3094 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7))))) (-5 *5 (-713)) (-4 *8 (-1150 *7)) (-4 *7 (-1150 *6)) (-4 *6 (-327)) (-5 *2 (-2 (|:| -3094 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7)))) (-5 *1 (-471 *6 *7 *8)))) (-2327 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-713)) (-4 *5 (-327)) (-4 *6 (-1150 *5)) (-5 *2 (-592 (-2 (|:| -3094 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6))))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-2 (|:| -3094 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6)))) (-4 *7 (-1150 *6)))) (-4157 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-713)) (-4 *3 (-327)) (-4 *5 (-1150 *3)) (-5 *2 (-592 (-1088 *3))) (-5 *1 (-471 *3 *5 *6)) (-4 *6 (-1150 *5)))))
-(-10 -7 (-15 -4157 ((-592 (-1088 |#1|)) |#1| (-713) (-713) (-713))) (-15 -2327 ((-592 (-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-713) (-713))) (-15 -4109 ((-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-592 |#3|) (-592 (-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-713))))
-((-3239 (((-2 (|:| -3094 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -3094 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -3094 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))) 62)) (-3613 ((|#1| (-632 |#1|) |#1| (-713)) 25)) (-2197 (((-713) (-713) (-713)) 30)) (-2602 (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 42)) (-3404 (((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|) 50) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 47)) (-3471 ((|#1| (-632 |#1|) (-632 |#1|) |#1| (-525)) 29)) (-2336 ((|#1| (-632 |#1|)) 18)))
-(((-472 |#1| |#2| |#3|) (-10 -7 (-15 -2336 (|#1| (-632 |#1|))) (-15 -3613 (|#1| (-632 |#1|) |#1| (-713))) (-15 -3471 (|#1| (-632 |#1|) (-632 |#1|) |#1| (-525))) (-15 -2197 ((-713) (-713) (-713))) (-15 -3404 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3404 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -2602 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3239 ((-2 (|:| -3094 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -3094 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -3094 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))))) (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $)))) (-1150 |#1|) (-387 |#1| |#2|)) (T -472))
-((-3239 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3094 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-4 *3 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $))))) (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-2602 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $))))) (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-3404 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $))))) (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-3404 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $))))) (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-2197 (*1 *2 *2 *2) (-12 (-5 *2 (-713)) (-4 *3 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $))))) (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-3471 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-632 *2)) (-5 *4 (-525)) (-4 *2 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $))))) (-4 *5 (-1150 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))) (-3613 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-632 *2)) (-5 *4 (-713)) (-4 *2 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $))))) (-4 *5 (-1150 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-632 *2)) (-4 *4 (-1150 *2)) (-4 *2 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $))))) (-5 *1 (-472 *2 *4 *5)) (-4 *5 (-387 *2 *4)))))
-(-10 -7 (-15 -2336 (|#1| (-632 |#1|))) (-15 -3613 (|#1| (-632 |#1|) |#1| (-713))) (-15 -3471 (|#1| (-632 |#1|) (-632 |#1|) |#1| (-525))) (-15 -2197 ((-713) (-713) (-713))) (-15 -3404 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3404 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -2602 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3239 ((-2 (|:| -3094 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -3094 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -3094 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))))))
-((-4236 (((-108) $ $) NIL)) (-3411 (($ $) NIL)) (-3469 (($ $ $) 35)) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-2470 (((-108) $) NIL (|has| (-108) (-789))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-2165 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-108) (-789)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4259)))) (-2458 (($ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-1430 (((-108) $ (-1141 (-525)) (-108)) NIL (|has| $ (-6 -4259))) (((-108) $ (-525) (-108)) 36 (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4258)))) (-2169 (($) NIL T CONST)) (-2700 (($ $) NIL (|has| $ (-6 -4259)))) (-3431 (($ $) NIL)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-108) (-1020))))) (-1703 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4258))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-108) (-1020))))) (-1284 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4258)) (|has| (-108) (-1020))))) (-2301 (((-108) $ (-525) (-108)) NIL (|has| $ (-6 -4259)))) (-2222 (((-108) $ (-525)) NIL)) (-1932 (((-525) (-108) $ (-525)) NIL (|has| (-108) (-1020))) (((-525) (-108) $) NIL (|has| (-108) (-1020))) (((-525) (-1 (-108) (-108)) $) NIL)) (-3440 (((-592 (-108)) $) NIL (|has| $ (-6 -4258)))) (-3749 (($ $ $) 33)) (-1850 (($ $) NIL)) (-1299 (($ $ $) NIL)) (-3416 (($ (-713) (-108)) 23)) (-2404 (($ $ $) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) 8 (|has| (-525) (-789)))) (-2638 (($ $ $) NIL)) (-1577 (($ $ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-2694 (((-592 (-108)) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-108) (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL)) (-2284 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-108) (-108) (-108)) $ $) 30) (($ (-1 (-108) (-108)) $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL)) (-2531 (($ $ $ (-525)) NIL) (($ (-108) $ (-525)) NIL)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-2093 (((-1039) $) NIL)) (-1872 (((-108) $) NIL (|has| (-525) (-789)))) (-1983 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-1420 (($ $ (-108)) NIL (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-108)) (-592 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-273 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-592 (-273 (-108)))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-108) (-1020))))) (-3341 (((-592 (-108)) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) 24)) (-3406 (($ $ (-1141 (-525))) NIL) (((-108) $ (-525)) 18) (((-108) $ (-525) (-108)) NIL)) (-3038 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-2110 (((-713) (-108) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-108) (-1020)))) (((-713) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4258)))) (-4098 (($ $ $ (-525)) NIL (|has| $ (-6 -4259)))) (-1462 (($ $) 25)) (-3210 (((-501) $) NIL (|has| (-108) (-567 (-501))))) (-1230 (($ (-592 (-108))) NIL)) (-2038 (($ (-592 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-1217 (((-798) $) 22)) (-3029 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4258)))) (-3762 (($ $ $) 31)) (-1619 (($ $) NIL)) (-1525 (($ $ $) NIL)) (-2637 (($ $ $) 39)) (-2646 (($ $) 37)) (-2627 (($ $ $) 38)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 26)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 27)) (-1509 (($ $ $) NIL)) (-3522 (((-713) $) 10 (|has| $ (-6 -4258)))))
-(((-473 |#1|) (-13 (-119) (-10 -8 (-15 -2646 ($ $)) (-15 -2637 ($ $ $)) (-15 -2627 ($ $ $)))) (-525)) (T -473))
-((-2646 (*1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))) (-2637 (*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))) (-2627 (*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))))
-(-13 (-119) (-10 -8 (-15 -2646 ($ $)) (-15 -2637 ($ $ $)) (-15 -2627 ($ $ $))))
-((-2711 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1088 |#4|)) 35)) (-3894 (((-1088 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1088 |#4|)) 22)) (-3678 (((-3 (-632 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-632 (-1088 |#4|))) 46)) (-2008 (((-1088 (-1088 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
-(((-474 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3894 (|#2| (-1 |#1| |#4|) (-1088 |#4|))) (-15 -3894 ((-1088 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2711 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1088 |#4|))) (-15 -3678 ((-3 (-632 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-632 (-1088 |#4|)))) (-15 -2008 ((-1088 (-1088 |#4|)) (-1 |#4| |#1|) |#3|))) (-977) (-1150 |#1|) (-1150 |#2|) (-977)) (T -474))
-((-2008 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-977)) (-4 *7 (-977)) (-4 *6 (-1150 *5)) (-5 *2 (-1088 (-1088 *7))) (-5 *1 (-474 *5 *6 *4 *7)) (-4 *4 (-1150 *6)))) (-3678 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-632 (-1088 *8))) (-4 *5 (-977)) (-4 *8 (-977)) (-4 *6 (-1150 *5)) (-5 *2 (-632 *6)) (-5 *1 (-474 *5 *6 *7 *8)) (-4 *7 (-1150 *6)))) (-2711 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1088 *7)) (-4 *5 (-977)) (-4 *7 (-977)) (-4 *2 (-1150 *5)) (-5 *1 (-474 *5 *2 *6 *7)) (-4 *6 (-1150 *2)))) (-3894 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-977)) (-4 *7 (-977)) (-4 *4 (-1150 *5)) (-5 *2 (-1088 *7)) (-5 *1 (-474 *5 *4 *6 *7)) (-4 *6 (-1150 *4)))) (-3894 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1088 *7)) (-4 *5 (-977)) (-4 *7 (-977)) (-4 *2 (-1150 *5)) (-5 *1 (-474 *5 *2 *6 *7)) (-4 *6 (-1150 *2)))))
-(-10 -7 (-15 -3894 (|#2| (-1 |#1| |#4|) (-1088 |#4|))) (-15 -3894 ((-1088 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2711 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1088 |#4|))) (-15 -3678 ((-3 (-632 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-632 (-1088 |#4|)))) (-15 -2008 ((-1088 (-1088 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-4236 (((-108) $ $) NIL)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1934 (((-1179) $) 19)) (-3406 (((-1075) $ (-1092)) 23)) (-2736 (((-1179) $) 15)) (-1217 (((-798) $) 21) (($ (-1075)) 20)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 9)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 8)))
-(((-475) (-13 (-789) (-10 -8 (-15 -3406 ((-1075) $ (-1092))) (-15 -2736 ((-1179) $)) (-15 -1934 ((-1179) $)) (-15 -1217 ($ (-1075)))))) (T -475))
-((-3406 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1075)) (-5 *1 (-475)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-475)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-475)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-475)))))
-(-13 (-789) (-10 -8 (-15 -3406 ((-1075) $ (-1092))) (-15 -2736 ((-1179) $)) (-15 -1934 ((-1179) $)) (-15 -1217 ($ (-1075)))))
-((-3711 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3815 ((|#1| |#4|) 10)) (-3607 ((|#3| |#4|) 17)))
-(((-476 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3815 (|#1| |#4|)) (-15 -3607 (|#3| |#4|)) (-15 -3711 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-517) (-925 |#1|) (-351 |#1|) (-351 |#2|)) (T -476))
-((-3711 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-925 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-476 *4 *5 *6 *3)) (-4 *6 (-351 *4)) (-4 *3 (-351 *5)))) (-3607 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-925 *4)) (-4 *2 (-351 *4)) (-5 *1 (-476 *4 *5 *2 *3)) (-4 *3 (-351 *5)))) (-3815 (*1 *2 *3) (-12 (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-476 *2 *4 *5 *3)) (-4 *5 (-351 *2)) (-4 *3 (-351 *4)))))
-(-10 -7 (-15 -3815 (|#1| |#4|)) (-15 -3607 (|#3| |#4|)) (-15 -3711 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-4236 (((-108) $ $) NIL)) (-2384 (((-108) $ (-592 |#3|)) 104) (((-108) $) 105)) (-1209 (((-108) $) 148)) (-1416 (($ $ |#4|) 96) (($ $ |#4| (-592 |#3|)) 100)) (-3615 (((-1082 (-592 (-887 |#1|)) (-592 (-273 (-887 |#1|)))) (-592 |#4|)) 141 (|has| |#3| (-567 (-1092))))) (-2829 (($ $ $) 90) (($ $ |#4|) 88)) (-1396 (((-108) $) 147)) (-2735 (($ $) 108)) (-2619 (((-1075) $) NIL)) (-2099 (($ $ $) 82) (($ (-592 $)) 84)) (-2585 (((-108) |#4| $) 107)) (-1258 (((-108) $ $) 71)) (-1763 (($ (-592 |#4|)) 89)) (-2093 (((-1039) $) NIL)) (-1367 (($ (-592 |#4|)) 145)) (-3888 (((-108) $) 146)) (-1988 (($ $) 73)) (-2485 (((-592 |#4|) $) 57)) (-3158 (((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-592 |#3|)) NIL)) (-4031 (((-108) |#4| $) 76)) (-3705 (((-525) $ (-592 |#3|)) 109) (((-525) $) 110)) (-1217 (((-798) $) 144) (($ (-592 |#4|)) 85)) (-2062 (($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $))) NIL)) (-3955 (((-108) $ $) 72)) (-4047 (($ $ $) 92)) (** (($ $ (-713)) 95)) (* (($ $ $) 94)))
-(((-477 |#1| |#2| |#3| |#4|) (-13 (-1020) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 -4047 ($ $ $)) (-15 -1396 ((-108) $)) (-15 -1209 ((-108) $)) (-15 -4031 ((-108) |#4| $)) (-15 -1258 ((-108) $ $)) (-15 -2585 ((-108) |#4| $)) (-15 -2384 ((-108) $ (-592 |#3|))) (-15 -2384 ((-108) $)) (-15 -2099 ($ $ $)) (-15 -2099 ($ (-592 $))) (-15 -2829 ($ $ $)) (-15 -2829 ($ $ |#4|)) (-15 -1988 ($ $)) (-15 -3158 ((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-592 |#3|))) (-15 -2062 ($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)))) (-15 -3705 ((-525) $ (-592 |#3|))) (-15 -3705 ((-525) $)) (-15 -2735 ($ $)) (-15 -1763 ($ (-592 |#4|))) (-15 -1367 ($ (-592 |#4|))) (-15 -3888 ((-108) $)) (-15 -2485 ((-592 |#4|) $)) (-15 -1217 ($ (-592 |#4|))) (-15 -1416 ($ $ |#4|)) (-15 -1416 ($ $ |#4| (-592 |#3|))) (IF (|has| |#3| (-567 (-1092))) (-15 -3615 ((-1082 (-592 (-887 |#1|)) (-592 (-273 (-887 |#1|)))) (-592 |#4|))) |%noBranch|))) (-341) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -477))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-4047 (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (-1396 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-1209 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-4031 (*1 *2 *3 *1) (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))) (-1258 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-2585 (*1 *2 *3 *1) (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))) (-2384 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))) (-2384 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-2099 (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (-2099 (*1 *1 *2) (-12 (-5 *2 (-592 (-477 *3 *4 *5 *6))) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-2829 (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (-2829 (*1 *1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-884 *3 *4 *5)))) (-1988 (*1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (-3158 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *2 (-2 (|:| |mval| (-632 *4)) (|:| |invmval| (-632 *4)) (|:| |genIdeal| (-477 *4 *5 *6 *7)))) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-632 *3)) (|:| |invmval| (-632 *3)) (|:| |genIdeal| (-477 *3 *4 *5 *6)))) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-3705 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *2 (-525)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))) (-3705 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-2735 (*1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (-1763 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))) (-1367 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))) (-3888 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-2485 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *6)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))) (-1416 (*1 *1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-884 *3 *4 *5)))) (-1416 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *1 (-477 *4 *5 *6 *2)) (-4 *2 (-884 *4 *5 *6)))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *5 *6)) (-4 *6 (-567 (-1092))) (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1082 (-592 (-887 *4)) (-592 (-273 (-887 *4))))) (-5 *1 (-477 *4 *5 *6 *7)))))
-(-13 (-1020) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 -4047 ($ $ $)) (-15 -1396 ((-108) $)) (-15 -1209 ((-108) $)) (-15 -4031 ((-108) |#4| $)) (-15 -1258 ((-108) $ $)) (-15 -2585 ((-108) |#4| $)) (-15 -2384 ((-108) $ (-592 |#3|))) (-15 -2384 ((-108) $)) (-15 -2099 ($ $ $)) (-15 -2099 ($ (-592 $))) (-15 -2829 ($ $ $)) (-15 -2829 ($ $ |#4|)) (-15 -1988 ($ $)) (-15 -3158 ((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-592 |#3|))) (-15 -2062 ($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)))) (-15 -3705 ((-525) $ (-592 |#3|))) (-15 -3705 ((-525) $)) (-15 -2735 ($ $)) (-15 -1763 ($ (-592 |#4|))) (-15 -1367 ($ (-592 |#4|))) (-15 -3888 ((-108) $)) (-15 -2485 ((-592 |#4|) $)) (-15 -1217 ($ (-592 |#4|))) (-15 -1416 ($ $ |#4|)) (-15 -1416 ($ $ |#4| (-592 |#3|))) (IF (|has| |#3| (-567 (-1092))) (-15 -3615 ((-1082 (-592 (-887 |#1|)) (-592 (-273 (-887 |#1|)))) (-592 |#4|))) |%noBranch|)))
-((-1853 (((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) 149)) (-2996 (((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) 150)) (-4062 (((-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) 108)) (-3673 (((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) NIL)) (-2261 (((-592 (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) 152)) (-3217 (((-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-592 (-800 |#1|))) 164)))
-(((-478 |#1| |#2|) (-10 -7 (-15 -1853 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2996 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3673 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -4062 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2261 ((-592 (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3217 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-592 (-800 |#1|))))) (-592 (-1092)) (-713)) (T -478))
-((-3217 (*1 *2 *2 *3) (-12 (-5 *2 (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4) (-227 *4 (-385 (-525))))) (-5 *3 (-592 (-800 *4))) (-14 *4 (-592 (-1092))) (-14 *5 (-713)) (-5 *1 (-478 *4 *5)))) (-2261 (*1 *2 *3) (-12 (-14 *4 (-592 (-1092))) (-14 *5 (-713)) (-5 *2 (-592 (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4) (-227 *4 (-385 (-525)))))) (-5 *1 (-478 *4 *5)) (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4) (-227 *4 (-385 (-525))))))) (-4062 (*1 *2 *2) (-12 (-5 *2 (-477 (-385 (-525)) (-220 *4 (-713)) (-800 *3) (-227 *3 (-385 (-525))))) (-14 *3 (-592 (-1092))) (-14 *4 (-713)) (-5 *1 (-478 *3 *4)))) (-3673 (*1 *2 *3) (-12 (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4) (-227 *4 (-385 (-525))))) (-14 *4 (-592 (-1092))) (-14 *5 (-713)) (-5 *2 (-108)) (-5 *1 (-478 *4 *5)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4) (-227 *4 (-385 (-525))))) (-14 *4 (-592 (-1092))) (-14 *5 (-713)) (-5 *2 (-108)) (-5 *1 (-478 *4 *5)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4) (-227 *4 (-385 (-525))))) (-14 *4 (-592 (-1092))) (-14 *5 (-713)) (-5 *2 (-108)) (-5 *1 (-478 *4 *5)))))
-(-10 -7 (-15 -1853 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2996 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3673 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -4062 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2261 ((-592 (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3217 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-592 (-800 |#1|)))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3063 (($ $) NIL)) (-2876 (($ |#1| |#2|) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-3064 ((|#2| $) NIL)) (-3043 ((|#1| $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3349 (($) 12 T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) 11) (($ $ $) 24)) (-4047 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 18)))
+((-3350 (((-592 (-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-713) (-713)) 27)) (-2994 (((-592 (-1088 |#1|)) |#1| (-713) (-713) (-713)) 34)) (-3737 (((-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-592 |#3|) (-592 (-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-713)) 85)))
+(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -2994 ((-592 (-1088 |#1|)) |#1| (-713) (-713) (-713))) (-15 -3350 ((-592 (-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-713) (-713))) (-15 -3737 ((-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-592 |#3|) (-592 (-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-713)))) (-327) (-1150 |#1|) (-1150 |#2|)) (T -471))
+((-3737 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-2 (|:| -2103 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7))))) (-5 *5 (-713)) (-4 *8 (-1150 *7)) (-4 *7 (-1150 *6)) (-4 *6 (-327)) (-5 *2 (-2 (|:| -2103 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7)))) (-5 *1 (-471 *6 *7 *8)))) (-3350 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-713)) (-4 *5 (-327)) (-4 *6 (-1150 *5)) (-5 *2 (-592 (-2 (|:| -2103 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6))))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-2 (|:| -2103 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6)))) (-4 *7 (-1150 *6)))) (-2994 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-713)) (-4 *3 (-327)) (-4 *5 (-1150 *3)) (-5 *2 (-592 (-1088 *3))) (-5 *1 (-471 *3 *5 *6)) (-4 *6 (-1150 *5)))))
+(-10 -7 (-15 -2994 ((-592 (-1088 |#1|)) |#1| (-713) (-713) (-713))) (-15 -3350 ((-592 (-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-713) (-713))) (-15 -3737 ((-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-592 |#3|) (-592 (-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-713))))
+((-3967 (((-2 (|:| -2103 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2103 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2103 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))) 62)) (-2431 ((|#1| (-632 |#1|) |#1| (-713)) 25)) (-1528 (((-713) (-713) (-713)) 30)) (-4183 (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 42)) (-4081 (((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|) 50) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 47)) (-3427 ((|#1| (-632 |#1|) (-632 |#1|) |#1| (-525)) 29)) (-3450 ((|#1| (-632 |#1|)) 18)))
+(((-472 |#1| |#2| |#3|) (-10 -7 (-15 -3450 (|#1| (-632 |#1|))) (-15 -2431 (|#1| (-632 |#1|) |#1| (-713))) (-15 -3427 (|#1| (-632 |#1|) (-632 |#1|) |#1| (-525))) (-15 -1528 ((-713) (-713) (-713))) (-15 -4081 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -4081 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -4183 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3967 ((-2 (|:| -2103 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2103 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2103 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))))) (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $)))) (-1150 |#1|) (-387 |#1| |#2|)) (T -472))
+((-3967 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2103 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-4 *3 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $))))) (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-4183 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $))))) (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-4081 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $))))) (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-4081 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $))))) (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-1528 (*1 *2 *2 *2) (-12 (-5 *2 (-713)) (-4 *3 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $))))) (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-3427 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-632 *2)) (-5 *4 (-525)) (-4 *2 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $))))) (-4 *5 (-1150 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))) (-2431 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-632 *2)) (-5 *4 (-713)) (-4 *2 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $))))) (-4 *5 (-1150 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))) (-3450 (*1 *2 *3) (-12 (-5 *3 (-632 *2)) (-4 *4 (-1150 *2)) (-4 *2 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $))))) (-5 *1 (-472 *2 *4 *5)) (-4 *5 (-387 *2 *4)))))
+(-10 -7 (-15 -3450 (|#1| (-632 |#1|))) (-15 -2431 (|#1| (-632 |#1|) |#1| (-713))) (-15 -3427 (|#1| (-632 |#1|) (-632 |#1|) |#1| (-525))) (-15 -1528 ((-713) (-713) (-713))) (-15 -4081 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -4081 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -4183 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3967 ((-2 (|:| -2103 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2103 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2103 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))))))
+((-4087 (((-108) $ $) NIL)) (-2026 (($ $) NIL)) (-2532 (($ $ $) 35)) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-2358 (((-108) $) NIL (|has| (-108) (-789))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-2436 (($ $) NIL (-12 (|has| $ (-6 -4260)) (|has| (-108) (-789)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4260)))) (-1842 (($ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-1233 (((-108) $ (-1141 (-525)) (-108)) NIL (|has| $ (-6 -4260))) (((-108) $ (-525) (-108)) 36 (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4259)))) (-2475 (($) NIL T CONST)) (-2670 (($ $) NIL (|has| $ (-6 -4260)))) (-1652 (($ $) NIL)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-108) (-1020))))) (-2698 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4259))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-108) (-1020))))) (-3504 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4259)) (|has| (-108) (-1020))))) (-3081 (((-108) $ (-525) (-108)) NIL (|has| $ (-6 -4260)))) (-3017 (((-108) $ (-525)) NIL)) (-3856 (((-525) (-108) $ (-525)) NIL (|has| (-108) (-1020))) (((-525) (-108) $) NIL (|has| (-108) (-1020))) (((-525) (-1 (-108) (-108)) $) NIL)) (-2175 (((-592 (-108)) $) NIL (|has| $ (-6 -4259)))) (-3307 (($ $ $) 33)) (-3272 (($ $) NIL)) (-3087 (($ $ $) NIL)) (-3324 (($ (-713) (-108)) 23)) (-2909 (($ $ $) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) 8 (|has| (-525) (-789)))) (-3033 (($ $ $) NIL)) (-3212 (($ $ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-2617 (((-592 (-108)) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-108) (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL)) (-3069 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-108) (-108) (-108)) $ $) 30) (($ (-1 (-108) (-108)) $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL)) (-2594 (($ $ $ (-525)) NIL) (($ (-108) $ (-525)) NIL)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-3993 (((-1039) $) NIL)) (-1647 (((-108) $) NIL (|has| (-525) (-789)))) (-4202 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-3453 (($ $ (-108)) NIL (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-108)) (-592 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-273 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-592 (-273 (-108)))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-108) (-1020))))) (-1717 (((-592 (-108)) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) 24)) (-3431 (($ $ (-1141 (-525))) NIL) (((-108) $ (-525)) 18) (((-108) $ (-525) (-108)) NIL)) (-2139 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-4002 (((-713) (-108) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-108) (-1020)))) (((-713) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4259)))) (-3632 (($ $ $ (-525)) NIL (|has| $ (-6 -4260)))) (-2503 (($ $) 25)) (-2069 (((-501) $) NIL (|has| (-108) (-567 (-501))))) (-4114 (($ (-592 (-108))) NIL)) (-2035 (($ (-592 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-4100 (((-798) $) 22)) (-2706 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4259)))) (-3944 (($ $ $) 31)) (-3706 (($ $) NIL)) (-3836 (($ $ $) NIL)) (-1252 (($ $ $) 39)) (-1263 (($ $) 37)) (-1243 (($ $ $) 38)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 26)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 27)) (-3826 (($ $ $) NIL)) (-2827 (((-713) $) 10 (|has| $ (-6 -4259)))))
+(((-473 |#1|) (-13 (-119) (-10 -8 (-15 -1263 ($ $)) (-15 -1252 ($ $ $)) (-15 -1243 ($ $ $)))) (-525)) (T -473))
+((-1263 (*1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))) (-1252 (*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))) (-1243 (*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))))
+(-13 (-119) (-10 -8 (-15 -1263 ($ $)) (-15 -1252 ($ $ $)) (-15 -1243 ($ $ $))))
+((-2769 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1088 |#4|)) 35)) (-2190 (((-1088 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1088 |#4|)) 22)) (-1858 (((-3 (-632 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-632 (-1088 |#4|))) 46)) (-3229 (((-1088 (-1088 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
+(((-474 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2190 (|#2| (-1 |#1| |#4|) (-1088 |#4|))) (-15 -2190 ((-1088 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2769 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1088 |#4|))) (-15 -1858 ((-3 (-632 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-632 (-1088 |#4|)))) (-15 -3229 ((-1088 (-1088 |#4|)) (-1 |#4| |#1|) |#3|))) (-977) (-1150 |#1|) (-1150 |#2|) (-977)) (T -474))
+((-3229 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-977)) (-4 *7 (-977)) (-4 *6 (-1150 *5)) (-5 *2 (-1088 (-1088 *7))) (-5 *1 (-474 *5 *6 *4 *7)) (-4 *4 (-1150 *6)))) (-1858 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-632 (-1088 *8))) (-4 *5 (-977)) (-4 *8 (-977)) (-4 *6 (-1150 *5)) (-5 *2 (-632 *6)) (-5 *1 (-474 *5 *6 *7 *8)) (-4 *7 (-1150 *6)))) (-2769 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1088 *7)) (-4 *5 (-977)) (-4 *7 (-977)) (-4 *2 (-1150 *5)) (-5 *1 (-474 *5 *2 *6 *7)) (-4 *6 (-1150 *2)))) (-2190 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-977)) (-4 *7 (-977)) (-4 *4 (-1150 *5)) (-5 *2 (-1088 *7)) (-5 *1 (-474 *5 *4 *6 *7)) (-4 *6 (-1150 *4)))) (-2190 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1088 *7)) (-4 *5 (-977)) (-4 *7 (-977)) (-4 *2 (-1150 *5)) (-5 *1 (-474 *5 *2 *6 *7)) (-4 *6 (-1150 *2)))))
+(-10 -7 (-15 -2190 (|#2| (-1 |#1| |#4|) (-1088 |#4|))) (-15 -2190 ((-1088 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2769 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1088 |#4|))) (-15 -1858 ((-3 (-632 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-632 (-1088 |#4|)))) (-15 -3229 ((-1088 (-1088 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-4087 (((-108) $ $) NIL)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-3686 (((-1179) $) 19)) (-3431 (((-1075) $ (-1092)) 23)) (-2701 (((-1179) $) 15)) (-4100 (((-798) $) 21) (($ (-1075)) 20)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 9)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 8)))
+(((-475) (-13 (-789) (-10 -8 (-15 -3431 ((-1075) $ (-1092))) (-15 -2701 ((-1179) $)) (-15 -3686 ((-1179) $)) (-15 -4100 ($ (-1075)))))) (T -475))
+((-3431 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1075)) (-5 *1 (-475)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-475)))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-475)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-475)))))
+(-13 (-789) (-10 -8 (-15 -3431 ((-1075) $ (-1092))) (-15 -2701 ((-1179) $)) (-15 -3686 ((-1179) $)) (-15 -4100 ($ (-1075)))))
+((-3999 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2618 ((|#1| |#4|) 10)) (-2360 ((|#3| |#4|) 17)))
+(((-476 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2618 (|#1| |#4|)) (-15 -2360 (|#3| |#4|)) (-15 -3999 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-517) (-925 |#1|) (-351 |#1|) (-351 |#2|)) (T -476))
+((-3999 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-925 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-476 *4 *5 *6 *3)) (-4 *6 (-351 *4)) (-4 *3 (-351 *5)))) (-2360 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-925 *4)) (-4 *2 (-351 *4)) (-5 *1 (-476 *4 *5 *2 *3)) (-4 *3 (-351 *5)))) (-2618 (*1 *2 *3) (-12 (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-476 *2 *4 *5 *3)) (-4 *5 (-351 *2)) (-4 *3 (-351 *4)))))
+(-10 -7 (-15 -2618 (|#1| |#4|)) (-15 -2360 (|#3| |#4|)) (-15 -3999 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-4087 (((-108) $ $) NIL)) (-2723 (((-108) $ (-592 |#3|)) 104) (((-108) $) 105)) (-2414 (((-108) $) 148)) (-3397 (($ $ |#4|) 96) (($ $ |#4| (-592 |#3|)) 100)) (-2451 (((-1082 (-592 (-887 |#1|)) (-592 (-273 (-887 |#1|)))) (-592 |#4|)) 141 (|has| |#3| (-567 (-1092))))) (-1416 (($ $ $) 90) (($ $ |#4|) 88)) (-2278 (((-108) $) 147)) (-2962 (($ $) 108)) (-1289 (((-1075) $) NIL)) (-2913 (($ $ $) 82) (($ (-592 $)) 84)) (-4043 (((-108) |#4| $) 107)) (-3202 (((-108) $ $) 71)) (-2654 (($ (-592 |#4|)) 89)) (-3993 (((-1039) $) NIL)) (-1795 (($ (-592 |#4|)) 145)) (-2135 (((-108) $) 146)) (-1219 (($ $) 73)) (-2509 (((-592 |#4|) $) 57)) (-1446 (((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-592 |#3|)) NIL)) (-4206 (((-108) |#4| $) 76)) (-3933 (((-525) $ (-592 |#3|)) 109) (((-525) $) 110)) (-4100 (((-798) $) 144) (($ (-592 |#4|)) 85)) (-2561 (($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $))) NIL)) (-2775 (((-108) $ $) 72)) (-2860 (($ $ $) 92)) (** (($ $ (-713)) 95)) (* (($ $ $) 94)))
+(((-477 |#1| |#2| |#3| |#4|) (-13 (-1020) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 -2860 ($ $ $)) (-15 -2278 ((-108) $)) (-15 -2414 ((-108) $)) (-15 -4206 ((-108) |#4| $)) (-15 -3202 ((-108) $ $)) (-15 -4043 ((-108) |#4| $)) (-15 -2723 ((-108) $ (-592 |#3|))) (-15 -2723 ((-108) $)) (-15 -2913 ($ $ $)) (-15 -2913 ($ (-592 $))) (-15 -1416 ($ $ $)) (-15 -1416 ($ $ |#4|)) (-15 -1219 ($ $)) (-15 -1446 ((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-592 |#3|))) (-15 -2561 ($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)))) (-15 -3933 ((-525) $ (-592 |#3|))) (-15 -3933 ((-525) $)) (-15 -2962 ($ $)) (-15 -2654 ($ (-592 |#4|))) (-15 -1795 ($ (-592 |#4|))) (-15 -2135 ((-108) $)) (-15 -2509 ((-592 |#4|) $)) (-15 -4100 ($ (-592 |#4|))) (-15 -3397 ($ $ |#4|)) (-15 -3397 ($ $ |#4| (-592 |#3|))) (IF (|has| |#3| (-567 (-1092))) (-15 -2451 ((-1082 (-592 (-887 |#1|)) (-592 (-273 (-887 |#1|)))) (-592 |#4|))) |%noBranch|))) (-341) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -477))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-2860 (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (-2278 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-2414 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-4206 (*1 *2 *3 *1) (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))) (-3202 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-4043 (*1 *2 *3 *1) (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))) (-2723 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))) (-2723 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-2913 (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-592 (-477 *3 *4 *5 *6))) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-1416 (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (-1416 (*1 *1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-884 *3 *4 *5)))) (-1219 (*1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (-1446 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *2 (-2 (|:| |mval| (-632 *4)) (|:| |invmval| (-632 *4)) (|:| |genIdeal| (-477 *4 *5 *6 *7)))) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))) (-2561 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-632 *3)) (|:| |invmval| (-632 *3)) (|:| |genIdeal| (-477 *3 *4 *5 *6)))) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-3933 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *2 (-525)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))) (-3933 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-2962 (*1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (-2654 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))) (-1795 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))) (-2135 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-2509 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *6)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))) (-3397 (*1 *1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-884 *3 *4 *5)))) (-3397 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *1 (-477 *4 *5 *6 *2)) (-4 *2 (-884 *4 *5 *6)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *5 *6)) (-4 *6 (-567 (-1092))) (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1082 (-592 (-887 *4)) (-592 (-273 (-887 *4))))) (-5 *1 (-477 *4 *5 *6 *7)))))
+(-13 (-1020) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 -2860 ($ $ $)) (-15 -2278 ((-108) $)) (-15 -2414 ((-108) $)) (-15 -4206 ((-108) |#4| $)) (-15 -3202 ((-108) $ $)) (-15 -4043 ((-108) |#4| $)) (-15 -2723 ((-108) $ (-592 |#3|))) (-15 -2723 ((-108) $)) (-15 -2913 ($ $ $)) (-15 -2913 ($ (-592 $))) (-15 -1416 ($ $ $)) (-15 -1416 ($ $ |#4|)) (-15 -1219 ($ $)) (-15 -1446 ((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-592 |#3|))) (-15 -2561 ($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)))) (-15 -3933 ((-525) $ (-592 |#3|))) (-15 -3933 ((-525) $)) (-15 -2962 ($ $)) (-15 -2654 ($ (-592 |#4|))) (-15 -1795 ($ (-592 |#4|))) (-15 -2135 ((-108) $)) (-15 -2509 ((-592 |#4|) $)) (-15 -4100 ($ (-592 |#4|))) (-15 -3397 ($ $ |#4|)) (-15 -3397 ($ $ |#4| (-592 |#3|))) (IF (|has| |#3| (-567 (-1092))) (-15 -2451 ((-1082 (-592 (-887 |#1|)) (-592 (-273 (-887 |#1|)))) (-592 |#4|))) |%noBranch|)))
+((-2290 (((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) 149)) (-3622 (((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) 150)) (-2625 (((-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) 108)) (-1798 (((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) NIL)) (-3971 (((-592 (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) 152)) (-1978 (((-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-592 (-800 |#1|))) 164)))
+(((-478 |#1| |#2|) (-10 -7 (-15 -2290 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3622 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -1798 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2625 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3971 ((-592 (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -1978 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-592 (-800 |#1|))))) (-592 (-1092)) (-713)) (T -478))
+((-1978 (*1 *2 *2 *3) (-12 (-5 *2 (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4) (-227 *4 (-385 (-525))))) (-5 *3 (-592 (-800 *4))) (-14 *4 (-592 (-1092))) (-14 *5 (-713)) (-5 *1 (-478 *4 *5)))) (-3971 (*1 *2 *3) (-12 (-14 *4 (-592 (-1092))) (-14 *5 (-713)) (-5 *2 (-592 (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4) (-227 *4 (-385 (-525)))))) (-5 *1 (-478 *4 *5)) (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4) (-227 *4 (-385 (-525))))))) (-2625 (*1 *2 *2) (-12 (-5 *2 (-477 (-385 (-525)) (-220 *4 (-713)) (-800 *3) (-227 *3 (-385 (-525))))) (-14 *3 (-592 (-1092))) (-14 *4 (-713)) (-5 *1 (-478 *3 *4)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4) (-227 *4 (-385 (-525))))) (-14 *4 (-592 (-1092))) (-14 *5 (-713)) (-5 *2 (-108)) (-5 *1 (-478 *4 *5)))) (-3622 (*1 *2 *3) (-12 (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4) (-227 *4 (-385 (-525))))) (-14 *4 (-592 (-1092))) (-14 *5 (-713)) (-5 *2 (-108)) (-5 *1 (-478 *4 *5)))) (-2290 (*1 *2 *3) (-12 (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4) (-227 *4 (-385 (-525))))) (-14 *4 (-592 (-1092))) (-14 *5 (-713)) (-5 *2 (-108)) (-5 *1 (-478 *4 *5)))))
+(-10 -7 (-15 -2290 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3622 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -1798 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2625 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3971 ((-592 (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -1978 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-592 (-800 |#1|)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-1451 (($ $) NIL)) (-1272 (($ |#1| |#2|) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2975 ((|#2| $) NIL)) (-1430 ((|#1| $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-3364 (($) 12 T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) 11) (($ $ $) 24)) (-2860 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 18)))
(((-479 |#1| |#2|) (-13 (-21) (-481 |#1| |#2|)) (-21) (-789)) (T -479))
NIL
(-13 (-21) (-481 |#1| |#2|))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 12)) (-2169 (($) NIL T CONST)) (-3063 (($ $) 28)) (-2876 (($ |#1| |#2|) 25)) (-3165 (($ (-1 |#1| |#1|) $) 27)) (-3064 ((|#2| $) NIL)) (-3043 ((|#1| $) 29)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3349 (($) 10 T CONST)) (-3955 (((-108) $ $) NIL)) (-4047 (($ $ $) 18)) (* (($ (-856) $) NIL) (($ (-713) $) 23)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 12)) (-2475 (($) NIL T CONST)) (-1451 (($ $) 28)) (-1272 (($ |#1| |#2|) 25)) (-2016 (($ (-1 |#1| |#1|) $) 27)) (-2975 ((|#2| $) NIL)) (-1430 ((|#1| $) 29)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-3364 (($) 10 T CONST)) (-2775 (((-108) $ $) NIL)) (-2860 (($ $ $) 18)) (* (($ (-856) $) NIL) (($ (-713) $) 23)))
(((-480 |#1| |#2|) (-13 (-23) (-481 |#1| |#2|)) (-23) (-789)) (T -480))
NIL
(-13 (-23) (-481 |#1| |#2|))
-((-4236 (((-108) $ $) 7)) (-3063 (($ $) 13)) (-2876 (($ |#1| |#2|) 16)) (-3165 (($ (-1 |#1| |#1|) $) 17)) (-3064 ((|#2| $) 14)) (-3043 ((|#1| $) 15)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3955 (((-108) $ $) 6)))
+((-4087 (((-108) $ $) 7)) (-1451 (($ $) 13)) (-1272 (($ |#1| |#2|) 16)) (-2016 (($ (-1 |#1| |#1|) $) 17)) (-2975 ((|#2| $) 14)) (-1430 ((|#1| $) 15)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-2775 (((-108) $ $) 6)))
(((-481 |#1| |#2|) (-131) (-1020) (-789)) (T -481))
-((-3165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-789)))) (-2876 (*1 *1 *2 *3) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-789)))) (-3043 (*1 *2 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1020)))) (-3064 (*1 *2 *1) (-12 (-4 *1 (-481 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-789)))) (-3063 (*1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-789)))))
-(-13 (-1020) (-10 -8 (-15 -3165 ($ (-1 |t#1| |t#1|) $)) (-15 -2876 ($ |t#1| |t#2|)) (-15 -3043 (|t#1| $)) (-15 -3064 (|t#2| $)) (-15 -3063 ($ $))))
+((-2016 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-789)))) (-1272 (*1 *1 *2 *3) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-789)))) (-1430 (*1 *2 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1020)))) (-2975 (*1 *2 *1) (-12 (-4 *1 (-481 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-789)))) (-1451 (*1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-789)))))
+(-13 (-1020) (-10 -8 (-15 -2016 ($ (-1 |t#1| |t#1|) $)) (-15 -1272 ($ |t#1| |t#2|)) (-15 -1430 (|t#1| $)) (-15 -2975 (|t#2| $)) (-15 -1451 ($ $))))
(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2169 (($) NIL T CONST)) (-3063 (($ $) NIL)) (-2876 (($ |#1| |#2|) NIL)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-3064 ((|#2| $) NIL)) (-3043 ((|#1| $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3349 (($) NIL T CONST)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 13)) (-4047 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-2475 (($) NIL T CONST)) (-1451 (($ $) NIL)) (-1272 (($ |#1| |#2|) NIL)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2975 ((|#2| $) NIL)) (-1430 ((|#1| $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-3364 (($) NIL T CONST)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 13)) (-2860 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL)))
(((-482 |#1| |#2|) (-13 (-734) (-481 |#1| |#2|)) (-734) (-789)) (T -482))
NIL
(-13 (-734) (-481 |#1| |#2|))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-3167 (($ $ $) 16)) (-1578 (((-3 $ "failed") $ $) 13)) (-2169 (($) NIL T CONST)) (-3063 (($ $) NIL)) (-2876 (($ |#1| |#2|) NIL)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-3064 ((|#2| $) NIL)) (-3043 ((|#1| $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL)) (-3349 (($) NIL T CONST)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1525 (($ $ $) 16)) (-3222 (((-3 $ "failed") $ $) 13)) (-2475 (($) NIL T CONST)) (-1451 (($ $) NIL)) (-1272 (($ |#1| |#2|) NIL)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2975 ((|#2| $) NIL)) (-1430 ((|#1| $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL)) (-3364 (($) NIL T CONST)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) NIL)) (-2860 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL)))
(((-483 |#1| |#2|) (-13 (-735) (-481 |#1| |#2|)) (-735) (-789)) (T -483))
NIL
(-13 (-735) (-481 |#1| |#2|))
-((-4236 (((-108) $ $) NIL)) (-3063 (($ $) 25)) (-2876 (($ |#1| |#2|) 22)) (-3165 (($ (-1 |#1| |#1|) $) 24)) (-3064 ((|#2| $) 27)) (-3043 ((|#1| $) 26)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 21)) (-3955 (((-108) $ $) 14)))
+((-4087 (((-108) $ $) NIL)) (-1451 (($ $) 25)) (-1272 (($ |#1| |#2|) 22)) (-2016 (($ (-1 |#1| |#1|) $) 24)) (-2975 ((|#2| $) 27)) (-1430 ((|#1| $) 26)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 21)) (-2775 (((-108) $ $) 14)))
(((-484 |#1| |#2|) (-481 |#1| |#2|) (-1020) (-789)) (T -484))
NIL
(-481 |#1| |#2|)
-((-2457 (($ $ (-592 |#2|) (-592 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-485 |#1| |#2| |#3|) (-10 -8 (-15 -2457 (|#1| |#1| |#2| |#3|)) (-15 -2457 (|#1| |#1| (-592 |#2|) (-592 |#3|)))) (-486 |#2| |#3|) (-1020) (-1128)) (T -485))
+((-2825 (($ $ (-592 |#2|) (-592 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-485 |#1| |#2| |#3|) (-10 -8 (-15 -2825 (|#1| |#1| |#2| |#3|)) (-15 -2825 (|#1| |#1| (-592 |#2|) (-592 |#3|)))) (-486 |#2| |#3|) (-1020) (-1128)) (T -485))
NIL
-(-10 -8 (-15 -2457 (|#1| |#1| |#2| |#3|)) (-15 -2457 (|#1| |#1| (-592 |#2|) (-592 |#3|))))
-((-2457 (($ $ (-592 |#1|) (-592 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(-10 -8 (-15 -2825 (|#1| |#1| |#2| |#3|)) (-15 -2825 (|#1| |#1| (-592 |#2|) (-592 |#3|))))
+((-2825 (($ $ (-592 |#1|) (-592 |#2|)) 7) (($ $ |#1| |#2|) 6)))
(((-486 |#1| |#2|) (-131) (-1020) (-1128)) (T -486))
-((-2457 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 *5)) (-4 *1 (-486 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1128)))) (-2457 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1128)))))
-(-13 (-10 -8 (-15 -2457 ($ $ |t#1| |t#2|)) (-15 -2457 ($ $ (-592 |t#1|) (-592 |t#2|)))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 16)) (-2755 (((-592 (-2 (|:| |gen| |#1|) (|:| -3096 |#2|))) $) 18)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1834 (((-713) $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) NIL)) (-1572 ((|#1| $) NIL)) (-1726 ((|#1| $ (-525)) 23)) (-4147 ((|#2| $ (-525)) 21)) (-2527 (($ (-1 |#1| |#1|) $) 46)) (-1460 (($ (-1 |#2| |#2|) $) 43)) (-2619 (((-1075) $) NIL)) (-2893 (($ $ $) 53 (|has| |#2| (-734)))) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 42) (($ |#1|) NIL)) (-1568 ((|#2| |#1| $) 49)) (-3349 (($) 11 T CONST)) (-3955 (((-108) $ $) 29)) (-4047 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-856) $) NIL) (($ (-713) $) 36) (($ |#2| |#1|) 31)))
+((-2825 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 *5)) (-4 *1 (-486 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1128)))) (-2825 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1128)))))
+(-13 (-10 -8 (-15 -2825 ($ $ |t#1| |t#2|)) (-15 -2825 ($ $ (-592 |t#1|) (-592 |t#2|)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 16)) (-2005 (((-592 (-2 (|:| |gen| |#1|) (|:| -1618 |#2|))) $) 18)) (-3222 (((-3 $ "failed") $ $) NIL)) (-1613 (((-713) $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) NIL)) (-4105 ((|#1| $) NIL)) (-3538 ((|#1| $ (-525)) 23)) (-2911 ((|#2| $ (-525)) 21)) (-1693 (($ (-1 |#1| |#1|) $) 46)) (-2534 (($ (-1 |#2| |#2|) $) 43)) (-1289 (((-1075) $) NIL)) (-3833 (($ $ $) 53 (|has| |#2| (-734)))) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 42) (($ |#1|) NIL)) (-3136 ((|#2| |#1| $) 49)) (-3364 (($) 11 T CONST)) (-2775 (((-108) $ $) 29)) (-2860 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-856) $) NIL) (($ (-713) $) 36) (($ |#2| |#1|) 31)))
(((-487 |#1| |#2| |#3|) (-301 |#1| |#2|) (-1020) (-126) |#2|) (T -487))
NIL
(-301 |#1| |#2|)
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-2470 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2165 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4259))) (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-789))))) (-2458 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3991 (((-108) $ (-713)) NIL)) (-2034 (((-108) (-108)) 25)) (-1430 ((|#1| $ (-525) |#1|) 28 (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4259)))) (-1676 (($ (-1 (-108) |#1|) $) 52)) (-3785 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2169 (($) NIL T CONST)) (-2700 (($ $) NIL (|has| $ (-6 -4259)))) (-3431 (($ $) NIL)) (-3972 (($ $) 56 (|has| |#1| (-1020)))) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3271 (($ |#1| $) NIL (|has| |#1| (-1020))) (($ (-1 (-108) |#1|) $) 44)) (-1703 (($ |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4258)))) (-2301 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) NIL)) (-1932 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-1636 (($ $ (-525)) 13)) (-2943 (((-713) $) 11)) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-3416 (($ (-713) |#1|) 23)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) 21 (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-2639 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 35)) (-1577 (($ (-1 (-108) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-789)))) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1847 (((-525) $) 20 (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-1262 (($ $ $ (-525)) 51) (($ |#1| $ (-525)) 37)) (-2531 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-2071 (($ (-592 |#1|)) 29)) (-1872 ((|#1| $) NIL (|has| (-525) (-789)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1420 (($ $ |#1|) 19 (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 40)) (-2167 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) 16)) (-3406 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 33) (($ $ (-1141 (-525))) NIL)) (-1356 (($ $ (-1141 (-525))) 50) (($ $ (-525)) 45)) (-3038 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-4098 (($ $ $ (-525)) 41 (|has| $ (-6 -4259)))) (-1462 (($ $) 32)) (-3210 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) NIL)) (-4029 (($ $ $) 42) (($ $ |#1|) 39)) (-2038 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3522 (((-713) $) 17 (|has| $ (-6 -4258)))))
-(((-488 |#1| |#2|) (-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -2071 ($ (-592 |#1|))) (-15 -2943 ((-713) $)) (-15 -1636 ($ $ (-525))) (-15 -2034 ((-108) (-108))))) (-1128) (-525)) (T -488))
-((-2071 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-488 *3 *4)) (-14 *4 (-525)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-525)))) (-1636 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1128)) (-14 *4 *2))) (-2034 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-525)))))
-(-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -2071 ($ (-592 |#1|))) (-15 -2943 ((-713) $)) (-15 -1636 ($ $ (-525))) (-15 -2034 ((-108) (-108)))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1259 (((-108) $) NIL)) (-3098 (((-713)) NIL)) (-2952 (((-538 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-538 |#1|) (-346)))) (-2971 (((-1102 (-856) (-713)) (-525)) NIL (|has| (-538 |#1|) (-346)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2193 (((-108) $ $) NIL)) (-1834 (((-713)) NIL (|has| (-538 |#1|) (-346)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-538 |#1|) "failed") $) NIL)) (-1572 (((-538 |#1|) $) NIL)) (-2064 (($ (-1174 (-538 |#1|))) NIL)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-538 |#1|) (-346)))) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($) NIL (|has| (-538 |#1|) (-346)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-2574 (($) NIL (|has| (-538 |#1|) (-346)))) (-3704 (((-108) $) NIL (|has| (-538 |#1|) (-346)))) (-3625 (($ $ (-713)) NIL (-3254 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346)))) (($ $) NIL (-3254 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-3673 (((-108) $) NIL)) (-2581 (((-856) $) NIL (|has| (-538 |#1|) (-346))) (((-775 (-856)) $) NIL (-3254 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-1396 (((-108) $) NIL)) (-1273 (($) NIL (|has| (-538 |#1|) (-346)))) (-1527 (((-108) $) NIL (|has| (-538 |#1|) (-346)))) (-2382 (((-538 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-538 |#1|) (-346)))) (-3844 (((-3 $ "failed") $) NIL (|has| (-538 |#1|) (-346)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2126 (((-1088 (-538 |#1|)) $) NIL) (((-1088 $) $ (-856)) NIL (|has| (-538 |#1|) (-346)))) (-3005 (((-856) $) NIL (|has| (-538 |#1|) (-346)))) (-1283 (((-1088 (-538 |#1|)) $) NIL (|has| (-538 |#1|) (-346)))) (-2577 (((-1088 (-538 |#1|)) $) NIL (|has| (-538 |#1|) (-346))) (((-3 (-1088 (-538 |#1|)) "failed") $ $) NIL (|has| (-538 |#1|) (-346)))) (-2324 (($ $ (-1088 (-538 |#1|))) NIL (|has| (-538 |#1|) (-346)))) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2295 (($) NIL (|has| (-538 |#1|) (-346)) CONST)) (-3555 (($ (-856)) NIL (|has| (-538 |#1|) (-346)))) (-2703 (((-108) $) NIL)) (-2093 (((-1039) $) NIL)) (-3409 (($) NIL (|has| (-538 |#1|) (-346)))) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) NIL (|has| (-538 |#1|) (-346)))) (-2770 (((-396 $) $) NIL)) (-2858 (((-775 (-856))) NIL) (((-856)) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3877 (((-713) $) NIL (|has| (-538 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-3254 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-3705 (((-128)) NIL)) (-3376 (($ $) NIL (|has| (-538 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-538 |#1|) (-346)))) (-2343 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-2756 (((-1088 (-538 |#1|))) NIL)) (-2244 (($) NIL (|has| (-538 |#1|) (-346)))) (-2254 (($) NIL (|has| (-538 |#1|) (-346)))) (-2387 (((-1174 (-538 |#1|)) $) NIL) (((-632 (-538 |#1|)) (-1174 $)) NIL)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| (-538 |#1|) (-346)))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-538 |#1|)) NIL)) (-3637 (($ $) NIL (|has| (-538 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3254 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-3917 (((-713)) NIL)) (-3094 (((-1174 $)) NIL) (((-1174 $) (-856)) NIL)) (-3325 (((-108) $ $) NIL)) (-2081 (((-108) $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-3127 (($ $) NIL (|has| (-538 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-538 |#1|) (-346)))) (-2022 (($ $) NIL (|has| (-538 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-538 |#1|) (-346)))) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL) (($ $ (-538 |#1|)) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-538 |#1|)) NIL) (($ (-538 |#1|) $) NIL)))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-2358 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2436 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4260))) (($ $) NIL (-12 (|has| $ (-6 -4260)) (|has| |#1| (-789))))) (-1842 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3779 (((-108) $ (-713)) NIL)) (-3454 (((-108) (-108)) 25)) (-1233 ((|#1| $ (-525) |#1|) 28 (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4260)))) (-3050 (($ (-1 (-108) |#1|) $) 52)) (-2399 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2475 (($) NIL T CONST)) (-2670 (($ $) NIL (|has| $ (-6 -4260)))) (-1652 (($ $) NIL)) (-1793 (($ $) 56 (|has| |#1| (-1020)))) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-4205 (($ |#1| $) NIL (|has| |#1| (-1020))) (($ (-1 (-108) |#1|) $) 44)) (-2698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3081 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) NIL)) (-3856 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-3937 (($ $ (-525)) 13)) (-1317 (((-713) $) 11)) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3324 (($ (-713) |#1|) 23)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) 21 (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-3269 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 35)) (-3212 (($ (-1 (-108) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-789)))) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2231 (((-525) $) 20 (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3246 (($ $ $ (-525)) 51) (($ |#1| $ (-525)) 37)) (-2594 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-2643 (($ (-592 |#1|)) 29)) (-1647 ((|#1| $) NIL (|has| (-525) (-789)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3453 (($ $ |#1|) 19 (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 40)) (-2456 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) 16)) (-3431 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 33) (($ $ (-1141 (-525))) NIL)) (-2818 (($ $ (-1141 (-525))) 50) (($ $ (-525)) 45)) (-2139 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3632 (($ $ $ (-525)) 41 (|has| $ (-6 -4260)))) (-2503 (($ $) 32)) (-2069 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) NIL)) (-4190 (($ $ $) 42) (($ $ |#1|) 39)) (-2035 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-592 $)) NIL)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2827 (((-713) $) 17 (|has| $ (-6 -4259)))))
+(((-488 |#1| |#2|) (-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -2643 ($ (-592 |#1|))) (-15 -1317 ((-713) $)) (-15 -3937 ($ $ (-525))) (-15 -3454 ((-108) (-108))))) (-1128) (-525)) (T -488))
+((-2643 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-488 *3 *4)) (-14 *4 (-525)))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-525)))) (-3937 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1128)) (-14 *4 *2))) (-3454 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-525)))))
+(-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -2643 ($ (-592 |#1|))) (-15 -1317 ((-713) $)) (-15 -3937 ($ $ (-525))) (-15 -3454 ((-108) (-108)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3214 (((-108) $) NIL)) (-2132 (((-713)) NIL)) (-2924 (((-538 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-538 |#1|) (-346)))) (-3395 (((-1102 (-856) (-713)) (-525)) NIL (|has| (-538 |#1|) (-346)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-1507 (((-108) $ $) NIL)) (-1613 (((-713)) NIL (|has| (-538 |#1|) (-346)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-538 |#1|) "failed") $) NIL)) (-4105 (((-538 |#1|) $) NIL)) (-2580 (($ (-1174 (-538 |#1|))) NIL)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-538 |#1|) (-346)))) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($) NIL (|has| (-538 |#1|) (-346)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-3932 (($) NIL (|has| (-538 |#1|) (-346)))) (-3920 (((-108) $) NIL (|has| (-538 |#1|) (-346)))) (-1339 (($ $ (-713)) NIL (-2067 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346)))) (($ $) NIL (-2067 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-1798 (((-108) $) NIL)) (-4000 (((-856) $) NIL (|has| (-538 |#1|) (-346))) (((-775 (-856)) $) NIL (-2067 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-2278 (((-108) $) NIL)) (-3957 (($) NIL (|has| (-538 |#1|) (-346)))) (-1890 (((-108) $) NIL (|has| (-538 |#1|) (-346)))) (-2704 (((-538 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-538 |#1|) (-346)))) (-2878 (((-3 $ "failed") $) NIL (|has| (-538 |#1|) (-346)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2021 (((-1088 (-538 |#1|)) $) NIL) (((-1088 $) $ (-856)) NIL (|has| (-538 |#1|) (-346)))) (-3685 (((-856) $) NIL (|has| (-538 |#1|) (-346)))) (-4162 (((-1088 (-538 |#1|)) $) NIL (|has| (-538 |#1|) (-346)))) (-3955 (((-1088 (-538 |#1|)) $) NIL (|has| (-538 |#1|) (-346))) (((-3 (-1088 (-538 |#1|)) "failed") $ $) NIL (|has| (-538 |#1|) (-346)))) (-3323 (($ $ (-1088 (-538 |#1|))) NIL (|has| (-538 |#1|) (-346)))) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-2948 (($) NIL (|has| (-538 |#1|) (-346)) CONST)) (-1722 (($ (-856)) NIL (|has| (-538 |#1|) (-346)))) (-2700 (((-108) $) NIL)) (-3993 (((-1039) $) NIL)) (-3817 (($) NIL (|has| (-538 |#1|) (-346)))) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) NIL (|has| (-538 |#1|) (-346)))) (-4201 (((-396 $) $) NIL)) (-1690 (((-775 (-856))) NIL) (((-856)) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2043 (((-713) $) NIL (|has| (-538 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-2067 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-3933 (((-128)) NIL)) (-2702 (($ $) NIL (|has| (-538 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-538 |#1|) (-346)))) (-3529 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-2013 (((-1088 (-538 |#1|))) NIL)) (-3823 (($) NIL (|has| (-538 |#1|) (-346)))) (-3911 (($) NIL (|has| (-538 |#1|) (-346)))) (-2754 (((-1174 (-538 |#1|)) $) NIL) (((-632 (-538 |#1|)) (-1174 $)) NIL)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| (-538 |#1|) (-346)))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-538 |#1|)) NIL)) (-1463 (($ $) NIL (|has| (-538 |#1|) (-346))) (((-3 $ "failed") $) NIL (-2067 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-2448 (((-713)) NIL)) (-2103 (((-1174 $)) NIL) (((-1174 $) (-856)) NIL)) (-1571 (((-108) $ $) NIL)) (-2738 (((-108) $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2363 (($ $) NIL (|has| (-538 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-538 |#1|) (-346)))) (-2401 (($ $) NIL (|has| (-538 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-538 |#1|) (-346)))) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ $) NIL) (($ $ (-538 |#1|)) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-538 |#1|)) NIL) (($ (-538 |#1|) $) NIL)))
(((-489 |#1| |#2|) (-307 (-538 |#1|)) (-856) (-856)) (T -489))
NIL
(-307 (-538 |#1|))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 ((|#1| $ (-525) (-525) |#1|) 35)) (-3028 (($ $ (-525) |#4|) NIL)) (-1925 (($ $ (-525) |#5|) NIL)) (-2169 (($) NIL T CONST)) (-2631 ((|#4| $ (-525)) NIL)) (-2301 ((|#1| $ (-525) (-525) |#1|) 34)) (-2222 ((|#1| $ (-525) (-525)) 32)) (-3440 (((-592 |#1|) $) NIL)) (-1632 (((-713) $) 28)) (-3416 (($ (-713) (-713) |#1|) 25)) (-1644 (((-713) $) 30)) (-3924 (((-108) $ (-713)) NIL)) (-2391 (((-525) $) 26)) (-1237 (((-525) $) 27)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3446 (((-525) $) 29)) (-3757 (((-525) $) 31)) (-2284 (($ (-1 |#1| |#1|) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) 38 (|has| |#1| (-1020)))) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1420 (($ $ |#1|) NIL)) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) 14)) (-2512 (($) 16)) (-3406 ((|#1| $ (-525) (-525)) 33) ((|#1| $ (-525) (-525) |#1|) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) NIL)) (-1808 ((|#5| $ (-525)) NIL)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 ((|#1| $ (-525) (-525) |#1|) 35)) (-2695 (($ $ (-525) |#4|) NIL)) (-1773 (($ $ (-525) |#5|) NIL)) (-2475 (($) NIL T CONST)) (-3209 ((|#4| $ (-525)) NIL)) (-3081 ((|#1| $ (-525) (-525) |#1|) 34)) (-3017 ((|#1| $ (-525) (-525)) 32)) (-2175 (((-592 |#1|) $) NIL)) (-2720 (((-713) $) 28)) (-3324 (($ (-713) (-713) |#1|) 25)) (-2731 (((-713) $) 30)) (-2516 (((-108) $ (-713)) NIL)) (-2797 (((-525) $) 26)) (-2307 (((-525) $) 27)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3194 (((-525) $) 29)) (-3210 (((-525) $) 31)) (-3069 (($ (-1 |#1| |#1|) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) 38 (|has| |#1| (-1020)))) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3453 (($ $ |#1|) NIL)) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) 14)) (-1558 (($) 16)) (-3431 ((|#1| $ (-525) (-525)) 33) ((|#1| $ (-525) (-525) |#1|) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) NIL)) (-1881 ((|#5| $ (-525)) NIL)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
(((-490 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1128) (-525) (-525) (-351 |#1|) (-351 |#1|)) (T -490))
NIL
(-55 |#1| |#4| |#5|)
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3284 ((|#1| $) NIL)) (-3581 ((|#1| $) NIL)) (-2798 (($ $) NIL)) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-4238 (($ $ (-525)) 59 (|has| $ (-6 -4259)))) (-2470 (((-108) $) NIL (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-2165 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-789)))) (($ (-1 (-108) |#1| |#1|) $) 57 (|has| $ (-6 -4259)))) (-2458 (($ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-3214 ((|#1| $ |#1|) NIL (|has| $ (-6 -4259)))) (-1620 (($ $ $) 23 (|has| $ (-6 -4259)))) (-2603 ((|#1| $ |#1|) NIL (|has| $ (-6 -4259)))) (-4145 ((|#1| $ |#1|) 21 (|has| $ (-6 -4259)))) (-1430 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4259))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4259))) (($ $ "rest" $) 24 (|has| $ (-6 -4259))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4259))) ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) NIL (|has| $ (-6 -4259)))) (-1676 (($ (-1 (-108) |#1|) $) NIL)) (-3785 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3570 ((|#1| $) NIL)) (-2169 (($) NIL T CONST)) (-2700 (($ $) 28 (|has| $ (-6 -4259)))) (-3431 (($ $) 29)) (-1886 (($ $) 18) (($ $ (-713)) 32)) (-3972 (($ $) 55 (|has| |#1| (-1020)))) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3271 (($ |#1| $) NIL (|has| |#1| (-1020))) (($ (-1 (-108) |#1|) $) NIL)) (-1703 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-2301 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) NIL)) (-2353 (((-108) $) NIL)) (-1932 (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020))) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) (-1 (-108) |#1|) $) NIL)) (-3440 (((-592 |#1|) $) 27 (|has| $ (-6 -4258)))) (-3396 (((-592 $) $) NIL)) (-1729 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3416 (($ (-713) |#1|) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) 31 (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-2639 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 58)) (-1577 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 53 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1755 (($ |#1|) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2803 (((-592 |#1|) $) NIL)) (-3786 (((-108) $) NIL)) (-2619 (((-1075) $) 51 (|has| |#1| (-1020)))) (-1717 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-1262 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2531 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1872 ((|#1| $) 13) (($ $ (-713)) NIL)) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1420 (($ $ |#1|) NIL (|has| $ (-6 -4259)))) (-3920 (((-108) $) NIL)) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 12)) (-2167 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) NIL)) (-2659 (((-108) $) 17)) (-2512 (($) 16)) (-3406 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1141 (-525))) NIL) ((|#1| $ (-525)) NIL) ((|#1| $ (-525) |#1|) NIL)) (-3340 (((-525) $ $) NIL)) (-1356 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-3038 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-2905 (((-108) $) 34)) (-3004 (($ $) NIL)) (-1354 (($ $) NIL (|has| $ (-6 -4259)))) (-1654 (((-713) $) NIL)) (-4167 (($ $) 36)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-4098 (($ $ $ (-525)) NIL (|has| $ (-6 -4259)))) (-1462 (($ $) 35)) (-3210 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 26)) (-4029 (($ $ $) 54) (($ $ |#1|) NIL)) (-2038 (($ $ $) NIL) (($ |#1| $) 10) (($ (-592 $)) NIL) (($ $ |#1|) NIL)) (-1217 (((-798) $) 46 (|has| |#1| (-566 (-798))))) (-3793 (((-592 $) $) NIL)) (-3351 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) 48 (|has| |#1| (-1020)))) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3522 (((-713) $) 9 (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2219 ((|#1| $) NIL)) (-2250 ((|#1| $) NIL)) (-3979 (($ $) NIL)) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-1425 (($ $ (-525)) 59 (|has| $ (-6 -4260)))) (-2358 (((-108) $) NIL (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-2436 (($ $) NIL (-12 (|has| $ (-6 -4260)) (|has| |#1| (-789)))) (($ (-1 (-108) |#1| |#1|) $) 57 (|has| $ (-6 -4260)))) (-1842 (($ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-1947 ((|#1| $ |#1|) NIL (|has| $ (-6 -4260)))) (-3776 (($ $ $) 23 (|has| $ (-6 -4260)))) (-4193 ((|#1| $ |#1|) NIL (|has| $ (-6 -4260)))) (-2894 ((|#1| $ |#1|) 21 (|has| $ (-6 -4260)))) (-1233 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4260))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4260))) (($ $ "rest" $) 24 (|has| $ (-6 -4260))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4260))) ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) NIL (|has| $ (-6 -4260)))) (-3050 (($ (-1 (-108) |#1|) $) NIL)) (-2399 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2237 ((|#1| $) NIL)) (-2475 (($) NIL T CONST)) (-2670 (($ $) 28 (|has| $ (-6 -4260)))) (-1652 (($ $) 29)) (-1659 (($ $) 18) (($ $ (-713)) 32)) (-1793 (($ $) 55 (|has| |#1| (-1020)))) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-4205 (($ |#1| $) NIL (|has| |#1| (-1020))) (($ (-1 (-108) |#1|) $) NIL)) (-2698 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3081 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) NIL)) (-3631 (((-108) $) NIL)) (-3856 (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020))) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) (-1 (-108) |#1|) $) NIL)) (-2175 (((-592 |#1|) $) 27 (|has| $ (-6 -4259)))) (-3994 (((-592 $) $) NIL)) (-3569 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3324 (($ (-713) |#1|) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) 31 (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-3269 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 58)) (-3212 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 53 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1522 (($ |#1|) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-2010 (((-592 |#1|) $) NIL)) (-3506 (((-108) $) NIL)) (-1289 (((-1075) $) 51 (|has| |#1| (-1020)))) (-2718 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-3246 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2594 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1647 ((|#1| $) 13) (($ $ (-713)) NIL)) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3453 (($ $ |#1|) NIL (|has| $ (-6 -4260)))) (-2476 (((-108) $) NIL)) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 12)) (-2456 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) NIL)) (-3479 (((-108) $) 17)) (-1558 (($) 16)) (-3431 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1141 (-525))) NIL) ((|#1| $ (-525)) NIL) ((|#1| $ (-525) |#1|) NIL)) (-1707 (((-525) $ $) NIL)) (-2818 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-2139 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-3953 (((-108) $) 34)) (-3675 (($ $) NIL)) (-2789 (($ $) NIL (|has| $ (-6 -4260)))) (-4082 (((-713) $) NIL)) (-3077 (($ $) 36)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3632 (($ $ $ (-525)) NIL (|has| $ (-6 -4260)))) (-2503 (($ $) 35)) (-2069 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 26)) (-4190 (($ $ $) 54) (($ $ |#1|) NIL)) (-2035 (($ $ $) NIL) (($ |#1| $) 10) (($ (-592 $)) NIL) (($ $ |#1|) NIL)) (-4100 (((-798) $) 46 (|has| |#1| (-566 (-798))))) (-3576 (((-592 $) $) NIL)) (-1791 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) 48 (|has| |#1| (-1020)))) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2827 (((-713) $) 9 (|has| $ (-6 -4259)))))
(((-491 |#1| |#2|) (-612 |#1|) (-1128) (-525)) (T -491))
NIL
(-612 |#1|)
-((-2361 ((|#4| |#4|) 27)) (-3622 (((-713) |#4|) 32)) (-2313 (((-713) |#4|) 33)) (-2319 (((-592 |#3|) |#4|) 40 (|has| |#3| (-6 -4259)))) (-1529 (((-3 |#4| "failed") |#4|) 51)) (-1419 ((|#4| |#4|) 44)) (-1927 ((|#1| |#4|) 43)))
-(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2361 (|#4| |#4|)) (-15 -3622 ((-713) |#4|)) (-15 -2313 ((-713) |#4|)) (IF (|has| |#3| (-6 -4259)) (-15 -2319 ((-592 |#3|) |#4|)) |%noBranch|) (-15 -1927 (|#1| |#4|)) (-15 -1419 (|#4| |#4|)) (-15 -1529 ((-3 |#4| "failed") |#4|))) (-341) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -492))
-((-1529 (*1 *2 *2) (|partial| -12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-1419 (*1 *2 *2) (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-1927 (*1 *2 *3) (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-341)) (-5 *1 (-492 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5)))) (-2319 (*1 *2 *3) (-12 (|has| *6 (-6 -4259)) (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-2313 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-2361 (*1 *2 *2) (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
-(-10 -7 (-15 -2361 (|#4| |#4|)) (-15 -3622 ((-713) |#4|)) (-15 -2313 ((-713) |#4|)) (IF (|has| |#3| (-6 -4259)) (-15 -2319 ((-592 |#3|) |#4|)) |%noBranch|) (-15 -1927 (|#1| |#4|)) (-15 -1419 (|#4| |#4|)) (-15 -1529 ((-3 |#4| "failed") |#4|)))
-((-2361 ((|#8| |#4|) 20)) (-2319 (((-592 |#3|) |#4|) 29 (|has| |#7| (-6 -4259)))) (-1529 (((-3 |#8| "failed") |#4|) 23)))
-(((-493 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2361 (|#8| |#4|)) (-15 -1529 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4259)) (-15 -2319 ((-592 |#3|) |#4|)) |%noBranch|)) (-517) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|) (-925 |#1|) (-351 |#5|) (-351 |#5|) (-630 |#5| |#6| |#7|)) (T -493))
-((-2319 (*1 *2 *3) (-12 (|has| *9 (-6 -4259)) (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-4 *7 (-925 *4)) (-4 *8 (-351 *7)) (-4 *9 (-351 *7)) (-5 *2 (-592 *6)) (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-630 *4 *5 *6)) (-4 *10 (-630 *7 *8 *9)))) (-1529 (*1 *2 *3) (|partial| -12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-4 *7 (-925 *4)) (-4 *2 (-630 *7 *8 *9)) (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6)) (-4 *8 (-351 *7)) (-4 *9 (-351 *7)))) (-2361 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-4 *7 (-925 *4)) (-4 *2 (-630 *7 *8 *9)) (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6)) (-4 *8 (-351 *7)) (-4 *9 (-351 *7)))))
-(-10 -7 (-15 -2361 (|#8| |#4|)) (-15 -1529 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4259)) (-15 -2319 ((-592 |#3|) |#4|)) |%noBranch|))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2609 (($ (-713) (-713)) NIL)) (-2073 (($ $ $) NIL)) (-3966 (($ (-556 |#1| |#3|)) NIL) (($ $) NIL)) (-4197 (((-108) $) NIL)) (-2105 (($ $ (-525) (-525)) 12)) (-2901 (($ $ (-525) (-525)) NIL)) (-2199 (($ $ (-525) (-525) (-525) (-525)) NIL)) (-4060 (($ $) NIL)) (-1772 (((-108) $) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-2050 (($ $ (-525) (-525) $) NIL)) (-1430 ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) NIL)) (-3028 (($ $ (-525) (-556 |#1| |#3|)) NIL)) (-1925 (($ $ (-525) (-556 |#1| |#2|)) NIL)) (-1989 (($ (-713) |#1|) NIL)) (-2169 (($) NIL T CONST)) (-2361 (($ $) 21 (|has| |#1| (-286)))) (-2631 (((-556 |#1| |#3|) $ (-525)) NIL)) (-3622 (((-713) $) 24 (|has| |#1| (-517)))) (-2301 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2222 ((|#1| $ (-525) (-525)) NIL)) (-3440 (((-592 |#1|) $) NIL)) (-2313 (((-713) $) 26 (|has| |#1| (-517)))) (-2319 (((-592 (-556 |#1| |#2|)) $) 29 (|has| |#1| (-517)))) (-1632 (((-713) $) NIL)) (-3416 (($ (-713) (-713) |#1|) NIL)) (-1644 (((-713) $) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-2956 ((|#1| $) 19 (|has| |#1| (-6 (-4260 "*"))))) (-2391 (((-525) $) 10)) (-1237 (((-525) $) NIL)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3446 (((-525) $) 11)) (-3757 (((-525) $) NIL)) (-1716 (($ (-592 (-592 |#1|))) NIL)) (-2284 (($ (-1 |#1| |#1|) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4151 (((-592 (-592 |#1|)) $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-1529 (((-3 $ "failed") $) 33 (|has| |#1| (-341)))) (-2091 (($ $ $) NIL)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1420 (($ $ |#1|) NIL)) (-1715 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525))) NIL)) (-2663 (($ (-592 |#1|)) NIL) (($ (-592 $)) NIL)) (-2007 (((-108) $) NIL)) (-1927 ((|#1| $) 17 (|has| |#1| (-6 (-4260 "*"))))) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) NIL)) (-1808 (((-556 |#1| |#2|) $ (-525)) NIL)) (-1217 (($ (-556 |#1| |#2|)) NIL) (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3737 (((-108) $) NIL)) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4061 (($ $ $) NIL) (($ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-525) $) NIL) (((-556 |#1| |#2|) $ (-556 |#1| |#2|)) NIL) (((-556 |#1| |#3|) (-556 |#1| |#3|) $) NIL)) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
+((-3692 ((|#4| |#4|) 27)) (-3085 (((-713) |#4|) 32)) (-3204 (((-713) |#4|) 33)) (-3261 (((-592 |#3|) |#4|) 40 (|has| |#3| (-6 -4260)))) (-1921 (((-3 |#4| "failed") |#4|) 51)) (-3430 ((|#4| |#4|) 44)) (-1796 ((|#1| |#4|) 43)))
+(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3692 (|#4| |#4|)) (-15 -3085 ((-713) |#4|)) (-15 -3204 ((-713) |#4|)) (IF (|has| |#3| (-6 -4260)) (-15 -3261 ((-592 |#3|) |#4|)) |%noBranch|) (-15 -1796 (|#1| |#4|)) (-15 -3430 (|#4| |#4|)) (-15 -1921 ((-3 |#4| "failed") |#4|))) (-341) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -492))
+((-1921 (*1 *2 *2) (|partial| -12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-3430 (*1 *2 *2) (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-1796 (*1 *2 *3) (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-341)) (-5 *1 (-492 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5)))) (-3261 (*1 *2 *3) (-12 (|has| *6 (-6 -4260)) (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3204 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3085 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3692 (*1 *2 *2) (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
+(-10 -7 (-15 -3692 (|#4| |#4|)) (-15 -3085 ((-713) |#4|)) (-15 -3204 ((-713) |#4|)) (IF (|has| |#3| (-6 -4260)) (-15 -3261 ((-592 |#3|) |#4|)) |%noBranch|) (-15 -1796 (|#1| |#4|)) (-15 -3430 (|#4| |#4|)) (-15 -1921 ((-3 |#4| "failed") |#4|)))
+((-3692 ((|#8| |#4|) 20)) (-3261 (((-592 |#3|) |#4|) 29 (|has| |#7| (-6 -4260)))) (-1921 (((-3 |#8| "failed") |#4|) 23)))
+(((-493 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3692 (|#8| |#4|)) (-15 -1921 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4260)) (-15 -3261 ((-592 |#3|) |#4|)) |%noBranch|)) (-517) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|) (-925 |#1|) (-351 |#5|) (-351 |#5|) (-630 |#5| |#6| |#7|)) (T -493))
+((-3261 (*1 *2 *3) (-12 (|has| *9 (-6 -4260)) (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-4 *7 (-925 *4)) (-4 *8 (-351 *7)) (-4 *9 (-351 *7)) (-5 *2 (-592 *6)) (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-630 *4 *5 *6)) (-4 *10 (-630 *7 *8 *9)))) (-1921 (*1 *2 *3) (|partial| -12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-4 *7 (-925 *4)) (-4 *2 (-630 *7 *8 *9)) (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6)) (-4 *8 (-351 *7)) (-4 *9 (-351 *7)))) (-3692 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-4 *7 (-925 *4)) (-4 *2 (-630 *7 *8 *9)) (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6)) (-4 *8 (-351 *7)) (-4 *9 (-351 *7)))))
+(-10 -7 (-15 -3692 (|#8| |#4|)) (-15 -1921 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4260)) (-15 -3261 ((-592 |#3|) |#4|)) |%noBranch|))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1221 (($ (-713) (-713)) NIL)) (-2659 (($ $ $) NIL)) (-1730 (($ (-556 |#1| |#3|)) NIL) (($ $) NIL)) (-2207 (((-108) $) NIL)) (-2968 (($ $ (-525) (-525)) 12)) (-3904 (($ $ (-525) (-525)) NIL)) (-1550 (($ $ (-525) (-525) (-525) (-525)) NIL)) (-3263 (($ $) NIL)) (-2721 (((-108) $) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-3614 (($ $ (-525) (-525) $) NIL)) (-1233 ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) NIL)) (-2695 (($ $ (-525) (-556 |#1| |#3|)) NIL)) (-1773 (($ $ (-525) (-556 |#1| |#2|)) NIL)) (-1232 (($ (-713) |#1|) NIL)) (-2475 (($) NIL T CONST)) (-3692 (($ $) 21 (|has| |#1| (-286)))) (-3209 (((-556 |#1| |#3|) $ (-525)) NIL)) (-3085 (((-713) $) 24 (|has| |#1| (-517)))) (-3081 ((|#1| $ (-525) (-525) |#1|) NIL)) (-3017 ((|#1| $ (-525) (-525)) NIL)) (-2175 (((-592 |#1|) $) NIL)) (-3204 (((-713) $) 26 (|has| |#1| (-517)))) (-3261 (((-592 (-556 |#1| |#2|)) $) 29 (|has| |#1| (-517)))) (-2720 (((-713) $) NIL)) (-3324 (($ (-713) (-713) |#1|) NIL)) (-2731 (((-713) $) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-3239 ((|#1| $) 19 (|has| |#1| (-6 (-4261 "*"))))) (-2797 (((-525) $) 10)) (-2307 (((-525) $) NIL)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3194 (((-525) $) 11)) (-3210 (((-525) $) NIL)) (-4054 (($ (-592 (-592 |#1|))) NIL)) (-3069 (($ (-1 |#1| |#1|) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2949 (((-592 (-592 |#1|)) $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-1921 (((-3 $ "failed") $) 33 (|has| |#1| (-341)))) (-2847 (($ $ $) NIL)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3453 (($ $ |#1|) NIL)) (-1311 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525))) NIL)) (-3525 (($ (-592 |#1|)) NIL) (($ (-592 $)) NIL)) (-3219 (((-108) $) NIL)) (-1796 ((|#1| $) 17 (|has| |#1| (-6 (-4261 "*"))))) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) NIL)) (-1881 (((-556 |#1| |#2|) $ (-525)) NIL)) (-4100 (($ (-556 |#1| |#2|)) NIL) (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-1245 (((-108) $) NIL)) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-2871 (($ $ $) NIL) (($ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-525) $) NIL) (((-556 |#1| |#2|) $ (-556 |#1| |#2|)) NIL) (((-556 |#1| |#3|) (-556 |#1| |#3|) $) NIL)) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
(((-494 |#1| |#2| |#3|) (-630 |#1| (-556 |#1| |#3|) (-556 |#1| |#2|)) (-977) (-525) (-525)) (T -494))
NIL
(-630 |#1| (-556 |#1| |#3|) (-556 |#1| |#2|))
-((-2100 (((-1088 |#1|) (-713)) 76)) (-2952 (((-1174 |#1|) (-1174 |#1|) (-856)) 69)) (-3811 (((-1179) (-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039))))) |#1|) 84)) (-2186 (((-1174 |#1|) (-1174 |#1|) (-713)) 36)) (-2502 (((-1174 |#1|) (-856)) 71)) (-1474 (((-1174 |#1|) (-1174 |#1|) (-525)) 24)) (-3101 (((-1088 |#1|) (-1174 |#1|)) 77)) (-1273 (((-1174 |#1|) (-856)) 95)) (-1527 (((-108) (-1174 |#1|)) 80)) (-2382 (((-1174 |#1|) (-1174 |#1|) (-856)) 62)) (-2126 (((-1088 |#1|) (-1174 |#1|)) 89)) (-3005 (((-856) (-1174 |#1|)) 59)) (-2997 (((-1174 |#1|) (-1174 |#1|)) 30)) (-3555 (((-1174 |#1|) (-856) (-856)) 97)) (-1437 (((-1174 |#1|) (-1174 |#1|) (-1039) (-1039)) 23)) (-2587 (((-1174 |#1|) (-1174 |#1|) (-713) (-1039)) 37)) (-3094 (((-1174 (-1174 |#1|)) (-856)) 94)) (-4075 (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 81)) (** (((-1174 |#1|) (-1174 |#1|) (-525)) 45)) (* (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 25)))
-(((-495 |#1|) (-10 -7 (-15 -3811 ((-1179) (-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039))))) |#1|)) (-15 -2502 ((-1174 |#1|) (-856))) (-15 -3555 ((-1174 |#1|) (-856) (-856))) (-15 -3101 ((-1088 |#1|) (-1174 |#1|))) (-15 -2100 ((-1088 |#1|) (-713))) (-15 -2587 ((-1174 |#1|) (-1174 |#1|) (-713) (-1039))) (-15 -2186 ((-1174 |#1|) (-1174 |#1|) (-713))) (-15 -1437 ((-1174 |#1|) (-1174 |#1|) (-1039) (-1039))) (-15 -1474 ((-1174 |#1|) (-1174 |#1|) (-525))) (-15 ** ((-1174 |#1|) (-1174 |#1|) (-525))) (-15 * ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4075 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2382 ((-1174 |#1|) (-1174 |#1|) (-856))) (-15 -2952 ((-1174 |#1|) (-1174 |#1|) (-856))) (-15 -2997 ((-1174 |#1|) (-1174 |#1|))) (-15 -3005 ((-856) (-1174 |#1|))) (-15 -1527 ((-108) (-1174 |#1|))) (-15 -3094 ((-1174 (-1174 |#1|)) (-856))) (-15 -1273 ((-1174 |#1|) (-856))) (-15 -2126 ((-1088 |#1|) (-1174 |#1|)))) (-327)) (T -495))
-((-2126 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-327)) (-5 *2 (-1088 *4)) (-5 *1 (-495 *4)))) (-1273 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1174 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-3094 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1174 (-1174 *4))) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-495 *4)))) (-3005 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-327)) (-5 *2 (-856)) (-5 *1 (-495 *4)))) (-2997 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) (-2952 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-856)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-2382 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-856)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-4075 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-525)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-1474 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-525)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-1437 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-1039)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-2186 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-2587 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1174 *5)) (-5 *3 (-713)) (-5 *4 (-1039)) (-4 *5 (-327)) (-5 *1 (-495 *5)))) (-2100 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1088 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-3101 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-327)) (-5 *2 (-1088 *4)) (-5 *1 (-495 *4)))) (-3555 (*1 *2 *3 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1174 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1174 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-3811 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 (-592 (-2 (|:| -3284 *4) (|:| -3555 (-1039)))))) (-4 *4 (-327)) (-5 *2 (-1179)) (-5 *1 (-495 *4)))))
-(-10 -7 (-15 -3811 ((-1179) (-1174 (-592 (-2 (|:| -3284 |#1|) (|:| -3555 (-1039))))) |#1|)) (-15 -2502 ((-1174 |#1|) (-856))) (-15 -3555 ((-1174 |#1|) (-856) (-856))) (-15 -3101 ((-1088 |#1|) (-1174 |#1|))) (-15 -2100 ((-1088 |#1|) (-713))) (-15 -2587 ((-1174 |#1|) (-1174 |#1|) (-713) (-1039))) (-15 -2186 ((-1174 |#1|) (-1174 |#1|) (-713))) (-15 -1437 ((-1174 |#1|) (-1174 |#1|) (-1039) (-1039))) (-15 -1474 ((-1174 |#1|) (-1174 |#1|) (-525))) (-15 ** ((-1174 |#1|) (-1174 |#1|) (-525))) (-15 * ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4075 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2382 ((-1174 |#1|) (-1174 |#1|) (-856))) (-15 -2952 ((-1174 |#1|) (-1174 |#1|) (-856))) (-15 -2997 ((-1174 |#1|) (-1174 |#1|))) (-15 -3005 ((-856) (-1174 |#1|))) (-15 -1527 ((-108) (-1174 |#1|))) (-15 -3094 ((-1174 (-1174 |#1|)) (-856))) (-15 -1273 ((-1174 |#1|) (-856))) (-15 -2126 ((-1088 |#1|) (-1174 |#1|))))
-((-3739 (((-1 |#1| |#1|) |#1|) 11)) (-2392 (((-1 |#1| |#1|)) 10)))
-(((-496 |#1|) (-10 -7 (-15 -2392 ((-1 |#1| |#1|))) (-15 -3739 ((-1 |#1| |#1|) |#1|))) (-13 (-669) (-25))) (T -496))
-((-3739 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25))))) (-2392 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25))))))
-(-10 -7 (-15 -2392 ((-1 |#1| |#1|))) (-15 -3739 ((-1 |#1| |#1|) |#1|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-3167 (($ $ $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3063 (($ $) NIL)) (-2876 (($ (-713) |#1|) NIL)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-3165 (($ (-1 (-713) (-713)) $) NIL)) (-3064 ((|#1| $) NIL)) (-3043 (((-713) $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 20)) (-3349 (($) NIL T CONST)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL)))
+((-2921 (((-1088 |#1|) (-713)) 76)) (-2924 (((-1174 |#1|) (-1174 |#1|) (-856)) 69)) (-2582 (((-1179) (-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039))))) |#1|) 84)) (-1438 (((-1174 |#1|) (-1174 |#1|) (-713)) 36)) (-1903 (((-1174 |#1|) (-856)) 71)) (-1909 (((-1174 |#1|) (-1174 |#1|) (-525)) 24)) (-2158 (((-1088 |#1|) (-1174 |#1|)) 77)) (-3957 (((-1174 |#1|) (-856)) 95)) (-1890 (((-108) (-1174 |#1|)) 80)) (-2704 (((-1174 |#1|) (-1174 |#1|) (-856)) 62)) (-2021 (((-1088 |#1|) (-1174 |#1|)) 89)) (-3685 (((-856) (-1174 |#1|)) 59)) (-1387 (((-1174 |#1|) (-1174 |#1|)) 30)) (-1722 (((-1174 |#1|) (-856) (-856)) 97)) (-2238 (((-1174 |#1|) (-1174 |#1|) (-1039) (-1039)) 23)) (-4051 (((-1174 |#1|) (-1174 |#1|) (-713) (-1039)) 37)) (-2103 (((-1174 (-1174 |#1|)) (-856)) 94)) (-2880 (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 81)) (** (((-1174 |#1|) (-1174 |#1|) (-525)) 45)) (* (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 25)))
+(((-495 |#1|) (-10 -7 (-15 -2582 ((-1179) (-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039))))) |#1|)) (-15 -1903 ((-1174 |#1|) (-856))) (-15 -1722 ((-1174 |#1|) (-856) (-856))) (-15 -2158 ((-1088 |#1|) (-1174 |#1|))) (-15 -2921 ((-1088 |#1|) (-713))) (-15 -4051 ((-1174 |#1|) (-1174 |#1|) (-713) (-1039))) (-15 -1438 ((-1174 |#1|) (-1174 |#1|) (-713))) (-15 -2238 ((-1174 |#1|) (-1174 |#1|) (-1039) (-1039))) (-15 -1909 ((-1174 |#1|) (-1174 |#1|) (-525))) (-15 ** ((-1174 |#1|) (-1174 |#1|) (-525))) (-15 * ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2880 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2704 ((-1174 |#1|) (-1174 |#1|) (-856))) (-15 -2924 ((-1174 |#1|) (-1174 |#1|) (-856))) (-15 -1387 ((-1174 |#1|) (-1174 |#1|))) (-15 -3685 ((-856) (-1174 |#1|))) (-15 -1890 ((-108) (-1174 |#1|))) (-15 -2103 ((-1174 (-1174 |#1|)) (-856))) (-15 -3957 ((-1174 |#1|) (-856))) (-15 -2021 ((-1088 |#1|) (-1174 |#1|)))) (-327)) (T -495))
+((-2021 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-327)) (-5 *2 (-1088 *4)) (-5 *1 (-495 *4)))) (-3957 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1174 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1174 (-1174 *4))) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-495 *4)))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-327)) (-5 *2 (-856)) (-5 *1 (-495 *4)))) (-1387 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) (-2924 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-856)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-2704 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-856)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-2880 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-525)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-1909 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-525)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-2238 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-1039)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-1438 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-4051 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1174 *5)) (-5 *3 (-713)) (-5 *4 (-1039)) (-4 *5 (-327)) (-5 *1 (-495 *5)))) (-2921 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1088 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-327)) (-5 *2 (-1088 *4)) (-5 *1 (-495 *4)))) (-1722 (*1 *2 *3 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1174 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1174 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-2582 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 (-592 (-2 (|:| -2219 *4) (|:| -1722 (-1039)))))) (-4 *4 (-327)) (-5 *2 (-1179)) (-5 *1 (-495 *4)))))
+(-10 -7 (-15 -2582 ((-1179) (-1174 (-592 (-2 (|:| -2219 |#1|) (|:| -1722 (-1039))))) |#1|)) (-15 -1903 ((-1174 |#1|) (-856))) (-15 -1722 ((-1174 |#1|) (-856) (-856))) (-15 -2158 ((-1088 |#1|) (-1174 |#1|))) (-15 -2921 ((-1088 |#1|) (-713))) (-15 -4051 ((-1174 |#1|) (-1174 |#1|) (-713) (-1039))) (-15 -1438 ((-1174 |#1|) (-1174 |#1|) (-713))) (-15 -2238 ((-1174 |#1|) (-1174 |#1|) (-1039) (-1039))) (-15 -1909 ((-1174 |#1|) (-1174 |#1|) (-525))) (-15 ** ((-1174 |#1|) (-1174 |#1|) (-525))) (-15 * ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2880 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2704 ((-1174 |#1|) (-1174 |#1|) (-856))) (-15 -2924 ((-1174 |#1|) (-1174 |#1|) (-856))) (-15 -1387 ((-1174 |#1|) (-1174 |#1|))) (-15 -3685 ((-856) (-1174 |#1|))) (-15 -1890 ((-108) (-1174 |#1|))) (-15 -2103 ((-1174 (-1174 |#1|)) (-856))) (-15 -3957 ((-1174 |#1|) (-856))) (-15 -2021 ((-1088 |#1|) (-1174 |#1|))))
+((-2345 (((-1 |#1| |#1|) |#1|) 11)) (-2808 (((-1 |#1| |#1|)) 10)))
+(((-496 |#1|) (-10 -7 (-15 -2808 ((-1 |#1| |#1|))) (-15 -2345 ((-1 |#1| |#1|) |#1|))) (-13 (-669) (-25))) (T -496))
+((-2345 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25))))) (-2808 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25))))))
+(-10 -7 (-15 -2808 ((-1 |#1| |#1|))) (-15 -2345 ((-1 |#1| |#1|) |#1|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1525 (($ $ $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-1451 (($ $) NIL)) (-1272 (($ (-713) |#1|) NIL)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-2016 (($ (-1 (-713) (-713)) $) NIL)) (-2975 ((|#1| $) NIL)) (-1430 (((-713) $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 20)) (-3364 (($) NIL T CONST)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) NIL)) (-2860 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL)))
(((-497 |#1|) (-13 (-735) (-481 (-713) |#1|)) (-789)) (T -497))
NIL
(-13 (-735) (-481 (-713) |#1|))
-((-1559 (((-592 |#2|) (-1088 |#1|) |#3|) 83)) (-2472 (((-592 (-2 (|:| |outval| |#2|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-396 (-1088 |#1|)) (-1088 |#1|))) 100)) (-2127 (((-1088 |#1|) (-632 |#1|)) 95)))
-(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -2127 ((-1088 |#1|) (-632 |#1|))) (-15 -1559 ((-592 |#2|) (-1088 |#1|) |#3|)) (-15 -2472 ((-592 (-2 (|:| |outval| |#2|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-396 (-1088 |#1|)) (-1088 |#1|))))) (-341) (-341) (-13 (-341) (-787))) (T -498))
-((-2472 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *6)) (-5 *5 (-1 (-396 (-1088 *6)) (-1088 *6))) (-4 *6 (-341)) (-5 *2 (-592 (-2 (|:| |outval| *7) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 *7)))))) (-5 *1 (-498 *6 *7 *4)) (-4 *7 (-341)) (-4 *4 (-13 (-341) (-787))))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-1088 *5)) (-4 *5 (-341)) (-5 *2 (-592 *6)) (-5 *1 (-498 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-632 *4)) (-4 *4 (-341)) (-5 *2 (-1088 *4)) (-5 *1 (-498 *4 *5 *6)) (-4 *5 (-341)) (-4 *6 (-13 (-341) (-787))))))
-(-10 -7 (-15 -2127 ((-1088 |#1|) (-632 |#1|))) (-15 -1559 ((-592 |#2|) (-1088 |#1|) |#3|)) (-15 -2472 ((-592 (-2 (|:| |outval| |#2|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-396 (-1088 |#1|)) (-1088 |#1|)))))
-((-2468 (((-782 (-525))) 12)) (-2477 (((-782 (-525))) 14)) (-3149 (((-775 (-525))) 9)))
-(((-499) (-10 -7 (-15 -3149 ((-775 (-525)))) (-15 -2468 ((-782 (-525)))) (-15 -2477 ((-782 (-525)))))) (T -499))
-((-2477 (*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499)))) (-2468 (*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499)))) (-3149 (*1 *2) (-12 (-5 *2 (-775 (-525))) (-5 *1 (-499)))))
-(-10 -7 (-15 -3149 ((-775 (-525)))) (-15 -2468 ((-782 (-525)))) (-15 -2477 ((-782 (-525)))))
-((-1796 (((-501) (-1092)) 15)) (-2196 ((|#1| (-501)) 20)))
-(((-500 |#1|) (-10 -7 (-15 -1796 ((-501) (-1092))) (-15 -2196 (|#1| (-501)))) (-1128)) (T -500))
-((-2196 (*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-500 *2)) (-4 *2 (-1128)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-501)) (-5 *1 (-500 *4)) (-4 *4 (-1128)))))
-(-10 -7 (-15 -1796 ((-501) (-1092))) (-15 -2196 (|#1| (-501))))
-((-4236 (((-108) $ $) NIL)) (-3881 (((-1075) $) 48)) (-1305 (((-108) $) 43)) (-2395 (((-1092) $) 44)) (-2303 (((-108) $) 41)) (-2986 (((-1075) $) 42)) (-4162 (((-108) $) NIL)) (-1434 (((-108) $) NIL)) (-1486 (((-108) $) NIL)) (-2619 (((-1075) $) NIL)) (-2257 (($ $ (-592 (-1092))) 20)) (-2196 (((-51) $) 22)) (-3841 (((-108) $) NIL)) (-2411 (((-525) $) NIL)) (-2093 (((-1039) $) NIL)) (-2459 (($ $ (-592 (-1092)) (-1092)) 60)) (-2951 (((-108) $) NIL)) (-3299 (((-205) $) NIL)) (-2586 (($ $) 38)) (-2465 (((-798) $) NIL)) (-3025 (((-108) $ $) NIL)) (-3406 (($ $ (-525)) NIL) (($ $ (-592 (-525))) NIL)) (-2838 (((-592 $) $) 28)) (-3342 (((-1092) (-592 $)) 49)) (-3210 (($ (-592 $)) 53) (($ (-1075)) NIL) (($ (-1092)) 18) (($ (-525)) 8) (($ (-205)) 25) (($ (-798)) NIL) (((-1024) $) 11) (($ (-1024)) 12)) (-4134 (((-1092) (-1092) (-592 $)) 52)) (-1217 (((-798) $) 46)) (-1771 (($ $) 51)) (-1762 (($ $) 50)) (-3986 (($ $ (-592 $)) 57)) (-3080 (((-108) $) 27)) (-3349 (($) 9 T CONST)) (-3359 (($) 10 T CONST)) (-3955 (((-108) $ $) 61)) (-4075 (($ $ $) 66)) (-4047 (($ $ $) 62)) (** (($ $ (-713)) 65) (($ $ (-525)) 64)) (* (($ $ $) 63)) (-3522 (((-525) $) NIL)))
-(((-501) (-13 (-1023 (-1075) (-1092) (-525) (-205) (-798)) (-567 (-1024)) (-10 -8 (-15 -2196 ((-51) $)) (-15 -3210 ($ (-1024))) (-15 -3986 ($ $ (-592 $))) (-15 -2459 ($ $ (-592 (-1092)) (-1092))) (-15 -2257 ($ $ (-592 (-1092)))) (-15 -4047 ($ $ $)) (-15 * ($ $ $)) (-15 -4075 ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ (-525))) (-15 0 ($) -2709) (-15 1 ($) -2709) (-15 -2586 ($ $)) (-15 -3881 ((-1075) $)) (-15 -3342 ((-1092) (-592 $))) (-15 -4134 ((-1092) (-1092) (-592 $)))))) (T -501))
-((-2196 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-501)))) (-3210 (*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-501)))) (-3986 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-501))) (-5 *1 (-501)))) (-2459 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-1092)) (-5 *1 (-501)))) (-2257 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-501)))) (-4047 (*1 *1 *1 *1) (-5 *1 (-501))) (* (*1 *1 *1 *1) (-5 *1 (-501))) (-4075 (*1 *1 *1 *1) (-5 *1 (-501))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-501)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-501)))) (-3349 (*1 *1) (-5 *1 (-501))) (-3359 (*1 *1) (-5 *1 (-501))) (-2586 (*1 *1 *1) (-5 *1 (-501))) (-3881 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-501)))) (-3342 (*1 *2 *3) (-12 (-5 *3 (-592 (-501))) (-5 *2 (-1092)) (-5 *1 (-501)))) (-4134 (*1 *2 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-501))) (-5 *1 (-501)))))
-(-13 (-1023 (-1075) (-1092) (-525) (-205) (-798)) (-567 (-1024)) (-10 -8 (-15 -2196 ((-51) $)) (-15 -3210 ($ (-1024))) (-15 -3986 ($ $ (-592 $))) (-15 -2459 ($ $ (-592 (-1092)) (-1092))) (-15 -2257 ($ $ (-592 (-1092)))) (-15 -4047 ($ $ $)) (-15 * ($ $ $)) (-15 -4075 ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ (-525))) (-15 (-3349) ($) -2709) (-15 (-3359) ($) -2709) (-15 -2586 ($ $)) (-15 -3881 ((-1075) $)) (-15 -3342 ((-1092) (-592 $))) (-15 -4134 ((-1092) (-1092) (-592 $)))))
-((-3381 ((|#2| |#2|) 17)) (-1467 ((|#2| |#2|) 13)) (-2429 ((|#2| |#2| (-525) (-525)) 20)) (-4018 ((|#2| |#2|) 15)))
-(((-502 |#1| |#2|) (-10 -7 (-15 -1467 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -3381 (|#2| |#2|)) (-15 -2429 (|#2| |#2| (-525) (-525)))) (-13 (-517) (-138)) (-1165 |#1|)) (T -502))
-((-2429 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-502 *4 *2)) (-4 *2 (-1165 *4)))) (-3381 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1165 *3)))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1165 *3)))) (-1467 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1165 *3)))))
-(-10 -7 (-15 -1467 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -3381 (|#2| |#2|)) (-15 -2429 (|#2| |#2| (-525) (-525))))
-((-3769 (((-592 (-273 (-887 |#2|))) (-592 |#2|) (-592 (-1092))) 32)) (-3626 (((-592 |#2|) (-887 |#1|) |#3|) 53) (((-592 |#2|) (-1088 |#1|) |#3|) 52)) (-1903 (((-592 (-592 |#2|)) (-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1092)) |#3|) 88)))
-(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -3626 ((-592 |#2|) (-1088 |#1|) |#3|)) (-15 -3626 ((-592 |#2|) (-887 |#1|) |#3|)) (-15 -1903 ((-592 (-592 |#2|)) (-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1092)) |#3|)) (-15 -3769 ((-592 (-273 (-887 |#2|))) (-592 |#2|) (-592 (-1092))))) (-429) (-341) (-13 (-341) (-787))) (T -503))
-((-3769 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1092))) (-4 *6 (-341)) (-5 *2 (-592 (-273 (-887 *6)))) (-5 *1 (-503 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-13 (-341) (-787))))) (-1903 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-592 (-887 *6))) (-5 *4 (-592 (-1092))) (-4 *6 (-429)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-503 *6 *7 *5)) (-4 *7 (-341)) (-4 *5 (-13 (-341) (-787))))) (-3626 (*1 *2 *3 *4) (-12 (-5 *3 (-887 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6)) (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))) (-3626 (*1 *2 *3 *4) (-12 (-5 *3 (-1088 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6)) (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))))
-(-10 -7 (-15 -3626 ((-592 |#2|) (-1088 |#1|) |#3|)) (-15 -3626 ((-592 |#2|) (-887 |#1|) |#3|)) (-15 -1903 ((-592 (-592 |#2|)) (-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1092)) |#3|)) (-15 -3769 ((-592 (-273 (-887 |#2|))) (-592 |#2|) (-592 (-1092)))))
-((-2692 ((|#2| |#2| |#1|) 17)) (-1327 ((|#2| (-592 |#2|)) 27)) (-2664 ((|#2| (-592 |#2|)) 46)))
-(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1327 (|#2| (-592 |#2|))) (-15 -2664 (|#2| (-592 |#2|))) (-15 -2692 (|#2| |#2| |#1|))) (-286) (-1150 |#1|) |#1| (-1 |#1| |#1| (-713))) (T -504))
-((-2692 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-713))) (-5 *1 (-504 *3 *2 *4 *5)) (-4 *2 (-1150 *3)))) (-2664 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-1150 *4)) (-5 *1 (-504 *4 *2 *5 *6)) (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713))))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-1150 *4)) (-5 *1 (-504 *4 *2 *5 *6)) (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713))))))
-(-10 -7 (-15 -1327 (|#2| (-592 |#2|))) (-15 -2664 (|#2| (-592 |#2|))) (-15 -2692 (|#2| |#2| |#1|)))
-((-2770 (((-396 (-1088 |#4|)) (-1088 |#4|) (-1 (-396 (-1088 |#3|)) (-1088 |#3|))) 79) (((-396 |#4|) |#4| (-1 (-396 (-1088 |#3|)) (-1088 |#3|))) 169)))
-(((-505 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2770 ((-396 |#4|) |#4| (-1 (-396 (-1088 |#3|)) (-1088 |#3|)))) (-15 -2770 ((-396 (-1088 |#4|)) (-1088 |#4|) (-1 (-396 (-1088 |#3|)) (-1088 |#3|))))) (-789) (-735) (-13 (-286) (-138)) (-884 |#3| |#2| |#1|)) (T -505))
-((-2770 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 (-1088 *7)) (-1088 *7))) (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *8 (-884 *7 *6 *5)) (-5 *2 (-396 (-1088 *8))) (-5 *1 (-505 *5 *6 *7 *8)) (-5 *3 (-1088 *8)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 (-1088 *7)) (-1088 *7))) (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735)) (-5 *2 (-396 *3)) (-5 *1 (-505 *5 *6 *7 *3)) (-4 *3 (-884 *7 *6 *5)))))
-(-10 -7 (-15 -2770 ((-396 |#4|) |#4| (-1 (-396 (-1088 |#3|)) (-1088 |#3|)))) (-15 -2770 ((-396 (-1088 |#4|)) (-1088 |#4|) (-1 (-396 (-1088 |#3|)) (-1088 |#3|)))))
-((-3381 ((|#4| |#4|) 74)) (-1467 ((|#4| |#4|) 70)) (-2429 ((|#4| |#4| (-525) (-525)) 76)) (-4018 ((|#4| |#4|) 72)))
-(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1467 (|#4| |#4|)) (-15 -4018 (|#4| |#4|)) (-15 -3381 (|#4| |#4|)) (-15 -2429 (|#4| |#4| (-525) (-525)))) (-13 (-341) (-346) (-567 (-525))) (-1150 |#1|) (-667 |#1| |#2|) (-1165 |#3|)) (T -506))
-((-2429 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 *3))) (-4 *5 (-1150 *4)) (-4 *6 (-667 *4 *5)) (-5 *1 (-506 *4 *5 *6 *2)) (-4 *2 (-1165 *6)))) (-3381 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1150 *3)) (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1165 *5)))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1150 *3)) (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1165 *5)))) (-1467 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1150 *3)) (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1165 *5)))))
-(-10 -7 (-15 -1467 (|#4| |#4|)) (-15 -4018 (|#4| |#4|)) (-15 -3381 (|#4| |#4|)) (-15 -2429 (|#4| |#4| (-525) (-525))))
-((-3381 ((|#2| |#2|) 27)) (-1467 ((|#2| |#2|) 23)) (-2429 ((|#2| |#2| (-525) (-525)) 29)) (-4018 ((|#2| |#2|) 25)))
-(((-507 |#1| |#2|) (-10 -7 (-15 -1467 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -3381 (|#2| |#2|)) (-15 -2429 (|#2| |#2| (-525) (-525)))) (-13 (-341) (-346) (-567 (-525))) (-1165 |#1|)) (T -507))
-((-2429 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 *3))) (-5 *1 (-507 *4 *2)) (-4 *2 (-1165 *4)))) (-3381 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1165 *3)))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1165 *3)))) (-1467 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1165 *3)))))
-(-10 -7 (-15 -1467 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -3381 (|#2| |#2|)) (-15 -2429 (|#2| |#2| (-525) (-525))))
-((-1536 (((-3 (-525) "failed") |#2| |#1| (-1 (-3 (-525) "failed") |#1|)) 14) (((-3 (-525) "failed") |#2| |#1| (-525) (-1 (-3 (-525) "failed") |#1|)) 13) (((-3 (-525) "failed") |#2| (-525) (-1 (-3 (-525) "failed") |#1|)) 26)))
-(((-508 |#1| |#2|) (-10 -7 (-15 -1536 ((-3 (-525) "failed") |#2| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -1536 ((-3 (-525) "failed") |#2| |#1| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -1536 ((-3 (-525) "failed") |#2| |#1| (-1 (-3 (-525) "failed") |#1|)))) (-977) (-1150 |#1|)) (T -508))
-((-1536 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1150 *4)))) (-1536 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1150 *4)))) (-1536 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-525) "failed") *5)) (-4 *5 (-977)) (-5 *2 (-525)) (-5 *1 (-508 *5 *3)) (-4 *3 (-1150 *5)))))
-(-10 -7 (-15 -1536 ((-3 (-525) "failed") |#2| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -1536 ((-3 (-525) "failed") |#2| |#1| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -1536 ((-3 (-525) "failed") |#2| |#1| (-1 (-3 (-525) "failed") |#1|))))
-((-2028 (($ $ $) 79)) (-2669 (((-396 $) $) 47)) (-3077 (((-3 (-525) "failed") $) 59)) (-1572 (((-525) $) 37)) (-1514 (((-3 (-385 (-525)) "failed") $) 74)) (-3933 (((-108) $) 24)) (-3303 (((-385 (-525)) $) 72)) (-3673 (((-108) $) 50)) (-2781 (($ $ $ $) 86)) (-1222 (((-108) $) 16)) (-3984 (($ $ $) 57)) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 69)) (-3844 (((-3 $ "failed") $) 64)) (-1738 (($ $) 23)) (-2476 (($ $ $) 84)) (-2295 (($) 60)) (-1545 (($ $) 53)) (-2770 (((-396 $) $) 45)) (-3699 (((-108) $) 14)) (-3684 (((-713) $) 28)) (-3376 (($ $ (-713)) NIL) (($ $) 10)) (-1462 (($ $) 17)) (-3210 (((-525) $) NIL) (((-501) $) 36) (((-827 (-525)) $) 40) (((-357) $) 31) (((-205) $) 33)) (-3917 (((-713)) 8)) (-3731 (((-108) $ $) 20)) (-3163 (($ $ $) 55)))
-(((-509 |#1|) (-10 -8 (-15 -2476 (|#1| |#1| |#1|)) (-15 -2781 (|#1| |#1| |#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -1462 (|#1| |#1|)) (-15 -1514 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3303 ((-385 (-525)) |#1|)) (-15 -3933 ((-108) |#1|)) (-15 -2028 (|#1| |#1| |#1|)) (-15 -3731 ((-108) |#1| |#1|)) (-15 -3699 ((-108) |#1|)) (-15 -2295 (|#1|)) (-15 -3844 ((-3 |#1| "failed") |#1|)) (-15 -3210 ((-205) |#1|)) (-15 -3210 ((-357) |#1|)) (-15 -3984 (|#1| |#1| |#1|)) (-15 -1545 (|#1| |#1|)) (-15 -3163 (|#1| |#1| |#1|)) (-15 -2989 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -3210 ((-827 (-525)) |#1|)) (-15 -3210 ((-501) |#1|)) (-15 -1572 ((-525) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -3210 ((-525) |#1|)) (-15 -3376 (|#1| |#1|)) (-15 -3376 (|#1| |#1| (-713))) (-15 -1222 ((-108) |#1|)) (-15 -3684 ((-713) |#1|)) (-15 -2770 ((-396 |#1|) |#1|)) (-15 -2669 ((-396 |#1|) |#1|)) (-15 -3673 ((-108) |#1|)) (-15 -3917 ((-713)))) (-510)) (T -509))
-((-3917 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-509 *3)) (-4 *3 (-510)))))
-(-10 -8 (-15 -2476 (|#1| |#1| |#1|)) (-15 -2781 (|#1| |#1| |#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -1462 (|#1| |#1|)) (-15 -1514 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3303 ((-385 (-525)) |#1|)) (-15 -3933 ((-108) |#1|)) (-15 -2028 (|#1| |#1| |#1|)) (-15 -3731 ((-108) |#1| |#1|)) (-15 -3699 ((-108) |#1|)) (-15 -2295 (|#1|)) (-15 -3844 ((-3 |#1| "failed") |#1|)) (-15 -3210 ((-205) |#1|)) (-15 -3210 ((-357) |#1|)) (-15 -3984 (|#1| |#1| |#1|)) (-15 -1545 (|#1| |#1|)) (-15 -3163 (|#1| |#1| |#1|)) (-15 -2989 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -3210 ((-827 (-525)) |#1|)) (-15 -3210 ((-501) |#1|)) (-15 -1572 ((-525) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -3210 ((-525) |#1|)) (-15 -3376 (|#1| |#1|)) (-15 -3376 (|#1| |#1| (-713))) (-15 -1222 ((-108) |#1|)) (-15 -3684 ((-713) |#1|)) (-15 -2770 ((-396 |#1|) |#1|)) (-15 -2669 ((-396 |#1|) |#1|)) (-15 -3673 ((-108) |#1|)) (-15 -3917 ((-713))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-2028 (($ $ $) 85)) (-1578 (((-3 $ "failed") $ $) 19)) (-4158 (($ $ $ $) 73)) (-1286 (($ $) 51)) (-2669 (((-396 $) $) 52)) (-2193 (((-108) $ $) 125)) (-3855 (((-525) $) 114)) (-3506 (($ $ $) 88)) (-2169 (($) 17 T CONST)) (-3077 (((-3 (-525) "failed") $) 106)) (-1572 (((-525) $) 105)) (-1747 (($ $ $) 129)) (-1994 (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 104) (((-632 (-525)) (-632 $)) 103)) (-3457 (((-3 $ "failed") $) 34)) (-1514 (((-3 (-385 (-525)) "failed") $) 82)) (-3933 (((-108) $) 84)) (-3303 (((-385 (-525)) $) 83)) (-2502 (($) 81) (($ $) 80)) (-1733 (($ $ $) 128)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 123)) (-3673 (((-108) $) 53)) (-2781 (($ $ $ $) 71)) (-3636 (($ $ $) 86)) (-1222 (((-108) $) 116)) (-3984 (($ $ $) 97)) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 100)) (-1396 (((-108) $) 31)) (-1673 (((-108) $) 92)) (-3844 (((-3 $ "failed") $) 94)) (-3256 (((-108) $) 115)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 132)) (-2657 (($ $ $ $) 72)) (-2638 (($ $ $) 117)) (-3662 (($ $ $) 118)) (-1738 (($ $) 75)) (-4178 (($ $) 89)) (-2556 (($ $ $) 46) (($ (-592 $)) 45)) (-2619 (((-1075) $) 9)) (-2476 (($ $ $) 70)) (-2295 (($) 93 T CONST)) (-4070 (($ $) 77)) (-2093 (((-1039) $) 10) (($ $) 79)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2589 (($ $ $) 48) (($ (-592 $)) 47)) (-1545 (($ $) 98)) (-2770 (((-396 $) $) 50)) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 130)) (-1715 (((-3 $ "failed") $ $) 42)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 124)) (-3699 (((-108) $) 91)) (-3684 (((-713) $) 126)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 127)) (-3376 (($ $ (-713)) 111) (($ $) 109)) (-3068 (($ $) 76)) (-1462 (($ $) 78)) (-3210 (((-525) $) 108) (((-501) $) 102) (((-827 (-525)) $) 101) (((-357) $) 96) (((-205) $) 95)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-525)) 107)) (-3917 (((-713)) 29)) (-3731 (((-108) $ $) 87)) (-3163 (($ $ $) 99)) (-3379 (($) 90)) (-3325 (((-108) $ $) 39)) (-1935 (($ $ $ $) 74)) (-2802 (($ $) 113)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $ (-713)) 112) (($ $) 110)) (-4011 (((-108) $ $) 120)) (-3987 (((-108) $ $) 121)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 119)) (-3978 (((-108) $ $) 122)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-1973 (((-592 |#2|) (-1088 |#1|) |#3|) 83)) (-2384 (((-592 (-2 (|:| |outval| |#2|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-396 (-1088 |#1|)) (-1088 |#1|))) 100)) (-2031 (((-1088 |#1|) (-632 |#1|)) 95)))
+(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -2031 ((-1088 |#1|) (-632 |#1|))) (-15 -1973 ((-592 |#2|) (-1088 |#1|) |#3|)) (-15 -2384 ((-592 (-2 (|:| |outval| |#2|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-396 (-1088 |#1|)) (-1088 |#1|))))) (-341) (-341) (-13 (-341) (-787))) (T -498))
+((-2384 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *6)) (-5 *5 (-1 (-396 (-1088 *6)) (-1088 *6))) (-4 *6 (-341)) (-5 *2 (-592 (-2 (|:| |outval| *7) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 *7)))))) (-5 *1 (-498 *6 *7 *4)) (-4 *7 (-341)) (-4 *4 (-13 (-341) (-787))))) (-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-1088 *5)) (-4 *5 (-341)) (-5 *2 (-592 *6)) (-5 *1 (-498 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-632 *4)) (-4 *4 (-341)) (-5 *2 (-1088 *4)) (-5 *1 (-498 *4 *5 *6)) (-4 *5 (-341)) (-4 *6 (-13 (-341) (-787))))))
+(-10 -7 (-15 -2031 ((-1088 |#1|) (-632 |#1|))) (-15 -1973 ((-592 |#2|) (-1088 |#1|) |#3|)) (-15 -2384 ((-592 (-2 (|:| |outval| |#2|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-396 (-1088 |#1|)) (-1088 |#1|)))))
+((-4083 (((-782 (-525))) 12)) (-4095 (((-782 (-525))) 14)) (-4119 (((-775 (-525))) 9)))
+(((-499) (-10 -7 (-15 -4119 ((-775 (-525)))) (-15 -4083 ((-782 (-525)))) (-15 -4095 ((-782 (-525)))))) (T -499))
+((-4095 (*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499)))) (-4083 (*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499)))) (-4119 (*1 *2) (-12 (-5 *2 (-775 (-525))) (-5 *1 (-499)))))
+(-10 -7 (-15 -4119 ((-775 (-525)))) (-15 -4083 ((-782 (-525)))) (-15 -4095 ((-782 (-525)))))
+((-2916 (((-501) (-1092)) 15)) (-3916 ((|#1| (-501)) 20)))
+(((-500 |#1|) (-10 -7 (-15 -2916 ((-501) (-1092))) (-15 -3916 (|#1| (-501)))) (-1128)) (T -500))
+((-3916 (*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-500 *2)) (-4 *2 (-1128)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-501)) (-5 *1 (-500 *4)) (-4 *4 (-1128)))))
+(-10 -7 (-15 -2916 ((-501) (-1092))) (-15 -3916 (|#1| (-501))))
+((-4087 (((-108) $ $) NIL)) (-2087 (((-1075) $) 48)) (-3162 (((-108) $) 43)) (-3662 (((-1092) $) 44)) (-3107 (((-108) $) 41)) (-3298 (((-1075) $) 42)) (-3032 (((-108) $) NIL)) (-3610 (((-108) $) NIL)) (-2232 (((-108) $) NIL)) (-1289 (((-1075) $) NIL)) (-3211 (($ $ (-592 (-1092))) 20)) (-3916 (((-51) $) 22)) (-2849 (((-108) $) NIL)) (-3680 (((-525) $) NIL)) (-3993 (((-1039) $) NIL)) (-2626 (($ $ (-592 (-1092)) (-1092)) 60)) (-3196 (((-108) $) NIL)) (-3536 (((-205) $) NIL)) (-1715 (($ $) 38)) (-3423 (((-798) $) NIL)) (-1537 (((-108) $ $) NIL)) (-3431 (($ $ (-525)) NIL) (($ $ (-592 (-525))) NIL)) (-1230 (((-592 $) $) 28)) (-1342 (((-1092) (-592 $)) 49)) (-2069 (($ (-592 $)) 53) (($ (-1075)) NIL) (($ (-1092)) 18) (($ (-525)) 8) (($ (-205)) 25) (($ (-798)) NIL) (((-1024) $) 11) (($ (-1024)) 12)) (-1281 (((-1092) (-1092) (-592 $)) 52)) (-4100 (((-798) $) 46)) (-1544 (($ $) 51)) (-1533 (($ $) 50)) (-1942 (($ $ (-592 $)) 57)) (-3121 (((-108) $) 27)) (-3364 (($) 9 T CONST)) (-3375 (($) 10 T CONST)) (-2775 (((-108) $ $) 61)) (-2880 (($ $ $) 66)) (-2860 (($ $ $) 62)) (** (($ $ (-713)) 65) (($ $ (-525)) 64)) (* (($ $ $) 63)) (-2827 (((-525) $) NIL)))
+(((-501) (-13 (-1023 (-1075) (-1092) (-525) (-205) (-798)) (-567 (-1024)) (-10 -8 (-15 -3916 ((-51) $)) (-15 -2069 ($ (-1024))) (-15 -1942 ($ $ (-592 $))) (-15 -2626 ($ $ (-592 (-1092)) (-1092))) (-15 -3211 ($ $ (-592 (-1092)))) (-15 -2860 ($ $ $)) (-15 * ($ $ $)) (-15 -2880 ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ (-525))) (-15 0 ($) -2247) (-15 1 ($) -2247) (-15 -1715 ($ $)) (-15 -2087 ((-1075) $)) (-15 -1342 ((-1092) (-592 $))) (-15 -1281 ((-1092) (-1092) (-592 $)))))) (T -501))
+((-3916 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-501)))) (-2069 (*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-501)))) (-1942 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-501))) (-5 *1 (-501)))) (-2626 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-1092)) (-5 *1 (-501)))) (-3211 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-501)))) (-2860 (*1 *1 *1 *1) (-5 *1 (-501))) (* (*1 *1 *1 *1) (-5 *1 (-501))) (-2880 (*1 *1 *1 *1) (-5 *1 (-501))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-501)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-501)))) (-3364 (*1 *1) (-5 *1 (-501))) (-3375 (*1 *1) (-5 *1 (-501))) (-1715 (*1 *1 *1) (-5 *1 (-501))) (-2087 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-501)))) (-1342 (*1 *2 *3) (-12 (-5 *3 (-592 (-501))) (-5 *2 (-1092)) (-5 *1 (-501)))) (-1281 (*1 *2 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-501))) (-5 *1 (-501)))))
+(-13 (-1023 (-1075) (-1092) (-525) (-205) (-798)) (-567 (-1024)) (-10 -8 (-15 -3916 ((-51) $)) (-15 -2069 ($ (-1024))) (-15 -1942 ($ $ (-592 $))) (-15 -2626 ($ $ (-592 (-1092)) (-1092))) (-15 -3211 ($ $ (-592 (-1092)))) (-15 -2860 ($ $ $)) (-15 * ($ $ $)) (-15 -2880 ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ (-525))) (-15 (-3364) ($) -2247) (-15 (-3375) ($) -2247) (-15 -1715 ($ $)) (-15 -2087 ((-1075) $)) (-15 -1342 ((-1092) (-592 $))) (-15 -1281 ((-1092) (-1092) (-592 $)))))
+((-3834 ((|#2| |#2|) 17)) (-2583 ((|#2| |#2|) 13)) (-2001 ((|#2| |#2| (-525) (-525)) 20)) (-4059 ((|#2| |#2|) 15)))
+(((-502 |#1| |#2|) (-10 -7 (-15 -2583 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -2001 (|#2| |#2| (-525) (-525)))) (-13 (-517) (-138)) (-1165 |#1|)) (T -502))
+((-2001 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-502 *4 *2)) (-4 *2 (-1165 *4)))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1165 *3)))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1165 *3)))) (-2583 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1165 *3)))))
+(-10 -7 (-15 -2583 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -2001 (|#2| |#2| (-525) (-525))))
+((-3332 (((-592 (-273 (-887 |#2|))) (-592 |#2|) (-592 (-1092))) 32)) (-1352 (((-592 |#2|) (-887 |#1|) |#3|) 53) (((-592 |#2|) (-1088 |#1|) |#3|) 52)) (-1564 (((-592 (-592 |#2|)) (-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1092)) |#3|) 88)))
+(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -1352 ((-592 |#2|) (-1088 |#1|) |#3|)) (-15 -1352 ((-592 |#2|) (-887 |#1|) |#3|)) (-15 -1564 ((-592 (-592 |#2|)) (-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1092)) |#3|)) (-15 -3332 ((-592 (-273 (-887 |#2|))) (-592 |#2|) (-592 (-1092))))) (-429) (-341) (-13 (-341) (-787))) (T -503))
+((-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1092))) (-4 *6 (-341)) (-5 *2 (-592 (-273 (-887 *6)))) (-5 *1 (-503 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-13 (-341) (-787))))) (-1564 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-592 (-887 *6))) (-5 *4 (-592 (-1092))) (-4 *6 (-429)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-503 *6 *7 *5)) (-4 *7 (-341)) (-4 *5 (-13 (-341) (-787))))) (-1352 (*1 *2 *3 *4) (-12 (-5 *3 (-887 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6)) (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))) (-1352 (*1 *2 *3 *4) (-12 (-5 *3 (-1088 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6)) (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))))
+(-10 -7 (-15 -1352 ((-592 |#2|) (-1088 |#1|) |#3|)) (-15 -1352 ((-592 |#2|) (-887 |#1|) |#3|)) (-15 -1564 ((-592 (-592 |#2|)) (-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1092)) |#3|)) (-15 -3332 ((-592 (-273 (-887 |#2|))) (-592 |#2|) (-592 (-1092)))))
+((-2600 ((|#2| |#2| |#1|) 17)) (-1492 ((|#2| (-592 |#2|)) 27)) (-3535 ((|#2| (-592 |#2|)) 46)))
+(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1492 (|#2| (-592 |#2|))) (-15 -3535 (|#2| (-592 |#2|))) (-15 -2600 (|#2| |#2| |#1|))) (-286) (-1150 |#1|) |#1| (-1 |#1| |#1| (-713))) (T -504))
+((-2600 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-713))) (-5 *1 (-504 *3 *2 *4 *5)) (-4 *2 (-1150 *3)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-1150 *4)) (-5 *1 (-504 *4 *2 *5 *6)) (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713))))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-1150 *4)) (-5 *1 (-504 *4 *2 *5 *6)) (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713))))))
+(-10 -7 (-15 -1492 (|#2| (-592 |#2|))) (-15 -3535 (|#2| (-592 |#2|))) (-15 -2600 (|#2| |#2| |#1|)))
+((-4201 (((-396 (-1088 |#4|)) (-1088 |#4|) (-1 (-396 (-1088 |#3|)) (-1088 |#3|))) 79) (((-396 |#4|) |#4| (-1 (-396 (-1088 |#3|)) (-1088 |#3|))) 169)))
+(((-505 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4201 ((-396 |#4|) |#4| (-1 (-396 (-1088 |#3|)) (-1088 |#3|)))) (-15 -4201 ((-396 (-1088 |#4|)) (-1088 |#4|) (-1 (-396 (-1088 |#3|)) (-1088 |#3|))))) (-789) (-735) (-13 (-286) (-138)) (-884 |#3| |#2| |#1|)) (T -505))
+((-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 (-1088 *7)) (-1088 *7))) (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *8 (-884 *7 *6 *5)) (-5 *2 (-396 (-1088 *8))) (-5 *1 (-505 *5 *6 *7 *8)) (-5 *3 (-1088 *8)))) (-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 (-1088 *7)) (-1088 *7))) (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735)) (-5 *2 (-396 *3)) (-5 *1 (-505 *5 *6 *7 *3)) (-4 *3 (-884 *7 *6 *5)))))
+(-10 -7 (-15 -4201 ((-396 |#4|) |#4| (-1 (-396 (-1088 |#3|)) (-1088 |#3|)))) (-15 -4201 ((-396 (-1088 |#4|)) (-1088 |#4|) (-1 (-396 (-1088 |#3|)) (-1088 |#3|)))))
+((-3834 ((|#4| |#4|) 74)) (-2583 ((|#4| |#4|) 70)) (-2001 ((|#4| |#4| (-525) (-525)) 76)) (-4059 ((|#4| |#4|) 72)))
+(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2583 (|#4| |#4|)) (-15 -4059 (|#4| |#4|)) (-15 -3834 (|#4| |#4|)) (-15 -2001 (|#4| |#4| (-525) (-525)))) (-13 (-341) (-346) (-567 (-525))) (-1150 |#1|) (-667 |#1| |#2|) (-1165 |#3|)) (T -506))
+((-2001 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 *3))) (-4 *5 (-1150 *4)) (-4 *6 (-667 *4 *5)) (-5 *1 (-506 *4 *5 *6 *2)) (-4 *2 (-1165 *6)))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1150 *3)) (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1165 *5)))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1150 *3)) (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1165 *5)))) (-2583 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1150 *3)) (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1165 *5)))))
+(-10 -7 (-15 -2583 (|#4| |#4|)) (-15 -4059 (|#4| |#4|)) (-15 -3834 (|#4| |#4|)) (-15 -2001 (|#4| |#4| (-525) (-525))))
+((-3834 ((|#2| |#2|) 27)) (-2583 ((|#2| |#2|) 23)) (-2001 ((|#2| |#2| (-525) (-525)) 29)) (-4059 ((|#2| |#2|) 25)))
+(((-507 |#1| |#2|) (-10 -7 (-15 -2583 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -2001 (|#2| |#2| (-525) (-525)))) (-13 (-341) (-346) (-567 (-525))) (-1165 |#1|)) (T -507))
+((-2001 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 *3))) (-5 *1 (-507 *4 *2)) (-4 *2 (-1165 *4)))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1165 *3)))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1165 *3)))) (-2583 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1165 *3)))))
+(-10 -7 (-15 -2583 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -2001 (|#2| |#2| (-525) (-525))))
+((-1301 (((-3 (-525) "failed") |#2| |#1| (-1 (-3 (-525) "failed") |#1|)) 14) (((-3 (-525) "failed") |#2| |#1| (-525) (-1 (-3 (-525) "failed") |#1|)) 13) (((-3 (-525) "failed") |#2| (-525) (-1 (-3 (-525) "failed") |#1|)) 26)))
+(((-508 |#1| |#2|) (-10 -7 (-15 -1301 ((-3 (-525) "failed") |#2| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -1301 ((-3 (-525) "failed") |#2| |#1| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -1301 ((-3 (-525) "failed") |#2| |#1| (-1 (-3 (-525) "failed") |#1|)))) (-977) (-1150 |#1|)) (T -508))
+((-1301 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1150 *4)))) (-1301 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1150 *4)))) (-1301 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-525) "failed") *5)) (-4 *5 (-977)) (-5 *2 (-525)) (-5 *1 (-508 *5 *3)) (-4 *3 (-1150 *5)))))
+(-10 -7 (-15 -1301 ((-3 (-525) "failed") |#2| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -1301 ((-3 (-525) "failed") |#2| |#1| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -1301 ((-3 (-525) "failed") |#2| |#1| (-1 (-3 (-525) "failed") |#1|))))
+((-3410 (($ $ $) 79)) (-3586 (((-396 $) $) 47)) (-1934 (((-3 (-525) "failed") $) 59)) (-4105 (((-525) $) 37)) (-3306 (((-3 (-385 (-525)) "failed") $) 74)) (-1417 (((-108) $) 24)) (-1367 (((-385 (-525)) $) 72)) (-1798 (((-108) $) 50)) (-2209 (($ $ $ $) 86)) (-1889 (((-108) $) 16)) (-1922 (($ $ $) 57)) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 69)) (-2878 (((-3 $ "failed") $) 64)) (-2845 (($ $) 23)) (-2432 (($ $ $) 84)) (-2948 (($) 60)) (-1606 (($ $) 53)) (-4201 (((-396 $) $) 45)) (-3864 (((-108) $) 14)) (-1927 (((-713) $) 28)) (-2702 (($ $ (-713)) NIL) (($ $) 10)) (-2503 (($ $) 17)) (-2069 (((-525) $) NIL) (((-501) $) 36) (((-827 (-525)) $) 40) (((-357) $) 31) (((-205) $) 33)) (-2448 (((-713)) 8)) (-4214 (((-108) $ $) 20)) (-1494 (($ $ $) 55)))
+(((-509 |#1|) (-10 -8 (-15 -2432 (|#1| |#1| |#1|)) (-15 -2209 (|#1| |#1| |#1| |#1|)) (-15 -2845 (|#1| |#1|)) (-15 -2503 (|#1| |#1|)) (-15 -3306 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1367 ((-385 (-525)) |#1|)) (-15 -1417 ((-108) |#1|)) (-15 -3410 (|#1| |#1| |#1|)) (-15 -4214 ((-108) |#1| |#1|)) (-15 -3864 ((-108) |#1|)) (-15 -2948 (|#1|)) (-15 -2878 ((-3 |#1| "failed") |#1|)) (-15 -2069 ((-205) |#1|)) (-15 -2069 ((-357) |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -1606 (|#1| |#1|)) (-15 -1494 (|#1| |#1| |#1|)) (-15 -3552 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -2069 ((-827 (-525)) |#1|)) (-15 -2069 ((-501) |#1|)) (-15 -4105 ((-525) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -2069 ((-525) |#1|)) (-15 -2702 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-713))) (-15 -1889 ((-108) |#1|)) (-15 -1927 ((-713) |#1|)) (-15 -4201 ((-396 |#1|) |#1|)) (-15 -3586 ((-396 |#1|) |#1|)) (-15 -1798 ((-108) |#1|)) (-15 -2448 ((-713)))) (-510)) (T -509))
+((-2448 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-509 *3)) (-4 *3 (-510)))))
+(-10 -8 (-15 -2432 (|#1| |#1| |#1|)) (-15 -2209 (|#1| |#1| |#1| |#1|)) (-15 -2845 (|#1| |#1|)) (-15 -2503 (|#1| |#1|)) (-15 -3306 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1367 ((-385 (-525)) |#1|)) (-15 -1417 ((-108) |#1|)) (-15 -3410 (|#1| |#1| |#1|)) (-15 -4214 ((-108) |#1| |#1|)) (-15 -3864 ((-108) |#1|)) (-15 -2948 (|#1|)) (-15 -2878 ((-3 |#1| "failed") |#1|)) (-15 -2069 ((-205) |#1|)) (-15 -2069 ((-357) |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -1606 (|#1| |#1|)) (-15 -1494 (|#1| |#1| |#1|)) (-15 -3552 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -2069 ((-827 (-525)) |#1|)) (-15 -2069 ((-501) |#1|)) (-15 -4105 ((-525) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -2069 ((-525) |#1|)) (-15 -2702 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-713))) (-15 -1889 ((-108) |#1|)) (-15 -1927 ((-713) |#1|)) (-15 -4201 ((-396 |#1|) |#1|)) (-15 -3586 ((-396 |#1|) |#1|)) (-15 -1798 ((-108) |#1|)) (-15 -2448 ((-713))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-3410 (($ $ $) 85)) (-3222 (((-3 $ "failed") $ $) 19)) (-3004 (($ $ $ $) 73)) (-4195 (($ $) 51)) (-3586 (((-396 $) $) 52)) (-1507 (((-108) $ $) 125)) (-2971 (((-525) $) 114)) (-3164 (($ $ $) 88)) (-2475 (($) 17 T CONST)) (-1934 (((-3 (-525) "failed") $) 106)) (-4105 (((-525) $) 105)) (-1356 (($ $ $) 129)) (-3090 (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 104) (((-632 (-525)) (-632 $)) 103)) (-3300 (((-3 $ "failed") $) 34)) (-3306 (((-3 (-385 (-525)) "failed") $) 82)) (-1417 (((-108) $) 84)) (-1367 (((-385 (-525)) $) 83)) (-1903 (($) 81) (($ $) 80)) (-1332 (($ $ $) 128)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 123)) (-1798 (((-108) $) 53)) (-2209 (($ $ $ $) 71)) (-1453 (($ $ $) 86)) (-1889 (((-108) $) 116)) (-1922 (($ $ $) 97)) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 100)) (-2278 (((-108) $) 31)) (-3028 (((-108) $) 92)) (-2878 (((-3 $ "failed") $) 94)) (-4079 (((-108) $) 115)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 132)) (-3455 (($ $ $ $) 72)) (-3033 (($ $ $) 117)) (-1609 (($ $ $) 118)) (-2845 (($ $) 75)) (-4128 (($ $) 89)) (-2739 (($ $ $) 46) (($ (-592 $)) 45)) (-1289 (((-1075) $) 9)) (-2432 (($ $ $) 70)) (-2948 (($) 93 T CONST)) (-3280 (($ $) 77)) (-3993 (((-1039) $) 10) (($ $) 79)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2772 (($ $ $) 48) (($ (-592 $)) 47)) (-1606 (($ $) 98)) (-4201 (((-396 $) $) 50)) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 130)) (-1311 (((-3 $ "failed") $ $) 42)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 124)) (-3864 (((-108) $) 91)) (-1927 (((-713) $) 126)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 127)) (-2702 (($ $ (-713)) 111) (($ $) 109)) (-4223 (($ $) 76)) (-2503 (($ $) 78)) (-2069 (((-525) $) 108) (((-501) $) 102) (((-827 (-525)) $) 101) (((-357) $) 96) (((-205) $) 95)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-525)) 107)) (-2448 (((-713)) 29)) (-4214 (((-108) $ $) 87)) (-1494 (($ $ $) 99)) (-3771 (($) 90)) (-1571 (((-108) $ $) 39)) (-3695 (($ $ $ $) 74)) (-2380 (($ $) 113)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $ (-713)) 112) (($ $) 110)) (-2830 (((-108) $ $) 120)) (-2807 (((-108) $ $) 121)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 119)) (-2795 (((-108) $ $) 122)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-510) (-131)) (T -510))
-((-1673 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-3379 (*1 *1) (-4 *1 (-510))) (-4178 (*1 *1 *1) (-4 *1 (-510))) (-3506 (*1 *1 *1 *1) (-4 *1 (-510))) (-3731 (*1 *2 *1 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-3636 (*1 *1 *1 *1) (-4 *1 (-510))) (-2028 (*1 *1 *1 *1) (-4 *1 (-510))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-385 (-525))))) (-1514 (*1 *2 *1) (|partial| -12 (-4 *1 (-510)) (-5 *2 (-385 (-525))))) (-2502 (*1 *1) (-4 *1 (-510))) (-2502 (*1 *1 *1) (-4 *1 (-510))) (-2093 (*1 *1 *1) (-4 *1 (-510))) (-1462 (*1 *1 *1) (-4 *1 (-510))) (-4070 (*1 *1 *1) (-4 *1 (-510))) (-3068 (*1 *1 *1) (-4 *1 (-510))) (-1738 (*1 *1 *1) (-4 *1 (-510))) (-1935 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-4158 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-2657 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-2781 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-2476 (*1 *1 *1 *1) (-4 *1 (-510))))
-(-13 (-1132) (-286) (-762) (-213) (-567 (-525)) (-968 (-525)) (-588 (-525)) (-567 (-501)) (-567 (-827 (-525))) (-821 (-525)) (-134) (-953) (-138) (-1068) (-10 -8 (-15 -1673 ((-108) $)) (-15 -3699 ((-108) $)) (-6 -4257) (-15 -3379 ($)) (-15 -4178 ($ $)) (-15 -3506 ($ $ $)) (-15 -3731 ((-108) $ $)) (-15 -3636 ($ $ $)) (-15 -2028 ($ $ $)) (-15 -3933 ((-108) $)) (-15 -3303 ((-385 (-525)) $)) (-15 -1514 ((-3 (-385 (-525)) "failed") $)) (-15 -2502 ($)) (-15 -2502 ($ $)) (-15 -2093 ($ $)) (-15 -1462 ($ $)) (-15 -4070 ($ $)) (-15 -3068 ($ $)) (-15 -1738 ($ $)) (-15 -1935 ($ $ $ $)) (-15 -4158 ($ $ $ $)) (-15 -2657 ($ $ $ $)) (-15 -2781 ($ $ $ $)) (-15 -2476 ($ $ $)) (-6 -4256)))
+((-3028 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-3771 (*1 *1) (-4 *1 (-510))) (-4128 (*1 *1 *1) (-4 *1 (-510))) (-3164 (*1 *1 *1 *1) (-4 *1 (-510))) (-4214 (*1 *2 *1 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-1453 (*1 *1 *1 *1) (-4 *1 (-510))) (-3410 (*1 *1 *1 *1) (-4 *1 (-510))) (-1417 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-1367 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-385 (-525))))) (-3306 (*1 *2 *1) (|partial| -12 (-4 *1 (-510)) (-5 *2 (-385 (-525))))) (-1903 (*1 *1) (-4 *1 (-510))) (-1903 (*1 *1 *1) (-4 *1 (-510))) (-3993 (*1 *1 *1) (-4 *1 (-510))) (-2503 (*1 *1 *1) (-4 *1 (-510))) (-3280 (*1 *1 *1) (-4 *1 (-510))) (-4223 (*1 *1 *1) (-4 *1 (-510))) (-2845 (*1 *1 *1) (-4 *1 (-510))) (-3695 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-3004 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-3455 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-2209 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-2432 (*1 *1 *1 *1) (-4 *1 (-510))))
+(-13 (-1132) (-286) (-762) (-213) (-567 (-525)) (-968 (-525)) (-588 (-525)) (-567 (-501)) (-567 (-827 (-525))) (-821 (-525)) (-134) (-953) (-138) (-1068) (-10 -8 (-15 -3028 ((-108) $)) (-15 -3864 ((-108) $)) (-6 -4258) (-15 -3771 ($)) (-15 -4128 ($ $)) (-15 -3164 ($ $ $)) (-15 -4214 ((-108) $ $)) (-15 -1453 ($ $ $)) (-15 -3410 ($ $ $)) (-15 -1417 ((-108) $)) (-15 -1367 ((-385 (-525)) $)) (-15 -3306 ((-3 (-385 (-525)) "failed") $)) (-15 -1903 ($)) (-15 -1903 ($ $)) (-15 -3993 ($ $)) (-15 -2503 ($ $)) (-15 -3280 ($ $)) (-15 -4223 ($ $)) (-15 -2845 ($ $)) (-15 -3695 ($ $ $ $)) (-15 -3004 ($ $ $ $)) (-15 -3455 ($ $ $ $)) (-15 -2209 ($ $ $ $)) (-15 -2432 ($ $ $)) (-6 -4257)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-798)) . T) ((-134) . T) ((-160) . T) ((-567 (-205)) . T) ((-567 (-357)) . T) ((-567 (-501)) . T) ((-567 (-525)) . T) ((-567 (-827 (-525))) . T) ((-213) . T) ((-269) . T) ((-286) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-588 (-525)) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-762) . T) ((-787) . T) ((-789) . T) ((-821 (-525)) . T) ((-855) . T) ((-953) . T) ((-968 (-525)) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1068) . T) ((-1132) . T))
-((-4236 (((-108) $ $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1675 (($) NIL) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-3456 (((-1179) $ |#1| |#1|) NIL (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 ((|#2| $ |#1| |#2|) NIL)) (-1676 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-2591 (((-3 |#2| "failed") |#1| $) NIL)) (-2169 (($) NIL T CONST)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-3271 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (|has| $ (-6 -4258))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-3 |#2| "failed") |#1| $) NIL)) (-1703 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-1284 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (|has| $ (-6 -4258))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-2301 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#2| $ |#1|) NIL)) (-3440 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) NIL)) (-3666 ((|#1| $) NIL (|has| |#1| (-789)))) (-2694 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-1847 ((|#1| $) NIL (|has| |#1| (-789)))) (-2284 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4259))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-2356 (((-592 |#1|) $) NIL)) (-2239 (((-108) |#1| $) NIL)) (-2992 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-1262 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-2628 (((-592 |#1|) $) NIL)) (-2978 (((-108) |#1| $) NIL)) (-2093 (((-1039) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1872 ((|#2| $) NIL (|has| |#1| (-789)))) (-1983 (((-3 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) "failed") (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL)) (-1420 (($ $ |#2|) NIL (|has| $ (-6 -4259)))) (-4127 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-3944 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-3341 (((-592 |#2|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1760 (($) NIL) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-2110 (((-713) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-713) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-567 (-501))))) (-1230 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-1217 (((-798) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-1956 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-3029 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-511 |#1| |#2| |#3|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -4258))) (-1020) (-1020) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -4258)))) (T -511))
-NIL
-(-13 (-1105 |#1| |#2|) (-10 -7 (-6 -4258)))
-((-2381 (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-1 (-1088 |#2|) (-1088 |#2|))) 51)))
-(((-512 |#1| |#2|) (-10 -7 (-15 -2381 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-1 (-1088 |#2|) (-1088 |#2|))))) (-13 (-789) (-517)) (-13 (-27) (-408 |#1|))) (T -512))
-((-2381 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-565 *3)) (-5 *5 (-1 (-1088 *3) (-1088 *3))) (-4 *3 (-13 (-27) (-408 *6))) (-4 *6 (-13 (-789) (-517))) (-5 *2 (-542 *3)) (-5 *1 (-512 *6 *3)))))
-(-10 -7 (-15 -2381 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-1 (-1088 |#2|) (-1088 |#2|)))))
-((-3395 (((-542 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-1309 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-1411 (((-542 |#5|) |#5| (-1 |#3| |#3|)) 201)))
-(((-513 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1411 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3395 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1309 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-789) (-517) (-968 (-525))) (-13 (-27) (-408 |#1|)) (-1150 |#2|) (-1150 (-385 |#3|)) (-320 |#2| |#3| |#4|)) (T -513))
-((-1309 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-27) (-408 *4))) (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-4 *7 (-1150 (-385 *6))) (-5 *1 (-513 *4 *5 *6 *7 *2)) (-4 *2 (-320 *5 *6 *7)))) (-3395 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1150 *6)) (-4 *6 (-13 (-27) (-408 *5))) (-4 *5 (-13 (-789) (-517) (-968 (-525)))) (-4 *8 (-1150 (-385 *7))) (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3)) (-4 *3 (-320 *6 *7 *8)))) (-1411 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1150 *6)) (-4 *6 (-13 (-27) (-408 *5))) (-4 *5 (-13 (-789) (-517) (-968 (-525)))) (-4 *8 (-1150 (-385 *7))) (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3)) (-4 *3 (-320 *6 *7 *8)))))
-(-10 -7 (-15 -1411 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3395 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1309 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-3290 (((-108) (-525) (-525)) 10)) (-1401 (((-525) (-525)) 7)) (-2225 (((-525) (-525) (-525)) 8)))
-(((-514) (-10 -7 (-15 -1401 ((-525) (-525))) (-15 -2225 ((-525) (-525) (-525))) (-15 -3290 ((-108) (-525) (-525))))) (T -514))
-((-3290 (*1 *2 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-514)))) (-2225 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514)))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514)))))
-(-10 -7 (-15 -1401 ((-525) (-525))) (-15 -2225 ((-525) (-525) (-525))) (-15 -3290 ((-108) (-525) (-525))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1297 ((|#1| $) 61)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-1575 (($ $) 91)) (-2804 (($ $) 74)) (-3167 ((|#1| $) 62)) (-1578 (((-3 $ "failed") $ $) 19)) (-2782 (($ $) 73)) (-1549 (($ $) 90)) (-2780 (($ $) 75)) (-1599 (($ $) 89)) (-2836 (($ $) 76)) (-2169 (($) 17 T CONST)) (-3077 (((-3 (-525) "failed") $) 69)) (-1572 (((-525) $) 68)) (-3457 (((-3 $ "failed") $) 34)) (-2682 (($ |#1| |#1|) 66)) (-1222 (((-108) $) 60)) (-3140 (($) 101)) (-1396 (((-108) $) 31)) (-2171 (($ $ (-525)) 72)) (-3256 (((-108) $) 59)) (-2638 (($ $ $) 107)) (-3662 (($ $ $) 106)) (-1517 (($ $) 98)) (-2556 (($ $ $) 46) (($ (-592 $)) 45)) (-2619 (((-1075) $) 9)) (-1861 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-385 (-525))) 64)) (-3211 ((|#1| $) 63)) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2589 (($ $ $) 48) (($ (-592 $)) 47)) (-1715 (((-3 $ "failed") $ $) 42)) (-3096 (($ $) 99)) (-1609 (($ $) 88)) (-1447 (($ $) 77)) (-1587 (($ $) 87)) (-2815 (($ $) 78)) (-1562 (($ $) 86)) (-2794 (($ $) 79)) (-3156 (((-108) $ |#1|) 58)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-525)) 70)) (-3917 (((-713)) 29)) (-1649 (($ $) 97)) (-1492 (($ $) 85)) (-3325 (((-108) $ $) 39)) (-1630 (($ $) 96)) (-1465 (($ $) 84)) (-1669 (($ $) 95)) (-1522 (($ $) 83)) (-2359 (($ $) 94)) (-1537 (($ $) 82)) (-1659 (($ $) 93)) (-1506 (($ $) 81)) (-1639 (($ $) 92)) (-1479 (($ $) 80)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-4011 (((-108) $ $) 104)) (-3987 (((-108) $ $) 103)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 105)) (-3978 (((-108) $ $) 102)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ $) 100) (($ $ (-385 (-525))) 71)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-4087 (((-108) $ $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3311 (($) NIL) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-3289 (((-1179) $ |#1| |#1|) NIL (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 ((|#2| $ |#1| |#2|) NIL)) (-3050 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-1515 (((-3 |#2| "failed") |#1| $) NIL)) (-2475 (($) NIL T CONST)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-4205 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (|has| $ (-6 -4259))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-3 |#2| "failed") |#1| $) NIL)) (-2698 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3504 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (|has| $ (-6 -4259))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3081 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#2| $ |#1|) NIL)) (-2175 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) NIL)) (-1732 ((|#1| $) NIL (|has| |#1| (-789)))) (-2617 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-2231 ((|#1| $) NIL (|has| |#1| (-789)))) (-3069 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4260))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1398 (((-592 |#1|) $) NIL)) (-3770 (((-108) |#1| $) NIL)) (-3577 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-3246 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-3177 (((-592 |#1|) $) NIL)) (-3461 (((-108) |#1| $) NIL)) (-3993 (((-1039) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1647 ((|#2| $) NIL (|has| |#1| (-789)))) (-4202 (((-3 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) "failed") (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL)) (-3453 (($ $ |#2|) NIL (|has| $ (-6 -4260)))) (-2724 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-1518 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-1717 (((-592 |#2|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2637 (($) NIL) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-4002 (((-713) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-713) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-567 (-501))))) (-4114 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-4100 (((-798) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-3905 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-2706 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-511 |#1| |#2| |#3|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -4259))) (-1020) (-1020) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -4259)))) (T -511))
+NIL
+(-13 (-1105 |#1| |#2|) (-10 -7 (-6 -4259)))
+((-2693 (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-1 (-1088 |#2|) (-1088 |#2|))) 51)))
+(((-512 |#1| |#2|) (-10 -7 (-15 -2693 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-1 (-1088 |#2|) (-1088 |#2|))))) (-13 (-789) (-517)) (-13 (-27) (-408 |#1|))) (T -512))
+((-2693 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-565 *3)) (-5 *5 (-1 (-1088 *3) (-1088 *3))) (-4 *3 (-13 (-27) (-408 *6))) (-4 *6 (-13 (-789) (-517))) (-5 *2 (-542 *3)) (-5 *1 (-512 *6 *3)))))
+(-10 -7 (-15 -2693 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-1 (-1088 |#2|) (-1088 |#2|)))))
+((-3981 (((-542 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-3271 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-2017 (((-542 |#5|) |#5| (-1 |#3| |#3|)) 201)))
+(((-513 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2017 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3981 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3271 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-789) (-517) (-968 (-525))) (-13 (-27) (-408 |#1|)) (-1150 |#2|) (-1150 (-385 |#3|)) (-320 |#2| |#3| |#4|)) (T -513))
+((-3271 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-27) (-408 *4))) (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-4 *7 (-1150 (-385 *6))) (-5 *1 (-513 *4 *5 *6 *7 *2)) (-4 *2 (-320 *5 *6 *7)))) (-3981 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1150 *6)) (-4 *6 (-13 (-27) (-408 *5))) (-4 *5 (-13 (-789) (-517) (-968 (-525)))) (-4 *8 (-1150 (-385 *7))) (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3)) (-4 *3 (-320 *6 *7 *8)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1150 *6)) (-4 *6 (-13 (-27) (-408 *5))) (-4 *5 (-13 (-789) (-517) (-968 (-525)))) (-4 *8 (-1150 (-385 *7))) (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3)) (-4 *3 (-320 *6 *7 *8)))))
+(-10 -7 (-15 -2017 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3981 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3271 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-1343 (((-108) (-525) (-525)) 10)) (-2342 (((-525) (-525)) 7)) (-1826 (((-525) (-525) (-525)) 8)))
+(((-514) (-10 -7 (-15 -2342 ((-525) (-525))) (-15 -1826 ((-525) (-525) (-525))) (-15 -1343 ((-108) (-525) (-525))))) (T -514))
+((-1343 (*1 *2 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-514)))) (-1826 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514)))) (-2342 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514)))))
+(-10 -7 (-15 -2342 ((-525) (-525))) (-15 -1826 ((-525) (-525) (-525))) (-15 -1343 ((-108) (-525) (-525))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3327 ((|#1| $) 61)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-1803 (($ $) 91)) (-3659 (($ $) 74)) (-1525 ((|#1| $) 62)) (-3222 (((-3 $ "failed") $ $) 19)) (-4211 (($ $) 73)) (-1781 (($ $) 90)) (-3638 (($ $) 75)) (-1828 (($ $) 89)) (-3698 (($ $) 76)) (-2475 (($) 17 T CONST)) (-1934 (((-3 (-525) "failed") $) 69)) (-4105 (((-525) $) 68)) (-3300 (((-3 $ "failed") $) 34)) (-3696 (($ |#1| |#1|) 66)) (-1889 (((-108) $) 60)) (-4106 (($) 101)) (-2278 (((-108) $) 31)) (-1303 (($ $ (-525)) 72)) (-4079 (((-108) $) 59)) (-3033 (($ $ $) 107)) (-1609 (($ $ $) 106)) (-2533 (($ $) 98)) (-2739 (($ $ $) 46) (($ (-592 $)) 45)) (-1289 (((-1075) $) 9)) (-2371 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-385 (-525))) 64)) (-1919 ((|#1| $) 63)) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2772 (($ $ $) 48) (($ (-592 $)) 47)) (-1311 (((-3 $ "failed") $ $) 42)) (-1618 (($ $) 99)) (-1841 (($ $) 88)) (-3798 (($ $) 77)) (-1816 (($ $) 87)) (-3678 (($ $) 78)) (-1792 (($ $) 86)) (-3649 (($ $) 79)) (-1424 (((-108) $ |#1|) 58)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-525)) 70)) (-2448 (((-713)) 29)) (-1876 (($ $) 97)) (-3853 (($ $) 85)) (-1571 (((-108) $ $) 39)) (-1853 (($ $) 96)) (-3808 (($ $) 84)) (-1902 (($ $) 95)) (-1760 (($ $) 83)) (-3135 (($ $) 94)) (-1770 (($ $) 82)) (-1891 (($ $) 93)) (-1748 (($ $) 81)) (-1866 (($ $) 92)) (-3820 (($ $) 80)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2830 (((-108) $ $) 104)) (-2807 (((-108) $ $) 103)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 105)) (-2795 (((-108) $ $) 102)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ $) 100) (($ $ (-385 (-525))) 71)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-515 |#1|) (-131) (-13 (-382) (-1114))) (T -515))
-((-1861 (*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114))))) (-2682 (*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114))))) (-1861 (*1 *1 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114))))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1114))))) (-3211 (*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114))))) (-3167 (*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114))))) (-1297 (*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114))))) (-1222 (*1 *2 *1) (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1114))) (-5 *2 (-108)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1114))) (-5 *2 (-108)))) (-3156 (*1 *2 *1 *3) (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1114))) (-5 *2 (-108)))))
-(-13 (-429) (-789) (-1114) (-934) (-968 (-525)) (-10 -8 (-6 -1454) (-15 -1861 ($ |t#1| |t#1|)) (-15 -2682 ($ |t#1| |t#1|)) (-15 -1861 ($ |t#1|)) (-15 -1861 ($ (-385 (-525)))) (-15 -3211 (|t#1| $)) (-15 -3167 (|t#1| $)) (-15 -1297 (|t#1| $)) (-15 -1222 ((-108) $)) (-15 -3256 ((-108) $)) (-15 -3156 ((-108) $ |t#1|))))
+((-2371 (*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114))))) (-3696 (*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114))))) (-2371 (*1 *1 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114))))) (-2371 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1114))))) (-1919 (*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114))))) (-1525 (*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114))))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114))))) (-1889 (*1 *2 *1) (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1114))) (-5 *2 (-108)))) (-4079 (*1 *2 *1) (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1114))) (-5 *2 (-108)))) (-1424 (*1 *2 *1 *3) (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1114))) (-5 *2 (-108)))))
+(-13 (-429) (-789) (-1114) (-934) (-968 (-525)) (-10 -8 (-6 -1485) (-15 -2371 ($ |t#1| |t#1|)) (-15 -3696 ($ |t#1| |t#1|)) (-15 -2371 ($ |t#1|)) (-15 -2371 ($ (-385 (-525)))) (-15 -1919 (|t#1| $)) (-15 -1525 (|t#1| $)) (-15 -3327 (|t#1| $)) (-15 -1889 ((-108) $)) (-15 -4079 ((-108) $)) (-15 -1424 ((-108) $ |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-263) . T) ((-269) . T) ((-429) . T) ((-466) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-789) . T) ((-934) . T) ((-968 (-525)) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1114) . T) ((-1117) . T))
-((-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 9)) (-4218 (($ $) 11)) (-3171 (((-108) $) 18)) (-3457 (((-3 $ "failed") $) 16)) (-3325 (((-108) $ $) 20)))
-(((-516 |#1|) (-10 -8 (-15 -3171 ((-108) |#1|)) (-15 -3325 ((-108) |#1| |#1|)) (-15 -4218 (|#1| |#1|)) (-15 -2582 ((-2 (|:| -2841 |#1|) (|:| -4245 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3457 ((-3 |#1| "failed") |#1|))) (-517)) (T -516))
+((-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 9)) (-2433 (($ $) 11)) (-1568 (((-108) $) 18)) (-3300 (((-3 $ "failed") $) 16)) (-1571 (((-108) $ $) 20)))
+(((-516 |#1|) (-10 -8 (-15 -1568 ((-108) |#1|)) (-15 -1571 ((-108) |#1| |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -4011 ((-2 (|:| -1509 |#1|) (|:| -4246 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3300 ((-3 |#1| "failed") |#1|))) (-517)) (T -516))
NIL
-(-10 -8 (-15 -3171 ((-108) |#1|)) (-15 -3325 ((-108) |#1| |#1|)) (-15 -4218 (|#1| |#1|)) (-15 -2582 ((-2 (|:| -2841 |#1|) (|:| -4245 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3457 ((-3 |#1| "failed") |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1715 (((-3 $ "failed") $ $) 42)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-3917 (((-713)) 29)) (-3325 (((-108) $ $) 39)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+(-10 -8 (-15 -1568 ((-108) |#1|)) (-15 -1571 ((-108) |#1| |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -4011 ((-2 (|:| -1509 |#1|) (|:| -4246 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3300 ((-3 |#1| "failed") |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1311 (((-3 $ "failed") $ $) 42)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-2448 (((-713)) 29)) (-1571 (((-108) $ $) 39)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-517) (-131)) (T -517))
-((-1715 (*1 *1 *1 *1) (|partial| -4 *1 (-517))) (-2582 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2841 *1) (|:| -4245 *1) (|:| |associate| *1))) (-4 *1 (-517)))) (-4218 (*1 *1 *1) (-4 *1 (-517))) (-3325 (*1 *2 *1 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108)))) (-3171 (*1 *2 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108)))))
-(-13 (-160) (-37 $) (-269) (-10 -8 (-15 -1715 ((-3 $ "failed") $ $)) (-15 -2582 ((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $)) (-15 -4218 ($ $)) (-15 -3325 ((-108) $ $)) (-15 -3171 ((-108) $))))
+((-1311 (*1 *1 *1 *1) (|partial| -4 *1 (-517))) (-4011 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1509 *1) (|:| -4246 *1) (|:| |associate| *1))) (-4 *1 (-517)))) (-2433 (*1 *1 *1) (-4 *1 (-517))) (-1571 (*1 *2 *1 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108)))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108)))))
+(-13 (-160) (-37 $) (-269) (-10 -8 (-15 -1311 ((-3 $ "failed") $ $)) (-15 -4011 ((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $)) (-15 -2433 ($ $)) (-15 -1571 ((-108) $ $)) (-15 -1568 ((-108) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-269) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-2534 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1092) (-592 |#2|)) 37)) (-2827 (((-542 |#2|) |#2| (-1092)) 62)) (-1768 (((-3 |#2| "failed") |#2| (-1092)) 154)) (-2237 (((-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1092) (-565 |#2|) (-592 (-565 |#2|))) 157)) (-3728 (((-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1092) |#2|) 40)))
-(((-518 |#1| |#2|) (-10 -7 (-15 -3728 ((-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1092) |#2|)) (-15 -2534 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1092) (-592 |#2|))) (-15 -1768 ((-3 |#2| "failed") |#2| (-1092))) (-15 -2827 ((-542 |#2|) |#2| (-1092))) (-15 -2237 ((-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1092) (-565 |#2|) (-592 (-565 |#2|))))) (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1114) (-408 |#1|))) (T -518))
-((-2237 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1092)) (-5 *6 (-592 (-565 *3))) (-5 *5 (-565 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *7))) (-4 *7 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| -1642 *3) (|:| |coeff| *3))) (-5 *1 (-518 *7 *3)))) (-2827 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-518 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))) (-1768 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1092)) (-4 *4 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *1 (-518 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))) (-2534 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-592 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-518 *6 *3)))) (-3728 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| -1642 *3) (|:| |coeff| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))))
-(-10 -7 (-15 -3728 ((-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1092) |#2|)) (-15 -2534 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1092) (-592 |#2|))) (-15 -1768 ((-3 |#2| "failed") |#2| (-1092))) (-15 -2827 ((-542 |#2|) |#2| (-1092))) (-15 -2237 ((-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1092) (-565 |#2|) (-592 (-565 |#2|)))))
-((-2669 (((-396 |#1|) |#1|) 18)) (-2770 (((-396 |#1|) |#1|) 33)) (-2072 (((-3 |#1| "failed") |#1|) 44)) (-3630 (((-396 |#1|) |#1|) 51)))
-(((-519 |#1|) (-10 -7 (-15 -2770 ((-396 |#1|) |#1|)) (-15 -2669 ((-396 |#1|) |#1|)) (-15 -3630 ((-396 |#1|) |#1|)) (-15 -2072 ((-3 |#1| "failed") |#1|))) (-510)) (T -519))
-((-2072 (*1 *2 *2) (|partial| -12 (-5 *1 (-519 *2)) (-4 *2 (-510)))) (-3630 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))) (-2669 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))) (-2770 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))))
-(-10 -7 (-15 -2770 ((-396 |#1|) |#1|)) (-15 -2669 ((-396 |#1|) |#1|)) (-15 -3630 ((-396 |#1|) |#1|)) (-15 -2072 ((-3 |#1| "failed") |#1|)))
-((-3505 (($) 9)) (-2031 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 35)) (-2356 (((-592 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $) 32)) (-1262 (($ (-2 (|:| -3364 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3296 (($ (-592 (-2 (|:| -3364 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-4201 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 39)) (-3341 (((-592 (-2 (|:| -3364 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-2561 (((-1179)) 12)))
-(((-520) (-10 -8 (-15 -3505 ($)) (-15 -2561 ((-1179))) (-15 -2356 ((-592 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -3296 ($ (-592 (-2 (|:| -3364 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1262 ($ (-2 (|:| -3364 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2031 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3341 ((-592 (-2 (|:| -3364 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4201 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -520))
-((-4201 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-520)))) (-3341 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -3364 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-520)))) (-2031 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-520)))) (-1262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3364 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-520)))) (-3296 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3364 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-520)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-5 *1 (-520)))) (-2561 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-520)))) (-3505 (*1 *1) (-5 *1 (-520))))
-(-10 -8 (-15 -3505 ($)) (-15 -2561 ((-1179))) (-15 -2356 ((-592 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -3296 ($ (-592 (-2 (|:| -3364 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1262 ($ (-2 (|:| -3364 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2031 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3341 ((-592 (-2 (|:| -3364 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4201 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3196 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
-((-2744 (((-1088 (-385 (-1088 |#2|))) |#2| (-565 |#2|) (-565 |#2|) (-1088 |#2|)) 32)) (-1750 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) (-565 |#2|) |#2| (-385 (-1088 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) |#2| (-1088 |#2|)) 110)) (-4052 (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1088 |#2|))) 80) (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) |#2| (-1088 |#2|)) 52)) (-2513 (((-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| (-565 |#2|) |#2| (-385 (-1088 |#2|))) 87) (((-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| |#2| (-1088 |#2|)) 109)) (-3693 (((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1092)) (-565 |#2|) |#2| (-385 (-1088 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1092)) |#2| (-1088 |#2|)) 111)) (-1588 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3094 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1088 |#2|))) 128 (|has| |#3| (-602 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3094 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) |#2| (-1088 |#2|)) 127 (|has| |#3| (-602 |#2|)))) (-2887 ((|#2| (-1088 (-385 (-1088 |#2|))) (-565 |#2|) |#2|) 50)) (-1269 (((-1088 (-385 (-1088 |#2|))) (-1088 |#2|) (-565 |#2|)) 31)))
-(((-521 |#1| |#2| |#3|) (-10 -7 (-15 -4052 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) |#2| (-1088 |#2|))) (-15 -4052 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1088 |#2|)))) (-15 -2513 ((-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| |#2| (-1088 |#2|))) (-15 -2513 ((-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| (-565 |#2|) |#2| (-385 (-1088 |#2|)))) (-15 -1750 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) |#2| (-1088 |#2|))) (-15 -1750 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) (-565 |#2|) |#2| (-385 (-1088 |#2|)))) (-15 -3693 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1092)) |#2| (-1088 |#2|))) (-15 -3693 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1092)) (-565 |#2|) |#2| (-385 (-1088 |#2|)))) (-15 -2744 ((-1088 (-385 (-1088 |#2|))) |#2| (-565 |#2|) (-565 |#2|) (-1088 |#2|))) (-15 -2887 (|#2| (-1088 (-385 (-1088 |#2|))) (-565 |#2|) |#2|)) (-15 -1269 ((-1088 (-385 (-1088 |#2|))) (-1088 |#2|) (-565 |#2|))) (IF (|has| |#3| (-602 |#2|)) (PROGN (-15 -1588 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3094 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) |#2| (-1088 |#2|))) (-15 -1588 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3094 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1088 |#2|))))) |%noBranch|)) (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))) (-13 (-408 |#1|) (-27) (-1114)) (-1020)) (T -521))
-((-1588 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-565 *4)) (-5 *6 (-385 (-1088 *4))) (-4 *4 (-13 (-408 *7) (-27) (-1114))) (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3094 (-592 *4)))) (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1020)))) (-1588 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-565 *4)) (-5 *6 (-1088 *4)) (-4 *4 (-13 (-408 *7) (-27) (-1114))) (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3094 (-592 *4)))) (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1020)))) (-1269 (*1 *2 *3 *4) (-12 (-5 *4 (-565 *6)) (-4 *6 (-13 (-408 *5) (-27) (-1114))) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-1088 (-385 (-1088 *6)))) (-5 *1 (-521 *5 *6 *7)) (-5 *3 (-1088 *6)) (-4 *7 (-1020)))) (-2887 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1088 (-385 (-1088 *2)))) (-5 *4 (-565 *2)) (-4 *2 (-13 (-408 *5) (-27) (-1114))) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-521 *5 *2 *6)) (-4 *6 (-1020)))) (-2744 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1114))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-1088 (-385 (-1088 *3)))) (-5 *1 (-521 *6 *3 *7)) (-5 *5 (-1088 *3)) (-4 *7 (-1020)))) (-3693 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-565 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1092))) (-5 *5 (-385 (-1088 *2))) (-4 *2 (-13 (-408 *6) (-27) (-1114))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1020)))) (-3693 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-565 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1092))) (-5 *5 (-1088 *2)) (-4 *2 (-13 (-408 *6) (-27) (-1114))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1020)))) (-1750 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-5 *6 (-385 (-1088 *3))) (-4 *3 (-13 (-408 *7) (-27) (-1114))) (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1020)))) (-1750 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-5 *6 (-1088 *3)) (-4 *3 (-13 (-408 *7) (-27) (-1114))) (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1020)))) (-2513 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1088 *3))) (-4 *3 (-13 (-408 *6) (-27) (-1114))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| -1642 *3) (|:| |coeff| *3))) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020)))) (-2513 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-1088 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1114))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| -1642 *3) (|:| |coeff| *3))) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020)))) (-4052 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1088 *3))) (-4 *3 (-13 (-408 *6) (-27) (-1114))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020)))) (-4052 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-565 *3)) (-5 *5 (-1088 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1114))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020)))))
-(-10 -7 (-15 -4052 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) |#2| (-1088 |#2|))) (-15 -4052 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1088 |#2|)))) (-15 -2513 ((-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| |#2| (-1088 |#2|))) (-15 -2513 ((-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| (-565 |#2|) |#2| (-385 (-1088 |#2|)))) (-15 -1750 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) |#2| (-1088 |#2|))) (-15 -1750 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) (-565 |#2|) |#2| (-385 (-1088 |#2|)))) (-15 -3693 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1092)) |#2| (-1088 |#2|))) (-15 -3693 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1092)) (-565 |#2|) |#2| (-385 (-1088 |#2|)))) (-15 -2744 ((-1088 (-385 (-1088 |#2|))) |#2| (-565 |#2|) (-565 |#2|) (-1088 |#2|))) (-15 -2887 (|#2| (-1088 (-385 (-1088 |#2|))) (-565 |#2|) |#2|)) (-15 -1269 ((-1088 (-385 (-1088 |#2|))) (-1088 |#2|) (-565 |#2|))) (IF (|has| |#3| (-602 |#2|)) (PROGN (-15 -1588 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3094 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) |#2| (-1088 |#2|))) (-15 -1588 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3094 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1088 |#2|))))) |%noBranch|))
-((-2539 (((-525) (-525) (-713)) 66)) (-1601 (((-525) (-525)) 65)) (-2466 (((-525) (-525)) 64)) (-2511 (((-525) (-525)) 69)) (-4088 (((-525) (-525) (-525)) 49)) (-1807 (((-525) (-525) (-525)) 46)) (-2097 (((-385 (-525)) (-525)) 20)) (-3905 (((-525) (-525)) 21)) (-2142 (((-525) (-525)) 58)) (-4230 (((-525) (-525)) 32)) (-2329 (((-592 (-525)) (-525)) 63)) (-4109 (((-525) (-525) (-525) (-525) (-525)) 44)) (-2144 (((-385 (-525)) (-525)) 41)))
-(((-522) (-10 -7 (-15 -2144 ((-385 (-525)) (-525))) (-15 -4109 ((-525) (-525) (-525) (-525) (-525))) (-15 -2329 ((-592 (-525)) (-525))) (-15 -4230 ((-525) (-525))) (-15 -2142 ((-525) (-525))) (-15 -3905 ((-525) (-525))) (-15 -2097 ((-385 (-525)) (-525))) (-15 -1807 ((-525) (-525) (-525))) (-15 -4088 ((-525) (-525) (-525))) (-15 -2511 ((-525) (-525))) (-15 -2466 ((-525) (-525))) (-15 -1601 ((-525) (-525))) (-15 -2539 ((-525) (-525) (-713))))) (T -522))
-((-2539 (*1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-713)) (-5 *1 (-522)))) (-1601 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2466 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2511 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-4088 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-1807 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2097 (*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2142 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-4230 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2329 (*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))) (-4109 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2144 (*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))))
-(-10 -7 (-15 -2144 ((-385 (-525)) (-525))) (-15 -4109 ((-525) (-525) (-525) (-525) (-525))) (-15 -2329 ((-592 (-525)) (-525))) (-15 -4230 ((-525) (-525))) (-15 -2142 ((-525) (-525))) (-15 -3905 ((-525) (-525))) (-15 -2097 ((-385 (-525)) (-525))) (-15 -1807 ((-525) (-525) (-525))) (-15 -4088 ((-525) (-525) (-525))) (-15 -2511 ((-525) (-525))) (-15 -2466 ((-525) (-525))) (-15 -1601 ((-525) (-525))) (-15 -2539 ((-525) (-525) (-713))))
-((-2021 (((-2 (|:| |answer| |#4|) (|:| -3563 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
-(((-523 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2021 ((-2 (|:| |answer| |#4|) (|:| -3563 |#4|)) |#4| (-1 |#2| |#2|)))) (-341) (-1150 |#1|) (-1150 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -523))
-((-2021 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341)) (-4 *7 (-1150 (-385 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3563 *3))) (-5 *1 (-523 *5 *6 *7 *3)) (-4 *3 (-320 *5 *6 *7)))))
-(-10 -7 (-15 -2021 ((-2 (|:| |answer| |#4|) (|:| -3563 |#4|)) |#4| (-1 |#2| |#2|))))
-((-2021 (((-2 (|:| |answer| (-385 |#2|)) (|:| -3563 (-385 |#2|)) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)) 18)))
-(((-524 |#1| |#2|) (-10 -7 (-15 -2021 ((-2 (|:| |answer| (-385 |#2|)) (|:| -3563 (-385 |#2|)) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)))) (-341) (-1150 |#1|)) (T -524))
-((-2021 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |answer| (-385 *6)) (|:| -3563 (-385 *6)) (|:| |specpart| (-385 *6)) (|:| |polypart| *6))) (-5 *1 (-524 *5 *6)) (-5 *3 (-385 *6)))))
-(-10 -7 (-15 -2021 ((-2 (|:| |answer| (-385 |#2|)) (|:| -3563 (-385 |#2|)) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 25)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 87)) (-4218 (($ $) 88)) (-3171 (((-108) $) NIL)) (-2028 (($ $ $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-4158 (($ $ $ $) 42)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2193 (((-108) $ $) NIL)) (-3855 (((-525) $) NIL)) (-3506 (($ $ $) 81)) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL)) (-1572 (((-525) $) NIL)) (-1747 (($ $ $) 80)) (-1994 (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 61) (((-632 (-525)) (-632 $)) 57)) (-3457 (((-3 $ "failed") $) 84)) (-1514 (((-3 (-385 (-525)) "failed") $) NIL)) (-3933 (((-108) $) NIL)) (-3303 (((-385 (-525)) $) NIL)) (-2502 (($) 63) (($ $) 64)) (-1733 (($ $ $) 79)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-2781 (($ $ $ $) NIL)) (-3636 (($ $ $) 54)) (-1222 (((-108) $) NIL)) (-3984 (($ $ $) NIL)) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL)) (-1396 (((-108) $) 26)) (-1673 (((-108) $) 74)) (-3844 (((-3 $ "failed") $) NIL)) (-3256 (((-108) $) 34)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2657 (($ $ $ $) 43)) (-2638 (($ $ $) 76)) (-3662 (($ $ $) 75)) (-1738 (($ $) NIL)) (-4178 (($ $) 40)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) 53)) (-2476 (($ $ $) NIL)) (-2295 (($) NIL T CONST)) (-4070 (($ $) 31)) (-2093 (((-1039) $) NIL) (($ $) 33)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 118)) (-2589 (($ $ $) 85) (($ (-592 $)) NIL)) (-1545 (($ $) NIL)) (-2770 (((-396 $) $) 104)) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL)) (-1715 (((-3 $ "failed") $ $) 83)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3699 (((-108) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 78)) (-3376 (($ $ (-713)) NIL) (($ $) NIL)) (-3068 (($ $) 32)) (-1462 (($ $) 30)) (-3210 (((-525) $) 39) (((-501) $) 51) (((-827 (-525)) $) NIL) (((-357) $) 46) (((-205) $) 48) (((-1075) $) 52)) (-1217 (((-798) $) 37) (($ (-525)) 38) (($ $) NIL) (($ (-525)) 38)) (-3917 (((-713)) NIL)) (-3731 (((-108) $ $) NIL)) (-3163 (($ $ $) NIL)) (-3379 (($) 29)) (-3325 (((-108) $ $) NIL)) (-1935 (($ $ $ $) 41)) (-2802 (($ $) 62)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 27 T CONST)) (-3359 (($) 28 T CONST)) (-1388 (((-1075) $) 20) (((-1075) $ (-108)) 22) (((-1179) (-764) $) 23) (((-1179) (-764) $ (-108)) 24)) (-2022 (($ $ (-713)) NIL) (($ $) NIL)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 65)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 66)) (-4061 (($ $) 67) (($ $ $) 69)) (-4047 (($ $ $) 68)) (** (($ $ (-856)) NIL) (($ $ (-713)) 73)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 71) (($ $ $) 70)))
-(((-525) (-13 (-510) (-567 (-1075)) (-770) (-10 -8 (-15 -2502 ($ $)) (-6 -4245) (-6 -4250) (-6 -4246) (-6 -4240)))) (T -525))
-((-2502 (*1 *1 *1) (-5 *1 (-525))))
-(-13 (-510) (-567 (-1075)) (-770) (-10 -8 (-15 -2502 ($ $)) (-6 -4245) (-6 -4250) (-6 -4246) (-6 -4240)))
-((-1533 (((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))) (-711) (-989)) 108) (((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))) (-711)) 110)) (-1206 (((-3 (-966) "failed") (-294 (-357)) (-1013 (-782 (-357))) (-1092)) 172) (((-3 (-966) "failed") (-294 (-357)) (-1013 (-782 (-357))) (-1075)) 171) (((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357) (-357) (-989)) 176) (((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357) (-357)) 177) (((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357)) 178) (((-966) (-294 (-357)) (-592 (-1015 (-782 (-357))))) 179) (((-966) (-294 (-357)) (-1015 (-782 (-357)))) 167) (((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357)) 166) (((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357) (-357)) 162) (((-966) (-711)) 155) (((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357) (-357) (-989)) 161)))
-(((-526) (-10 -7 (-15 -1206 ((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357) (-357) (-989))) (-15 -1206 ((-966) (-711))) (-15 -1206 ((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357) (-357))) (-15 -1206 ((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357))) (-15 -1206 ((-966) (-294 (-357)) (-1015 (-782 (-357))))) (-15 -1206 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))))) (-15 -1206 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357))) (-15 -1206 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357) (-357))) (-15 -1206 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357) (-357) (-989))) (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))) (-711))) (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))) (-711) (-989))) (-15 -1206 ((-3 (-966) "failed") (-294 (-357)) (-1013 (-782 (-357))) (-1075))) (-15 -1206 ((-3 (-966) "failed") (-294 (-357)) (-1013 (-782 (-357))) (-1092))))) (T -526))
-((-1206 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-782 (-357)))) (-5 *5 (-1092)) (-5 *2 (-966)) (-5 *1 (-526)))) (-1206 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-782 (-357)))) (-5 *5 (-1075)) (-5 *2 (-966)) (-5 *1 (-526)))) (-1533 (*1 *2 *3 *4) (-12 (-5 *3 (-711)) (-5 *4 (-989)) (-5 *2 (-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966)))) (-5 *1 (-526)))) (-1533 (*1 *2 *3) (-12 (-5 *3 (-711)) (-5 *2 (-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966)))) (-5 *1 (-526)))) (-1206 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357))))) (-5 *5 (-357)) (-5 *6 (-989)) (-5 *2 (-966)) (-5 *1 (-526)))) (-1206 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357))))) (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526)))) (-1206 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357))))) (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526)))) (-1206 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357))))) (-5 *2 (-966)) (-5 *1 (-526)))) (-1206 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357)))) (-5 *2 (-966)) (-5 *1 (-526)))) (-1206 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357)))) (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526)))) (-1206 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357)))) (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526)))) (-1206 (*1 *2 *3) (-12 (-5 *3 (-711)) (-5 *2 (-966)) (-5 *1 (-526)))) (-1206 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357)))) (-5 *5 (-357)) (-5 *6 (-989)) (-5 *2 (-966)) (-5 *1 (-526)))))
-(-10 -7 (-15 -1206 ((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357) (-357) (-989))) (-15 -1206 ((-966) (-711))) (-15 -1206 ((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357) (-357))) (-15 -1206 ((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357))) (-15 -1206 ((-966) (-294 (-357)) (-1015 (-782 (-357))))) (-15 -1206 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))))) (-15 -1206 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357))) (-15 -1206 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357) (-357))) (-15 -1206 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357) (-357) (-989))) (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))) (-711))) (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))) (-711) (-989))) (-15 -1206 ((-3 (-966) "failed") (-294 (-357)) (-1013 (-782 (-357))) (-1075))) (-15 -1206 ((-3 (-966) "failed") (-294 (-357)) (-1013 (-782 (-357))) (-1092))))
-((-1854 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|)) 183)) (-1475 (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|)) 98)) (-1629 (((-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2|) 179)) (-1374 (((-3 |#2| "failed") |#2| |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1092))) 188)) (-1295 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3094 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-1092)) 196 (|has| |#3| (-602 |#2|)))))
-(((-527 |#1| |#2| |#3|) (-10 -7 (-15 -1475 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|))) (-15 -1629 ((-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2|)) (-15 -1854 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|))) (-15 -1374 ((-3 |#2| "failed") |#2| |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1092)))) (IF (|has| |#3| (-602 |#2|)) (-15 -1295 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3094 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-1092))) |%noBranch|)) (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))) (-13 (-408 |#1|) (-27) (-1114)) (-1020)) (T -527))
-((-1295 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-565 *4)) (-5 *6 (-1092)) (-4 *4 (-13 (-408 *7) (-27) (-1114))) (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3094 (-592 *4)))) (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1020)))) (-1374 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-565 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1092))) (-4 *2 (-13 (-408 *5) (-27) (-1114))) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-527 *5 *2 *6)) (-4 *6 (-1020)))) (-1854 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1114))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1020)))) (-1629 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *5) (-27) (-1114))) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| -1642 *3) (|:| |coeff| *3))) (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1020)))) (-1475 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *5) (-27) (-1114))) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1020)))))
-(-10 -7 (-15 -1475 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|))) (-15 -1629 ((-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2|)) (-15 -1854 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|))) (-15 -1374 ((-3 |#2| "failed") |#2| |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1092)))) (IF (|has| |#3| (-602 |#2|)) (-15 -1295 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3094 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-1092))) |%noBranch|))
-((-2643 (((-2 (|:| -3624 |#2|) (|:| |nconst| |#2|)) |#2| (-1092)) 64)) (-2249 (((-3 |#2| "failed") |#2| (-1092) (-782 |#2|) (-782 |#2|)) 164 (-12 (|has| |#2| (-1056)) (|has| |#1| (-567 (-827 (-525)))) (|has| |#1| (-821 (-525))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092)) 147 (-12 (|has| |#2| (-578)) (|has| |#1| (-567 (-827 (-525)))) (|has| |#1| (-821 (-525)))))) (-1244 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092)) 148 (-12 (|has| |#2| (-578)) (|has| |#1| (-567 (-827 (-525)))) (|has| |#1| (-821 (-525)))))))
-(((-528 |#1| |#2|) (-10 -7 (-15 -2643 ((-2 (|:| -3624 |#2|) (|:| |nconst| |#2|)) |#2| (-1092))) (IF (|has| |#1| (-567 (-827 (-525)))) (IF (|has| |#1| (-821 (-525))) (PROGN (IF (|has| |#2| (-578)) (PROGN (-15 -1244 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092))) (-15 -2249 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092)))) |%noBranch|) (IF (|has| |#2| (-1056)) (-15 -2249 ((-3 |#2| "failed") |#2| (-1092) (-782 |#2|) (-782 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-789) (-968 (-525)) (-429) (-588 (-525))) (-13 (-27) (-1114) (-408 |#1|))) (T -528))
-((-2249 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1092)) (-5 *4 (-782 *2)) (-4 *2 (-1056)) (-4 *2 (-13 (-27) (-1114) (-408 *5))) (-4 *5 (-567 (-827 (-525)))) (-4 *5 (-821 (-525))) (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525)))) (-5 *1 (-528 *5 *2)))) (-2249 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-567 (-827 (-525)))) (-4 *5 (-821 (-525))) (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-528 *5 *3)) (-4 *3 (-578)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))) (-1244 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-567 (-827 (-525)))) (-4 *5 (-821 (-525))) (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-528 *5 *3)) (-4 *3 (-578)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))) (-2643 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525)))) (-5 *2 (-2 (|:| -3624 *3) (|:| |nconst| *3))) (-5 *1 (-528 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))))
-(-10 -7 (-15 -2643 ((-2 (|:| -3624 |#2|) (|:| |nconst| |#2|)) |#2| (-1092))) (IF (|has| |#1| (-567 (-827 (-525)))) (IF (|has| |#1| (-821 (-525))) (PROGN (IF (|has| |#2| (-578)) (PROGN (-15 -1244 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092))) (-15 -2249 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092)))) |%noBranch|) (IF (|has| |#2| (-1056)) (-15 -2249 ((-3 |#2| "failed") |#2| (-1092) (-782 |#2|) (-782 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-3201 (((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-592 (-385 |#2|))) 41)) (-1206 (((-542 (-385 |#2|)) (-385 |#2|)) 28)) (-3465 (((-3 (-385 |#2|) "failed") (-385 |#2|)) 17)) (-3428 (((-3 (-2 (|:| -1642 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-385 |#2|)) 48)))
-(((-529 |#1| |#2|) (-10 -7 (-15 -1206 ((-542 (-385 |#2|)) (-385 |#2|))) (-15 -3465 ((-3 (-385 |#2|) "failed") (-385 |#2|))) (-15 -3428 ((-3 (-2 (|:| -1642 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-385 |#2|))) (-15 -3201 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-592 (-385 |#2|))))) (-13 (-341) (-138) (-968 (-525))) (-1150 |#1|)) (T -529))
-((-3201 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-592 (-385 *6))) (-5 *3 (-385 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-529 *5 *6)))) (-3428 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-341) (-138) (-968 (-525)))) (-4 *5 (-1150 *4)) (-5 *2 (-2 (|:| -1642 (-385 *5)) (|:| |coeff| (-385 *5)))) (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5)))) (-3465 (*1 *2 *2) (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1150 *3)) (-4 *3 (-13 (-341) (-138) (-968 (-525)))) (-5 *1 (-529 *3 *4)))) (-1206 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-968 (-525)))) (-4 *5 (-1150 *4)) (-5 *2 (-542 (-385 *5))) (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5)))))
-(-10 -7 (-15 -1206 ((-542 (-385 |#2|)) (-385 |#2|))) (-15 -3465 ((-3 (-385 |#2|) "failed") (-385 |#2|))) (-15 -3428 ((-3 (-2 (|:| -1642 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-385 |#2|))) (-15 -3201 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-592 (-385 |#2|)))))
-((-1605 (((-3 (-525) "failed") |#1|) 14)) (-3841 (((-108) |#1|) 13)) (-2411 (((-525) |#1|) 9)))
-(((-530 |#1|) (-10 -7 (-15 -2411 ((-525) |#1|)) (-15 -3841 ((-108) |#1|)) (-15 -1605 ((-3 (-525) "failed") |#1|))) (-968 (-525))) (T -530))
-((-1605 (*1 *2 *3) (|partial| -12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-968 *2)))) (-3841 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-530 *3)) (-4 *3 (-968 (-525))))) (-2411 (*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-968 *2)))))
-(-10 -7 (-15 -2411 ((-525) |#1|)) (-15 -3841 ((-108) |#1|)) (-15 -1605 ((-3 (-525) "failed") |#1|)))
-((-3718 (((-3 (-2 (|:| |mainpart| (-385 (-887 |#1|))) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 (-887 |#1|))) (|:| |logand| (-385 (-887 |#1|))))))) "failed") (-385 (-887 |#1|)) (-1092) (-592 (-385 (-887 |#1|)))) 48)) (-3267 (((-542 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-1092)) 28)) (-1845 (((-3 (-385 (-887 |#1|)) "failed") (-385 (-887 |#1|)) (-1092)) 23)) (-3086 (((-3 (-2 (|:| -1642 (-385 (-887 |#1|))) (|:| |coeff| (-385 (-887 |#1|)))) "failed") (-385 (-887 |#1|)) (-1092) (-385 (-887 |#1|))) 35)))
-(((-531 |#1|) (-10 -7 (-15 -3267 ((-542 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-1092))) (-15 -1845 ((-3 (-385 (-887 |#1|)) "failed") (-385 (-887 |#1|)) (-1092))) (-15 -3718 ((-3 (-2 (|:| |mainpart| (-385 (-887 |#1|))) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 (-887 |#1|))) (|:| |logand| (-385 (-887 |#1|))))))) "failed") (-385 (-887 |#1|)) (-1092) (-592 (-385 (-887 |#1|))))) (-15 -3086 ((-3 (-2 (|:| -1642 (-385 (-887 |#1|))) (|:| |coeff| (-385 (-887 |#1|)))) "failed") (-385 (-887 |#1|)) (-1092) (-385 (-887 |#1|))))) (-13 (-517) (-968 (-525)) (-138))) (T -531))
-((-3086 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-13 (-517) (-968 (-525)) (-138))) (-5 *2 (-2 (|:| -1642 (-385 (-887 *5))) (|:| |coeff| (-385 (-887 *5))))) (-5 *1 (-531 *5)) (-5 *3 (-385 (-887 *5))))) (-3718 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-592 (-385 (-887 *6)))) (-5 *3 (-385 (-887 *6))) (-4 *6 (-13 (-517) (-968 (-525)) (-138))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-531 *6)))) (-1845 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-385 (-887 *4))) (-5 *3 (-1092)) (-4 *4 (-13 (-517) (-968 (-525)) (-138))) (-5 *1 (-531 *4)))) (-3267 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-517) (-968 (-525)) (-138))) (-5 *2 (-542 (-385 (-887 *5)))) (-5 *1 (-531 *5)) (-5 *3 (-385 (-887 *5))))))
-(-10 -7 (-15 -3267 ((-542 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-1092))) (-15 -1845 ((-3 (-385 (-887 |#1|)) "failed") (-385 (-887 |#1|)) (-1092))) (-15 -3718 ((-3 (-2 (|:| |mainpart| (-385 (-887 |#1|))) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 (-887 |#1|))) (|:| |logand| (-385 (-887 |#1|))))))) "failed") (-385 (-887 |#1|)) (-1092) (-592 (-385 (-887 |#1|))))) (-15 -3086 ((-3 (-2 (|:| -1642 (-385 (-887 |#1|))) (|:| |coeff| (-385 (-887 |#1|)))) "failed") (-385 (-887 |#1|)) (-1092) (-385 (-887 |#1|)))))
-((-4236 (((-108) $ $) 59)) (-1209 (((-108) $) 36)) (-1297 ((|#1| $) 30)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) 63)) (-1575 (($ $) 123)) (-2804 (($ $) 103)) (-3167 ((|#1| $) 28)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2782 (($ $) NIL)) (-1549 (($ $) 125)) (-2780 (($ $) 99)) (-1599 (($ $) 127)) (-2836 (($ $) 107)) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) 78)) (-1572 (((-525) $) 80)) (-3457 (((-3 $ "failed") $) 62)) (-2682 (($ |#1| |#1|) 26)) (-1222 (((-108) $) 33)) (-3140 (($) 89)) (-1396 (((-108) $) 43)) (-2171 (($ $ (-525)) NIL)) (-3256 (((-108) $) 34)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-1517 (($ $) 91)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-1861 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-385 (-525))) 77)) (-3211 ((|#1| $) 27)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) 65) (($ (-592 $)) NIL)) (-1715 (((-3 $ "failed") $ $) 64)) (-3096 (($ $) 93)) (-1609 (($ $) 131)) (-1447 (($ $) 105)) (-1587 (($ $) 133)) (-2815 (($ $) 109)) (-1562 (($ $) 129)) (-2794 (($ $) 101)) (-3156 (((-108) $ |#1|) 31)) (-1217 (((-798) $) 85) (($ (-525)) 67) (($ $) NIL) (($ (-525)) 67)) (-3917 (((-713)) 87)) (-1649 (($ $) 145)) (-1492 (($ $) 115)) (-3325 (((-108) $ $) NIL)) (-1630 (($ $) 143)) (-1465 (($ $) 111)) (-1669 (($ $) 141)) (-1522 (($ $) 121)) (-2359 (($ $) 139)) (-1537 (($ $) 119)) (-1659 (($ $) 137)) (-1506 (($ $) 117)) (-1639 (($ $) 135)) (-1479 (($ $) 113)) (-1619 (($ $ (-856)) 55) (($ $ (-713)) NIL)) (-3349 (($) 21 T CONST)) (-3359 (($) 10 T CONST)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 37)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 35)) (-4061 (($ $) 41) (($ $ $) 42)) (-4047 (($ $ $) 40)) (** (($ $ (-856)) 54) (($ $ (-713)) NIL) (($ $ $) 95) (($ $ (-385 (-525))) 147)) (* (($ (-856) $) 51) (($ (-713) $) NIL) (($ (-525) $) 50) (($ $ $) 48)))
+((-1740 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1092) (-592 |#2|)) 37)) (-1392 (((-542 |#2|) |#2| (-1092)) 62)) (-2703 (((-3 |#2| "failed") |#2| (-1092)) 154)) (-3751 (((-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1092) (-565 |#2|) (-592 (-565 |#2|))) 157)) (-4184 (((-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1092) |#2|) 40)))
+(((-518 |#1| |#2|) (-10 -7 (-15 -4184 ((-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1092) |#2|)) (-15 -1740 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1092) (-592 |#2|))) (-15 -2703 ((-3 |#2| "failed") |#2| (-1092))) (-15 -1392 ((-542 |#2|) |#2| (-1092))) (-15 -3751 ((-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1092) (-565 |#2|) (-592 (-565 |#2|))))) (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1114) (-408 |#1|))) (T -518))
+((-3751 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1092)) (-5 *6 (-592 (-565 *3))) (-5 *5 (-565 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *7))) (-4 *7 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| -3991 *3) (|:| |coeff| *3))) (-5 *1 (-518 *7 *3)))) (-1392 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-518 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))) (-2703 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1092)) (-4 *4 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *1 (-518 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))) (-1740 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-592 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-518 *6 *3)))) (-4184 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| -3991 *3) (|:| |coeff| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))))
+(-10 -7 (-15 -4184 ((-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1092) |#2|)) (-15 -1740 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1092) (-592 |#2|))) (-15 -2703 ((-3 |#2| "failed") |#2| (-1092))) (-15 -1392 ((-542 |#2|) |#2| (-1092))) (-15 -3751 ((-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1092) (-565 |#2|) (-592 (-565 |#2|)))))
+((-3586 (((-396 |#1|) |#1|) 18)) (-4201 (((-396 |#1|) |#1|) 33)) (-2651 (((-3 |#1| "failed") |#1|) 44)) (-1389 (((-396 |#1|) |#1|) 51)))
+(((-519 |#1|) (-10 -7 (-15 -4201 ((-396 |#1|) |#1|)) (-15 -3586 ((-396 |#1|) |#1|)) (-15 -1389 ((-396 |#1|) |#1|)) (-15 -2651 ((-3 |#1| "failed") |#1|))) (-510)) (T -519))
+((-2651 (*1 *2 *2) (|partial| -12 (-5 *1 (-519 *2)) (-4 *2 (-510)))) (-1389 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))) (-3586 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))) (-4201 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))))
+(-10 -7 (-15 -4201 ((-396 |#1|) |#1|)) (-15 -3586 ((-396 |#1|) |#1|)) (-15 -1389 ((-396 |#1|) |#1|)) (-15 -2651 ((-3 |#1| "failed") |#1|)))
+((-2597 (($) 9)) (-1333 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 35)) (-1398 (((-592 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $) 32)) (-3246 (($ (-2 (|:| -1556 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-1302 (($ (-592 (-2 (|:| -1556 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-3448 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 39)) (-1717 (((-592 (-2 (|:| -1556 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3815 (((-1179)) 12)))
+(((-520) (-10 -8 (-15 -2597 ($)) (-15 -3815 ((-1179))) (-15 -1398 ((-592 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -1302 ($ (-592 (-2 (|:| -1556 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3246 ($ (-2 (|:| -1556 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1333 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1717 ((-592 (-2 (|:| -1556 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3448 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -520))
+((-3448 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-520)))) (-1717 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -1556 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-520)))) (-1333 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-520)))) (-3246 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1556 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-520)))) (-1302 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -1556 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-520)))) (-1398 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-5 *1 (-520)))) (-3815 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-520)))) (-2597 (*1 *1) (-5 *1 (-520))))
+(-10 -8 (-15 -2597 ($)) (-15 -3815 ((-1179))) (-15 -1398 ((-592 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -1302 ($ (-592 (-2 (|:| -1556 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3246 ($ (-2 (|:| -1556 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1333 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1717 ((-592 (-2 (|:| -1556 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3448 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1073 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1777 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
+((-4169 (((-1088 (-385 (-1088 |#2|))) |#2| (-565 |#2|) (-565 |#2|) (-1088 |#2|)) 32)) (-2556 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) (-565 |#2|) |#2| (-385 (-1088 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) |#2| (-1088 |#2|)) 110)) (-3173 (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1088 |#2|))) 80) (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) |#2| (-1088 |#2|)) 52)) (-1566 (((-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| (-565 |#2|) |#2| (-385 (-1088 |#2|))) 87) (((-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| |#2| (-1088 |#2|)) 109)) (-3807 (((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1092)) (-565 |#2|) |#2| (-385 (-1088 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1092)) |#2| (-1088 |#2|)) 111)) (-3335 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2103 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1088 |#2|))) 128 (|has| |#3| (-602 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2103 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) |#2| (-1088 |#2|)) 127 (|has| |#3| (-602 |#2|)))) (-1284 ((|#2| (-1088 (-385 (-1088 |#2|))) (-565 |#2|) |#2|) 50)) (-3492 (((-1088 (-385 (-1088 |#2|))) (-1088 |#2|) (-565 |#2|)) 31)))
+(((-521 |#1| |#2| |#3|) (-10 -7 (-15 -3173 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) |#2| (-1088 |#2|))) (-15 -3173 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1088 |#2|)))) (-15 -1566 ((-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| |#2| (-1088 |#2|))) (-15 -1566 ((-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| (-565 |#2|) |#2| (-385 (-1088 |#2|)))) (-15 -2556 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) |#2| (-1088 |#2|))) (-15 -2556 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) (-565 |#2|) |#2| (-385 (-1088 |#2|)))) (-15 -3807 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1092)) |#2| (-1088 |#2|))) (-15 -3807 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1092)) (-565 |#2|) |#2| (-385 (-1088 |#2|)))) (-15 -4169 ((-1088 (-385 (-1088 |#2|))) |#2| (-565 |#2|) (-565 |#2|) (-1088 |#2|))) (-15 -1284 (|#2| (-1088 (-385 (-1088 |#2|))) (-565 |#2|) |#2|)) (-15 -3492 ((-1088 (-385 (-1088 |#2|))) (-1088 |#2|) (-565 |#2|))) (IF (|has| |#3| (-602 |#2|)) (PROGN (-15 -3335 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2103 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) |#2| (-1088 |#2|))) (-15 -3335 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2103 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1088 |#2|))))) |%noBranch|)) (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))) (-13 (-408 |#1|) (-27) (-1114)) (-1020)) (T -521))
+((-3335 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-565 *4)) (-5 *6 (-385 (-1088 *4))) (-4 *4 (-13 (-408 *7) (-27) (-1114))) (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2103 (-592 *4)))) (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1020)))) (-3335 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-565 *4)) (-5 *6 (-1088 *4)) (-4 *4 (-13 (-408 *7) (-27) (-1114))) (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2103 (-592 *4)))) (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1020)))) (-3492 (*1 *2 *3 *4) (-12 (-5 *4 (-565 *6)) (-4 *6 (-13 (-408 *5) (-27) (-1114))) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-1088 (-385 (-1088 *6)))) (-5 *1 (-521 *5 *6 *7)) (-5 *3 (-1088 *6)) (-4 *7 (-1020)))) (-1284 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1088 (-385 (-1088 *2)))) (-5 *4 (-565 *2)) (-4 *2 (-13 (-408 *5) (-27) (-1114))) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-521 *5 *2 *6)) (-4 *6 (-1020)))) (-4169 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1114))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-1088 (-385 (-1088 *3)))) (-5 *1 (-521 *6 *3 *7)) (-5 *5 (-1088 *3)) (-4 *7 (-1020)))) (-3807 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-565 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1092))) (-5 *5 (-385 (-1088 *2))) (-4 *2 (-13 (-408 *6) (-27) (-1114))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1020)))) (-3807 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-565 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1092))) (-5 *5 (-1088 *2)) (-4 *2 (-13 (-408 *6) (-27) (-1114))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1020)))) (-2556 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-5 *6 (-385 (-1088 *3))) (-4 *3 (-13 (-408 *7) (-27) (-1114))) (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1020)))) (-2556 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-5 *6 (-1088 *3)) (-4 *3 (-13 (-408 *7) (-27) (-1114))) (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1020)))) (-1566 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1088 *3))) (-4 *3 (-13 (-408 *6) (-27) (-1114))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| -3991 *3) (|:| |coeff| *3))) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020)))) (-1566 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-1088 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1114))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| -3991 *3) (|:| |coeff| *3))) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020)))) (-3173 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1088 *3))) (-4 *3 (-13 (-408 *6) (-27) (-1114))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020)))) (-3173 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-565 *3)) (-5 *5 (-1088 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1114))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020)))))
+(-10 -7 (-15 -3173 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) |#2| (-1088 |#2|))) (-15 -3173 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1088 |#2|)))) (-15 -1566 ((-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| |#2| (-1088 |#2|))) (-15 -1566 ((-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| (-565 |#2|) |#2| (-385 (-1088 |#2|)))) (-15 -2556 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) |#2| (-1088 |#2|))) (-15 -2556 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) (-565 |#2|) |#2| (-385 (-1088 |#2|)))) (-15 -3807 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1092)) |#2| (-1088 |#2|))) (-15 -3807 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1092)) (-565 |#2|) |#2| (-385 (-1088 |#2|)))) (-15 -4169 ((-1088 (-385 (-1088 |#2|))) |#2| (-565 |#2|) (-565 |#2|) (-1088 |#2|))) (-15 -1284 (|#2| (-1088 (-385 (-1088 |#2|))) (-565 |#2|) |#2|)) (-15 -3492 ((-1088 (-385 (-1088 |#2|))) (-1088 |#2|) (-565 |#2|))) (IF (|has| |#3| (-602 |#2|)) (PROGN (-15 -3335 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2103 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) |#2| (-1088 |#2|))) (-15 -3335 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2103 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1088 |#2|))))) |%noBranch|))
+((-1786 (((-525) (-525) (-713)) 66)) (-3457 (((-525) (-525)) 65)) (-2323 (((-525) (-525)) 64)) (-1545 (((-525) (-525)) 69)) (-3530 (((-525) (-525) (-525)) 49)) (-3001 (((-525) (-525) (-525)) 46)) (-2896 (((-385 (-525)) (-525)) 20)) (-2305 (((-525) (-525)) 21)) (-2179 (((-525) (-525)) 58)) (-2550 (((-525) (-525)) 32)) (-3372 (((-592 (-525)) (-525)) 63)) (-3737 (((-525) (-525) (-525) (-525) (-525)) 44)) (-2198 (((-385 (-525)) (-525)) 41)))
+(((-522) (-10 -7 (-15 -2198 ((-385 (-525)) (-525))) (-15 -3737 ((-525) (-525) (-525) (-525) (-525))) (-15 -3372 ((-592 (-525)) (-525))) (-15 -2550 ((-525) (-525))) (-15 -2179 ((-525) (-525))) (-15 -2305 ((-525) (-525))) (-15 -2896 ((-385 (-525)) (-525))) (-15 -3001 ((-525) (-525) (-525))) (-15 -3530 ((-525) (-525) (-525))) (-15 -1545 ((-525) (-525))) (-15 -2323 ((-525) (-525))) (-15 -3457 ((-525) (-525))) (-15 -1786 ((-525) (-525) (-713))))) (T -522))
+((-1786 (*1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-713)) (-5 *1 (-522)))) (-3457 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2323 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-1545 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-3530 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-3001 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2896 (*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2179 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2550 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-3372 (*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))) (-3737 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2198 (*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))))
+(-10 -7 (-15 -2198 ((-385 (-525)) (-525))) (-15 -3737 ((-525) (-525) (-525) (-525) (-525))) (-15 -3372 ((-592 (-525)) (-525))) (-15 -2550 ((-525) (-525))) (-15 -2179 ((-525) (-525))) (-15 -2305 ((-525) (-525))) (-15 -2896 ((-385 (-525)) (-525))) (-15 -3001 ((-525) (-525) (-525))) (-15 -3530 ((-525) (-525) (-525))) (-15 -1545 ((-525) (-525))) (-15 -2323 ((-525) (-525))) (-15 -3457 ((-525) (-525))) (-15 -1786 ((-525) (-525) (-713))))
+((-3354 (((-2 (|:| |answer| |#4|) (|:| -1974 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
+(((-523 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3354 ((-2 (|:| |answer| |#4|) (|:| -1974 |#4|)) |#4| (-1 |#2| |#2|)))) (-341) (-1150 |#1|) (-1150 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -523))
+((-3354 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341)) (-4 *7 (-1150 (-385 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1974 *3))) (-5 *1 (-523 *5 *6 *7 *3)) (-4 *3 (-320 *5 *6 *7)))))
+(-10 -7 (-15 -3354 ((-2 (|:| |answer| |#4|) (|:| -1974 |#4|)) |#4| (-1 |#2| |#2|))))
+((-3354 (((-2 (|:| |answer| (-385 |#2|)) (|:| -1974 (-385 |#2|)) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)) 18)))
+(((-524 |#1| |#2|) (-10 -7 (-15 -3354 ((-2 (|:| |answer| (-385 |#2|)) (|:| -1974 (-385 |#2|)) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)))) (-341) (-1150 |#1|)) (T -524))
+((-3354 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |answer| (-385 *6)) (|:| -1974 (-385 *6)) (|:| |specpart| (-385 *6)) (|:| |polypart| *6))) (-5 *1 (-524 *5 *6)) (-5 *3 (-385 *6)))))
+(-10 -7 (-15 -3354 ((-2 (|:| |answer| (-385 |#2|)) (|:| -1974 (-385 |#2|)) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 25)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 87)) (-2433 (($ $) 88)) (-1568 (((-108) $) NIL)) (-3410 (($ $ $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-3004 (($ $ $ $) 42)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-1507 (((-108) $ $) NIL)) (-2971 (((-525) $) NIL)) (-3164 (($ $ $) 81)) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL)) (-4105 (((-525) $) NIL)) (-1356 (($ $ $) 80)) (-3090 (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 61) (((-632 (-525)) (-632 $)) 57)) (-3300 (((-3 $ "failed") $) 84)) (-3306 (((-3 (-385 (-525)) "failed") $) NIL)) (-1417 (((-108) $) NIL)) (-1367 (((-385 (-525)) $) NIL)) (-1903 (($) 63) (($ $) 64)) (-1332 (($ $ $) 79)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-2209 (($ $ $ $) NIL)) (-1453 (($ $ $) 54)) (-1889 (((-108) $) NIL)) (-1922 (($ $ $) NIL)) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL)) (-2278 (((-108) $) 26)) (-3028 (((-108) $) 74)) (-2878 (((-3 $ "failed") $) NIL)) (-4079 (((-108) $) 34)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3455 (($ $ $ $) 43)) (-3033 (($ $ $) 76)) (-1609 (($ $ $) 75)) (-2845 (($ $) NIL)) (-4128 (($ $) 40)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) 53)) (-2432 (($ $ $) NIL)) (-2948 (($) NIL T CONST)) (-3280 (($ $) 31)) (-3993 (((-1039) $) NIL) (($ $) 33)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 118)) (-2772 (($ $ $) 85) (($ (-592 $)) NIL)) (-1606 (($ $) NIL)) (-4201 (((-396 $) $) 104)) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL)) (-1311 (((-3 $ "failed") $ $) 83)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3864 (((-108) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 78)) (-2702 (($ $ (-713)) NIL) (($ $) NIL)) (-4223 (($ $) 32)) (-2503 (($ $) 30)) (-2069 (((-525) $) 39) (((-501) $) 51) (((-827 (-525)) $) NIL) (((-357) $) 46) (((-205) $) 48) (((-1075) $) 52)) (-4100 (((-798) $) 37) (($ (-525)) 38) (($ $) NIL) (($ (-525)) 38)) (-2448 (((-713)) NIL)) (-4214 (((-108) $ $) NIL)) (-1494 (($ $ $) NIL)) (-3771 (($) 29)) (-1571 (((-108) $ $) NIL)) (-3695 (($ $ $ $) 41)) (-2380 (($ $) 62)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 27 T CONST)) (-3375 (($) 28 T CONST)) (-3660 (((-1075) $) 20) (((-1075) $ (-108)) 22) (((-1179) (-764) $) 23) (((-1179) (-764) $ (-108)) 24)) (-2401 (($ $ (-713)) NIL) (($ $) NIL)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 65)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 66)) (-2871 (($ $) 67) (($ $ $) 69)) (-2860 (($ $ $) 68)) (** (($ $ (-856)) NIL) (($ $ (-713)) 73)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 71) (($ $ $) 70)))
+(((-525) (-13 (-510) (-567 (-1075)) (-770) (-10 -8 (-15 -1903 ($ $)) (-6 -4246) (-6 -4251) (-6 -4247) (-6 -4241)))) (T -525))
+((-1903 (*1 *1 *1) (-5 *1 (-525))))
+(-13 (-510) (-567 (-1075)) (-770) (-10 -8 (-15 -1903 ($ $)) (-6 -4246) (-6 -4251) (-6 -4247) (-6 -4241)))
+((-1257 (((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))) (-711) (-989)) 108) (((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))) (-711)) 110)) (-2367 (((-3 (-966) "failed") (-294 (-357)) (-1013 (-782 (-357))) (-1092)) 172) (((-3 (-966) "failed") (-294 (-357)) (-1013 (-782 (-357))) (-1075)) 171) (((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357) (-357) (-989)) 176) (((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357) (-357)) 177) (((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357)) 178) (((-966) (-294 (-357)) (-592 (-1015 (-782 (-357))))) 179) (((-966) (-294 (-357)) (-1015 (-782 (-357)))) 167) (((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357)) 166) (((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357) (-357)) 162) (((-966) (-711)) 155) (((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357) (-357) (-989)) 161)))
+(((-526) (-10 -7 (-15 -2367 ((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357) (-357) (-989))) (-15 -2367 ((-966) (-711))) (-15 -2367 ((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357) (-357))) (-15 -2367 ((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357))) (-15 -2367 ((-966) (-294 (-357)) (-1015 (-782 (-357))))) (-15 -2367 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))))) (-15 -2367 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357))) (-15 -2367 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357) (-357))) (-15 -2367 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357) (-357) (-989))) (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))) (-711))) (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))) (-711) (-989))) (-15 -2367 ((-3 (-966) "failed") (-294 (-357)) (-1013 (-782 (-357))) (-1075))) (-15 -2367 ((-3 (-966) "failed") (-294 (-357)) (-1013 (-782 (-357))) (-1092))))) (T -526))
+((-2367 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-782 (-357)))) (-5 *5 (-1092)) (-5 *2 (-966)) (-5 *1 (-526)))) (-2367 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-782 (-357)))) (-5 *5 (-1075)) (-5 *2 (-966)) (-5 *1 (-526)))) (-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-711)) (-5 *4 (-989)) (-5 *2 (-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966)))) (-5 *1 (-526)))) (-1257 (*1 *2 *3) (-12 (-5 *3 (-711)) (-5 *2 (-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966)))) (-5 *1 (-526)))) (-2367 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357))))) (-5 *5 (-357)) (-5 *6 (-989)) (-5 *2 (-966)) (-5 *1 (-526)))) (-2367 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357))))) (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526)))) (-2367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357))))) (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357))))) (-5 *2 (-966)) (-5 *1 (-526)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357)))) (-5 *2 (-966)) (-5 *1 (-526)))) (-2367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357)))) (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526)))) (-2367 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357)))) (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-711)) (-5 *2 (-966)) (-5 *1 (-526)))) (-2367 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357)))) (-5 *5 (-357)) (-5 *6 (-989)) (-5 *2 (-966)) (-5 *1 (-526)))))
+(-10 -7 (-15 -2367 ((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357) (-357) (-989))) (-15 -2367 ((-966) (-711))) (-15 -2367 ((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357) (-357))) (-15 -2367 ((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357))) (-15 -2367 ((-966) (-294 (-357)) (-1015 (-782 (-357))))) (-15 -2367 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))))) (-15 -2367 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357))) (-15 -2367 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357) (-357))) (-15 -2367 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357) (-357) (-989))) (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))) (-711))) (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))) (-711) (-989))) (-15 -2367 ((-3 (-966) "failed") (-294 (-357)) (-1013 (-782 (-357))) (-1075))) (-15 -2367 ((-3 (-966) "failed") (-294 (-357)) (-1013 (-782 (-357))) (-1092))))
+((-2300 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|)) 183)) (-1925 (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|)) 98)) (-3878 (((-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2|) 179)) (-3783 (((-3 |#2| "failed") |#2| |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1092))) 188)) (-1355 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2103 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-1092)) 196 (|has| |#3| (-602 |#2|)))))
+(((-527 |#1| |#2| |#3|) (-10 -7 (-15 -1925 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|))) (-15 -3878 ((-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2|)) (-15 -2300 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|))) (-15 -3783 ((-3 |#2| "failed") |#2| |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1092)))) (IF (|has| |#3| (-602 |#2|)) (-15 -1355 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2103 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-1092))) |%noBranch|)) (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))) (-13 (-408 |#1|) (-27) (-1114)) (-1020)) (T -527))
+((-1355 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-565 *4)) (-5 *6 (-1092)) (-4 *4 (-13 (-408 *7) (-27) (-1114))) (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2103 (-592 *4)))) (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1020)))) (-3783 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-565 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1092))) (-4 *2 (-13 (-408 *5) (-27) (-1114))) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-527 *5 *2 *6)) (-4 *6 (-1020)))) (-2300 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1114))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1020)))) (-3878 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *5) (-27) (-1114))) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| -3991 *3) (|:| |coeff| *3))) (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1020)))) (-1925 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *5) (-27) (-1114))) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1020)))))
+(-10 -7 (-15 -1925 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|))) (-15 -3878 ((-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2|)) (-15 -2300 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|))) (-15 -3783 ((-3 |#2| "failed") |#2| |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1092)))) (IF (|has| |#3| (-602 |#2|)) (-15 -1355 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2103 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-1092))) |%noBranch|))
+((-3321 (((-2 (|:| -2518 |#2|) (|:| |nconst| |#2|)) |#2| (-1092)) 64)) (-3868 (((-3 |#2| "failed") |#2| (-1092) (-782 |#2|) (-782 |#2|)) 164 (-12 (|has| |#2| (-1056)) (|has| |#1| (-567 (-827 (-525)))) (|has| |#1| (-821 (-525))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092)) 147 (-12 (|has| |#2| (-578)) (|has| |#1| (-567 (-827 (-525)))) (|has| |#1| (-821 (-525)))))) (-2403 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092)) 148 (-12 (|has| |#2| (-578)) (|has| |#1| (-567 (-827 (-525)))) (|has| |#1| (-821 (-525)))))))
+(((-528 |#1| |#2|) (-10 -7 (-15 -3321 ((-2 (|:| -2518 |#2|) (|:| |nconst| |#2|)) |#2| (-1092))) (IF (|has| |#1| (-567 (-827 (-525)))) (IF (|has| |#1| (-821 (-525))) (PROGN (IF (|has| |#2| (-578)) (PROGN (-15 -2403 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092))) (-15 -3868 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092)))) |%noBranch|) (IF (|has| |#2| (-1056)) (-15 -3868 ((-3 |#2| "failed") |#2| (-1092) (-782 |#2|) (-782 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-789) (-968 (-525)) (-429) (-588 (-525))) (-13 (-27) (-1114) (-408 |#1|))) (T -528))
+((-3868 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1092)) (-5 *4 (-782 *2)) (-4 *2 (-1056)) (-4 *2 (-13 (-27) (-1114) (-408 *5))) (-4 *5 (-567 (-827 (-525)))) (-4 *5 (-821 (-525))) (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525)))) (-5 *1 (-528 *5 *2)))) (-3868 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-567 (-827 (-525)))) (-4 *5 (-821 (-525))) (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-528 *5 *3)) (-4 *3 (-578)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))) (-2403 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-567 (-827 (-525)))) (-4 *5 (-821 (-525))) (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-528 *5 *3)) (-4 *3 (-578)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))) (-3321 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525)))) (-5 *2 (-2 (|:| -2518 *3) (|:| |nconst| *3))) (-5 *1 (-528 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))))
+(-10 -7 (-15 -3321 ((-2 (|:| -2518 |#2|) (|:| |nconst| |#2|)) |#2| (-1092))) (IF (|has| |#1| (-567 (-827 (-525)))) (IF (|has| |#1| (-821 (-525))) (PROGN (IF (|has| |#2| (-578)) (PROGN (-15 -2403 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092))) (-15 -3868 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092)))) |%noBranch|) (IF (|has| |#2| (-1056)) (-15 -3868 ((-3 |#2| "failed") |#2| (-1092) (-782 |#2|) (-782 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-1824 (((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-592 (-385 |#2|))) 41)) (-2367 (((-542 (-385 |#2|)) (-385 |#2|)) 28)) (-3382 (((-3 (-385 |#2|) "failed") (-385 |#2|)) 17)) (-1215 (((-3 (-2 (|:| -3991 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-385 |#2|)) 48)))
+(((-529 |#1| |#2|) (-10 -7 (-15 -2367 ((-542 (-385 |#2|)) (-385 |#2|))) (-15 -3382 ((-3 (-385 |#2|) "failed") (-385 |#2|))) (-15 -1215 ((-3 (-2 (|:| -3991 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-385 |#2|))) (-15 -1824 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-592 (-385 |#2|))))) (-13 (-341) (-138) (-968 (-525))) (-1150 |#1|)) (T -529))
+((-1824 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-592 (-385 *6))) (-5 *3 (-385 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-529 *5 *6)))) (-1215 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-341) (-138) (-968 (-525)))) (-4 *5 (-1150 *4)) (-5 *2 (-2 (|:| -3991 (-385 *5)) (|:| |coeff| (-385 *5)))) (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5)))) (-3382 (*1 *2 *2) (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1150 *3)) (-4 *3 (-13 (-341) (-138) (-968 (-525)))) (-5 *1 (-529 *3 *4)))) (-2367 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-968 (-525)))) (-4 *5 (-1150 *4)) (-5 *2 (-542 (-385 *5))) (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5)))))
+(-10 -7 (-15 -2367 ((-542 (-385 |#2|)) (-385 |#2|))) (-15 -3382 ((-3 (-385 |#2|) "failed") (-385 |#2|))) (-15 -1215 ((-3 (-2 (|:| -3991 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-385 |#2|))) (-15 -1824 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-592 (-385 |#2|)))))
+((-3661 (((-3 (-525) "failed") |#1|) 14)) (-2849 (((-108) |#1|) 13)) (-3680 (((-525) |#1|) 9)))
+(((-530 |#1|) (-10 -7 (-15 -3680 ((-525) |#1|)) (-15 -2849 ((-108) |#1|)) (-15 -3661 ((-3 (-525) "failed") |#1|))) (-968 (-525))) (T -530))
+((-3661 (*1 *2 *3) (|partial| -12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-968 *2)))) (-2849 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-530 *3)) (-4 *3 (-968 (-525))))) (-3680 (*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-968 *2)))))
+(-10 -7 (-15 -3680 ((-525) |#1|)) (-15 -2849 ((-108) |#1|)) (-15 -3661 ((-3 (-525) "failed") |#1|)))
+((-4060 (((-3 (-2 (|:| |mainpart| (-385 (-887 |#1|))) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 (-887 |#1|))) (|:| |logand| (-385 (-887 |#1|))))))) "failed") (-385 (-887 |#1|)) (-1092) (-592 (-385 (-887 |#1|)))) 48)) (-4163 (((-542 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-1092)) 28)) (-2212 (((-3 (-385 (-887 |#1|)) "failed") (-385 (-887 |#1|)) (-1092)) 23)) (-2039 (((-3 (-2 (|:| -3991 (-385 (-887 |#1|))) (|:| |coeff| (-385 (-887 |#1|)))) "failed") (-385 (-887 |#1|)) (-1092) (-385 (-887 |#1|))) 35)))
+(((-531 |#1|) (-10 -7 (-15 -4163 ((-542 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-1092))) (-15 -2212 ((-3 (-385 (-887 |#1|)) "failed") (-385 (-887 |#1|)) (-1092))) (-15 -4060 ((-3 (-2 (|:| |mainpart| (-385 (-887 |#1|))) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 (-887 |#1|))) (|:| |logand| (-385 (-887 |#1|))))))) "failed") (-385 (-887 |#1|)) (-1092) (-592 (-385 (-887 |#1|))))) (-15 -2039 ((-3 (-2 (|:| -3991 (-385 (-887 |#1|))) (|:| |coeff| (-385 (-887 |#1|)))) "failed") (-385 (-887 |#1|)) (-1092) (-385 (-887 |#1|))))) (-13 (-517) (-968 (-525)) (-138))) (T -531))
+((-2039 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-13 (-517) (-968 (-525)) (-138))) (-5 *2 (-2 (|:| -3991 (-385 (-887 *5))) (|:| |coeff| (-385 (-887 *5))))) (-5 *1 (-531 *5)) (-5 *3 (-385 (-887 *5))))) (-4060 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-592 (-385 (-887 *6)))) (-5 *3 (-385 (-887 *6))) (-4 *6 (-13 (-517) (-968 (-525)) (-138))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-531 *6)))) (-2212 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-385 (-887 *4))) (-5 *3 (-1092)) (-4 *4 (-13 (-517) (-968 (-525)) (-138))) (-5 *1 (-531 *4)))) (-4163 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-517) (-968 (-525)) (-138))) (-5 *2 (-542 (-385 (-887 *5)))) (-5 *1 (-531 *5)) (-5 *3 (-385 (-887 *5))))))
+(-10 -7 (-15 -4163 ((-542 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-1092))) (-15 -2212 ((-3 (-385 (-887 |#1|)) "failed") (-385 (-887 |#1|)) (-1092))) (-15 -4060 ((-3 (-2 (|:| |mainpart| (-385 (-887 |#1|))) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 (-887 |#1|))) (|:| |logand| (-385 (-887 |#1|))))))) "failed") (-385 (-887 |#1|)) (-1092) (-592 (-385 (-887 |#1|))))) (-15 -2039 ((-3 (-2 (|:| -3991 (-385 (-887 |#1|))) (|:| |coeff| (-385 (-887 |#1|)))) "failed") (-385 (-887 |#1|)) (-1092) (-385 (-887 |#1|)))))
+((-4087 (((-108) $ $) 59)) (-2414 (((-108) $) 36)) (-3327 ((|#1| $) 30)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) 63)) (-1803 (($ $) 123)) (-3659 (($ $) 103)) (-1525 ((|#1| $) 28)) (-3222 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $) NIL)) (-1781 (($ $) 125)) (-3638 (($ $) 99)) (-1828 (($ $) 127)) (-3698 (($ $) 107)) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) 78)) (-4105 (((-525) $) 80)) (-3300 (((-3 $ "failed") $) 62)) (-3696 (($ |#1| |#1|) 26)) (-1889 (((-108) $) 33)) (-4106 (($) 89)) (-2278 (((-108) $) 43)) (-1303 (($ $ (-525)) NIL)) (-4079 (((-108) $) 34)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-2533 (($ $) 91)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-2371 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-385 (-525))) 77)) (-1919 ((|#1| $) 27)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) 65) (($ (-592 $)) NIL)) (-1311 (((-3 $ "failed") $ $) 64)) (-1618 (($ $) 93)) (-1841 (($ $) 131)) (-3798 (($ $) 105)) (-1816 (($ $) 133)) (-3678 (($ $) 109)) (-1792 (($ $) 129)) (-3649 (($ $) 101)) (-1424 (((-108) $ |#1|) 31)) (-4100 (((-798) $) 85) (($ (-525)) 67) (($ $) NIL) (($ (-525)) 67)) (-2448 (((-713)) 87)) (-1876 (($ $) 145)) (-3853 (($ $) 115)) (-1571 (((-108) $ $) NIL)) (-1853 (($ $) 143)) (-3808 (($ $) 111)) (-1902 (($ $) 141)) (-1760 (($ $) 121)) (-3135 (($ $) 139)) (-1770 (($ $) 119)) (-1891 (($ $) 137)) (-1748 (($ $) 117)) (-1866 (($ $) 135)) (-3820 (($ $) 113)) (-3706 (($ $ (-856)) 55) (($ $ (-713)) NIL)) (-3364 (($) 21 T CONST)) (-3375 (($) 10 T CONST)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 37)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 35)) (-2871 (($ $) 41) (($ $ $) 42)) (-2860 (($ $ $) 40)) (** (($ $ (-856)) 54) (($ $ (-713)) NIL) (($ $ $) 95) (($ $ (-385 (-525))) 147)) (* (($ (-856) $) 51) (($ (-713) $) NIL) (($ (-525) $) 50) (($ $ $) 48)))
(((-532 |#1|) (-515 |#1|) (-13 (-382) (-1114))) (T -532))
NIL
(-515 |#1|)
-((-2969 (((-3 (-592 (-1088 (-525))) "failed") (-592 (-1088 (-525))) (-1088 (-525))) 24)))
-(((-533) (-10 -7 (-15 -2969 ((-3 (-592 (-1088 (-525))) "failed") (-592 (-1088 (-525))) (-1088 (-525)))))) (T -533))
-((-2969 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1088 (-525)))) (-5 *3 (-1088 (-525))) (-5 *1 (-533)))))
-(-10 -7 (-15 -2969 ((-3 (-592 (-1088 (-525))) "failed") (-592 (-1088 (-525))) (-1088 (-525)))))
-((-1342 (((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-1092)) 19)) (-2985 (((-592 (-565 |#2|)) (-592 |#2|) (-1092)) 23)) (-2600 (((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-592 (-565 |#2|))) 11)) (-3649 ((|#2| |#2| (-1092)) 54 (|has| |#1| (-517)))) (-2330 ((|#2| |#2| (-1092)) 78 (-12 (|has| |#2| (-263)) (|has| |#1| (-429))))) (-2115 (((-565 |#2|) (-565 |#2|) (-592 (-565 |#2|)) (-1092)) 25)) (-2665 (((-565 |#2|) (-592 (-565 |#2|))) 24)) (-2648 (((-542 |#2|) |#2| (-1092) (-1 (-542 |#2|) |#2| (-1092)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092))) 103 (-12 (|has| |#2| (-263)) (|has| |#2| (-578)) (|has| |#2| (-968 (-1092))) (|has| |#1| (-567 (-827 (-525)))) (|has| |#1| (-429)) (|has| |#1| (-821 (-525)))))))
-(((-534 |#1| |#2|) (-10 -7 (-15 -1342 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-1092))) (-15 -2665 ((-565 |#2|) (-592 (-565 |#2|)))) (-15 -2115 ((-565 |#2|) (-565 |#2|) (-592 (-565 |#2|)) (-1092))) (-15 -2600 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-592 (-565 |#2|)))) (-15 -2985 ((-592 (-565 |#2|)) (-592 |#2|) (-1092))) (IF (|has| |#1| (-517)) (-15 -3649 (|#2| |#2| (-1092))) |%noBranch|) (IF (|has| |#1| (-429)) (IF (|has| |#2| (-263)) (PROGN (-15 -2330 (|#2| |#2| (-1092))) (IF (|has| |#1| (-567 (-827 (-525)))) (IF (|has| |#1| (-821 (-525))) (IF (|has| |#2| (-578)) (IF (|has| |#2| (-968 (-1092))) (-15 -2648 ((-542 |#2|) |#2| (-1092) (-1 (-542 |#2|) |#2| (-1092)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-789) (-408 |#1|)) (T -534))
-((-2648 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-542 *3) *3 (-1092))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1092))) (-4 *3 (-263)) (-4 *3 (-578)) (-4 *3 (-968 *4)) (-4 *3 (-408 *7)) (-5 *4 (-1092)) (-4 *7 (-567 (-827 (-525)))) (-4 *7 (-429)) (-4 *7 (-821 (-525))) (-4 *7 (-789)) (-5 *2 (-542 *3)) (-5 *1 (-534 *7 *3)))) (-2330 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-429)) (-4 *4 (-789)) (-5 *1 (-534 *4 *2)) (-4 *2 (-263)) (-4 *2 (-408 *4)))) (-3649 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-517)) (-4 *4 (-789)) (-5 *1 (-534 *4 *2)) (-4 *2 (-408 *4)))) (-2985 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-1092)) (-4 *6 (-408 *5)) (-4 *5 (-789)) (-5 *2 (-592 (-565 *6))) (-5 *1 (-534 *5 *6)))) (-2600 (*1 *2 *2 *2) (-12 (-5 *2 (-592 (-565 *4))) (-4 *4 (-408 *3)) (-4 *3 (-789)) (-5 *1 (-534 *3 *4)))) (-2115 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-592 (-565 *6))) (-5 *4 (-1092)) (-5 *2 (-565 *6)) (-4 *6 (-408 *5)) (-4 *5 (-789)) (-5 *1 (-534 *5 *6)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-592 (-565 *5))) (-4 *4 (-789)) (-5 *2 (-565 *5)) (-5 *1 (-534 *4 *5)) (-4 *5 (-408 *4)))) (-1342 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-565 *5))) (-5 *3 (-1092)) (-4 *5 (-408 *4)) (-4 *4 (-789)) (-5 *1 (-534 *4 *5)))))
-(-10 -7 (-15 -1342 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-1092))) (-15 -2665 ((-565 |#2|) (-592 (-565 |#2|)))) (-15 -2115 ((-565 |#2|) (-565 |#2|) (-592 (-565 |#2|)) (-1092))) (-15 -2600 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-592 (-565 |#2|)))) (-15 -2985 ((-592 (-565 |#2|)) (-592 |#2|) (-1092))) (IF (|has| |#1| (-517)) (-15 -3649 (|#2| |#2| (-1092))) |%noBranch|) (IF (|has| |#1| (-429)) (IF (|has| |#2| (-263)) (PROGN (-15 -2330 (|#2| |#2| (-1092))) (IF (|has| |#1| (-567 (-827 (-525)))) (IF (|has| |#1| (-821 (-525))) (IF (|has| |#2| (-578)) (IF (|has| |#2| (-968 (-1092))) (-15 -2648 ((-542 |#2|) |#2| (-1092) (-1 (-542 |#2|) |#2| (-1092)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-1947 (((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-592 |#1|) "failed") (-525) |#1| |#1|)) 172)) (-2238 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1642 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-592 (-385 |#2|))) 148)) (-2143 (((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-592 (-385 |#2|))) 145)) (-1553 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1642 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-1964 (((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1642 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-1779 (((-3 (-2 (|:| -1642 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-385 |#2|)) 175)) (-1594 (((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1642 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1642 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-385 |#2|)) 178)) (-2226 (((-2 (|:| |ir| (-542 (-385 |#2|))) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)) 84)) (-2137 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-4125 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3519 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-592 (-385 |#2|))) 152)) (-3095 (((-3 (-573 |#1| |#2|) "failed") (-573 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3519 |#1|) (|:| |sol?| (-108))) (-525) |#1|)) 137)) (-4148 (((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3519 |#1|) (|:| |sol?| (-108))) (-525) |#1|)) 162)) (-3845 (((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1642 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3519 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-385 |#2|)) 183)))
-(((-535 |#1| |#2|) (-10 -7 (-15 -1964 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1642 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4148 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3519 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -1947 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-592 |#1|) "failed") (-525) |#1| |#1|))) (-15 -1594 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1642 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1642 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-385 |#2|))) (-15 -3845 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1642 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3519 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-385 |#2|))) (-15 -2238 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1642 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-592 (-385 |#2|)))) (-15 -4125 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3519 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-592 (-385 |#2|)))) (-15 -1779 ((-3 (-2 (|:| -1642 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-385 |#2|))) (-15 -2143 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-592 (-385 |#2|)))) (-15 -1553 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1642 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3095 ((-3 (-573 |#1| |#2|) "failed") (-573 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3519 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -2226 ((-2 (|:| |ir| (-542 (-385 |#2|))) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|))) (-15 -2137 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-341) (-1150 |#1|)) (T -535))
-((-2137 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-535 *5 *3)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |ir| (-542 (-385 *6))) (|:| |specpart| (-385 *6)) (|:| |polypart| *6))) (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))) (-3095 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-573 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3519 *4) (|:| |sol?| (-108))) (-525) *4)) (-4 *4 (-341)) (-4 *5 (-1150 *4)) (-5 *1 (-535 *4 *5)))) (-1553 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1642 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-341)) (-5 *1 (-535 *4 *2)) (-4 *2 (-1150 *4)))) (-2143 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-592 (-385 *7))) (-4 *7 (-1150 *6)) (-5 *3 (-385 *7)) (-4 *6 (-341)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-535 *6 *7)))) (-1779 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -1642 (-385 *6)) (|:| |coeff| (-385 *6)))) (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))) (-4125 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3519 *7) (|:| |sol?| (-108))) (-525) *7)) (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1150 *7)) (-5 *3 (-385 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-535 *7 *8)))) (-2238 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1642 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1150 *7)) (-5 *3 (-385 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-535 *7 *8)))) (-3845 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3519 *6) (|:| |sol?| (-108))) (-525) *6)) (-4 *6 (-341)) (-4 *7 (-1150 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6)) (-2 (|:| -1642 (-385 *7)) (|:| |coeff| (-385 *7))) "failed")) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-1594 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1642 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-341)) (-4 *7 (-1150 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6)) (-2 (|:| -1642 (-385 *7)) (|:| |coeff| (-385 *7))) "failed")) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-1947 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-592 *6) "failed") (-525) *6 *6)) (-4 *6 (-341)) (-4 *7 (-1150 *6)) (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-4148 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3519 *6) (|:| |sol?| (-108))) (-525) *6)) (-4 *6 (-341)) (-4 *7 (-1150 *6)) (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-1964 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1642 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-341)) (-4 *7 (-1150 *6)) (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
-(-10 -7 (-15 -1964 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1642 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4148 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3519 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -1947 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-592 |#1|) "failed") (-525) |#1| |#1|))) (-15 -1594 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1642 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1642 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-385 |#2|))) (-15 -3845 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1642 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3519 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-385 |#2|))) (-15 -2238 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1642 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-592 (-385 |#2|)))) (-15 -4125 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3519 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-592 (-385 |#2|)))) (-15 -1779 ((-3 (-2 (|:| -1642 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-385 |#2|))) (-15 -2143 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-592 (-385 |#2|)))) (-15 -1553 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1642 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3095 ((-3 (-573 |#1| |#2|) "failed") (-573 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3519 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -2226 ((-2 (|:| |ir| (-542 (-385 |#2|))) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|))) (-15 -2137 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-1471 (((-3 |#2| "failed") |#2| (-1092) (-1092)) 10)))
-(((-536 |#1| |#2|) (-10 -7 (-15 -1471 ((-3 |#2| "failed") |#2| (-1092) (-1092)))) (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1114) (-893) (-1056) (-29 |#1|))) (T -536))
-((-1471 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1092)) (-4 *4 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *1 (-536 *4 *2)) (-4 *2 (-13 (-1114) (-893) (-1056) (-29 *4))))))
-(-10 -7 (-15 -1471 ((-3 |#2| "failed") |#2| (-1092) (-1092))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2782 (($ $ (-525)) 66)) (-2193 (((-108) $ $) NIL)) (-2169 (($) NIL T CONST)) (-2649 (($ (-1088 (-525)) (-525)) 72)) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) 58)) (-1786 (($ $) 34)) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-2581 (((-713) $) 15)) (-1396 (((-108) $) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2152 (((-525)) 29)) (-3571 (((-525) $) 32)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3931 (($ $ (-525)) 21)) (-1715 (((-3 $ "failed") $ $) 59)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) 16)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 61)) (-3780 (((-1073 (-525)) $) 18)) (-1489 (($ $) 23)) (-1217 (((-798) $) 87) (($ (-525)) 52) (($ $) NIL)) (-3917 (((-713)) 14)) (-3325 (((-108) $ $) NIL)) (-1454 (((-525) $ (-525)) 36)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 35 T CONST)) (-3359 (($) 19 T CONST)) (-3955 (((-108) $ $) 39)) (-4061 (($ $) 51) (($ $ $) 37)) (-4047 (($ $ $) 50)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 54) (($ $ $) 55)))
+((-3373 (((-3 (-592 (-1088 (-525))) "failed") (-592 (-1088 (-525))) (-1088 (-525))) 24)))
+(((-533) (-10 -7 (-15 -3373 ((-3 (-592 (-1088 (-525))) "failed") (-592 (-1088 (-525))) (-1088 (-525)))))) (T -533))
+((-3373 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1088 (-525)))) (-5 *3 (-1088 (-525))) (-5 *1 (-533)))))
+(-10 -7 (-15 -3373 ((-3 (-592 (-1088 (-525))) "failed") (-592 (-1088 (-525))) (-1088 (-525)))))
+((-3475 (((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-1092)) 19)) (-3520 (((-592 (-565 |#2|)) (-592 |#2|) (-1092)) 23)) (-1705 (((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-592 (-565 |#2|))) 11)) (-1557 ((|#2| |#2| (-1092)) 54 (|has| |#1| (-517)))) (-3383 ((|#2| |#2| (-1092)) 78 (-12 (|has| |#2| (-263)) (|has| |#1| (-429))))) (-1929 (((-565 |#2|) (-565 |#2|) (-592 (-565 |#2|)) (-1092)) 25)) (-3546 (((-565 |#2|) (-592 (-565 |#2|))) 24)) (-3366 (((-542 |#2|) |#2| (-1092) (-1 (-542 |#2|) |#2| (-1092)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092))) 103 (-12 (|has| |#2| (-263)) (|has| |#2| (-578)) (|has| |#2| (-968 (-1092))) (|has| |#1| (-567 (-827 (-525)))) (|has| |#1| (-429)) (|has| |#1| (-821 (-525)))))))
+(((-534 |#1| |#2|) (-10 -7 (-15 -3475 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-1092))) (-15 -3546 ((-565 |#2|) (-592 (-565 |#2|)))) (-15 -1929 ((-565 |#2|) (-565 |#2|) (-592 (-565 |#2|)) (-1092))) (-15 -1705 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-592 (-565 |#2|)))) (-15 -3520 ((-592 (-565 |#2|)) (-592 |#2|) (-1092))) (IF (|has| |#1| (-517)) (-15 -1557 (|#2| |#2| (-1092))) |%noBranch|) (IF (|has| |#1| (-429)) (IF (|has| |#2| (-263)) (PROGN (-15 -3383 (|#2| |#2| (-1092))) (IF (|has| |#1| (-567 (-827 (-525)))) (IF (|has| |#1| (-821 (-525))) (IF (|has| |#2| (-578)) (IF (|has| |#2| (-968 (-1092))) (-15 -3366 ((-542 |#2|) |#2| (-1092) (-1 (-542 |#2|) |#2| (-1092)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-789) (-408 |#1|)) (T -534))
+((-3366 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-542 *3) *3 (-1092))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1092))) (-4 *3 (-263)) (-4 *3 (-578)) (-4 *3 (-968 *4)) (-4 *3 (-408 *7)) (-5 *4 (-1092)) (-4 *7 (-567 (-827 (-525)))) (-4 *7 (-429)) (-4 *7 (-821 (-525))) (-4 *7 (-789)) (-5 *2 (-542 *3)) (-5 *1 (-534 *7 *3)))) (-3383 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-429)) (-4 *4 (-789)) (-5 *1 (-534 *4 *2)) (-4 *2 (-263)) (-4 *2 (-408 *4)))) (-1557 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-517)) (-4 *4 (-789)) (-5 *1 (-534 *4 *2)) (-4 *2 (-408 *4)))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-1092)) (-4 *6 (-408 *5)) (-4 *5 (-789)) (-5 *2 (-592 (-565 *6))) (-5 *1 (-534 *5 *6)))) (-1705 (*1 *2 *2 *2) (-12 (-5 *2 (-592 (-565 *4))) (-4 *4 (-408 *3)) (-4 *3 (-789)) (-5 *1 (-534 *3 *4)))) (-1929 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-592 (-565 *6))) (-5 *4 (-1092)) (-5 *2 (-565 *6)) (-4 *6 (-408 *5)) (-4 *5 (-789)) (-5 *1 (-534 *5 *6)))) (-3546 (*1 *2 *3) (-12 (-5 *3 (-592 (-565 *5))) (-4 *4 (-789)) (-5 *2 (-565 *5)) (-5 *1 (-534 *4 *5)) (-4 *5 (-408 *4)))) (-3475 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-565 *5))) (-5 *3 (-1092)) (-4 *5 (-408 *4)) (-4 *4 (-789)) (-5 *1 (-534 *4 *5)))))
+(-10 -7 (-15 -3475 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-1092))) (-15 -3546 ((-565 |#2|) (-592 (-565 |#2|)))) (-15 -1929 ((-565 |#2|) (-565 |#2|) (-592 (-565 |#2|)) (-1092))) (-15 -1705 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-592 (-565 |#2|)))) (-15 -3520 ((-592 (-565 |#2|)) (-592 |#2|) (-1092))) (IF (|has| |#1| (-517)) (-15 -1557 (|#2| |#2| (-1092))) |%noBranch|) (IF (|has| |#1| (-429)) (IF (|has| |#2| (-263)) (PROGN (-15 -3383 (|#2| |#2| (-1092))) (IF (|has| |#1| (-567 (-827 (-525)))) (IF (|has| |#1| (-821 (-525))) (IF (|has| |#2| (-578)) (IF (|has| |#2| (-968 (-1092))) (-15 -3366 ((-542 |#2|) |#2| (-1092) (-1 (-542 |#2|) |#2| (-1092)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1092)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-3804 (((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-592 |#1|) "failed") (-525) |#1| |#1|)) 172)) (-3758 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3991 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-592 (-385 |#2|))) 148)) (-2189 (((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-592 (-385 |#2|))) 145)) (-2114 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3991 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-3998 (((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3991 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-2794 (((-3 (-2 (|:| -3991 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-385 |#2|)) 175)) (-3390 (((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3991 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3991 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-385 |#2|)) 178)) (-1840 (((-2 (|:| |ir| (-542 (-385 |#2|))) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)) 84)) (-2134 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2707 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3446 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-592 (-385 |#2|))) 152)) (-2113 (((-3 (-573 |#1| |#2|) "failed") (-573 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3446 |#1|) (|:| |sol?| (-108))) (-525) |#1|)) 137)) (-2919 (((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3446 |#1|) (|:| |sol?| (-108))) (-525) |#1|)) 162)) (-2888 (((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3991 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3446 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-385 |#2|)) 183)))
+(((-535 |#1| |#2|) (-10 -7 (-15 -3998 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3991 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2919 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3446 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -3804 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-592 |#1|) "failed") (-525) |#1| |#1|))) (-15 -3390 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3991 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3991 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-385 |#2|))) (-15 -2888 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3991 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3446 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-385 |#2|))) (-15 -3758 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3991 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-592 (-385 |#2|)))) (-15 -2707 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3446 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-592 (-385 |#2|)))) (-15 -2794 ((-3 (-2 (|:| -3991 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-385 |#2|))) (-15 -2189 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-592 (-385 |#2|)))) (-15 -2114 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3991 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2113 ((-3 (-573 |#1| |#2|) "failed") (-573 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3446 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -1840 ((-2 (|:| |ir| (-542 (-385 |#2|))) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|))) (-15 -2134 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-341) (-1150 |#1|)) (T -535))
+((-2134 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-535 *5 *3)))) (-1840 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |ir| (-542 (-385 *6))) (|:| |specpart| (-385 *6)) (|:| |polypart| *6))) (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))) (-2113 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-573 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3446 *4) (|:| |sol?| (-108))) (-525) *4)) (-4 *4 (-341)) (-4 *5 (-1150 *4)) (-5 *1 (-535 *4 *5)))) (-2114 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3991 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-341)) (-5 *1 (-535 *4 *2)) (-4 *2 (-1150 *4)))) (-2189 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-592 (-385 *7))) (-4 *7 (-1150 *6)) (-5 *3 (-385 *7)) (-4 *6 (-341)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-535 *6 *7)))) (-2794 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -3991 (-385 *6)) (|:| |coeff| (-385 *6)))) (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))) (-2707 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3446 *7) (|:| |sol?| (-108))) (-525) *7)) (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1150 *7)) (-5 *3 (-385 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-535 *7 *8)))) (-3758 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3991 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1150 *7)) (-5 *3 (-385 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-535 *7 *8)))) (-2888 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3446 *6) (|:| |sol?| (-108))) (-525) *6)) (-4 *6 (-341)) (-4 *7 (-1150 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6)) (-2 (|:| -3991 (-385 *7)) (|:| |coeff| (-385 *7))) "failed")) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-3390 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3991 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-341)) (-4 *7 (-1150 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6)) (-2 (|:| -3991 (-385 *7)) (|:| |coeff| (-385 *7))) "failed")) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-3804 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-592 *6) "failed") (-525) *6 *6)) (-4 *6 (-341)) (-4 *7 (-1150 *6)) (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-2919 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3446 *6) (|:| |sol?| (-108))) (-525) *6)) (-4 *6 (-341)) (-4 *7 (-1150 *6)) (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-3998 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3991 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-341)) (-4 *7 (-1150 *6)) (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
+(-10 -7 (-15 -3998 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3991 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2919 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3446 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -3804 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-592 |#1|) "failed") (-525) |#1| |#1|))) (-15 -3390 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3991 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3991 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-385 |#2|))) (-15 -2888 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3991 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3446 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-385 |#2|))) (-15 -3758 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3991 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-592 (-385 |#2|)))) (-15 -2707 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3446 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-592 (-385 |#2|)))) (-15 -2794 ((-3 (-2 (|:| -3991 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-385 |#2|))) (-15 -2189 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-592 (-385 |#2|)))) (-15 -2114 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3991 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2113 ((-3 (-573 |#1| |#2|) "failed") (-573 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3446 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -1840 ((-2 (|:| |ir| (-542 (-385 |#2|))) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|))) (-15 -2134 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-1869 (((-3 |#2| "failed") |#2| (-1092) (-1092)) 10)))
+(((-536 |#1| |#2|) (-10 -7 (-15 -1869 ((-3 |#2| "failed") |#2| (-1092) (-1092)))) (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1114) (-893) (-1056) (-29 |#1|))) (T -536))
+((-1869 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1092)) (-4 *4 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *1 (-536 *4 *2)) (-4 *2 (-13 (-1114) (-893) (-1056) (-29 *4))))))
+(-10 -7 (-15 -1869 ((-3 |#2| "failed") |#2| (-1092) (-1092))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $ (-525)) 66)) (-1507 (((-108) $ $) NIL)) (-2475 (($) NIL T CONST)) (-3378 (($ (-1088 (-525)) (-525)) 72)) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) 58)) (-2840 (($ $) 34)) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-4000 (((-713) $) 15)) (-2278 (((-108) $) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2287 (((-525)) 29)) (-2027 (((-525) $) 32)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1397 (($ $ (-525)) 21)) (-1311 (((-3 $ "failed") $ $) 59)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) 16)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 61)) (-3444 (((-1073 (-525)) $) 18)) (-3926 (($ $) 23)) (-4100 (((-798) $) 87) (($ (-525)) 52) (($ $) NIL)) (-2448 (((-713)) 14)) (-1571 (((-108) $ $) NIL)) (-1485 (((-525) $ (-525)) 36)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 35 T CONST)) (-3375 (($) 19 T CONST)) (-2775 (((-108) $ $) 39)) (-2871 (($ $) 51) (($ $ $) 37)) (-2860 (($ $ $) 50)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 54) (($ $ $) 55)))
(((-537 |#1| |#2|) (-804 |#1|) (-525) (-108)) (T -537))
NIL
(-804 |#1|)
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 21)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1259 (((-108) $) NIL)) (-3098 (((-713)) NIL)) (-2952 (($ $ (-856)) NIL (|has| $ (-346))) (($ $) NIL)) (-2971 (((-1102 (-856) (-713)) (-525)) 47)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2193 (((-108) $ $) NIL)) (-1834 (((-713)) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 $ "failed") $) 75)) (-1572 (($ $) 74)) (-2064 (($ (-1174 $)) 73)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) 32)) (-2502 (($) NIL)) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-2574 (($) 49)) (-3704 (((-108) $) NIL)) (-3625 (($ $) NIL) (($ $ (-713)) NIL)) (-3673 (((-108) $) NIL)) (-2581 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-1396 (((-108) $) NIL)) (-1273 (($) 37 (|has| $ (-346)))) (-1527 (((-108) $) NIL (|has| $ (-346)))) (-2382 (($ $ (-856)) NIL (|has| $ (-346))) (($ $) NIL)) (-3844 (((-3 $ "failed") $) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2126 (((-1088 $) $ (-856)) NIL (|has| $ (-346))) (((-1088 $) $) 83)) (-3005 (((-856) $) 55)) (-1283 (((-1088 $) $) NIL (|has| $ (-346)))) (-2577 (((-3 (-1088 $) "failed") $ $) NIL (|has| $ (-346))) (((-1088 $) $) NIL (|has| $ (-346)))) (-2324 (($ $ (-1088 $)) NIL (|has| $ (-346)))) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2295 (($) NIL T CONST)) (-3555 (($ (-856)) 48)) (-2703 (((-108) $) 67)) (-2093 (((-1039) $) NIL)) (-3409 (($) 19 (|has| $ (-346)))) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) 42)) (-2770 (((-396 $) $) NIL)) (-2858 (((-856)) 66) (((-775 (-856))) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3877 (((-3 (-713) "failed") $ $) NIL) (((-713) $) NIL)) (-3705 (((-128)) NIL)) (-3376 (($ $ (-713)) NIL) (($ $) NIL)) (-2343 (((-856) $) 65) (((-775 (-856)) $) NIL)) (-2756 (((-1088 $)) 82)) (-2244 (($) 54)) (-2254 (($) 38 (|has| $ (-346)))) (-2387 (((-632 $) (-1174 $)) NIL) (((-1174 $) $) 71)) (-3210 (((-525) $) 28)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL)) (-1217 (((-798) $) NIL) (($ (-525)) 30) (($ $) NIL) (($ (-385 (-525))) NIL)) (-3637 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3917 (((-713)) 39)) (-3094 (((-1174 $) (-856)) 77) (((-1174 $)) 76)) (-3325 (((-108) $ $) NIL)) (-2081 (((-108) $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) 22 T CONST)) (-3359 (($) 18 T CONST)) (-3127 (($ $ (-713)) NIL (|has| $ (-346))) (($ $) NIL (|has| $ (-346)))) (-2022 (($ $ (-713)) NIL) (($ $) NIL)) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 26)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 61) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 21)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3214 (((-108) $) NIL)) (-2132 (((-713)) NIL)) (-2924 (($ $ (-856)) NIL (|has| $ (-346))) (($ $) NIL)) (-3395 (((-1102 (-856) (-713)) (-525)) 47)) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-1507 (((-108) $ $) NIL)) (-1613 (((-713)) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 $ "failed") $) 75)) (-4105 (($ $) 74)) (-2580 (($ (-1174 $)) 73)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) 32)) (-1903 (($) NIL)) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-3932 (($) 49)) (-3920 (((-108) $) NIL)) (-1339 (($ $) NIL) (($ $ (-713)) NIL)) (-1798 (((-108) $) NIL)) (-4000 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-2278 (((-108) $) NIL)) (-3957 (($) 37 (|has| $ (-346)))) (-1890 (((-108) $) NIL (|has| $ (-346)))) (-2704 (($ $ (-856)) NIL (|has| $ (-346))) (($ $) NIL)) (-2878 (((-3 $ "failed") $) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2021 (((-1088 $) $ (-856)) NIL (|has| $ (-346))) (((-1088 $) $) 83)) (-3685 (((-856) $) 55)) (-4162 (((-1088 $) $) NIL (|has| $ (-346)))) (-3955 (((-3 (-1088 $) "failed") $ $) NIL (|has| $ (-346))) (((-1088 $) $) NIL (|has| $ (-346)))) (-3323 (($ $ (-1088 $)) NIL (|has| $ (-346)))) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-2948 (($) NIL T CONST)) (-1722 (($ (-856)) 48)) (-2700 (((-108) $) 67)) (-3993 (((-1039) $) NIL)) (-3817 (($) 19 (|has| $ (-346)))) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) 42)) (-4201 (((-396 $) $) NIL)) (-1690 (((-856)) 66) (((-775 (-856))) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2043 (((-3 (-713) "failed") $ $) NIL) (((-713) $) NIL)) (-3933 (((-128)) NIL)) (-2702 (($ $ (-713)) NIL) (($ $) NIL)) (-3529 (((-856) $) 65) (((-775 (-856)) $) NIL)) (-2013 (((-1088 $)) 82)) (-3823 (($) 54)) (-3911 (($) 38 (|has| $ (-346)))) (-2754 (((-632 $) (-1174 $)) NIL) (((-1174 $) $) 71)) (-2069 (((-525) $) 28)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL)) (-4100 (((-798) $) NIL) (($ (-525)) 30) (($ $) NIL) (($ (-385 (-525))) NIL)) (-1463 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2448 (((-713)) 39)) (-2103 (((-1174 $) (-856)) 77) (((-1174 $)) 76)) (-1571 (((-108) $ $) NIL)) (-2738 (((-108) $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) 22 T CONST)) (-3375 (($) 18 T CONST)) (-2363 (($ $ (-713)) NIL (|has| $ (-346))) (($ $) NIL (|has| $ (-346)))) (-2401 (($ $ (-713)) NIL) (($ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 26)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 61) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
(((-538 |#1|) (-13 (-327) (-307 $) (-567 (-525))) (-856)) (T -538))
NIL
(-13 (-327) (-307 $) (-567 (-525)))
-((-3358 (((-1179) (-1075)) 10)))
-(((-539) (-10 -7 (-15 -3358 ((-1179) (-1075))))) (T -539))
-((-3358 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-539)))))
-(-10 -7 (-15 -3358 ((-1179) (-1075))))
-((-1260 (((-542 |#2|) (-542 |#2|)) 40)) (-3751 (((-592 |#2|) (-542 |#2|)) 42)) (-1387 ((|#2| (-542 |#2|)) 48)))
-(((-540 |#1| |#2|) (-10 -7 (-15 -1260 ((-542 |#2|) (-542 |#2|))) (-15 -3751 ((-592 |#2|) (-542 |#2|))) (-15 -1387 (|#2| (-542 |#2|)))) (-13 (-429) (-968 (-525)) (-789) (-588 (-525))) (-13 (-29 |#1|) (-1114))) (T -540))
-((-1387 (*1 *2 *3) (-12 (-5 *3 (-542 *2)) (-4 *2 (-13 (-29 *4) (-1114))) (-5 *1 (-540 *4 *2)) (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))))) (-3751 (*1 *2 *3) (-12 (-5 *3 (-542 *5)) (-4 *5 (-13 (-29 *4) (-1114))) (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *2 (-592 *5)) (-5 *1 (-540 *4 *5)))) (-1260 (*1 *2 *2) (-12 (-5 *2 (-542 *4)) (-4 *4 (-13 (-29 *3) (-1114))) (-4 *3 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *1 (-540 *3 *4)))))
-(-10 -7 (-15 -1260 ((-542 |#2|) (-542 |#2|))) (-15 -3751 ((-592 |#2|) (-542 |#2|))) (-15 -1387 (|#2| (-542 |#2|))))
-((-3165 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1642 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-542 |#2|) (-1 |#2| |#1|) (-542 |#1|)) 30)))
-(((-541 |#1| |#2|) (-10 -7 (-15 -3165 ((-542 |#2|) (-1 |#2| |#1|) (-542 |#1|))) (-15 -3165 ((-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1642 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3165 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3165 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-341) (-341)) (T -541))
-((-3165 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-541 *5 *6)))) (-3165 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-341)) (-4 *2 (-341)) (-5 *1 (-541 *5 *2)))) (-3165 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1642 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 (-2 (|:| -1642 *6) (|:| |coeff| *6))) (-5 *1 (-541 *5 *6)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-542 *5)) (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 (-542 *6)) (-5 *1 (-541 *5 *6)))))
-(-10 -7 (-15 -3165 ((-542 |#2|) (-1 |#2| |#1|) (-542 |#1|))) (-15 -3165 ((-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1642 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3165 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3165 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) 69)) (-1572 ((|#1| $) NIL)) (-1642 ((|#1| $) 26)) (-2275 (((-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2401 (($ |#1| (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 |#1|)) (|:| |logand| (-1088 |#1|)))) (-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-3563 (((-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 |#1|)) (|:| |logand| (-1088 |#1|)))) $) 27)) (-2619 (((-1075) $) NIL)) (-3205 (($ |#1| |#1|) 33) (($ |#1| (-1092)) 44 (|has| |#1| (-968 (-1092))))) (-2093 (((-1039) $) NIL)) (-3453 (((-108) $) 30)) (-3376 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1092)) 82 (|has| |#1| (-835 (-1092))))) (-1217 (((-798) $) 96) (($ |#1|) 25)) (-3349 (($) 16 T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) 15) (($ $ $) NIL)) (-4047 (($ $ $) 78)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 14) (($ (-385 (-525)) $) 36) (($ $ (-385 (-525))) NIL)))
-(((-542 |#1|) (-13 (-660 (-385 (-525))) (-968 |#1|) (-10 -8 (-15 -2401 ($ |#1| (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 |#1|)) (|:| |logand| (-1088 |#1|)))) (-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1642 (|#1| $)) (-15 -3563 ((-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 |#1|)) (|:| |logand| (-1088 |#1|)))) $)) (-15 -2275 ((-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3453 ((-108) $)) (-15 -3205 ($ |#1| |#1|)) (-15 -3376 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-835 (-1092))) (-15 -3376 (|#1| $ (-1092))) |%noBranch|) (IF (|has| |#1| (-968 (-1092))) (-15 -3205 ($ |#1| (-1092))) |%noBranch|))) (-341)) (T -542))
-((-2401 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 *2)) (|:| |logand| (-1088 *2))))) (-5 *4 (-592 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-341)) (-5 *1 (-542 *2)))) (-1642 (*1 *2 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 *3)) (|:| |logand| (-1088 *3))))) (-5 *1 (-542 *3)) (-4 *3 (-341)))) (-2275 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-341)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-542 *3)) (-4 *3 (-341)))) (-3205 (*1 *1 *2 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341)))) (-3376 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-542 *2)) (-4 *2 (-341)))) (-3376 (*1 *2 *1 *3) (-12 (-4 *2 (-341)) (-4 *2 (-835 *3)) (-5 *1 (-542 *2)) (-5 *3 (-1092)))) (-3205 (*1 *1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *1 (-542 *2)) (-4 *2 (-968 *3)) (-4 *2 (-341)))))
-(-13 (-660 (-385 (-525))) (-968 |#1|) (-10 -8 (-15 -2401 ($ |#1| (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 |#1|)) (|:| |logand| (-1088 |#1|)))) (-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1642 (|#1| $)) (-15 -3563 ((-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 |#1|)) (|:| |logand| (-1088 |#1|)))) $)) (-15 -2275 ((-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3453 ((-108) $)) (-15 -3205 ($ |#1| |#1|)) (-15 -3376 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-835 (-1092))) (-15 -3376 (|#1| $ (-1092))) |%noBranch|) (IF (|has| |#1| (-968 (-1092))) (-15 -3205 ($ |#1| (-1092))) |%noBranch|)))
-((-2823 (((-108) |#1|) 16)) (-4136 (((-3 |#1| "failed") |#1|) 14)) (-3706 (((-2 (|:| -3379 |#1|) (|:| -4193 (-713))) |#1|) 31) (((-3 |#1| "failed") |#1| (-713)) 18)) (-3939 (((-108) |#1| (-713)) 19)) (-3073 ((|#1| |#1|) 32)) (-2106 ((|#1| |#1| (-713)) 34)))
-(((-543 |#1|) (-10 -7 (-15 -3939 ((-108) |#1| (-713))) (-15 -3706 ((-3 |#1| "failed") |#1| (-713))) (-15 -3706 ((-2 (|:| -3379 |#1|) (|:| -4193 (-713))) |#1|)) (-15 -2106 (|#1| |#1| (-713))) (-15 -2823 ((-108) |#1|)) (-15 -4136 ((-3 |#1| "failed") |#1|)) (-15 -3073 (|#1| |#1|))) (-510)) (T -543))
-((-3073 (*1 *2 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-4136 (*1 *2 *2) (|partial| -12 (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-2823 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510)))) (-2106 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-3706 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3379 *3) (|:| -4193 (-713)))) (-5 *1 (-543 *3)) (-4 *3 (-510)))) (-3706 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-3939 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510)))))
-(-10 -7 (-15 -3939 ((-108) |#1| (-713))) (-15 -3706 ((-3 |#1| "failed") |#1| (-713))) (-15 -3706 ((-2 (|:| -3379 |#1|) (|:| -4193 (-713))) |#1|)) (-15 -2106 (|#1| |#1| (-713))) (-15 -2823 ((-108) |#1|)) (-15 -4136 ((-3 |#1| "failed") |#1|)) (-15 -3073 (|#1| |#1|)))
-((-3963 (((-1088 |#1|) (-856)) 27)))
-(((-544 |#1|) (-10 -7 (-15 -3963 ((-1088 |#1|) (-856)))) (-327)) (T -544))
-((-3963 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-544 *4)) (-4 *4 (-327)))))
-(-10 -7 (-15 -3963 ((-1088 |#1|) (-856))))
-((-1260 (((-542 (-385 (-887 |#1|))) (-542 (-385 (-887 |#1|)))) 27)) (-1206 (((-3 (-294 |#1|) (-592 (-294 |#1|))) (-385 (-887 |#1|)) (-1092)) 34 (|has| |#1| (-138)))) (-3751 (((-592 (-294 |#1|)) (-542 (-385 (-887 |#1|)))) 19)) (-2550 (((-294 |#1|) (-385 (-887 |#1|)) (-1092)) 32 (|has| |#1| (-138)))) (-1387 (((-294 |#1|) (-542 (-385 (-887 |#1|)))) 21)))
-(((-545 |#1|) (-10 -7 (-15 -1260 ((-542 (-385 (-887 |#1|))) (-542 (-385 (-887 |#1|))))) (-15 -3751 ((-592 (-294 |#1|)) (-542 (-385 (-887 |#1|))))) (-15 -1387 ((-294 |#1|) (-542 (-385 (-887 |#1|))))) (IF (|has| |#1| (-138)) (PROGN (-15 -1206 ((-3 (-294 |#1|) (-592 (-294 |#1|))) (-385 (-887 |#1|)) (-1092))) (-15 -2550 ((-294 |#1|) (-385 (-887 |#1|)) (-1092)))) |%noBranch|)) (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (T -545))
-((-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092)) (-4 *5 (-138)) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *2 (-294 *5)) (-5 *1 (-545 *5)))) (-1206 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092)) (-4 *5 (-138)) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *2 (-3 (-294 *5) (-592 (-294 *5)))) (-5 *1 (-545 *5)))) (-1387 (*1 *2 *3) (-12 (-5 *3 (-542 (-385 (-887 *4)))) (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *2 (-294 *4)) (-5 *1 (-545 *4)))) (-3751 (*1 *2 *3) (-12 (-5 *3 (-542 (-385 (-887 *4)))) (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *2 (-592 (-294 *4))) (-5 *1 (-545 *4)))) (-1260 (*1 *2 *2) (-12 (-5 *2 (-542 (-385 (-887 *3)))) (-4 *3 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *1 (-545 *3)))))
-(-10 -7 (-15 -1260 ((-542 (-385 (-887 |#1|))) (-542 (-385 (-887 |#1|))))) (-15 -3751 ((-592 (-294 |#1|)) (-542 (-385 (-887 |#1|))))) (-15 -1387 ((-294 |#1|) (-542 (-385 (-887 |#1|))))) (IF (|has| |#1| (-138)) (PROGN (-15 -1206 ((-3 (-294 |#1|) (-592 (-294 |#1|))) (-385 (-887 |#1|)) (-1092))) (-15 -2550 ((-294 |#1|) (-385 (-887 |#1|)) (-1092)))) |%noBranch|))
-((-3611 (((-592 (-632 (-525))) (-592 (-525)) (-592 (-840 (-525)))) 46) (((-592 (-632 (-525))) (-592 (-525))) 47) (((-632 (-525)) (-592 (-525)) (-840 (-525))) 42)) (-2883 (((-713) (-592 (-525))) 40)))
-(((-546) (-10 -7 (-15 -2883 ((-713) (-592 (-525)))) (-15 -3611 ((-632 (-525)) (-592 (-525)) (-840 (-525)))) (-15 -3611 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -3611 ((-592 (-632 (-525))) (-592 (-525)) (-592 (-840 (-525))))))) (T -546))
-((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-525))) (-5 *4 (-592 (-840 (-525)))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-546)))) (-3611 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-546)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-525))) (-5 *4 (-840 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-546)))) (-2883 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-713)) (-5 *1 (-546)))))
-(-10 -7 (-15 -2883 ((-713) (-592 (-525)))) (-15 -3611 ((-632 (-525)) (-592 (-525)) (-840 (-525)))) (-15 -3611 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -3611 ((-592 (-632 (-525))) (-592 (-525)) (-592 (-840 (-525))))))
-((-1705 (((-592 |#5|) |#5| (-108)) 73)) (-2688 (((-108) |#5| (-592 |#5|)) 30)))
-(((-547 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1705 ((-592 |#5|) |#5| (-108))) (-15 -2688 ((-108) |#5| (-592 |#5|)))) (-13 (-286) (-138)) (-735) (-789) (-991 |#1| |#2| |#3|) (-1029 |#1| |#2| |#3| |#4|)) (T -547))
-((-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-1029 *5 *6 *7 *8)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-547 *5 *6 *7 *8 *3)))) (-1705 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-592 *3)) (-5 *1 (-547 *5 *6 *7 *8 *3)) (-4 *3 (-1029 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1705 ((-592 |#5|) |#5| (-108))) (-15 -2688 ((-108) |#5| (-592 |#5|))))
-((-4236 (((-108) $ $) NIL (|has| (-135) (-1020)))) (-2306 (($ $) 34)) (-2723 (($ $) NIL)) (-3928 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-1672 (((-108) $ $) 51)) (-1651 (((-108) $ $ (-525)) 46)) (-1260 (((-592 $) $ (-135)) 60) (((-592 $) $ (-132)) 61)) (-2470 (((-108) (-1 (-108) (-135) (-135)) $) NIL) (((-108) $) NIL (|has| (-135) (-789)))) (-2165 (($ (-1 (-108) (-135) (-135)) $) NIL (|has| $ (-6 -4259))) (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-135) (-789))))) (-2458 (($ (-1 (-108) (-135) (-135)) $) NIL) (($ $) NIL (|has| (-135) (-789)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 (((-135) $ (-525) (-135)) 45 (|has| $ (-6 -4259))) (((-135) $ (-1141 (-525)) (-135)) NIL (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4258)))) (-2169 (($) NIL T CONST)) (-2676 (($ $ (-135)) 64) (($ $ (-132)) 65)) (-2700 (($ $) NIL (|has| $ (-6 -4259)))) (-3431 (($ $) NIL)) (-2434 (($ $ (-1141 (-525)) $) 44)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020))))) (-1703 (($ (-135) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020)))) (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4258)))) (-1284 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) NIL (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) NIL (|has| $ (-6 -4258))) (((-135) (-1 (-135) (-135) (-135)) $) NIL (|has| $ (-6 -4258)))) (-2301 (((-135) $ (-525) (-135)) NIL (|has| $ (-6 -4259)))) (-2222 (((-135) $ (-525)) NIL)) (-1686 (((-108) $ $) 72)) (-1932 (((-525) (-1 (-108) (-135)) $) NIL) (((-525) (-135) $) NIL (|has| (-135) (-1020))) (((-525) (-135) $ (-525)) 48 (|has| (-135) (-1020))) (((-525) $ $ (-525)) 47) (((-525) (-132) $ (-525)) 50)) (-3440 (((-592 (-135)) $) NIL (|has| $ (-6 -4258)))) (-3416 (($ (-713) (-135)) 9)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) 28 (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (|has| (-135) (-789)))) (-1577 (($ (-1 (-108) (-135) (-135)) $ $) NIL) (($ $ $) NIL (|has| (-135) (-789)))) (-2694 (((-592 (-135)) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020))))) (-1847 (((-525) $) 42 (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| (-135) (-789)))) (-2294 (((-108) $ $ (-135)) 73)) (-4165 (((-713) $ $ (-135)) 70)) (-2284 (($ (-1 (-135) (-135)) $) 33 (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-135) (-135)) $) NIL) (($ (-1 (-135) (-135) (-135)) $ $) NIL)) (-3511 (($ $) 37)) (-1528 (($ $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2689 (($ $ (-135)) 62) (($ $ (-132)) 63)) (-2619 (((-1075) $) 38 (|has| (-135) (-1020)))) (-2531 (($ (-135) $ (-525)) NIL) (($ $ $ (-525)) 23)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-2093 (((-525) $) 69) (((-1039) $) NIL (|has| (-135) (-1020)))) (-1872 (((-135) $) NIL (|has| (-525) (-789)))) (-1983 (((-3 (-135) "failed") (-1 (-108) (-135)) $) NIL)) (-1420 (($ $ (-135)) NIL (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-135)))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-273 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-135) (-135)) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-592 (-135)) (-592 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020))))) (-3341 (((-592 (-135)) $) NIL)) (-2659 (((-108) $) 12)) (-2512 (($) 10)) (-3406 (((-135) $ (-525) (-135)) NIL) (((-135) $ (-525)) 52) (($ $ (-1141 (-525))) 21) (($ $ $) NIL)) (-3038 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2110 (((-713) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4258))) (((-713) (-135) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020))))) (-4098 (($ $ $ (-525)) 66 (|has| $ (-6 -4259)))) (-1462 (($ $) 17)) (-3210 (((-501) $) NIL (|has| (-135) (-567 (-501))))) (-1230 (($ (-592 (-135))) NIL)) (-2038 (($ $ (-135)) NIL) (($ (-135) $) NIL) (($ $ $) 16) (($ (-592 $)) 67)) (-1217 (($ (-135)) NIL) (((-798) $) 27 (|has| (-135) (-566 (-798))))) (-3029 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3987 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3955 (((-108) $ $) 14 (|has| (-135) (-1020)))) (-3999 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3978 (((-108) $ $) 15 (|has| (-135) (-789)))) (-3522 (((-713) $) 13 (|has| $ (-6 -4258)))))
-(((-548 |#1|) (-13 (-1061) (-10 -8 (-15 -2093 ((-525) $)))) (-525)) (T -548))
-((-2093 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-548 *3)) (-14 *3 *2))))
-(-13 (-1061) (-10 -8 (-15 -2093 ((-525) $))))
-((-3509 (((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2| (-1015 |#4|)) 32)))
-(((-549 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3509 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2| (-1015 |#4|))) (-15 -3509 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2|))) (-735) (-789) (-517) (-884 |#3| |#1| |#2|)) (T -549))
-((-3509 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-517)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525)))) (-5 *1 (-549 *5 *4 *6 *3)) (-4 *3 (-884 *6 *5 *4)))) (-3509 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1015 *3)) (-4 *3 (-884 *7 *6 *4)) (-4 *6 (-735)) (-4 *4 (-789)) (-4 *7 (-517)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525)))) (-5 *1 (-549 *6 *4 *7 *3)))))
-(-10 -7 (-15 -3509 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2| (-1015 |#4|))) (-15 -3509 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 63)) (-2897 (((-592 (-1005)) $) NIL)) (-2499 (((-1092) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-3828 (($ $ (-525)) 54) (($ $ (-525) (-525)) 55)) (-2755 (((-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 60)) (-3708 (($ $) 100)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2959 (((-798) (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) (-957 (-782 (-525))) (-1092) |#1| (-385 (-525))) 224)) (-2598 (($ (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 34)) (-2169 (($) NIL T CONST)) (-3063 (($ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2398 (((-108) $) NIL)) (-2581 (((-525) $) 58) (((-525) $ (-525)) 59)) (-1396 (((-108) $) NIL)) (-3326 (($ $ (-856)) 76)) (-2066 (($ (-1 |#1| (-525)) $) 73)) (-1212 (((-108) $) 25)) (-2876 (($ |#1| (-525)) 22) (($ $ (-1005) (-525)) NIL) (($ $ (-592 (-1005)) (-592 (-525))) NIL)) (-3165 (($ (-1 |#1| |#1|) $) 67)) (-1376 (($ (-957 (-782 (-525))) (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 13)) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2619 (((-1075) $) NIL)) (-1206 (($ $) 150 (|has| |#1| (-37 (-385 (-525)))))) (-2296 (((-3 $ "failed") $ $ (-108)) 99)) (-3995 (($ $ $) 108)) (-2093 (((-1039) $) NIL)) (-4112 (((-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 15)) (-3378 (((-957 (-782 (-525))) $) 14)) (-3931 (($ $ (-525)) 45)) (-1715 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2457 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-525)))))) (-3406 ((|#1| $ (-525)) 57) (($ $ $) NIL (|has| (-525) (-1032)))) (-3376 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-2343 (((-525) $) NIL)) (-1489 (($ $) 46)) (-1217 (((-798) $) NIL) (($ (-525)) 28) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 27 (|has| |#1| (-160)))) (-1568 ((|#1| $ (-525)) 56)) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) 37)) (-1340 ((|#1| $) NIL)) (-3426 (($ $) 186 (|has| |#1| (-37 (-385 (-525)))))) (-4092 (($ $) 158 (|has| |#1| (-37 (-385 (-525)))))) (-3166 (($ $) 190 (|has| |#1| (-37 (-385 (-525)))))) (-1917 (($ $) 163 (|has| |#1| (-37 (-385 (-525)))))) (-1921 (($ $) 189 (|has| |#1| (-37 (-385 (-525)))))) (-2808 (($ $) 162 (|has| |#1| (-37 (-385 (-525)))))) (-1339 (($ $ (-385 (-525))) 166 (|has| |#1| (-37 (-385 (-525)))))) (-4033 (($ $ |#1|) 146 (|has| |#1| (-37 (-385 (-525)))))) (-1524 (($ $) 192 (|has| |#1| (-37 (-385 (-525)))))) (-3110 (($ $) 149 (|has| |#1| (-37 (-385 (-525)))))) (-1889 (($ $) 191 (|has| |#1| (-37 (-385 (-525)))))) (-3112 (($ $) 164 (|has| |#1| (-37 (-385 (-525)))))) (-2730 (($ $) 187 (|has| |#1| (-37 (-385 (-525)))))) (-3683 (($ $) 160 (|has| |#1| (-37 (-385 (-525)))))) (-3633 (($ $) 188 (|has| |#1| (-37 (-385 (-525)))))) (-1476 (($ $) 161 (|has| |#1| (-37 (-385 (-525)))))) (-4119 (($ $) 197 (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) 173 (|has| |#1| (-37 (-385 (-525)))))) (-1302 (($ $) 194 (|has| |#1| (-37 (-385 (-525)))))) (-2523 (($ $) 168 (|has| |#1| (-37 (-385 (-525)))))) (-3315 (($ $) 201 (|has| |#1| (-37 (-385 (-525)))))) (-2291 (($ $) 177 (|has| |#1| (-37 (-385 (-525)))))) (-1328 (($ $) 203 (|has| |#1| (-37 (-385 (-525)))))) (-2304 (($ $) 179 (|has| |#1| (-37 (-385 (-525)))))) (-2422 (($ $) 199 (|has| |#1| (-37 (-385 (-525)))))) (-1264 (($ $) 175 (|has| |#1| (-37 (-385 (-525)))))) (-2365 (($ $) 196 (|has| |#1| (-37 (-385 (-525)))))) (-1451 (($ $) 171 (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1454 ((|#1| $ (-525)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -1217 (|#1| (-1092))))))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 29 T CONST)) (-3359 (($) 38 T CONST)) (-2022 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-3955 (((-108) $ $) 65)) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4061 (($ $) 84) (($ $ $) 64)) (-4047 (($ $ $) 81)) (** (($ $ (-856)) NIL) (($ $ (-713)) 103)) (* (($ (-856) $) 89) (($ (-713) $) 87) (($ (-525) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-550 |#1|) (-13 (-1152 |#1| (-525)) (-10 -8 (-15 -1376 ($ (-957 (-782 (-525))) (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -3378 ((-957 (-782 (-525))) $)) (-15 -4112 ((-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $)) (-15 -2598 ($ (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -1212 ((-108) $)) (-15 -2066 ($ (-1 |#1| (-525)) $)) (-15 -2296 ((-3 $ "failed") $ $ (-108))) (-15 -3708 ($ $)) (-15 -3995 ($ $ $)) (-15 -2959 ((-798) (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) (-957 (-782 (-525))) (-1092) |#1| (-385 (-525)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -1206 ($ $)) (-15 -4033 ($ $ |#1|)) (-15 -1339 ($ $ (-385 (-525)))) (-15 -3110 ($ $)) (-15 -1524 ($ $)) (-15 -1917 ($ $)) (-15 -1476 ($ $)) (-15 -4092 ($ $)) (-15 -3683 ($ $)) (-15 -2808 ($ $)) (-15 -3112 ($ $)) (-15 -2523 ($ $)) (-15 -1451 ($ $)) (-15 -2444 ($ $)) (-15 -1264 ($ $)) (-15 -2291 ($ $)) (-15 -2304 ($ $)) (-15 -3166 ($ $)) (-15 -3633 ($ $)) (-15 -3426 ($ $)) (-15 -2730 ($ $)) (-15 -1921 ($ $)) (-15 -1889 ($ $)) (-15 -1302 ($ $)) (-15 -2365 ($ $)) (-15 -4119 ($ $)) (-15 -2422 ($ $)) (-15 -3315 ($ $)) (-15 -1328 ($ $))) |%noBranch|))) (-977)) (T -550))
-((-1212 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-977)))) (-1376 (*1 *1 *2 *3) (-12 (-5 *2 (-957 (-782 (-525)))) (-5 *3 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *4)))) (-4 *4 (-977)) (-5 *1 (-550 *4)))) (-3378 (*1 *2 *1) (-12 (-5 *2 (-957 (-782 (-525)))) (-5 *1 (-550 *3)) (-4 *3 (-977)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *3)))) (-5 *1 (-550 *3)) (-4 *3 (-977)))) (-2598 (*1 *1 *2) (-12 (-5 *2 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *3)))) (-4 *3 (-977)) (-5 *1 (-550 *3)))) (-2066 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-525))) (-4 *3 (-977)) (-5 *1 (-550 *3)))) (-2296 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-977)))) (-3708 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-977)))) (-3995 (*1 *1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-977)))) (-2959 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *6)))) (-5 *4 (-957 (-782 (-525)))) (-5 *5 (-1092)) (-5 *7 (-385 (-525))) (-4 *6 (-977)) (-5 *2 (-798)) (-5 *1 (-550 *6)))) (-1206 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-4033 (*1 *1 *1 *2) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1339 (*1 *1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-550 *3)) (-4 *3 (-37 *2)) (-4 *3 (-977)))) (-3110 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1524 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1917 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1476 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-4092 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-3683 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2808 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-3112 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2523 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1451 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2444 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1264 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2291 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2304 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-3166 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-3633 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-3426 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2730 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1921 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1889 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1302 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2365 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-4119 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2422 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-3315 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1328 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(-13 (-1152 |#1| (-525)) (-10 -8 (-15 -1376 ($ (-957 (-782 (-525))) (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -3378 ((-957 (-782 (-525))) $)) (-15 -4112 ((-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $)) (-15 -2598 ($ (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -1212 ((-108) $)) (-15 -2066 ($ (-1 |#1| (-525)) $)) (-15 -2296 ((-3 $ "failed") $ $ (-108))) (-15 -3708 ($ $)) (-15 -3995 ($ $ $)) (-15 -2959 ((-798) (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) (-957 (-782 (-525))) (-1092) |#1| (-385 (-525)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -1206 ($ $)) (-15 -4033 ($ $ |#1|)) (-15 -1339 ($ $ (-385 (-525)))) (-15 -3110 ($ $)) (-15 -1524 ($ $)) (-15 -1917 ($ $)) (-15 -1476 ($ $)) (-15 -4092 ($ $)) (-15 -3683 ($ $)) (-15 -2808 ($ $)) (-15 -3112 ($ $)) (-15 -2523 ($ $)) (-15 -1451 ($ $)) (-15 -2444 ($ $)) (-15 -1264 ($ $)) (-15 -2291 ($ $)) (-15 -2304 ($ $)) (-15 -3166 ($ $)) (-15 -3633 ($ $)) (-15 -3426 ($ $)) (-15 -2730 ($ $)) (-15 -1921 ($ $)) (-15 -1889 ($ $)) (-15 -1302 ($ $)) (-15 -2365 ($ $)) (-15 -4119 ($ $)) (-15 -2422 ($ $)) (-15 -3315 ($ $)) (-15 -1328 ($ $))) |%noBranch|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-2598 (($ (-1073 |#1|)) 9)) (-2169 (($) NIL T CONST)) (-3457 (((-3 $ "failed") $) 42)) (-2398 (((-108) $) 52)) (-2581 (((-713) $) 55) (((-713) $ (-713)) 54)) (-1396 (((-108) $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1715 (((-3 $ "failed") $ $) 44 (|has| |#1| (-517)))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL (|has| |#1| (-517)))) (-1684 (((-1073 |#1|) $) 23)) (-3917 (((-713)) 51)) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 10 T CONST)) (-3359 (($) 14 T CONST)) (-3955 (((-108) $ $) 22)) (-4061 (($ $) 30) (($ $ $) 16)) (-4047 (($ $ $) 25)) (** (($ $ (-856)) NIL) (($ $ (-713)) 49)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-525)) 36)))
-(((-551 |#1|) (-13 (-977) (-10 -8 (-15 -1684 ((-1073 |#1|) $)) (-15 -2598 ($ (-1073 |#1|))) (-15 -2398 ((-108) $)) (-15 -2581 ((-713) $)) (-15 -2581 ((-713) $ (-713))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-525))) (IF (|has| |#1| (-517)) (-6 (-517)) |%noBranch|))) (-977)) (T -551))
-((-1684 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-551 *3)) (-4 *3 (-977)))) (-2598 (*1 *1 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-551 *3)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-551 *3)) (-4 *3 (-977)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-977)))) (-2581 (*1 *2 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-977)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-551 *2)) (-4 *2 (-977)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-551 *2)) (-4 *2 (-977)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-551 *3)) (-4 *3 (-977)))))
-(-13 (-977) (-10 -8 (-15 -1684 ((-1073 |#1|) $)) (-15 -2598 ($ (-1073 |#1|))) (-15 -2398 ((-108) $)) (-15 -2581 ((-713) $)) (-15 -2581 ((-713) $ (-713))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-525))) (IF (|has| |#1| (-517)) (-6 (-517)) |%noBranch|)))
-((-3165 (((-555 |#2|) (-1 |#2| |#1|) (-555 |#1|)) 15)))
-(((-552 |#1| |#2|) (-10 -7 (-15 -3165 ((-555 |#2|) (-1 |#2| |#1|) (-555 |#1|)))) (-1128) (-1128)) (T -552))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-555 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-555 *6)) (-5 *1 (-552 *5 *6)))))
-(-10 -7 (-15 -3165 ((-555 |#2|) (-1 |#2| |#1|) (-555 |#1|))))
-((-3165 (((-1073 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-1073 |#2|)) 20) (((-1073 |#3|) (-1 |#3| |#1| |#2|) (-1073 |#1|) (-555 |#2|)) 19) (((-555 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-555 |#2|)) 18)))
-(((-553 |#1| |#2| |#3|) (-10 -7 (-15 -3165 ((-555 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-555 |#2|))) (-15 -3165 ((-1073 |#3|) (-1 |#3| |#1| |#2|) (-1073 |#1|) (-555 |#2|))) (-15 -3165 ((-1073 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-1073 |#2|)))) (-1128) (-1128) (-1128)) (T -553))
-((-3165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-1073 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1073 *8)) (-5 *1 (-553 *6 *7 *8)))) (-3165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1073 *6)) (-5 *5 (-555 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1073 *8)) (-5 *1 (-553 *6 *7 *8)))) (-3165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-555 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-555 *8)) (-5 *1 (-553 *6 *7 *8)))))
-(-10 -7 (-15 -3165 ((-555 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-555 |#2|))) (-15 -3165 ((-1073 |#3|) (-1 |#3| |#1| |#2|) (-1073 |#1|) (-555 |#2|))) (-15 -3165 ((-1073 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-1073 |#2|))))
-((-3117 ((|#3| |#3| (-592 (-565 |#3|)) (-592 (-1092))) 55)) (-2557 (((-157 |#2|) |#3|) 117)) (-2350 ((|#3| (-157 |#2|)) 44)) (-2208 ((|#2| |#3|) 19)) (-3760 ((|#3| |#2|) 33)))
-(((-554 |#1| |#2| |#3|) (-10 -7 (-15 -2350 (|#3| (-157 |#2|))) (-15 -2208 (|#2| |#3|)) (-15 -3760 (|#3| |#2|)) (-15 -2557 ((-157 |#2|) |#3|)) (-15 -3117 (|#3| |#3| (-592 (-565 |#3|)) (-592 (-1092))))) (-13 (-517) (-789)) (-13 (-408 |#1|) (-934) (-1114)) (-13 (-408 (-157 |#1|)) (-934) (-1114))) (T -554))
-((-3117 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-592 (-1092))) (-4 *2 (-13 (-408 (-157 *5)) (-934) (-1114))) (-4 *5 (-13 (-517) (-789))) (-5 *1 (-554 *5 *6 *2)) (-4 *6 (-13 (-408 *5) (-934) (-1114))))) (-2557 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789))) (-5 *2 (-157 *5)) (-5 *1 (-554 *4 *5 *3)) (-4 *5 (-13 (-408 *4) (-934) (-1114))) (-4 *3 (-13 (-408 (-157 *4)) (-934) (-1114))))) (-3760 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789))) (-4 *2 (-13 (-408 (-157 *4)) (-934) (-1114))) (-5 *1 (-554 *4 *3 *2)) (-4 *3 (-13 (-408 *4) (-934) (-1114))))) (-2208 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789))) (-4 *2 (-13 (-408 *4) (-934) (-1114))) (-5 *1 (-554 *4 *2 *3)) (-4 *3 (-13 (-408 (-157 *4)) (-934) (-1114))))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-157 *5)) (-4 *5 (-13 (-408 *4) (-934) (-1114))) (-4 *4 (-13 (-517) (-789))) (-4 *2 (-13 (-408 (-157 *4)) (-934) (-1114))) (-5 *1 (-554 *4 *5 *2)))))
-(-10 -7 (-15 -2350 (|#3| (-157 |#2|))) (-15 -2208 (|#2| |#3|)) (-15 -3760 (|#3| |#2|)) (-15 -2557 ((-157 |#2|) |#3|)) (-15 -3117 (|#3| |#3| (-592 (-565 |#3|)) (-592 (-1092)))))
-((-3785 (($ (-1 (-108) |#1|) $) 17)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-3715 (($ (-1 |#1| |#1|) |#1|) 9)) (-3765 (($ (-1 (-108) |#1|) $) 13)) (-3774 (($ (-1 (-108) |#1|) $) 15)) (-1230 (((-1073 |#1|) $) 18)) (-1217 (((-798) $) NIL)))
-(((-555 |#1|) (-13 (-566 (-798)) (-10 -8 (-15 -3165 ($ (-1 |#1| |#1|) $)) (-15 -3765 ($ (-1 (-108) |#1|) $)) (-15 -3774 ($ (-1 (-108) |#1|) $)) (-15 -3785 ($ (-1 (-108) |#1|) $)) (-15 -3715 ($ (-1 |#1| |#1|) |#1|)) (-15 -1230 ((-1073 |#1|) $)))) (-1128)) (T -555))
-((-3165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-555 *3)))) (-3765 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1128)) (-5 *1 (-555 *3)))) (-3774 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1128)) (-5 *1 (-555 *3)))) (-3785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1128)) (-5 *1 (-555 *3)))) (-3715 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-555 *3)))) (-1230 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-555 *3)) (-4 *3 (-1128)))))
-(-13 (-566 (-798)) (-10 -8 (-15 -3165 ($ (-1 |#1| |#1|) $)) (-15 -3765 ($ (-1 (-108) |#1|) $)) (-15 -3774 ($ (-1 (-108) |#1|) $)) (-15 -3785 ($ (-1 (-108) |#1|) $)) (-15 -3715 ($ (-1 |#1| |#1|) |#1|)) (-15 -1230 ((-1073 |#1|) $))))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2609 (($ (-713)) NIL (|has| |#1| (-23)))) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-2470 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2165 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4259))) (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-789))))) (-2458 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2169 (($) NIL T CONST)) (-2700 (($ $) NIL (|has| $ (-6 -4259)))) (-3431 (($ $) NIL)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1703 (($ |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4258)))) (-2301 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) NIL)) (-1932 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-1544 (((-632 |#1|) $ $) NIL (|has| |#1| (-977)))) (-3416 (($ (-713) |#1|) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) NIL (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-1577 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3139 ((|#1| $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-977))))) (-2912 (((-108) $ (-713)) NIL)) (-4178 ((|#1| $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-977))))) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2531 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1872 ((|#1| $) NIL (|has| (-525) (-789)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1420 (($ $ |#1|) NIL (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2047 ((|#1| $ $) NIL (|has| |#1| (-977)))) (-3038 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2364 (($ $ $) NIL (|has| |#1| (-977)))) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-4098 (($ $ $ (-525)) NIL (|has| $ (-6 -4259)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) NIL)) (-2038 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4061 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4047 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-525) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-669))) (($ $ |#1|) NIL (|has| |#1| (-669)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
+((-1863 (((-1179) (-1075)) 10)))
+(((-539) (-10 -7 (-15 -1863 ((-1179) (-1075))))) (T -539))
+((-1863 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-539)))))
+(-10 -7 (-15 -1863 ((-1179) (-1075))))
+((-3224 (((-542 |#2|) (-542 |#2|)) 40)) (-2361 (((-592 |#2|) (-542 |#2|)) 42)) (-3639 ((|#2| (-542 |#2|)) 48)))
+(((-540 |#1| |#2|) (-10 -7 (-15 -3224 ((-542 |#2|) (-542 |#2|))) (-15 -2361 ((-592 |#2|) (-542 |#2|))) (-15 -3639 (|#2| (-542 |#2|)))) (-13 (-429) (-968 (-525)) (-789) (-588 (-525))) (-13 (-29 |#1|) (-1114))) (T -540))
+((-3639 (*1 *2 *3) (-12 (-5 *3 (-542 *2)) (-4 *2 (-13 (-29 *4) (-1114))) (-5 *1 (-540 *4 *2)) (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-542 *5)) (-4 *5 (-13 (-29 *4) (-1114))) (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *2 (-592 *5)) (-5 *1 (-540 *4 *5)))) (-3224 (*1 *2 *2) (-12 (-5 *2 (-542 *4)) (-4 *4 (-13 (-29 *3) (-1114))) (-4 *3 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *1 (-540 *3 *4)))))
+(-10 -7 (-15 -3224 ((-542 |#2|) (-542 |#2|))) (-15 -2361 ((-592 |#2|) (-542 |#2|))) (-15 -3639 (|#2| (-542 |#2|))))
+((-2016 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3991 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-542 |#2|) (-1 |#2| |#1|) (-542 |#1|)) 30)))
+(((-541 |#1| |#2|) (-10 -7 (-15 -2016 ((-542 |#2|) (-1 |#2| |#1|) (-542 |#1|))) (-15 -2016 ((-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3991 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2016 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2016 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-341) (-341)) (T -541))
+((-2016 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-541 *5 *6)))) (-2016 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-341)) (-4 *2 (-341)) (-5 *1 (-541 *5 *2)))) (-2016 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3991 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 (-2 (|:| -3991 *6) (|:| |coeff| *6))) (-5 *1 (-541 *5 *6)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-542 *5)) (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 (-542 *6)) (-5 *1 (-541 *5 *6)))))
+(-10 -7 (-15 -2016 ((-542 |#2|) (-1 |#2| |#1|) (-542 |#1|))) (-15 -2016 ((-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3991 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2016 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2016 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) 69)) (-4105 ((|#1| $) NIL)) (-3991 ((|#1| $) 26)) (-4094 (((-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2882 (($ |#1| (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 |#1|)) (|:| |logand| (-1088 |#1|)))) (-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-1974 (((-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 |#1|)) (|:| |logand| (-1088 |#1|)))) $) 27)) (-1289 (((-1075) $) NIL)) (-1872 (($ |#1| |#1|) 33) (($ |#1| (-1092)) 44 (|has| |#1| (-968 (-1092))))) (-3993 (((-1039) $) NIL)) (-3247 (((-108) $) 30)) (-2702 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1092)) 82 (|has| |#1| (-835 (-1092))))) (-4100 (((-798) $) 96) (($ |#1|) 25)) (-3364 (($) 16 T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) 15) (($ $ $) NIL)) (-2860 (($ $ $) 78)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 14) (($ (-385 (-525)) $) 36) (($ $ (-385 (-525))) NIL)))
+(((-542 |#1|) (-13 (-660 (-385 (-525))) (-968 |#1|) (-10 -8 (-15 -2882 ($ |#1| (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 |#1|)) (|:| |logand| (-1088 |#1|)))) (-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3991 (|#1| $)) (-15 -1974 ((-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 |#1|)) (|:| |logand| (-1088 |#1|)))) $)) (-15 -4094 ((-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3247 ((-108) $)) (-15 -1872 ($ |#1| |#1|)) (-15 -2702 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-835 (-1092))) (-15 -2702 (|#1| $ (-1092))) |%noBranch|) (IF (|has| |#1| (-968 (-1092))) (-15 -1872 ($ |#1| (-1092))) |%noBranch|))) (-341)) (T -542))
+((-2882 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 *2)) (|:| |logand| (-1088 *2))))) (-5 *4 (-592 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-341)) (-5 *1 (-542 *2)))) (-3991 (*1 *2 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341)))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 *3)) (|:| |logand| (-1088 *3))))) (-5 *1 (-542 *3)) (-4 *3 (-341)))) (-4094 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-341)))) (-3247 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-542 *3)) (-4 *3 (-341)))) (-1872 (*1 *1 *2 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341)))) (-2702 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-542 *2)) (-4 *2 (-341)))) (-2702 (*1 *2 *1 *3) (-12 (-4 *2 (-341)) (-4 *2 (-835 *3)) (-5 *1 (-542 *2)) (-5 *3 (-1092)))) (-1872 (*1 *1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *1 (-542 *2)) (-4 *2 (-968 *3)) (-4 *2 (-341)))))
+(-13 (-660 (-385 (-525))) (-968 |#1|) (-10 -8 (-15 -2882 ($ |#1| (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 |#1|)) (|:| |logand| (-1088 |#1|)))) (-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3991 (|#1| $)) (-15 -1974 ((-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 |#1|)) (|:| |logand| (-1088 |#1|)))) $)) (-15 -4094 ((-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3247 ((-108) $)) (-15 -1872 ($ |#1| |#1|)) (-15 -2702 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-835 (-1092))) (-15 -2702 (|#1| $ (-1092))) |%noBranch|) (IF (|has| |#1| (-968 (-1092))) (-15 -1872 ($ |#1| (-1092))) |%noBranch|)))
+((-2543 (((-108) |#1|) 16)) (-2798 (((-3 |#1| "failed") |#1|) 14)) (-3943 (((-2 (|:| -3771 |#1|) (|:| -2168 (-713))) |#1|) 31) (((-3 |#1| "failed") |#1| (-713)) 18)) (-1478 (((-108) |#1| (-713)) 19)) (-3053 ((|#1| |#1|) 32)) (-2978 ((|#1| |#1| (-713)) 34)))
+(((-543 |#1|) (-10 -7 (-15 -1478 ((-108) |#1| (-713))) (-15 -3943 ((-3 |#1| "failed") |#1| (-713))) (-15 -3943 ((-2 (|:| -3771 |#1|) (|:| -2168 (-713))) |#1|)) (-15 -2978 (|#1| |#1| (-713))) (-15 -2543 ((-108) |#1|)) (-15 -2798 ((-3 |#1| "failed") |#1|)) (-15 -3053 (|#1| |#1|))) (-510)) (T -543))
+((-3053 (*1 *2 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-2798 (*1 *2 *2) (|partial| -12 (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-2543 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510)))) (-2978 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-3943 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3771 *3) (|:| -2168 (-713)))) (-5 *1 (-543 *3)) (-4 *3 (-510)))) (-3943 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-1478 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510)))))
+(-10 -7 (-15 -1478 ((-108) |#1| (-713))) (-15 -3943 ((-3 |#1| "failed") |#1| (-713))) (-15 -3943 ((-2 (|:| -3771 |#1|) (|:| -2168 (-713))) |#1|)) (-15 -2978 (|#1| |#1| (-713))) (-15 -2543 ((-108) |#1|)) (-15 -2798 ((-3 |#1| "failed") |#1|)) (-15 -3053 (|#1| |#1|)))
+((-1709 (((-1088 |#1|) (-856)) 27)))
+(((-544 |#1|) (-10 -7 (-15 -1709 ((-1088 |#1|) (-856)))) (-327)) (T -544))
+((-1709 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-544 *4)) (-4 *4 (-327)))))
+(-10 -7 (-15 -1709 ((-1088 |#1|) (-856))))
+((-3224 (((-542 (-385 (-887 |#1|))) (-542 (-385 (-887 |#1|)))) 27)) (-2367 (((-3 (-294 |#1|) (-592 (-294 |#1|))) (-385 (-887 |#1|)) (-1092)) 34 (|has| |#1| (-138)))) (-2361 (((-592 (-294 |#1|)) (-542 (-385 (-887 |#1|)))) 19)) (-1917 (((-294 |#1|) (-385 (-887 |#1|)) (-1092)) 32 (|has| |#1| (-138)))) (-3639 (((-294 |#1|) (-542 (-385 (-887 |#1|)))) 21)))
+(((-545 |#1|) (-10 -7 (-15 -3224 ((-542 (-385 (-887 |#1|))) (-542 (-385 (-887 |#1|))))) (-15 -2361 ((-592 (-294 |#1|)) (-542 (-385 (-887 |#1|))))) (-15 -3639 ((-294 |#1|) (-542 (-385 (-887 |#1|))))) (IF (|has| |#1| (-138)) (PROGN (-15 -2367 ((-3 (-294 |#1|) (-592 (-294 |#1|))) (-385 (-887 |#1|)) (-1092))) (-15 -1917 ((-294 |#1|) (-385 (-887 |#1|)) (-1092)))) |%noBranch|)) (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (T -545))
+((-1917 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092)) (-4 *5 (-138)) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *2 (-294 *5)) (-5 *1 (-545 *5)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092)) (-4 *5 (-138)) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *2 (-3 (-294 *5) (-592 (-294 *5)))) (-5 *1 (-545 *5)))) (-3639 (*1 *2 *3) (-12 (-5 *3 (-542 (-385 (-887 *4)))) (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *2 (-294 *4)) (-5 *1 (-545 *4)))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-542 (-385 (-887 *4)))) (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *2 (-592 (-294 *4))) (-5 *1 (-545 *4)))) (-3224 (*1 *2 *2) (-12 (-5 *2 (-542 (-385 (-887 *3)))) (-4 *3 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *1 (-545 *3)))))
+(-10 -7 (-15 -3224 ((-542 (-385 (-887 |#1|))) (-542 (-385 (-887 |#1|))))) (-15 -2361 ((-592 (-294 |#1|)) (-542 (-385 (-887 |#1|))))) (-15 -3639 ((-294 |#1|) (-542 (-385 (-887 |#1|))))) (IF (|has| |#1| (-138)) (PROGN (-15 -2367 ((-3 (-294 |#1|) (-592 (-294 |#1|))) (-385 (-887 |#1|)) (-1092))) (-15 -1917 ((-294 |#1|) (-385 (-887 |#1|)) (-1092)))) |%noBranch|))
+((-2407 (((-592 (-632 (-525))) (-592 (-525)) (-592 (-840 (-525)))) 46) (((-592 (-632 (-525))) (-592 (-525))) 47) (((-632 (-525)) (-592 (-525)) (-840 (-525))) 42)) (-1943 (((-713) (-592 (-525))) 40)))
+(((-546) (-10 -7 (-15 -1943 ((-713) (-592 (-525)))) (-15 -2407 ((-632 (-525)) (-592 (-525)) (-840 (-525)))) (-15 -2407 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -2407 ((-592 (-632 (-525))) (-592 (-525)) (-592 (-840 (-525))))))) (T -546))
+((-2407 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-525))) (-5 *4 (-592 (-840 (-525)))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-546)))) (-2407 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-546)))) (-2407 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-525))) (-5 *4 (-840 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-546)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-713)) (-5 *1 (-546)))))
+(-10 -7 (-15 -1943 ((-713) (-592 (-525)))) (-15 -2407 ((-632 (-525)) (-592 (-525)) (-840 (-525)))) (-15 -2407 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -2407 ((-592 (-632 (-525))) (-592 (-525)) (-592 (-840 (-525))))))
+((-3359 (((-592 |#5|) |#5| (-108)) 73)) (-2571 (((-108) |#5| (-592 |#5|)) 30)))
+(((-547 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3359 ((-592 |#5|) |#5| (-108))) (-15 -2571 ((-108) |#5| (-592 |#5|)))) (-13 (-286) (-138)) (-735) (-789) (-991 |#1| |#2| |#3|) (-1029 |#1| |#2| |#3| |#4|)) (T -547))
+((-2571 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-1029 *5 *6 *7 *8)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-547 *5 *6 *7 *8 *3)))) (-3359 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-592 *3)) (-5 *1 (-547 *5 *6 *7 *8 *3)) (-4 *3 (-1029 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3359 ((-592 |#5|) |#5| (-108))) (-15 -2571 ((-108) |#5| (-592 |#5|))))
+((-4087 (((-108) $ $) NIL (|has| (-135) (-1020)))) (-3127 (($ $) 34)) (-2877 (($ $) NIL)) (-2555 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-2746 (((-108) $ $) 51)) (-2726 (((-108) $ $ (-525)) 46)) (-3224 (((-592 $) $ (-135)) 60) (((-592 $) $ (-132)) 61)) (-2358 (((-108) (-1 (-108) (-135) (-135)) $) NIL) (((-108) $) NIL (|has| (-135) (-789)))) (-2436 (($ (-1 (-108) (-135) (-135)) $) NIL (|has| $ (-6 -4260))) (($ $) NIL (-12 (|has| $ (-6 -4260)) (|has| (-135) (-789))))) (-1842 (($ (-1 (-108) (-135) (-135)) $) NIL) (($ $) NIL (|has| (-135) (-789)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 (((-135) $ (-525) (-135)) 45 (|has| $ (-6 -4260))) (((-135) $ (-1141 (-525)) (-135)) NIL (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4259)))) (-2475 (($) NIL T CONST)) (-1622 (($ $ (-135)) 64) (($ $ (-132)) 65)) (-2670 (($ $) NIL (|has| $ (-6 -4260)))) (-1652 (($ $) NIL)) (-2058 (($ $ (-1141 (-525)) $) 44)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020))))) (-2698 (($ (-135) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020)))) (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4259)))) (-3504 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) NIL (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) NIL (|has| $ (-6 -4259))) (((-135) (-1 (-135) (-135) (-135)) $) NIL (|has| $ (-6 -4259)))) (-3081 (((-135) $ (-525) (-135)) NIL (|has| $ (-6 -4260)))) (-3017 (((-135) $ (-525)) NIL)) (-2768 (((-108) $ $) 72)) (-3856 (((-525) (-1 (-108) (-135)) $) NIL) (((-525) (-135) $) NIL (|has| (-135) (-1020))) (((-525) (-135) $ (-525)) 48 (|has| (-135) (-1020))) (((-525) $ $ (-525)) 47) (((-525) (-132) $ (-525)) 50)) (-2175 (((-592 (-135)) $) NIL (|has| $ (-6 -4259)))) (-3324 (($ (-713) (-135)) 9)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) 28 (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (|has| (-135) (-789)))) (-3212 (($ (-1 (-108) (-135) (-135)) $ $) NIL) (($ $ $) NIL (|has| (-135) (-789)))) (-2617 (((-592 (-135)) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020))))) (-2231 (((-525) $) 42 (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| (-135) (-789)))) (-3516 (((-108) $ $ (-135)) 73)) (-1589 (((-713) $ $ (-135)) 70)) (-3069 (($ (-1 (-135) (-135)) $) 33 (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-135) (-135)) $) NIL) (($ (-1 (-135) (-135) (-135)) $ $) NIL)) (-2620 (($ $) 37)) (-1904 (($ $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1633 (($ $ (-135)) 62) (($ $ (-132)) 63)) (-1289 (((-1075) $) 38 (|has| (-135) (-1020)))) (-2594 (($ (-135) $ (-525)) NIL) (($ $ $ (-525)) 23)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-3993 (((-525) $) 69) (((-1039) $) NIL (|has| (-135) (-1020)))) (-1647 (((-135) $) NIL (|has| (-525) (-789)))) (-4202 (((-3 (-135) "failed") (-1 (-108) (-135)) $) NIL)) (-3453 (($ $ (-135)) NIL (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-135)))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-273 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-135) (-135)) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-592 (-135)) (-592 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020))))) (-1717 (((-592 (-135)) $) NIL)) (-3479 (((-108) $) 12)) (-1558 (($) 10)) (-3431 (((-135) $ (-525) (-135)) NIL) (((-135) $ (-525)) 52) (($ $ (-1141 (-525))) 21) (($ $ $) NIL)) (-2139 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-4002 (((-713) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4259))) (((-713) (-135) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020))))) (-3632 (($ $ $ (-525)) 66 (|has| $ (-6 -4260)))) (-2503 (($ $) 17)) (-2069 (((-501) $) NIL (|has| (-135) (-567 (-501))))) (-4114 (($ (-592 (-135))) NIL)) (-2035 (($ $ (-135)) NIL) (($ (-135) $) NIL) (($ $ $) 16) (($ (-592 $)) 67)) (-4100 (($ (-135)) NIL) (((-798) $) 27 (|has| (-135) (-566 (-798))))) (-2706 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) NIL (|has| (-135) (-789)))) (-2807 (((-108) $ $) NIL (|has| (-135) (-789)))) (-2775 (((-108) $ $) 14 (|has| (-135) (-1020)))) (-2817 (((-108) $ $) NIL (|has| (-135) (-789)))) (-2795 (((-108) $ $) 15 (|has| (-135) (-789)))) (-2827 (((-713) $) 13 (|has| $ (-6 -4259)))))
+(((-548 |#1|) (-13 (-1061) (-10 -8 (-15 -3993 ((-525) $)))) (-525)) (T -548))
+((-3993 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-548 *3)) (-14 *3 *2))))
+(-13 (-1061) (-10 -8 (-15 -3993 ((-525) $))))
+((-3764 (((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2| (-1015 |#4|)) 32)))
+(((-549 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3764 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2| (-1015 |#4|))) (-15 -3764 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2|))) (-735) (-789) (-517) (-884 |#3| |#1| |#2|)) (T -549))
+((-3764 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-517)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525)))) (-5 *1 (-549 *5 *4 *6 *3)) (-4 *3 (-884 *6 *5 *4)))) (-3764 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1015 *3)) (-4 *3 (-884 *7 *6 *4)) (-4 *6 (-735)) (-4 *4 (-789)) (-4 *7 (-517)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525)))) (-5 *1 (-549 *6 *4 *7 *3)))))
+(-10 -7 (-15 -3764 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2| (-1015 |#4|))) (-15 -3764 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 63)) (-1296 (((-592 (-1005)) $) NIL)) (-3469 (((-1092) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-2730 (($ $ (-525)) 54) (($ $ (-525) (-525)) 55)) (-2005 (((-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 60)) (-3965 (($ $) 100)) (-3222 (((-3 $ "failed") $ $) NIL)) (-3277 (((-798) (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) (-957 (-782 (-525))) (-1092) |#1| (-385 (-525))) 224)) (-2996 (($ (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 34)) (-2475 (($) NIL T CONST)) (-1451 (($ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-2853 (((-108) $) NIL)) (-4000 (((-525) $) 58) (((-525) $ (-525)) 59)) (-2278 (((-108) $) NIL)) (-1585 (($ $ (-856)) 76)) (-2598 (($ (-1 |#1| (-525)) $) 73)) (-2457 (((-108) $) 25)) (-1272 (($ |#1| (-525)) 22) (($ $ (-1005) (-525)) NIL) (($ $ (-592 (-1005)) (-592 (-525))) NIL)) (-2016 (($ (-1 |#1| |#1|) $) 67)) (-3805 (($ (-957 (-782 (-525))) (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 13)) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-1289 (((-1075) $) NIL)) (-2367 (($ $) 150 (|has| |#1| (-37 (-385 (-525)))))) (-1238 (((-3 $ "failed") $ $ (-108)) 99)) (-3825 (($ $ $) 108)) (-3993 (((-1039) $) NIL)) (-3763 (((-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 15)) (-3811 (((-957 (-782 (-525))) $) 14)) (-1397 (($ $ (-525)) 45)) (-1311 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2825 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-525)))))) (-3431 ((|#1| $ (-525)) 57) (($ $ $) NIL (|has| (-525) (-1032)))) (-2702 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-3529 (((-525) $) NIL)) (-3926 (($ $) 46)) (-4100 (((-798) $) NIL) (($ (-525)) 28) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 27 (|has| |#1| (-160)))) (-3136 ((|#1| $ (-525)) 56)) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) 37)) (-1423 ((|#1| $) NIL)) (-4230 (($ $) 186 (|has| |#1| (-37 (-385 (-525)))))) (-3572 (($ $) 158 (|has| |#1| (-37 (-385 (-525)))))) (-1514 (($ $) 190 (|has| |#1| (-37 (-385 (-525)))))) (-1691 (($ $) 163 (|has| |#1| (-37 (-385 (-525)))))) (-1731 (($ $) 189 (|has| |#1| (-37 (-385 (-525)))))) (-2416 (($ $) 162 (|has| |#1| (-37 (-385 (-525)))))) (-3035 (($ $ (-385 (-525))) 166 (|has| |#1| (-37 (-385 (-525)))))) (-4231 (($ $ |#1|) 146 (|has| |#1| (-37 (-385 (-525)))))) (-1864 (($ $) 192 (|has| |#1| (-37 (-385 (-525)))))) (-2216 (($ $) 149 (|has| |#1| (-37 (-385 (-525)))))) (-1432 (($ $) 191 (|has| |#1| (-37 (-385 (-525)))))) (-2236 (($ $) 164 (|has| |#1| (-37 (-385 (-525)))))) (-2933 (($ $) 187 (|has| |#1| (-37 (-385 (-525)))))) (-1918 (($ $) 160 (|has| |#1| (-37 (-385 (-525)))))) (-1421 (($ $) 188 (|has| |#1| (-37 (-385 (-525)))))) (-1935 (($ $) 161 (|has| |#1| (-37 (-385 (-525)))))) (-2649 (($ $) 197 (|has| |#1| (-37 (-385 (-525)))))) (-2138 (($ $) 173 (|has| |#1| (-37 (-385 (-525)))))) (-3129 (($ $) 194 (|has| |#1| (-37 (-385 (-525)))))) (-1649 (($ $) 168 (|has| |#1| (-37 (-385 (-525)))))) (-1467 (($ $) 201 (|has| |#1| (-37 (-385 (-525)))))) (-1205 (($ $) 177 (|has| |#1| (-37 (-385 (-525)))))) (-1504 (($ $) 203 (|has| |#1| (-37 (-385 (-525)))))) (-3118 (($ $) 179 (|has| |#1| (-37 (-385 (-525)))))) (-3062 (($ $) 199 (|has| |#1| (-37 (-385 (-525)))))) (-3274 (($ $) 175 (|has| |#1| (-37 (-385 (-525)))))) (-2558 (($ $) 196 (|has| |#1| (-37 (-385 (-525)))))) (-2455 (($ $) 171 (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1485 ((|#1| $ (-525)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -4100 (|#1| (-1092))))))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 29 T CONST)) (-3375 (($) 38 T CONST)) (-2401 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-2775 (((-108) $ $) 65)) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-2871 (($ $) 84) (($ $ $) 64)) (-2860 (($ $ $) 81)) (** (($ $ (-856)) NIL) (($ $ (-713)) 103)) (* (($ (-856) $) 89) (($ (-713) $) 87) (($ (-525) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-550 |#1|) (-13 (-1152 |#1| (-525)) (-10 -8 (-15 -3805 ($ (-957 (-782 (-525))) (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -3811 ((-957 (-782 (-525))) $)) (-15 -3763 ((-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $)) (-15 -2996 ($ (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -2457 ((-108) $)) (-15 -2598 ($ (-1 |#1| (-525)) $)) (-15 -1238 ((-3 $ "failed") $ $ (-108))) (-15 -3965 ($ $)) (-15 -3825 ($ $ $)) (-15 -3277 ((-798) (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) (-957 (-782 (-525))) (-1092) |#1| (-385 (-525)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2367 ($ $)) (-15 -4231 ($ $ |#1|)) (-15 -3035 ($ $ (-385 (-525)))) (-15 -2216 ($ $)) (-15 -1864 ($ $)) (-15 -1691 ($ $)) (-15 -1935 ($ $)) (-15 -3572 ($ $)) (-15 -1918 ($ $)) (-15 -2416 ($ $)) (-15 -2236 ($ $)) (-15 -1649 ($ $)) (-15 -2455 ($ $)) (-15 -2138 ($ $)) (-15 -3274 ($ $)) (-15 -1205 ($ $)) (-15 -3118 ($ $)) (-15 -1514 ($ $)) (-15 -1421 ($ $)) (-15 -4230 ($ $)) (-15 -2933 ($ $)) (-15 -1731 ($ $)) (-15 -1432 ($ $)) (-15 -3129 ($ $)) (-15 -2558 ($ $)) (-15 -2649 ($ $)) (-15 -3062 ($ $)) (-15 -1467 ($ $)) (-15 -1504 ($ $))) |%noBranch|))) (-977)) (T -550))
+((-2457 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-977)))) (-3805 (*1 *1 *2 *3) (-12 (-5 *2 (-957 (-782 (-525)))) (-5 *3 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *4)))) (-4 *4 (-977)) (-5 *1 (-550 *4)))) (-3811 (*1 *2 *1) (-12 (-5 *2 (-957 (-782 (-525)))) (-5 *1 (-550 *3)) (-4 *3 (-977)))) (-3763 (*1 *2 *1) (-12 (-5 *2 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *3)))) (-5 *1 (-550 *3)) (-4 *3 (-977)))) (-2996 (*1 *1 *2) (-12 (-5 *2 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *3)))) (-4 *3 (-977)) (-5 *1 (-550 *3)))) (-2598 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-525))) (-4 *3 (-977)) (-5 *1 (-550 *3)))) (-1238 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-977)))) (-3965 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-977)))) (-3825 (*1 *1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-977)))) (-3277 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *6)))) (-5 *4 (-957 (-782 (-525)))) (-5 *5 (-1092)) (-5 *7 (-385 (-525))) (-4 *6 (-977)) (-5 *2 (-798)) (-5 *1 (-550 *6)))) (-2367 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-3035 (*1 *1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-550 *3)) (-4 *3 (-37 *2)) (-4 *3 (-977)))) (-2216 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1864 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1691 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1935 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-3572 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1918 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2416 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2236 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1649 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2455 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2138 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-3274 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1205 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-3118 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1514 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1421 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-4230 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2933 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1731 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1432 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-3129 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2558 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2649 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-3062 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1467 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1504 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(-13 (-1152 |#1| (-525)) (-10 -8 (-15 -3805 ($ (-957 (-782 (-525))) (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -3811 ((-957 (-782 (-525))) $)) (-15 -3763 ((-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $)) (-15 -2996 ($ (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -2457 ((-108) $)) (-15 -2598 ($ (-1 |#1| (-525)) $)) (-15 -1238 ((-3 $ "failed") $ $ (-108))) (-15 -3965 ($ $)) (-15 -3825 ($ $ $)) (-15 -3277 ((-798) (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) (-957 (-782 (-525))) (-1092) |#1| (-385 (-525)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2367 ($ $)) (-15 -4231 ($ $ |#1|)) (-15 -3035 ($ $ (-385 (-525)))) (-15 -2216 ($ $)) (-15 -1864 ($ $)) (-15 -1691 ($ $)) (-15 -1935 ($ $)) (-15 -3572 ($ $)) (-15 -1918 ($ $)) (-15 -2416 ($ $)) (-15 -2236 ($ $)) (-15 -1649 ($ $)) (-15 -2455 ($ $)) (-15 -2138 ($ $)) (-15 -3274 ($ $)) (-15 -1205 ($ $)) (-15 -3118 ($ $)) (-15 -1514 ($ $)) (-15 -1421 ($ $)) (-15 -4230 ($ $)) (-15 -2933 ($ $)) (-15 -1731 ($ $)) (-15 -1432 ($ $)) (-15 -3129 ($ $)) (-15 -2558 ($ $)) (-15 -2649 ($ $)) (-15 -3062 ($ $)) (-15 -1467 ($ $)) (-15 -1504 ($ $))) |%noBranch|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-2996 (($ (-1073 |#1|)) 9)) (-2475 (($) NIL T CONST)) (-3300 (((-3 $ "failed") $) 42)) (-2853 (((-108) $) 52)) (-4000 (((-713) $) 55) (((-713) $ (-713)) 54)) (-2278 (((-108) $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1311 (((-3 $ "failed") $ $) 44 (|has| |#1| (-517)))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL (|has| |#1| (-517)))) (-3137 (((-1073 |#1|) $) 23)) (-2448 (((-713)) 51)) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 10 T CONST)) (-3375 (($) 14 T CONST)) (-2775 (((-108) $ $) 22)) (-2871 (($ $) 30) (($ $ $) 16)) (-2860 (($ $ $) 25)) (** (($ $ (-856)) NIL) (($ $ (-713)) 49)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-525)) 36)))
+(((-551 |#1|) (-13 (-977) (-10 -8 (-15 -3137 ((-1073 |#1|) $)) (-15 -2996 ($ (-1073 |#1|))) (-15 -2853 ((-108) $)) (-15 -4000 ((-713) $)) (-15 -4000 ((-713) $ (-713))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-525))) (IF (|has| |#1| (-517)) (-6 (-517)) |%noBranch|))) (-977)) (T -551))
+((-3137 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-551 *3)) (-4 *3 (-977)))) (-2996 (*1 *1 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-551 *3)))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-551 *3)) (-4 *3 (-977)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-977)))) (-4000 (*1 *2 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-977)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-551 *2)) (-4 *2 (-977)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-551 *2)) (-4 *2 (-977)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-551 *3)) (-4 *3 (-977)))))
+(-13 (-977) (-10 -8 (-15 -3137 ((-1073 |#1|) $)) (-15 -2996 ($ (-1073 |#1|))) (-15 -2853 ((-108) $)) (-15 -4000 ((-713) $)) (-15 -4000 ((-713) $ (-713))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-525))) (IF (|has| |#1| (-517)) (-6 (-517)) |%noBranch|)))
+((-2016 (((-555 |#2|) (-1 |#2| |#1|) (-555 |#1|)) 15)))
+(((-552 |#1| |#2|) (-10 -7 (-15 -2016 ((-555 |#2|) (-1 |#2| |#1|) (-555 |#1|)))) (-1128) (-1128)) (T -552))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-555 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-555 *6)) (-5 *1 (-552 *5 *6)))))
+(-10 -7 (-15 -2016 ((-555 |#2|) (-1 |#2| |#1|) (-555 |#1|))))
+((-2016 (((-1073 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-1073 |#2|)) 20) (((-1073 |#3|) (-1 |#3| |#1| |#2|) (-1073 |#1|) (-555 |#2|)) 19) (((-555 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-555 |#2|)) 18)))
+(((-553 |#1| |#2| |#3|) (-10 -7 (-15 -2016 ((-555 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-555 |#2|))) (-15 -2016 ((-1073 |#3|) (-1 |#3| |#1| |#2|) (-1073 |#1|) (-555 |#2|))) (-15 -2016 ((-1073 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-1073 |#2|)))) (-1128) (-1128) (-1128)) (T -553))
+((-2016 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-1073 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1073 *8)) (-5 *1 (-553 *6 *7 *8)))) (-2016 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1073 *6)) (-5 *5 (-555 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1073 *8)) (-5 *1 (-553 *6 *7 *8)))) (-2016 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-555 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-555 *8)) (-5 *1 (-553 *6 *7 *8)))))
+(-10 -7 (-15 -2016 ((-555 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-555 |#2|))) (-15 -2016 ((-1073 |#3|) (-1 |#3| |#1| |#2|) (-1073 |#1|) (-555 |#2|))) (-15 -2016 ((-1073 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-1073 |#2|))))
+((-2284 ((|#3| |#3| (-592 (-565 |#3|)) (-592 (-1092))) 55)) (-3775 (((-157 |#2|) |#3|) 117)) (-3598 ((|#3| (-157 |#2|)) 44)) (-1654 ((|#2| |#3|) 19)) (-3242 ((|#3| |#2|) 33)))
+(((-554 |#1| |#2| |#3|) (-10 -7 (-15 -3598 (|#3| (-157 |#2|))) (-15 -1654 (|#2| |#3|)) (-15 -3242 (|#3| |#2|)) (-15 -3775 ((-157 |#2|) |#3|)) (-15 -2284 (|#3| |#3| (-592 (-565 |#3|)) (-592 (-1092))))) (-13 (-517) (-789)) (-13 (-408 |#1|) (-934) (-1114)) (-13 (-408 (-157 |#1|)) (-934) (-1114))) (T -554))
+((-2284 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-592 (-1092))) (-4 *2 (-13 (-408 (-157 *5)) (-934) (-1114))) (-4 *5 (-13 (-517) (-789))) (-5 *1 (-554 *5 *6 *2)) (-4 *6 (-13 (-408 *5) (-934) (-1114))))) (-3775 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789))) (-5 *2 (-157 *5)) (-5 *1 (-554 *4 *5 *3)) (-4 *5 (-13 (-408 *4) (-934) (-1114))) (-4 *3 (-13 (-408 (-157 *4)) (-934) (-1114))))) (-3242 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789))) (-4 *2 (-13 (-408 (-157 *4)) (-934) (-1114))) (-5 *1 (-554 *4 *3 *2)) (-4 *3 (-13 (-408 *4) (-934) (-1114))))) (-1654 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789))) (-4 *2 (-13 (-408 *4) (-934) (-1114))) (-5 *1 (-554 *4 *2 *3)) (-4 *3 (-13 (-408 (-157 *4)) (-934) (-1114))))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-157 *5)) (-4 *5 (-13 (-408 *4) (-934) (-1114))) (-4 *4 (-13 (-517) (-789))) (-4 *2 (-13 (-408 (-157 *4)) (-934) (-1114))) (-5 *1 (-554 *4 *5 *2)))))
+(-10 -7 (-15 -3598 (|#3| (-157 |#2|))) (-15 -1654 (|#2| |#3|)) (-15 -3242 (|#3| |#2|)) (-15 -3775 ((-157 |#2|) |#3|)) (-15 -2284 (|#3| |#3| (-592 (-565 |#3|)) (-592 (-1092)))))
+((-2399 (($ (-1 (-108) |#1|) $) 17)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-4065 (($ (-1 |#1| |#1|) |#1|) 9)) (-2374 (($ (-1 (-108) |#1|) $) 13)) (-2387 (($ (-1 (-108) |#1|) $) 15)) (-4114 (((-1073 |#1|) $) 18)) (-4100 (((-798) $) NIL)))
+(((-555 |#1|) (-13 (-566 (-798)) (-10 -8 (-15 -2016 ($ (-1 |#1| |#1|) $)) (-15 -2374 ($ (-1 (-108) |#1|) $)) (-15 -2387 ($ (-1 (-108) |#1|) $)) (-15 -2399 ($ (-1 (-108) |#1|) $)) (-15 -4065 ($ (-1 |#1| |#1|) |#1|)) (-15 -4114 ((-1073 |#1|) $)))) (-1128)) (T -555))
+((-2016 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-555 *3)))) (-2374 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1128)) (-5 *1 (-555 *3)))) (-2387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1128)) (-5 *1 (-555 *3)))) (-2399 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1128)) (-5 *1 (-555 *3)))) (-4065 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-555 *3)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-555 *3)) (-4 *3 (-1128)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -2016 ($ (-1 |#1| |#1|) $)) (-15 -2374 ($ (-1 (-108) |#1|) $)) (-15 -2387 ($ (-1 (-108) |#1|) $)) (-15 -2399 ($ (-1 (-108) |#1|) $)) (-15 -4065 ($ (-1 |#1| |#1|) |#1|)) (-15 -4114 ((-1073 |#1|) $))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1221 (($ (-713)) NIL (|has| |#1| (-23)))) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-2358 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2436 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4260))) (($ $) NIL (-12 (|has| $ (-6 -4260)) (|has| |#1| (-789))))) (-1842 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2475 (($) NIL T CONST)) (-2670 (($ $) NIL (|has| $ (-6 -4260)))) (-1652 (($ $) NIL)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3081 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) NIL)) (-3856 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-1825 (((-632 |#1|) $ $) NIL (|has| |#1| (-977)))) (-3324 (($ (-713) |#1|) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) NIL (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-3212 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2482 ((|#1| $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-977))))) (-4028 (((-108) $ (-713)) NIL)) (-4128 ((|#1| $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-977))))) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2594 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1647 ((|#1| $) NIL (|has| (-525) (-789)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3453 (($ $ |#1|) NIL (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-3584 ((|#1| $ $) NIL (|has| |#1| (-977)))) (-2139 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2548 (($ $ $) NIL (|has| |#1| (-977)))) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3632 (($ $ $ (-525)) NIL (|has| $ (-6 -4260)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) NIL)) (-2035 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2871 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2860 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-525) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-669))) (($ $ |#1|) NIL (|has| |#1| (-669)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
(((-556 |#1| |#2|) (-1172 |#1|) (-1128) (-525)) (T -556))
NIL
(-1172 |#1|)
-((-3456 (((-1179) $ |#2| |#2|) 36)) (-3666 ((|#2| $) 23)) (-1847 ((|#2| $) 21)) (-2284 (($ (-1 |#3| |#3|) $) 32)) (-3165 (($ (-1 |#3| |#3|) $) 30)) (-1872 ((|#3| $) 26)) (-1420 (($ $ |#3|) 33)) (-2167 (((-108) |#3| $) 17)) (-3341 (((-592 |#3|) $) 15)) (-3406 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-557 |#1| |#2| |#3|) (-10 -8 (-15 -3456 ((-1179) |#1| |#2| |#2|)) (-15 -1420 (|#1| |#1| |#3|)) (-15 -1872 (|#3| |#1|)) (-15 -3666 (|#2| |#1|)) (-15 -1847 (|#2| |#1|)) (-15 -2167 ((-108) |#3| |#1|)) (-15 -3341 ((-592 |#3|) |#1|)) (-15 -3406 (|#3| |#1| |#2|)) (-15 -3406 (|#3| |#1| |#2| |#3|)) (-15 -2284 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3165 (|#1| (-1 |#3| |#3|) |#1|))) (-558 |#2| |#3|) (-1020) (-1128)) (T -557))
+((-3289 (((-1179) $ |#2| |#2|) 36)) (-1732 ((|#2| $) 23)) (-2231 ((|#2| $) 21)) (-3069 (($ (-1 |#3| |#3|) $) 32)) (-2016 (($ (-1 |#3| |#3|) $) 30)) (-1647 ((|#3| $) 26)) (-3453 (($ $ |#3|) 33)) (-2456 (((-108) |#3| $) 17)) (-1717 (((-592 |#3|) $) 15)) (-3431 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-557 |#1| |#2| |#3|) (-10 -8 (-15 -3289 ((-1179) |#1| |#2| |#2|)) (-15 -3453 (|#1| |#1| |#3|)) (-15 -1647 (|#3| |#1|)) (-15 -1732 (|#2| |#1|)) (-15 -2231 (|#2| |#1|)) (-15 -2456 ((-108) |#3| |#1|)) (-15 -1717 ((-592 |#3|) |#1|)) (-15 -3431 (|#3| |#1| |#2|)) (-15 -3431 (|#3| |#1| |#2| |#3|)) (-15 -3069 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2016 (|#1| (-1 |#3| |#3|) |#1|))) (-558 |#2| |#3|) (-1020) (-1128)) (T -557))
NIL
-(-10 -8 (-15 -3456 ((-1179) |#1| |#2| |#2|)) (-15 -1420 (|#1| |#1| |#3|)) (-15 -1872 (|#3| |#1|)) (-15 -3666 (|#2| |#1|)) (-15 -1847 (|#2| |#1|)) (-15 -2167 ((-108) |#3| |#1|)) (-15 -3341 ((-592 |#3|) |#1|)) (-15 -3406 (|#3| |#1| |#2|)) (-15 -3406 (|#3| |#1| |#2| |#3|)) (-15 -2284 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3165 (|#1| (-1 |#3| |#3|) |#1|)))
-((-4236 (((-108) $ $) 19 (|has| |#2| (-1020)))) (-3456 (((-1179) $ |#1| |#1|) 40 (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) 8)) (-1430 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4259)))) (-2169 (($) 7 T CONST)) (-2301 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4259)))) (-2222 ((|#2| $ |#1|) 51)) (-3440 (((-592 |#2|) $) 30 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) 9)) (-3666 ((|#1| $) 43 (|has| |#1| (-789)))) (-2694 (((-592 |#2|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4258))))) (-1847 ((|#1| $) 44 (|has| |#1| (-789)))) (-2284 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#2| |#2|) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22 (|has| |#2| (-1020)))) (-2628 (((-592 |#1|) $) 46)) (-2978 (((-108) |#1| $) 47)) (-2093 (((-1039) $) 21 (|has| |#2| (-1020)))) (-1872 ((|#2| $) 42 (|has| |#1| (-789)))) (-1420 (($ $ |#2|) 41 (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#2|))) 26 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) 25 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) 23 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-2614 (((-108) $ $) 14)) (-2167 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-3341 (((-592 |#2|) $) 48)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2110 (((-713) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4258))) (((-713) |#2| $) 28 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-1217 (((-798) $) 18 (|has| |#2| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#2| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+(-10 -8 (-15 -3289 ((-1179) |#1| |#2| |#2|)) (-15 -3453 (|#1| |#1| |#3|)) (-15 -1647 (|#3| |#1|)) (-15 -1732 (|#2| |#1|)) (-15 -2231 (|#2| |#1|)) (-15 -2456 ((-108) |#3| |#1|)) (-15 -1717 ((-592 |#3|) |#1|)) (-15 -3431 (|#3| |#1| |#2|)) (-15 -3431 (|#3| |#1| |#2| |#3|)) (-15 -3069 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2016 (|#1| (-1 |#3| |#3|) |#1|)))
+((-4087 (((-108) $ $) 19 (|has| |#2| (-1020)))) (-3289 (((-1179) $ |#1| |#1|) 40 (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) 8)) (-1233 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4260)))) (-2475 (($) 7 T CONST)) (-3081 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4260)))) (-3017 ((|#2| $ |#1|) 51)) (-2175 (((-592 |#2|) $) 30 (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) 9)) (-1732 ((|#1| $) 43 (|has| |#1| (-789)))) (-2617 (((-592 |#2|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4259))))) (-2231 ((|#1| $) 44 (|has| |#1| (-789)))) (-3069 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#2| |#2|) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22 (|has| |#2| (-1020)))) (-3177 (((-592 |#1|) $) 46)) (-3461 (((-108) |#1| $) 47)) (-3993 (((-1039) $) 21 (|has| |#2| (-1020)))) (-1647 ((|#2| $) 42 (|has| |#1| (-789)))) (-3453 (($ $ |#2|) 41 (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#2|))) 26 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) 25 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) 23 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-1231 (((-108) $ $) 14)) (-2456 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-1717 (((-592 |#2|) $) 48)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-4002 (((-713) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4259))) (((-713) |#2| $) 28 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-4100 (((-798) $) 18 (|has| |#2| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#2| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-558 |#1| |#2|) (-131) (-1020) (-1128)) (T -558))
-((-3341 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1128)) (-5 *2 (-592 *4)))) (-2978 (*1 *2 *3 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1128)) (-5 *2 (-108)))) (-2628 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1128)) (-5 *2 (-592 *3)))) (-2167 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4258)) (-4 *1 (-558 *4 *3)) (-4 *4 (-1020)) (-4 *3 (-1128)) (-4 *3 (-1020)) (-5 *2 (-108)))) (-1847 (*1 *2 *1) (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1020)) (-4 *2 (-789)))) (-3666 (*1 *2 *1) (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1020)) (-4 *2 (-789)))) (-1872 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1020)) (-4 *3 (-789)) (-4 *2 (-1128)))) (-1420 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-558 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1128)))) (-3456 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1128)) (-5 *2 (-1179)))))
-(-13 (-464 |t#2|) (-267 |t#1| |t#2|) (-10 -8 (-15 -3341 ((-592 |t#2|) $)) (-15 -2978 ((-108) |t#1| $)) (-15 -2628 ((-592 |t#1|) $)) (IF (|has| |t#2| (-1020)) (IF (|has| $ (-6 -4258)) (-15 -2167 ((-108) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-789)) (PROGN (-15 -1847 (|t#1| $)) (-15 -3666 (|t#1| $)) (-15 -1872 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4259)) (PROGN (-15 -1420 ($ $ |t#2|)) (-15 -3456 ((-1179) $ |t#1| |t#1|))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#2| (-1020)) ((-566 (-798)) -3254 (|has| |#2| (-1020)) (|has| |#2| (-566 (-798)))) ((-265 |#1| |#2|) . T) ((-267 |#1| |#2|) . T) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-464 |#2|) . T) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-1020) |has| |#2| (-1020)) ((-1128) . T))
-((-1217 (((-798) $) 19) (((-125) $) 14) (($ (-125)) 13)))
-(((-559) (-13 (-566 (-798)) (-566 (-125)) (-10 -8 (-15 -1217 ($ (-125)))))) (T -559))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-125)) (-5 *1 (-559)))))
-(-13 (-566 (-798)) (-566 (-125)) (-10 -8 (-15 -1217 ($ (-125)))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2841 (((-3 $ "failed")) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1578 (((-3 $ "failed") $ $) NIL)) (-3482 (((-1174 (-632 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-1174 (-632 |#1|)) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-1604 (((-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-2169 (($) NIL T CONST)) (-1614 (((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed")) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3912 (((-3 $ "failed")) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3060 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-2769 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-3420 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-1586 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3082 (((-1088 (-887 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-2837 (($ $ (-856)) NIL)) (-1713 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2269 (((-1088 |#1|) $) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3777 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-2509 (((-1088 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-1950 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2064 (($ (-1174 |#1|)) NIL (|has| |#2| (-395 |#1|))) (($ (-1174 |#1|) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-3457 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3622 (((-856)) NIL (|has| |#2| (-345 |#1|)))) (-1370 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3587 (($ $ (-856)) NIL)) (-2026 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2070 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3545 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3821 (((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed")) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2060 (((-3 $ "failed")) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2383 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-1312 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-1846 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-4106 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2436 (((-1088 (-887 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-2817 (($ $ (-856)) NIL)) (-3807 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-1860 (((-1088 |#1|) $) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3018 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-2379 (((-1088 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-2256 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2619 (((-1075) $) NIL)) (-2220 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2861 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3142 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2093 (((-1039) $) NIL)) (-3322 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3406 ((|#1| $ (-525)) NIL (|has| |#2| (-395 |#1|)))) (-2387 (((-632 |#1|) (-1174 $)) NIL (|has| |#2| (-395 |#1|))) (((-1174 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1174 $) (-1174 $)) NIL (|has| |#2| (-345 |#1|))) (((-1174 |#1|) $ (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-3210 (($ (-1174 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-1174 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-1432 (((-592 (-887 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-592 (-887 |#1|)) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-1990 (($ $ $) NIL)) (-1252 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1217 (((-798) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3094 (((-1174 $)) NIL (|has| |#2| (-395 |#1|)))) (-1962 (((-592 (-1174 |#1|))) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3746 (($ $ $ $) NIL)) (-1218 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1814 (($ (-632 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-2597 (($ $ $) NIL)) (-3136 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1541 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3361 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3349 (($) NIL T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) 24)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-560 |#1| |#2|) (-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -1217 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|))) (-160) (-687 |#1|)) (T -560))
-((-1217 (*1 *1 *2) (-12 (-4 *3 (-160)) (-5 *1 (-560 *3 *2)) (-4 *2 (-687 *3)))))
-(-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -1217 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|)))
-((-4236 (((-108) $ $) NIL)) (-3529 (((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) $ (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) 33)) (-1675 (($ (-592 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) NIL) (($) NIL)) (-3456 (((-1179) $ (-1075) (-1075)) NIL (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 ((|#1| $ (-1075) |#1|) 43)) (-1676 (($ (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258)))) (-2591 (((-3 |#1| "failed") (-1075) $) 46)) (-2169 (($) NIL T CONST)) (-3897 (($ $ (-1075)) 24)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020))))) (-3271 (((-3 |#1| "failed") (-1075) $) 47) (($ (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258))) (($ (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) $) NIL (|has| $ (-6 -4258)))) (-1703 (($ (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258))) (($ (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020))))) (-1284 (((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258))) (((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $ (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) NIL (|has| $ (-6 -4258))) (((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $ (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020))))) (-1364 (((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) $) 32)) (-2301 ((|#1| $ (-1075) |#1|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-1075)) NIL)) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258))) (((-592 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258)))) (-2789 (($ $) 48)) (-3459 (($ (-366)) 22) (($ (-366) (-1075)) 21)) (-3257 (((-366) $) 34)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-1075) $) NIL (|has| (-1075) (-789)))) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258))) (((-592 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) (((-108) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020))))) (-1847 (((-1075) $) NIL (|has| (-1075) (-789)))) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259))) (($ (-1 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL)) (-2356 (((-592 (-1075)) $) 39)) (-2239 (((-108) (-1075) $) NIL)) (-3249 (((-1075) $) 35)) (-2992 (((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) $) NIL)) (-1262 (($ (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) $) NIL)) (-2628 (((-592 (-1075)) $) NIL)) (-2978 (((-108) (-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1872 ((|#1| $) NIL (|has| (-1075) (-789)))) (-1983 (((-3 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) "failed") (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL)) (-1420 (($ $ |#1|) NIL (|has| $ (-6 -4259)))) (-4127 (((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) $) NIL)) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) (-592 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) NIL (-12 (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-288 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020)))) (($ $ (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) NIL (-12 (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-288 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020)))) (($ $ (-273 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) NIL (-12 (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-288 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020)))) (($ $ (-592 (-273 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))))) NIL (-12 (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-288 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) 37)) (-3406 ((|#1| $ (-1075) |#1|) NIL) ((|#1| $ (-1075)) 42)) (-1760 (($ (-592 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) NIL) (($) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) (((-713) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020)))) (((-713) (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-567 (-501))))) (-1230 (($ (-592 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) NIL)) (-1217 (((-798) $) 20)) (-1512 (($ $) 25)) (-1956 (($ (-592 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) NIL)) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 19)) (-3522 (((-713) $) 41 (|has| $ (-6 -4258)))))
-(((-561 |#1|) (-13 (-342 (-366) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) (-1105 (-1075) |#1|) (-10 -8 (-6 -4258) (-15 -2789 ($ $)))) (-1020)) (T -561))
-((-2789 (*1 *1 *1) (-12 (-5 *1 (-561 *2)) (-4 *2 (-1020)))))
-(-13 (-342 (-366) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) (-1105 (-1075) |#1|) (-10 -8 (-6 -4258) (-15 -2789 ($ $))))
-((-2004 (((-108) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) $) 15)) (-2356 (((-592 |#2|) $) 19)) (-2239 (((-108) |#2| $) 12)))
-(((-562 |#1| |#2| |#3|) (-10 -8 (-15 -2356 ((-592 |#2|) |#1|)) (-15 -2239 ((-108) |#2| |#1|)) (-15 -2004 ((-108) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) |#1|))) (-563 |#2| |#3|) (-1020) (-1020)) (T -562))
-NIL
-(-10 -8 (-15 -2356 ((-592 |#2|) |#1|)) (-15 -2239 ((-108) |#2| |#1|)) (-15 -2004 ((-108) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) |#1|)))
-((-4236 (((-108) $ $) 19 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (-3991 (((-108) $ (-713)) 8)) (-1676 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 45 (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 55 (|has| $ (-6 -4258)))) (-2591 (((-3 |#2| "failed") |#1| $) 61)) (-2169 (($) 7 T CONST)) (-1910 (($ $) 58 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258))))) (-3271 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 47 (|has| $ (-6 -4258))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 46 (|has| $ (-6 -4258))) (((-3 |#2| "failed") |#1| $) 62)) (-1703 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 54 (|has| $ (-6 -4258)))) (-1284 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 56 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258)))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 53 (|has| $ (-6 -4258))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 52 (|has| $ (-6 -4258)))) (-3440 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 30 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) 9)) (-2694 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (-2356 (((-592 |#1|) $) 63)) (-2239 (((-108) |#1| $) 64)) (-2992 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 39)) (-1262 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 40)) (-2093 (((-1039) $) 21 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (-1983 (((-3 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) "failed") (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 51)) (-4127 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 41)) (-3944 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))))) 26 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 25 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 24 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 23 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-1760 (($) 49) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 48)) (-2110 (((-713) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 31 (|has| $ (-6 -4258))) (((-713) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-3210 (((-501) $) 59 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-567 (-501))))) (-1230 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 50)) (-1217 (((-798) $) 18 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-566 (-798))))) (-1956 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 42)) (-3029 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-1717 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1128)) (-5 *2 (-592 *4)))) (-3461 (*1 *2 *3 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1128)) (-5 *2 (-108)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1128)) (-5 *2 (-592 *3)))) (-2456 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-558 *4 *3)) (-4 *4 (-1020)) (-4 *3 (-1128)) (-4 *3 (-1020)) (-5 *2 (-108)))) (-2231 (*1 *2 *1) (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1020)) (-4 *2 (-789)))) (-1732 (*1 *2 *1) (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1020)) (-4 *2 (-789)))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1020)) (-4 *3 (-789)) (-4 *2 (-1128)))) (-3453 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4260)) (-4 *1 (-558 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1128)))) (-3289 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4260)) (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1128)) (-5 *2 (-1179)))))
+(-13 (-464 |t#2|) (-267 |t#1| |t#2|) (-10 -8 (-15 -1717 ((-592 |t#2|) $)) (-15 -3461 ((-108) |t#1| $)) (-15 -3177 ((-592 |t#1|) $)) (IF (|has| |t#2| (-1020)) (IF (|has| $ (-6 -4259)) (-15 -2456 ((-108) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-789)) (PROGN (-15 -2231 (|t#1| $)) (-15 -1732 (|t#1| $)) (-15 -1647 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4260)) (PROGN (-15 -3453 ($ $ |t#2|)) (-15 -3289 ((-1179) $ |t#1| |t#1|))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#2| (-1020)) ((-566 (-798)) -2067 (|has| |#2| (-1020)) (|has| |#2| (-566 (-798)))) ((-265 |#1| |#2|) . T) ((-267 |#1| |#2|) . T) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-464 |#2|) . T) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-1020) |has| |#2| (-1020)) ((-1128) . T))
+((-4100 (((-798) $) 19) (((-125) $) 14) (($ (-125)) 13)))
+(((-559) (-13 (-566 (-798)) (-566 (-125)) (-10 -8 (-15 -4100 ($ (-125)))))) (T -559))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-125)) (-5 *1 (-559)))))
+(-13 (-566 (-798)) (-566 (-125)) (-10 -8 (-15 -4100 ($ (-125)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1509 (((-3 $ "failed")) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3222 (((-3 $ "failed") $ $) NIL)) (-3551 (((-1174 (-632 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-1174 (-632 |#1|)) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-3651 (((-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-2475 (($) NIL T CONST)) (-3734 (((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed")) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2394 (((-3 $ "failed")) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2946 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-2126 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-4187 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-3322 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3141 (((-1088 (-887 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-1488 (($ $ (-856)) NIL)) (-3447 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-4047 (((-1088 |#1|) $) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3411 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-1521 (((-1088 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-3838 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2580 (($ (-1174 |#1|)) NIL (|has| |#2| (-395 |#1|))) (($ (-1174 |#1|) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-3300 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3085 (((-856)) NIL (|has| |#2| (-345 |#1|)))) (-1822 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2156 (($ $ (-856)) NIL)) (-3387 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2634 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2936 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2661 (((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed")) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2542 (((-3 $ "failed")) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2713 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-3309 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2222 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-3711 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2056 (((-1088 (-887 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-2486 (($ $ (-856)) NIL)) (-3714 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2357 (((-1088 |#1|) $) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2623 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-2673 (((-1088 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-3938 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1289 (((-1075) $) NIL)) (-1780 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1719 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2490 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3993 (((-1039) $) NIL)) (-1539 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3431 ((|#1| $ (-525)) NIL (|has| |#2| (-395 |#1|)))) (-2754 (((-632 |#1|) (-1174 $)) NIL (|has| |#2| (-395 |#1|))) (((-1174 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1174 $) (-1174 $)) NIL (|has| |#2| (-345 |#1|))) (((-1174 |#1|) $ (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-2069 (($ (-1174 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-1174 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-3600 (((-592 (-887 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-592 (-887 |#1|)) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-1242 (($ $ $) NIL)) (-1682 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-4100 (((-798) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2103 (((-1174 $)) NIL (|has| |#2| (-395 |#1|)))) (-3974 (((-592 (-1174 |#1|))) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3133 (($ $ $ $) NIL)) (-1839 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1590 (($ (-632 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-4148 (($ $ $) NIL)) (-2453 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1569 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1886 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3364 (($) NIL T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) 24)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-560 |#1| |#2|) (-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -4100 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|))) (-160) (-687 |#1|)) (T -560))
+((-4100 (*1 *1 *2) (-12 (-4 *3 (-160)) (-5 *1 (-560 *3 *2)) (-4 *2 (-687 *3)))))
+(-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -4100 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|)))
+((-4087 (((-108) $ $) NIL)) (-2773 (((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) $ (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) 33)) (-3311 (($ (-592 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) NIL) (($) NIL)) (-3289 (((-1179) $ (-1075) (-1075)) NIL (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 ((|#1| $ (-1075) |#1|) 43)) (-3050 (($ (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259)))) (-1515 (((-3 |#1| "failed") (-1075) $) 46)) (-2475 (($) NIL T CONST)) (-2220 (($ $ (-1075)) 24)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020))))) (-4205 (((-3 |#1| "failed") (-1075) $) 47) (($ (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259))) (($ (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) $) NIL (|has| $ (-6 -4259)))) (-2698 (($ (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259))) (($ (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020))))) (-3504 (((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259))) (((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $ (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) NIL (|has| $ (-6 -4259))) (((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $ (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020))))) (-1754 (((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) $) 32)) (-3081 ((|#1| $ (-1075) |#1|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-1075)) NIL)) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259))) (((-592 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259)))) (-2286 (($ $) 48)) (-2046 (($ (-366)) 22) (($ (-366) (-1075)) 21)) (-2411 (((-366) $) 34)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-1075) $) NIL (|has| (-1075) (-789)))) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259))) (((-592 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) (((-108) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020))))) (-2231 (((-1075) $) NIL (|has| (-1075) (-789)))) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260))) (($ (-1 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL)) (-1398 (((-592 (-1075)) $) 39)) (-3770 (((-108) (-1075) $) NIL)) (-4022 (((-1075) $) 35)) (-3577 (((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) $) NIL)) (-3246 (($ (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) $) NIL)) (-3177 (((-592 (-1075)) $) NIL)) (-3461 (((-108) (-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1647 ((|#1| $) NIL (|has| (-1075) (-789)))) (-4202 (((-3 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) "failed") (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL)) (-3453 (($ $ |#1|) NIL (|has| $ (-6 -4260)))) (-2724 (((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) $) NIL)) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) (-592 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) NIL (-12 (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-288 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020)))) (($ $ (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) NIL (-12 (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-288 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020)))) (($ $ (-273 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) NIL (-12 (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-288 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020)))) (($ $ (-592 (-273 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))))) NIL (-12 (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-288 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) 37)) (-3431 ((|#1| $ (-1075) |#1|) NIL) ((|#1| $ (-1075)) 42)) (-2637 (($ (-592 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) NIL) (($) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) (((-713) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020)))) (((-713) (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-567 (-501))))) (-4114 (($ (-592 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) NIL)) (-4100 (((-798) $) 20)) (-3267 (($ $) 25)) (-3905 (($ (-592 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) NIL)) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 19)) (-2827 (((-713) $) 41 (|has| $ (-6 -4259)))))
+(((-561 |#1|) (-13 (-342 (-366) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) (-1105 (-1075) |#1|) (-10 -8 (-6 -4259) (-15 -2286 ($ $)))) (-1020)) (T -561))
+((-2286 (*1 *1 *1) (-12 (-5 *1 (-561 *2)) (-4 *2 (-1020)))))
+(-13 (-342 (-366) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) (-1105 (-1075) |#1|) (-10 -8 (-6 -4259) (-15 -2286 ($ $))))
+((-3198 (((-108) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) $) 15)) (-1398 (((-592 |#2|) $) 19)) (-3770 (((-108) |#2| $) 12)))
+(((-562 |#1| |#2| |#3|) (-10 -8 (-15 -1398 ((-592 |#2|) |#1|)) (-15 -3770 ((-108) |#2| |#1|)) (-15 -3198 ((-108) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) |#1|))) (-563 |#2| |#3|) (-1020) (-1020)) (T -562))
+NIL
+(-10 -8 (-15 -1398 ((-592 |#2|) |#1|)) (-15 -3770 ((-108) |#2| |#1|)) (-15 -3198 ((-108) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) |#1|)))
+((-4087 (((-108) $ $) 19 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (-3779 (((-108) $ (-713)) 8)) (-3050 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 45 (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 55 (|has| $ (-6 -4259)))) (-1515 (((-3 |#2| "failed") |#1| $) 61)) (-2475 (($) 7 T CONST)) (-1681 (($ $) 58 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259))))) (-4205 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 47 (|has| $ (-6 -4259))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 46 (|has| $ (-6 -4259))) (((-3 |#2| "failed") |#1| $) 62)) (-2698 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 57 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 54 (|has| $ (-6 -4259)))) (-3504 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 56 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259)))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 53 (|has| $ (-6 -4259))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 52 (|has| $ (-6 -4259)))) (-2175 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 30 (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) 9)) (-2617 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 27 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (-1398 (((-592 |#1|) $) 63)) (-3770 (((-108) |#1| $) 64)) (-3577 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 39)) (-3246 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 40)) (-3993 (((-1039) $) 21 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (-4202 (((-3 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) "failed") (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 51)) (-2724 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 41)) (-1518 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))))) 26 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 25 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 24 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 23 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-2637 (($) 49) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 48)) (-4002 (((-713) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 31 (|has| $ (-6 -4259))) (((-713) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-2069 (((-501) $) 59 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-567 (-501))))) (-4114 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 50)) (-4100 (((-798) $) 18 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-566 (-798))))) (-3905 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 42)) (-2706 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-563 |#1| |#2|) (-131) (-1020) (-1020)) (T -563))
-((-2239 (*1 *2 *3 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-5 *2 (-108)))) (-2356 (*1 *2 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-5 *2 (-592 *3)))) (-3271 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))) (-2591 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))))
-(-13 (-209 (-2 (|:| -3364 |t#1|) (|:| -4201 |t#2|))) (-10 -8 (-15 -2239 ((-108) |t#1| $)) (-15 -2356 ((-592 |t#1|) $)) (-15 -3271 ((-3 |t#2| "failed") |t#1| $)) (-15 -2591 ((-3 |t#2| "failed") |t#1| $))))
-(((-33) . T) ((-102 #0=(-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T) ((-97) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) ((-566 (-798)) -3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-566 (-798)))) ((-142 #0#) . T) ((-567 (-501)) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-567 (-501))) ((-209 #0#) . T) ((-215 #0#) . T) ((-288 #0#) -12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))) ((-464 #0#) . T) ((-486 #0# #0#) -12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))) ((-1020) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) ((-1128) . T))
-((-2155 (((-565 |#2|) |#1|) 15)) (-1958 (((-3 |#1| "failed") (-565 |#2|)) 19)))
-(((-564 |#1| |#2|) (-10 -7 (-15 -2155 ((-565 |#2|) |#1|)) (-15 -1958 ((-3 |#1| "failed") (-565 |#2|)))) (-789) (-789)) (T -564))
-((-1958 (*1 *2 *3) (|partial| -12 (-5 *3 (-565 *4)) (-4 *4 (-789)) (-4 *2 (-789)) (-5 *1 (-564 *2 *4)))) (-2155 (*1 *2 *3) (-12 (-5 *2 (-565 *4)) (-5 *1 (-564 *3 *4)) (-4 *3 (-789)) (-4 *4 (-789)))))
-(-10 -7 (-15 -2155 ((-565 |#2|) |#1|)) (-15 -1958 ((-3 |#1| "failed") (-565 |#2|))))
-((-4236 (((-108) $ $) NIL)) (-2474 (((-3 (-1092) "failed") $) 37)) (-2543 (((-1179) $ (-713)) 26)) (-1932 (((-713) $) 25)) (-3930 (((-110) $) 12)) (-3257 (((-1092) $) 20)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-2619 (((-1075) $) NIL)) (-3173 (($ (-110) (-592 |#1|) (-713)) 30) (($ (-1092)) 31)) (-3131 (((-108) $ (-110)) 18) (((-108) $ (-1092)) 16)) (-1794 (((-713) $) 22)) (-2093 (((-1039) $) NIL)) (-3210 (((-827 (-525)) $) 77 (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) 84 (|has| |#1| (-567 (-827 (-357))))) (((-501) $) 69 (|has| |#1| (-567 (-501))))) (-1217 (((-798) $) 55)) (-2771 (((-592 |#1|) $) 24)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 41)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 42)))
-(((-565 |#1|) (-13 (-127) (-819 |#1|) (-10 -8 (-15 -3257 ((-1092) $)) (-15 -3930 ((-110) $)) (-15 -2771 ((-592 |#1|) $)) (-15 -1794 ((-713) $)) (-15 -3173 ($ (-110) (-592 |#1|) (-713))) (-15 -3173 ($ (-1092))) (-15 -2474 ((-3 (-1092) "failed") $)) (-15 -3131 ((-108) $ (-110))) (-15 -3131 ((-108) $ (-1092))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|))) (-789)) (T -565))
-((-3257 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-1794 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-3173 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-110)) (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-789)) (-5 *1 (-565 *5)))) (-3173 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-2474 (*1 *2 *1) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-3131 (*1 *2 *1 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789)))) (-3131 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789)))))
-(-13 (-127) (-819 |#1|) (-10 -8 (-15 -3257 ((-1092) $)) (-15 -3930 ((-110) $)) (-15 -2771 ((-592 |#1|) $)) (-15 -1794 ((-713) $)) (-15 -3173 ($ (-110) (-592 |#1|) (-713))) (-15 -3173 ($ (-1092))) (-15 -2474 ((-3 (-1092) "failed") $)) (-15 -3131 ((-108) $ (-110))) (-15 -3131 ((-108) $ (-1092))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|)))
-((-1217 ((|#1| $) 6)))
+((-3770 (*1 *2 *3 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-5 *2 (-108)))) (-1398 (*1 *2 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-5 *2 (-592 *3)))) (-4205 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))) (-1515 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))))
+(-13 (-209 (-2 (|:| -1556 |t#1|) (|:| -3448 |t#2|))) (-10 -8 (-15 -3770 ((-108) |t#1| $)) (-15 -1398 ((-592 |t#1|) $)) (-15 -4205 ((-3 |t#2| "failed") |t#1| $)) (-15 -1515 ((-3 |t#2| "failed") |t#1| $))))
+(((-33) . T) ((-102 #0=(-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T) ((-97) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) ((-566 (-798)) -2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-566 (-798)))) ((-142 #0#) . T) ((-567 (-501)) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-567 (-501))) ((-209 #0#) . T) ((-215 #0#) . T) ((-288 #0#) -12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))) ((-464 #0#) . T) ((-486 #0# #0#) -12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))) ((-1020) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) ((-1128) . T))
+((-2318 (((-565 |#2|) |#1|) 15)) (-3931 (((-3 |#1| "failed") (-565 |#2|)) 19)))
+(((-564 |#1| |#2|) (-10 -7 (-15 -2318 ((-565 |#2|) |#1|)) (-15 -3931 ((-3 |#1| "failed") (-565 |#2|)))) (-789) (-789)) (T -564))
+((-3931 (*1 *2 *3) (|partial| -12 (-5 *3 (-565 *4)) (-4 *4 (-789)) (-4 *2 (-789)) (-5 *1 (-564 *2 *4)))) (-2318 (*1 *2 *3) (-12 (-5 *2 (-565 *4)) (-5 *1 (-564 *3 *4)) (-4 *3 (-789)) (-4 *4 (-789)))))
+(-10 -7 (-15 -2318 ((-565 |#2|) |#1|)) (-15 -3931 ((-3 |#1| "failed") (-565 |#2|))))
+((-4087 (((-108) $ $) NIL)) (-2410 (((-3 (-1092) "failed") $) 37)) (-1835 (((-1179) $ (-713)) 26)) (-3856 (((-713) $) 25)) (-1386 (((-110) $) 12)) (-2411 (((-1092) $) 20)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-1289 (((-1075) $) NIL)) (-4152 (($ (-110) (-592 |#1|) (-713)) 30) (($ (-1092)) 31)) (-2412 (((-108) $ (-110)) 18) (((-108) $ (-1092)) 16)) (-2934 (((-713) $) 22)) (-3993 (((-1039) $) NIL)) (-2069 (((-827 (-525)) $) 77 (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) 84 (|has| |#1| (-567 (-827 (-357))))) (((-501) $) 69 (|has| |#1| (-567 (-501))))) (-4100 (((-798) $) 55)) (-2136 (((-592 |#1|) $) 24)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 41)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 42)))
+(((-565 |#1|) (-13 (-127) (-819 |#1|) (-10 -8 (-15 -2411 ((-1092) $)) (-15 -1386 ((-110) $)) (-15 -2136 ((-592 |#1|) $)) (-15 -2934 ((-713) $)) (-15 -4152 ($ (-110) (-592 |#1|) (-713))) (-15 -4152 ($ (-1092))) (-15 -2410 ((-3 (-1092) "failed") $)) (-15 -2412 ((-108) $ (-110))) (-15 -2412 ((-108) $ (-1092))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|))) (-789)) (T -565))
+((-2411 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-4152 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-110)) (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-789)) (-5 *1 (-565 *5)))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-2410 (*1 *2 *1) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-2412 (*1 *2 *1 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789)))) (-2412 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789)))))
+(-13 (-127) (-819 |#1|) (-10 -8 (-15 -2411 ((-1092) $)) (-15 -1386 ((-110) $)) (-15 -2136 ((-592 |#1|) $)) (-15 -2934 ((-713) $)) (-15 -4152 ($ (-110) (-592 |#1|) (-713))) (-15 -4152 ($ (-1092))) (-15 -2410 ((-3 (-1092) "failed") $)) (-15 -2412 ((-108) $ (-110))) (-15 -2412 ((-108) $ (-1092))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|)))
+((-4100 ((|#1| $) 6)))
(((-566 |#1|) (-131) (-1128)) (T -566))
-((-1217 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-1128)))))
-(-13 (-10 -8 (-15 -1217 (|t#1| $))))
-((-3210 ((|#1| $) 6)))
+((-4100 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-1128)))))
+(-13 (-10 -8 (-15 -4100 (|t#1| $))))
+((-2069 ((|#1| $) 6)))
(((-567 |#1|) (-131) (-1128)) (T -567))
-((-3210 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-1128)))))
-(-13 (-10 -8 (-15 -3210 (|t#1| $))))
-((-3231 (((-3 (-1088 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 (-396 |#2|) |#2|)) 15) (((-3 (-1088 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)) 16)))
-(((-568 |#1| |#2|) (-10 -7 (-15 -3231 ((-3 (-1088 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|))) (-15 -3231 ((-3 (-1088 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 (-396 |#2|) |#2|)))) (-13 (-138) (-27) (-968 (-525)) (-968 (-385 (-525)))) (-1150 |#1|)) (T -568))
-((-3231 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-138) (-27) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-1088 (-385 *6))) (-5 *1 (-568 *5 *6)) (-5 *3 (-385 *6)))) (-3231 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-138) (-27) (-968 (-525)) (-968 (-385 (-525))))) (-4 *5 (-1150 *4)) (-5 *2 (-1088 (-385 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-385 *5)))))
-(-10 -7 (-15 -3231 ((-3 (-1088 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|))) (-15 -3231 ((-3 (-1088 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 (-396 |#2|) |#2|))))
-((-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) 10)))
-(((-569 |#1| |#2|) (-10 -8 (-15 -1217 (|#1| |#2|)) (-15 -1217 (|#1| (-525))) (-15 -1217 ((-798) |#1|))) (-570 |#2|) (-977)) (T -569))
-NIL
-(-10 -8 (-15 -1217 (|#1| |#2|)) (-15 -1217 (|#1| (-525))) (-15 -1217 ((-798) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 36)) (-3917 (((-713)) 29)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
+((-2069 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-1128)))))
+(-13 (-10 -8 (-15 -2069 (|t#1| $))))
+((-3899 (((-3 (-1088 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 (-396 |#2|) |#2|)) 15) (((-3 (-1088 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)) 16)))
+(((-568 |#1| |#2|) (-10 -7 (-15 -3899 ((-3 (-1088 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|))) (-15 -3899 ((-3 (-1088 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 (-396 |#2|) |#2|)))) (-13 (-138) (-27) (-968 (-525)) (-968 (-385 (-525)))) (-1150 |#1|)) (T -568))
+((-3899 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-138) (-27) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-1088 (-385 *6))) (-5 *1 (-568 *5 *6)) (-5 *3 (-385 *6)))) (-3899 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-138) (-27) (-968 (-525)) (-968 (-385 (-525))))) (-4 *5 (-1150 *4)) (-5 *2 (-1088 (-385 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-385 *5)))))
+(-10 -7 (-15 -3899 ((-3 (-1088 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|))) (-15 -3899 ((-3 (-1088 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 (-396 |#2|) |#2|))))
+((-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) 10)))
+(((-569 |#1| |#2|) (-10 -8 (-15 -4100 (|#1| |#2|)) (-15 -4100 (|#1| (-525))) (-15 -4100 ((-798) |#1|))) (-570 |#2|) (-977)) (T -569))
+NIL
+(-10 -8 (-15 -4100 (|#1| |#2|)) (-15 -4100 (|#1| (-525))) (-15 -4100 ((-798) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 36)) (-2448 (((-713)) 29)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
(((-570 |#1|) (-131) (-977)) (T -570))
-((-1217 (*1 *1 *2) (-12 (-4 *1 (-570 *2)) (-4 *2 (-977)))))
-(-13 (-977) (-594 |t#1|) (-10 -8 (-15 -1217 ($ |t#1|))))
+((-4100 (*1 *1 *2) (-12 (-4 *1 (-570 *2)) (-4 *2 (-977)))))
+(-13 (-977) (-594 |t#1|) (-10 -8 (-15 -4100 ($ |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-669) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-3855 (((-525) $) NIL (|has| |#1| (-787)))) (-2169 (($) NIL T CONST)) (-3457 (((-3 $ "failed") $) NIL)) (-1222 (((-108) $) NIL (|has| |#1| (-787)))) (-1396 (((-108) $) NIL)) (-3114 ((|#1| $) 13)) (-3256 (((-108) $) NIL (|has| |#1| (-787)))) (-2638 (($ $ $) NIL (|has| |#1| (-787)))) (-3662 (($ $ $) NIL (|has| |#1| (-787)))) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3123 ((|#3| $) 15)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL)) (-3917 (((-713)) 20)) (-2802 (($ $) NIL (|has| |#1| (-787)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) 12 T CONST)) (-4011 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-787)))) (-4075 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-571 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -4075 ($ $ |#3|)) (-15 -4075 ($ |#1| |#3|)) (-15 -3114 (|#1| $)) (-15 -3123 (|#3| $)))) (-37 |#2|) (-160) (|SubsetCategory| (-669) |#2|)) (T -571))
-((-4075 (*1 *1 *1 *2) (-12 (-4 *4 (-160)) (-5 *1 (-571 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-669) *4)))) (-4075 (*1 *1 *2 *3) (-12 (-4 *4 (-160)) (-5 *1 (-571 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-669) *4)))) (-3114 (*1 *2 *1) (-12 (-4 *3 (-160)) (-4 *2 (-37 *3)) (-5 *1 (-571 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-669) *3)))) (-3123 (*1 *2 *1) (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4)) (-5 *1 (-571 *3 *4 *2)) (-4 *3 (-37 *4)))))
-(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -4075 ($ $ |#3|)) (-15 -4075 ($ |#1| |#3|)) (-15 -3114 (|#1| $)) (-15 -3123 (|#3| $))))
-((-2812 ((|#2| |#2| (-1092) (-1092)) 18)))
-(((-572 |#1| |#2|) (-10 -7 (-15 -2812 (|#2| |#2| (-1092) (-1092)))) (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1114) (-893) (-29 |#1|))) (T -572))
-((-2812 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-1114) (-893) (-29 *4))))))
-(-10 -7 (-15 -2812 (|#2| |#2| (-1092) (-1092))))
-((-4236 (((-108) $ $) 56)) (-1209 (((-108) $) 52)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-3976 ((|#1| $) 49)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2193 (((-108) $ $) NIL (|has| |#1| (-341)))) (-2181 (((-2 (|:| -1293 $) (|:| -2748 (-385 |#2|))) (-385 |#2|)) 97 (|has| |#1| (-341)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-1572 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-1747 (($ $ $) NIL (|has| |#1| (-341)))) (-3063 (($ $) 24)) (-3457 (((-3 $ "failed") $) 75)) (-1733 (($ $ $) NIL (|has| |#1| (-341)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2581 (((-525) $) 19)) (-1396 (((-108) $) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1212 (((-108) $) 36)) (-2876 (($ |#1| (-525)) 21)) (-3043 ((|#1| $) 51)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) 87 (|has| |#1| (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-1715 (((-3 $ "failed") $ $) 79)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-3684 (((-713) $) 99 (|has| |#1| (-341)))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 98 (|has| |#1| (-341)))) (-3376 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-2343 (((-525) $) 34)) (-3210 (((-385 |#2|) $) 42)) (-1217 (((-798) $) 62) (($ (-525)) 32) (($ $) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) 31) (($ |#2|) 22)) (-1568 ((|#1| $ (-525)) 63)) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) 29)) (-3325 (((-108) $ $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 9 T CONST)) (-3359 (($) 12 T CONST)) (-2022 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-3955 (((-108) $ $) 17)) (-4061 (($ $) 46) (($ $ $) NIL)) (-4047 (($ $ $) 76)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 26) (($ $ $) 44)))
-(((-573 |#1| |#2|) (-13 (-211 |#2|) (-517) (-567 (-385 |#2|)) (-389 |#1|) (-968 |#2|) (-10 -8 (-15 -1212 ((-108) $)) (-15 -2343 ((-525) $)) (-15 -2581 ((-525) $)) (-15 -3063 ($ $)) (-15 -3043 (|#1| $)) (-15 -3976 (|#1| $)) (-15 -1568 (|#1| $ (-525))) (-15 -2876 ($ |#1| (-525))) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-286)) (-15 -2181 ((-2 (|:| -1293 $) (|:| -2748 (-385 |#2|))) (-385 |#2|)))) |%noBranch|))) (-517) (-1150 |#1|)) (T -573))
-((-1212 (*1 *2 *1) (-12 (-4 *3 (-517)) (-5 *2 (-108)) (-5 *1 (-573 *3 *4)) (-4 *4 (-1150 *3)))) (-2343 (*1 *2 *1) (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4)) (-4 *4 (-1150 *3)))) (-2581 (*1 *2 *1) (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4)) (-4 *4 (-1150 *3)))) (-3063 (*1 *1 *1) (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1150 *2)))) (-3043 (*1 *2 *1) (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1150 *2)))) (-3976 (*1 *2 *1) (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1150 *2)))) (-1568 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4)) (-4 *4 (-1150 *2)))) (-2876 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4)) (-4 *4 (-1150 *2)))) (-2181 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *4 (-517)) (-4 *5 (-1150 *4)) (-5 *2 (-2 (|:| -1293 (-573 *4 *5)) (|:| -2748 (-385 *5)))) (-5 *1 (-573 *4 *5)) (-5 *3 (-385 *5)))))
-(-13 (-211 |#2|) (-517) (-567 (-385 |#2|)) (-389 |#1|) (-968 |#2|) (-10 -8 (-15 -1212 ((-108) $)) (-15 -2343 ((-525) $)) (-15 -2581 ((-525) $)) (-15 -3063 ($ $)) (-15 -3043 (|#1| $)) (-15 -3976 (|#1| $)) (-15 -1568 (|#1| $ (-525))) (-15 -2876 ($ |#1| (-525))) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-286)) (-15 -2181 ((-2 (|:| -1293 $) (|:| -2748 (-385 |#2|))) (-385 |#2|)))) |%noBranch|)))
-((-1589 (((-592 |#6|) (-592 |#4|) (-108)) 47)) (-4102 ((|#6| |#6|) 40)))
-(((-574 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4102 (|#6| |#6|)) (-15 -1589 ((-592 |#6|) (-592 |#4|) (-108)))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|) (-1029 |#1| |#2| |#3| |#4|)) (T -574))
-((-1589 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *10)) (-5 *1 (-574 *5 *6 *7 *8 *9 *10)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *10 (-1029 *5 *6 *7 *8)))) (-4102 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *1 (-574 *3 *4 *5 *6 *7 *2)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *2 (-1029 *3 *4 *5 *6)))))
-(-10 -7 (-15 -4102 (|#6| |#6|)) (-15 -1589 ((-592 |#6|) (-592 |#4|) (-108))))
-((-1695 (((-108) |#3| (-713) (-592 |#3|)) 23)) (-2281 (((-3 (-2 (|:| |polfac| (-592 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-592 (-1088 |#3|)))) "failed") |#3| (-592 (-1088 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3843 (-592 (-2 (|:| |irr| |#4|) (|:| -1616 (-525)))))) (-592 |#3|) (-592 |#1|) (-592 |#3|)) 55)))
-(((-575 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1695 ((-108) |#3| (-713) (-592 |#3|))) (-15 -2281 ((-3 (-2 (|:| |polfac| (-592 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-592 (-1088 |#3|)))) "failed") |#3| (-592 (-1088 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3843 (-592 (-2 (|:| |irr| |#4|) (|:| -1616 (-525)))))) (-592 |#3|) (-592 |#1|) (-592 |#3|)))) (-789) (-735) (-286) (-884 |#3| |#2| |#1|)) (T -575))
-((-2281 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3843 (-592 (-2 (|:| |irr| *10) (|:| -1616 (-525))))))) (-5 *6 (-592 *3)) (-5 *7 (-592 *8)) (-4 *8 (-789)) (-4 *3 (-286)) (-4 *10 (-884 *3 *9 *8)) (-4 *9 (-735)) (-5 *2 (-2 (|:| |polfac| (-592 *10)) (|:| |correct| *3) (|:| |corrfact| (-592 (-1088 *3))))) (-5 *1 (-575 *8 *9 *3 *10)) (-5 *4 (-592 (-1088 *3))))) (-1695 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-713)) (-5 *5 (-592 *3)) (-4 *3 (-286)) (-4 *6 (-789)) (-4 *7 (-735)) (-5 *2 (-108)) (-5 *1 (-575 *6 *7 *3 *8)) (-4 *8 (-884 *3 *7 *6)))))
-(-10 -7 (-15 -1695 ((-108) |#3| (-713) (-592 |#3|))) (-15 -2281 ((-3 (-2 (|:| |polfac| (-592 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-592 (-1088 |#3|)))) "failed") |#3| (-592 (-1088 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3843 (-592 (-2 (|:| |irr| |#4|) (|:| -1616 (-525)))))) (-592 |#3|) (-592 |#1|) (-592 |#3|))))
-((-4236 (((-108) $ $) NIL)) (-2726 (((-592 |#1|) $) NIL)) (-2169 (($) NIL T CONST)) (-3457 (((-3 $ "failed") $) NIL)) (-1396 (((-108) $) NIL)) (-1276 (($ $) 67)) (-1517 (((-610 |#1| |#2|) $) 52)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) 70)) (-2129 (((-592 (-273 |#2|)) $ $) 33)) (-2093 (((-1039) $) NIL)) (-3096 (($ (-610 |#1| |#2|)) 48)) (-1499 (($ $ $) NIL)) (-1990 (($ $ $) NIL)) (-1217 (((-798) $) 58) (((-1187 |#1| |#2|) $) NIL) (((-1192 |#1| |#2|) $) 66)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3359 (($) 53 T CONST)) (-1967 (((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $) 31)) (-2907 (((-592 (-610 |#1| |#2|)) (-592 |#1|)) 65)) (-1719 (((-592 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $) 37)) (-3955 (((-108) $ $) 54)) (-4075 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ $ $) 44)))
-(((-576 |#1| |#2| |#3|) (-13 (-450) (-10 -8 (-15 -3096 ($ (-610 |#1| |#2|))) (-15 -1517 ((-610 |#1| |#2|) $)) (-15 -1719 ((-592 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $)) (-15 -1217 ((-1187 |#1| |#2|) $)) (-15 -1217 ((-1192 |#1| |#2|) $)) (-15 -1276 ($ $)) (-15 -2726 ((-592 |#1|) $)) (-15 -2907 ((-592 (-610 |#1| |#2|)) (-592 |#1|))) (-15 -1967 ((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $)) (-15 -2129 ((-592 (-273 |#2|)) $ $)))) (-789) (-13 (-160) (-660 (-385 (-525)))) (-856)) (T -576))
-((-3096 (*1 *1 *2) (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-5 *1 (-576 *3 *4 *5)) (-14 *5 (-856)))) (-1517 (*1 *2 *1) (-12 (-5 *2 (-610 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))) (-1719 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| (-828 *3)) (|:| |c| *4)))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-1187 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-1192 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))) (-1276 (*1 *1 *1) (-12 (-5 *1 (-576 *2 *3 *4)) (-4 *2 (-789)) (-4 *3 (-13 (-160) (-660 (-385 (-525))))) (-14 *4 (-856)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))) (-2907 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-610 *4 *5))) (-5 *1 (-576 *4 *5 *6)) (-4 *5 (-13 (-160) (-660 (-385 (-525))))) (-14 *6 (-856)))) (-1967 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| (-617 *3)) (|:| |c| *4)))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))) (-2129 (*1 *2 *1 *1) (-12 (-5 *2 (-592 (-273 *4))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))))
-(-13 (-450) (-10 -8 (-15 -3096 ($ (-610 |#1| |#2|))) (-15 -1517 ((-610 |#1| |#2|) $)) (-15 -1719 ((-592 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $)) (-15 -1217 ((-1187 |#1| |#2|) $)) (-15 -1217 ((-1192 |#1| |#2|) $)) (-15 -1276 ($ $)) (-15 -2726 ((-592 |#1|) $)) (-15 -2907 ((-592 (-610 |#1| |#2|)) (-592 |#1|))) (-15 -1967 ((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $)) (-15 -2129 ((-592 (-273 |#2|)) $ $))))
-((-1589 (((-592 (-1063 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|)))) (-592 (-722 |#1| (-800 |#2|))) (-108)) 72) (((-592 (-974 |#1| |#2|)) (-592 (-722 |#1| (-800 |#2|))) (-108)) 58)) (-2946 (((-108) (-592 (-722 |#1| (-800 |#2|)))) 23)) (-1665 (((-592 (-1063 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|)))) (-592 (-722 |#1| (-800 |#2|))) (-108)) 71)) (-2293 (((-592 (-974 |#1| |#2|)) (-592 (-722 |#1| (-800 |#2|))) (-108)) 57)) (-1988 (((-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|)))) 27)) (-1383 (((-3 (-592 (-722 |#1| (-800 |#2|))) "failed") (-592 (-722 |#1| (-800 |#2|)))) 26)))
-(((-577 |#1| |#2|) (-10 -7 (-15 -2946 ((-108) (-592 (-722 |#1| (-800 |#2|))))) (-15 -1383 ((-3 (-592 (-722 |#1| (-800 |#2|))) "failed") (-592 (-722 |#1| (-800 |#2|))))) (-15 -1988 ((-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|))))) (-15 -2293 ((-592 (-974 |#1| |#2|)) (-592 (-722 |#1| (-800 |#2|))) (-108))) (-15 -1665 ((-592 (-1063 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|)))) (-592 (-722 |#1| (-800 |#2|))) (-108))) (-15 -1589 ((-592 (-974 |#1| |#2|)) (-592 (-722 |#1| (-800 |#2|))) (-108))) (-15 -1589 ((-592 (-1063 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|)))) (-592 (-722 |#1| (-800 |#2|))) (-108)))) (-429) (-592 (-1092))) (T -577))
-((-1589 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1092))) (-5 *2 (-592 (-1063 *5 (-497 (-800 *6)) (-800 *6) (-722 *5 (-800 *6))))) (-5 *1 (-577 *5 *6)))) (-1589 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1092))) (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-577 *5 *6)))) (-1665 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1092))) (-5 *2 (-592 (-1063 *5 (-497 (-800 *6)) (-800 *6) (-722 *5 (-800 *6))))) (-5 *1 (-577 *5 *6)))) (-2293 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1092))) (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-577 *5 *6)))) (-1988 (*1 *2 *2) (-12 (-5 *2 (-592 (-722 *3 (-800 *4)))) (-4 *3 (-429)) (-14 *4 (-592 (-1092))) (-5 *1 (-577 *3 *4)))) (-1383 (*1 *2 *2) (|partial| -12 (-5 *2 (-592 (-722 *3 (-800 *4)))) (-4 *3 (-429)) (-14 *4 (-592 (-1092))) (-5 *1 (-577 *3 *4)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-592 (-722 *4 (-800 *5)))) (-4 *4 (-429)) (-14 *5 (-592 (-1092))) (-5 *2 (-108)) (-5 *1 (-577 *4 *5)))))
-(-10 -7 (-15 -2946 ((-108) (-592 (-722 |#1| (-800 |#2|))))) (-15 -1383 ((-3 (-592 (-722 |#1| (-800 |#2|))) "failed") (-592 (-722 |#1| (-800 |#2|))))) (-15 -1988 ((-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|))))) (-15 -2293 ((-592 (-974 |#1| |#2|)) (-592 (-722 |#1| (-800 |#2|))) (-108))) (-15 -1665 ((-592 (-1063 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|)))) (-592 (-722 |#1| (-800 |#2|))) (-108))) (-15 -1589 ((-592 (-974 |#1| |#2|)) (-592 (-722 |#1| (-800 |#2|))) (-108))) (-15 -1589 ((-592 (-1063 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|)))) (-592 (-722 |#1| (-800 |#2|))) (-108))))
-((-1575 (($ $) 38)) (-2804 (($ $) 21)) (-1549 (($ $) 37)) (-2780 (($ $) 22)) (-1599 (($ $) 36)) (-2836 (($ $) 23)) (-3140 (($) 48)) (-1517 (($ $) 45)) (-3000 (($ $) 17)) (-3205 (($ $ (-1013 $)) 7) (($ $ (-1092)) 6)) (-3096 (($ $) 46)) (-2733 (($ $) 15)) (-2768 (($ $) 16)) (-1609 (($ $) 35)) (-1447 (($ $) 24)) (-1587 (($ $) 34)) (-2815 (($ $) 25)) (-1562 (($ $) 33)) (-2794 (($ $) 26)) (-1649 (($ $) 44)) (-1492 (($ $) 32)) (-1630 (($ $) 43)) (-1465 (($ $) 31)) (-1669 (($ $) 42)) (-1522 (($ $) 30)) (-2359 (($ $) 41)) (-1537 (($ $) 29)) (-1659 (($ $) 40)) (-1506 (($ $) 28)) (-1639 (($ $) 39)) (-1479 (($ $) 27)) (-2149 (($ $) 19)) (-2753 (($ $) 20)) (-3652 (($ $) 18)) (** (($ $ $) 47)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2971 (((-525) $) NIL (|has| |#1| (-787)))) (-2475 (($) NIL T CONST)) (-3300 (((-3 $ "failed") $) NIL)) (-1889 (((-108) $) NIL (|has| |#1| (-787)))) (-2278 (((-108) $) NIL)) (-4066 ((|#1| $) 13)) (-4079 (((-108) $) NIL (|has| |#1| (-787)))) (-3033 (($ $ $) NIL (|has| |#1| (-787)))) (-1609 (($ $ $) NIL (|has| |#1| (-787)))) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4080 ((|#3| $) 15)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL)) (-2448 (((-713)) 20)) (-2380 (($ $) NIL (|has| |#1| (-787)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) 12 T CONST)) (-2830 (((-108) $ $) NIL (|has| |#1| (-787)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-787)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| |#1| (-787)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-787)))) (-2880 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-571 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -2880 ($ $ |#3|)) (-15 -2880 ($ |#1| |#3|)) (-15 -4066 (|#1| $)) (-15 -4080 (|#3| $)))) (-37 |#2|) (-160) (|SubsetCategory| (-669) |#2|)) (T -571))
+((-2880 (*1 *1 *1 *2) (-12 (-4 *4 (-160)) (-5 *1 (-571 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-669) *4)))) (-2880 (*1 *1 *2 *3) (-12 (-4 *4 (-160)) (-5 *1 (-571 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-669) *4)))) (-4066 (*1 *2 *1) (-12 (-4 *3 (-160)) (-4 *2 (-37 *3)) (-5 *1 (-571 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-669) *3)))) (-4080 (*1 *2 *1) (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4)) (-5 *1 (-571 *3 *4 *2)) (-4 *3 (-37 *4)))))
+(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -2880 ($ $ |#3|)) (-15 -2880 ($ |#1| |#3|)) (-15 -4066 (|#1| $)) (-15 -4080 (|#3| $))))
+((-2458 ((|#2| |#2| (-1092) (-1092)) 18)))
+(((-572 |#1| |#2|) (-10 -7 (-15 -2458 (|#2| |#2| (-1092) (-1092)))) (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1114) (-893) (-29 |#1|))) (T -572))
+((-2458 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-1114) (-893) (-29 *4))))))
+(-10 -7 (-15 -2458 (|#2| |#2| (-1092) (-1092))))
+((-4087 (((-108) $ $) 56)) (-2414 (((-108) $) 52)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-1843 ((|#1| $) 49)) (-3222 (((-3 $ "failed") $ $) NIL)) (-1507 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1396 (((-2 (|:| -1331 $) (|:| -3068 (-385 |#2|))) (-385 |#2|)) 97 (|has| |#1| (-341)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-4105 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-1356 (($ $ $) NIL (|has| |#1| (-341)))) (-1451 (($ $) 24)) (-3300 (((-3 $ "failed") $) 75)) (-1332 (($ $ $) NIL (|has| |#1| (-341)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-4000 (((-525) $) 19)) (-2278 (((-108) $) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2457 (((-108) $) 36)) (-1272 (($ |#1| (-525)) 21)) (-1430 ((|#1| $) 51)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) 87 (|has| |#1| (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-1311 (((-3 $ "failed") $ $) 79)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1927 (((-713) $) 99 (|has| |#1| (-341)))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 98 (|has| |#1| (-341)))) (-2702 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-3529 (((-525) $) 34)) (-2069 (((-385 |#2|) $) 42)) (-4100 (((-798) $) 62) (($ (-525)) 32) (($ $) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) 31) (($ |#2|) 22)) (-3136 ((|#1| $ (-525)) 63)) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) 29)) (-1571 (((-108) $ $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 9 T CONST)) (-3375 (($) 12 T CONST)) (-2401 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-2775 (((-108) $ $) 17)) (-2871 (($ $) 46) (($ $ $) NIL)) (-2860 (($ $ $) 76)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 26) (($ $ $) 44)))
+(((-573 |#1| |#2|) (-13 (-211 |#2|) (-517) (-567 (-385 |#2|)) (-389 |#1|) (-968 |#2|) (-10 -8 (-15 -2457 ((-108) $)) (-15 -3529 ((-525) $)) (-15 -4000 ((-525) $)) (-15 -1451 ($ $)) (-15 -1430 (|#1| $)) (-15 -1843 (|#1| $)) (-15 -3136 (|#1| $ (-525))) (-15 -1272 ($ |#1| (-525))) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-286)) (-15 -1396 ((-2 (|:| -1331 $) (|:| -3068 (-385 |#2|))) (-385 |#2|)))) |%noBranch|))) (-517) (-1150 |#1|)) (T -573))
+((-2457 (*1 *2 *1) (-12 (-4 *3 (-517)) (-5 *2 (-108)) (-5 *1 (-573 *3 *4)) (-4 *4 (-1150 *3)))) (-3529 (*1 *2 *1) (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4)) (-4 *4 (-1150 *3)))) (-4000 (*1 *2 *1) (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4)) (-4 *4 (-1150 *3)))) (-1451 (*1 *1 *1) (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1150 *2)))) (-1430 (*1 *2 *1) (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1150 *2)))) (-1843 (*1 *2 *1) (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1150 *2)))) (-3136 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4)) (-4 *4 (-1150 *2)))) (-1272 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4)) (-4 *4 (-1150 *2)))) (-1396 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *4 (-517)) (-4 *5 (-1150 *4)) (-5 *2 (-2 (|:| -1331 (-573 *4 *5)) (|:| -3068 (-385 *5)))) (-5 *1 (-573 *4 *5)) (-5 *3 (-385 *5)))))
+(-13 (-211 |#2|) (-517) (-567 (-385 |#2|)) (-389 |#1|) (-968 |#2|) (-10 -8 (-15 -2457 ((-108) $)) (-15 -3529 ((-525) $)) (-15 -4000 ((-525) $)) (-15 -1451 ($ $)) (-15 -1430 (|#1| $)) (-15 -1843 (|#1| $)) (-15 -3136 (|#1| $ (-525))) (-15 -1272 ($ |#1| (-525))) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-286)) (-15 -1396 ((-2 (|:| -1331 $) (|:| -3068 (-385 |#2|))) (-385 |#2|)))) |%noBranch|)))
+((-3347 (((-592 |#6|) (-592 |#4|) (-108)) 47)) (-3674 ((|#6| |#6|) 40)))
+(((-574 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3674 (|#6| |#6|)) (-15 -3347 ((-592 |#6|) (-592 |#4|) (-108)))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|) (-1029 |#1| |#2| |#3| |#4|)) (T -574))
+((-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *10)) (-5 *1 (-574 *5 *6 *7 *8 *9 *10)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *10 (-1029 *5 *6 *7 *8)))) (-3674 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *1 (-574 *3 *4 *5 *6 *7 *2)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *2 (-1029 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3674 (|#6| |#6|)) (-15 -3347 ((-592 |#6|) (-592 |#4|) (-108))))
+((-3245 (((-108) |#3| (-713) (-592 |#3|)) 23)) (-4166 (((-3 (-2 (|:| |polfac| (-592 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-592 (-1088 |#3|)))) "failed") |#3| (-592 (-1088 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2868 (-592 (-2 (|:| |irr| |#4|) (|:| -3750 (-525)))))) (-592 |#3|) (-592 |#1|) (-592 |#3|)) 55)))
+(((-575 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3245 ((-108) |#3| (-713) (-592 |#3|))) (-15 -4166 ((-3 (-2 (|:| |polfac| (-592 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-592 (-1088 |#3|)))) "failed") |#3| (-592 (-1088 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2868 (-592 (-2 (|:| |irr| |#4|) (|:| -3750 (-525)))))) (-592 |#3|) (-592 |#1|) (-592 |#3|)))) (-789) (-735) (-286) (-884 |#3| |#2| |#1|)) (T -575))
+((-4166 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2868 (-592 (-2 (|:| |irr| *10) (|:| -3750 (-525))))))) (-5 *6 (-592 *3)) (-5 *7 (-592 *8)) (-4 *8 (-789)) (-4 *3 (-286)) (-4 *10 (-884 *3 *9 *8)) (-4 *9 (-735)) (-5 *2 (-2 (|:| |polfac| (-592 *10)) (|:| |correct| *3) (|:| |corrfact| (-592 (-1088 *3))))) (-5 *1 (-575 *8 *9 *3 *10)) (-5 *4 (-592 (-1088 *3))))) (-3245 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-713)) (-5 *5 (-592 *3)) (-4 *3 (-286)) (-4 *6 (-789)) (-4 *7 (-735)) (-5 *2 (-108)) (-5 *1 (-575 *6 *7 *3 *8)) (-4 *8 (-884 *3 *7 *6)))))
+(-10 -7 (-15 -3245 ((-108) |#3| (-713) (-592 |#3|))) (-15 -4166 ((-3 (-2 (|:| |polfac| (-592 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-592 (-1088 |#3|)))) "failed") |#3| (-592 (-1088 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2868 (-592 (-2 (|:| |irr| |#4|) (|:| -3750 (-525)))))) (-592 |#3|) (-592 |#1|) (-592 |#3|))))
+((-4087 (((-108) $ $) NIL)) (-2668 (((-592 |#1|) $) NIL)) (-2475 (($) NIL T CONST)) (-3300 (((-3 $ "failed") $) NIL)) (-2278 (((-108) $) NIL)) (-4064 (($ $) 67)) (-2533 (((-610 |#1| |#2|) $) 52)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) 70)) (-2052 (((-592 (-273 |#2|)) $ $) 33)) (-3993 (((-1039) $) NIL)) (-1618 (($ (-610 |#1| |#2|)) 48)) (-3055 (($ $ $) NIL)) (-1242 (($ $ $) NIL)) (-4100 (((-798) $) 58) (((-1187 |#1| |#2|) $) NIL) (((-1192 |#1| |#2|) $) 66)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3375 (($) 53 T CONST)) (-4030 (((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $) 31)) (-3973 (((-592 (-610 |#1| |#2|)) (-592 |#1|)) 65)) (-3482 (((-592 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $) 37)) (-2775 (((-108) $ $) 54)) (-2880 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ $ $) 44)))
+(((-576 |#1| |#2| |#3|) (-13 (-450) (-10 -8 (-15 -1618 ($ (-610 |#1| |#2|))) (-15 -2533 ((-610 |#1| |#2|) $)) (-15 -3482 ((-592 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $)) (-15 -4100 ((-1187 |#1| |#2|) $)) (-15 -4100 ((-1192 |#1| |#2|) $)) (-15 -4064 ($ $)) (-15 -2668 ((-592 |#1|) $)) (-15 -3973 ((-592 (-610 |#1| |#2|)) (-592 |#1|))) (-15 -4030 ((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $)) (-15 -2052 ((-592 (-273 |#2|)) $ $)))) (-789) (-13 (-160) (-660 (-385 (-525)))) (-856)) (T -576))
+((-1618 (*1 *1 *2) (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-5 *1 (-576 *3 *4 *5)) (-14 *5 (-856)))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-610 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| (-828 *3)) (|:| |c| *4)))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1187 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1192 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))) (-4064 (*1 *1 *1) (-12 (-5 *1 (-576 *2 *3 *4)) (-4 *2 (-789)) (-4 *3 (-13 (-160) (-660 (-385 (-525))))) (-14 *4 (-856)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-610 *4 *5))) (-5 *1 (-576 *4 *5 *6)) (-4 *5 (-13 (-160) (-660 (-385 (-525))))) (-14 *6 (-856)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| (-617 *3)) (|:| |c| *4)))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))) (-2052 (*1 *2 *1 *1) (-12 (-5 *2 (-592 (-273 *4))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))))
+(-13 (-450) (-10 -8 (-15 -1618 ($ (-610 |#1| |#2|))) (-15 -2533 ((-610 |#1| |#2|) $)) (-15 -3482 ((-592 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $)) (-15 -4100 ((-1187 |#1| |#2|) $)) (-15 -4100 ((-1192 |#1| |#2|) $)) (-15 -4064 ($ $)) (-15 -2668 ((-592 |#1|) $)) (-15 -3973 ((-592 (-610 |#1| |#2|)) (-592 |#1|))) (-15 -4030 ((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $)) (-15 -2052 ((-592 (-273 |#2|)) $ $))))
+((-3347 (((-592 (-1063 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|)))) (-592 (-722 |#1| (-800 |#2|))) (-108)) 72) (((-592 (-974 |#1| |#2|)) (-592 (-722 |#1| (-800 |#2|))) (-108)) 58)) (-1349 (((-108) (-592 (-722 |#1| (-800 |#2|)))) 23)) (-4197 (((-592 (-1063 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|)))) (-592 (-722 |#1| (-800 |#2|))) (-108)) 71)) (-1228 (((-592 (-974 |#1| |#2|)) (-592 (-722 |#1| (-800 |#2|))) (-108)) 57)) (-1219 (((-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|)))) 27)) (-3894 (((-3 (-592 (-722 |#1| (-800 |#2|))) "failed") (-592 (-722 |#1| (-800 |#2|)))) 26)))
+(((-577 |#1| |#2|) (-10 -7 (-15 -1349 ((-108) (-592 (-722 |#1| (-800 |#2|))))) (-15 -3894 ((-3 (-592 (-722 |#1| (-800 |#2|))) "failed") (-592 (-722 |#1| (-800 |#2|))))) (-15 -1219 ((-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|))))) (-15 -1228 ((-592 (-974 |#1| |#2|)) (-592 (-722 |#1| (-800 |#2|))) (-108))) (-15 -4197 ((-592 (-1063 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|)))) (-592 (-722 |#1| (-800 |#2|))) (-108))) (-15 -3347 ((-592 (-974 |#1| |#2|)) (-592 (-722 |#1| (-800 |#2|))) (-108))) (-15 -3347 ((-592 (-1063 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|)))) (-592 (-722 |#1| (-800 |#2|))) (-108)))) (-429) (-592 (-1092))) (T -577))
+((-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1092))) (-5 *2 (-592 (-1063 *5 (-497 (-800 *6)) (-800 *6) (-722 *5 (-800 *6))))) (-5 *1 (-577 *5 *6)))) (-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1092))) (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-577 *5 *6)))) (-4197 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1092))) (-5 *2 (-592 (-1063 *5 (-497 (-800 *6)) (-800 *6) (-722 *5 (-800 *6))))) (-5 *1 (-577 *5 *6)))) (-1228 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1092))) (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-577 *5 *6)))) (-1219 (*1 *2 *2) (-12 (-5 *2 (-592 (-722 *3 (-800 *4)))) (-4 *3 (-429)) (-14 *4 (-592 (-1092))) (-5 *1 (-577 *3 *4)))) (-3894 (*1 *2 *2) (|partial| -12 (-5 *2 (-592 (-722 *3 (-800 *4)))) (-4 *3 (-429)) (-14 *4 (-592 (-1092))) (-5 *1 (-577 *3 *4)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-592 (-722 *4 (-800 *5)))) (-4 *4 (-429)) (-14 *5 (-592 (-1092))) (-5 *2 (-108)) (-5 *1 (-577 *4 *5)))))
+(-10 -7 (-15 -1349 ((-108) (-592 (-722 |#1| (-800 |#2|))))) (-15 -3894 ((-3 (-592 (-722 |#1| (-800 |#2|))) "failed") (-592 (-722 |#1| (-800 |#2|))))) (-15 -1219 ((-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|))))) (-15 -1228 ((-592 (-974 |#1| |#2|)) (-592 (-722 |#1| (-800 |#2|))) (-108))) (-15 -4197 ((-592 (-1063 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|)))) (-592 (-722 |#1| (-800 |#2|))) (-108))) (-15 -3347 ((-592 (-974 |#1| |#2|)) (-592 (-722 |#1| (-800 |#2|))) (-108))) (-15 -3347 ((-592 (-1063 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|)))) (-592 (-722 |#1| (-800 |#2|))) (-108))))
+((-1803 (($ $) 38)) (-3659 (($ $) 21)) (-1781 (($ $) 37)) (-3638 (($ $) 22)) (-1828 (($ $) 36)) (-3698 (($ $) 23)) (-4106 (($) 48)) (-2533 (($ $) 45)) (-3074 (($ $) 17)) (-1872 (($ $ (-1013 $)) 7) (($ $ (-1092)) 6)) (-1618 (($ $) 46)) (-1887 (($ $) 15)) (-3615 (($ $) 16)) (-1841 (($ $) 35)) (-3798 (($ $) 24)) (-1816 (($ $) 34)) (-3678 (($ $) 25)) (-1792 (($ $) 33)) (-3649 (($ $) 26)) (-1876 (($ $) 44)) (-3853 (($ $) 32)) (-1853 (($ $) 43)) (-3808 (($ $) 31)) (-1902 (($ $) 42)) (-1760 (($ $) 30)) (-3135 (($ $) 41)) (-1770 (($ $) 29)) (-1891 (($ $) 40)) (-1748 (($ $) 28)) (-1866 (($ $) 39)) (-3820 (($ $) 27)) (-2253 (($ $) 19)) (-1989 (($ $) 20)) (-1592 (($ $) 18)) (** (($ $ $) 47)))
(((-578) (-131)) (T -578))
-((-2753 (*1 *1 *1) (-4 *1 (-578))) (-2149 (*1 *1 *1) (-4 *1 (-578))) (-3652 (*1 *1 *1) (-4 *1 (-578))) (-3000 (*1 *1 *1) (-4 *1 (-578))) (-2768 (*1 *1 *1) (-4 *1 (-578))) (-2733 (*1 *1 *1) (-4 *1 (-578))))
-(-13 (-893) (-1114) (-10 -8 (-15 -2753 ($ $)) (-15 -2149 ($ $)) (-15 -3652 ($ $)) (-15 -3000 ($ $)) (-15 -2768 ($ $)) (-15 -2733 ($ $))))
+((-1989 (*1 *1 *1) (-4 *1 (-578))) (-2253 (*1 *1 *1) (-4 *1 (-578))) (-1592 (*1 *1 *1) (-4 *1 (-578))) (-3074 (*1 *1 *1) (-4 *1 (-578))) (-3615 (*1 *1 *1) (-4 *1 (-578))) (-1887 (*1 *1 *1) (-4 *1 (-578))))
+(-13 (-893) (-1114) (-10 -8 (-15 -1989 ($ $)) (-15 -2253 ($ $)) (-15 -1592 ($ $)) (-15 -3074 ($ $)) (-15 -3615 ($ $)) (-15 -1887 ($ $))))
(((-34) . T) ((-91) . T) ((-263) . T) ((-466) . T) ((-893) . T) ((-1114) . T) ((-1117) . T))
-((-3930 (((-110) (-110)) 83)) (-3000 ((|#2| |#2|) 30)) (-3205 ((|#2| |#2| (-1013 |#2|)) 79) ((|#2| |#2| (-1092)) 52)) (-2733 ((|#2| |#2|) 29)) (-2768 ((|#2| |#2|) 31)) (-1960 (((-108) (-110)) 34)) (-2149 ((|#2| |#2|) 26)) (-2753 ((|#2| |#2|) 28)) (-3652 ((|#2| |#2|) 27)))
-(((-579 |#1| |#2|) (-10 -7 (-15 -1960 ((-108) (-110))) (-15 -3930 ((-110) (-110))) (-15 -2753 (|#2| |#2|)) (-15 -2149 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3000 (|#2| |#2|)) (-15 -2733 (|#2| |#2|)) (-15 -2768 (|#2| |#2|)) (-15 -3205 (|#2| |#2| (-1092))) (-15 -3205 (|#2| |#2| (-1013 |#2|)))) (-13 (-789) (-517)) (-13 (-408 |#1|) (-934) (-1114))) (T -579))
-((-3205 (*1 *2 *2 *3) (-12 (-5 *3 (-1013 *2)) (-4 *2 (-13 (-408 *4) (-934) (-1114))) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2)))) (-3205 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2)) (-4 *2 (-13 (-408 *4) (-934) (-1114))))) (-2768 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-934) (-1114))))) (-2733 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-934) (-1114))))) (-3000 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-934) (-1114))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-934) (-1114))))) (-2149 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-934) (-1114))))) (-2753 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-934) (-1114))))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *4)) (-4 *4 (-13 (-408 *3) (-934) (-1114))))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-579 *4 *5)) (-4 *5 (-13 (-408 *4) (-934) (-1114))))))
-(-10 -7 (-15 -1960 ((-108) (-110))) (-15 -3930 ((-110) (-110))) (-15 -2753 (|#2| |#2|)) (-15 -2149 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3000 (|#2| |#2|)) (-15 -2733 (|#2| |#2|)) (-15 -2768 (|#2| |#2|)) (-15 -3205 (|#2| |#2| (-1092))) (-15 -3205 (|#2| |#2| (-1013 |#2|))))
-((-1767 (((-457 |#1| |#2|) (-227 |#1| |#2|)) 53)) (-3616 (((-592 (-227 |#1| |#2|)) (-592 (-457 |#1| |#2|))) 68)) (-2079 (((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-800 |#1|)) 70) (((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)) (-800 |#1|)) 69)) (-1711 (((-2 (|:| |gblist| (-592 (-227 |#1| |#2|))) (|:| |gvlist| (-592 (-525)))) (-592 (-457 |#1| |#2|))) 108)) (-2746 (((-592 (-457 |#1| |#2|)) (-800 |#1|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|))) 83)) (-1421 (((-2 (|:| |glbase| (-592 (-227 |#1| |#2|))) (|:| |glval| (-592 (-525)))) (-592 (-227 |#1| |#2|))) 118)) (-2180 (((-1174 |#2|) (-457 |#1| |#2|) (-592 (-457 |#1| |#2|))) 58)) (-3169 (((-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|))) 41)) (-1377 (((-227 |#1| |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|))) 50)) (-2899 (((-227 |#1| |#2|) (-592 |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|))) 91)))
-(((-580 |#1| |#2|) (-10 -7 (-15 -1711 ((-2 (|:| |gblist| (-592 (-227 |#1| |#2|))) (|:| |gvlist| (-592 (-525)))) (-592 (-457 |#1| |#2|)))) (-15 -1421 ((-2 (|:| |glbase| (-592 (-227 |#1| |#2|))) (|:| |glval| (-592 (-525)))) (-592 (-227 |#1| |#2|)))) (-15 -3616 ((-592 (-227 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -2079 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)) (-800 |#1|))) (-15 -2079 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-800 |#1|))) (-15 -3169 ((-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -2180 ((-1174 |#2|) (-457 |#1| |#2|) (-592 (-457 |#1| |#2|)))) (-15 -2899 ((-227 |#1| |#2|) (-592 |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -2746 ((-592 (-457 |#1| |#2|)) (-800 |#1|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -1377 ((-227 |#1| |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -1767 ((-457 |#1| |#2|) (-227 |#1| |#2|)))) (-592 (-1092)) (-429)) (T -580))
-((-1767 (*1 *2 *3) (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *2 (-457 *4 *5)) (-5 *1 (-580 *4 *5)))) (-1377 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-227 *4 *5))) (-5 *2 (-227 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5)))) (-2746 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-800 *4)) (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5)))) (-2899 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-227 *5 *6))) (-4 *6 (-429)) (-5 *2 (-227 *5 *6)) (-14 *5 (-592 (-1092))) (-5 *1 (-580 *5 *6)))) (-2180 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-457 *5 *6))) (-5 *3 (-457 *5 *6)) (-14 *5 (-592 (-1092))) (-4 *6 (-429)) (-5 *2 (-1174 *6)) (-5 *1 (-580 *5 *6)))) (-3169 (*1 *2 *2) (-12 (-5 *2 (-592 (-457 *3 *4))) (-14 *3 (-592 (-1092))) (-4 *4 (-429)) (-5 *1 (-580 *3 *4)))) (-2079 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-800 *5)) (-14 *5 (-592 (-1092))) (-5 *2 (-457 *5 *6)) (-5 *1 (-580 *5 *6)) (-4 *6 (-429)))) (-2079 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-800 *5)) (-14 *5 (-592 (-1092))) (-5 *2 (-457 *5 *6)) (-5 *1 (-580 *5 *6)) (-4 *6 (-429)))) (-3616 (*1 *2 *3) (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *2 (-592 (-227 *4 *5))) (-5 *1 (-580 *4 *5)))) (-1421 (*1 *2 *3) (-12 (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *2 (-2 (|:| |glbase| (-592 (-227 *4 *5))) (|:| |glval| (-592 (-525))))) (-5 *1 (-580 *4 *5)) (-5 *3 (-592 (-227 *4 *5))))) (-1711 (*1 *2 *3) (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *2 (-2 (|:| |gblist| (-592 (-227 *4 *5))) (|:| |gvlist| (-592 (-525))))) (-5 *1 (-580 *4 *5)))))
-(-10 -7 (-15 -1711 ((-2 (|:| |gblist| (-592 (-227 |#1| |#2|))) (|:| |gvlist| (-592 (-525)))) (-592 (-457 |#1| |#2|)))) (-15 -1421 ((-2 (|:| |glbase| (-592 (-227 |#1| |#2|))) (|:| |glval| (-592 (-525)))) (-592 (-227 |#1| |#2|)))) (-15 -3616 ((-592 (-227 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -2079 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)) (-800 |#1|))) (-15 -2079 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-800 |#1|))) (-15 -3169 ((-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -2180 ((-1174 |#2|) (-457 |#1| |#2|) (-592 (-457 |#1| |#2|)))) (-15 -2899 ((-227 |#1| |#2|) (-592 |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -2746 ((-592 (-457 |#1| |#2|)) (-800 |#1|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -1377 ((-227 |#1| |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -1767 ((-457 |#1| |#2|) (-227 |#1| |#2|))))
-((-4236 (((-108) $ $) NIL (-3254 (|has| (-51) (-1020)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-1020))))) (-1675 (($) NIL) (($ (-592 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))))) NIL)) (-3456 (((-1179) $ (-1075) (-1075)) NIL (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 (((-51) $ (-1075) (-51)) 16) (((-51) $ (-1092) (-51)) 17)) (-1676 (($ (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258)))) (-2591 (((-3 (-51) "failed") (-1075) $) NIL)) (-2169 (($) NIL T CONST)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-1020))))) (-3271 (($ (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) $) NIL (|has| $ (-6 -4258))) (($ (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258))) (((-3 (-51) "failed") (-1075) $) NIL)) (-1703 (($ (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-1020)))) (($ (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258)))) (-1284 (((-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-1 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) $ (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-1020)))) (((-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-1 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) $ (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) NIL (|has| $ (-6 -4258))) (((-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-1 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258)))) (-2301 (((-51) $ (-1075) (-51)) NIL (|has| $ (-6 -4259)))) (-2222 (((-51) $ (-1075)) NIL)) (-3440 (((-592 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258))) (((-592 (-51)) $) NIL (|has| $ (-6 -4258)))) (-2789 (($ $) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-1075) $) NIL (|has| (-1075) (-789)))) (-2694 (((-592 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258))) (((-592 (-51)) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-1020)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-51) (-1020))))) (-1847 (((-1075) $) NIL (|has| (-1075) (-789)))) (-2284 (($ (-1 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4259))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2795 (($ (-366)) 9)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (-3254 (|has| (-51) (-1020)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-1020))))) (-2356 (((-592 (-1075)) $) NIL)) (-2239 (((-108) (-1075) $) NIL)) (-2992 (((-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) $) NIL)) (-1262 (($ (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) $) NIL)) (-2628 (((-592 (-1075)) $) NIL)) (-2978 (((-108) (-1075) $) NIL)) (-2093 (((-1039) $) NIL (-3254 (|has| (-51) (-1020)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-1020))))) (-1872 (((-51) $) NIL (|has| (-1075) (-789)))) (-1983 (((-3 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) "failed") (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) $) NIL)) (-1420 (($ $ (-51)) NIL (|has| $ (-6 -4259)))) (-4127 (((-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) $) NIL)) (-3944 (((-108) (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))))) NIL (-12 (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-288 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))))) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-1020)))) (($ $ (-273 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))))) NIL (-12 (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-288 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))))) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-1020)))) (($ $ (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) NIL (-12 (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-288 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))))) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-1020)))) (($ $ (-592 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) (-592 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))))) NIL (-12 (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-288 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))))) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-1020)))) (($ $ (-592 (-51)) (-592 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-273 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-592 (-273 (-51)))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-51) (-1020))))) (-3341 (((-592 (-51)) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 (((-51) $ (-1075)) 14) (((-51) $ (-1075) (-51)) NIL) (((-51) $ (-1092)) 15)) (-1760 (($) NIL) (($ (-592 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))))) NIL)) (-2110 (((-713) (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258))) (((-713) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-1020)))) (((-713) (-51) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-51) (-1020)))) (((-713) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-567 (-501))))) (-1230 (($ (-592 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))))) NIL)) (-1217 (((-798) $) NIL (-3254 (|has| (-51) (-566 (-798))) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-566 (-798)))))) (-1956 (($ (-592 (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))))) NIL)) (-3029 (((-108) (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (-3254 (|has| (-51) (-1020)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 (-51))) (-1020))))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-581) (-13 (-1105 (-1075) (-51)) (-10 -8 (-15 -2795 ($ (-366))) (-15 -2789 ($ $)) (-15 -3406 ((-51) $ (-1092))) (-15 -1430 ((-51) $ (-1092) (-51)))))) (T -581))
-((-2795 (*1 *1 *2) (-12 (-5 *2 (-366)) (-5 *1 (-581)))) (-2789 (*1 *1 *1) (-5 *1 (-581))) (-3406 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-51)) (-5 *1 (-581)))) (-1430 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1092)) (-5 *1 (-581)))))
-(-13 (-1105 (-1075) (-51)) (-10 -8 (-15 -2795 ($ (-366))) (-15 -2789 ($ $)) (-15 -3406 ((-51) $ (-1092))) (-15 -1430 ((-51) $ (-1092) (-51)))))
-((-4075 (($ $ |#2|) 10)))
-(((-582 |#1| |#2|) (-10 -8 (-15 -4075 (|#1| |#1| |#2|))) (-583 |#2|) (-160)) (T -582))
-NIL
-(-10 -8 (-15 -4075 (|#1| |#1| |#2|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1230 (($ $ $) 29)) (-1217 (((-798) $) 11)) (-3349 (($) 18 T CONST)) (-3955 (((-108) $ $) 6)) (-4075 (($ $ |#1|) 28 (|has| |#1| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+((-1386 (((-110) (-110)) 83)) (-3074 ((|#2| |#2|) 30)) (-1872 ((|#2| |#2| (-1013 |#2|)) 79) ((|#2| |#2| (-1092)) 52)) (-1887 ((|#2| |#2|) 29)) (-3615 ((|#2| |#2|) 31)) (-3954 (((-108) (-110)) 34)) (-2253 ((|#2| |#2|) 26)) (-1989 ((|#2| |#2|) 28)) (-1592 ((|#2| |#2|) 27)))
+(((-579 |#1| |#2|) (-10 -7 (-15 -3954 ((-108) (-110))) (-15 -1386 ((-110) (-110))) (-15 -1989 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -3074 (|#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -3615 (|#2| |#2|)) (-15 -1872 (|#2| |#2| (-1092))) (-15 -1872 (|#2| |#2| (-1013 |#2|)))) (-13 (-789) (-517)) (-13 (-408 |#1|) (-934) (-1114))) (T -579))
+((-1872 (*1 *2 *2 *3) (-12 (-5 *3 (-1013 *2)) (-4 *2 (-13 (-408 *4) (-934) (-1114))) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2)))) (-1872 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2)) (-4 *2 (-13 (-408 *4) (-934) (-1114))))) (-3615 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-934) (-1114))))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-934) (-1114))))) (-3074 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-934) (-1114))))) (-1592 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-934) (-1114))))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-934) (-1114))))) (-1989 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-934) (-1114))))) (-1386 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *4)) (-4 *4 (-13 (-408 *3) (-934) (-1114))))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-579 *4 *5)) (-4 *5 (-13 (-408 *4) (-934) (-1114))))))
+(-10 -7 (-15 -3954 ((-108) (-110))) (-15 -1386 ((-110) (-110))) (-15 -1989 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -3074 (|#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -3615 (|#2| |#2|)) (-15 -1872 (|#2| |#2| (-1092))) (-15 -1872 (|#2| |#2| (-1013 |#2|))))
+((-2692 (((-457 |#1| |#2|) (-227 |#1| |#2|)) 53)) (-2460 (((-592 (-227 |#1| |#2|)) (-592 (-457 |#1| |#2|))) 68)) (-2716 (((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-800 |#1|)) 70) (((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)) (-800 |#1|)) 69)) (-3425 (((-2 (|:| |gblist| (-592 (-227 |#1| |#2|))) (|:| |gvlist| (-592 (-525)))) (-592 (-457 |#1| |#2|))) 108)) (-3047 (((-592 (-457 |#1| |#2|)) (-800 |#1|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|))) 83)) (-3464 (((-2 (|:| |glbase| (-592 (-227 |#1| |#2|))) (|:| |glval| (-592 (-525)))) (-592 (-227 |#1| |#2|))) 118)) (-1383 (((-1174 |#2|) (-457 |#1| |#2|) (-592 (-457 |#1| |#2|))) 58)) (-1547 (((-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|))) 41)) (-3828 (((-227 |#1| |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|))) 50)) (-3881 (((-227 |#1| |#2|) (-592 |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|))) 91)))
+(((-580 |#1| |#2|) (-10 -7 (-15 -3425 ((-2 (|:| |gblist| (-592 (-227 |#1| |#2|))) (|:| |gvlist| (-592 (-525)))) (-592 (-457 |#1| |#2|)))) (-15 -3464 ((-2 (|:| |glbase| (-592 (-227 |#1| |#2|))) (|:| |glval| (-592 (-525)))) (-592 (-227 |#1| |#2|)))) (-15 -2460 ((-592 (-227 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -2716 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)) (-800 |#1|))) (-15 -2716 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-800 |#1|))) (-15 -1547 ((-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -1383 ((-1174 |#2|) (-457 |#1| |#2|) (-592 (-457 |#1| |#2|)))) (-15 -3881 ((-227 |#1| |#2|) (-592 |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -3047 ((-592 (-457 |#1| |#2|)) (-800 |#1|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -3828 ((-227 |#1| |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -2692 ((-457 |#1| |#2|) (-227 |#1| |#2|)))) (-592 (-1092)) (-429)) (T -580))
+((-2692 (*1 *2 *3) (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *2 (-457 *4 *5)) (-5 *1 (-580 *4 *5)))) (-3828 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-227 *4 *5))) (-5 *2 (-227 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5)))) (-3047 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-800 *4)) (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5)))) (-3881 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-227 *5 *6))) (-4 *6 (-429)) (-5 *2 (-227 *5 *6)) (-14 *5 (-592 (-1092))) (-5 *1 (-580 *5 *6)))) (-1383 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-457 *5 *6))) (-5 *3 (-457 *5 *6)) (-14 *5 (-592 (-1092))) (-4 *6 (-429)) (-5 *2 (-1174 *6)) (-5 *1 (-580 *5 *6)))) (-1547 (*1 *2 *2) (-12 (-5 *2 (-592 (-457 *3 *4))) (-14 *3 (-592 (-1092))) (-4 *4 (-429)) (-5 *1 (-580 *3 *4)))) (-2716 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-800 *5)) (-14 *5 (-592 (-1092))) (-5 *2 (-457 *5 *6)) (-5 *1 (-580 *5 *6)) (-4 *6 (-429)))) (-2716 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-800 *5)) (-14 *5 (-592 (-1092))) (-5 *2 (-457 *5 *6)) (-5 *1 (-580 *5 *6)) (-4 *6 (-429)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *2 (-592 (-227 *4 *5))) (-5 *1 (-580 *4 *5)))) (-3464 (*1 *2 *3) (-12 (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *2 (-2 (|:| |glbase| (-592 (-227 *4 *5))) (|:| |glval| (-592 (-525))))) (-5 *1 (-580 *4 *5)) (-5 *3 (-592 (-227 *4 *5))))) (-3425 (*1 *2 *3) (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *2 (-2 (|:| |gblist| (-592 (-227 *4 *5))) (|:| |gvlist| (-592 (-525))))) (-5 *1 (-580 *4 *5)))))
+(-10 -7 (-15 -3425 ((-2 (|:| |gblist| (-592 (-227 |#1| |#2|))) (|:| |gvlist| (-592 (-525)))) (-592 (-457 |#1| |#2|)))) (-15 -3464 ((-2 (|:| |glbase| (-592 (-227 |#1| |#2|))) (|:| |glval| (-592 (-525)))) (-592 (-227 |#1| |#2|)))) (-15 -2460 ((-592 (-227 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -2716 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)) (-800 |#1|))) (-15 -2716 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-800 |#1|))) (-15 -1547 ((-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -1383 ((-1174 |#2|) (-457 |#1| |#2|) (-592 (-457 |#1| |#2|)))) (-15 -3881 ((-227 |#1| |#2|) (-592 |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -3047 ((-592 (-457 |#1| |#2|)) (-800 |#1|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -3828 ((-227 |#1| |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -2692 ((-457 |#1| |#2|) (-227 |#1| |#2|))))
+((-4087 (((-108) $ $) NIL (-2067 (|has| (-51) (-1020)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-1020))))) (-3311 (($) NIL) (($ (-592 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))))) NIL)) (-3289 (((-1179) $ (-1075) (-1075)) NIL (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 (((-51) $ (-1075) (-51)) 16) (((-51) $ (-1092) (-51)) 17)) (-3050 (($ (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259)))) (-1515 (((-3 (-51) "failed") (-1075) $) NIL)) (-2475 (($) NIL T CONST)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-1020))))) (-4205 (($ (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) $) NIL (|has| $ (-6 -4259))) (($ (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259))) (((-3 (-51) "failed") (-1075) $) NIL)) (-2698 (($ (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-1020)))) (($ (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259)))) (-3504 (((-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-1 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) $ (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-1020)))) (((-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-1 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) $ (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) NIL (|has| $ (-6 -4259))) (((-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-1 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259)))) (-3081 (((-51) $ (-1075) (-51)) NIL (|has| $ (-6 -4260)))) (-3017 (((-51) $ (-1075)) NIL)) (-2175 (((-592 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259))) (((-592 (-51)) $) NIL (|has| $ (-6 -4259)))) (-2286 (($ $) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-1075) $) NIL (|has| (-1075) (-789)))) (-2617 (((-592 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259))) (((-592 (-51)) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-1020)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-51) (-1020))))) (-2231 (((-1075) $) NIL (|has| (-1075) (-789)))) (-3069 (($ (-1 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4260))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2761 (($ (-366)) 9)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (-2067 (|has| (-51) (-1020)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-1020))))) (-1398 (((-592 (-1075)) $) NIL)) (-3770 (((-108) (-1075) $) NIL)) (-3577 (((-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) $) NIL)) (-3246 (($ (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) $) NIL)) (-3177 (((-592 (-1075)) $) NIL)) (-3461 (((-108) (-1075) $) NIL)) (-3993 (((-1039) $) NIL (-2067 (|has| (-51) (-1020)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-1020))))) (-1647 (((-51) $) NIL (|has| (-1075) (-789)))) (-4202 (((-3 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) "failed") (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) $) NIL)) (-3453 (($ $ (-51)) NIL (|has| $ (-6 -4260)))) (-2724 (((-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) $) NIL)) (-1518 (((-108) (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))))) NIL (-12 (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-288 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))))) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-1020)))) (($ $ (-273 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))))) NIL (-12 (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-288 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))))) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-1020)))) (($ $ (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) NIL (-12 (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-288 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))))) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-1020)))) (($ $ (-592 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) (-592 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))))) NIL (-12 (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-288 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))))) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-1020)))) (($ $ (-592 (-51)) (-592 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-273 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-592 (-273 (-51)))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-51) (-1020))))) (-1717 (((-592 (-51)) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 (((-51) $ (-1075)) 14) (((-51) $ (-1075) (-51)) NIL) (((-51) $ (-1092)) 15)) (-2637 (($) NIL) (($ (-592 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))))) NIL)) (-4002 (((-713) (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259))) (((-713) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-1020)))) (((-713) (-51) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-51) (-1020)))) (((-713) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-567 (-501))))) (-4114 (($ (-592 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))))) NIL)) (-4100 (((-798) $) NIL (-2067 (|has| (-51) (-566 (-798))) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-566 (-798)))))) (-3905 (($ (-592 (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))))) NIL)) (-2706 (((-108) (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (-2067 (|has| (-51) (-1020)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 (-51))) (-1020))))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-581) (-13 (-1105 (-1075) (-51)) (-10 -8 (-15 -2761 ($ (-366))) (-15 -2286 ($ $)) (-15 -3431 ((-51) $ (-1092))) (-15 -1233 ((-51) $ (-1092) (-51)))))) (T -581))
+((-2761 (*1 *1 *2) (-12 (-5 *2 (-366)) (-5 *1 (-581)))) (-2286 (*1 *1 *1) (-5 *1 (-581))) (-3431 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-51)) (-5 *1 (-581)))) (-1233 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1092)) (-5 *1 (-581)))))
+(-13 (-1105 (-1075) (-51)) (-10 -8 (-15 -2761 ($ (-366))) (-15 -2286 ($ $)) (-15 -3431 ((-51) $ (-1092))) (-15 -1233 ((-51) $ (-1092) (-51)))))
+((-2880 (($ $ |#2|) 10)))
+(((-582 |#1| |#2|) (-10 -8 (-15 -2880 (|#1| |#1| |#2|))) (-583 |#2|) (-160)) (T -582))
+NIL
+(-10 -8 (-15 -2880 (|#1| |#1| |#2|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4114 (($ $ $) 29)) (-4100 (((-798) $) 11)) (-3364 (($) 18 T CONST)) (-2775 (((-108) $ $) 6)) (-2880 (($ $ |#1|) 28 (|has| |#1| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-583 |#1|) (-131) (-160)) (T -583))
-((-1230 (*1 *1 *1 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-160)))) (-4075 (*1 *1 *1 *2) (-12 (-4 *1 (-583 *2)) (-4 *2 (-160)) (-4 *2 (-341)))))
-(-13 (-660 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -1230 ($ $ $)) (IF (|has| |t#1| (-341)) (-15 -4075 ($ $ |t#1|)) |%noBranch|)))
+((-4114 (*1 *1 *1 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-160)))) (-2880 (*1 *1 *1 *2) (-12 (-4 *1 (-583 *2)) (-4 *2 (-160)) (-4 *2 (-341)))))
+(-13 (-660 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -4114 ($ $ $)) (IF (|has| |t#1| (-341)) (-15 -2880 ($ $ |t#1|)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-983 |#1|) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2841 (((-3 $ "failed")) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1578 (((-3 $ "failed") $ $) NIL)) (-3482 (((-1174 (-632 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-1174 (-632 |#1|)) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-1604 (((-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-2169 (($) NIL T CONST)) (-1614 (((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed")) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3912 (((-3 $ "failed")) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3060 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-2769 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-3420 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-1586 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3082 (((-1088 (-887 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-2837 (($ $ (-856)) NIL)) (-1713 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2269 (((-1088 |#1|) $) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3777 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-2509 (((-1088 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-1950 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2064 (($ (-1174 |#1|)) NIL (|has| |#2| (-395 |#1|))) (($ (-1174 |#1|) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-3457 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3622 (((-856)) NIL (|has| |#2| (-345 |#1|)))) (-1370 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3587 (($ $ (-856)) NIL)) (-2026 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2070 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3545 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3821 (((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed")) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2060 (((-3 $ "failed")) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2383 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-1312 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-1846 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-4106 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2436 (((-1088 (-887 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-2817 (($ $ (-856)) NIL)) (-3807 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-1860 (((-1088 |#1|) $) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3018 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-2379 (((-1088 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-2256 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2619 (((-1075) $) NIL)) (-2220 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2861 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3142 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2093 (((-1039) $) NIL)) (-3322 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3406 ((|#1| $ (-525)) NIL (|has| |#2| (-395 |#1|)))) (-2387 (((-632 |#1|) (-1174 $)) NIL (|has| |#2| (-395 |#1|))) (((-1174 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1174 $) (-1174 $)) NIL (|has| |#2| (-345 |#1|))) (((-1174 |#1|) $ (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-3210 (($ (-1174 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-1174 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-1432 (((-592 (-887 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-592 (-887 |#1|)) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-1990 (($ $ $) NIL)) (-1252 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1217 (((-798) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3094 (((-1174 $)) NIL (|has| |#2| (-395 |#1|)))) (-1962 (((-592 (-1174 |#1|))) NIL (-3254 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3746 (($ $ $ $) NIL)) (-1218 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1814 (($ (-632 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-2597 (($ $ $) NIL)) (-3136 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1541 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3361 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3349 (($) 15 T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) 17)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-584 |#1| |#2|) (-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -1217 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|))) (-160) (-687 |#1|)) (T -584))
-((-1217 (*1 *1 *2) (-12 (-4 *3 (-160)) (-5 *1 (-584 *3 *2)) (-4 *2 (-687 *3)))))
-(-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -1217 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|)))
-((-1936 (((-3 (-782 |#2|) "failed") |#2| (-273 |#2|) (-1075)) 82) (((-3 (-782 |#2|) (-2 (|:| |leftHandLimit| (-3 (-782 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-782 |#2|) "failed"))) "failed") |#2| (-273 (-782 |#2|))) 104)) (-3185 (((-3 (-775 |#2|) "failed") |#2| (-273 (-775 |#2|))) 109)))
-(((-585 |#1| |#2|) (-10 -7 (-15 -1936 ((-3 (-782 |#2|) (-2 (|:| |leftHandLimit| (-3 (-782 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-782 |#2|) "failed"))) "failed") |#2| (-273 (-782 |#2|)))) (-15 -3185 ((-3 (-775 |#2|) "failed") |#2| (-273 (-775 |#2|)))) (-15 -1936 ((-3 (-782 |#2|) "failed") |#2| (-273 |#2|) (-1075)))) (-13 (-429) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1114) (-408 |#1|))) (T -585))
-((-1936 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-273 *3)) (-5 *5 (-1075)) (-4 *3 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-782 *3)) (-5 *1 (-585 *6 *3)))) (-3185 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-273 (-775 *3))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-775 *3)) (-5 *1 (-585 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))) (-1936 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-782 *3))) (-4 *3 (-13 (-27) (-1114) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (-782 *3) (-2 (|:| |leftHandLimit| (-3 (-782 *3) "failed")) (|:| |rightHandLimit| (-3 (-782 *3) "failed"))) "failed")) (-5 *1 (-585 *5 *3)))))
-(-10 -7 (-15 -1936 ((-3 (-782 |#2|) (-2 (|:| |leftHandLimit| (-3 (-782 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-782 |#2|) "failed"))) "failed") |#2| (-273 (-782 |#2|)))) (-15 -3185 ((-3 (-775 |#2|) "failed") |#2| (-273 (-775 |#2|)))) (-15 -1936 ((-3 (-782 |#2|) "failed") |#2| (-273 |#2|) (-1075))))
-((-1936 (((-3 (-782 (-385 (-887 |#1|))) "failed") (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))) (-1075)) 80) (((-3 (-782 (-385 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed"))) "failed") (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|)))) 20) (((-3 (-782 (-385 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed"))) "failed") (-385 (-887 |#1|)) (-273 (-782 (-887 |#1|)))) 35)) (-3185 (((-775 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|)))) 23) (((-775 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-273 (-775 (-887 |#1|)))) 43)))
-(((-586 |#1|) (-10 -7 (-15 -1936 ((-3 (-782 (-385 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed"))) "failed") (-385 (-887 |#1|)) (-273 (-782 (-887 |#1|))))) (-15 -1936 ((-3 (-782 (-385 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed"))) "failed") (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))))) (-15 -3185 ((-775 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-273 (-775 (-887 |#1|))))) (-15 -3185 ((-775 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))))) (-15 -1936 ((-3 (-782 (-385 (-887 |#1|))) "failed") (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))) (-1075)))) (-429)) (T -586))
-((-1936 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-273 (-385 (-887 *6)))) (-5 *5 (-1075)) (-5 *3 (-385 (-887 *6))) (-4 *6 (-429)) (-5 *2 (-782 *3)) (-5 *1 (-586 *6)))) (-3185 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-385 (-887 *5)))) (-5 *3 (-385 (-887 *5))) (-4 *5 (-429)) (-5 *2 (-775 *3)) (-5 *1 (-586 *5)))) (-3185 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-775 (-887 *5)))) (-4 *5 (-429)) (-5 *2 (-775 (-385 (-887 *5)))) (-5 *1 (-586 *5)) (-5 *3 (-385 (-887 *5))))) (-1936 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-385 (-887 *5)))) (-5 *3 (-385 (-887 *5))) (-4 *5 (-429)) (-5 *2 (-3 (-782 *3) (-2 (|:| |leftHandLimit| (-3 (-782 *3) "failed")) (|:| |rightHandLimit| (-3 (-782 *3) "failed"))) "failed")) (-5 *1 (-586 *5)))) (-1936 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-782 (-887 *5)))) (-4 *5 (-429)) (-5 *2 (-3 (-782 (-385 (-887 *5))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 *5))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 *5))) "failed"))) "failed")) (-5 *1 (-586 *5)) (-5 *3 (-385 (-887 *5))))))
-(-10 -7 (-15 -1936 ((-3 (-782 (-385 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed"))) "failed") (-385 (-887 |#1|)) (-273 (-782 (-887 |#1|))))) (-15 -1936 ((-3 (-782 (-385 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed"))) "failed") (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))))) (-15 -3185 ((-775 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-273 (-775 (-887 |#1|))))) (-15 -3185 ((-775 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))))) (-15 -1936 ((-3 (-782 (-385 (-887 |#1|))) "failed") (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))) (-1075))))
-((-4059 (((-3 (-1174 (-385 |#1|)) "failed") (-1174 |#2|) |#2|) 57 (-1850 (|has| |#1| (-341)))) (((-3 (-1174 |#1|) "failed") (-1174 |#2|) |#2|) 42 (|has| |#1| (-341)))) (-1970 (((-108) (-1174 |#2|)) 30)) (-2054 (((-3 (-1174 |#1|) "failed") (-1174 |#2|)) 33)))
-(((-587 |#1| |#2|) (-10 -7 (-15 -1970 ((-108) (-1174 |#2|))) (-15 -2054 ((-3 (-1174 |#1|) "failed") (-1174 |#2|))) (IF (|has| |#1| (-341)) (-15 -4059 ((-3 (-1174 |#1|) "failed") (-1174 |#2|) |#2|)) (-15 -4059 ((-3 (-1174 (-385 |#1|)) "failed") (-1174 |#2|) |#2|)))) (-517) (-588 |#1|)) (T -587))
-((-4059 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1174 *4)) (-4 *4 (-588 *5)) (-1850 (-4 *5 (-341))) (-4 *5 (-517)) (-5 *2 (-1174 (-385 *5))) (-5 *1 (-587 *5 *4)))) (-4059 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1174 *4)) (-4 *4 (-588 *5)) (-4 *5 (-341)) (-4 *5 (-517)) (-5 *2 (-1174 *5)) (-5 *1 (-587 *5 *4)))) (-2054 (*1 *2 *3) (|partial| -12 (-5 *3 (-1174 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517)) (-5 *2 (-1174 *4)) (-5 *1 (-587 *4 *5)))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-1174 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517)) (-5 *2 (-108)) (-5 *1 (-587 *4 *5)))))
-(-10 -7 (-15 -1970 ((-108) (-1174 |#2|))) (-15 -2054 ((-3 (-1174 |#1|) "failed") (-1174 |#2|))) (IF (|has| |#1| (-341)) (-15 -4059 ((-3 (-1174 |#1|) "failed") (-1174 |#2|) |#2|)) (-15 -4059 ((-3 (-1174 (-385 |#1|)) "failed") (-1174 |#2|) |#2|))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-1994 (((-632 |#1|) (-632 $)) 36) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 35)) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11) (($ (-525)) 28)) (-3917 (((-713)) 29)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1509 (((-3 $ "failed")) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3222 (((-3 $ "failed") $ $) NIL)) (-3551 (((-1174 (-632 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-1174 (-632 |#1|)) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-3651 (((-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-2475 (($) NIL T CONST)) (-3734 (((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed")) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2394 (((-3 $ "failed")) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2946 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-2126 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-4187 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-3322 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3141 (((-1088 (-887 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-1488 (($ $ (-856)) NIL)) (-3447 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-4047 (((-1088 |#1|) $) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3411 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-1521 (((-1088 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-3838 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2580 (($ (-1174 |#1|)) NIL (|has| |#2| (-395 |#1|))) (($ (-1174 |#1|) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-3300 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3085 (((-856)) NIL (|has| |#2| (-345 |#1|)))) (-1822 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2156 (($ $ (-856)) NIL)) (-3387 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2634 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2936 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2661 (((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed")) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2542 (((-3 $ "failed")) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2713 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-3309 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2222 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-3711 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2056 (((-1088 (-887 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-2486 (($ $ (-856)) NIL)) (-3714 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2357 (((-1088 |#1|) $) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2623 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-2673 (((-1088 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-3938 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1289 (((-1075) $) NIL)) (-1780 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1719 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2490 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3993 (((-1039) $) NIL)) (-1539 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3431 ((|#1| $ (-525)) NIL (|has| |#2| (-395 |#1|)))) (-2754 (((-632 |#1|) (-1174 $)) NIL (|has| |#2| (-395 |#1|))) (((-1174 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1174 $) (-1174 $)) NIL (|has| |#2| (-345 |#1|))) (((-1174 |#1|) $ (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-2069 (($ (-1174 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-1174 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-3600 (((-592 (-887 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-592 (-887 |#1|)) (-1174 $)) NIL (|has| |#2| (-345 |#1|)))) (-1242 (($ $ $) NIL)) (-1682 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-4100 (((-798) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2103 (((-1174 $)) NIL (|has| |#2| (-395 |#1|)))) (-3974 (((-592 (-1174 |#1|))) NIL (-2067 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3133 (($ $ $ $) NIL)) (-1839 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1590 (($ (-632 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-4148 (($ $ $) NIL)) (-2453 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1569 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1886 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3364 (($) 15 T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) 17)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-584 |#1| |#2|) (-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -4100 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|))) (-160) (-687 |#1|)) (T -584))
+((-4100 (*1 *1 *2) (-12 (-4 *3 (-160)) (-5 *1 (-584 *3 *2)) (-4 *2 (-687 *3)))))
+(-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -4100 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|)))
+((-3707 (((-3 (-782 |#2|) "failed") |#2| (-273 |#2|) (-1075)) 82) (((-3 (-782 |#2|) (-2 (|:| |leftHandLimit| (-3 (-782 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-782 |#2|) "failed"))) "failed") |#2| (-273 (-782 |#2|))) 104)) (-1686 (((-3 (-775 |#2|) "failed") |#2| (-273 (-775 |#2|))) 109)))
+(((-585 |#1| |#2|) (-10 -7 (-15 -3707 ((-3 (-782 |#2|) (-2 (|:| |leftHandLimit| (-3 (-782 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-782 |#2|) "failed"))) "failed") |#2| (-273 (-782 |#2|)))) (-15 -1686 ((-3 (-775 |#2|) "failed") |#2| (-273 (-775 |#2|)))) (-15 -3707 ((-3 (-782 |#2|) "failed") |#2| (-273 |#2|) (-1075)))) (-13 (-429) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1114) (-408 |#1|))) (T -585))
+((-3707 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-273 *3)) (-5 *5 (-1075)) (-4 *3 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-782 *3)) (-5 *1 (-585 *6 *3)))) (-1686 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-273 (-775 *3))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-775 *3)) (-5 *1 (-585 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))) (-3707 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-782 *3))) (-4 *3 (-13 (-27) (-1114) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (-782 *3) (-2 (|:| |leftHandLimit| (-3 (-782 *3) "failed")) (|:| |rightHandLimit| (-3 (-782 *3) "failed"))) "failed")) (-5 *1 (-585 *5 *3)))))
+(-10 -7 (-15 -3707 ((-3 (-782 |#2|) (-2 (|:| |leftHandLimit| (-3 (-782 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-782 |#2|) "failed"))) "failed") |#2| (-273 (-782 |#2|)))) (-15 -1686 ((-3 (-775 |#2|) "failed") |#2| (-273 (-775 |#2|)))) (-15 -3707 ((-3 (-782 |#2|) "failed") |#2| (-273 |#2|) (-1075))))
+((-3707 (((-3 (-782 (-385 (-887 |#1|))) "failed") (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))) (-1075)) 80) (((-3 (-782 (-385 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed"))) "failed") (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|)))) 20) (((-3 (-782 (-385 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed"))) "failed") (-385 (-887 |#1|)) (-273 (-782 (-887 |#1|)))) 35)) (-1686 (((-775 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|)))) 23) (((-775 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-273 (-775 (-887 |#1|)))) 43)))
+(((-586 |#1|) (-10 -7 (-15 -3707 ((-3 (-782 (-385 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed"))) "failed") (-385 (-887 |#1|)) (-273 (-782 (-887 |#1|))))) (-15 -3707 ((-3 (-782 (-385 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed"))) "failed") (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))))) (-15 -1686 ((-775 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-273 (-775 (-887 |#1|))))) (-15 -1686 ((-775 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))))) (-15 -3707 ((-3 (-782 (-385 (-887 |#1|))) "failed") (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))) (-1075)))) (-429)) (T -586))
+((-3707 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-273 (-385 (-887 *6)))) (-5 *5 (-1075)) (-5 *3 (-385 (-887 *6))) (-4 *6 (-429)) (-5 *2 (-782 *3)) (-5 *1 (-586 *6)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-385 (-887 *5)))) (-5 *3 (-385 (-887 *5))) (-4 *5 (-429)) (-5 *2 (-775 *3)) (-5 *1 (-586 *5)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-775 (-887 *5)))) (-4 *5 (-429)) (-5 *2 (-775 (-385 (-887 *5)))) (-5 *1 (-586 *5)) (-5 *3 (-385 (-887 *5))))) (-3707 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-385 (-887 *5)))) (-5 *3 (-385 (-887 *5))) (-4 *5 (-429)) (-5 *2 (-3 (-782 *3) (-2 (|:| |leftHandLimit| (-3 (-782 *3) "failed")) (|:| |rightHandLimit| (-3 (-782 *3) "failed"))) "failed")) (-5 *1 (-586 *5)))) (-3707 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-782 (-887 *5)))) (-4 *5 (-429)) (-5 *2 (-3 (-782 (-385 (-887 *5))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 *5))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 *5))) "failed"))) "failed")) (-5 *1 (-586 *5)) (-5 *3 (-385 (-887 *5))))))
+(-10 -7 (-15 -3707 ((-3 (-782 (-385 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed"))) "failed") (-385 (-887 |#1|)) (-273 (-782 (-887 |#1|))))) (-15 -3707 ((-3 (-782 (-385 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed"))) "failed") (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))))) (-15 -1686 ((-775 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-273 (-775 (-887 |#1|))))) (-15 -1686 ((-775 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))))) (-15 -3707 ((-3 (-782 (-385 (-887 |#1|))) "failed") (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))) (-1075))))
+((-3250 (((-3 (-1174 (-385 |#1|)) "failed") (-1174 |#2|) |#2|) 57 (-3272 (|has| |#1| (-341)))) (((-3 (-1174 |#1|) "failed") (-1174 |#2|) |#2|) 42 (|has| |#1| (-341)))) (-4061 (((-108) (-1174 |#2|)) 30)) (-3656 (((-3 (-1174 |#1|) "failed") (-1174 |#2|)) 33)))
+(((-587 |#1| |#2|) (-10 -7 (-15 -4061 ((-108) (-1174 |#2|))) (-15 -3656 ((-3 (-1174 |#1|) "failed") (-1174 |#2|))) (IF (|has| |#1| (-341)) (-15 -3250 ((-3 (-1174 |#1|) "failed") (-1174 |#2|) |#2|)) (-15 -3250 ((-3 (-1174 (-385 |#1|)) "failed") (-1174 |#2|) |#2|)))) (-517) (-588 |#1|)) (T -587))
+((-3250 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1174 *4)) (-4 *4 (-588 *5)) (-3272 (-4 *5 (-341))) (-4 *5 (-517)) (-5 *2 (-1174 (-385 *5))) (-5 *1 (-587 *5 *4)))) (-3250 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1174 *4)) (-4 *4 (-588 *5)) (-4 *5 (-341)) (-4 *5 (-517)) (-5 *2 (-1174 *5)) (-5 *1 (-587 *5 *4)))) (-3656 (*1 *2 *3) (|partial| -12 (-5 *3 (-1174 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517)) (-5 *2 (-1174 *4)) (-5 *1 (-587 *4 *5)))) (-4061 (*1 *2 *3) (-12 (-5 *3 (-1174 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517)) (-5 *2 (-108)) (-5 *1 (-587 *4 *5)))))
+(-10 -7 (-15 -4061 ((-108) (-1174 |#2|))) (-15 -3656 ((-3 (-1174 |#1|) "failed") (-1174 |#2|))) (IF (|has| |#1| (-341)) (-15 -3250 ((-3 (-1174 |#1|) "failed") (-1174 |#2|) |#2|)) (-15 -3250 ((-3 (-1174 (-385 |#1|)) "failed") (-1174 |#2|) |#2|))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3090 (((-632 |#1|) (-632 $)) 36) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 35)) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11) (($ (-525)) 28)) (-2448 (((-713)) 29)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-588 |#1|) (-131) (-977)) (T -588))
-((-1994 (*1 *2 *3) (-12 (-5 *3 (-632 *1)) (-4 *1 (-588 *4)) (-4 *4 (-977)) (-5 *2 (-632 *4)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *1)) (-5 *4 (-1174 *1)) (-4 *1 (-588 *5)) (-4 *5 (-977)) (-5 *2 (-2 (|:| -3407 (-632 *5)) (|:| |vec| (-1174 *5)))))))
-(-13 (-977) (-10 -8 (-15 -1994 ((-632 |t#1|) (-632 $))) (-15 -1994 ((-2 (|:| -3407 (-632 |t#1|)) (|:| |vec| (-1174 |t#1|))) (-632 $) (-1174 $)))))
+((-3090 (*1 *2 *3) (-12 (-5 *3 (-632 *1)) (-4 *1 (-588 *4)) (-4 *4 (-977)) (-5 *2 (-632 *4)))) (-3090 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *1)) (-5 *4 (-1174 *1)) (-4 *1 (-588 *5)) (-4 *5 (-977)) (-5 *2 (-2 (|:| -4108 (-632 *5)) (|:| |vec| (-1174 *5)))))))
+(-13 (-977) (-10 -8 (-15 -3090 ((-632 |t#1|) (-632 $))) (-15 -3090 ((-2 (|:| -4108 (-632 |t#1|)) (|:| |vec| (-1174 |t#1|))) (-632 $) (-1174 $)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-669) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-4165 ((|#2| (-592 |#1|) (-592 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-592 |#1|) (-592 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) |#2|) 17) ((|#2| (-592 |#1|) (-592 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|)) 12)))
-(((-589 |#1| |#2|) (-10 -7 (-15 -4165 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|))) (-15 -4165 (|#2| (-592 |#1|) (-592 |#2|) |#1|)) (-15 -4165 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) |#2|)) (-15 -4165 (|#2| (-592 |#1|) (-592 |#2|) |#1| |#2|)) (-15 -4165 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) (-1 |#2| |#1|))) (-15 -4165 (|#2| (-592 |#1|) (-592 |#2|) |#1| (-1 |#2| |#1|)))) (-1020) (-1128)) (T -589))
-((-4165 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1020)) (-4 *2 (-1128)) (-5 *1 (-589 *5 *2)))) (-4165 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-592 *5)) (-5 *4 (-592 *6)) (-4 *5 (-1020)) (-4 *6 (-1128)) (-5 *1 (-589 *5 *6)))) (-4165 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1020)) (-4 *2 (-1128)) (-5 *1 (-589 *5 *2)))) (-4165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 *5)) (-4 *6 (-1020)) (-4 *5 (-1128)) (-5 *2 (-1 *5 *6)) (-5 *1 (-589 *6 *5)))) (-4165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1020)) (-4 *2 (-1128)) (-5 *1 (-589 *5 *2)))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *6)) (-4 *5 (-1020)) (-4 *6 (-1128)) (-5 *2 (-1 *6 *5)) (-5 *1 (-589 *5 *6)))))
-(-10 -7 (-15 -4165 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|))) (-15 -4165 (|#2| (-592 |#1|) (-592 |#2|) |#1|)) (-15 -4165 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) |#2|)) (-15 -4165 (|#2| (-592 |#1|) (-592 |#2|) |#1| |#2|)) (-15 -4165 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) (-1 |#2| |#1|))) (-15 -4165 (|#2| (-592 |#1|) (-592 |#2|) |#1| (-1 |#2| |#1|))))
-((-4192 (((-592 |#2|) (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|) 16)) (-1284 ((|#2| (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|) 18)) (-3165 (((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|)) 13)))
-(((-590 |#1| |#2|) (-10 -7 (-15 -4192 ((-592 |#2|) (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -1284 (|#2| (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -3165 ((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|)))) (-1128) (-1128)) (T -590))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-592 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-592 *6)) (-5 *1 (-590 *5 *6)))) (-1284 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-592 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-590 *5 *2)))) (-4192 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-592 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-592 *5)) (-5 *1 (-590 *6 *5)))))
-(-10 -7 (-15 -4192 ((-592 |#2|) (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -1284 (|#2| (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -3165 ((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|))))
-((-3165 (((-592 |#3|) (-1 |#3| |#1| |#2|) (-592 |#1|) (-592 |#2|)) 13)))
-(((-591 |#1| |#2| |#3|) (-10 -7 (-15 -3165 ((-592 |#3|) (-1 |#3| |#1| |#2|) (-592 |#1|) (-592 |#2|)))) (-1128) (-1128) (-1128)) (T -591))
-((-3165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-592 *6)) (-5 *5 (-592 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-592 *8)) (-5 *1 (-591 *6 *7 *8)))))
-(-10 -7 (-15 -3165 ((-592 |#3|) (-1 |#3| |#1| |#2|) (-592 |#1|) (-592 |#2|))))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3284 ((|#1| $) NIL)) (-3581 ((|#1| $) NIL)) (-2798 (($ $) NIL)) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-4238 (($ $ (-525)) NIL (|has| $ (-6 -4259)))) (-2470 (((-108) $) NIL (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-2165 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-789)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-2458 (($ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-3214 ((|#1| $ |#1|) NIL (|has| $ (-6 -4259)))) (-1620 (($ $ $) NIL (|has| $ (-6 -4259)))) (-2603 ((|#1| $ |#1|) NIL (|has| $ (-6 -4259)))) (-4145 ((|#1| $ |#1|) NIL (|has| $ (-6 -4259)))) (-1430 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4259))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4259))) (($ $ "rest" $) NIL (|has| $ (-6 -4259))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4259))) ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) NIL (|has| $ (-6 -4259)))) (-1802 (($ $ $) 32 (|has| |#1| (-1020)))) (-1790 (($ $ $) 34 (|has| |#1| (-1020)))) (-1781 (($ $ $) 37 (|has| |#1| (-1020)))) (-1676 (($ (-1 (-108) |#1|) $) NIL)) (-3785 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3570 ((|#1| $) NIL)) (-2169 (($) NIL T CONST)) (-2700 (($ $) NIL (|has| $ (-6 -4259)))) (-3431 (($ $) NIL)) (-1886 (($ $) NIL) (($ $ (-713)) NIL)) (-3972 (($ $) NIL (|has| |#1| (-1020)))) (-1910 (($ $) 31 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3271 (($ |#1| $) NIL (|has| |#1| (-1020))) (($ (-1 (-108) |#1|) $) NIL)) (-1703 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-2301 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) NIL)) (-2353 (((-108) $) NIL)) (-1932 (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020))) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) (-1 (-108) |#1|) $) NIL)) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-3329 (((-108) $) 9)) (-3396 (((-592 $) $) NIL)) (-1729 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1405 (($) 7)) (-3416 (($ (-713) |#1|) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) NIL (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-2639 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1577 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 33 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1755 (($ |#1|) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2803 (((-592 |#1|) $) NIL)) (-3786 (((-108) $) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-1717 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-1262 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2531 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1872 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1420 (($ $ |#1|) NIL (|has| $ (-6 -4259)))) (-3920 (((-108) $) NIL)) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1141 (-525))) NIL) ((|#1| $ (-525)) 36) ((|#1| $ (-525) |#1|) NIL)) (-3340 (((-525) $ $) NIL)) (-1356 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-3038 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-2905 (((-108) $) NIL)) (-3004 (($ $) NIL)) (-1354 (($ $) NIL (|has| $ (-6 -4259)))) (-1654 (((-713) $) NIL)) (-4167 (($ $) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-4098 (($ $ $ (-525)) NIL (|has| $ (-6 -4259)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) 45 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) NIL)) (-3124 (($ |#1| $) 10)) (-4029 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2038 (($ $ $) 30) (($ |#1| $) NIL) (($ (-592 $)) NIL) (($ $ |#1|) NIL)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3793 (((-592 $) $) NIL)) (-3351 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3695 (($ $ $) 11)) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-1388 (((-1075) $) 26 (|has| |#1| (-770))) (((-1075) $ (-108)) 27 (|has| |#1| (-770))) (((-1179) (-764) $) 28 (|has| |#1| (-770))) (((-1179) (-764) $ (-108)) 29 (|has| |#1| (-770)))) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-592 |#1|) (-13 (-612 |#1|) (-10 -8 (-15 -1405 ($)) (-15 -3329 ((-108) $)) (-15 -3124 ($ |#1| $)) (-15 -3695 ($ $ $)) (IF (|has| |#1| (-1020)) (PROGN (-15 -1802 ($ $ $)) (-15 -1790 ($ $ $)) (-15 -1781 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|))) (-1128)) (T -592))
-((-1405 (*1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1128)))) (-3329 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-592 *3)) (-4 *3 (-1128)))) (-3124 (*1 *1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1128)))) (-3695 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1128)))) (-1802 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-1128)))) (-1790 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-1128)))) (-1781 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-1128)))))
-(-13 (-612 |#1|) (-10 -8 (-15 -1405 ($)) (-15 -3329 ((-108) $)) (-15 -3124 ($ |#1| $)) (-15 -3695 ($ $ $)) (IF (|has| |#1| (-1020)) (PROGN (-15 -1802 ($ $ $)) (-15 -1790 ($ $ $)) (-15 -1781 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|)))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1897 (($ |#1| |#1| $) 43)) (-3991 (((-108) $ (-713)) NIL)) (-1676 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2169 (($) NIL T CONST)) (-3972 (($ $) 45)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3271 (($ |#1| $) 52 (|has| $ (-6 -4258))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4258)))) (-1703 (($ |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4258)))) (-3440 (((-592 |#1|) $) 9 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-2284 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 37)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2992 ((|#1| $) 46)) (-1262 (($ |#1| $) 26) (($ |#1| $ (-713)) 42)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4127 ((|#1| $) 48)) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) 21)) (-2512 (($) 25)) (-1824 (((-108) $) 50)) (-4113 (((-592 (-2 (|:| -4201 |#1|) (|:| -2110 (-713)))) $) 59)) (-1760 (($) 23) (($ (-592 |#1|)) 18)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) 56 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) 19)) (-3210 (((-501) $) 34 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) NIL)) (-1217 (((-798) $) 14 (|has| |#1| (-566 (-798))))) (-1956 (($ (-592 |#1|)) 22)) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 61 (|has| |#1| (-1020)))) (-3522 (((-713) $) 16 (|has| $ (-6 -4258)))))
-(((-593 |#1|) (-13 (-637 |#1|) (-10 -8 (-6 -4258) (-15 -1824 ((-108) $)) (-15 -1897 ($ |#1| |#1| $)))) (-1020)) (T -593))
-((-1824 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-593 *3)) (-4 *3 (-1020)))) (-1897 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1020)))))
-(-13 (-637 |#1|) (-10 -8 (-6 -4258) (-15 -1824 ((-108) $)) (-15 -1897 ($ |#1| |#1| $))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3349 (($) 18 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23)))
+((-1589 ((|#2| (-592 |#1|) (-592 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-592 |#1|) (-592 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) |#2|) 17) ((|#2| (-592 |#1|) (-592 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|)) 12)))
+(((-589 |#1| |#2|) (-10 -7 (-15 -1589 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|))) (-15 -1589 (|#2| (-592 |#1|) (-592 |#2|) |#1|)) (-15 -1589 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) |#2|)) (-15 -1589 (|#2| (-592 |#1|) (-592 |#2|) |#1| |#2|)) (-15 -1589 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) (-1 |#2| |#1|))) (-15 -1589 (|#2| (-592 |#1|) (-592 |#2|) |#1| (-1 |#2| |#1|)))) (-1020) (-1128)) (T -589))
+((-1589 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1020)) (-4 *2 (-1128)) (-5 *1 (-589 *5 *2)))) (-1589 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-592 *5)) (-5 *4 (-592 *6)) (-4 *5 (-1020)) (-4 *6 (-1128)) (-5 *1 (-589 *5 *6)))) (-1589 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1020)) (-4 *2 (-1128)) (-5 *1 (-589 *5 *2)))) (-1589 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 *5)) (-4 *6 (-1020)) (-4 *5 (-1128)) (-5 *2 (-1 *5 *6)) (-5 *1 (-589 *6 *5)))) (-1589 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1020)) (-4 *2 (-1128)) (-5 *1 (-589 *5 *2)))) (-1589 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *6)) (-4 *5 (-1020)) (-4 *6 (-1128)) (-5 *2 (-1 *6 *5)) (-5 *1 (-589 *5 *6)))))
+(-10 -7 (-15 -1589 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|))) (-15 -1589 (|#2| (-592 |#1|) (-592 |#2|) |#1|)) (-15 -1589 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) |#2|)) (-15 -1589 (|#2| (-592 |#1|) (-592 |#2|) |#1| |#2|)) (-15 -1589 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) (-1 |#2| |#1|))) (-15 -1589 (|#2| (-592 |#1|) (-592 |#2|) |#1| (-1 |#2| |#1|))))
+((-2159 (((-592 |#2|) (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|) 16)) (-3504 ((|#2| (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|) 18)) (-2016 (((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|)) 13)))
+(((-590 |#1| |#2|) (-10 -7 (-15 -2159 ((-592 |#2|) (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -3504 (|#2| (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -2016 ((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|)))) (-1128) (-1128)) (T -590))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-592 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-592 *6)) (-5 *1 (-590 *5 *6)))) (-3504 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-592 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-590 *5 *2)))) (-2159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-592 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-592 *5)) (-5 *1 (-590 *6 *5)))))
+(-10 -7 (-15 -2159 ((-592 |#2|) (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -3504 (|#2| (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -2016 ((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|))))
+((-2016 (((-592 |#3|) (-1 |#3| |#1| |#2|) (-592 |#1|) (-592 |#2|)) 13)))
+(((-591 |#1| |#2| |#3|) (-10 -7 (-15 -2016 ((-592 |#3|) (-1 |#3| |#1| |#2|) (-592 |#1|) (-592 |#2|)))) (-1128) (-1128) (-1128)) (T -591))
+((-2016 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-592 *6)) (-5 *5 (-592 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-592 *8)) (-5 *1 (-591 *6 *7 *8)))))
+(-10 -7 (-15 -2016 ((-592 |#3|) (-1 |#3| |#1| |#2|) (-592 |#1|) (-592 |#2|))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2219 ((|#1| $) NIL)) (-2250 ((|#1| $) NIL)) (-3979 (($ $) NIL)) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-1425 (($ $ (-525)) NIL (|has| $ (-6 -4260)))) (-2358 (((-108) $) NIL (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-2436 (($ $) NIL (-12 (|has| $ (-6 -4260)) (|has| |#1| (-789)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-1842 (($ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-1947 ((|#1| $ |#1|) NIL (|has| $ (-6 -4260)))) (-3776 (($ $ $) NIL (|has| $ (-6 -4260)))) (-4193 ((|#1| $ |#1|) NIL (|has| $ (-6 -4260)))) (-2894 ((|#1| $ |#1|) NIL (|has| $ (-6 -4260)))) (-1233 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4260))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4260))) (($ $ "rest" $) NIL (|has| $ (-6 -4260))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4260))) ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) NIL (|has| $ (-6 -4260)))) (-1577 (($ $ $) 32 (|has| |#1| (-1020)))) (-1565 (($ $ $) 34 (|has| |#1| (-1020)))) (-1553 (($ $ $) 37 (|has| |#1| (-1020)))) (-3050 (($ (-1 (-108) |#1|) $) NIL)) (-2399 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2237 ((|#1| $) NIL)) (-2475 (($) NIL T CONST)) (-2670 (($ $) NIL (|has| $ (-6 -4260)))) (-1652 (($ $) NIL)) (-1659 (($ $) NIL) (($ $ (-713)) NIL)) (-1793 (($ $) NIL (|has| |#1| (-1020)))) (-1681 (($ $) 31 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-4205 (($ |#1| $) NIL (|has| |#1| (-1020))) (($ (-1 (-108) |#1|) $) NIL)) (-2698 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3081 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) NIL)) (-3631 (((-108) $) NIL)) (-3856 (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020))) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) (-1 (-108) |#1|) $) NIL)) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3341 (((-108) $) 9)) (-3994 (((-592 $) $) NIL)) (-3569 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1456 (($) 7)) (-3324 (($ (-713) |#1|) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) NIL (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-3269 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3212 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 33 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1522 (($ |#1|) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-2010 (((-592 |#1|) $) NIL)) (-3506 (((-108) $) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2718 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-3246 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2594 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1647 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3453 (($ $ |#1|) NIL (|has| $ (-6 -4260)))) (-2476 (((-108) $) NIL)) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1141 (-525))) NIL) ((|#1| $ (-525)) 36) ((|#1| $ (-525) |#1|) NIL)) (-1707 (((-525) $ $) NIL)) (-2818 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-2139 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-3953 (((-108) $) NIL)) (-3675 (($ $) NIL)) (-2789 (($ $) NIL (|has| $ (-6 -4260)))) (-4082 (((-713) $) NIL)) (-3077 (($ $) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3632 (($ $ $ (-525)) NIL (|has| $ (-6 -4260)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) 45 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) NIL)) (-3191 (($ |#1| $) 10)) (-4190 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2035 (($ $ $) 30) (($ |#1| $) NIL) (($ (-592 $)) NIL) (($ $ |#1|) NIL)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3576 (((-592 $) $) NIL)) (-1791 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2759 (($ $ $) 11)) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-3660 (((-1075) $) 26 (|has| |#1| (-770))) (((-1075) $ (-108)) 27 (|has| |#1| (-770))) (((-1179) (-764) $) 28 (|has| |#1| (-770))) (((-1179) (-764) $ (-108)) 29 (|has| |#1| (-770)))) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-592 |#1|) (-13 (-612 |#1|) (-10 -8 (-15 -1456 ($)) (-15 -3341 ((-108) $)) (-15 -3191 ($ |#1| $)) (-15 -2759 ($ $ $)) (IF (|has| |#1| (-1020)) (PROGN (-15 -1577 ($ $ $)) (-15 -1565 ($ $ $)) (-15 -1553 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|))) (-1128)) (T -592))
+((-1456 (*1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1128)))) (-3341 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-592 *3)) (-4 *3 (-1128)))) (-3191 (*1 *1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1128)))) (-2759 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1128)))) (-1577 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-1128)))) (-1565 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-1128)))) (-1553 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-1128)))))
+(-13 (-612 |#1|) (-10 -8 (-15 -1456 ($)) (-15 -3341 ((-108) $)) (-15 -3191 ($ |#1| $)) (-15 -2759 ($ $ $)) (IF (|has| |#1| (-1020)) (PROGN (-15 -1577 ($ $ $)) (-15 -1565 ($ $ $)) (-15 -1553 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|)))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1670 (($ |#1| |#1| $) 43)) (-3779 (((-108) $ (-713)) NIL)) (-3050 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2475 (($) NIL T CONST)) (-1793 (($ $) 45)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-4205 (($ |#1| $) 52 (|has| $ (-6 -4259))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4259)))) (-2698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-2175 (((-592 |#1|) $) 9 (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3069 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 37)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3577 ((|#1| $) 46)) (-3246 (($ |#1| $) 26) (($ |#1| $ (-713)) 42)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2724 ((|#1| $) 48)) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) 21)) (-1558 (($) 25)) (-2015 (((-108) $) 50)) (-2605 (((-592 (-2 (|:| -3448 |#1|) (|:| -4002 (-713)))) $) 59)) (-2637 (($) 23) (($ (-592 |#1|)) 18)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) 56 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) 19)) (-2069 (((-501) $) 34 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) NIL)) (-4100 (((-798) $) 14 (|has| |#1| (-566 (-798))))) (-3905 (($ (-592 |#1|)) 22)) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 61 (|has| |#1| (-1020)))) (-2827 (((-713) $) 16 (|has| $ (-6 -4259)))))
+(((-593 |#1|) (-13 (-637 |#1|) (-10 -8 (-6 -4259) (-15 -2015 ((-108) $)) (-15 -1670 ($ |#1| |#1| $)))) (-1020)) (T -593))
+((-2015 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-593 *3)) (-4 *3 (-1020)))) (-1670 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1020)))))
+(-13 (-637 |#1|) (-10 -8 (-6 -4259) (-15 -2015 ((-108) $)) (-15 -1670 ($ |#1| |#1| $))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3364 (($) 18 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23)))
(((-594 |#1|) (-131) (-984)) (T -594))
((* (*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-984)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-1834 (((-713) $) 15)) (-2764 (($ $ |#1|) 56)) (-2700 (($ $) 32)) (-3431 (($ $) 31)) (-3077 (((-3 |#1| "failed") $) 48)) (-1572 ((|#1| $) NIL)) (-2853 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3846 (((-798) $ (-1 (-798) (-798) (-798)) (-1 (-798) (-798) (-798)) (-525)) 46)) (-1726 ((|#1| $ (-525)) 30)) (-3084 ((|#2| $ (-525)) 29)) (-2527 (($ (-1 |#1| |#1|) $) 34)) (-2166 (($ (-1 |#2| |#2|) $) 38)) (-1345 (($) 10)) (-2845 (($ |#1| |#2|) 22)) (-2931 (($ (-592 (-2 (|:| |gen| |#1|) (|:| -3096 |#2|)))) 23)) (-2917 (((-592 (-2 (|:| |gen| |#1|) (|:| -3096 |#2|))) $) 13)) (-2828 (($ |#1| $) 57)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-2754 (((-108) $ $) 60)) (-1217 (((-798) $) 19) (($ |#1|) 16)) (-3955 (((-108) $ $) 25)))
-(((-595 |#1| |#2| |#3|) (-13 (-1020) (-968 |#1|) (-10 -8 (-15 -3846 ((-798) $ (-1 (-798) (-798) (-798)) (-1 (-798) (-798) (-798)) (-525))) (-15 -2917 ((-592 (-2 (|:| |gen| |#1|) (|:| -3096 |#2|))) $)) (-15 -2845 ($ |#1| |#2|)) (-15 -2931 ($ (-592 (-2 (|:| |gen| |#1|) (|:| -3096 |#2|))))) (-15 -3084 (|#2| $ (-525))) (-15 -1726 (|#1| $ (-525))) (-15 -3431 ($ $)) (-15 -2700 ($ $)) (-15 -1834 ((-713) $)) (-15 -1345 ($)) (-15 -2764 ($ $ |#1|)) (-15 -2828 ($ |#1| $)) (-15 -2853 ($ |#1| |#2| $)) (-15 -2853 ($ $ $)) (-15 -2754 ((-108) $ $)) (-15 -2166 ($ (-1 |#2| |#2|) $)) (-15 -2527 ($ (-1 |#1| |#1|) $)))) (-1020) (-23) |#2|) (T -595))
-((-3846 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-798) (-798) (-798))) (-5 *4 (-525)) (-5 *2 (-798)) (-5 *1 (-595 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-23)) (-14 *7 *6))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -3096 *4)))) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-23)) (-14 *5 *4))) (-2845 (*1 *1 *2 *3) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-2931 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -3096 *4)))) (-4 *3 (-1020)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5)))) (-3084 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-23)) (-5 *1 (-595 *4 *2 *5)) (-4 *4 (-1020)) (-14 *5 *2))) (-1726 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-1020)) (-5 *1 (-595 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3431 (*1 *1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-2700 (*1 *1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-23)) (-14 *5 *4))) (-1345 (*1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-2764 (*1 *1 *1 *2) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-2828 (*1 *1 *2 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-2853 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-2853 (*1 *1 *1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-2754 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-23)) (-14 *5 *4))) (-2166 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020)))) (-2527 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-595 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1020) (-968 |#1|) (-10 -8 (-15 -3846 ((-798) $ (-1 (-798) (-798) (-798)) (-1 (-798) (-798) (-798)) (-525))) (-15 -2917 ((-592 (-2 (|:| |gen| |#1|) (|:| -3096 |#2|))) $)) (-15 -2845 ($ |#1| |#2|)) (-15 -2931 ($ (-592 (-2 (|:| |gen| |#1|) (|:| -3096 |#2|))))) (-15 -3084 (|#2| $ (-525))) (-15 -1726 (|#1| $ (-525))) (-15 -3431 ($ $)) (-15 -2700 ($ $)) (-15 -1834 ((-713) $)) (-15 -1345 ($)) (-15 -2764 ($ $ |#1|)) (-15 -2828 ($ |#1| $)) (-15 -2853 ($ |#1| |#2| $)) (-15 -2853 ($ $ $)) (-15 -2754 ((-108) $ $)) (-15 -2166 ($ (-1 |#2| |#2|) $)) (-15 -2527 ($ (-1 |#1| |#1|) $))))
-((-1847 (((-525) $) 24)) (-2531 (($ |#2| $ (-525)) 22) (($ $ $ (-525)) NIL)) (-2628 (((-592 (-525)) $) 12)) (-2978 (((-108) (-525) $) 15)) (-2038 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-592 $)) NIL)))
-(((-596 |#1| |#2|) (-10 -8 (-15 -2531 (|#1| |#1| |#1| (-525))) (-15 -2531 (|#1| |#2| |#1| (-525))) (-15 -2038 (|#1| (-592 |#1|))) (-15 -2038 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#2| |#1|)) (-15 -2038 (|#1| |#1| |#2|)) (-15 -1847 ((-525) |#1|)) (-15 -2628 ((-592 (-525)) |#1|)) (-15 -2978 ((-108) (-525) |#1|))) (-597 |#2|) (-1128)) (T -596))
-NIL
-(-10 -8 (-15 -2531 (|#1| |#1| |#1| (-525))) (-15 -2531 (|#1| |#2| |#1| (-525))) (-15 -2038 (|#1| (-592 |#1|))) (-15 -2038 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#2| |#1|)) (-15 -2038 (|#1| |#1| |#2|)) (-15 -1847 ((-525) |#1|)) (-15 -2628 ((-592 (-525)) |#1|)) (-15 -2978 ((-108) (-525) |#1|)))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3456 (((-1179) $ (-525) (-525)) 40 (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) 8)) (-1430 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) 58 (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4258)))) (-2169 (($) 7 T CONST)) (-1910 (($ $) 78 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1703 (($ |#1| $) 77 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4258)))) (-2301 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) 51)) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3416 (($ (-713) |#1|) 69)) (-3924 (((-108) $ (-713)) 9)) (-3666 (((-525) $) 43 (|has| (-525) (-789)))) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1847 (((-525) $) 44 (|has| (-525) (-789)))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2531 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-2628 (((-592 (-525)) $) 46)) (-2978 (((-108) (-525) $) 47)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1872 ((|#1| $) 42 (|has| (-525) (-789)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1420 (($ $ |#1|) 41 (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2167 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) 48)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1141 (-525))) 63)) (-3038 (($ $ (-525)) 62) (($ $ (-1141 (-525))) 61)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-3210 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 70)) (-2038 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL)) (-1613 (((-713) $) 15)) (-2097 (($ $ |#1|) 56)) (-2670 (($ $) 32)) (-1652 (($ $) 31)) (-1934 (((-3 |#1| "failed") $) 48)) (-4105 ((|#1| $) NIL)) (-2800 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-2898 (((-798) $ (-1 (-798) (-798) (-798)) (-1 (-798) (-798) (-798)) (-525)) 46)) (-3538 ((|#1| $ (-525)) 30)) (-2020 ((|#2| $ (-525)) 29)) (-1693 (($ (-1 |#1| |#1|) $) 34)) (-2447 (($ (-1 |#2| |#2|) $) 38)) (-3521 (($) 10)) (-1551 (($ |#1| |#2|) 22)) (-4232 (($ (-592 (-2 (|:| |gen| |#1|) (|:| -1618 |#2|)))) 23)) (-4085 (((-592 (-2 (|:| |gen| |#1|) (|:| -1618 |#2|))) $) 13)) (-1406 (($ |#1| $) 57)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1997 (((-108) $ $) 60)) (-4100 (((-798) $) 19) (($ |#1|) 16)) (-2775 (((-108) $ $) 25)))
+(((-595 |#1| |#2| |#3|) (-13 (-1020) (-968 |#1|) (-10 -8 (-15 -2898 ((-798) $ (-1 (-798) (-798) (-798)) (-1 (-798) (-798) (-798)) (-525))) (-15 -4085 ((-592 (-2 (|:| |gen| |#1|) (|:| -1618 |#2|))) $)) (-15 -1551 ($ |#1| |#2|)) (-15 -4232 ($ (-592 (-2 (|:| |gen| |#1|) (|:| -1618 |#2|))))) (-15 -2020 (|#2| $ (-525))) (-15 -3538 (|#1| $ (-525))) (-15 -1652 ($ $)) (-15 -2670 ($ $)) (-15 -1613 ((-713) $)) (-15 -3521 ($)) (-15 -2097 ($ $ |#1|)) (-15 -1406 ($ |#1| $)) (-15 -2800 ($ |#1| |#2| $)) (-15 -2800 ($ $ $)) (-15 -1997 ((-108) $ $)) (-15 -2447 ($ (-1 |#2| |#2|) $)) (-15 -1693 ($ (-1 |#1| |#1|) $)))) (-1020) (-23) |#2|) (T -595))
+((-2898 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-798) (-798) (-798))) (-5 *4 (-525)) (-5 *2 (-798)) (-5 *1 (-595 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-23)) (-14 *7 *6))) (-4085 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1618 *4)))) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-23)) (-14 *5 *4))) (-1551 (*1 *1 *2 *3) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-4232 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1618 *4)))) (-4 *3 (-1020)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5)))) (-2020 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-23)) (-5 *1 (-595 *4 *2 *5)) (-4 *4 (-1020)) (-14 *5 *2))) (-3538 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-1020)) (-5 *1 (-595 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1652 (*1 *1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-2670 (*1 *1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-23)) (-14 *5 *4))) (-3521 (*1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-2097 (*1 *1 *1 *2) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-1406 (*1 *1 *2 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-2800 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-2800 (*1 *1 *1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-1997 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-23)) (-14 *5 *4))) (-2447 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020)))) (-1693 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-595 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1020) (-968 |#1|) (-10 -8 (-15 -2898 ((-798) $ (-1 (-798) (-798) (-798)) (-1 (-798) (-798) (-798)) (-525))) (-15 -4085 ((-592 (-2 (|:| |gen| |#1|) (|:| -1618 |#2|))) $)) (-15 -1551 ($ |#1| |#2|)) (-15 -4232 ($ (-592 (-2 (|:| |gen| |#1|) (|:| -1618 |#2|))))) (-15 -2020 (|#2| $ (-525))) (-15 -3538 (|#1| $ (-525))) (-15 -1652 ($ $)) (-15 -2670 ($ $)) (-15 -1613 ((-713) $)) (-15 -3521 ($)) (-15 -2097 ($ $ |#1|)) (-15 -1406 ($ |#1| $)) (-15 -2800 ($ |#1| |#2| $)) (-15 -2800 ($ $ $)) (-15 -1997 ((-108) $ $)) (-15 -2447 ($ (-1 |#2| |#2|) $)) (-15 -1693 ($ (-1 |#1| |#1|) $))))
+((-2231 (((-525) $) 24)) (-2594 (($ |#2| $ (-525)) 22) (($ $ $ (-525)) NIL)) (-3177 (((-592 (-525)) $) 12)) (-3461 (((-108) (-525) $) 15)) (-2035 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-592 $)) NIL)))
+(((-596 |#1| |#2|) (-10 -8 (-15 -2594 (|#1| |#1| |#1| (-525))) (-15 -2594 (|#1| |#2| |#1| (-525))) (-15 -2035 (|#1| (-592 |#1|))) (-15 -2035 (|#1| |#1| |#1|)) (-15 -2035 (|#1| |#2| |#1|)) (-15 -2035 (|#1| |#1| |#2|)) (-15 -2231 ((-525) |#1|)) (-15 -3177 ((-592 (-525)) |#1|)) (-15 -3461 ((-108) (-525) |#1|))) (-597 |#2|) (-1128)) (T -596))
+NIL
+(-10 -8 (-15 -2594 (|#1| |#1| |#1| (-525))) (-15 -2594 (|#1| |#2| |#1| (-525))) (-15 -2035 (|#1| (-592 |#1|))) (-15 -2035 (|#1| |#1| |#1|)) (-15 -2035 (|#1| |#2| |#1|)) (-15 -2035 (|#1| |#1| |#2|)) (-15 -2231 ((-525) |#1|)) (-15 -3177 ((-592 (-525)) |#1|)) (-15 -3461 ((-108) (-525) |#1|)))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3289 (((-1179) $ (-525) (-525)) 40 (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) 8)) (-1233 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) 58 (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4259)))) (-2475 (($) 7 T CONST)) (-1681 (($ $) 78 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2698 (($ |#1| $) 77 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4259)))) (-3081 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) 51)) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-3324 (($ (-713) |#1|) 69)) (-2516 (((-108) $ (-713)) 9)) (-1732 (((-525) $) 43 (|has| (-525) (-789)))) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2231 (((-525) $) 44 (|has| (-525) (-789)))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2594 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-3177 (((-592 (-525)) $) 46)) (-3461 (((-108) (-525) $) 47)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1647 ((|#1| $) 42 (|has| (-525) (-789)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-3453 (($ $ |#1|) 41 (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-2456 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) 48)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1141 (-525))) 63)) (-2139 (($ $ (-525)) 62) (($ $ (-1141 (-525))) 61)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-2069 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 70)) (-2035 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-597 |#1|) (-131) (-1128)) (T -597))
-((-3416 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-4 *1 (-597 *3)) (-4 *3 (-1128)))) (-2038 (*1 *1 *1 *2) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1128)))) (-2038 (*1 *1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1128)))) (-2038 (*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1128)))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-597 *3)) (-4 *3 (-1128)))) (-3165 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-597 *3)) (-4 *3 (-1128)))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 (-1141 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1128)))) (-3038 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1128)))) (-3038 (*1 *1 *1 *2) (-12 (-5 *2 (-1141 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1128)))) (-2531 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-597 *2)) (-4 *2 (-1128)))) (-2531 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1128)))) (-1430 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1141 (-525))) (|has| *1 (-6 -4259)) (-4 *1 (-597 *2)) (-4 *2 (-1128)))))
-(-13 (-558 (-525) |t#1|) (-142 |t#1|) (-10 -8 (-15 -3416 ($ (-713) |t#1|)) (-15 -2038 ($ $ |t#1|)) (-15 -2038 ($ |t#1| $)) (-15 -2038 ($ $ $)) (-15 -2038 ($ (-592 $))) (-15 -3165 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3406 ($ $ (-1141 (-525)))) (-15 -3038 ($ $ (-525))) (-15 -3038 ($ $ (-1141 (-525)))) (-15 -2531 ($ |t#1| $ (-525))) (-15 -2531 ($ $ $ (-525))) (IF (|has| $ (-6 -4259)) (-15 -1430 (|t#1| $ (-1141 (-525)) |t#1|)) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
-((-3922 (((-3 |#2| "failed") |#3| |#2| (-1092) |#2| (-592 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -3094 (-592 |#2|))) "failed") |#3| |#2| (-1092)) 44)))
-(((-598 |#1| |#2| |#3|) (-10 -7 (-15 -3922 ((-3 (-2 (|:| |particular| |#2|) (|:| -3094 (-592 |#2|))) "failed") |#3| |#2| (-1092))) (-15 -3922 ((-3 |#2| "failed") |#3| |#2| (-1092) |#2| (-592 |#2|)))) (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1114) (-893)) (-602 |#2|)) (T -598))
-((-3922 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-592 *2)) (-4 *2 (-13 (-29 *6) (-1114) (-893))) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *1 (-598 *6 *2 *3)) (-4 *3 (-602 *2)))) (-3922 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1092)) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-4 *4 (-13 (-29 *6) (-1114) (-893))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3094 (-592 *4)))) (-5 *1 (-598 *6 *4 *3)) (-4 *3 (-602 *4)))))
-(-10 -7 (-15 -3922 ((-3 (-2 (|:| |particular| |#2|) (|:| -3094 (-592 |#2|))) "failed") |#3| |#2| (-1092))) (-15 -3922 ((-3 |#2| "failed") |#3| |#2| (-1092) |#2| (-592 |#2|))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-3408 (($ $) NIL (|has| |#1| (-341)))) (-2683 (($ $ $) NIL (|has| |#1| (-341)))) (-3143 (($ $ (-713)) NIL (|has| |#1| (-341)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-1469 (($ $ $) NIL (|has| |#1| (-341)))) (-2967 (($ $ $) NIL (|has| |#1| (-341)))) (-1461 (($ $ $) NIL (|has| |#1| (-341)))) (-2043 (($ $ $) NIL (|has| |#1| (-341)))) (-4139 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-4111 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-3122 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-341)))) (-3077 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-1572 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-3063 (($ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1576 (($ $) NIL (|has| |#1| (-429)))) (-1396 (((-108) $) NIL)) (-2876 (($ |#1| (-713)) NIL)) (-1891 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-517)))) (-3831 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-517)))) (-2870 (((-713) $) NIL)) (-3927 (($ $ $) NIL (|has| |#1| (-341)))) (-2752 (($ $ $) NIL (|has| |#1| (-341)))) (-3468 (($ $ $) NIL (|has| |#1| (-341)))) (-3968 (($ $ $) NIL (|has| |#1| (-341)))) (-2000 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-2240 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-1282 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-341)))) (-3043 ((|#1| $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1715 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3406 ((|#1| $ |#1|) NIL)) (-2006 (($ $ $) NIL (|has| |#1| (-341)))) (-2343 (((-713) $) NIL)) (-3658 ((|#1| $) NIL (|has| |#1| (-429)))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) NIL)) (-1684 (((-592 |#1|) $) NIL)) (-1568 ((|#1| $ (-713)) NIL)) (-3917 (((-713)) NIL)) (-1814 ((|#1| $ |#1| |#1|) NIL)) (-3041 (($ $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($) NIL)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+((-3324 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-4 *1 (-597 *3)) (-4 *3 (-1128)))) (-2035 (*1 *1 *1 *2) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1128)))) (-2035 (*1 *1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1128)))) (-2035 (*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1128)))) (-2035 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-597 *3)) (-4 *3 (-1128)))) (-2016 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-597 *3)) (-4 *3 (-1128)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 (-1141 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1128)))) (-2139 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1128)))) (-2139 (*1 *1 *1 *2) (-12 (-5 *2 (-1141 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1128)))) (-2594 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-597 *2)) (-4 *2 (-1128)))) (-2594 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1128)))) (-1233 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1141 (-525))) (|has| *1 (-6 -4260)) (-4 *1 (-597 *2)) (-4 *2 (-1128)))))
+(-13 (-558 (-525) |t#1|) (-142 |t#1|) (-10 -8 (-15 -3324 ($ (-713) |t#1|)) (-15 -2035 ($ $ |t#1|)) (-15 -2035 ($ |t#1| $)) (-15 -2035 ($ $ $)) (-15 -2035 ($ (-592 $))) (-15 -2016 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3431 ($ $ (-1141 (-525)))) (-15 -2139 ($ $ (-525))) (-15 -2139 ($ $ (-1141 (-525)))) (-15 -2594 ($ |t#1| $ (-525))) (-15 -2594 ($ $ $ (-525))) (IF (|has| $ (-6 -4260)) (-15 -1233 (|t#1| $ (-1141 (-525)) |t#1|)) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
+((-2496 (((-3 |#2| "failed") |#3| |#2| (-1092) |#2| (-592 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2103 (-592 |#2|))) "failed") |#3| |#2| (-1092)) 44)))
+(((-598 |#1| |#2| |#3|) (-10 -7 (-15 -2496 ((-3 (-2 (|:| |particular| |#2|) (|:| -2103 (-592 |#2|))) "failed") |#3| |#2| (-1092))) (-15 -2496 ((-3 |#2| "failed") |#3| |#2| (-1092) |#2| (-592 |#2|)))) (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1114) (-893)) (-602 |#2|)) (T -598))
+((-2496 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-592 *2)) (-4 *2 (-13 (-29 *6) (-1114) (-893))) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *1 (-598 *6 *2 *3)) (-4 *3 (-602 *2)))) (-2496 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1092)) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-4 *4 (-13 (-29 *6) (-1114) (-893))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2103 (-592 *4)))) (-5 *1 (-598 *6 *4 *3)) (-4 *3 (-602 *4)))))
+(-10 -7 (-15 -2496 ((-3 (-2 (|:| |particular| |#2|) (|:| -2103 (-592 |#2|))) "failed") |#3| |#2| (-1092))) (-15 -2496 ((-3 |#2| "failed") |#3| |#2| (-1092) |#2| (-592 |#2|))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4121 (($ $) NIL (|has| |#1| (-341)))) (-3708 (($ $ $) NIL (|has| |#1| (-341)))) (-2500 (($ $ (-713)) NIL (|has| |#1| (-341)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-2609 (($ $ $) NIL (|has| |#1| (-341)))) (-3351 (($ $ $) NIL (|has| |#1| (-341)))) (-2553 (($ $ $) NIL (|has| |#1| (-341)))) (-3545 (($ $ $) NIL (|has| |#1| (-341)))) (-2833 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-3754 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2325 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-341)))) (-1934 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-4105 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-1451 (($ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3201 (($ $) NIL (|has| |#1| (-429)))) (-2278 (((-108) $) NIL)) (-1272 (($ |#1| (-713)) NIL)) (-1452 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-517)))) (-2760 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-517)))) (-1819 (((-713) $) NIL)) (-2544 (($ $ $) NIL (|has| |#1| (-341)))) (-3114 (($ $ $) NIL (|has| |#1| (-341)))) (-3405 (($ $ $) NIL (|has| |#1| (-341)))) (-1749 (($ $ $) NIL (|has| |#1| (-341)))) (-3155 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-3777 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-4150 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-341)))) (-1430 ((|#1| $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1311 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3431 ((|#1| $ |#1|) NIL)) (-3208 (($ $ $) NIL (|has| |#1| (-341)))) (-3529 (((-713) $) NIL)) (-1661 ((|#1| $) NIL (|has| |#1| (-429)))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) NIL)) (-3137 (((-592 |#1|) $) NIL)) (-3136 ((|#1| $ (-713)) NIL)) (-2448 (((-713)) NIL)) (-1590 ((|#1| $ |#1| |#1|) NIL)) (-2799 (($ $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($) NIL)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-599 |#1|) (-602 |#1|) (-213)) (T -599))
NIL
(-602 |#1|)
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-3408 (($ $) NIL (|has| |#1| (-341)))) (-2683 (($ $ $) NIL (|has| |#1| (-341)))) (-3143 (($ $ (-713)) NIL (|has| |#1| (-341)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-1469 (($ $ $) NIL (|has| |#1| (-341)))) (-2967 (($ $ $) NIL (|has| |#1| (-341)))) (-1461 (($ $ $) NIL (|has| |#1| (-341)))) (-2043 (($ $ $) NIL (|has| |#1| (-341)))) (-4139 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-4111 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-3122 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-341)))) (-3077 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-1572 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-3063 (($ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1576 (($ $) NIL (|has| |#1| (-429)))) (-1396 (((-108) $) NIL)) (-2876 (($ |#1| (-713)) NIL)) (-1891 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-517)))) (-3831 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-517)))) (-2870 (((-713) $) NIL)) (-3927 (($ $ $) NIL (|has| |#1| (-341)))) (-2752 (($ $ $) NIL (|has| |#1| (-341)))) (-3468 (($ $ $) NIL (|has| |#1| (-341)))) (-3968 (($ $ $) NIL (|has| |#1| (-341)))) (-2000 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-2240 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-1282 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-341)))) (-3043 ((|#1| $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1715 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3406 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2006 (($ $ $) NIL (|has| |#1| (-341)))) (-2343 (((-713) $) NIL)) (-3658 ((|#1| $) NIL (|has| |#1| (-429)))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) NIL)) (-1684 (((-592 |#1|) $) NIL)) (-1568 ((|#1| $ (-713)) NIL)) (-3917 (((-713)) NIL)) (-1814 ((|#1| $ |#1| |#1|) NIL)) (-3041 (($ $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($) NIL)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-600 |#1| |#2|) (-13 (-602 |#1|) (-265 |#2| |#2|)) (-213) (-13 (-594 |#1|) (-10 -8 (-15 -3376 ($ $))))) (T -600))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4121 (($ $) NIL (|has| |#1| (-341)))) (-3708 (($ $ $) NIL (|has| |#1| (-341)))) (-2500 (($ $ (-713)) NIL (|has| |#1| (-341)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-2609 (($ $ $) NIL (|has| |#1| (-341)))) (-3351 (($ $ $) NIL (|has| |#1| (-341)))) (-2553 (($ $ $) NIL (|has| |#1| (-341)))) (-3545 (($ $ $) NIL (|has| |#1| (-341)))) (-2833 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-3754 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2325 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-341)))) (-1934 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-4105 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-1451 (($ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3201 (($ $) NIL (|has| |#1| (-429)))) (-2278 (((-108) $) NIL)) (-1272 (($ |#1| (-713)) NIL)) (-1452 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-517)))) (-2760 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-517)))) (-1819 (((-713) $) NIL)) (-2544 (($ $ $) NIL (|has| |#1| (-341)))) (-3114 (($ $ $) NIL (|has| |#1| (-341)))) (-3405 (($ $ $) NIL (|has| |#1| (-341)))) (-1749 (($ $ $) NIL (|has| |#1| (-341)))) (-3155 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-3777 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-4150 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-341)))) (-1430 ((|#1| $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1311 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3431 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3208 (($ $ $) NIL (|has| |#1| (-341)))) (-3529 (((-713) $) NIL)) (-1661 ((|#1| $) NIL (|has| |#1| (-429)))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) NIL)) (-3137 (((-592 |#1|) $) NIL)) (-3136 ((|#1| $ (-713)) NIL)) (-2448 (((-713)) NIL)) (-1590 ((|#1| $ |#1| |#1|) NIL)) (-2799 (($ $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($) NIL)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-600 |#1| |#2|) (-13 (-602 |#1|) (-265 |#2| |#2|)) (-213) (-13 (-594 |#1|) (-10 -8 (-15 -2702 ($ $))))) (T -600))
NIL
(-13 (-602 |#1|) (-265 |#2| |#2|))
-((-3408 (($ $) 26)) (-3041 (($ $) 24)) (-2022 (($) 12)))
-(((-601 |#1| |#2|) (-10 -8 (-15 -3408 (|#1| |#1|)) (-15 -3041 (|#1| |#1|)) (-15 -2022 (|#1|))) (-602 |#2|) (-977)) (T -601))
+((-4121 (($ $) 26)) (-2799 (($ $) 24)) (-2401 (($) 12)))
+(((-601 |#1| |#2|) (-10 -8 (-15 -4121 (|#1| |#1|)) (-15 -2799 (|#1| |#1|)) (-15 -2401 (|#1|))) (-602 |#2|) (-977)) (T -601))
NIL
-(-10 -8 (-15 -3408 (|#1| |#1|)) (-15 -3041 (|#1| |#1|)) (-15 -2022 (|#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-3408 (($ $) 82 (|has| |#1| (-341)))) (-2683 (($ $ $) 84 (|has| |#1| (-341)))) (-3143 (($ $ (-713)) 83 (|has| |#1| (-341)))) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-1469 (($ $ $) 45 (|has| |#1| (-341)))) (-2967 (($ $ $) 46 (|has| |#1| (-341)))) (-1461 (($ $ $) 48 (|has| |#1| (-341)))) (-2043 (($ $ $) 43 (|has| |#1| (-341)))) (-4139 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 42 (|has| |#1| (-341)))) (-4111 (((-3 $ "failed") $ $) 44 (|has| |#1| (-341)))) (-3122 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 47 (|has| |#1| (-341)))) (-3077 (((-3 (-525) "failed") $) 74 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 72 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 69)) (-1572 (((-525) $) 75 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 73 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 68)) (-3063 (($ $) 64)) (-3457 (((-3 $ "failed") $) 34)) (-1576 (($ $) 55 (|has| |#1| (-429)))) (-1396 (((-108) $) 31)) (-2876 (($ |#1| (-713)) 62)) (-1891 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 57 (|has| |#1| (-517)))) (-3831 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 58 (|has| |#1| (-517)))) (-2870 (((-713) $) 66)) (-3927 (($ $ $) 52 (|has| |#1| (-341)))) (-2752 (($ $ $) 53 (|has| |#1| (-341)))) (-3468 (($ $ $) 41 (|has| |#1| (-341)))) (-3968 (($ $ $) 50 (|has| |#1| (-341)))) (-2000 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 49 (|has| |#1| (-341)))) (-2240 (((-3 $ "failed") $ $) 51 (|has| |#1| (-341)))) (-1282 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 54 (|has| |#1| (-341)))) (-3043 ((|#1| $) 65)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1715 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-517)))) (-3406 ((|#1| $ |#1|) 87)) (-2006 (($ $ $) 81 (|has| |#1| (-341)))) (-2343 (((-713) $) 67)) (-3658 ((|#1| $) 56 (|has| |#1| (-429)))) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 71 (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) 70)) (-1684 (((-592 |#1|) $) 61)) (-1568 ((|#1| $ (-713)) 63)) (-3917 (((-713)) 29)) (-1814 ((|#1| $ |#1| |#1|) 60)) (-3041 (($ $) 85)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($) 86)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(-10 -8 (-15 -4121 (|#1| |#1|)) (-15 -2799 (|#1| |#1|)) (-15 -2401 (|#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4121 (($ $) 82 (|has| |#1| (-341)))) (-3708 (($ $ $) 84 (|has| |#1| (-341)))) (-2500 (($ $ (-713)) 83 (|has| |#1| (-341)))) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-2609 (($ $ $) 45 (|has| |#1| (-341)))) (-3351 (($ $ $) 46 (|has| |#1| (-341)))) (-2553 (($ $ $) 48 (|has| |#1| (-341)))) (-3545 (($ $ $) 43 (|has| |#1| (-341)))) (-2833 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 42 (|has| |#1| (-341)))) (-3754 (((-3 $ "failed") $ $) 44 (|has| |#1| (-341)))) (-2325 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 47 (|has| |#1| (-341)))) (-1934 (((-3 (-525) "failed") $) 74 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 72 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 69)) (-4105 (((-525) $) 75 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 73 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 68)) (-1451 (($ $) 64)) (-3300 (((-3 $ "failed") $) 34)) (-3201 (($ $) 55 (|has| |#1| (-429)))) (-2278 (((-108) $) 31)) (-1272 (($ |#1| (-713)) 62)) (-1452 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 57 (|has| |#1| (-517)))) (-2760 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 58 (|has| |#1| (-517)))) (-1819 (((-713) $) 66)) (-2544 (($ $ $) 52 (|has| |#1| (-341)))) (-3114 (($ $ $) 53 (|has| |#1| (-341)))) (-3405 (($ $ $) 41 (|has| |#1| (-341)))) (-1749 (($ $ $) 50 (|has| |#1| (-341)))) (-3155 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 49 (|has| |#1| (-341)))) (-3777 (((-3 $ "failed") $ $) 51 (|has| |#1| (-341)))) (-4150 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 54 (|has| |#1| (-341)))) (-1430 ((|#1| $) 65)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1311 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-517)))) (-3431 ((|#1| $ |#1|) 87)) (-3208 (($ $ $) 81 (|has| |#1| (-341)))) (-3529 (((-713) $) 67)) (-1661 ((|#1| $) 56 (|has| |#1| (-429)))) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 71 (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) 70)) (-3137 (((-592 |#1|) $) 61)) (-3136 ((|#1| $ (-713)) 63)) (-2448 (((-713)) 29)) (-1590 ((|#1| $ |#1| |#1|) 60)) (-2799 (($ $) 85)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($) 86)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
(((-602 |#1|) (-131) (-977)) (T -602))
-((-2022 (*1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)))) (-3041 (*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)))) (-2683 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-3143 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-602 *3)) (-4 *3 (-977)) (-4 *3 (-341)))) (-3408 (*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-2006 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
-(-13 (-791 |t#1|) (-265 |t#1| |t#1|) (-10 -8 (-15 -2022 ($)) (-15 -3041 ($ $)) (IF (|has| |t#1| (-341)) (PROGN (-15 -2683 ($ $ $)) (-15 -3143 ($ $ (-713))) (-15 -3408 ($ $)) (-15 -2006 ($ $ $))) |%noBranch|)))
+((-2401 (*1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)))) (-2799 (*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)))) (-3708 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-2500 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-602 *3)) (-4 *3 (-977)) (-4 *3 (-341)))) (-4121 (*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-3208 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(-13 (-791 |t#1|) (-265 |t#1| |t#1|) (-10 -8 (-15 -2401 ($)) (-15 -2799 ($ $)) (IF (|has| |t#1| (-341)) (PROGN (-15 -3708 ($ $ $)) (-15 -2500 ($ $ (-713))) (-15 -4121 ($ $)) (-15 -3208 ($ $ $))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-265 |#1| |#1|) . T) ((-389 |#1|) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) |has| |#1| (-160)) ((-669) . T) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-983 |#1|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-791 |#1|) . T))
-((-3323 (((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))) 74 (|has| |#1| (-27)))) (-2770 (((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))) 73 (|has| |#1| (-27))) (((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 17)))
-(((-603 |#1| |#2|) (-10 -7 (-15 -2770 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2770 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)))) (-15 -3323 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))))) |%noBranch|)) (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))) (-1150 |#1|)) (T -603))
-((-3323 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *5 (-1150 *4)) (-5 *2 (-592 (-599 (-385 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5))))) (-2770 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *5 (-1150 *4)) (-5 *2 (-592 (-599 (-385 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5))))) (-2770 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *6 (-1150 *5)) (-5 *2 (-592 (-599 (-385 *6)))) (-5 *1 (-603 *5 *6)) (-5 *3 (-599 (-385 *6))))))
-(-10 -7 (-15 -2770 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2770 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)))) (-15 -3323 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))))) |%noBranch|))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-3408 (($ $) NIL (|has| |#1| (-341)))) (-2683 (($ $ $) 28 (|has| |#1| (-341)))) (-3143 (($ $ (-713)) 31 (|has| |#1| (-341)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-1469 (($ $ $) NIL (|has| |#1| (-341)))) (-2967 (($ $ $) NIL (|has| |#1| (-341)))) (-1461 (($ $ $) NIL (|has| |#1| (-341)))) (-2043 (($ $ $) NIL (|has| |#1| (-341)))) (-4139 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-4111 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-3122 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-341)))) (-3077 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-1572 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-3063 (($ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1576 (($ $) NIL (|has| |#1| (-429)))) (-1396 (((-108) $) NIL)) (-2876 (($ |#1| (-713)) NIL)) (-1891 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-517)))) (-3831 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-517)))) (-2870 (((-713) $) NIL)) (-3927 (($ $ $) NIL (|has| |#1| (-341)))) (-2752 (($ $ $) NIL (|has| |#1| (-341)))) (-3468 (($ $ $) NIL (|has| |#1| (-341)))) (-3968 (($ $ $) NIL (|has| |#1| (-341)))) (-2000 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-2240 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-1282 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-341)))) (-3043 ((|#1| $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1715 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3406 ((|#1| $ |#1|) 24)) (-2006 (($ $ $) 33 (|has| |#1| (-341)))) (-2343 (((-713) $) NIL)) (-3658 ((|#1| $) NIL (|has| |#1| (-429)))) (-1217 (((-798) $) 20) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) NIL)) (-1684 (((-592 |#1|) $) NIL)) (-1568 ((|#1| $ (-713)) NIL)) (-3917 (((-713)) NIL)) (-1814 ((|#1| $ |#1| |#1|) 23)) (-3041 (($ $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 21 T CONST)) (-3359 (($) 8 T CONST)) (-2022 (($) NIL)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+((-1549 (((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))) 74 (|has| |#1| (-27)))) (-4201 (((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))) 73 (|has| |#1| (-27))) (((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 17)))
+(((-603 |#1| |#2|) (-10 -7 (-15 -4201 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4201 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)))) (-15 -1549 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))))) |%noBranch|)) (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))) (-1150 |#1|)) (T -603))
+((-1549 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *5 (-1150 *4)) (-5 *2 (-592 (-599 (-385 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5))))) (-4201 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *5 (-1150 *4)) (-5 *2 (-592 (-599 (-385 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5))))) (-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *6 (-1150 *5)) (-5 *2 (-592 (-599 (-385 *6)))) (-5 *1 (-603 *5 *6)) (-5 *3 (-599 (-385 *6))))))
+(-10 -7 (-15 -4201 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4201 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)))) (-15 -1549 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))))) |%noBranch|))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4121 (($ $) NIL (|has| |#1| (-341)))) (-3708 (($ $ $) 28 (|has| |#1| (-341)))) (-2500 (($ $ (-713)) 31 (|has| |#1| (-341)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-2609 (($ $ $) NIL (|has| |#1| (-341)))) (-3351 (($ $ $) NIL (|has| |#1| (-341)))) (-2553 (($ $ $) NIL (|has| |#1| (-341)))) (-3545 (($ $ $) NIL (|has| |#1| (-341)))) (-2833 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-3754 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2325 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-341)))) (-1934 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-4105 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-1451 (($ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3201 (($ $) NIL (|has| |#1| (-429)))) (-2278 (((-108) $) NIL)) (-1272 (($ |#1| (-713)) NIL)) (-1452 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-517)))) (-2760 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-517)))) (-1819 (((-713) $) NIL)) (-2544 (($ $ $) NIL (|has| |#1| (-341)))) (-3114 (($ $ $) NIL (|has| |#1| (-341)))) (-3405 (($ $ $) NIL (|has| |#1| (-341)))) (-1749 (($ $ $) NIL (|has| |#1| (-341)))) (-3155 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-3777 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-4150 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-341)))) (-1430 ((|#1| $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1311 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3431 ((|#1| $ |#1|) 24)) (-3208 (($ $ $) 33 (|has| |#1| (-341)))) (-3529 (((-713) $) NIL)) (-1661 ((|#1| $) NIL (|has| |#1| (-429)))) (-4100 (((-798) $) 20) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) NIL)) (-3137 (((-592 |#1|) $) NIL)) (-3136 ((|#1| $ (-713)) NIL)) (-2448 (((-713)) NIL)) (-1590 ((|#1| $ |#1| |#1|) 23)) (-2799 (($ $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 21 T CONST)) (-3375 (($) 8 T CONST)) (-2401 (($) NIL)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-604 |#1| |#2|) (-602 |#1|) (-977) (-1 |#1| |#1|)) (T -604))
NIL
(-602 |#1|)
-((-2683 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-3143 ((|#2| |#2| (-713) (-1 |#1| |#1|)) 40)) (-2006 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
-(((-605 |#1| |#2|) (-10 -7 (-15 -2683 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3143 (|#2| |#2| (-713) (-1 |#1| |#1|))) (-15 -2006 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-341) (-602 |#1|)) (T -605))
-((-2006 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2)) (-4 *2 (-602 *4)))) (-3143 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) (-5 *1 (-605 *5 *2)) (-4 *2 (-602 *5)))) (-2683 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2)) (-4 *2 (-602 *4)))))
-(-10 -7 (-15 -2683 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3143 (|#2| |#2| (-713) (-1 |#1| |#1|))) (-15 -2006 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-1525 (($ $ $) 9)))
-(((-606 |#1|) (-10 -8 (-15 -1525 (|#1| |#1| |#1|))) (-607)) (T -606))
-NIL
-(-10 -8 (-15 -1525 (|#1| |#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-3411 (($ $) 10)) (-1525 (($ $ $) 8)) (-3955 (((-108) $ $) 6)) (-1509 (($ $ $) 9)))
+((-3708 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2500 ((|#2| |#2| (-713) (-1 |#1| |#1|)) 40)) (-3208 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
+(((-605 |#1| |#2|) (-10 -7 (-15 -3708 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2500 (|#2| |#2| (-713) (-1 |#1| |#1|))) (-15 -3208 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-341) (-602 |#1|)) (T -605))
+((-3208 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2)) (-4 *2 (-602 *4)))) (-2500 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) (-5 *1 (-605 *5 *2)) (-4 *2 (-602 *5)))) (-3708 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2)) (-4 *2 (-602 *4)))))
+(-10 -7 (-15 -3708 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2500 (|#2| |#2| (-713) (-1 |#1| |#1|))) (-15 -3208 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-3836 (($ $ $) 9)))
+(((-606 |#1|) (-10 -8 (-15 -3836 (|#1| |#1| |#1|))) (-607)) (T -606))
+NIL
+(-10 -8 (-15 -3836 (|#1| |#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-2026 (($ $) 10)) (-3836 (($ $ $) 8)) (-2775 (((-108) $ $) 6)) (-3826 (($ $ $) 9)))
(((-607) (-131)) (T -607))
-((-3411 (*1 *1 *1) (-4 *1 (-607))) (-1509 (*1 *1 *1 *1) (-4 *1 (-607))) (-1525 (*1 *1 *1 *1) (-4 *1 (-607))))
-(-13 (-97) (-10 -8 (-15 -3411 ($ $)) (-15 -1509 ($ $ $)) (-15 -1525 ($ $ $))))
+((-2026 (*1 *1 *1) (-4 *1 (-607))) (-3826 (*1 *1 *1 *1) (-4 *1 (-607))) (-3836 (*1 *1 *1 *1) (-4 *1 (-607))))
+(-13 (-97) (-10 -8 (-15 -2026 ($ $)) (-15 -3826 ($ $ $)) (-15 -3836 ($ $ $))))
(((-97) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 15)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3114 ((|#1| $) 21)) (-2638 (($ $ $) NIL (|has| |#1| (-733)))) (-3662 (($ $ $) NIL (|has| |#1| (-733)))) (-2619 (((-1075) $) 46)) (-2093 (((-1039) $) NIL)) (-3123 ((|#3| $) 22)) (-1217 (((-798) $) 42)) (-3349 (($) 10 T CONST)) (-4011 (((-108) $ $) NIL (|has| |#1| (-733)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-733)))) (-3955 (((-108) $ $) 20)) (-3999 (((-108) $ $) NIL (|has| |#1| (-733)))) (-3978 (((-108) $ $) 24 (|has| |#1| (-733)))) (-4075 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4061 (($ $) 17) (($ $ $) NIL)) (-4047 (($ $ $) 27)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-608 |#1| |#2| |#3|) (-13 (-660 |#2|) (-10 -8 (IF (|has| |#1| (-733)) (-6 (-733)) |%noBranch|) (-15 -4075 ($ $ |#3|)) (-15 -4075 ($ |#1| |#3|)) (-15 -3114 (|#1| $)) (-15 -3123 (|#3| $)))) (-660 |#2|) (-160) (|SubsetCategory| (-669) |#2|)) (T -608))
-((-4075 (*1 *1 *1 *2) (-12 (-4 *4 (-160)) (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-660 *4)) (-4 *2 (|SubsetCategory| (-669) *4)))) (-4075 (*1 *1 *2 *3) (-12 (-4 *4 (-160)) (-5 *1 (-608 *2 *4 *3)) (-4 *2 (-660 *4)) (-4 *3 (|SubsetCategory| (-669) *4)))) (-3114 (*1 *2 *1) (-12 (-4 *3 (-160)) (-4 *2 (-660 *3)) (-5 *1 (-608 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-669) *3)))) (-3123 (*1 *2 *1) (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4)) (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-660 *4)))))
-(-13 (-660 |#2|) (-10 -8 (IF (|has| |#1| (-733)) (-6 (-733)) |%noBranch|) (-15 -4075 ($ $ |#3|)) (-15 -4075 ($ |#1| |#3|)) (-15 -3114 (|#1| $)) (-15 -3123 (|#3| $))))
-((-1874 (((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|)) 33)))
-(((-609 |#1|) (-10 -7 (-15 -1874 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|)))) (-844)) (T -609))
-((-1874 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1088 *4))) (-5 *3 (-1088 *4)) (-4 *4 (-844)) (-5 *1 (-609 *4)))))
-(-10 -7 (-15 -1874 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2726 (((-592 |#1|) $) 82)) (-1656 (($ $ (-713)) 90)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-2579 (((-1196 |#1| |#2|) (-1196 |#1| |#2|) $) 48)) (-3077 (((-3 (-617 |#1|) "failed") $) NIL)) (-1572 (((-617 |#1|) $) NIL)) (-3063 (($ $) 89)) (-3399 (((-713) $) NIL)) (-4144 (((-592 $) $) NIL)) (-1212 (((-108) $) NIL)) (-2938 (($ (-617 |#1|) |#2|) 68)) (-1276 (($ $) 86)) (-3165 (($ (-1 |#2| |#2|) $) NIL)) (-1530 (((-1196 |#1| |#2|) (-1196 |#1| |#2|) $) 47)) (-2074 (((-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3031 (((-617 |#1|) $) NIL)) (-3043 ((|#2| $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-2457 (($ $ |#1| $) 30) (($ $ (-592 |#1|) (-592 $)) 32)) (-2343 (((-713) $) 88)) (-1230 (($ $ $) 20) (($ (-617 |#1|) (-617 |#1|)) 77) (($ (-617 |#1|) $) 75) (($ $ (-617 |#1|)) 76)) (-1217 (((-798) $) NIL) (($ |#1|) 74) (((-1187 |#1| |#2|) $) 58) (((-1196 |#1| |#2|) $) 41) (($ (-617 |#1|)) 25)) (-1684 (((-592 |#2|) $) NIL)) (-1568 ((|#2| $ (-617 |#1|)) NIL)) (-3244 ((|#2| (-1196 |#1| |#2|) $) 43)) (-3349 (($) 23 T CONST)) (-1719 (((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1882 (((-3 $ "failed") (-1187 |#1| |#2|)) 60)) (-2927 (($ (-617 |#1|)) 14)) (-3955 (((-108) $ $) 44)) (-4075 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4061 (($ $) 66) (($ $ $) NIL)) (-4047 (($ $ $) 29)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-617 |#1|)) NIL)))
-(((-610 |#1| |#2|) (-13 (-352 |#1| |#2|) (-360 |#2| (-617 |#1|)) (-10 -8 (-15 -1882 ((-3 $ "failed") (-1187 |#1| |#2|))) (-15 -1230 ($ (-617 |#1|) (-617 |#1|))) (-15 -1230 ($ (-617 |#1|) $)) (-15 -1230 ($ $ (-617 |#1|))))) (-789) (-160)) (T -610))
-((-1882 (*1 *1 *2) (|partial| -12 (-5 *2 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *1 (-610 *3 *4)))) (-1230 (*1 *1 *2 *2) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4)) (-4 *4 (-160)))) (-1230 (*1 *1 *2 *1) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4)) (-4 *4 (-160)))) (-1230 (*1 *1 *1 *2) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4)) (-4 *4 (-160)))))
-(-13 (-352 |#1| |#2|) (-360 |#2| (-617 |#1|)) (-10 -8 (-15 -1882 ((-3 $ "failed") (-1187 |#1| |#2|))) (-15 -1230 ($ (-617 |#1|) (-617 |#1|))) (-15 -1230 ($ (-617 |#1|) $)) (-15 -1230 ($ $ (-617 |#1|)))))
-((-2470 (((-108) $) NIL) (((-108) (-1 (-108) |#2| |#2|) $) 50)) (-2165 (($ $) NIL) (($ (-1 (-108) |#2| |#2|) $) 12)) (-1676 (($ (-1 (-108) |#2|) $) 28)) (-2700 (($ $) 56)) (-3972 (($ $) 64)) (-3271 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 37)) (-1284 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-1932 (((-525) |#2| $ (-525)) 61) (((-525) |#2| $) NIL) (((-525) (-1 (-108) |#2|) $) 47)) (-3416 (($ (-713) |#2|) 54)) (-2639 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 30)) (-1577 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 24)) (-3165 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-1755 (($ |#2|) 15)) (-1262 (($ $ $ (-525)) 36) (($ |#2| $ (-525)) 34)) (-1983 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 46)) (-1356 (($ $ (-1141 (-525))) 44) (($ $ (-525)) 38)) (-4098 (($ $ $ (-525)) 60)) (-1462 (($ $) 58)) (-3978 (((-108) $ $) 66)))
-(((-611 |#1| |#2|) (-10 -8 (-15 -1755 (|#1| |#2|)) (-15 -1356 (|#1| |#1| (-525))) (-15 -1356 (|#1| |#1| (-1141 (-525)))) (-15 -3271 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1262 (|#1| |#2| |#1| (-525))) (-15 -1262 (|#1| |#1| |#1| (-525))) (-15 -2639 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1676 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3271 (|#1| |#2| |#1|)) (-15 -3972 (|#1| |#1|)) (-15 -2639 (|#1| |#1| |#1|)) (-15 -1577 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2470 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1932 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -1932 ((-525) |#2| |#1|)) (-15 -1932 ((-525) |#2| |#1| (-525))) (-15 -1577 (|#1| |#1| |#1|)) (-15 -2470 ((-108) |#1|)) (-15 -4098 (|#1| |#1| |#1| (-525))) (-15 -2700 (|#1| |#1|)) (-15 -2165 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2165 (|#1| |#1|)) (-15 -3978 ((-108) |#1| |#1|)) (-15 -1284 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1284 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1284 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1983 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3416 (|#1| (-713) |#2|)) (-15 -3165 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1462 (|#1| |#1|))) (-612 |#2|) (-1128)) (T -611))
-NIL
-(-10 -8 (-15 -1755 (|#1| |#2|)) (-15 -1356 (|#1| |#1| (-525))) (-15 -1356 (|#1| |#1| (-1141 (-525)))) (-15 -3271 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1262 (|#1| |#2| |#1| (-525))) (-15 -1262 (|#1| |#1| |#1| (-525))) (-15 -2639 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1676 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3271 (|#1| |#2| |#1|)) (-15 -3972 (|#1| |#1|)) (-15 -2639 (|#1| |#1| |#1|)) (-15 -1577 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2470 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1932 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -1932 ((-525) |#2| |#1|)) (-15 -1932 ((-525) |#2| |#1| (-525))) (-15 -1577 (|#1| |#1| |#1|)) (-15 -2470 ((-108) |#1|)) (-15 -4098 (|#1| |#1| |#1| (-525))) (-15 -2700 (|#1| |#1|)) (-15 -2165 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2165 (|#1| |#1|)) (-15 -3978 ((-108) |#1| |#1|)) (-15 -1284 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1284 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1284 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1983 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3416 (|#1| (-713) |#2|)) (-15 -3165 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1462 (|#1| |#1|)))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3284 ((|#1| $) 48)) (-3581 ((|#1| $) 65)) (-2798 (($ $) 67)) (-3456 (((-1179) $ (-525) (-525)) 97 (|has| $ (-6 -4259)))) (-4238 (($ $ (-525)) 52 (|has| $ (-6 -4259)))) (-2470 (((-108) $) 142 (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) 136)) (-2165 (($ $) 146 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#1| |#1|) $) 145 (|has| $ (-6 -4259)))) (-2458 (($ $) 141 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) 135)) (-3991 (((-108) $ (-713)) 8)) (-3214 ((|#1| $ |#1|) 39 (|has| $ (-6 -4259)))) (-1620 (($ $ $) 56 (|has| $ (-6 -4259)))) (-2603 ((|#1| $ |#1|) 54 (|has| $ (-6 -4259)))) (-4145 ((|#1| $ |#1|) 58 (|has| $ (-6 -4259)))) (-1430 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4259))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4259))) (($ $ "rest" $) 55 (|has| $ (-6 -4259))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) 117 (|has| $ (-6 -4259))) ((|#1| $ (-525) |#1|) 86 (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) 41 (|has| $ (-6 -4259)))) (-1676 (($ (-1 (-108) |#1|) $) 129)) (-3785 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4258)))) (-3570 ((|#1| $) 66)) (-2169 (($) 7 T CONST)) (-2700 (($ $) 144 (|has| $ (-6 -4259)))) (-3431 (($ $) 134)) (-1886 (($ $) 73) (($ $ (-713)) 71)) (-3972 (($ $) 131 (|has| |#1| (-1020)))) (-1910 (($ $) 99 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-3271 (($ |#1| $) 130 (|has| |#1| (-1020))) (($ (-1 (-108) |#1|) $) 125)) (-1703 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4258))) (($ |#1| $) 100 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2301 ((|#1| $ (-525) |#1|) 85 (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) 87)) (-2353 (((-108) $) 83)) (-1932 (((-525) |#1| $ (-525)) 139 (|has| |#1| (-1020))) (((-525) |#1| $) 138 (|has| |#1| (-1020))) (((-525) (-1 (-108) |#1|) $) 137)) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3396 (((-592 $) $) 50)) (-1729 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-3416 (($ (-713) |#1|) 108)) (-3924 (((-108) $ (-713)) 9)) (-3666 (((-525) $) 95 (|has| (-525) (-789)))) (-2638 (($ $ $) 147 (|has| |#1| (-789)))) (-2639 (($ $ $) 132 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 128)) (-1577 (($ $ $) 140 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 133)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1847 (((-525) $) 94 (|has| (-525) (-789)))) (-3662 (($ $ $) 148 (|has| |#1| (-789)))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1755 (($ |#1|) 122)) (-2912 (((-108) $ (-713)) 10)) (-2803 (((-592 |#1|) $) 45)) (-3786 (((-108) $) 49)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-1717 ((|#1| $) 70) (($ $ (-713)) 68)) (-1262 (($ $ $ (-525)) 127) (($ |#1| $ (-525)) 126)) (-2531 (($ $ $ (-525)) 116) (($ |#1| $ (-525)) 115)) (-2628 (((-592 (-525)) $) 92)) (-2978 (((-108) (-525) $) 91)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1872 ((|#1| $) 76) (($ $ (-713)) 74)) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-1420 (($ $ |#1|) 96 (|has| $ (-6 -4259)))) (-3920 (((-108) $) 84)) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2167 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) 90)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1141 (-525))) 112) ((|#1| $ (-525)) 89) ((|#1| $ (-525) |#1|) 88)) (-3340 (((-525) $ $) 44)) (-1356 (($ $ (-1141 (-525))) 124) (($ $ (-525)) 123)) (-3038 (($ $ (-1141 (-525))) 114) (($ $ (-525)) 113)) (-2905 (((-108) $) 46)) (-3004 (($ $) 62)) (-1354 (($ $) 59 (|has| $ (-6 -4259)))) (-1654 (((-713) $) 63)) (-4167 (($ $) 64)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-4098 (($ $ $ (-525)) 143 (|has| $ (-6 -4259)))) (-1462 (($ $) 13)) (-3210 (((-501) $) 98 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 107)) (-4029 (($ $ $) 61) (($ $ |#1|) 60)) (-2038 (($ $ $) 78) (($ |#1| $) 77) (($ (-592 $)) 110) (($ $ |#1|) 109)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3793 (((-592 $) $) 51)) (-3351 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) 150 (|has| |#1| (-789)))) (-3987 (((-108) $ $) 151 (|has| |#1| (-789)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3999 (((-108) $ $) 149 (|has| |#1| (-789)))) (-3978 (((-108) $ $) 152 (|has| |#1| (-789)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 15)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-4066 ((|#1| $) 21)) (-3033 (($ $ $) NIL (|has| |#1| (-733)))) (-1609 (($ $ $) NIL (|has| |#1| (-733)))) (-1289 (((-1075) $) 46)) (-3993 (((-1039) $) NIL)) (-4080 ((|#3| $) 22)) (-4100 (((-798) $) 42)) (-3364 (($) 10 T CONST)) (-2830 (((-108) $ $) NIL (|has| |#1| (-733)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-733)))) (-2775 (((-108) $ $) 20)) (-2817 (((-108) $ $) NIL (|has| |#1| (-733)))) (-2795 (((-108) $ $) 24 (|has| |#1| (-733)))) (-2880 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2871 (($ $) 17) (($ $ $) NIL)) (-2860 (($ $ $) 27)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-608 |#1| |#2| |#3|) (-13 (-660 |#2|) (-10 -8 (IF (|has| |#1| (-733)) (-6 (-733)) |%noBranch|) (-15 -2880 ($ $ |#3|)) (-15 -2880 ($ |#1| |#3|)) (-15 -4066 (|#1| $)) (-15 -4080 (|#3| $)))) (-660 |#2|) (-160) (|SubsetCategory| (-669) |#2|)) (T -608))
+((-2880 (*1 *1 *1 *2) (-12 (-4 *4 (-160)) (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-660 *4)) (-4 *2 (|SubsetCategory| (-669) *4)))) (-2880 (*1 *1 *2 *3) (-12 (-4 *4 (-160)) (-5 *1 (-608 *2 *4 *3)) (-4 *2 (-660 *4)) (-4 *3 (|SubsetCategory| (-669) *4)))) (-4066 (*1 *2 *1) (-12 (-4 *3 (-160)) (-4 *2 (-660 *3)) (-5 *1 (-608 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-669) *3)))) (-4080 (*1 *2 *1) (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4)) (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-660 *4)))))
+(-13 (-660 |#2|) (-10 -8 (IF (|has| |#1| (-733)) (-6 (-733)) |%noBranch|) (-15 -2880 ($ $ |#3|)) (-15 -2880 ($ |#1| |#3|)) (-15 -4066 (|#1| $)) (-15 -4080 (|#3| $))))
+((-1297 (((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|)) 33)))
+(((-609 |#1|) (-10 -7 (-15 -1297 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|)))) (-844)) (T -609))
+((-1297 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1088 *4))) (-5 *3 (-1088 *4)) (-4 *4 (-844)) (-5 *1 (-609 *4)))))
+(-10 -7 (-15 -1297 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-2668 (((-592 |#1|) $) 82)) (-4107 (($ $ (-713)) 90)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-3976 (((-1196 |#1| |#2|) (-1196 |#1| |#2|) $) 48)) (-1934 (((-3 (-617 |#1|) "failed") $) NIL)) (-4105 (((-617 |#1|) $) NIL)) (-1451 (($ $) 89)) (-4025 (((-713) $) NIL)) (-2884 (((-592 $) $) NIL)) (-2457 (((-108) $) NIL)) (-2885 (($ (-617 |#1|) |#2|) 68)) (-4064 (($ $) 86)) (-2016 (($ (-1 |#2| |#2|) $) NIL)) (-1225 (((-1196 |#1| |#2|) (-1196 |#1| |#2|) $) 47)) (-2669 (((-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1418 (((-617 |#1|) $) NIL)) (-1430 ((|#2| $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2825 (($ $ |#1| $) 30) (($ $ (-592 |#1|) (-592 $)) 32)) (-3529 (((-713) $) 88)) (-4114 (($ $ $) 20) (($ (-617 |#1|) (-617 |#1|)) 77) (($ (-617 |#1|) $) 75) (($ $ (-617 |#1|)) 76)) (-4100 (((-798) $) NIL) (($ |#1|) 74) (((-1187 |#1| |#2|) $) 58) (((-1196 |#1| |#2|) $) 41) (($ (-617 |#1|)) 25)) (-3137 (((-592 |#2|) $) NIL)) (-3136 ((|#2| $ (-617 |#1|)) NIL)) (-2681 ((|#2| (-1196 |#1| |#2|) $) 43)) (-3364 (($) 23 T CONST)) (-3482 (((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1370 (((-3 $ "failed") (-1187 |#1| |#2|)) 60)) (-4200 (($ (-617 |#1|)) 14)) (-2775 (((-108) $ $) 44)) (-2880 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-2871 (($ $) 66) (($ $ $) NIL)) (-2860 (($ $ $) 29)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-617 |#1|)) NIL)))
+(((-610 |#1| |#2|) (-13 (-352 |#1| |#2|) (-360 |#2| (-617 |#1|)) (-10 -8 (-15 -1370 ((-3 $ "failed") (-1187 |#1| |#2|))) (-15 -4114 ($ (-617 |#1|) (-617 |#1|))) (-15 -4114 ($ (-617 |#1|) $)) (-15 -4114 ($ $ (-617 |#1|))))) (-789) (-160)) (T -610))
+((-1370 (*1 *1 *2) (|partial| -12 (-5 *2 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *1 (-610 *3 *4)))) (-4114 (*1 *1 *2 *2) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4)) (-4 *4 (-160)))) (-4114 (*1 *1 *2 *1) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4)) (-4 *4 (-160)))) (-4114 (*1 *1 *1 *2) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4)) (-4 *4 (-160)))))
+(-13 (-352 |#1| |#2|) (-360 |#2| (-617 |#1|)) (-10 -8 (-15 -1370 ((-3 $ "failed") (-1187 |#1| |#2|))) (-15 -4114 ($ (-617 |#1|) (-617 |#1|))) (-15 -4114 ($ (-617 |#1|) $)) (-15 -4114 ($ $ (-617 |#1|)))))
+((-2358 (((-108) $) NIL) (((-108) (-1 (-108) |#2| |#2|) $) 50)) (-2436 (($ $) NIL) (($ (-1 (-108) |#2| |#2|) $) 12)) (-3050 (($ (-1 (-108) |#2|) $) 28)) (-2670 (($ $) 56)) (-1793 (($ $) 64)) (-4205 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 37)) (-3504 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3856 (((-525) |#2| $ (-525)) 61) (((-525) |#2| $) NIL) (((-525) (-1 (-108) |#2|) $) 47)) (-3324 (($ (-713) |#2|) 54)) (-3269 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 30)) (-3212 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 24)) (-2016 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-1522 (($ |#2|) 15)) (-3246 (($ $ $ (-525)) 36) (($ |#2| $ (-525)) 34)) (-4202 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 46)) (-2818 (($ $ (-1141 (-525))) 44) (($ $ (-525)) 38)) (-3632 (($ $ $ (-525)) 60)) (-2503 (($ $) 58)) (-2795 (((-108) $ $) 66)))
+(((-611 |#1| |#2|) (-10 -8 (-15 -1522 (|#1| |#2|)) (-15 -2818 (|#1| |#1| (-525))) (-15 -2818 (|#1| |#1| (-1141 (-525)))) (-15 -4205 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3246 (|#1| |#2| |#1| (-525))) (-15 -3246 (|#1| |#1| |#1| (-525))) (-15 -3269 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3050 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -4205 (|#1| |#2| |#1|)) (-15 -1793 (|#1| |#1|)) (-15 -3269 (|#1| |#1| |#1|)) (-15 -3212 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2358 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3856 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -3856 ((-525) |#2| |#1|)) (-15 -3856 ((-525) |#2| |#1| (-525))) (-15 -3212 (|#1| |#1| |#1|)) (-15 -2358 ((-108) |#1|)) (-15 -3632 (|#1| |#1| |#1| (-525))) (-15 -2670 (|#1| |#1|)) (-15 -2436 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2436 (|#1| |#1|)) (-15 -2795 ((-108) |#1| |#1|)) (-15 -3504 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3504 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3504 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4202 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3324 (|#1| (-713) |#2|)) (-15 -2016 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2016 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2503 (|#1| |#1|))) (-612 |#2|) (-1128)) (T -611))
+NIL
+(-10 -8 (-15 -1522 (|#1| |#2|)) (-15 -2818 (|#1| |#1| (-525))) (-15 -2818 (|#1| |#1| (-1141 (-525)))) (-15 -4205 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3246 (|#1| |#2| |#1| (-525))) (-15 -3246 (|#1| |#1| |#1| (-525))) (-15 -3269 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3050 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -4205 (|#1| |#2| |#1|)) (-15 -1793 (|#1| |#1|)) (-15 -3269 (|#1| |#1| |#1|)) (-15 -3212 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2358 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3856 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -3856 ((-525) |#2| |#1|)) (-15 -3856 ((-525) |#2| |#1| (-525))) (-15 -3212 (|#1| |#1| |#1|)) (-15 -2358 ((-108) |#1|)) (-15 -3632 (|#1| |#1| |#1| (-525))) (-15 -2670 (|#1| |#1|)) (-15 -2436 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2436 (|#1| |#1|)) (-15 -2795 ((-108) |#1| |#1|)) (-15 -3504 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3504 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3504 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4202 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3324 (|#1| (-713) |#2|)) (-15 -2016 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2016 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2503 (|#1| |#1|)))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2219 ((|#1| $) 48)) (-2250 ((|#1| $) 65)) (-3979 (($ $) 67)) (-3289 (((-1179) $ (-525) (-525)) 97 (|has| $ (-6 -4260)))) (-1425 (($ $ (-525)) 52 (|has| $ (-6 -4260)))) (-2358 (((-108) $) 142 (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) 136)) (-2436 (($ $) 146 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4260)))) (($ (-1 (-108) |#1| |#1|) $) 145 (|has| $ (-6 -4260)))) (-1842 (($ $) 141 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) 135)) (-3779 (((-108) $ (-713)) 8)) (-1947 ((|#1| $ |#1|) 39 (|has| $ (-6 -4260)))) (-3776 (($ $ $) 56 (|has| $ (-6 -4260)))) (-4193 ((|#1| $ |#1|) 54 (|has| $ (-6 -4260)))) (-2894 ((|#1| $ |#1|) 58 (|has| $ (-6 -4260)))) (-1233 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4260))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4260))) (($ $ "rest" $) 55 (|has| $ (-6 -4260))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) 117 (|has| $ (-6 -4260))) ((|#1| $ (-525) |#1|) 86 (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) 41 (|has| $ (-6 -4260)))) (-3050 (($ (-1 (-108) |#1|) $) 129)) (-2399 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4259)))) (-2237 ((|#1| $) 66)) (-2475 (($) 7 T CONST)) (-2670 (($ $) 144 (|has| $ (-6 -4260)))) (-1652 (($ $) 134)) (-1659 (($ $) 73) (($ $ (-713)) 71)) (-1793 (($ $) 131 (|has| |#1| (-1020)))) (-1681 (($ $) 99 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-4205 (($ |#1| $) 130 (|has| |#1| (-1020))) (($ (-1 (-108) |#1|) $) 125)) (-2698 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4259))) (($ |#1| $) 100 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3081 ((|#1| $ (-525) |#1|) 85 (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) 87)) (-3631 (((-108) $) 83)) (-3856 (((-525) |#1| $ (-525)) 139 (|has| |#1| (-1020))) (((-525) |#1| $) 138 (|has| |#1| (-1020))) (((-525) (-1 (-108) |#1|) $) 137)) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-3994 (((-592 $) $) 50)) (-3569 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-3324 (($ (-713) |#1|) 108)) (-2516 (((-108) $ (-713)) 9)) (-1732 (((-525) $) 95 (|has| (-525) (-789)))) (-3033 (($ $ $) 147 (|has| |#1| (-789)))) (-3269 (($ $ $) 132 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 128)) (-3212 (($ $ $) 140 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 133)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2231 (((-525) $) 94 (|has| (-525) (-789)))) (-1609 (($ $ $) 148 (|has| |#1| (-789)))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1522 (($ |#1|) 122)) (-4028 (((-108) $ (-713)) 10)) (-2010 (((-592 |#1|) $) 45)) (-3506 (((-108) $) 49)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2718 ((|#1| $) 70) (($ $ (-713)) 68)) (-3246 (($ $ $ (-525)) 127) (($ |#1| $ (-525)) 126)) (-2594 (($ $ $ (-525)) 116) (($ |#1| $ (-525)) 115)) (-3177 (((-592 (-525)) $) 92)) (-3461 (((-108) (-525) $) 91)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1647 ((|#1| $) 76) (($ $ (-713)) 74)) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-3453 (($ $ |#1|) 96 (|has| $ (-6 -4260)))) (-2476 (((-108) $) 84)) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-2456 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) 90)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1141 (-525))) 112) ((|#1| $ (-525)) 89) ((|#1| $ (-525) |#1|) 88)) (-1707 (((-525) $ $) 44)) (-2818 (($ $ (-1141 (-525))) 124) (($ $ (-525)) 123)) (-2139 (($ $ (-1141 (-525))) 114) (($ $ (-525)) 113)) (-3953 (((-108) $) 46)) (-3675 (($ $) 62)) (-2789 (($ $) 59 (|has| $ (-6 -4260)))) (-4082 (((-713) $) 63)) (-3077 (($ $) 64)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3632 (($ $ $ (-525)) 143 (|has| $ (-6 -4260)))) (-2503 (($ $) 13)) (-2069 (((-501) $) 98 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 107)) (-4190 (($ $ $) 61) (($ $ |#1|) 60)) (-2035 (($ $ $) 78) (($ |#1| $) 77) (($ (-592 $)) 110) (($ $ |#1|) 109)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3576 (((-592 $) $) 51)) (-1791 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) 150 (|has| |#1| (-789)))) (-2807 (((-108) $ $) 151 (|has| |#1| (-789)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2817 (((-108) $ $) 149 (|has| |#1| (-789)))) (-2795 (((-108) $ $) 152 (|has| |#1| (-789)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-612 |#1|) (-131) (-1128)) (T -612))
-((-1755 (*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1128)))))
-(-13 (-1066 |t#1|) (-351 |t#1|) (-261 |t#1|) (-10 -8 (-15 -1755 ($ |t#1|))))
-(((-33) . T) ((-97) -3254 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-789)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-261 |#1|) . T) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-789) |has| |#1| (-789)) ((-942 |#1|) . T) ((-1020) -3254 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-1066 |#1|) . T) ((-1128) . T) ((-1162 |#1|) . T))
-((-3922 (((-592 (-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -3094 (-592 (-1174 |#1|))))) (-592 (-592 |#1|)) (-592 (-1174 |#1|))) 22) (((-592 (-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -3094 (-592 (-1174 |#1|))))) (-632 |#1|) (-592 (-1174 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -3094 (-592 (-1174 |#1|)))) (-592 (-592 |#1|)) (-1174 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -3094 (-592 (-1174 |#1|)))) (-632 |#1|) (-1174 |#1|)) 14)) (-3622 (((-713) (-632 |#1|) (-1174 |#1|)) 30)) (-3434 (((-3 (-1174 |#1|) "failed") (-632 |#1|) (-1174 |#1|)) 24)) (-3674 (((-108) (-632 |#1|) (-1174 |#1|)) 27)))
-(((-613 |#1|) (-10 -7 (-15 -3922 ((-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -3094 (-592 (-1174 |#1|)))) (-632 |#1|) (-1174 |#1|))) (-15 -3922 ((-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -3094 (-592 (-1174 |#1|)))) (-592 (-592 |#1|)) (-1174 |#1|))) (-15 -3922 ((-592 (-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -3094 (-592 (-1174 |#1|))))) (-632 |#1|) (-592 (-1174 |#1|)))) (-15 -3922 ((-592 (-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -3094 (-592 (-1174 |#1|))))) (-592 (-592 |#1|)) (-592 (-1174 |#1|)))) (-15 -3434 ((-3 (-1174 |#1|) "failed") (-632 |#1|) (-1174 |#1|))) (-15 -3674 ((-108) (-632 |#1|) (-1174 |#1|))) (-15 -3622 ((-713) (-632 |#1|) (-1174 |#1|)))) (-341)) (T -613))
-((-3622 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-341)) (-5 *2 (-713)) (-5 *1 (-613 *5)))) (-3674 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-341)) (-5 *2 (-108)) (-5 *1 (-613 *5)))) (-3434 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1174 *4)) (-5 *3 (-632 *4)) (-4 *4 (-341)) (-5 *1 (-613 *4)))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 *5))) (-4 *5 (-341)) (-5 *2 (-592 (-2 (|:| |particular| (-3 (-1174 *5) "failed")) (|:| -3094 (-592 (-1174 *5)))))) (-5 *1 (-613 *5)) (-5 *4 (-592 (-1174 *5))))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-4 *5 (-341)) (-5 *2 (-592 (-2 (|:| |particular| (-3 (-1174 *5) "failed")) (|:| -3094 (-592 (-1174 *5)))))) (-5 *1 (-613 *5)) (-5 *4 (-592 (-1174 *5))))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 *5))) (-4 *5 (-341)) (-5 *2 (-2 (|:| |particular| (-3 (-1174 *5) "failed")) (|:| -3094 (-592 (-1174 *5))))) (-5 *1 (-613 *5)) (-5 *4 (-1174 *5)))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |particular| (-3 (-1174 *5) "failed")) (|:| -3094 (-592 (-1174 *5))))) (-5 *1 (-613 *5)) (-5 *4 (-1174 *5)))))
-(-10 -7 (-15 -3922 ((-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -3094 (-592 (-1174 |#1|)))) (-632 |#1|) (-1174 |#1|))) (-15 -3922 ((-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -3094 (-592 (-1174 |#1|)))) (-592 (-592 |#1|)) (-1174 |#1|))) (-15 -3922 ((-592 (-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -3094 (-592 (-1174 |#1|))))) (-632 |#1|) (-592 (-1174 |#1|)))) (-15 -3922 ((-592 (-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -3094 (-592 (-1174 |#1|))))) (-592 (-592 |#1|)) (-592 (-1174 |#1|)))) (-15 -3434 ((-3 (-1174 |#1|) "failed") (-632 |#1|) (-1174 |#1|))) (-15 -3674 ((-108) (-632 |#1|) (-1174 |#1|))) (-15 -3622 ((-713) (-632 |#1|) (-1174 |#1|))))
-((-3922 (((-592 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3094 (-592 |#3|)))) |#4| (-592 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3094 (-592 |#3|))) |#4| |#3|) 45)) (-3622 (((-713) |#4| |#3|) 17)) (-3434 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3674 (((-108) |#4| |#3|) 13)))
-(((-614 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3922 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3094 (-592 |#3|))) |#4| |#3|)) (-15 -3922 ((-592 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3094 (-592 |#3|)))) |#4| (-592 |#3|))) (-15 -3434 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3674 ((-108) |#4| |#3|)) (-15 -3622 ((-713) |#4| |#3|))) (-341) (-13 (-351 |#1|) (-10 -7 (-6 -4259))) (-13 (-351 |#1|) (-10 -7 (-6 -4259))) (-630 |#1| |#2| |#3|)) (T -614))
-((-3622 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4259)))) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4259)))) (-5 *2 (-713)) (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))) (-3674 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4259)))) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4259)))) (-5 *2 (-108)) (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))) (-3434 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-341)) (-4 *5 (-13 (-351 *4) (-10 -7 (-6 -4259)))) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4259)))) (-5 *1 (-614 *4 *5 *2 *3)) (-4 *3 (-630 *4 *5 *2)))) (-3922 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4259)))) (-4 *7 (-13 (-351 *5) (-10 -7 (-6 -4259)))) (-5 *2 (-592 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3094 (-592 *7))))) (-5 *1 (-614 *5 *6 *7 *3)) (-5 *4 (-592 *7)) (-4 *3 (-630 *5 *6 *7)))) (-3922 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4259)))) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4259)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3094 (-592 *4)))) (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))))
-(-10 -7 (-15 -3922 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3094 (-592 |#3|))) |#4| |#3|)) (-15 -3922 ((-592 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3094 (-592 |#3|)))) |#4| (-592 |#3|))) (-15 -3434 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3674 ((-108) |#4| |#3|)) (-15 -3622 ((-713) |#4| |#3|)))
-((-3772 (((-2 (|:| |particular| (-3 (-1174 (-385 |#4|)) "failed")) (|:| -3094 (-592 (-1174 (-385 |#4|))))) (-592 |#4|) (-592 |#3|)) 45)))
-(((-615 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3772 ((-2 (|:| |particular| (-3 (-1174 (-385 |#4|)) "failed")) (|:| -3094 (-592 (-1174 (-385 |#4|))))) (-592 |#4|) (-592 |#3|)))) (-517) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -615))
-((-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *7)) (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-5 *2 (-2 (|:| |particular| (-3 (-1174 (-385 *8)) "failed")) (|:| -3094 (-592 (-1174 (-385 *8)))))) (-5 *1 (-615 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3772 ((-2 (|:| |particular| (-3 (-1174 (-385 |#4|)) "failed")) (|:| -3094 (-592 (-1174 (-385 |#4|))))) (-592 |#4|) (-592 |#3|))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2841 (((-3 $ "failed")) NIL (|has| |#2| (-517)))) (-2952 ((|#2| $) NIL)) (-4197 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-3482 (((-1174 (-632 |#2|))) NIL) (((-1174 (-632 |#2|)) (-1174 $)) NIL)) (-1772 (((-108) $) NIL)) (-1604 (((-1174 $)) 37)) (-3991 (((-108) $ (-713)) NIL)) (-1989 (($ |#2|) NIL)) (-2169 (($) NIL T CONST)) (-2361 (($ $) NIL (|has| |#2| (-286)))) (-2631 (((-220 |#1| |#2|) $ (-525)) NIL)) (-1614 (((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed")) NIL (|has| |#2| (-517)))) (-3912 (((-3 $ "failed")) NIL (|has| |#2| (-517)))) (-3060 (((-632 |#2|)) NIL) (((-632 |#2|) (-1174 $)) NIL)) (-2769 ((|#2| $) NIL)) (-3420 (((-632 |#2|) $) NIL) (((-632 |#2|) $ (-1174 $)) NIL)) (-1586 (((-3 $ "failed") $) NIL (|has| |#2| (-517)))) (-3082 (((-1088 (-887 |#2|))) NIL (|has| |#2| (-341)))) (-2837 (($ $ (-856)) NIL)) (-1713 ((|#2| $) NIL)) (-2269 (((-1088 |#2|) $) NIL (|has| |#2| (-517)))) (-3777 ((|#2|) NIL) ((|#2| (-1174 $)) NIL)) (-2509 (((-1088 |#2|) $) NIL)) (-1950 (((-108)) NIL)) (-3077 (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 |#2| "failed") $) NIL)) (-1572 (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) ((|#2| $) NIL)) (-2064 (($ (-1174 |#2|)) NIL) (($ (-1174 |#2|) (-1174 $)) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-3622 (((-713) $) NIL (|has| |#2| (-517))) (((-856)) 38)) (-2222 ((|#2| $ (-525) (-525)) NIL)) (-1370 (((-108)) NIL)) (-3587 (($ $ (-856)) NIL)) (-3440 (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-1396 (((-108) $) NIL)) (-2313 (((-713) $) NIL (|has| |#2| (-517)))) (-2319 (((-592 (-220 |#1| |#2|)) $) NIL (|has| |#2| (-517)))) (-1632 (((-713) $) NIL)) (-2026 (((-108)) NIL)) (-1644 (((-713) $) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-2956 ((|#2| $) NIL (|has| |#2| (-6 (-4260 "*"))))) (-2391 (((-525) $) NIL)) (-1237 (((-525) $) NIL)) (-2694 (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-3446 (((-525) $) NIL)) (-3757 (((-525) $) NIL)) (-1716 (($ (-592 (-592 |#2|))) NIL)) (-2284 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4151 (((-592 (-592 |#2|)) $) NIL)) (-2070 (((-108)) NIL)) (-3545 (((-108)) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-3821 (((-3 (-2 (|:| |particular| $) (|:| -3094 (-592 $))) "failed")) NIL (|has| |#2| (-517)))) (-2060 (((-3 $ "failed")) NIL (|has| |#2| (-517)))) (-2383 (((-632 |#2|)) NIL) (((-632 |#2|) (-1174 $)) NIL)) (-1312 ((|#2| $) NIL)) (-1846 (((-632 |#2|) $) NIL) (((-632 |#2|) $ (-1174 $)) NIL)) (-4106 (((-3 $ "failed") $) NIL (|has| |#2| (-517)))) (-2436 (((-1088 (-887 |#2|))) NIL (|has| |#2| (-341)))) (-2817 (($ $ (-856)) NIL)) (-3807 ((|#2| $) NIL)) (-1860 (((-1088 |#2|) $) NIL (|has| |#2| (-517)))) (-3018 ((|#2|) NIL) ((|#2| (-1174 $)) NIL)) (-2379 (((-1088 |#2|) $) NIL)) (-2256 (((-108)) NIL)) (-2619 (((-1075) $) NIL)) (-2220 (((-108)) NIL)) (-2861 (((-108)) NIL)) (-3142 (((-108)) NIL)) (-1529 (((-3 $ "failed") $) NIL (|has| |#2| (-341)))) (-2093 (((-1039) $) NIL)) (-3322 (((-108)) NIL)) (-1715 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517)))) (-3944 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#2| $ (-525) (-525) |#2|) NIL) ((|#2| $ (-525) (-525)) 22) ((|#2| $ (-525)) NIL)) (-3376 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-2336 ((|#2| $) NIL)) (-2663 (($ (-592 |#2|)) NIL)) (-2007 (((-108) $) NIL)) (-3186 (((-220 |#1| |#2|) $) NIL)) (-1927 ((|#2| $) NIL (|has| |#2| (-6 (-4260 "*"))))) (-2110 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-1462 (($ $) NIL)) (-2387 (((-632 |#2|) (-1174 $)) NIL) (((-1174 |#2|) $) NIL) (((-632 |#2|) (-1174 $) (-1174 $)) NIL) (((-1174 |#2|) $ (-1174 $)) 25)) (-3210 (($ (-1174 |#2|)) NIL) (((-1174 |#2|) $) NIL)) (-1432 (((-592 (-887 |#2|))) NIL) (((-592 (-887 |#2|)) (-1174 $)) NIL)) (-1990 (($ $ $) NIL)) (-1252 (((-108)) NIL)) (-1808 (((-220 |#1| |#2|) $ (-525)) NIL)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#2| (-968 (-385 (-525))))) (($ |#2|) NIL) (((-632 |#2|) $) NIL)) (-3917 (((-713)) NIL)) (-3094 (((-1174 $)) 36)) (-1962 (((-592 (-1174 |#2|))) NIL (|has| |#2| (-517)))) (-3746 (($ $ $ $) NIL)) (-1218 (((-108)) NIL)) (-1814 (($ (-632 |#2|) $) NIL)) (-3029 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-3737 (((-108) $) NIL)) (-2597 (($ $ $) NIL)) (-3136 (((-108)) NIL)) (-1541 (((-108)) NIL)) (-3361 (((-108)) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#2| (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-220 |#1| |#2|) $ (-220 |#1| |#2|)) NIL) (((-220 |#1| |#2|) (-220 |#1| |#2|) $) NIL)) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
+((-1522 (*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1128)))))
+(-13 (-1066 |t#1|) (-351 |t#1|) (-261 |t#1|) (-10 -8 (-15 -1522 ($ |t#1|))))
+(((-33) . T) ((-97) -2067 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-789)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-261 |#1|) . T) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-789) |has| |#1| (-789)) ((-942 |#1|) . T) ((-1020) -2067 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-1066 |#1|) . T) ((-1128) . T) ((-1162 |#1|) . T))
+((-2496 (((-592 (-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -2103 (-592 (-1174 |#1|))))) (-592 (-592 |#1|)) (-592 (-1174 |#1|))) 22) (((-592 (-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -2103 (-592 (-1174 |#1|))))) (-632 |#1|) (-592 (-1174 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -2103 (-592 (-1174 |#1|)))) (-592 (-592 |#1|)) (-1174 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -2103 (-592 (-1174 |#1|)))) (-632 |#1|) (-1174 |#1|)) 14)) (-3085 (((-713) (-632 |#1|) (-1174 |#1|)) 30)) (-1270 (((-3 (-1174 |#1|) "failed") (-632 |#1|) (-1174 |#1|)) 24)) (-1810 (((-108) (-632 |#1|) (-1174 |#1|)) 27)))
+(((-613 |#1|) (-10 -7 (-15 -2496 ((-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -2103 (-592 (-1174 |#1|)))) (-632 |#1|) (-1174 |#1|))) (-15 -2496 ((-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -2103 (-592 (-1174 |#1|)))) (-592 (-592 |#1|)) (-1174 |#1|))) (-15 -2496 ((-592 (-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -2103 (-592 (-1174 |#1|))))) (-632 |#1|) (-592 (-1174 |#1|)))) (-15 -2496 ((-592 (-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -2103 (-592 (-1174 |#1|))))) (-592 (-592 |#1|)) (-592 (-1174 |#1|)))) (-15 -1270 ((-3 (-1174 |#1|) "failed") (-632 |#1|) (-1174 |#1|))) (-15 -1810 ((-108) (-632 |#1|) (-1174 |#1|))) (-15 -3085 ((-713) (-632 |#1|) (-1174 |#1|)))) (-341)) (T -613))
+((-3085 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-341)) (-5 *2 (-713)) (-5 *1 (-613 *5)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-341)) (-5 *2 (-108)) (-5 *1 (-613 *5)))) (-1270 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1174 *4)) (-5 *3 (-632 *4)) (-4 *4 (-341)) (-5 *1 (-613 *4)))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 *5))) (-4 *5 (-341)) (-5 *2 (-592 (-2 (|:| |particular| (-3 (-1174 *5) "failed")) (|:| -2103 (-592 (-1174 *5)))))) (-5 *1 (-613 *5)) (-5 *4 (-592 (-1174 *5))))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-4 *5 (-341)) (-5 *2 (-592 (-2 (|:| |particular| (-3 (-1174 *5) "failed")) (|:| -2103 (-592 (-1174 *5)))))) (-5 *1 (-613 *5)) (-5 *4 (-592 (-1174 *5))))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 *5))) (-4 *5 (-341)) (-5 *2 (-2 (|:| |particular| (-3 (-1174 *5) "failed")) (|:| -2103 (-592 (-1174 *5))))) (-5 *1 (-613 *5)) (-5 *4 (-1174 *5)))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |particular| (-3 (-1174 *5) "failed")) (|:| -2103 (-592 (-1174 *5))))) (-5 *1 (-613 *5)) (-5 *4 (-1174 *5)))))
+(-10 -7 (-15 -2496 ((-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -2103 (-592 (-1174 |#1|)))) (-632 |#1|) (-1174 |#1|))) (-15 -2496 ((-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -2103 (-592 (-1174 |#1|)))) (-592 (-592 |#1|)) (-1174 |#1|))) (-15 -2496 ((-592 (-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -2103 (-592 (-1174 |#1|))))) (-632 |#1|) (-592 (-1174 |#1|)))) (-15 -2496 ((-592 (-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -2103 (-592 (-1174 |#1|))))) (-592 (-592 |#1|)) (-592 (-1174 |#1|)))) (-15 -1270 ((-3 (-1174 |#1|) "failed") (-632 |#1|) (-1174 |#1|))) (-15 -1810 ((-108) (-632 |#1|) (-1174 |#1|))) (-15 -3085 ((-713) (-632 |#1|) (-1174 |#1|))))
+((-2496 (((-592 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2103 (-592 |#3|)))) |#4| (-592 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2103 (-592 |#3|))) |#4| |#3|) 45)) (-3085 (((-713) |#4| |#3|) 17)) (-1270 (((-3 |#3| "failed") |#4| |#3|) 20)) (-1810 (((-108) |#4| |#3|) 13)))
+(((-614 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2496 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2103 (-592 |#3|))) |#4| |#3|)) (-15 -2496 ((-592 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2103 (-592 |#3|)))) |#4| (-592 |#3|))) (-15 -1270 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1810 ((-108) |#4| |#3|)) (-15 -3085 ((-713) |#4| |#3|))) (-341) (-13 (-351 |#1|) (-10 -7 (-6 -4260))) (-13 (-351 |#1|) (-10 -7 (-6 -4260))) (-630 |#1| |#2| |#3|)) (T -614))
+((-3085 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4260)))) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4260)))) (-5 *2 (-713)) (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))) (-1810 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4260)))) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4260)))) (-5 *2 (-108)) (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))) (-1270 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-341)) (-4 *5 (-13 (-351 *4) (-10 -7 (-6 -4260)))) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4260)))) (-5 *1 (-614 *4 *5 *2 *3)) (-4 *3 (-630 *4 *5 *2)))) (-2496 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4260)))) (-4 *7 (-13 (-351 *5) (-10 -7 (-6 -4260)))) (-5 *2 (-592 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2103 (-592 *7))))) (-5 *1 (-614 *5 *6 *7 *3)) (-5 *4 (-592 *7)) (-4 *3 (-630 *5 *6 *7)))) (-2496 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4260)))) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4260)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2103 (-592 *4)))) (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))))
+(-10 -7 (-15 -2496 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2103 (-592 |#3|))) |#4| |#3|)) (-15 -2496 ((-592 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2103 (-592 |#3|)))) |#4| (-592 |#3|))) (-15 -1270 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1810 ((-108) |#4| |#3|)) (-15 -3085 ((-713) |#4| |#3|)))
+((-3367 (((-2 (|:| |particular| (-3 (-1174 (-385 |#4|)) "failed")) (|:| -2103 (-592 (-1174 (-385 |#4|))))) (-592 |#4|) (-592 |#3|)) 45)))
+(((-615 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3367 ((-2 (|:| |particular| (-3 (-1174 (-385 |#4|)) "failed")) (|:| -2103 (-592 (-1174 (-385 |#4|))))) (-592 |#4|) (-592 |#3|)))) (-517) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -615))
+((-3367 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *7)) (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-5 *2 (-2 (|:| |particular| (-3 (-1174 (-385 *8)) "failed")) (|:| -2103 (-592 (-1174 (-385 *8)))))) (-5 *1 (-615 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3367 ((-2 (|:| |particular| (-3 (-1174 (-385 |#4|)) "failed")) (|:| -2103 (-592 (-1174 (-385 |#4|))))) (-592 |#4|) (-592 |#3|))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1509 (((-3 $ "failed")) NIL (|has| |#2| (-517)))) (-2924 ((|#2| $) NIL)) (-2207 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-3551 (((-1174 (-632 |#2|))) NIL) (((-1174 (-632 |#2|)) (-1174 $)) NIL)) (-2721 (((-108) $) NIL)) (-3651 (((-1174 $)) 37)) (-3779 (((-108) $ (-713)) NIL)) (-1232 (($ |#2|) NIL)) (-2475 (($) NIL T CONST)) (-3692 (($ $) NIL (|has| |#2| (-286)))) (-3209 (((-220 |#1| |#2|) $ (-525)) NIL)) (-3734 (((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed")) NIL (|has| |#2| (-517)))) (-2394 (((-3 $ "failed")) NIL (|has| |#2| (-517)))) (-2946 (((-632 |#2|)) NIL) (((-632 |#2|) (-1174 $)) NIL)) (-2126 ((|#2| $) NIL)) (-4187 (((-632 |#2|) $) NIL) (((-632 |#2|) $ (-1174 $)) NIL)) (-3322 (((-3 $ "failed") $) NIL (|has| |#2| (-517)))) (-3141 (((-1088 (-887 |#2|))) NIL (|has| |#2| (-341)))) (-1488 (($ $ (-856)) NIL)) (-3447 ((|#2| $) NIL)) (-4047 (((-1088 |#2|) $) NIL (|has| |#2| (-517)))) (-3411 ((|#2|) NIL) ((|#2| (-1174 $)) NIL)) (-1521 (((-1088 |#2|) $) NIL)) (-3838 (((-108)) NIL)) (-1934 (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 |#2| "failed") $) NIL)) (-4105 (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) ((|#2| $) NIL)) (-2580 (($ (-1174 |#2|)) NIL) (($ (-1174 |#2|) (-1174 $)) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3085 (((-713) $) NIL (|has| |#2| (-517))) (((-856)) 38)) (-3017 ((|#2| $ (-525) (-525)) NIL)) (-1822 (((-108)) NIL)) (-2156 (($ $ (-856)) NIL)) (-2175 (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-2278 (((-108) $) NIL)) (-3204 (((-713) $) NIL (|has| |#2| (-517)))) (-3261 (((-592 (-220 |#1| |#2|)) $) NIL (|has| |#2| (-517)))) (-2720 (((-713) $) NIL)) (-3387 (((-108)) NIL)) (-2731 (((-713) $) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-3239 ((|#2| $) NIL (|has| |#2| (-6 (-4261 "*"))))) (-2797 (((-525) $) NIL)) (-2307 (((-525) $) NIL)) (-2617 (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-3194 (((-525) $) NIL)) (-3210 (((-525) $) NIL)) (-4054 (($ (-592 (-592 |#2|))) NIL)) (-3069 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2949 (((-592 (-592 |#2|)) $) NIL)) (-2634 (((-108)) NIL)) (-2936 (((-108)) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-2661 (((-3 (-2 (|:| |particular| $) (|:| -2103 (-592 $))) "failed")) NIL (|has| |#2| (-517)))) (-2542 (((-3 $ "failed")) NIL (|has| |#2| (-517)))) (-2713 (((-632 |#2|)) NIL) (((-632 |#2|) (-1174 $)) NIL)) (-3309 ((|#2| $) NIL)) (-2222 (((-632 |#2|) $) NIL) (((-632 |#2|) $ (-1174 $)) NIL)) (-3711 (((-3 $ "failed") $) NIL (|has| |#2| (-517)))) (-2056 (((-1088 (-887 |#2|))) NIL (|has| |#2| (-341)))) (-2486 (($ $ (-856)) NIL)) (-3714 ((|#2| $) NIL)) (-2357 (((-1088 |#2|) $) NIL (|has| |#2| (-517)))) (-2623 ((|#2|) NIL) ((|#2| (-1174 $)) NIL)) (-2673 (((-1088 |#2|) $) NIL)) (-3938 (((-108)) NIL)) (-1289 (((-1075) $) NIL)) (-1780 (((-108)) NIL)) (-1719 (((-108)) NIL)) (-2490 (((-108)) NIL)) (-1921 (((-3 $ "failed") $) NIL (|has| |#2| (-341)))) (-3993 (((-1039) $) NIL)) (-1539 (((-108)) NIL)) (-1311 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517)))) (-1518 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#2| $ (-525) (-525) |#2|) NIL) ((|#2| $ (-525) (-525)) 22) ((|#2| $ (-525)) NIL)) (-2702 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-3450 ((|#2| $) NIL)) (-3525 (($ (-592 |#2|)) NIL)) (-3219 (((-108) $) NIL)) (-1695 (((-220 |#1| |#2|) $) NIL)) (-1796 ((|#2| $) NIL (|has| |#2| (-6 (-4261 "*"))))) (-4002 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-2503 (($ $) NIL)) (-2754 (((-632 |#2|) (-1174 $)) NIL) (((-1174 |#2|) $) NIL) (((-632 |#2|) (-1174 $) (-1174 $)) NIL) (((-1174 |#2|) $ (-1174 $)) 25)) (-2069 (($ (-1174 |#2|)) NIL) (((-1174 |#2|) $) NIL)) (-3600 (((-592 (-887 |#2|))) NIL) (((-592 (-887 |#2|)) (-1174 $)) NIL)) (-1242 (($ $ $) NIL)) (-1682 (((-108)) NIL)) (-1881 (((-220 |#1| |#2|) $ (-525)) NIL)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#2| (-968 (-385 (-525))))) (($ |#2|) NIL) (((-632 |#2|) $) NIL)) (-2448 (((-713)) NIL)) (-2103 (((-1174 $)) 36)) (-3974 (((-592 (-1174 |#2|))) NIL (|has| |#2| (-517)))) (-3133 (($ $ $ $) NIL)) (-1839 (((-108)) NIL)) (-1590 (($ (-632 |#2|) $) NIL)) (-2706 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-1245 (((-108) $) NIL)) (-4148 (($ $ $) NIL)) (-2453 (((-108)) NIL)) (-1569 (((-108)) NIL)) (-1886 (((-108)) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#2| (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-220 |#1| |#2|) $ (-220 |#1| |#2|)) NIL) (((-220 |#1| |#2|) (-220 |#1| |#2|) $) NIL)) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
(((-616 |#1| |#2|) (-13 (-1042 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-566 (-632 |#2|)) (-395 |#2|)) (-856) (-160)) (T -616))
NIL
(-13 (-1042 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-566 (-632 |#2|)) (-395 |#2|))
-((-4236 (((-108) $ $) NIL)) (-2726 (((-592 |#1|) $) NIL)) (-3519 (($ $) 52)) (-4063 (((-108) $) NIL)) (-3077 (((-3 |#1| "failed") $) NIL)) (-1572 ((|#1| $) NIL)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-2224 (((-3 $ "failed") (-761 |#1|)) 23)) (-2593 (((-108) (-761 |#1|)) 15)) (-3051 (($ (-761 |#1|)) 24)) (-1298 (((-108) $ $) 30)) (-4178 (((-856) $) 37)) (-3507 (($ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-2770 (((-592 $) (-761 |#1|)) 17)) (-1217 (((-798) $) 43) (($ |#1|) 34) (((-761 |#1|) $) 39) (((-621 |#1|) $) 44)) (-2075 (((-57 (-592 $)) (-592 |#1|) (-856)) 57)) (-2085 (((-592 $) (-592 |#1|) (-856)) 60)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 53)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 38)))
-(((-617 |#1|) (-13 (-789) (-968 |#1|) (-10 -8 (-15 -4063 ((-108) $)) (-15 -3507 ($ $)) (-15 -3519 ($ $)) (-15 -4178 ((-856) $)) (-15 -1298 ((-108) $ $)) (-15 -1217 ((-761 |#1|) $)) (-15 -1217 ((-621 |#1|) $)) (-15 -2770 ((-592 $) (-761 |#1|))) (-15 -2593 ((-108) (-761 |#1|))) (-15 -3051 ($ (-761 |#1|))) (-15 -2224 ((-3 $ "failed") (-761 |#1|))) (-15 -2726 ((-592 |#1|) $)) (-15 -2075 ((-57 (-592 $)) (-592 |#1|) (-856))) (-15 -2085 ((-592 $) (-592 |#1|) (-856))))) (-789)) (T -617))
-((-4063 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-3507 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789)))) (-3519 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-1298 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-617 *4))) (-5 *1 (-617 *4)))) (-2593 (*1 *2 *3) (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-108)) (-5 *1 (-617 *4)))) (-3051 (*1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-2075 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-856)) (-4 *5 (-789)) (-5 *2 (-57 (-592 (-617 *5)))) (-5 *1 (-617 *5)))) (-2085 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-856)) (-4 *5 (-789)) (-5 *2 (-592 (-617 *5))) (-5 *1 (-617 *5)))))
-(-13 (-789) (-968 |#1|) (-10 -8 (-15 -4063 ((-108) $)) (-15 -3507 ($ $)) (-15 -3519 ($ $)) (-15 -4178 ((-856) $)) (-15 -1298 ((-108) $ $)) (-15 -1217 ((-761 |#1|) $)) (-15 -1217 ((-621 |#1|) $)) (-15 -2770 ((-592 $) (-761 |#1|))) (-15 -2593 ((-108) (-761 |#1|))) (-15 -3051 ($ (-761 |#1|))) (-15 -2224 ((-3 $ "failed") (-761 |#1|))) (-15 -2726 ((-592 |#1|) $)) (-15 -2075 ((-57 (-592 $)) (-592 |#1|) (-856))) (-15 -2085 ((-592 $) (-592 |#1|) (-856)))))
-((-3284 ((|#2| $) 76)) (-2798 (($ $) 96)) (-3991 (((-108) $ (-713)) 26)) (-1886 (($ $) 85) (($ $ (-713)) 88)) (-2353 (((-108) $) 97)) (-3396 (((-592 $) $) 72)) (-1729 (((-108) $ $) 71)) (-3924 (((-108) $ (-713)) 24)) (-3666 (((-525) $) 46)) (-1847 (((-525) $) 45)) (-2912 (((-108) $ (-713)) 22)) (-3786 (((-108) $) 74)) (-1717 ((|#2| $) 89) (($ $ (-713)) 92)) (-2531 (($ $ $ (-525)) 62) (($ |#2| $ (-525)) 61)) (-2628 (((-592 (-525)) $) 44)) (-2978 (((-108) (-525) $) 42)) (-1872 ((|#2| $) NIL) (($ $ (-713)) 84)) (-3931 (($ $ (-525)) 100)) (-3920 (((-108) $) 99)) (-3944 (((-108) (-1 (-108) |#2|) $) 32)) (-3341 (((-592 |#2|) $) 33)) (-3406 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1141 (-525))) 58) ((|#2| $ (-525)) 40) ((|#2| $ (-525) |#2|) 41)) (-3340 (((-525) $ $) 70)) (-3038 (($ $ (-1141 (-525))) 57) (($ $ (-525)) 51)) (-2905 (((-108) $) 66)) (-3004 (($ $) 81)) (-1654 (((-713) $) 80)) (-4167 (($ $) 79)) (-1230 (($ (-592 |#2|)) 37)) (-1489 (($ $) 101)) (-3793 (((-592 $) $) 69)) (-3351 (((-108) $ $) 68)) (-3029 (((-108) (-1 (-108) |#2|) $) 31)) (-3955 (((-108) $ $) 18)) (-3522 (((-713) $) 29)))
-(((-618 |#1| |#2|) (-10 -8 (-15 -1489 (|#1| |#1|)) (-15 -3931 (|#1| |#1| (-525))) (-15 -2353 ((-108) |#1|)) (-15 -3920 ((-108) |#1|)) (-15 -3406 (|#2| |#1| (-525) |#2|)) (-15 -3406 (|#2| |#1| (-525))) (-15 -3341 ((-592 |#2|) |#1|)) (-15 -2978 ((-108) (-525) |#1|)) (-15 -2628 ((-592 (-525)) |#1|)) (-15 -1847 ((-525) |#1|)) (-15 -3666 ((-525) |#1|)) (-15 -1230 (|#1| (-592 |#2|))) (-15 -3406 (|#1| |#1| (-1141 (-525)))) (-15 -3038 (|#1| |#1| (-525))) (-15 -3038 (|#1| |#1| (-1141 (-525)))) (-15 -2531 (|#1| |#2| |#1| (-525))) (-15 -2531 (|#1| |#1| |#1| (-525))) (-15 -3004 (|#1| |#1|)) (-15 -1654 ((-713) |#1|)) (-15 -4167 (|#1| |#1|)) (-15 -2798 (|#1| |#1|)) (-15 -1717 (|#1| |#1| (-713))) (-15 -3406 (|#2| |#1| "last")) (-15 -1717 (|#2| |#1|)) (-15 -1886 (|#1| |#1| (-713))) (-15 -3406 (|#1| |#1| "rest")) (-15 -1886 (|#1| |#1|)) (-15 -1872 (|#1| |#1| (-713))) (-15 -3406 (|#2| |#1| "first")) (-15 -1872 (|#2| |#1|)) (-15 -1729 ((-108) |#1| |#1|)) (-15 -3351 ((-108) |#1| |#1|)) (-15 -3340 ((-525) |#1| |#1|)) (-15 -2905 ((-108) |#1|)) (-15 -3406 (|#2| |#1| "value")) (-15 -3284 (|#2| |#1|)) (-15 -3786 ((-108) |#1|)) (-15 -3396 ((-592 |#1|) |#1|)) (-15 -3793 ((-592 |#1|) |#1|)) (-15 -3955 ((-108) |#1| |#1|)) (-15 -3944 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3029 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3522 ((-713) |#1|)) (-15 -3991 ((-108) |#1| (-713))) (-15 -3924 ((-108) |#1| (-713))) (-15 -2912 ((-108) |#1| (-713)))) (-619 |#2|) (-1128)) (T -618))
-NIL
-(-10 -8 (-15 -1489 (|#1| |#1|)) (-15 -3931 (|#1| |#1| (-525))) (-15 -2353 ((-108) |#1|)) (-15 -3920 ((-108) |#1|)) (-15 -3406 (|#2| |#1| (-525) |#2|)) (-15 -3406 (|#2| |#1| (-525))) (-15 -3341 ((-592 |#2|) |#1|)) (-15 -2978 ((-108) (-525) |#1|)) (-15 -2628 ((-592 (-525)) |#1|)) (-15 -1847 ((-525) |#1|)) (-15 -3666 ((-525) |#1|)) (-15 -1230 (|#1| (-592 |#2|))) (-15 -3406 (|#1| |#1| (-1141 (-525)))) (-15 -3038 (|#1| |#1| (-525))) (-15 -3038 (|#1| |#1| (-1141 (-525)))) (-15 -2531 (|#1| |#2| |#1| (-525))) (-15 -2531 (|#1| |#1| |#1| (-525))) (-15 -3004 (|#1| |#1|)) (-15 -1654 ((-713) |#1|)) (-15 -4167 (|#1| |#1|)) (-15 -2798 (|#1| |#1|)) (-15 -1717 (|#1| |#1| (-713))) (-15 -3406 (|#2| |#1| "last")) (-15 -1717 (|#2| |#1|)) (-15 -1886 (|#1| |#1| (-713))) (-15 -3406 (|#1| |#1| "rest")) (-15 -1886 (|#1| |#1|)) (-15 -1872 (|#1| |#1| (-713))) (-15 -3406 (|#2| |#1| "first")) (-15 -1872 (|#2| |#1|)) (-15 -1729 ((-108) |#1| |#1|)) (-15 -3351 ((-108) |#1| |#1|)) (-15 -3340 ((-525) |#1| |#1|)) (-15 -2905 ((-108) |#1|)) (-15 -3406 (|#2| |#1| "value")) (-15 -3284 (|#2| |#1|)) (-15 -3786 ((-108) |#1|)) (-15 -3396 ((-592 |#1|) |#1|)) (-15 -3793 ((-592 |#1|) |#1|)) (-15 -3955 ((-108) |#1| |#1|)) (-15 -3944 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3029 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3522 ((-713) |#1|)) (-15 -3991 ((-108) |#1| (-713))) (-15 -3924 ((-108) |#1| (-713))) (-15 -2912 ((-108) |#1| (-713))))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3284 ((|#1| $) 48)) (-3581 ((|#1| $) 65)) (-2798 (($ $) 67)) (-3456 (((-1179) $ (-525) (-525)) 97 (|has| $ (-6 -4259)))) (-4238 (($ $ (-525)) 52 (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) 8)) (-3214 ((|#1| $ |#1|) 39 (|has| $ (-6 -4259)))) (-1620 (($ $ $) 56 (|has| $ (-6 -4259)))) (-2603 ((|#1| $ |#1|) 54 (|has| $ (-6 -4259)))) (-4145 ((|#1| $ |#1|) 58 (|has| $ (-6 -4259)))) (-1430 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4259))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4259))) (($ $ "rest" $) 55 (|has| $ (-6 -4259))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) 117 (|has| $ (-6 -4259))) ((|#1| $ (-525) |#1|) 86 (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) 41 (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) |#1|) $) 102)) (-3570 ((|#1| $) 66)) (-2169 (($) 7 T CONST)) (-3250 (($ $) 124)) (-1886 (($ $) 73) (($ $ (-713)) 71)) (-1910 (($ $) 99 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1703 (($ |#1| $) 100 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#1|) $) 103)) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2301 ((|#1| $ (-525) |#1|) 85 (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) 87)) (-2353 (((-108) $) 83)) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-1478 (((-713) $) 123)) (-3396 (((-592 $) $) 50)) (-1729 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-3416 (($ (-713) |#1|) 108)) (-3924 (((-108) $ (-713)) 9)) (-3666 (((-525) $) 95 (|has| (-525) (-789)))) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1847 (((-525) $) 94 (|has| (-525) (-789)))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2912 (((-108) $ (-713)) 10)) (-2803 (((-592 |#1|) $) 45)) (-3786 (((-108) $) 49)) (-3835 (($ $) 126)) (-2545 (((-108) $) 127)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-1717 ((|#1| $) 70) (($ $ (-713)) 68)) (-2531 (($ $ $ (-525)) 116) (($ |#1| $ (-525)) 115)) (-2628 (((-592 (-525)) $) 92)) (-2978 (((-108) (-525) $) 91)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1898 ((|#1| $) 125)) (-1872 ((|#1| $) 76) (($ $ (-713)) 74)) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-1420 (($ $ |#1|) 96 (|has| $ (-6 -4259)))) (-3931 (($ $ (-525)) 122)) (-3920 (((-108) $) 84)) (-3998 (((-108) $) 128)) (-3671 (((-108) $) 129)) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2167 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) 90)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1141 (-525))) 112) ((|#1| $ (-525)) 89) ((|#1| $ (-525) |#1|) 88)) (-3340 (((-525) $ $) 44)) (-3038 (($ $ (-1141 (-525))) 114) (($ $ (-525)) 113)) (-2905 (((-108) $) 46)) (-3004 (($ $) 62)) (-1354 (($ $) 59 (|has| $ (-6 -4259)))) (-1654 (((-713) $) 63)) (-4167 (($ $) 64)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-3210 (((-501) $) 98 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 107)) (-4029 (($ $ $) 61 (|has| $ (-6 -4259))) (($ $ |#1|) 60 (|has| $ (-6 -4259)))) (-2038 (($ $ $) 78) (($ |#1| $) 77) (($ (-592 $)) 110) (($ $ |#1|) 109)) (-1489 (($ $) 121)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3793 (((-592 $) $) 51)) (-3351 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL)) (-2668 (((-592 |#1|) $) NIL)) (-3446 (($ $) 52)) (-3278 (((-108) $) NIL)) (-1934 (((-3 |#1| "failed") $) NIL)) (-4105 ((|#1| $) NIL)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-1814 (((-3 $ "failed") (-761 |#1|)) 23)) (-4101 (((-108) (-761 |#1|)) 15)) (-2883 (($ (-761 |#1|)) 24)) (-3078 (((-108) $ $) 30)) (-4128 (((-856) $) 37)) (-3436 (($ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4201 (((-592 $) (-761 |#1|)) 17)) (-4100 (((-798) $) 43) (($ |#1|) 34) (((-761 |#1|) $) 39) (((-621 |#1|) $) 44)) (-2678 (((-57 (-592 $)) (-592 |#1|) (-856)) 57)) (-2781 (((-592 $) (-592 |#1|) (-856)) 60)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 53)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 38)))
+(((-617 |#1|) (-13 (-789) (-968 |#1|) (-10 -8 (-15 -3278 ((-108) $)) (-15 -3436 ($ $)) (-15 -3446 ($ $)) (-15 -4128 ((-856) $)) (-15 -3078 ((-108) $ $)) (-15 -4100 ((-761 |#1|) $)) (-15 -4100 ((-621 |#1|) $)) (-15 -4201 ((-592 $) (-761 |#1|))) (-15 -4101 ((-108) (-761 |#1|))) (-15 -2883 ($ (-761 |#1|))) (-15 -1814 ((-3 $ "failed") (-761 |#1|))) (-15 -2668 ((-592 |#1|) $)) (-15 -2678 ((-57 (-592 $)) (-592 |#1|) (-856))) (-15 -2781 ((-592 $) (-592 |#1|) (-856))))) (-789)) (T -617))
+((-3278 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-3436 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789)))) (-3446 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789)))) (-4128 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-3078 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-617 *4))) (-5 *1 (-617 *4)))) (-4101 (*1 *2 *3) (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-108)) (-5 *1 (-617 *4)))) (-2883 (*1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3)))) (-1814 (*1 *1 *2) (|partial| -12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-856)) (-4 *5 (-789)) (-5 *2 (-57 (-592 (-617 *5)))) (-5 *1 (-617 *5)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-856)) (-4 *5 (-789)) (-5 *2 (-592 (-617 *5))) (-5 *1 (-617 *5)))))
+(-13 (-789) (-968 |#1|) (-10 -8 (-15 -3278 ((-108) $)) (-15 -3436 ($ $)) (-15 -3446 ($ $)) (-15 -4128 ((-856) $)) (-15 -3078 ((-108) $ $)) (-15 -4100 ((-761 |#1|) $)) (-15 -4100 ((-621 |#1|) $)) (-15 -4201 ((-592 $) (-761 |#1|))) (-15 -4101 ((-108) (-761 |#1|))) (-15 -2883 ($ (-761 |#1|))) (-15 -1814 ((-3 $ "failed") (-761 |#1|))) (-15 -2668 ((-592 |#1|) $)) (-15 -2678 ((-57 (-592 $)) (-592 |#1|) (-856))) (-15 -2781 ((-592 $) (-592 |#1|) (-856)))))
+((-2219 ((|#2| $) 76)) (-3979 (($ $) 96)) (-3779 (((-108) $ (-713)) 26)) (-1659 (($ $) 85) (($ $ (-713)) 88)) (-3631 (((-108) $) 97)) (-3994 (((-592 $) $) 72)) (-3569 (((-108) $ $) 71)) (-2516 (((-108) $ (-713)) 24)) (-1732 (((-525) $) 46)) (-2231 (((-525) $) 45)) (-4028 (((-108) $ (-713)) 22)) (-3506 (((-108) $) 74)) (-2718 ((|#2| $) 89) (($ $ (-713)) 92)) (-2594 (($ $ $ (-525)) 62) (($ |#2| $ (-525)) 61)) (-3177 (((-592 (-525)) $) 44)) (-3461 (((-108) (-525) $) 42)) (-1647 ((|#2| $) NIL) (($ $ (-713)) 84)) (-1397 (($ $ (-525)) 100)) (-2476 (((-108) $) 99)) (-1518 (((-108) (-1 (-108) |#2|) $) 32)) (-1717 (((-592 |#2|) $) 33)) (-3431 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1141 (-525))) 58) ((|#2| $ (-525)) 40) ((|#2| $ (-525) |#2|) 41)) (-1707 (((-525) $ $) 70)) (-2139 (($ $ (-1141 (-525))) 57) (($ $ (-525)) 51)) (-3953 (((-108) $) 66)) (-3675 (($ $) 81)) (-4082 (((-713) $) 80)) (-3077 (($ $) 79)) (-4114 (($ (-592 |#2|)) 37)) (-3926 (($ $) 101)) (-3576 (((-592 $) $) 69)) (-1791 (((-108) $ $) 68)) (-2706 (((-108) (-1 (-108) |#2|) $) 31)) (-2775 (((-108) $ $) 18)) (-2827 (((-713) $) 29)))
+(((-618 |#1| |#2|) (-10 -8 (-15 -3926 (|#1| |#1|)) (-15 -1397 (|#1| |#1| (-525))) (-15 -3631 ((-108) |#1|)) (-15 -2476 ((-108) |#1|)) (-15 -3431 (|#2| |#1| (-525) |#2|)) (-15 -3431 (|#2| |#1| (-525))) (-15 -1717 ((-592 |#2|) |#1|)) (-15 -3461 ((-108) (-525) |#1|)) (-15 -3177 ((-592 (-525)) |#1|)) (-15 -2231 ((-525) |#1|)) (-15 -1732 ((-525) |#1|)) (-15 -4114 (|#1| (-592 |#2|))) (-15 -3431 (|#1| |#1| (-1141 (-525)))) (-15 -2139 (|#1| |#1| (-525))) (-15 -2139 (|#1| |#1| (-1141 (-525)))) (-15 -2594 (|#1| |#2| |#1| (-525))) (-15 -2594 (|#1| |#1| |#1| (-525))) (-15 -3675 (|#1| |#1|)) (-15 -4082 ((-713) |#1|)) (-15 -3077 (|#1| |#1|)) (-15 -3979 (|#1| |#1|)) (-15 -2718 (|#1| |#1| (-713))) (-15 -3431 (|#2| |#1| "last")) (-15 -2718 (|#2| |#1|)) (-15 -1659 (|#1| |#1| (-713))) (-15 -3431 (|#1| |#1| "rest")) (-15 -1659 (|#1| |#1|)) (-15 -1647 (|#1| |#1| (-713))) (-15 -3431 (|#2| |#1| "first")) (-15 -1647 (|#2| |#1|)) (-15 -3569 ((-108) |#1| |#1|)) (-15 -1791 ((-108) |#1| |#1|)) (-15 -1707 ((-525) |#1| |#1|)) (-15 -3953 ((-108) |#1|)) (-15 -3431 (|#2| |#1| "value")) (-15 -2219 (|#2| |#1|)) (-15 -3506 ((-108) |#1|)) (-15 -3994 ((-592 |#1|) |#1|)) (-15 -3576 ((-592 |#1|) |#1|)) (-15 -2775 ((-108) |#1| |#1|)) (-15 -1518 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2706 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2827 ((-713) |#1|)) (-15 -3779 ((-108) |#1| (-713))) (-15 -2516 ((-108) |#1| (-713))) (-15 -4028 ((-108) |#1| (-713)))) (-619 |#2|) (-1128)) (T -618))
+NIL
+(-10 -8 (-15 -3926 (|#1| |#1|)) (-15 -1397 (|#1| |#1| (-525))) (-15 -3631 ((-108) |#1|)) (-15 -2476 ((-108) |#1|)) (-15 -3431 (|#2| |#1| (-525) |#2|)) (-15 -3431 (|#2| |#1| (-525))) (-15 -1717 ((-592 |#2|) |#1|)) (-15 -3461 ((-108) (-525) |#1|)) (-15 -3177 ((-592 (-525)) |#1|)) (-15 -2231 ((-525) |#1|)) (-15 -1732 ((-525) |#1|)) (-15 -4114 (|#1| (-592 |#2|))) (-15 -3431 (|#1| |#1| (-1141 (-525)))) (-15 -2139 (|#1| |#1| (-525))) (-15 -2139 (|#1| |#1| (-1141 (-525)))) (-15 -2594 (|#1| |#2| |#1| (-525))) (-15 -2594 (|#1| |#1| |#1| (-525))) (-15 -3675 (|#1| |#1|)) (-15 -4082 ((-713) |#1|)) (-15 -3077 (|#1| |#1|)) (-15 -3979 (|#1| |#1|)) (-15 -2718 (|#1| |#1| (-713))) (-15 -3431 (|#2| |#1| "last")) (-15 -2718 (|#2| |#1|)) (-15 -1659 (|#1| |#1| (-713))) (-15 -3431 (|#1| |#1| "rest")) (-15 -1659 (|#1| |#1|)) (-15 -1647 (|#1| |#1| (-713))) (-15 -3431 (|#2| |#1| "first")) (-15 -1647 (|#2| |#1|)) (-15 -3569 ((-108) |#1| |#1|)) (-15 -1791 ((-108) |#1| |#1|)) (-15 -1707 ((-525) |#1| |#1|)) (-15 -3953 ((-108) |#1|)) (-15 -3431 (|#2| |#1| "value")) (-15 -2219 (|#2| |#1|)) (-15 -3506 ((-108) |#1|)) (-15 -3994 ((-592 |#1|) |#1|)) (-15 -3576 ((-592 |#1|) |#1|)) (-15 -2775 ((-108) |#1| |#1|)) (-15 -1518 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2706 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2827 ((-713) |#1|)) (-15 -3779 ((-108) |#1| (-713))) (-15 -2516 ((-108) |#1| (-713))) (-15 -4028 ((-108) |#1| (-713))))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2219 ((|#1| $) 48)) (-2250 ((|#1| $) 65)) (-3979 (($ $) 67)) (-3289 (((-1179) $ (-525) (-525)) 97 (|has| $ (-6 -4260)))) (-1425 (($ $ (-525)) 52 (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) 8)) (-1947 ((|#1| $ |#1|) 39 (|has| $ (-6 -4260)))) (-3776 (($ $ $) 56 (|has| $ (-6 -4260)))) (-4193 ((|#1| $ |#1|) 54 (|has| $ (-6 -4260)))) (-2894 ((|#1| $ |#1|) 58 (|has| $ (-6 -4260)))) (-1233 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4260))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4260))) (($ $ "rest" $) 55 (|has| $ (-6 -4260))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) 117 (|has| $ (-6 -4260))) ((|#1| $ (-525) |#1|) 86 (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) 41 (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) |#1|) $) 102)) (-2237 ((|#1| $) 66)) (-2475 (($) 7 T CONST)) (-4034 (($ $) 124)) (-1659 (($ $) 73) (($ $ (-713)) 71)) (-1681 (($ $) 99 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2698 (($ |#1| $) 100 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#1|) $) 103)) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3081 ((|#1| $ (-525) |#1|) 85 (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) 87)) (-3631 (((-108) $) 83)) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-1955 (((-713) $) 123)) (-3994 (((-592 $) $) 50)) (-3569 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-3324 (($ (-713) |#1|) 108)) (-2516 (((-108) $ (-713)) 9)) (-1732 (((-525) $) 95 (|has| (-525) (-789)))) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2231 (((-525) $) 94 (|has| (-525) (-789)))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4028 (((-108) $ (-713)) 10)) (-2010 (((-592 |#1|) $) 45)) (-3506 (((-108) $) 49)) (-2802 (($ $) 126)) (-1859 (((-108) $) 127)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2718 ((|#1| $) 70) (($ $ (-713)) 68)) (-2594 (($ $ $ (-525)) 116) (($ |#1| $ (-525)) 115)) (-3177 (((-592 (-525)) $) 92)) (-3461 (((-108) (-525) $) 91)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1511 ((|#1| $) 125)) (-1647 ((|#1| $) 76) (($ $ (-713)) 74)) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-3453 (($ $ |#1|) 96 (|has| $ (-6 -4260)))) (-1397 (($ $ (-525)) 122)) (-2476 (((-108) $) 84)) (-3859 (((-108) $) 128)) (-1774 (((-108) $) 129)) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-2456 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) 90)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1141 (-525))) 112) ((|#1| $ (-525)) 89) ((|#1| $ (-525) |#1|) 88)) (-1707 (((-525) $ $) 44)) (-2139 (($ $ (-1141 (-525))) 114) (($ $ (-525)) 113)) (-3953 (((-108) $) 46)) (-3675 (($ $) 62)) (-2789 (($ $) 59 (|has| $ (-6 -4260)))) (-4082 (((-713) $) 63)) (-3077 (($ $) 64)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-2069 (((-501) $) 98 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 107)) (-4190 (($ $ $) 61 (|has| $ (-6 -4260))) (($ $ |#1|) 60 (|has| $ (-6 -4260)))) (-2035 (($ $ $) 78) (($ |#1| $) 77) (($ (-592 $)) 110) (($ $ |#1|) 109)) (-3926 (($ $) 121)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3576 (((-592 $) $) 51)) (-1791 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-619 |#1|) (-131) (-1128)) (T -619))
-((-1703 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-619 *3)) (-4 *3 (-1128)))) (-3785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-619 *3)) (-4 *3 (-1128)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))) (-2545 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))) (-3835 (*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1128)))) (-1898 (*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1128)))) (-3250 (*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1128)))) (-1478 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1128)) (-5 *2 (-713)))) (-3931 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-619 *3)) (-4 *3 (-1128)))) (-1489 (*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1128)))))
-(-13 (-1066 |t#1|) (-10 -8 (-15 -1703 ($ (-1 (-108) |t#1|) $)) (-15 -3785 ($ (-1 (-108) |t#1|) $)) (-15 -3671 ((-108) $)) (-15 -3998 ((-108) $)) (-15 -2545 ((-108) $)) (-15 -3835 ($ $)) (-15 -1898 (|t#1| $)) (-15 -3250 ($ $)) (-15 -1478 ((-713) $)) (-15 -3931 ($ $ (-525))) (-15 -1489 ($ $))))
-(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-942 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1066 |#1|) . T) ((-1128) . T) ((-1162 |#1|) . T))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2302 (($ (-713) (-713) (-713)) 35 (|has| |#1| (-977)))) (-3991 (((-108) $ (-713)) NIL)) (-3929 ((|#1| $ (-713) (-713) (-713) |#1|) 29)) (-2169 (($) NIL T CONST)) (-2853 (($ $ $) 39 (|has| |#1| (-977)))) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1858 (((-1174 (-713)) $) 11)) (-1912 (($ (-1092) $ $) 24)) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-4214 (($ (-713)) 37 (|has| |#1| (-977)))) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#1| $ (-713) (-713) (-713)) 27)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) NIL)) (-1230 (($ (-592 (-592 (-592 |#1|)))) 46)) (-1217 (($ (-892 (-892 (-892 |#1|)))) 17) (((-892 (-892 (-892 |#1|))) $) 14) (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-620 |#1|) (-13 (-464 |#1|) (-10 -8 (IF (|has| |#1| (-977)) (PROGN (-15 -2302 ($ (-713) (-713) (-713))) (-15 -4214 ($ (-713))) (-15 -2853 ($ $ $))) |%noBranch|) (-15 -1230 ($ (-592 (-592 (-592 |#1|))))) (-15 -3406 (|#1| $ (-713) (-713) (-713))) (-15 -3929 (|#1| $ (-713) (-713) (-713) |#1|)) (-15 -1217 ($ (-892 (-892 (-892 |#1|))))) (-15 -1217 ((-892 (-892 (-892 |#1|))) $)) (-15 -1912 ($ (-1092) $ $)) (-15 -1858 ((-1174 (-713)) $)))) (-1020)) (T -620))
-((-2302 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-977)) (-4 *3 (-1020)))) (-4214 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-977)) (-4 *3 (-1020)))) (-2853 (*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-977)) (-4 *2 (-1020)))) (-1230 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-592 *3)))) (-4 *3 (-1020)) (-5 *1 (-620 *3)))) (-3406 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1020)))) (-3929 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1020)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-892 (-892 (-892 *3)))) (-4 *3 (-1020)) (-5 *1 (-620 *3)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-892 (-892 (-892 *3)))) (-5 *1 (-620 *3)) (-4 *3 (-1020)))) (-1912 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-620 *3)) (-4 *3 (-1020)))) (-1858 (*1 *2 *1) (-12 (-5 *2 (-1174 (-713))) (-5 *1 (-620 *3)) (-4 *3 (-1020)))))
-(-13 (-464 |#1|) (-10 -8 (IF (|has| |#1| (-977)) (PROGN (-15 -2302 ($ (-713) (-713) (-713))) (-15 -4214 ($ (-713))) (-15 -2853 ($ $ $))) |%noBranch|) (-15 -1230 ($ (-592 (-592 (-592 |#1|))))) (-15 -3406 (|#1| $ (-713) (-713) (-713))) (-15 -3929 (|#1| $ (-713) (-713) (-713) |#1|)) (-15 -1217 ($ (-892 (-892 (-892 |#1|))))) (-15 -1217 ((-892 (-892 (-892 |#1|))) $)) (-15 -1912 ($ (-1092) $ $)) (-15 -1858 ((-1174 (-713)) $))))
-((-4236 (((-108) $ $) NIL)) (-2726 (((-592 |#1|) $) 14)) (-3519 (($ $) 18)) (-4063 (((-108) $) 19)) (-3077 (((-3 |#1| "failed") $) 22)) (-1572 ((|#1| $) 20)) (-1886 (($ $) 36)) (-1276 (($ $) 24)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-1298 (((-108) $ $) 42)) (-4178 (((-856) $) 38)) (-3507 (($ $) 17)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1872 ((|#1| $) 35)) (-1217 (((-798) $) 31) (($ |#1|) 23) (((-761 |#1|) $) 27)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 12)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 40)) (* (($ $ $) 34)))
-(((-621 |#1|) (-13 (-789) (-968 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1217 ((-761 |#1|) $)) (-15 -1872 (|#1| $)) (-15 -3507 ($ $)) (-15 -4178 ((-856) $)) (-15 -1298 ((-108) $ $)) (-15 -1276 ($ $)) (-15 -1886 ($ $)) (-15 -4063 ((-108) $)) (-15 -3519 ($ $)) (-15 -2726 ((-592 |#1|) $)))) (-789)) (T -621))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-1872 (*1 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-3507 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-1298 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-1276 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-1886 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-3519 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789)))))
-(-13 (-789) (-968 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1217 ((-761 |#1|) $)) (-15 -1872 (|#1| $)) (-15 -3507 ($ $)) (-15 -4178 ((-856) $)) (-15 -1298 ((-108) $ $)) (-15 -1276 ($ $)) (-15 -1886 ($ $)) (-15 -4063 ((-108) $)) (-15 -3519 ($ $)) (-15 -2726 ((-592 |#1|) $))))
-((-2944 ((|#1| (-1 |#1| (-713) |#1|) (-713) |#1|) 11)) (-3036 ((|#1| (-1 |#1| |#1|) (-713) |#1|) 9)))
-(((-622 |#1|) (-10 -7 (-15 -3036 (|#1| (-1 |#1| |#1|) (-713) |#1|)) (-15 -2944 (|#1| (-1 |#1| (-713) |#1|) (-713) |#1|))) (-1020)) (T -622))
-((-2944 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-713) *2)) (-5 *4 (-713)) (-4 *2 (-1020)) (-5 *1 (-622 *2)))) (-3036 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-713)) (-4 *2 (-1020)) (-5 *1 (-622 *2)))))
-(-10 -7 (-15 -3036 (|#1| (-1 |#1| |#1|) (-713) |#1|)) (-15 -2944 (|#1| (-1 |#1| (-713) |#1|) (-713) |#1|)))
-((-4128 ((|#2| |#1| |#2|) 9)) (-4114 ((|#1| |#1| |#2|) 8)))
-(((-623 |#1| |#2|) (-10 -7 (-15 -4114 (|#1| |#1| |#2|)) (-15 -4128 (|#2| |#1| |#2|))) (-1020) (-1020)) (T -623))
-((-4128 (*1 *2 *3 *2) (-12 (-5 *1 (-623 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))) (-4114 (*1 *2 *2 *3) (-12 (-5 *1 (-623 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
-(-10 -7 (-15 -4114 (|#1| |#1| |#2|)) (-15 -4128 (|#2| |#1| |#2|)))
-((-3451 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-624 |#1| |#2| |#3|) (-10 -7 (-15 -3451 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1020) (-1020) (-1020)) (T -624))
-((-3451 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)) (-5 *1 (-624 *5 *6 *2)))))
-(-10 -7 (-15 -3451 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-2944 (((-1 |#1| (-713) |#1|) (-1 |#1| (-713) |#1|)) 23)) (-1584 (((-1 |#1|) |#1|) 8)) (-1653 ((|#1| |#1|) 16)) (-2697 (((-592 |#1|) (-1 (-592 |#1|) (-592 |#1|)) (-525)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-1217 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-713)) 20)))
-(((-625 |#1|) (-10 -7 (-15 -1584 ((-1 |#1|) |#1|)) (-15 -1217 ((-1 |#1|) |#1|)) (-15 -2697 (|#1| (-1 |#1| |#1|))) (-15 -2697 ((-592 |#1|) (-1 (-592 |#1|) (-592 |#1|)) (-525))) (-15 -1653 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-713))) (-15 -2944 ((-1 |#1| (-713) |#1|) (-1 |#1| (-713) |#1|)))) (-1020)) (T -625))
-((-2944 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-713) *3)) (-4 *3 (-1020)) (-5 *1 (-625 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *4 (-1020)) (-5 *1 (-625 *4)))) (-1653 (*1 *2 *2) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1020)))) (-2697 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-592 *5) (-592 *5))) (-5 *4 (-525)) (-5 *2 (-592 *5)) (-5 *1 (-625 *5)) (-4 *5 (-1020)))) (-2697 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-625 *2)) (-4 *2 (-1020)))) (-1217 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1020)))) (-1584 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1020)))))
-(-10 -7 (-15 -1584 ((-1 |#1|) |#1|)) (-15 -1217 ((-1 |#1|) |#1|)) (-15 -2697 (|#1| (-1 |#1| |#1|))) (-15 -2697 ((-592 |#1|) (-1 (-592 |#1|) (-592 |#1|)) (-525))) (-15 -1653 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-713))) (-15 -2944 ((-1 |#1| (-713) |#1|) (-1 |#1| (-713) |#1|))))
-((-2908 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2057 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2709 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3624 (((-1 |#2| |#1|) |#2|) 11)))
-(((-626 |#1| |#2|) (-10 -7 (-15 -3624 ((-1 |#2| |#1|) |#2|)) (-15 -2057 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2709 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2908 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1020) (-1020)) (T -626))
-((-2908 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1020)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)) (-4 *4 (-1020)))) (-2057 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-5 *2 (-1 *5)) (-5 *1 (-626 *4 *5)))) (-3624 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-626 *4 *3)) (-4 *4 (-1020)) (-4 *3 (-1020)))))
-(-10 -7 (-15 -3624 ((-1 |#2| |#1|) |#2|)) (-15 -2057 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2709 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2908 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-1978 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-4056 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3371 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1585 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-4137 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-627 |#1| |#2| |#3|) (-10 -7 (-15 -4056 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3371 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1585 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4137 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1978 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1020) (-1020) (-1020)) (T -627))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-1 *7 *5)) (-5 *1 (-627 *5 *6 *7)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-627 *4 *5 *6)))) (-4137 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *4 (-1020)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1020)) (-4 *6 (-1020)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-1020)))) (-3371 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *4 *5 *6)))) (-4056 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1020)) (-4 *4 (-1020)) (-4 *6 (-1020)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *5 *4 *6)))))
-(-10 -7 (-15 -4056 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3371 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1585 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4137 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1978 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-1284 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3165 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-628 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3165 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3165 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1284 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-977) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|) (-977) (-351 |#5|) (-351 |#5|) (-630 |#5| |#6| |#7|)) (T -628))
-((-1284 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-977)) (-4 *2 (-977)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *8 (-351 *2)) (-4 *9 (-351 *2)) (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-630 *5 *6 *7)) (-4 *10 (-630 *2 *8 *9)))) (-3165 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-977)) (-4 *8 (-977)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *2 (-630 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-630 *5 *6 *7)) (-4 *9 (-351 *8)) (-4 *10 (-351 *8)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-977)) (-4 *8 (-977)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *2 (-630 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-630 *5 *6 *7)) (-4 *9 (-351 *8)) (-4 *10 (-351 *8)))))
-(-10 -7 (-15 -3165 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3165 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1284 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-2609 (($ (-713) (-713)) 33)) (-2073 (($ $ $) 56)) (-3966 (($ |#3|) 52) (($ $) 53)) (-4197 (((-108) $) 28)) (-2105 (($ $ (-525) (-525)) 58)) (-2901 (($ $ (-525) (-525)) 59)) (-2199 (($ $ (-525) (-525) (-525) (-525)) 63)) (-4060 (($ $) 54)) (-1772 (((-108) $) 14)) (-2050 (($ $ (-525) (-525) $) 64)) (-1430 ((|#2| $ (-525) (-525) |#2|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) 62)) (-1989 (($ (-713) |#2|) 39)) (-1716 (($ (-592 (-592 |#2|))) 37)) (-4151 (((-592 (-592 |#2|)) $) 57)) (-2091 (($ $ $) 55)) (-1715 (((-3 $ "failed") $ |#2|) 91)) (-3406 ((|#2| $ (-525) (-525)) NIL) ((|#2| $ (-525) (-525) |#2|) NIL) (($ $ (-592 (-525)) (-592 (-525))) 61)) (-2663 (($ (-592 |#2|)) 40) (($ (-592 $)) 42)) (-2007 (((-108) $) 24)) (-1217 (($ |#4|) 47) (((-798) $) NIL)) (-3737 (((-108) $) 30)) (-4075 (($ $ |#2|) 93)) (-4061 (($ $ $) 68) (($ $) 71)) (-4047 (($ $ $) 66)) (** (($ $ (-713)) 80) (($ $ (-525)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-525) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
-(((-629 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1217 ((-798) |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -4075 (|#1| |#1| |#2|)) (-15 -1715 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-713))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 -4061 (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -2050 (|#1| |#1| (-525) (-525) |#1|)) (-15 -2199 (|#1| |#1| (-525) (-525) (-525) (-525))) (-15 -2901 (|#1| |#1| (-525) (-525))) (-15 -2105 (|#1| |#1| (-525) (-525))) (-15 -1430 (|#1| |#1| (-592 (-525)) (-592 (-525)) |#1|)) (-15 -3406 (|#1| |#1| (-592 (-525)) (-592 (-525)))) (-15 -4151 ((-592 (-592 |#2|)) |#1|)) (-15 -2073 (|#1| |#1| |#1|)) (-15 -2091 (|#1| |#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -3966 (|#1| |#1|)) (-15 -3966 (|#1| |#3|)) (-15 -1217 (|#1| |#4|)) (-15 -2663 (|#1| (-592 |#1|))) (-15 -2663 (|#1| (-592 |#2|))) (-15 -1989 (|#1| (-713) |#2|)) (-15 -1716 (|#1| (-592 (-592 |#2|)))) (-15 -2609 (|#1| (-713) (-713))) (-15 -3737 ((-108) |#1|)) (-15 -4197 ((-108) |#1|)) (-15 -2007 ((-108) |#1|)) (-15 -1772 ((-108) |#1|)) (-15 -1430 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3406 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3406 (|#2| |#1| (-525) (-525)))) (-630 |#2| |#3| |#4|) (-977) (-351 |#2|) (-351 |#2|)) (T -629))
-NIL
-(-10 -8 (-15 -1217 ((-798) |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -4075 (|#1| |#1| |#2|)) (-15 -1715 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-713))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 -4061 (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -2050 (|#1| |#1| (-525) (-525) |#1|)) (-15 -2199 (|#1| |#1| (-525) (-525) (-525) (-525))) (-15 -2901 (|#1| |#1| (-525) (-525))) (-15 -2105 (|#1| |#1| (-525) (-525))) (-15 -1430 (|#1| |#1| (-592 (-525)) (-592 (-525)) |#1|)) (-15 -3406 (|#1| |#1| (-592 (-525)) (-592 (-525)))) (-15 -4151 ((-592 (-592 |#2|)) |#1|)) (-15 -2073 (|#1| |#1| |#1|)) (-15 -2091 (|#1| |#1| |#1|)) (-15 -4060 (|#1| |#1|)) (-15 -3966 (|#1| |#1|)) (-15 -3966 (|#1| |#3|)) (-15 -1217 (|#1| |#4|)) (-15 -2663 (|#1| (-592 |#1|))) (-15 -2663 (|#1| (-592 |#2|))) (-15 -1989 (|#1| (-713) |#2|)) (-15 -1716 (|#1| (-592 (-592 |#2|)))) (-15 -2609 (|#1| (-713) (-713))) (-15 -3737 ((-108) |#1|)) (-15 -4197 ((-108) |#1|)) (-15 -2007 ((-108) |#1|)) (-15 -1772 ((-108) |#1|)) (-15 -1430 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3406 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3406 (|#2| |#1| (-525) (-525))))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2609 (($ (-713) (-713)) 97)) (-2073 (($ $ $) 87)) (-3966 (($ |#2|) 91) (($ $) 90)) (-4197 (((-108) $) 99)) (-2105 (($ $ (-525) (-525)) 83)) (-2901 (($ $ (-525) (-525)) 82)) (-2199 (($ $ (-525) (-525) (-525) (-525)) 81)) (-4060 (($ $) 89)) (-1772 (((-108) $) 101)) (-3991 (((-108) $ (-713)) 8)) (-2050 (($ $ (-525) (-525) $) 80)) (-1430 ((|#1| $ (-525) (-525) |#1|) 44) (($ $ (-592 (-525)) (-592 (-525)) $) 84)) (-3028 (($ $ (-525) |#2|) 42)) (-1925 (($ $ (-525) |#3|) 41)) (-1989 (($ (-713) |#1|) 95)) (-2169 (($) 7 T CONST)) (-2361 (($ $) 67 (|has| |#1| (-286)))) (-2631 ((|#2| $ (-525)) 46)) (-3622 (((-713) $) 66 (|has| |#1| (-517)))) (-2301 ((|#1| $ (-525) (-525) |#1|) 43)) (-2222 ((|#1| $ (-525) (-525)) 48)) (-3440 (((-592 |#1|) $) 30)) (-2313 (((-713) $) 65 (|has| |#1| (-517)))) (-2319 (((-592 |#3|) $) 64 (|has| |#1| (-517)))) (-1632 (((-713) $) 51)) (-3416 (($ (-713) (-713) |#1|) 57)) (-1644 (((-713) $) 50)) (-3924 (((-108) $ (-713)) 9)) (-2956 ((|#1| $) 62 (|has| |#1| (-6 (-4260 "*"))))) (-2391 (((-525) $) 55)) (-1237 (((-525) $) 53)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-3446 (((-525) $) 54)) (-3757 (((-525) $) 52)) (-1716 (($ (-592 (-592 |#1|))) 96)) (-2284 (($ (-1 |#1| |#1|) $) 34)) (-3165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4151 (((-592 (-592 |#1|)) $) 86)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-1529 (((-3 $ "failed") $) 61 (|has| |#1| (-341)))) (-2091 (($ $ $) 88)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1420 (($ $ |#1|) 56)) (-1715 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-517)))) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#1| $ (-525) (-525)) 49) ((|#1| $ (-525) (-525) |#1|) 47) (($ $ (-592 (-525)) (-592 (-525))) 85)) (-2663 (($ (-592 |#1|)) 94) (($ (-592 $)) 93)) (-2007 (((-108) $) 100)) (-1927 ((|#1| $) 63 (|has| |#1| (-6 (-4260 "*"))))) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-1808 ((|#3| $ (-525)) 45)) (-1217 (($ |#3|) 92) (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3737 (((-108) $) 98)) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-4075 (($ $ |#1|) 68 (|has| |#1| (-341)))) (-4061 (($ $ $) 78) (($ $) 77)) (-4047 (($ $ $) 79)) (** (($ $ (-713)) 70) (($ $ (-525)) 60 (|has| |#1| (-341)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-525) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-2698 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-619 *3)) (-4 *3 (-1128)))) (-2399 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-619 *3)) (-4 *3 (-1128)))) (-1774 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))) (-3859 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))) (-1859 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))) (-2802 (*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1128)))) (-1511 (*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1128)))) (-4034 (*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1128)))) (-1955 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1128)) (-5 *2 (-713)))) (-1397 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-619 *3)) (-4 *3 (-1128)))) (-3926 (*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1128)))))
+(-13 (-1066 |t#1|) (-10 -8 (-15 -2698 ($ (-1 (-108) |t#1|) $)) (-15 -2399 ($ (-1 (-108) |t#1|) $)) (-15 -1774 ((-108) $)) (-15 -3859 ((-108) $)) (-15 -1859 ((-108) $)) (-15 -2802 ($ $)) (-15 -1511 (|t#1| $)) (-15 -4034 ($ $)) (-15 -1955 ((-713) $)) (-15 -1397 ($ $ (-525))) (-15 -3926 ($ $))))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-942 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1066 |#1|) . T) ((-1128) . T) ((-1162 |#1|) . T))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3095 (($ (-713) (-713) (-713)) 35 (|has| |#1| (-977)))) (-3779 (((-108) $ (-713)) NIL)) (-1377 ((|#1| $ (-713) (-713) (-713) |#1|) 29)) (-2475 (($) NIL T CONST)) (-2800 (($ $ $) 39 (|has| |#1| (-977)))) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2334 (((-1174 (-713)) $) 11)) (-1646 (($ (-1092) $ $) 24)) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2386 (($ (-713)) 37 (|has| |#1| (-977)))) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#1| $ (-713) (-713) (-713)) 27)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) NIL)) (-4114 (($ (-592 (-592 (-592 |#1|)))) 46)) (-4100 (($ (-892 (-892 (-892 |#1|)))) 17) (((-892 (-892 (-892 |#1|))) $) 14) (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-620 |#1|) (-13 (-464 |#1|) (-10 -8 (IF (|has| |#1| (-977)) (PROGN (-15 -3095 ($ (-713) (-713) (-713))) (-15 -2386 ($ (-713))) (-15 -2800 ($ $ $))) |%noBranch|) (-15 -4114 ($ (-592 (-592 (-592 |#1|))))) (-15 -3431 (|#1| $ (-713) (-713) (-713))) (-15 -1377 (|#1| $ (-713) (-713) (-713) |#1|)) (-15 -4100 ($ (-892 (-892 (-892 |#1|))))) (-15 -4100 ((-892 (-892 (-892 |#1|))) $)) (-15 -1646 ($ (-1092) $ $)) (-15 -2334 ((-1174 (-713)) $)))) (-1020)) (T -620))
+((-3095 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-977)) (-4 *3 (-1020)))) (-2386 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-977)) (-4 *3 (-1020)))) (-2800 (*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-977)) (-4 *2 (-1020)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-592 *3)))) (-4 *3 (-1020)) (-5 *1 (-620 *3)))) (-3431 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1020)))) (-1377 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1020)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-892 (-892 (-892 *3)))) (-4 *3 (-1020)) (-5 *1 (-620 *3)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-892 (-892 (-892 *3)))) (-5 *1 (-620 *3)) (-4 *3 (-1020)))) (-1646 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-620 *3)) (-4 *3 (-1020)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-1174 (-713))) (-5 *1 (-620 *3)) (-4 *3 (-1020)))))
+(-13 (-464 |#1|) (-10 -8 (IF (|has| |#1| (-977)) (PROGN (-15 -3095 ($ (-713) (-713) (-713))) (-15 -2386 ($ (-713))) (-15 -2800 ($ $ $))) |%noBranch|) (-15 -4114 ($ (-592 (-592 (-592 |#1|))))) (-15 -3431 (|#1| $ (-713) (-713) (-713))) (-15 -1377 (|#1| $ (-713) (-713) (-713) |#1|)) (-15 -4100 ($ (-892 (-892 (-892 |#1|))))) (-15 -4100 ((-892 (-892 (-892 |#1|))) $)) (-15 -1646 ($ (-1092) $ $)) (-15 -2334 ((-1174 (-713)) $))))
+((-4087 (((-108) $ $) NIL)) (-2668 (((-592 |#1|) $) 14)) (-3446 (($ $) 18)) (-3278 (((-108) $) 19)) (-1934 (((-3 |#1| "failed") $) 22)) (-4105 ((|#1| $) 20)) (-1659 (($ $) 36)) (-4064 (($ $) 24)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-3078 (((-108) $ $) 42)) (-4128 (((-856) $) 38)) (-3436 (($ $) 17)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1647 ((|#1| $) 35)) (-4100 (((-798) $) 31) (($ |#1|) 23) (((-761 |#1|) $) 27)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 12)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 40)) (* (($ $ $) 34)))
+(((-621 |#1|) (-13 (-789) (-968 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4100 ((-761 |#1|) $)) (-15 -1647 (|#1| $)) (-15 -3436 ($ $)) (-15 -4128 ((-856) $)) (-15 -3078 ((-108) $ $)) (-15 -4064 ($ $)) (-15 -1659 ($ $)) (-15 -3278 ((-108) $)) (-15 -3446 ($ $)) (-15 -2668 ((-592 |#1|) $)))) (-789)) (T -621))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-1647 (*1 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-3436 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-4128 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-3078 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-4064 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-1659 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-3446 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789)))))
+(-13 (-789) (-968 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4100 ((-761 |#1|) $)) (-15 -1647 (|#1| $)) (-15 -3436 ($ $)) (-15 -4128 ((-856) $)) (-15 -3078 ((-108) $ $)) (-15 -4064 ($ $)) (-15 -1659 ($ $)) (-15 -3278 ((-108) $)) (-15 -3446 ($ $)) (-15 -2668 ((-592 |#1|) $))))
+((-1328 ((|#1| (-1 |#1| (-713) |#1|) (-713) |#1|) 11)) (-1548 ((|#1| (-1 |#1| |#1|) (-713) |#1|) 9)))
+(((-622 |#1|) (-10 -7 (-15 -1548 (|#1| (-1 |#1| |#1|) (-713) |#1|)) (-15 -1328 (|#1| (-1 |#1| (-713) |#1|) (-713) |#1|))) (-1020)) (T -622))
+((-1328 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-713) *2)) (-5 *4 (-713)) (-4 *2 (-1020)) (-5 *1 (-622 *2)))) (-1548 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-713)) (-4 *2 (-1020)) (-5 *1 (-622 *2)))))
+(-10 -7 (-15 -1548 (|#1| (-1 |#1| |#1|) (-713) |#1|)) (-15 -1328 (|#1| (-1 |#1| (-713) |#1|) (-713) |#1|)))
+((-1554 ((|#2| |#1| |#2|) 9)) (-1542 ((|#1| |#1| |#2|) 8)))
+(((-623 |#1| |#2|) (-10 -7 (-15 -1542 (|#1| |#1| |#2|)) (-15 -1554 (|#2| |#1| |#2|))) (-1020) (-1020)) (T -623))
+((-1554 (*1 *2 *3 *2) (-12 (-5 *1 (-623 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))) (-1542 (*1 *2 *2 *3) (-12 (-5 *1 (-623 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
+(-10 -7 (-15 -1542 (|#1| |#1| |#2|)) (-15 -1554 (|#2| |#1| |#2|)))
+((-1293 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-624 |#1| |#2| |#3|) (-10 -7 (-15 -1293 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1020) (-1020) (-1020)) (T -624))
+((-1293 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)) (-5 *1 (-624 *5 *6 *2)))))
+(-10 -7 (-15 -1293 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-1328 (((-1 |#1| (-713) |#1|) (-1 |#1| (-713) |#1|)) 23)) (-3297 (((-1 |#1|) |#1|) 8)) (-1466 ((|#1| |#1|) 16)) (-2644 (((-592 |#1|) (-1 (-592 |#1|) (-592 |#1|)) (-525)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-4100 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-713)) 20)))
+(((-625 |#1|) (-10 -7 (-15 -3297 ((-1 |#1|) |#1|)) (-15 -4100 ((-1 |#1|) |#1|)) (-15 -2644 (|#1| (-1 |#1| |#1|))) (-15 -2644 ((-592 |#1|) (-1 (-592 |#1|) (-592 |#1|)) (-525))) (-15 -1466 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-713))) (-15 -1328 ((-1 |#1| (-713) |#1|) (-1 |#1| (-713) |#1|)))) (-1020)) (T -625))
+((-1328 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-713) *3)) (-4 *3 (-1020)) (-5 *1 (-625 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *4 (-1020)) (-5 *1 (-625 *4)))) (-1466 (*1 *2 *2) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1020)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-592 *5) (-592 *5))) (-5 *4 (-525)) (-5 *2 (-592 *5)) (-5 *1 (-625 *5)) (-4 *5 (-1020)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-625 *2)) (-4 *2 (-1020)))) (-4100 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1020)))) (-3297 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1020)))))
+(-10 -7 (-15 -3297 ((-1 |#1|) |#1|)) (-15 -4100 ((-1 |#1|) |#1|)) (-15 -2644 (|#1| (-1 |#1| |#1|))) (-15 -2644 ((-592 |#1|) (-1 (-592 |#1|) (-592 |#1|)) (-525))) (-15 -1466 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-713))) (-15 -1328 ((-1 |#1| (-713) |#1|) (-1 |#1| (-713) |#1|))))
+((-3983 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2512 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2247 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2518 (((-1 |#2| |#1|) |#2|) 11)))
+(((-626 |#1| |#2|) (-10 -7 (-15 -2518 ((-1 |#2| |#1|) |#2|)) (-15 -2512 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2247 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3983 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1020) (-1020)) (T -626))
+((-3983 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1020)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)) (-4 *4 (-1020)))) (-2512 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-5 *2 (-1 *5)) (-5 *1 (-626 *4 *5)))) (-2518 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-626 *4 *3)) (-4 *4 (-1020)) (-4 *3 (-1020)))))
+(-10 -7 (-15 -2518 ((-1 |#2| |#1|) |#2|)) (-15 -2512 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2247 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3983 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-4147 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3217 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3760 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3310 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2810 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-627 |#1| |#2| |#3|) (-10 -7 (-15 -3217 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3760 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3310 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2810 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4147 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1020) (-1020) (-1020)) (T -627))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-1 *7 *5)) (-5 *1 (-627 *5 *6 *7)))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-627 *4 *5 *6)))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *4 (-1020)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1020)) (-4 *6 (-1020)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-1020)))) (-3760 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *4 *5 *6)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1020)) (-4 *4 (-1020)) (-4 *6 (-1020)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *5 *4 *6)))))
+(-10 -7 (-15 -3217 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3760 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3310 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2810 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4147 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-3504 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2016 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-628 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2016 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2016 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3504 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-977) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|) (-977) (-351 |#5|) (-351 |#5|) (-630 |#5| |#6| |#7|)) (T -628))
+((-3504 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-977)) (-4 *2 (-977)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *8 (-351 *2)) (-4 *9 (-351 *2)) (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-630 *5 *6 *7)) (-4 *10 (-630 *2 *8 *9)))) (-2016 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-977)) (-4 *8 (-977)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *2 (-630 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-630 *5 *6 *7)) (-4 *9 (-351 *8)) (-4 *10 (-351 *8)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-977)) (-4 *8 (-977)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *2 (-630 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-630 *5 *6 *7)) (-4 *9 (-351 *8)) (-4 *10 (-351 *8)))))
+(-10 -7 (-15 -2016 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2016 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3504 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-1221 (($ (-713) (-713)) 33)) (-2659 (($ $ $) 56)) (-1730 (($ |#3|) 52) (($ $) 53)) (-2207 (((-108) $) 28)) (-2968 (($ $ (-525) (-525)) 58)) (-3904 (($ $ (-525) (-525)) 59)) (-1550 (($ $ (-525) (-525) (-525) (-525)) 63)) (-3263 (($ $) 54)) (-2721 (((-108) $) 14)) (-3614 (($ $ (-525) (-525) $) 64)) (-1233 ((|#2| $ (-525) (-525) |#2|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) 62)) (-1232 (($ (-713) |#2|) 39)) (-4054 (($ (-592 (-592 |#2|))) 37)) (-2949 (((-592 (-592 |#2|)) $) 57)) (-2847 (($ $ $) 55)) (-1311 (((-3 $ "failed") $ |#2|) 91)) (-3431 ((|#2| $ (-525) (-525)) NIL) ((|#2| $ (-525) (-525) |#2|) NIL) (($ $ (-592 (-525)) (-592 (-525))) 61)) (-3525 (($ (-592 |#2|)) 40) (($ (-592 $)) 42)) (-3219 (((-108) $) 24)) (-4100 (($ |#4|) 47) (((-798) $) NIL)) (-1245 (((-108) $) 30)) (-2880 (($ $ |#2|) 93)) (-2871 (($ $ $) 68) (($ $) 71)) (-2860 (($ $ $) 66)) (** (($ $ (-713)) 80) (($ $ (-525)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-525) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
+(((-629 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4100 ((-798) |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -2880 (|#1| |#1| |#2|)) (-15 -1311 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-713))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -3614 (|#1| |#1| (-525) (-525) |#1|)) (-15 -1550 (|#1| |#1| (-525) (-525) (-525) (-525))) (-15 -3904 (|#1| |#1| (-525) (-525))) (-15 -2968 (|#1| |#1| (-525) (-525))) (-15 -1233 (|#1| |#1| (-592 (-525)) (-592 (-525)) |#1|)) (-15 -3431 (|#1| |#1| (-592 (-525)) (-592 (-525)))) (-15 -2949 ((-592 (-592 |#2|)) |#1|)) (-15 -2659 (|#1| |#1| |#1|)) (-15 -2847 (|#1| |#1| |#1|)) (-15 -3263 (|#1| |#1|)) (-15 -1730 (|#1| |#1|)) (-15 -1730 (|#1| |#3|)) (-15 -4100 (|#1| |#4|)) (-15 -3525 (|#1| (-592 |#1|))) (-15 -3525 (|#1| (-592 |#2|))) (-15 -1232 (|#1| (-713) |#2|)) (-15 -4054 (|#1| (-592 (-592 |#2|)))) (-15 -1221 (|#1| (-713) (-713))) (-15 -1245 ((-108) |#1|)) (-15 -2207 ((-108) |#1|)) (-15 -3219 ((-108) |#1|)) (-15 -2721 ((-108) |#1|)) (-15 -1233 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3431 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3431 (|#2| |#1| (-525) (-525)))) (-630 |#2| |#3| |#4|) (-977) (-351 |#2|) (-351 |#2|)) (T -629))
+NIL
+(-10 -8 (-15 -4100 ((-798) |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -2880 (|#1| |#1| |#2|)) (-15 -1311 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-713))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -3614 (|#1| |#1| (-525) (-525) |#1|)) (-15 -1550 (|#1| |#1| (-525) (-525) (-525) (-525))) (-15 -3904 (|#1| |#1| (-525) (-525))) (-15 -2968 (|#1| |#1| (-525) (-525))) (-15 -1233 (|#1| |#1| (-592 (-525)) (-592 (-525)) |#1|)) (-15 -3431 (|#1| |#1| (-592 (-525)) (-592 (-525)))) (-15 -2949 ((-592 (-592 |#2|)) |#1|)) (-15 -2659 (|#1| |#1| |#1|)) (-15 -2847 (|#1| |#1| |#1|)) (-15 -3263 (|#1| |#1|)) (-15 -1730 (|#1| |#1|)) (-15 -1730 (|#1| |#3|)) (-15 -4100 (|#1| |#4|)) (-15 -3525 (|#1| (-592 |#1|))) (-15 -3525 (|#1| (-592 |#2|))) (-15 -1232 (|#1| (-713) |#2|)) (-15 -4054 (|#1| (-592 (-592 |#2|)))) (-15 -1221 (|#1| (-713) (-713))) (-15 -1245 ((-108) |#1|)) (-15 -2207 ((-108) |#1|)) (-15 -3219 ((-108) |#1|)) (-15 -2721 ((-108) |#1|)) (-15 -1233 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3431 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3431 (|#2| |#1| (-525) (-525))))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-1221 (($ (-713) (-713)) 97)) (-2659 (($ $ $) 87)) (-1730 (($ |#2|) 91) (($ $) 90)) (-2207 (((-108) $) 99)) (-2968 (($ $ (-525) (-525)) 83)) (-3904 (($ $ (-525) (-525)) 82)) (-1550 (($ $ (-525) (-525) (-525) (-525)) 81)) (-3263 (($ $) 89)) (-2721 (((-108) $) 101)) (-3779 (((-108) $ (-713)) 8)) (-3614 (($ $ (-525) (-525) $) 80)) (-1233 ((|#1| $ (-525) (-525) |#1|) 44) (($ $ (-592 (-525)) (-592 (-525)) $) 84)) (-2695 (($ $ (-525) |#2|) 42)) (-1773 (($ $ (-525) |#3|) 41)) (-1232 (($ (-713) |#1|) 95)) (-2475 (($) 7 T CONST)) (-3692 (($ $) 67 (|has| |#1| (-286)))) (-3209 ((|#2| $ (-525)) 46)) (-3085 (((-713) $) 66 (|has| |#1| (-517)))) (-3081 ((|#1| $ (-525) (-525) |#1|) 43)) (-3017 ((|#1| $ (-525) (-525)) 48)) (-2175 (((-592 |#1|) $) 30)) (-3204 (((-713) $) 65 (|has| |#1| (-517)))) (-3261 (((-592 |#3|) $) 64 (|has| |#1| (-517)))) (-2720 (((-713) $) 51)) (-3324 (($ (-713) (-713) |#1|) 57)) (-2731 (((-713) $) 50)) (-2516 (((-108) $ (-713)) 9)) (-3239 ((|#1| $) 62 (|has| |#1| (-6 (-4261 "*"))))) (-2797 (((-525) $) 55)) (-2307 (((-525) $) 53)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3194 (((-525) $) 54)) (-3210 (((-525) $) 52)) (-4054 (($ (-592 (-592 |#1|))) 96)) (-3069 (($ (-1 |#1| |#1|) $) 34)) (-2016 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2949 (((-592 (-592 |#1|)) $) 86)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-1921 (((-3 $ "failed") $) 61 (|has| |#1| (-341)))) (-2847 (($ $ $) 88)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-3453 (($ $ |#1|) 56)) (-1311 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-517)))) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#1| $ (-525) (-525)) 49) ((|#1| $ (-525) (-525) |#1|) 47) (($ $ (-592 (-525)) (-592 (-525))) 85)) (-3525 (($ (-592 |#1|)) 94) (($ (-592 $)) 93)) (-3219 (((-108) $) 100)) (-1796 ((|#1| $) 63 (|has| |#1| (-6 (-4261 "*"))))) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-1881 ((|#3| $ (-525)) 45)) (-4100 (($ |#3|) 92) (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-1245 (((-108) $) 98)) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2880 (($ $ |#1|) 68 (|has| |#1| (-341)))) (-2871 (($ $ $) 78) (($ $) 77)) (-2860 (($ $ $) 79)) (** (($ $ (-713)) 70) (($ $ (-525)) 60 (|has| |#1| (-341)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-525) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-630 |#1| |#2| |#3|) (-131) (-977) (-351 |t#1|) (-351 |t#1|)) (T -630))
-((-1772 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-2007 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-4197 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-2609 (*1 *1 *2 *2) (-12 (-5 *2 (-713)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1716 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1989 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2663 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2663 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1217 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *2)) (-4 *4 (-351 *3)) (-4 *2 (-351 *3)))) (-3966 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *1 (-630 *3 *2 *4)) (-4 *2 (-351 *3)) (-4 *4 (-351 *3)))) (-3966 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-4060 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-2091 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-2073 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-4151 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-592 (-592 *3))))) (-3406 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1430 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2105 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2901 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2199 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2050 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-4047 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-4061 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-4061 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-630 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *2 (-351 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-630 *3 *2 *4)) (-4 *3 (-977)) (-4 *2 (-351 *3)) (-4 *4 (-351 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1715 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-517)))) (-4075 (*1 *1 *1 *2) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341)))) (-2361 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-286)))) (-3622 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713)))) (-2313 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713)))) (-2319 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-592 *5)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (|has| *2 (-6 (-4260 "*"))) (-4 *2 (-977)))) (-2956 (*1 *2 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (|has| *2 (-6 (-4260 "*"))) (-4 *2 (-977)))) (-1529 (*1 *1 *1) (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-341)))))
-(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4259) (-6 -4258) (-15 -1772 ((-108) $)) (-15 -2007 ((-108) $)) (-15 -4197 ((-108) $)) (-15 -3737 ((-108) $)) (-15 -2609 ($ (-713) (-713))) (-15 -1716 ($ (-592 (-592 |t#1|)))) (-15 -1989 ($ (-713) |t#1|)) (-15 -2663 ($ (-592 |t#1|))) (-15 -2663 ($ (-592 $))) (-15 -1217 ($ |t#3|)) (-15 -3966 ($ |t#2|)) (-15 -3966 ($ $)) (-15 -4060 ($ $)) (-15 -2091 ($ $ $)) (-15 -2073 ($ $ $)) (-15 -4151 ((-592 (-592 |t#1|)) $)) (-15 -3406 ($ $ (-592 (-525)) (-592 (-525)))) (-15 -1430 ($ $ (-592 (-525)) (-592 (-525)) $)) (-15 -2105 ($ $ (-525) (-525))) (-15 -2901 ($ $ (-525) (-525))) (-15 -2199 ($ $ (-525) (-525) (-525) (-525))) (-15 -2050 ($ $ (-525) (-525) $)) (-15 -4047 ($ $ $)) (-15 -4061 ($ $ $)) (-15 -4061 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-525) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-713))) (IF (|has| |t#1| (-517)) (-15 -1715 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-341)) (-15 -4075 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-286)) (-15 -2361 ($ $)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-15 -3622 ((-713) $)) (-15 -2313 ((-713) $)) (-15 -2319 ((-592 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4260 "*"))) (PROGN (-15 -1927 (|t#1| $)) (-15 -2956 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-15 -1529 ((-3 $ "failed") $)) (-15 ** ($ $ (-525)))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-55 |#1| |#2| |#3|) . T) ((-1128) . T))
-((-2361 ((|#4| |#4|) 72 (|has| |#1| (-286)))) (-3622 (((-713) |#4|) 99 (|has| |#1| (-517)))) (-2313 (((-713) |#4|) 76 (|has| |#1| (-517)))) (-2319 (((-592 |#3|) |#4|) 83 (|has| |#1| (-517)))) (-3604 (((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|) 111 (|has| |#1| (-286)))) (-2956 ((|#1| |#4|) 35)) (-2671 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-517)))) (-1529 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-341)))) (-4121 ((|#4| |#4|) 68 (|has| |#1| (-517)))) (-3146 ((|#4| |#4| |#1| (-525) (-525)) 43)) (-3016 ((|#4| |#4| (-525) (-525)) 38)) (-3008 ((|#4| |#4| |#1| (-525) (-525)) 48)) (-1927 ((|#1| |#4|) 78)) (-3041 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-517)))))
-(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1927 (|#1| |#4|)) (-15 -2956 (|#1| |#4|)) (-15 -3016 (|#4| |#4| (-525) (-525))) (-15 -3146 (|#4| |#4| |#1| (-525) (-525))) (-15 -3008 (|#4| |#4| |#1| (-525) (-525))) (IF (|has| |#1| (-517)) (PROGN (-15 -3622 ((-713) |#4|)) (-15 -2313 ((-713) |#4|)) (-15 -2319 ((-592 |#3|) |#4|)) (-15 -4121 (|#4| |#4|)) (-15 -2671 ((-3 |#4| "failed") |#4|)) (-15 -3041 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-286)) (PROGN (-15 -2361 (|#4| |#4|)) (-15 -3604 ((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -1529 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-160) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -631))
-((-1529 (*1 *2 *2) (|partial| -12 (-4 *3 (-341)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-3604 (*1 *2 *3 *3) (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1607 *3))) (-5 *1 (-631 *3 *4 *5 *6)) (-4 *6 (-630 *3 *4 *5)))) (-2361 (*1 *2 *2) (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-3041 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-2671 (*1 *2 *2) (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-4121 (*1 *2 *2) (-12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-2319 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-2313 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3008 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3)) (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-630 *3 *5 *6)))) (-3146 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3)) (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-630 *3 *5 *6)))) (-3016 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *1 (-631 *4 *5 *6 *2)) (-4 *2 (-630 *4 *5 *6)))) (-2956 (*1 *2 *3) (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160)) (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5)))) (-1927 (*1 *2 *3) (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160)) (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5)))))
-(-10 -7 (-15 -1927 (|#1| |#4|)) (-15 -2956 (|#1| |#4|)) (-15 -3016 (|#4| |#4| (-525) (-525))) (-15 -3146 (|#4| |#4| |#1| (-525) (-525))) (-15 -3008 (|#4| |#4| |#1| (-525) (-525))) (IF (|has| |#1| (-517)) (PROGN (-15 -3622 ((-713) |#4|)) (-15 -2313 ((-713) |#4|)) (-15 -2319 ((-592 |#3|) |#4|)) (-15 -4121 (|#4| |#4|)) (-15 -2671 ((-3 |#4| "failed") |#4|)) (-15 -3041 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-286)) (PROGN (-15 -2361 (|#4| |#4|)) (-15 -3604 ((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -1529 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2609 (($ (-713) (-713)) 47)) (-2073 (($ $ $) NIL)) (-3966 (($ (-1174 |#1|)) NIL) (($ $) NIL)) (-4197 (((-108) $) NIL)) (-2105 (($ $ (-525) (-525)) 12)) (-2901 (($ $ (-525) (-525)) NIL)) (-2199 (($ $ (-525) (-525) (-525) (-525)) NIL)) (-4060 (($ $) NIL)) (-1772 (((-108) $) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-2050 (($ $ (-525) (-525) $) NIL)) (-1430 ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) NIL)) (-3028 (($ $ (-525) (-1174 |#1|)) NIL)) (-1925 (($ $ (-525) (-1174 |#1|)) NIL)) (-1989 (($ (-713) |#1|) 22)) (-2169 (($) NIL T CONST)) (-2361 (($ $) 31 (|has| |#1| (-286)))) (-2631 (((-1174 |#1|) $ (-525)) NIL)) (-3622 (((-713) $) 33 (|has| |#1| (-517)))) (-2301 ((|#1| $ (-525) (-525) |#1|) 51)) (-2222 ((|#1| $ (-525) (-525)) NIL)) (-3440 (((-592 |#1|) $) NIL)) (-2313 (((-713) $) 35 (|has| |#1| (-517)))) (-2319 (((-592 (-1174 |#1|)) $) 38 (|has| |#1| (-517)))) (-1632 (((-713) $) 20)) (-3416 (($ (-713) (-713) |#1|) 16)) (-1644 (((-713) $) 21)) (-3924 (((-108) $ (-713)) NIL)) (-2956 ((|#1| $) 29 (|has| |#1| (-6 (-4260 "*"))))) (-2391 (((-525) $) 9)) (-1237 (((-525) $) 10)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3446 (((-525) $) 11)) (-3757 (((-525) $) 48)) (-1716 (($ (-592 (-592 |#1|))) NIL)) (-2284 (($ (-1 |#1| |#1|) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4151 (((-592 (-592 |#1|)) $) 60)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-1529 (((-3 $ "failed") $) 45 (|has| |#1| (-341)))) (-2091 (($ $ $) NIL)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1420 (($ $ |#1|) NIL)) (-1715 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525))) NIL)) (-2663 (($ (-592 |#1|)) NIL) (($ (-592 $)) NIL) (($ (-1174 |#1|)) 52)) (-2007 (((-108) $) NIL)) (-1927 ((|#1| $) 27 (|has| |#1| (-6 (-4260 "*"))))) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) NIL)) (-3210 (((-501) $) 64 (|has| |#1| (-567 (-501))))) (-1808 (((-1174 |#1|) $ (-525)) NIL)) (-1217 (($ (-1174 |#1|)) NIL) (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3737 (((-108) $) NIL)) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4061 (($ $ $) NIL) (($ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-713)) 23) (($ $ (-525)) 46 (|has| |#1| (-341)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-525) $) NIL) (((-1174 |#1|) $ (-1174 |#1|)) NIL) (((-1174 |#1|) (-1174 |#1|) $) NIL)) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-632 |#1|) (-13 (-630 |#1| (-1174 |#1|) (-1174 |#1|)) (-10 -8 (-15 -2663 ($ (-1174 |#1|))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -1529 ((-3 $ "failed") $)) |%noBranch|))) (-977)) (T -632))
-((-1529 (*1 *1 *1) (|partial| -12 (-5 *1 (-632 *2)) (-4 *2 (-341)) (-4 *2 (-977)))) (-2663 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-977)) (-5 *1 (-632 *3)))))
-(-13 (-630 |#1| (-1174 |#1|) (-1174 |#1|)) (-10 -8 (-15 -2663 ($ (-1174 |#1|))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -1529 ((-3 $ "failed") $)) |%noBranch|)))
-((-1557 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 25)) (-3790 (((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|) 21)) (-1285 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-713)) 26)) (-3859 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 14)) (-1487 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 18) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 16)) (-2939 (((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|)) 20)) (-1310 (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 12)) (** (((-632 |#1|) (-632 |#1|) (-713)) 30)))
-(((-633 |#1|) (-10 -7 (-15 -1310 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3859 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1487 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1487 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2939 ((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|))) (-15 -3790 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -1557 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1285 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-713))) (-15 ** ((-632 |#1|) (-632 |#1|) (-713)))) (-977)) (T -633))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-977)) (-5 *1 (-633 *4)))) (-1285 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-977)) (-5 *1 (-633 *4)))) (-1557 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))) (-3790 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))) (-2939 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))) (-1487 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))) (-1487 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))) (-3859 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))) (-1310 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
-(-10 -7 (-15 -1310 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3859 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1487 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1487 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2939 ((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|))) (-15 -3790 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -1557 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1285 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-713))) (-15 ** ((-632 |#1|) (-632 |#1|) (-713))))
-((-3263 ((|#2| |#2| |#4|) 25)) (-2174 (((-632 |#2|) |#3| |#4|) 31)) (-3732 (((-632 |#2|) |#2| |#4|) 30)) (-2888 (((-1174 |#2|) |#2| |#4|) 16)) (-1815 ((|#2| |#3| |#4|) 24)) (-2312 (((-632 |#2|) |#3| |#4| (-713) (-713)) 38)) (-1637 (((-632 |#2|) |#2| |#4| (-713)) 37)))
-(((-634 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2888 ((-1174 |#2|) |#2| |#4|)) (-15 -1815 (|#2| |#3| |#4|)) (-15 -3263 (|#2| |#2| |#4|)) (-15 -3732 ((-632 |#2|) |#2| |#4|)) (-15 -1637 ((-632 |#2|) |#2| |#4| (-713))) (-15 -2174 ((-632 |#2|) |#3| |#4|)) (-15 -2312 ((-632 |#2|) |#3| |#4| (-713) (-713)))) (-1020) (-835 |#1|) (-351 |#2|) (-13 (-351 |#1|) (-10 -7 (-6 -4258)))) (T -634))
-((-2312 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-713)) (-4 *6 (-1020)) (-4 *7 (-835 *6)) (-5 *2 (-632 *7)) (-5 *1 (-634 *6 *7 *3 *4)) (-4 *3 (-351 *7)) (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4258)))))) (-2174 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-4 *6 (-835 *5)) (-5 *2 (-632 *6)) (-5 *1 (-634 *5 *6 *3 *4)) (-4 *3 (-351 *6)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4258)))))) (-1637 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-1020)) (-4 *3 (-835 *6)) (-5 *2 (-632 *3)) (-5 *1 (-634 *6 *3 *7 *4)) (-4 *7 (-351 *3)) (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4258)))))) (-3732 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-4 *3 (-835 *5)) (-5 *2 (-632 *3)) (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4258)))))) (-3263 (*1 *2 *2 *3) (-12 (-4 *4 (-1020)) (-4 *2 (-835 *4)) (-5 *1 (-634 *4 *2 *5 *3)) (-4 *5 (-351 *2)) (-4 *3 (-13 (-351 *4) (-10 -7 (-6 -4258)))))) (-1815 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-4 *2 (-835 *5)) (-5 *1 (-634 *5 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4258)))))) (-2888 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-4 *3 (-835 *5)) (-5 *2 (-1174 *3)) (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4258)))))))
-(-10 -7 (-15 -2888 ((-1174 |#2|) |#2| |#4|)) (-15 -1815 (|#2| |#3| |#4|)) (-15 -3263 (|#2| |#2| |#4|)) (-15 -3732 ((-632 |#2|) |#2| |#4|)) (-15 -1637 ((-632 |#2|) |#2| |#4| (-713))) (-15 -2174 ((-632 |#2|) |#3| |#4|)) (-15 -2312 ((-632 |#2|) |#3| |#4| (-713) (-713))))
-((-3711 (((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|)) 20)) (-3815 ((|#1| (-632 |#2|)) 9)) (-3607 (((-632 |#1|) (-632 |#2|)) 18)))
-(((-635 |#1| |#2|) (-10 -7 (-15 -3815 (|#1| (-632 |#2|))) (-15 -3607 ((-632 |#1|) (-632 |#2|))) (-15 -3711 ((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|)))) (-517) (-925 |#1|)) (T -635))
-((-3711 (*1 *2 *3) (-12 (-5 *3 (-632 *5)) (-4 *5 (-925 *4)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |num| (-632 *4)) (|:| |den| *4))) (-5 *1 (-635 *4 *5)))) (-3607 (*1 *2 *3) (-12 (-5 *3 (-632 *5)) (-4 *5 (-925 *4)) (-4 *4 (-517)) (-5 *2 (-632 *4)) (-5 *1 (-635 *4 *5)))) (-3815 (*1 *2 *3) (-12 (-5 *3 (-632 *4)) (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-635 *2 *4)))))
-(-10 -7 (-15 -3815 (|#1| (-632 |#2|))) (-15 -3607 ((-632 |#1|) (-632 |#2|))) (-15 -3711 ((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1627 (((-632 (-641))) NIL) (((-632 (-641)) (-1174 $)) NIL)) (-2952 (((-641) $) NIL)) (-1575 (($ $) NIL (|has| (-641) (-1114)))) (-2804 (($ $) NIL (|has| (-641) (-1114)))) (-2971 (((-1102 (-856) (-713)) (-525)) NIL (|has| (-641) (-327)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-844))))) (-1286 (($ $) NIL (-3254 (-12 (|has| (-641) (-286)) (|has| (-641) (-844))) (|has| (-641) (-341))))) (-2669 (((-396 $) $) NIL (-3254 (-12 (|has| (-641) (-286)) (|has| (-641) (-844))) (|has| (-641) (-341))))) (-2782 (($ $) NIL (-12 (|has| (-641) (-934)) (|has| (-641) (-1114))))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-844))))) (-2193 (((-108) $ $) NIL (|has| (-641) (-286)))) (-1834 (((-713)) NIL (|has| (-641) (-346)))) (-1549 (($ $) NIL (|has| (-641) (-1114)))) (-2780 (($ $) NIL (|has| (-641) (-1114)))) (-1599 (($ $) NIL (|has| (-641) (-1114)))) (-2836 (($ $) NIL (|has| (-641) (-1114)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL) (((-3 (-641) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-641) (-968 (-385 (-525)))))) (-1572 (((-525) $) NIL) (((-641) $) NIL) (((-385 (-525)) $) NIL (|has| (-641) (-968 (-385 (-525)))))) (-2064 (($ (-1174 (-641))) NIL) (($ (-1174 (-641)) (-1174 $)) NIL)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-641) (-327)))) (-1747 (($ $ $) NIL (|has| (-641) (-286)))) (-1906 (((-632 (-641)) $) NIL) (((-632 (-641)) $ (-1174 $)) NIL)) (-1994 (((-632 (-641)) (-632 $)) NIL) (((-2 (|:| -3407 (-632 (-641))) (|:| |vec| (-1174 (-641)))) (-632 $) (-1174 $)) NIL) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-641) (-588 (-525)))) (((-632 (-525)) (-632 $)) NIL (|has| (-641) (-588 (-525))))) (-1284 (((-3 $ "failed") (-385 (-1088 (-641)))) NIL (|has| (-641) (-341))) (($ (-1088 (-641))) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2796 (((-641) $) 29)) (-1514 (((-3 (-385 (-525)) "failed") $) NIL (|has| (-641) (-510)))) (-3933 (((-108) $) NIL (|has| (-641) (-510)))) (-3303 (((-385 (-525)) $) NIL (|has| (-641) (-510)))) (-3622 (((-856)) NIL)) (-2502 (($) NIL (|has| (-641) (-346)))) (-1733 (($ $ $) NIL (|has| (-641) (-286)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| (-641) (-286)))) (-2574 (($) NIL (|has| (-641) (-327)))) (-3704 (((-108) $) NIL (|has| (-641) (-327)))) (-3625 (($ $) NIL (|has| (-641) (-327))) (($ $ (-713)) NIL (|has| (-641) (-327)))) (-3673 (((-108) $) NIL (-3254 (-12 (|has| (-641) (-286)) (|has| (-641) (-844))) (|has| (-641) (-341))))) (-1952 (((-2 (|:| |r| (-641)) (|:| |phi| (-641))) $) NIL (-12 (|has| (-641) (-986)) (|has| (-641) (-1114))))) (-3140 (($) NIL (|has| (-641) (-1114)))) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-641) (-821 (-357)))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-641) (-821 (-525))))) (-2581 (((-775 (-856)) $) NIL (|has| (-641) (-327))) (((-856) $) NIL (|has| (-641) (-327)))) (-1396 (((-108) $) NIL)) (-2171 (($ $ (-525)) NIL (-12 (|has| (-641) (-934)) (|has| (-641) (-1114))))) (-2382 (((-641) $) NIL)) (-3844 (((-3 $ "failed") $) NIL (|has| (-641) (-327)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-641) (-286)))) (-2126 (((-1088 (-641)) $) NIL (|has| (-641) (-341)))) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-3165 (($ (-1 (-641) (-641)) $) NIL)) (-3005 (((-856) $) NIL (|has| (-641) (-346)))) (-1517 (($ $) NIL (|has| (-641) (-1114)))) (-1269 (((-1088 (-641)) $) NIL)) (-2556 (($ (-592 $)) NIL (|has| (-641) (-286))) (($ $ $) NIL (|has| (-641) (-286)))) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL (|has| (-641) (-341)))) (-2295 (($) NIL (|has| (-641) (-327)) CONST)) (-3555 (($ (-856)) NIL (|has| (-641) (-346)))) (-1887 (($) NIL)) (-2806 (((-641) $) 31)) (-2093 (((-1039) $) NIL)) (-3409 (($) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| (-641) (-286)))) (-2589 (($ (-592 $)) NIL (|has| (-641) (-286))) (($ $ $) NIL (|has| (-641) (-286)))) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) NIL (|has| (-641) (-327)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-844))))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-844))))) (-2770 (((-396 $) $) NIL (-3254 (-12 (|has| (-641) (-286)) (|has| (-641) (-844))) (|has| (-641) (-341))))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-641) (-286))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| (-641) (-286)))) (-1715 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-641)) NIL (|has| (-641) (-517)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-641) (-286)))) (-3096 (($ $) NIL (|has| (-641) (-1114)))) (-2457 (($ $ (-1092) (-641)) NIL (|has| (-641) (-486 (-1092) (-641)))) (($ $ (-592 (-1092)) (-592 (-641))) NIL (|has| (-641) (-486 (-1092) (-641)))) (($ $ (-592 (-273 (-641)))) NIL (|has| (-641) (-288 (-641)))) (($ $ (-273 (-641))) NIL (|has| (-641) (-288 (-641)))) (($ $ (-641) (-641)) NIL (|has| (-641) (-288 (-641)))) (($ $ (-592 (-641)) (-592 (-641))) NIL (|has| (-641) (-288 (-641))))) (-3684 (((-713) $) NIL (|has| (-641) (-286)))) (-3406 (($ $ (-641)) NIL (|has| (-641) (-265 (-641) (-641))))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| (-641) (-286)))) (-1975 (((-641)) NIL) (((-641) (-1174 $)) NIL)) (-3877 (((-3 (-713) "failed") $ $) NIL (|has| (-641) (-327))) (((-713) $) NIL (|has| (-641) (-327)))) (-3376 (($ $ (-1 (-641) (-641))) NIL) (($ $ (-1 (-641) (-641)) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-641) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-641) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-641) (-835 (-1092)))) (($ $ (-1092)) NIL (|has| (-641) (-835 (-1092)))) (($ $ (-713)) NIL (|has| (-641) (-213))) (($ $) NIL (|has| (-641) (-213)))) (-2725 (((-632 (-641)) (-1174 $) (-1 (-641) (-641))) NIL (|has| (-641) (-341)))) (-2756 (((-1088 (-641))) NIL)) (-1609 (($ $) NIL (|has| (-641) (-1114)))) (-1447 (($ $) NIL (|has| (-641) (-1114)))) (-2244 (($) NIL (|has| (-641) (-327)))) (-1587 (($ $) NIL (|has| (-641) (-1114)))) (-2815 (($ $) NIL (|has| (-641) (-1114)))) (-1562 (($ $) NIL (|has| (-641) (-1114)))) (-2794 (($ $) NIL (|has| (-641) (-1114)))) (-2387 (((-632 (-641)) (-1174 $)) NIL) (((-1174 (-641)) $) NIL) (((-632 (-641)) (-1174 $) (-1174 $)) NIL) (((-1174 (-641)) $ (-1174 $)) NIL)) (-3210 (((-501) $) NIL (|has| (-641) (-567 (-501)))) (((-157 (-205)) $) NIL (|has| (-641) (-953))) (((-157 (-357)) $) NIL (|has| (-641) (-953))) (((-827 (-357)) $) NIL (|has| (-641) (-567 (-827 (-357))))) (((-827 (-525)) $) NIL (|has| (-641) (-567 (-827 (-525))))) (($ (-1088 (-641))) NIL) (((-1088 (-641)) $) NIL) (($ (-1174 (-641))) NIL) (((-1174 (-641)) $) NIL)) (-1499 (($ $) NIL)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-3254 (-12 (|has| (-641) (-286)) (|has| $ (-136)) (|has| (-641) (-844))) (|has| (-641) (-327))))) (-1466 (($ (-641) (-641)) 12)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-525)) NIL) (($ (-641)) NIL) (($ (-157 (-357))) 13) (($ (-157 (-525))) 19) (($ (-157 (-641))) 28) (($ (-157 (-643))) 25) (((-157 (-357)) $) 33) (($ (-385 (-525))) NIL (-3254 (|has| (-641) (-968 (-385 (-525)))) (|has| (-641) (-341))))) (-3637 (($ $) NIL (|has| (-641) (-327))) (((-3 $ "failed") $) NIL (-3254 (-12 (|has| (-641) (-286)) (|has| $ (-136)) (|has| (-641) (-844))) (|has| (-641) (-136))))) (-1304 (((-1088 (-641)) $) NIL)) (-3917 (((-713)) NIL)) (-3094 (((-1174 $)) NIL)) (-1649 (($ $) NIL (|has| (-641) (-1114)))) (-1492 (($ $) NIL (|has| (-641) (-1114)))) (-3325 (((-108) $ $) NIL)) (-1630 (($ $) NIL (|has| (-641) (-1114)))) (-1465 (($ $) NIL (|has| (-641) (-1114)))) (-1669 (($ $) NIL (|has| (-641) (-1114)))) (-1522 (($ $) NIL (|has| (-641) (-1114)))) (-2771 (((-641) $) NIL (|has| (-641) (-1114)))) (-2359 (($ $) NIL (|has| (-641) (-1114)))) (-1537 (($ $) NIL (|has| (-641) (-1114)))) (-1659 (($ $) NIL (|has| (-641) (-1114)))) (-1506 (($ $) NIL (|has| (-641) (-1114)))) (-1639 (($ $) NIL (|has| (-641) (-1114)))) (-1479 (($ $) NIL (|has| (-641) (-1114)))) (-2802 (($ $) NIL (|has| (-641) (-986)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-641) (-341)))) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $ (-1 (-641) (-641))) NIL) (($ $ (-1 (-641) (-641)) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-641) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-641) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-641) (-835 (-1092)))) (($ $ (-1092)) NIL (|has| (-641) (-835 (-1092)))) (($ $ (-713)) NIL (|has| (-641) (-213))) (($ $) NIL (|has| (-641) (-213)))) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL (|has| (-641) (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ $) NIL (|has| (-641) (-1114))) (($ $ (-385 (-525))) NIL (-12 (|has| (-641) (-934)) (|has| (-641) (-1114)))) (($ $ (-525)) NIL (|has| (-641) (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ (-641) $) NIL) (($ $ (-641)) NIL) (($ (-385 (-525)) $) NIL (|has| (-641) (-341))) (($ $ (-385 (-525))) NIL (|has| (-641) (-341)))))
-(((-636) (-13 (-365) (-154 (-641)) (-10 -8 (-15 -1217 ($ (-157 (-357)))) (-15 -1217 ($ (-157 (-525)))) (-15 -1217 ($ (-157 (-641)))) (-15 -1217 ($ (-157 (-643)))) (-15 -1217 ((-157 (-357)) $))))) (T -636))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-636)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-157 (-525))) (-5 *1 (-636)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-157 (-641))) (-5 *1 (-636)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-157 (-643))) (-5 *1 (-636)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-636)))))
-(-13 (-365) (-154 (-641)) (-10 -8 (-15 -1217 ($ (-157 (-357)))) (-15 -1217 ($ (-157 (-525)))) (-15 -1217 ($ (-157 (-641)))) (-15 -1217 ($ (-157 (-643)))) (-15 -1217 ((-157 (-357)) $))))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3991 (((-108) $ (-713)) 8)) (-1676 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4258)))) (-2169 (($) 7 T CONST)) (-3972 (($ $) 62)) (-1910 (($ $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-3271 (($ |#1| $) 47 (|has| $ (-6 -4258))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4258)))) (-1703 (($ |#1| $) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4258)))) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) 9)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2992 ((|#1| $) 39)) (-1262 (($ |#1| $) 40) (($ |#1| $ (-713)) 63)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-4127 ((|#1| $) 41)) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-4113 (((-592 (-2 (|:| -4201 |#1|) (|:| -2110 (-713)))) $) 61)) (-1760 (($) 49) (($ (-592 |#1|)) 48)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-3210 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 50)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-1956 (($ (-592 |#1|)) 42)) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-2721 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-1245 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-1221 (*1 *1 *2 *2) (-12 (-5 *2 (-713)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1232 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3525 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3525 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-4100 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *2)) (-4 *4 (-351 *3)) (-4 *2 (-351 *3)))) (-1730 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *1 (-630 *3 *2 *4)) (-4 *2 (-351 *3)) (-4 *4 (-351 *3)))) (-1730 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-3263 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-2847 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-2659 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-592 (-592 *3))))) (-3431 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1233 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2968 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3904 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1550 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3614 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2860 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-2871 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-2871 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-630 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *2 (-351 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-630 *3 *2 *4)) (-4 *3 (-977)) (-4 *2 (-351 *3)) (-4 *4 (-351 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1311 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-517)))) (-2880 (*1 *1 *1 *2) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341)))) (-3692 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-286)))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713)))) (-3204 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-592 *5)))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (|has| *2 (-6 (-4261 "*"))) (-4 *2 (-977)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (|has| *2 (-6 (-4261 "*"))) (-4 *2 (-977)))) (-1921 (*1 *1 *1) (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-341)))))
+(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4260) (-6 -4259) (-15 -2721 ((-108) $)) (-15 -3219 ((-108) $)) (-15 -2207 ((-108) $)) (-15 -1245 ((-108) $)) (-15 -1221 ($ (-713) (-713))) (-15 -4054 ($ (-592 (-592 |t#1|)))) (-15 -1232 ($ (-713) |t#1|)) (-15 -3525 ($ (-592 |t#1|))) (-15 -3525 ($ (-592 $))) (-15 -4100 ($ |t#3|)) (-15 -1730 ($ |t#2|)) (-15 -1730 ($ $)) (-15 -3263 ($ $)) (-15 -2847 ($ $ $)) (-15 -2659 ($ $ $)) (-15 -2949 ((-592 (-592 |t#1|)) $)) (-15 -3431 ($ $ (-592 (-525)) (-592 (-525)))) (-15 -1233 ($ $ (-592 (-525)) (-592 (-525)) $)) (-15 -2968 ($ $ (-525) (-525))) (-15 -3904 ($ $ (-525) (-525))) (-15 -1550 ($ $ (-525) (-525) (-525) (-525))) (-15 -3614 ($ $ (-525) (-525) $)) (-15 -2860 ($ $ $)) (-15 -2871 ($ $ $)) (-15 -2871 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-525) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-713))) (IF (|has| |t#1| (-517)) (-15 -1311 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-341)) (-15 -2880 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-286)) (-15 -3692 ($ $)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-15 -3085 ((-713) $)) (-15 -3204 ((-713) $)) (-15 -3261 ((-592 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4261 "*"))) (PROGN (-15 -1796 (|t#1| $)) (-15 -3239 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-15 -1921 ((-3 $ "failed") $)) (-15 ** ($ $ (-525)))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-55 |#1| |#2| |#3|) . T) ((-1128) . T))
+((-3692 ((|#4| |#4|) 72 (|has| |#1| (-286)))) (-3085 (((-713) |#4|) 99 (|has| |#1| (-517)))) (-3204 (((-713) |#4|) 76 (|has| |#1| (-517)))) (-3261 (((-592 |#3|) |#4|) 83 (|has| |#1| (-517)))) (-2324 (((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|) 111 (|has| |#1| (-286)))) (-3239 ((|#1| |#4|) 35)) (-3603 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-517)))) (-1921 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-341)))) (-2666 ((|#4| |#4|) 68 (|has| |#1| (-517)))) (-2529 ((|#4| |#4| |#1| (-525) (-525)) 43)) (-2604 ((|#4| |#4| (-525) (-525)) 38)) (-3705 ((|#4| |#4| |#1| (-525) (-525)) 48)) (-1796 ((|#1| |#4|) 78)) (-2799 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-517)))))
+(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1796 (|#1| |#4|)) (-15 -3239 (|#1| |#4|)) (-15 -2604 (|#4| |#4| (-525) (-525))) (-15 -2529 (|#4| |#4| |#1| (-525) (-525))) (-15 -3705 (|#4| |#4| |#1| (-525) (-525))) (IF (|has| |#1| (-517)) (PROGN (-15 -3085 ((-713) |#4|)) (-15 -3204 ((-713) |#4|)) (-15 -3261 ((-592 |#3|) |#4|)) (-15 -2666 (|#4| |#4|)) (-15 -3603 ((-3 |#4| "failed") |#4|)) (-15 -2799 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-286)) (PROGN (-15 -3692 (|#4| |#4|)) (-15 -2324 ((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -1921 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-160) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -631))
+((-1921 (*1 *2 *2) (|partial| -12 (-4 *3 (-341)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-2324 (*1 *2 *3 *3) (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-2 (|:| -1416 *3) (|:| -3681 *3))) (-5 *1 (-631 *3 *4 *5 *6)) (-4 *6 (-630 *3 *4 *5)))) (-3692 (*1 *2 *2) (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-2799 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3603 (*1 *2 *2) (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-2666 (*1 *2 *2) (-12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-3261 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3204 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3085 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3705 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3)) (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-630 *3 *5 *6)))) (-2529 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3)) (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-630 *3 *5 *6)))) (-2604 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *1 (-631 *4 *5 *6 *2)) (-4 *2 (-630 *4 *5 *6)))) (-3239 (*1 *2 *3) (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160)) (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5)))) (-1796 (*1 *2 *3) (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160)) (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5)))))
+(-10 -7 (-15 -1796 (|#1| |#4|)) (-15 -3239 (|#1| |#4|)) (-15 -2604 (|#4| |#4| (-525) (-525))) (-15 -2529 (|#4| |#4| |#1| (-525) (-525))) (-15 -3705 (|#4| |#4| |#1| (-525) (-525))) (IF (|has| |#1| (-517)) (PROGN (-15 -3085 ((-713) |#4|)) (-15 -3204 ((-713) |#4|)) (-15 -3261 ((-592 |#3|) |#4|)) (-15 -2666 (|#4| |#4|)) (-15 -3603 ((-3 |#4| "failed") |#4|)) (-15 -2799 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-286)) (PROGN (-15 -3692 (|#4| |#4|)) (-15 -2324 ((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -1921 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1221 (($ (-713) (-713)) 47)) (-2659 (($ $ $) NIL)) (-1730 (($ (-1174 |#1|)) NIL) (($ $) NIL)) (-2207 (((-108) $) NIL)) (-2968 (($ $ (-525) (-525)) 12)) (-3904 (($ $ (-525) (-525)) NIL)) (-1550 (($ $ (-525) (-525) (-525) (-525)) NIL)) (-3263 (($ $) NIL)) (-2721 (((-108) $) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-3614 (($ $ (-525) (-525) $) NIL)) (-1233 ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) NIL)) (-2695 (($ $ (-525) (-1174 |#1|)) NIL)) (-1773 (($ $ (-525) (-1174 |#1|)) NIL)) (-1232 (($ (-713) |#1|) 22)) (-2475 (($) NIL T CONST)) (-3692 (($ $) 31 (|has| |#1| (-286)))) (-3209 (((-1174 |#1|) $ (-525)) NIL)) (-3085 (((-713) $) 33 (|has| |#1| (-517)))) (-3081 ((|#1| $ (-525) (-525) |#1|) 51)) (-3017 ((|#1| $ (-525) (-525)) NIL)) (-2175 (((-592 |#1|) $) NIL)) (-3204 (((-713) $) 35 (|has| |#1| (-517)))) (-3261 (((-592 (-1174 |#1|)) $) 38 (|has| |#1| (-517)))) (-2720 (((-713) $) 20)) (-3324 (($ (-713) (-713) |#1|) 16)) (-2731 (((-713) $) 21)) (-2516 (((-108) $ (-713)) NIL)) (-3239 ((|#1| $) 29 (|has| |#1| (-6 (-4261 "*"))))) (-2797 (((-525) $) 9)) (-2307 (((-525) $) 10)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3194 (((-525) $) 11)) (-3210 (((-525) $) 48)) (-4054 (($ (-592 (-592 |#1|))) NIL)) (-3069 (($ (-1 |#1| |#1|) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2949 (((-592 (-592 |#1|)) $) 60)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-1921 (((-3 $ "failed") $) 45 (|has| |#1| (-341)))) (-2847 (($ $ $) NIL)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3453 (($ $ |#1|) NIL)) (-1311 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525))) NIL)) (-3525 (($ (-592 |#1|)) NIL) (($ (-592 $)) NIL) (($ (-1174 |#1|)) 52)) (-3219 (((-108) $) NIL)) (-1796 ((|#1| $) 27 (|has| |#1| (-6 (-4261 "*"))))) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) NIL)) (-2069 (((-501) $) 64 (|has| |#1| (-567 (-501))))) (-1881 (((-1174 |#1|) $ (-525)) NIL)) (-4100 (($ (-1174 |#1|)) NIL) (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-1245 (((-108) $) NIL)) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-2871 (($ $ $) NIL) (($ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-713)) 23) (($ $ (-525)) 46 (|has| |#1| (-341)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-525) $) NIL) (((-1174 |#1|) $ (-1174 |#1|)) NIL) (((-1174 |#1|) (-1174 |#1|) $) NIL)) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-632 |#1|) (-13 (-630 |#1| (-1174 |#1|) (-1174 |#1|)) (-10 -8 (-15 -3525 ($ (-1174 |#1|))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -1921 ((-3 $ "failed") $)) |%noBranch|))) (-977)) (T -632))
+((-1921 (*1 *1 *1) (|partial| -12 (-5 *1 (-632 *2)) (-4 *2 (-341)) (-4 *2 (-977)))) (-3525 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-977)) (-5 *1 (-632 *3)))))
+(-13 (-630 |#1| (-1174 |#1|) (-1174 |#1|)) (-10 -8 (-15 -3525 ($ (-1174 |#1|))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -1921 ((-3 $ "failed") $)) |%noBranch|)))
+((-1953 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 25)) (-3547 (((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|) 21)) (-4175 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-713)) 26)) (-3009 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 14)) (-2258 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 18) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 16)) (-1269 (((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|)) 20)) (-3286 (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 12)) (** (((-632 |#1|) (-632 |#1|) (-713)) 30)))
+(((-633 |#1|) (-10 -7 (-15 -3286 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3009 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2258 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2258 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1269 ((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|))) (-15 -3547 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -1953 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -4175 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-713))) (-15 ** ((-632 |#1|) (-632 |#1|) (-713)))) (-977)) (T -633))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-977)) (-5 *1 (-633 *4)))) (-4175 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-977)) (-5 *1 (-633 *4)))) (-1953 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))) (-3547 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))) (-1269 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))) (-2258 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))) (-2258 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))) (-3009 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))) (-3286 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
+(-10 -7 (-15 -3286 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3009 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2258 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2258 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1269 ((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|))) (-15 -3547 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -1953 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -4175 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-713))) (-15 ** ((-632 |#1|) (-632 |#1|) (-713))))
+((-4140 ((|#2| |#2| |#4|) 25)) (-1334 (((-632 |#2|) |#3| |#4|) 31)) (-4226 (((-632 |#2|) |#2| |#4|) 30)) (-3780 (((-1174 |#2|) |#2| |#4|) 16)) (-1945 ((|#2| |#3| |#4|) 24)) (-3193 (((-632 |#2|) |#3| |#4| (-713) (-713)) 38)) (-3948 (((-632 |#2|) |#2| |#4| (-713)) 37)))
+(((-634 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3780 ((-1174 |#2|) |#2| |#4|)) (-15 -1945 (|#2| |#3| |#4|)) (-15 -4140 (|#2| |#2| |#4|)) (-15 -4226 ((-632 |#2|) |#2| |#4|)) (-15 -3948 ((-632 |#2|) |#2| |#4| (-713))) (-15 -1334 ((-632 |#2|) |#3| |#4|)) (-15 -3193 ((-632 |#2|) |#3| |#4| (-713) (-713)))) (-1020) (-835 |#1|) (-351 |#2|) (-13 (-351 |#1|) (-10 -7 (-6 -4259)))) (T -634))
+((-3193 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-713)) (-4 *6 (-1020)) (-4 *7 (-835 *6)) (-5 *2 (-632 *7)) (-5 *1 (-634 *6 *7 *3 *4)) (-4 *3 (-351 *7)) (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4259)))))) (-1334 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-4 *6 (-835 *5)) (-5 *2 (-632 *6)) (-5 *1 (-634 *5 *6 *3 *4)) (-4 *3 (-351 *6)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4259)))))) (-3948 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-1020)) (-4 *3 (-835 *6)) (-5 *2 (-632 *3)) (-5 *1 (-634 *6 *3 *7 *4)) (-4 *7 (-351 *3)) (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4259)))))) (-4226 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-4 *3 (-835 *5)) (-5 *2 (-632 *3)) (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4259)))))) (-4140 (*1 *2 *2 *3) (-12 (-4 *4 (-1020)) (-4 *2 (-835 *4)) (-5 *1 (-634 *4 *2 *5 *3)) (-4 *5 (-351 *2)) (-4 *3 (-13 (-351 *4) (-10 -7 (-6 -4259)))))) (-1945 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-4 *2 (-835 *5)) (-5 *1 (-634 *5 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4259)))))) (-3780 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-4 *3 (-835 *5)) (-5 *2 (-1174 *3)) (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4259)))))))
+(-10 -7 (-15 -3780 ((-1174 |#2|) |#2| |#4|)) (-15 -1945 (|#2| |#3| |#4|)) (-15 -4140 (|#2| |#2| |#4|)) (-15 -4226 ((-632 |#2|) |#2| |#4|)) (-15 -3948 ((-632 |#2|) |#2| |#4| (-713))) (-15 -1334 ((-632 |#2|) |#3| |#4|)) (-15 -3193 ((-632 |#2|) |#3| |#4| (-713) (-713))))
+((-3999 (((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|)) 20)) (-2618 ((|#1| (-632 |#2|)) 9)) (-2360 (((-632 |#1|) (-632 |#2|)) 18)))
+(((-635 |#1| |#2|) (-10 -7 (-15 -2618 (|#1| (-632 |#2|))) (-15 -2360 ((-632 |#1|) (-632 |#2|))) (-15 -3999 ((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|)))) (-517) (-925 |#1|)) (T -635))
+((-3999 (*1 *2 *3) (-12 (-5 *3 (-632 *5)) (-4 *5 (-925 *4)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |num| (-632 *4)) (|:| |den| *4))) (-5 *1 (-635 *4 *5)))) (-2360 (*1 *2 *3) (-12 (-5 *3 (-632 *5)) (-4 *5 (-925 *4)) (-4 *4 (-517)) (-5 *2 (-632 *4)) (-5 *1 (-635 *4 *5)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-632 *4)) (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-635 *2 *4)))))
+(-10 -7 (-15 -2618 (|#1| (-632 |#2|))) (-15 -2360 ((-632 |#1|) (-632 |#2|))) (-15 -3999 ((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3855 (((-632 (-641))) NIL) (((-632 (-641)) (-1174 $)) NIL)) (-2924 (((-641) $) NIL)) (-1803 (($ $) NIL (|has| (-641) (-1114)))) (-3659 (($ $) NIL (|has| (-641) (-1114)))) (-3395 (((-1102 (-856) (-713)) (-525)) NIL (|has| (-641) (-327)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-844))))) (-4195 (($ $) NIL (-2067 (-12 (|has| (-641) (-286)) (|has| (-641) (-844))) (|has| (-641) (-341))))) (-3586 (((-396 $) $) NIL (-2067 (-12 (|has| (-641) (-286)) (|has| (-641) (-844))) (|has| (-641) (-341))))) (-4211 (($ $) NIL (-12 (|has| (-641) (-934)) (|has| (-641) (-1114))))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-844))))) (-1507 (((-108) $ $) NIL (|has| (-641) (-286)))) (-1613 (((-713)) NIL (|has| (-641) (-346)))) (-1781 (($ $) NIL (|has| (-641) (-1114)))) (-3638 (($ $) NIL (|has| (-641) (-1114)))) (-1828 (($ $) NIL (|has| (-641) (-1114)))) (-3698 (($ $) NIL (|has| (-641) (-1114)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL) (((-3 (-641) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-641) (-968 (-385 (-525)))))) (-4105 (((-525) $) NIL) (((-641) $) NIL) (((-385 (-525)) $) NIL (|has| (-641) (-968 (-385 (-525)))))) (-2580 (($ (-1174 (-641))) NIL) (($ (-1174 (-641)) (-1174 $)) NIL)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-641) (-327)))) (-1356 (($ $ $) NIL (|has| (-641) (-286)))) (-1588 (((-632 (-641)) $) NIL) (((-632 (-641)) $ (-1174 $)) NIL)) (-3090 (((-632 (-641)) (-632 $)) NIL) (((-2 (|:| -4108 (-632 (-641))) (|:| |vec| (-1174 (-641)))) (-632 $) (-1174 $)) NIL) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-641) (-588 (-525)))) (((-632 (-525)) (-632 $)) NIL (|has| (-641) (-588 (-525))))) (-3504 (((-3 $ "failed") (-385 (-1088 (-641)))) NIL (|has| (-641) (-341))) (($ (-1088 (-641))) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-4220 (((-641) $) 29)) (-3306 (((-3 (-385 (-525)) "failed") $) NIL (|has| (-641) (-510)))) (-1417 (((-108) $) NIL (|has| (-641) (-510)))) (-1367 (((-385 (-525)) $) NIL (|has| (-641) (-510)))) (-3085 (((-856)) NIL)) (-1903 (($) NIL (|has| (-641) (-346)))) (-1332 (($ $ $) NIL (|has| (-641) (-286)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| (-641) (-286)))) (-3932 (($) NIL (|has| (-641) (-327)))) (-3920 (((-108) $) NIL (|has| (-641) (-327)))) (-1339 (($ $) NIL (|has| (-641) (-327))) (($ $ (-713)) NIL (|has| (-641) (-327)))) (-1798 (((-108) $) NIL (-2067 (-12 (|has| (-641) (-286)) (|has| (-641) (-844))) (|has| (-641) (-341))))) (-3861 (((-2 (|:| |r| (-641)) (|:| |phi| (-641))) $) NIL (-12 (|has| (-641) (-986)) (|has| (-641) (-1114))))) (-4106 (($) NIL (|has| (-641) (-1114)))) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-641) (-821 (-357)))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-641) (-821 (-525))))) (-4000 (((-775 (-856)) $) NIL (|has| (-641) (-327))) (((-856) $) NIL (|has| (-641) (-327)))) (-2278 (((-108) $) NIL)) (-1303 (($ $ (-525)) NIL (-12 (|has| (-641) (-934)) (|has| (-641) (-1114))))) (-2704 (((-641) $) NIL)) (-2878 (((-3 $ "failed") $) NIL (|has| (-641) (-327)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-641) (-286)))) (-2021 (((-1088 (-641)) $) NIL (|has| (-641) (-341)))) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-2016 (($ (-1 (-641) (-641)) $) NIL)) (-3685 (((-856) $) NIL (|has| (-641) (-346)))) (-2533 (($ $) NIL (|has| (-641) (-1114)))) (-3492 (((-1088 (-641)) $) NIL)) (-2739 (($ (-592 $)) NIL (|has| (-641) (-286))) (($ $ $) NIL (|has| (-641) (-286)))) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL (|has| (-641) (-341)))) (-2948 (($) NIL (|has| (-641) (-327)) CONST)) (-1722 (($ (-856)) NIL (|has| (-641) (-346)))) (-1409 (($) NIL)) (-4233 (((-641) $) 31)) (-3993 (((-1039) $) NIL)) (-3817 (($) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| (-641) (-286)))) (-2772 (($ (-592 $)) NIL (|has| (-641) (-286))) (($ $ $) NIL (|has| (-641) (-286)))) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) NIL (|has| (-641) (-327)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-844))))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-844))))) (-4201 (((-396 $) $) NIL (-2067 (-12 (|has| (-641) (-286)) (|has| (-641) (-844))) (|has| (-641) (-341))))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-641) (-286))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| (-641) (-286)))) (-1311 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-641)) NIL (|has| (-641) (-517)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-641) (-286)))) (-1618 (($ $) NIL (|has| (-641) (-1114)))) (-2825 (($ $ (-1092) (-641)) NIL (|has| (-641) (-486 (-1092) (-641)))) (($ $ (-592 (-1092)) (-592 (-641))) NIL (|has| (-641) (-486 (-1092) (-641)))) (($ $ (-592 (-273 (-641)))) NIL (|has| (-641) (-288 (-641)))) (($ $ (-273 (-641))) NIL (|has| (-641) (-288 (-641)))) (($ $ (-641) (-641)) NIL (|has| (-641) (-288 (-641)))) (($ $ (-592 (-641)) (-592 (-641))) NIL (|has| (-641) (-288 (-641))))) (-1927 (((-713) $) NIL (|has| (-641) (-286)))) (-3431 (($ $ (-641)) NIL (|has| (-641) (-265 (-641) (-641))))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| (-641) (-286)))) (-4115 (((-641)) NIL) (((-641) (-1174 $)) NIL)) (-2043 (((-3 (-713) "failed") $ $) NIL (|has| (-641) (-327))) (((-713) $) NIL (|has| (-641) (-327)))) (-2702 (($ $ (-1 (-641) (-641))) NIL) (($ $ (-1 (-641) (-641)) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-641) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-641) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-641) (-835 (-1092)))) (($ $ (-1092)) NIL (|has| (-641) (-835 (-1092)))) (($ $ (-713)) NIL (|has| (-641) (-213))) (($ $) NIL (|has| (-641) (-213)))) (-2897 (((-632 (-641)) (-1174 $) (-1 (-641) (-641))) NIL (|has| (-641) (-341)))) (-2013 (((-1088 (-641))) NIL)) (-1841 (($ $) NIL (|has| (-641) (-1114)))) (-3798 (($ $) NIL (|has| (-641) (-1114)))) (-3823 (($) NIL (|has| (-641) (-327)))) (-1816 (($ $) NIL (|has| (-641) (-1114)))) (-3678 (($ $) NIL (|has| (-641) (-1114)))) (-1792 (($ $) NIL (|has| (-641) (-1114)))) (-3649 (($ $) NIL (|has| (-641) (-1114)))) (-2754 (((-632 (-641)) (-1174 $)) NIL) (((-1174 (-641)) $) NIL) (((-632 (-641)) (-1174 $) (-1174 $)) NIL) (((-1174 (-641)) $ (-1174 $)) NIL)) (-2069 (((-501) $) NIL (|has| (-641) (-567 (-501)))) (((-157 (-205)) $) NIL (|has| (-641) (-953))) (((-157 (-357)) $) NIL (|has| (-641) (-953))) (((-827 (-357)) $) NIL (|has| (-641) (-567 (-827 (-357))))) (((-827 (-525)) $) NIL (|has| (-641) (-567 (-827 (-525))))) (($ (-1088 (-641))) NIL) (((-1088 (-641)) $) NIL) (($ (-1174 (-641))) NIL) (((-1174 (-641)) $) NIL)) (-3055 (($ $) NIL)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-2067 (-12 (|has| (-641) (-286)) (|has| $ (-136)) (|has| (-641) (-844))) (|has| (-641) (-327))))) (-1496 (($ (-641) (-641)) 12)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-525)) NIL) (($ (-641)) NIL) (($ (-157 (-357))) 13) (($ (-157 (-525))) 19) (($ (-157 (-641))) 28) (($ (-157 (-643))) 25) (((-157 (-357)) $) 33) (($ (-385 (-525))) NIL (-2067 (|has| (-641) (-968 (-385 (-525)))) (|has| (-641) (-341))))) (-1463 (($ $) NIL (|has| (-641) (-327))) (((-3 $ "failed") $) NIL (-2067 (-12 (|has| (-641) (-286)) (|has| $ (-136)) (|has| (-641) (-844))) (|has| (-641) (-136))))) (-3153 (((-1088 (-641)) $) NIL)) (-2448 (((-713)) NIL)) (-2103 (((-1174 $)) NIL)) (-1876 (($ $) NIL (|has| (-641) (-1114)))) (-3853 (($ $) NIL (|has| (-641) (-1114)))) (-1571 (((-108) $ $) NIL)) (-1853 (($ $) NIL (|has| (-641) (-1114)))) (-3808 (($ $) NIL (|has| (-641) (-1114)))) (-1902 (($ $) NIL (|has| (-641) (-1114)))) (-1760 (($ $) NIL (|has| (-641) (-1114)))) (-2136 (((-641) $) NIL (|has| (-641) (-1114)))) (-3135 (($ $) NIL (|has| (-641) (-1114)))) (-1770 (($ $) NIL (|has| (-641) (-1114)))) (-1891 (($ $) NIL (|has| (-641) (-1114)))) (-1748 (($ $) NIL (|has| (-641) (-1114)))) (-1866 (($ $) NIL (|has| (-641) (-1114)))) (-3820 (($ $) NIL (|has| (-641) (-1114)))) (-2380 (($ $) NIL (|has| (-641) (-986)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-641) (-341)))) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $ (-1 (-641) (-641))) NIL) (($ $ (-1 (-641) (-641)) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-641) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-641) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-641) (-835 (-1092)))) (($ $ (-1092)) NIL (|has| (-641) (-835 (-1092)))) (($ $ (-713)) NIL (|has| (-641) (-213))) (($ $) NIL (|has| (-641) (-213)))) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) NIL)) (-2880 (($ $ $) NIL (|has| (-641) (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ $) NIL (|has| (-641) (-1114))) (($ $ (-385 (-525))) NIL (-12 (|has| (-641) (-934)) (|has| (-641) (-1114)))) (($ $ (-525)) NIL (|has| (-641) (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ (-641) $) NIL) (($ $ (-641)) NIL) (($ (-385 (-525)) $) NIL (|has| (-641) (-341))) (($ $ (-385 (-525))) NIL (|has| (-641) (-341)))))
+(((-636) (-13 (-365) (-154 (-641)) (-10 -8 (-15 -4100 ($ (-157 (-357)))) (-15 -4100 ($ (-157 (-525)))) (-15 -4100 ($ (-157 (-641)))) (-15 -4100 ($ (-157 (-643)))) (-15 -4100 ((-157 (-357)) $))))) (T -636))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-636)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-157 (-525))) (-5 *1 (-636)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-157 (-641))) (-5 *1 (-636)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-157 (-643))) (-5 *1 (-636)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-636)))))
+(-13 (-365) (-154 (-641)) (-10 -8 (-15 -4100 ($ (-157 (-357)))) (-15 -4100 ($ (-157 (-525)))) (-15 -4100 ($ (-157 (-641)))) (-15 -4100 ($ (-157 (-643)))) (-15 -4100 ((-157 (-357)) $))))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3779 (((-108) $ (-713)) 8)) (-3050 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4259)))) (-2475 (($) 7 T CONST)) (-1793 (($ $) 62)) (-1681 (($ $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-4205 (($ |#1| $) 47 (|has| $ (-6 -4259))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4259)))) (-2698 (($ |#1| $) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4259)))) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) 9)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-3577 ((|#1| $) 39)) (-3246 (($ |#1| $) 40) (($ |#1| $ (-713)) 63)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-2724 ((|#1| $) 41)) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-2605 (((-592 (-2 (|:| -3448 |#1|) (|:| -4002 (-713)))) $) 61)) (-2637 (($) 49) (($ (-592 |#1|)) 48)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-2069 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 50)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3905 (($ (-592 |#1|)) 42)) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-637 |#1|) (-131) (-1020)) (T -637))
-((-1262 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-637 *2)) (-4 *2 (-1020)))) (-3972 (*1 *1 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1020)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-637 *3)) (-4 *3 (-1020)) (-5 *2 (-592 (-2 (|:| -4201 *3) (|:| -2110 (-713))))))))
-(-13 (-215 |t#1|) (-10 -8 (-15 -1262 ($ |t#1| $ (-713))) (-15 -3972 ($ $)) (-15 -4113 ((-592 (-2 (|:| -4201 |t#1|) (|:| -2110 (-713)))) $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
-((-1390 (((-592 |#1|) (-592 (-2 (|:| -2770 |#1|) (|:| -2343 (-525)))) (-525)) 47)) (-2554 ((|#1| |#1| (-525)) 46)) (-2589 ((|#1| |#1| |#1| (-525)) 36)) (-2770 (((-592 |#1|) |#1| (-525)) 39)) (-2209 ((|#1| |#1| (-525) |#1| (-525)) 32)) (-3721 (((-592 (-2 (|:| -2770 |#1|) (|:| -2343 (-525)))) |#1| (-525)) 45)))
-(((-638 |#1|) (-10 -7 (-15 -2589 (|#1| |#1| |#1| (-525))) (-15 -2554 (|#1| |#1| (-525))) (-15 -2770 ((-592 |#1|) |#1| (-525))) (-15 -3721 ((-592 (-2 (|:| -2770 |#1|) (|:| -2343 (-525)))) |#1| (-525))) (-15 -1390 ((-592 |#1|) (-592 (-2 (|:| -2770 |#1|) (|:| -2343 (-525)))) (-525))) (-15 -2209 (|#1| |#1| (-525) |#1| (-525)))) (-1150 (-525))) (T -638))
-((-2209 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1150 *3)))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| -2770 *5) (|:| -2343 (-525))))) (-5 *4 (-525)) (-4 *5 (-1150 *4)) (-5 *2 (-592 *5)) (-5 *1 (-638 *5)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-5 *2 (-592 (-2 (|:| -2770 *3) (|:| -2343 *4)))) (-5 *1 (-638 *3)) (-4 *3 (-1150 *4)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-5 *2 (-592 *3)) (-5 *1 (-638 *3)) (-4 *3 (-1150 *4)))) (-2554 (*1 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1150 *3)))) (-2589 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1150 *3)))))
-(-10 -7 (-15 -2589 (|#1| |#1| |#1| (-525))) (-15 -2554 (|#1| |#1| (-525))) (-15 -2770 ((-592 |#1|) |#1| (-525))) (-15 -3721 ((-592 (-2 (|:| -2770 |#1|) (|:| -2343 (-525)))) |#1| (-525))) (-15 -1390 ((-592 |#1|) (-592 (-2 (|:| -2770 |#1|) (|:| -2343 (-525)))) (-525))) (-15 -2209 (|#1| |#1| (-525) |#1| (-525))))
-((-4219 (((-1 (-878 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205) (-205))) 17)) (-2553 (((-1052 (-205)) (-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-592 (-242))) 40) (((-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-592 (-242))) 42) (((-1052 (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1015 (-205)) (-1015 (-205)) (-592 (-242))) 44)) (-2948 (((-1052 (-205)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-592 (-242))) NIL)) (-1645 (((-1052 (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1015 (-205)) (-1015 (-205)) (-592 (-242))) 45)))
-(((-639) (-10 -7 (-15 -2553 ((-1052 (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -2553 ((-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -2553 ((-1052 (-205)) (-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -1645 ((-1052 (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -2948 ((-1052 (-205)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -4219 ((-1 (-878 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))) (T -639))
-((-4219 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1 (-205) (-205) (-205) (-205))) (-5 *2 (-1 (-878 (-205)) (-205) (-205))) (-5 *1 (-639)))) (-2948 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1015 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-639)))) (-1645 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined")) (-5 *5 (-1015 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-639)))) (-2553 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1052 (-205))) (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-205))) (-5 *5 (-592 (-242))) (-5 *1 (-639)))) (-2553 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-205))) (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-639)))) (-2553 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined")) (-5 *5 (-1015 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-639)))))
-(-10 -7 (-15 -2553 ((-1052 (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -2553 ((-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -2553 ((-1052 (-205)) (-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -1645 ((-1052 (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -2948 ((-1052 (-205)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -4219 ((-1 (-878 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))
-((-2770 (((-396 (-1088 |#4|)) (-1088 |#4|)) 73) (((-396 |#4|) |#4|) 222)))
-(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2770 ((-396 |#4|) |#4|)) (-15 -2770 ((-396 (-1088 |#4|)) (-1088 |#4|)))) (-789) (-735) (-327) (-884 |#3| |#2| |#1|)) (T -640))
-((-2770 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327)) (-4 *7 (-884 *6 *5 *4)) (-5 *2 (-396 (-1088 *7))) (-5 *1 (-640 *4 *5 *6 *7)) (-5 *3 (-1088 *7)))) (-2770 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-640 *4 *5 *6 *3)) (-4 *3 (-884 *6 *5 *4)))))
-(-10 -7 (-15 -2770 ((-396 |#4|) |#4|)) (-15 -2770 ((-396 (-1088 |#4|)) (-1088 |#4|))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 84)) (-1548 (((-525) $) 30)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-3828 (($ $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2782 (($ $) NIL)) (-2193 (((-108) $ $) NIL)) (-3855 (((-525) $) NIL)) (-2169 (($) NIL T CONST)) (-3384 (($ $) NIL)) (-3077 (((-3 (-525) "failed") $) 73) (((-3 (-385 (-525)) "failed") $) 26) (((-3 (-357) "failed") $) 70)) (-1572 (((-525) $) 75) (((-385 (-525)) $) 67) (((-357) $) 68)) (-1747 (($ $ $) 96)) (-3457 (((-3 $ "failed") $) 87)) (-1733 (($ $ $) 95)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-3836 (((-856)) 77) (((-856) (-856)) 76)) (-1222 (((-108) $) NIL)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL)) (-2581 (((-525) $) NIL)) (-1396 (((-108) $) NIL)) (-2171 (($ $ (-525)) NIL)) (-2382 (($ $) NIL)) (-3256 (((-108) $) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2974 (((-525) (-525)) 81) (((-525)) 82)) (-2638 (($ $ $) NIL) (($) NIL (-12 (-1850 (|has| $ (-6 -4241))) (-1850 (|has| $ (-6 -4249)))))) (-2718 (((-525) (-525)) 79) (((-525)) 80)) (-3662 (($ $ $) NIL) (($) NIL (-12 (-1850 (|has| $ (-6 -4241))) (-1850 (|has| $ (-6 -4249)))))) (-1914 (((-525) $) 16)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) 91)) (-2896 (((-856) (-525)) NIL (|has| $ (-6 -4249)))) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3628 (($ $) NIL)) (-2487 (($ $) NIL)) (-3299 (($ (-525) (-525)) NIL) (($ (-525) (-525) (-856)) NIL)) (-2770 (((-396 $) $) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) 92)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-4193 (((-525) $) 22)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 94)) (-3780 (((-856)) NIL) (((-856) (-856)) NIL (|has| $ (-6 -4249)))) (-1930 (((-856) (-525)) NIL (|has| $ (-6 -4249)))) (-3210 (((-357) $) NIL) (((-205) $) NIL) (((-827 (-357)) $) NIL)) (-1217 (((-798) $) 52) (($ (-525)) 63) (($ $) NIL) (($ (-385 (-525))) 66) (($ (-525)) 63) (($ (-385 (-525))) 66) (($ (-357)) 60) (((-357) $) 50) (($ (-643)) 55)) (-3917 (((-713)) 103)) (-2797 (($ (-525) (-525) (-856)) 44)) (-3074 (($ $) NIL)) (-3293 (((-856)) NIL) (((-856) (-856)) NIL (|has| $ (-6 -4249)))) (-3379 (((-856)) 35) (((-856) (-856)) 78)) (-3325 (((-108) $ $) NIL)) (-2802 (($ $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) 32 T CONST)) (-3359 (($) 17 T CONST)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 83)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 101)) (-4075 (($ $ $) 65)) (-4061 (($ $) 99) (($ $ $) 100)) (-4047 (($ $ $) 98)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ $ (-385 (-525))) 90)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 97) (($ $ $) 88) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
-(((-641) (-13 (-382) (-365) (-341) (-968 (-357)) (-968 (-385 (-525))) (-138) (-10 -8 (-15 -3836 ((-856) (-856))) (-15 -3836 ((-856))) (-15 -3379 ((-856) (-856))) (-15 -3379 ((-856))) (-15 -2718 ((-525) (-525))) (-15 -2718 ((-525))) (-15 -2974 ((-525) (-525))) (-15 -2974 ((-525))) (-15 -1217 ((-357) $)) (-15 -1217 ($ (-643))) (-15 -1914 ((-525) $)) (-15 -4193 ((-525) $)) (-15 -2797 ($ (-525) (-525) (-856)))))) (T -641))
-((-3379 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-1914 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-3836 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641)))) (-3379 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641)))) (-2718 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-2718 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-2974 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-2974 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-357)) (-5 *1 (-641)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-643)) (-5 *1 (-641)))) (-2797 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-856)) (-5 *1 (-641)))))
-(-13 (-382) (-365) (-341) (-968 (-357)) (-968 (-385 (-525))) (-138) (-10 -8 (-15 -3836 ((-856) (-856))) (-15 -3836 ((-856))) (-15 -3379 ((-856) (-856))) (-15 -3379 ((-856))) (-15 -2718 ((-525) (-525))) (-15 -2718 ((-525))) (-15 -2974 ((-525) (-525))) (-15 -2974 ((-525))) (-15 -1217 ((-357) $)) (-15 -1217 ($ (-643))) (-15 -1914 ((-525) $)) (-15 -4193 ((-525) $)) (-15 -2797 ($ (-525) (-525) (-856)))))
-((-1797 (((-632 |#1|) (-632 |#1|) |#1| |#1|) 65)) (-2361 (((-632 |#1|) (-632 |#1|) |#1|) 48)) (-4164 (((-632 |#1|) (-632 |#1|) |#1|) 66)) (-1624 (((-632 |#1|) (-632 |#1|)) 49)) (-3604 (((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|) 64)))
-(((-642 |#1|) (-10 -7 (-15 -1624 ((-632 |#1|) (-632 |#1|))) (-15 -2361 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -4164 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -1797 ((-632 |#1|) (-632 |#1|) |#1| |#1|)) (-15 -3604 ((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|))) (-286)) (T -642))
-((-3604 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2829 *3) (|:| -1607 *3))) (-5 *1 (-642 *3)) (-4 *3 (-286)))) (-1797 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))) (-4164 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))) (-2361 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))) (-1624 (*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))))
-(-10 -7 (-15 -1624 ((-632 |#1|) (-632 |#1|))) (-15 -2361 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -4164 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -1797 ((-632 |#1|) (-632 |#1|) |#1| |#1|)) (-15 -3604 ((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-2028 (($ $ $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-4158 (($ $ $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2193 (((-108) $ $) NIL)) (-3855 (((-525) $) NIL)) (-3506 (($ $ $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) 27)) (-1572 (((-525) $) 25)) (-1747 (($ $ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1514 (((-3 (-385 (-525)) "failed") $) NIL)) (-3933 (((-108) $) NIL)) (-3303 (((-385 (-525)) $) NIL)) (-2502 (($ $) NIL) (($) NIL)) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-2781 (($ $ $ $) NIL)) (-3636 (($ $ $) NIL)) (-1222 (((-108) $) NIL)) (-3984 (($ $ $) NIL)) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL)) (-1396 (((-108) $) NIL)) (-1673 (((-108) $) NIL)) (-3844 (((-3 $ "failed") $) NIL)) (-3256 (((-108) $) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2657 (($ $ $ $) NIL)) (-2638 (($ $ $) NIL)) (-1234 (((-856) (-856)) 10) (((-856)) 9)) (-3662 (($ $ $) NIL)) (-1738 (($ $) NIL)) (-4178 (($ $) NIL)) (-2556 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2476 (($ $ $) NIL)) (-2295 (($) NIL T CONST)) (-4070 (($ $) NIL)) (-2093 (((-1039) $) NIL) (($ $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ (-592 $)) NIL) (($ $ $) NIL)) (-1545 (($ $) NIL)) (-2770 (((-396 $) $) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3699 (((-108) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3376 (($ $) NIL) (($ $ (-713)) NIL)) (-3068 (($ $) NIL)) (-1462 (($ $) NIL)) (-3210 (((-205) $) NIL) (((-357) $) NIL) (((-827 (-525)) $) NIL) (((-501) $) NIL) (((-525) $) NIL)) (-1217 (((-798) $) NIL) (($ (-525)) 24) (($ $) NIL) (($ (-525)) 24) (((-294 $) (-294 (-525))) 18)) (-3917 (((-713)) NIL)) (-3731 (((-108) $ $) NIL)) (-3163 (($ $ $) NIL)) (-3379 (($) NIL)) (-3325 (((-108) $ $) NIL)) (-1935 (($ $ $ $) NIL)) (-2802 (($ $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $) NIL) (($ $ (-713)) NIL)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL)))
-(((-643) (-13 (-365) (-510) (-10 -8 (-15 -1234 ((-856) (-856))) (-15 -1234 ((-856))) (-15 -1217 ((-294 $) (-294 (-525))))))) (T -643))
-((-1234 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-643)))) (-1234 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-643)))) (-1217 (*1 *2 *3) (-12 (-5 *3 (-294 (-525))) (-5 *2 (-294 (-643))) (-5 *1 (-643)))))
-(-13 (-365) (-510) (-10 -8 (-15 -1234 ((-856) (-856))) (-15 -1234 ((-856))) (-15 -1217 ((-294 $) (-294 (-525))))))
-((-2773 (((-1 |#4| |#2| |#3|) |#1| (-1092) (-1092)) 19)) (-1412 (((-1 |#4| |#2| |#3|) (-1092)) 12)))
-(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1412 ((-1 |#4| |#2| |#3|) (-1092))) (-15 -2773 ((-1 |#4| |#2| |#3|) |#1| (-1092) (-1092)))) (-567 (-501)) (-1128) (-1128) (-1128)) (T -644))
-((-2773 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *3 *5 *6 *7)) (-4 *3 (-567 (-501))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128)))) (-1412 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *4 *5 *6 *7)) (-4 *4 (-567 (-501))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128)))))
-(-10 -7 (-15 -1412 ((-1 |#4| |#2| |#3|) (-1092))) (-15 -2773 ((-1 |#4| |#2| |#3|) |#1| (-1092) (-1092))))
-((-4236 (((-108) $ $) NIL)) (-2543 (((-1179) $ (-713)) 14)) (-1932 (((-713) $) 12)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 25)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 24)))
-(((-645 |#1|) (-13 (-127) (-566 |#1|) (-10 -8 (-15 -1217 ($ |#1|)))) (-1020)) (T -645))
-((-1217 (*1 *1 *2) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1020)))))
-(-13 (-127) (-566 |#1|) (-10 -8 (-15 -1217 ($ |#1|))))
-((-3856 (((-1 (-205) (-205) (-205)) |#1| (-1092) (-1092)) 34) (((-1 (-205) (-205)) |#1| (-1092)) 39)))
-(((-646 |#1|) (-10 -7 (-15 -3856 ((-1 (-205) (-205)) |#1| (-1092))) (-15 -3856 ((-1 (-205) (-205) (-205)) |#1| (-1092) (-1092)))) (-567 (-501))) (T -646))
-((-3856 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-1 (-205) (-205) (-205))) (-5 *1 (-646 *3)) (-4 *3 (-567 (-501))))) (-3856 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-1 (-205) (-205))) (-5 *1 (-646 *3)) (-4 *3 (-567 (-501))))))
-(-10 -7 (-15 -3856 ((-1 (-205) (-205)) |#1| (-1092))) (-15 -3856 ((-1 (-205) (-205) (-205)) |#1| (-1092) (-1092))))
-((-2459 (((-1092) |#1| (-1092) (-592 (-1092))) 9) (((-1092) |#1| (-1092) (-1092) (-1092)) 12) (((-1092) |#1| (-1092) (-1092)) 11) (((-1092) |#1| (-1092)) 10)))
-(((-647 |#1|) (-10 -7 (-15 -2459 ((-1092) |#1| (-1092))) (-15 -2459 ((-1092) |#1| (-1092) (-1092))) (-15 -2459 ((-1092) |#1| (-1092) (-1092) (-1092))) (-15 -2459 ((-1092) |#1| (-1092) (-592 (-1092))))) (-567 (-501))) (T -647))
-((-2459 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-592 (-1092))) (-5 *2 (-1092)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))) (-2459 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))) (-2459 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))) (-2459 (*1 *2 *3 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))))
-(-10 -7 (-15 -2459 ((-1092) |#1| (-1092))) (-15 -2459 ((-1092) |#1| (-1092) (-1092))) (-15 -2459 ((-1092) |#1| (-1092) (-1092) (-1092))) (-15 -2459 ((-1092) |#1| (-1092) (-592 (-1092)))))
-((-3851 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-648 |#1| |#2|) (-10 -7 (-15 -3851 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1128) (-1128)) (T -648))
-((-3851 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-648 *3 *4)) (-4 *3 (-1128)) (-4 *4 (-1128)))))
-(-10 -7 (-15 -3851 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-2941 (((-1 |#3| |#2|) (-1092)) 11)) (-2773 (((-1 |#3| |#2|) |#1| (-1092)) 21)))
-(((-649 |#1| |#2| |#3|) (-10 -7 (-15 -2941 ((-1 |#3| |#2|) (-1092))) (-15 -2773 ((-1 |#3| |#2|) |#1| (-1092)))) (-567 (-501)) (-1128) (-1128)) (T -649))
-((-2773 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *3 *5 *6)) (-4 *3 (-567 (-501))) (-4 *5 (-1128)) (-4 *6 (-1128)))) (-2941 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *4 *5 *6)) (-4 *4 (-567 (-501))) (-4 *5 (-1128)) (-4 *6 (-1128)))))
-(-10 -7 (-15 -2941 ((-1 |#3| |#2|) (-1092))) (-15 -2773 ((-1 |#3| |#2|) |#1| (-1092))))
-((-2491 (((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-592 |#2|) (-592 (-1088 |#4|)) (-592 |#3|) (-592 |#4|) (-592 (-592 (-2 (|:| -2087 (-713)) (|:| |pcoef| |#4|)))) (-592 (-713)) (-1174 (-592 (-1088 |#3|))) |#3|) 62)) (-2630 (((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-592 |#2|) (-592 (-1088 |#3|)) (-592 |#3|) (-592 |#4|) (-592 (-713)) |#3|) 75)) (-1868 (((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-592 |#2|) (-592 |#3|) (-592 (-713)) (-592 (-1088 |#4|)) (-1174 (-592 (-1088 |#3|))) |#3|) 34)))
-(((-650 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1868 ((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-592 |#2|) (-592 |#3|) (-592 (-713)) (-592 (-1088 |#4|)) (-1174 (-592 (-1088 |#3|))) |#3|)) (-15 -2630 ((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-592 |#2|) (-592 (-1088 |#3|)) (-592 |#3|) (-592 |#4|) (-592 (-713)) |#3|)) (-15 -2491 ((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-592 |#2|) (-592 (-1088 |#4|)) (-592 |#3|) (-592 |#4|) (-592 (-592 (-2 (|:| -2087 (-713)) (|:| |pcoef| |#4|)))) (-592 (-713)) (-1174 (-592 (-1088 |#3|))) |#3|))) (-735) (-789) (-286) (-884 |#3| |#1| |#2|)) (T -650))
-((-2491 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-592 (-1088 *13))) (-5 *3 (-1088 *13)) (-5 *4 (-592 *12)) (-5 *5 (-592 *10)) (-5 *6 (-592 *13)) (-5 *7 (-592 (-592 (-2 (|:| -2087 (-713)) (|:| |pcoef| *13))))) (-5 *8 (-592 (-713))) (-5 *9 (-1174 (-592 (-1088 *10)))) (-4 *12 (-789)) (-4 *10 (-286)) (-4 *13 (-884 *10 *11 *12)) (-4 *11 (-735)) (-5 *1 (-650 *11 *12 *10 *13)))) (-2630 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-592 *11)) (-5 *5 (-592 (-1088 *9))) (-5 *6 (-592 *9)) (-5 *7 (-592 *12)) (-5 *8 (-592 (-713))) (-4 *11 (-789)) (-4 *9 (-286)) (-4 *12 (-884 *9 *10 *11)) (-4 *10 (-735)) (-5 *2 (-592 (-1088 *12))) (-5 *1 (-650 *10 *11 *9 *12)) (-5 *3 (-1088 *12)))) (-1868 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-592 (-1088 *11))) (-5 *3 (-1088 *11)) (-5 *4 (-592 *10)) (-5 *5 (-592 *8)) (-5 *6 (-592 (-713))) (-5 *7 (-1174 (-592 (-1088 *8)))) (-4 *10 (-789)) (-4 *8 (-286)) (-4 *11 (-884 *8 *9 *10)) (-4 *9 (-735)) (-5 *1 (-650 *9 *10 *8 *11)))))
-(-10 -7 (-15 -1868 ((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-592 |#2|) (-592 |#3|) (-592 (-713)) (-592 (-1088 |#4|)) (-1174 (-592 (-1088 |#3|))) |#3|)) (-15 -2630 ((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-592 |#2|) (-592 (-1088 |#3|)) (-592 |#3|) (-592 |#4|) (-592 (-713)) |#3|)) (-15 -2491 ((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-592 |#2|) (-592 (-1088 |#4|)) (-592 |#3|) (-592 |#4|) (-592 (-592 (-2 (|:| -2087 (-713)) (|:| |pcoef| |#4|)))) (-592 (-713)) (-1174 (-592 (-1088 |#3|))) |#3|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3063 (($ $) 41)) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-2876 (($ |#1| (-713)) 39)) (-2870 (((-713) $) 43)) (-3043 ((|#1| $) 42)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-2343 (((-713) $) 44)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 38 (|has| |#1| (-160)))) (-1568 ((|#1| $ (-713)) 40)) (-3917 (((-713)) 29)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45)))
+((-3246 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-637 *2)) (-4 *2 (-1020)))) (-1793 (*1 *1 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1020)))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-637 *3)) (-4 *3 (-1020)) (-5 *2 (-592 (-2 (|:| -3448 *3) (|:| -4002 (-713))))))))
+(-13 (-215 |t#1|) (-10 -8 (-15 -3246 ($ |t#1| $ (-713))) (-15 -1793 ($ $)) (-15 -2605 ((-592 (-2 (|:| -3448 |t#1|) (|:| -4002 (-713)))) $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
+((-3679 (((-592 |#1|) (-592 (-2 (|:| -4201 |#1|) (|:| -3529 (-525)))) (-525)) 47)) (-3756 ((|#1| |#1| (-525)) 46)) (-2772 ((|#1| |#1| |#1| (-525)) 36)) (-4201 (((-592 |#1|) |#1| (-525)) 39)) (-1665 ((|#1| |#1| (-525) |#1| (-525)) 32)) (-4102 (((-592 (-2 (|:| -4201 |#1|) (|:| -3529 (-525)))) |#1| (-525)) 45)))
+(((-638 |#1|) (-10 -7 (-15 -2772 (|#1| |#1| |#1| (-525))) (-15 -3756 (|#1| |#1| (-525))) (-15 -4201 ((-592 |#1|) |#1| (-525))) (-15 -4102 ((-592 (-2 (|:| -4201 |#1|) (|:| -3529 (-525)))) |#1| (-525))) (-15 -3679 ((-592 |#1|) (-592 (-2 (|:| -4201 |#1|) (|:| -3529 (-525)))) (-525))) (-15 -1665 (|#1| |#1| (-525) |#1| (-525)))) (-1150 (-525))) (T -638))
+((-1665 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1150 *3)))) (-3679 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| -4201 *5) (|:| -3529 (-525))))) (-5 *4 (-525)) (-4 *5 (-1150 *4)) (-5 *2 (-592 *5)) (-5 *1 (-638 *5)))) (-4102 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-5 *2 (-592 (-2 (|:| -4201 *3) (|:| -3529 *4)))) (-5 *1 (-638 *3)) (-4 *3 (-1150 *4)))) (-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-5 *2 (-592 *3)) (-5 *1 (-638 *3)) (-4 *3 (-1150 *4)))) (-3756 (*1 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1150 *3)))) (-2772 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1150 *3)))))
+(-10 -7 (-15 -2772 (|#1| |#1| |#1| (-525))) (-15 -3756 (|#1| |#1| (-525))) (-15 -4201 ((-592 |#1|) |#1| (-525))) (-15 -4102 ((-592 (-2 (|:| -4201 |#1|) (|:| -3529 (-525)))) |#1| (-525))) (-15 -3679 ((-592 |#1|) (-592 (-2 (|:| -4201 |#1|) (|:| -3529 (-525)))) (-525))) (-15 -1665 (|#1| |#1| (-525) |#1| (-525))))
+((-2444 (((-1 (-878 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205) (-205))) 17)) (-3748 (((-1052 (-205)) (-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-592 (-242))) 40) (((-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-592 (-242))) 42) (((-1052 (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1015 (-205)) (-1015 (-205)) (-592 (-242))) 44)) (-3174 (((-1052 (-205)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-592 (-242))) NIL)) (-4014 (((-1052 (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1015 (-205)) (-1015 (-205)) (-592 (-242))) 45)))
+(((-639) (-10 -7 (-15 -3748 ((-1052 (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -3748 ((-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -3748 ((-1052 (-205)) (-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -4014 ((-1052 (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -3174 ((-1052 (-205)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -2444 ((-1 (-878 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))) (T -639))
+((-2444 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1 (-205) (-205) (-205) (-205))) (-5 *2 (-1 (-878 (-205)) (-205) (-205))) (-5 *1 (-639)))) (-3174 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1015 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-639)))) (-4014 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined")) (-5 *5 (-1015 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-639)))) (-3748 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1052 (-205))) (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-205))) (-5 *5 (-592 (-242))) (-5 *1 (-639)))) (-3748 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-205))) (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-639)))) (-3748 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined")) (-5 *5 (-1015 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-639)))))
+(-10 -7 (-15 -3748 ((-1052 (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -3748 ((-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -3748 ((-1052 (-205)) (-1052 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -4014 ((-1052 (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -3174 ((-1052 (-205)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -2444 ((-1 (-878 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))
+((-4201 (((-396 (-1088 |#4|)) (-1088 |#4|)) 73) (((-396 |#4|) |#4|) 222)))
+(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4201 ((-396 |#4|) |#4|)) (-15 -4201 ((-396 (-1088 |#4|)) (-1088 |#4|)))) (-789) (-735) (-327) (-884 |#3| |#2| |#1|)) (T -640))
+((-4201 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327)) (-4 *7 (-884 *6 *5 *4)) (-5 *2 (-396 (-1088 *7))) (-5 *1 (-640 *4 *5 *6 *7)) (-5 *3 (-1088 *7)))) (-4201 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-640 *4 *5 *6 *3)) (-4 *3 (-884 *6 *5 *4)))))
+(-10 -7 (-15 -4201 ((-396 |#4|) |#4|)) (-15 -4201 ((-396 (-1088 |#4|)) (-1088 |#4|))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 84)) (-1653 (((-525) $) 30)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-2730 (($ $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-4211 (($ $) NIL)) (-1507 (((-108) $ $) NIL)) (-2971 (((-525) $) NIL)) (-2475 (($) NIL T CONST)) (-3869 (($ $) NIL)) (-1934 (((-3 (-525) "failed") $) 73) (((-3 (-385 (-525)) "failed") $) 26) (((-3 (-357) "failed") $) 70)) (-4105 (((-525) $) 75) (((-385 (-525)) $) 67) (((-357) $) 68)) (-1356 (($ $ $) 96)) (-3300 (((-3 $ "failed") $) 87)) (-1332 (($ $ $) 95)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-2524 (((-856)) 77) (((-856) (-856)) 76)) (-1889 (((-108) $) NIL)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL)) (-4000 (((-525) $) NIL)) (-2278 (((-108) $) NIL)) (-1303 (($ $ (-525)) NIL)) (-2704 (($ $) NIL)) (-4079 (((-108) $) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3417 (((-525) (-525)) 81) (((-525)) 82)) (-3033 (($ $ $) NIL) (($) NIL (-12 (-3272 (|has| $ (-6 -4242))) (-3272 (|has| $ (-6 -4250)))))) (-2838 (((-525) (-525)) 79) (((-525)) 80)) (-1609 (($ $ $) NIL) (($) NIL (-12 (-3272 (|has| $ (-6 -4242))) (-3272 (|has| $ (-6 -4250)))))) (-1741 (((-525) $) 16)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) 91)) (-3870 (((-856) (-525)) NIL (|has| $ (-6 -4250)))) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1372 (($ $) NIL)) (-1340 (($ $) NIL)) (-3536 (($ (-525) (-525)) NIL) (($ (-525) (-525) (-856)) NIL)) (-4201 (((-396 $) $) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) 92)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2168 (((-525) $) 22)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 94)) (-3444 (((-856)) NIL) (((-856) (-856)) NIL (|has| $ (-6 -4250)))) (-1833 (((-856) (-525)) NIL (|has| $ (-6 -4250)))) (-2069 (((-357) $) NIL) (((-205) $) NIL) (((-827 (-357)) $) NIL)) (-4100 (((-798) $) 52) (($ (-525)) 63) (($ $) NIL) (($ (-385 (-525))) 66) (($ (-525)) 63) (($ (-385 (-525))) 66) (($ (-357)) 60) (((-357) $) 50) (($ (-643)) 55)) (-2448 (((-713)) 103)) (-2330 (($ (-525) (-525) (-856)) 44)) (-3064 (($ $) NIL)) (-1373 (((-856)) NIL) (((-856) (-856)) NIL (|has| $ (-6 -4250)))) (-3771 (((-856)) 35) (((-856) (-856)) 78)) (-1571 (((-108) $ $) NIL)) (-2380 (($ $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) 32 T CONST)) (-3375 (($) 17 T CONST)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 83)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 101)) (-2880 (($ $ $) 65)) (-2871 (($ $) 99) (($ $ $) 100)) (-2860 (($ $ $) 98)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ $ (-385 (-525))) 90)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 97) (($ $ $) 88) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
+(((-641) (-13 (-382) (-365) (-341) (-968 (-357)) (-968 (-385 (-525))) (-138) (-10 -8 (-15 -2524 ((-856) (-856))) (-15 -2524 ((-856))) (-15 -3771 ((-856) (-856))) (-15 -3771 ((-856))) (-15 -2838 ((-525) (-525))) (-15 -2838 ((-525))) (-15 -3417 ((-525) (-525))) (-15 -3417 ((-525))) (-15 -4100 ((-357) $)) (-15 -4100 ($ (-643))) (-15 -1741 ((-525) $)) (-15 -2168 ((-525) $)) (-15 -2330 ($ (-525) (-525) (-856)))))) (T -641))
+((-3771 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641)))) (-2168 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-2524 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641)))) (-2524 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641)))) (-3771 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641)))) (-2838 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-2838 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-3417 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-3417 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-357)) (-5 *1 (-641)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-643)) (-5 *1 (-641)))) (-2330 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-856)) (-5 *1 (-641)))))
+(-13 (-382) (-365) (-341) (-968 (-357)) (-968 (-385 (-525))) (-138) (-10 -8 (-15 -2524 ((-856) (-856))) (-15 -2524 ((-856))) (-15 -3771 ((-856) (-856))) (-15 -3771 ((-856))) (-15 -2838 ((-525) (-525))) (-15 -2838 ((-525))) (-15 -3417 ((-525) (-525))) (-15 -3417 ((-525))) (-15 -4100 ((-357) $)) (-15 -4100 ($ (-643))) (-15 -1741 ((-525) $)) (-15 -2168 ((-525) $)) (-15 -2330 ($ (-525) (-525) (-856)))))
+((-2925 (((-632 |#1|) (-632 |#1|) |#1| |#1|) 65)) (-3692 (((-632 |#1|) (-632 |#1|) |#1|) 48)) (-3054 (((-632 |#1|) (-632 |#1|) |#1|) 66)) (-3822 (((-632 |#1|) (-632 |#1|)) 49)) (-2324 (((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|) 64)))
+(((-642 |#1|) (-10 -7 (-15 -3822 ((-632 |#1|) (-632 |#1|))) (-15 -3692 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -3054 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -2925 ((-632 |#1|) (-632 |#1|) |#1| |#1|)) (-15 -2324 ((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|))) (-286)) (T -642))
+((-2324 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1416 *3) (|:| -3681 *3))) (-5 *1 (-642 *3)) (-4 *3 (-286)))) (-2925 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))) (-3054 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))) (-3692 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))) (-3822 (*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))))
+(-10 -7 (-15 -3822 ((-632 |#1|) (-632 |#1|))) (-15 -3692 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -3054 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -2925 ((-632 |#1|) (-632 |#1|) |#1| |#1|)) (-15 -2324 ((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3410 (($ $ $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-3004 (($ $ $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-1507 (((-108) $ $) NIL)) (-2971 (((-525) $) NIL)) (-3164 (($ $ $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) 27)) (-4105 (((-525) $) 25)) (-1356 (($ $ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3306 (((-3 (-385 (-525)) "failed") $) NIL)) (-1417 (((-108) $) NIL)) (-1367 (((-385 (-525)) $) NIL)) (-1903 (($ $) NIL) (($) NIL)) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-2209 (($ $ $ $) NIL)) (-1453 (($ $ $) NIL)) (-1889 (((-108) $) NIL)) (-1922 (($ $ $) NIL)) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL)) (-2278 (((-108) $) NIL)) (-3028 (((-108) $) NIL)) (-2878 (((-3 $ "failed") $) NIL)) (-4079 (((-108) $) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3455 (($ $ $ $) NIL)) (-3033 (($ $ $) NIL)) (-1220 (((-856) (-856)) 10) (((-856)) 9)) (-1609 (($ $ $) NIL)) (-2845 (($ $) NIL)) (-4128 (($ $) NIL)) (-2739 (($ (-592 $)) NIL) (($ $ $) NIL)) (-1289 (((-1075) $) NIL)) (-2432 (($ $ $) NIL)) (-2948 (($) NIL T CONST)) (-3280 (($ $) NIL)) (-3993 (((-1039) $) NIL) (($ $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ (-592 $)) NIL) (($ $ $) NIL)) (-1606 (($ $) NIL)) (-4201 (((-396 $) $) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3864 (((-108) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2702 (($ $) NIL) (($ $ (-713)) NIL)) (-4223 (($ $) NIL)) (-2503 (($ $) NIL)) (-2069 (((-205) $) NIL) (((-357) $) NIL) (((-827 (-525)) $) NIL) (((-501) $) NIL) (((-525) $) NIL)) (-4100 (((-798) $) NIL) (($ (-525)) 24) (($ $) NIL) (($ (-525)) 24) (((-294 $) (-294 (-525))) 18)) (-2448 (((-713)) NIL)) (-4214 (((-108) $ $) NIL)) (-1494 (($ $ $) NIL)) (-3771 (($) NIL)) (-1571 (((-108) $ $) NIL)) (-3695 (($ $ $ $) NIL)) (-2380 (($ $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $) NIL) (($ $ (-713)) NIL)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL)))
+(((-643) (-13 (-365) (-510) (-10 -8 (-15 -1220 ((-856) (-856))) (-15 -1220 ((-856))) (-15 -4100 ((-294 $) (-294 (-525))))))) (T -643))
+((-1220 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-643)))) (-1220 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-643)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-294 (-525))) (-5 *2 (-294 (-643))) (-5 *1 (-643)))))
+(-13 (-365) (-510) (-10 -8 (-15 -1220 ((-856) (-856))) (-15 -1220 ((-856))) (-15 -4100 ((-294 $) (-294 (-525))))))
+((-2154 (((-1 |#4| |#2| |#3|) |#1| (-1092) (-1092)) 19)) (-2024 (((-1 |#4| |#2| |#3|) (-1092)) 12)))
+(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2024 ((-1 |#4| |#2| |#3|) (-1092))) (-15 -2154 ((-1 |#4| |#2| |#3|) |#1| (-1092) (-1092)))) (-567 (-501)) (-1128) (-1128) (-1128)) (T -644))
+((-2154 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *3 *5 *6 *7)) (-4 *3 (-567 (-501))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *4 *5 *6 *7)) (-4 *4 (-567 (-501))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128)))))
+(-10 -7 (-15 -2024 ((-1 |#4| |#2| |#3|) (-1092))) (-15 -2154 ((-1 |#4| |#2| |#3|) |#1| (-1092) (-1092))))
+((-4087 (((-108) $ $) NIL)) (-1835 (((-1179) $ (-713)) 14)) (-3856 (((-713) $) 12)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 25)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 24)))
+(((-645 |#1|) (-13 (-127) (-566 |#1|) (-10 -8 (-15 -4100 ($ |#1|)))) (-1020)) (T -645))
+((-4100 (*1 *1 *2) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1020)))))
+(-13 (-127) (-566 |#1|) (-10 -8 (-15 -4100 ($ |#1|))))
+((-2979 (((-1 (-205) (-205) (-205)) |#1| (-1092) (-1092)) 34) (((-1 (-205) (-205)) |#1| (-1092)) 39)))
+(((-646 |#1|) (-10 -7 (-15 -2979 ((-1 (-205) (-205)) |#1| (-1092))) (-15 -2979 ((-1 (-205) (-205) (-205)) |#1| (-1092) (-1092)))) (-567 (-501))) (T -646))
+((-2979 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-1 (-205) (-205) (-205))) (-5 *1 (-646 *3)) (-4 *3 (-567 (-501))))) (-2979 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-1 (-205) (-205))) (-5 *1 (-646 *3)) (-4 *3 (-567 (-501))))))
+(-10 -7 (-15 -2979 ((-1 (-205) (-205)) |#1| (-1092))) (-15 -2979 ((-1 (-205) (-205) (-205)) |#1| (-1092) (-1092))))
+((-2626 (((-1092) |#1| (-1092) (-592 (-1092))) 9) (((-1092) |#1| (-1092) (-1092) (-1092)) 12) (((-1092) |#1| (-1092) (-1092)) 11) (((-1092) |#1| (-1092)) 10)))
+(((-647 |#1|) (-10 -7 (-15 -2626 ((-1092) |#1| (-1092))) (-15 -2626 ((-1092) |#1| (-1092) (-1092))) (-15 -2626 ((-1092) |#1| (-1092) (-1092) (-1092))) (-15 -2626 ((-1092) |#1| (-1092) (-592 (-1092))))) (-567 (-501))) (T -647))
+((-2626 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-592 (-1092))) (-5 *2 (-1092)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))) (-2626 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))) (-2626 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))) (-2626 (*1 *2 *3 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))))
+(-10 -7 (-15 -2626 ((-1092) |#1| (-1092))) (-15 -2626 ((-1092) |#1| (-1092) (-1092))) (-15 -2626 ((-1092) |#1| (-1092) (-1092) (-1092))) (-15 -2626 ((-1092) |#1| (-1092) (-592 (-1092)))))
+((-2461 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-648 |#1| |#2|) (-10 -7 (-15 -2461 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1128) (-1128)) (T -648))
+((-2461 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-648 *3 *4)) (-4 *3 (-1128)) (-4 *4 (-1128)))))
+(-10 -7 (-15 -2461 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-1294 (((-1 |#3| |#2|) (-1092)) 11)) (-2154 (((-1 |#3| |#2|) |#1| (-1092)) 21)))
+(((-649 |#1| |#2| |#3|) (-10 -7 (-15 -1294 ((-1 |#3| |#2|) (-1092))) (-15 -2154 ((-1 |#3| |#2|) |#1| (-1092)))) (-567 (-501)) (-1128) (-1128)) (T -649))
+((-2154 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *3 *5 *6)) (-4 *3 (-567 (-501))) (-4 *5 (-1128)) (-4 *6 (-1128)))) (-1294 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *4 *5 *6)) (-4 *4 (-567 (-501))) (-4 *5 (-1128)) (-4 *6 (-1128)))))
+(-10 -7 (-15 -1294 ((-1 |#3| |#2|) (-1092))) (-15 -2154 ((-1 |#3| |#2|) |#1| (-1092))))
+((-1371 (((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-592 |#2|) (-592 (-1088 |#4|)) (-592 |#3|) (-592 |#4|) (-592 (-592 (-2 (|:| -2801 (-713)) (|:| |pcoef| |#4|)))) (-592 (-713)) (-1174 (-592 (-1088 |#3|))) |#3|) 62)) (-3200 (((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-592 |#2|) (-592 (-1088 |#3|)) (-592 |#3|) (-592 |#4|) (-592 (-713)) |#3|) 75)) (-2440 (((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-592 |#2|) (-592 |#3|) (-592 (-713)) (-592 (-1088 |#4|)) (-1174 (-592 (-1088 |#3|))) |#3|) 34)))
+(((-650 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2440 ((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-592 |#2|) (-592 |#3|) (-592 (-713)) (-592 (-1088 |#4|)) (-1174 (-592 (-1088 |#3|))) |#3|)) (-15 -3200 ((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-592 |#2|) (-592 (-1088 |#3|)) (-592 |#3|) (-592 |#4|) (-592 (-713)) |#3|)) (-15 -1371 ((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-592 |#2|) (-592 (-1088 |#4|)) (-592 |#3|) (-592 |#4|) (-592 (-592 (-2 (|:| -2801 (-713)) (|:| |pcoef| |#4|)))) (-592 (-713)) (-1174 (-592 (-1088 |#3|))) |#3|))) (-735) (-789) (-286) (-884 |#3| |#1| |#2|)) (T -650))
+((-1371 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-592 (-1088 *13))) (-5 *3 (-1088 *13)) (-5 *4 (-592 *12)) (-5 *5 (-592 *10)) (-5 *6 (-592 *13)) (-5 *7 (-592 (-592 (-2 (|:| -2801 (-713)) (|:| |pcoef| *13))))) (-5 *8 (-592 (-713))) (-5 *9 (-1174 (-592 (-1088 *10)))) (-4 *12 (-789)) (-4 *10 (-286)) (-4 *13 (-884 *10 *11 *12)) (-4 *11 (-735)) (-5 *1 (-650 *11 *12 *10 *13)))) (-3200 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-592 *11)) (-5 *5 (-592 (-1088 *9))) (-5 *6 (-592 *9)) (-5 *7 (-592 *12)) (-5 *8 (-592 (-713))) (-4 *11 (-789)) (-4 *9 (-286)) (-4 *12 (-884 *9 *10 *11)) (-4 *10 (-735)) (-5 *2 (-592 (-1088 *12))) (-5 *1 (-650 *10 *11 *9 *12)) (-5 *3 (-1088 *12)))) (-2440 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-592 (-1088 *11))) (-5 *3 (-1088 *11)) (-5 *4 (-592 *10)) (-5 *5 (-592 *8)) (-5 *6 (-592 (-713))) (-5 *7 (-1174 (-592 (-1088 *8)))) (-4 *10 (-789)) (-4 *8 (-286)) (-4 *11 (-884 *8 *9 *10)) (-4 *9 (-735)) (-5 *1 (-650 *9 *10 *8 *11)))))
+(-10 -7 (-15 -2440 ((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-592 |#2|) (-592 |#3|) (-592 (-713)) (-592 (-1088 |#4|)) (-1174 (-592 (-1088 |#3|))) |#3|)) (-15 -3200 ((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-592 |#2|) (-592 (-1088 |#3|)) (-592 |#3|) (-592 |#4|) (-592 (-713)) |#3|)) (-15 -1371 ((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-592 |#2|) (-592 (-1088 |#4|)) (-592 |#3|) (-592 |#4|) (-592 (-592 (-2 (|:| -2801 (-713)) (|:| |pcoef| |#4|)))) (-592 (-713)) (-1174 (-592 (-1088 |#3|))) |#3|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1451 (($ $) 41)) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-1272 (($ |#1| (-713)) 39)) (-1819 (((-713) $) 43)) (-1430 ((|#1| $) 42)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-3529 (((-713) $) 44)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 38 (|has| |#1| (-160)))) (-3136 ((|#1| $ (-713)) 40)) (-2448 (((-713)) 29)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45)))
(((-651 |#1|) (-131) (-977)) (T -651))
-((-2343 (*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-977)) (-5 *2 (-713)))) (-2870 (*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-977)) (-5 *2 (-713)))) (-3043 (*1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-977)))) (-3063 (*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-977)))) (-1568 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-977)))) (-2876 (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-977)))))
-(-13 (-977) (-107 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -2343 ((-713) $)) (-15 -2870 ((-713) $)) (-15 -3043 (|t#1| $)) (-15 -3063 ($ $)) (-15 -1568 (|t#1| $ (-713))) (-15 -2876 ($ |t#1| (-713)))))
+((-3529 (*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-977)) (-5 *2 (-713)))) (-1819 (*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-977)) (-5 *2 (-713)))) (-1430 (*1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-977)))) (-1451 (*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-977)))) (-3136 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-977)))) (-1272 (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-977)))))
+(-13 (-977) (-107 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -3529 ((-713) $)) (-15 -1819 ((-713) $)) (-15 -1430 (|t#1| $)) (-15 -1451 ($ $)) (-15 -3136 (|t#1| $ (-713))) (-15 -1272 ($ |t#1| (-713)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) |has| |#1| (-160)) ((-669) . T) ((-983 |#1|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-3165 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-652 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3165 (|#6| (-1 |#4| |#1|) |#3|))) (-517) (-1150 |#1|) (-1150 (-385 |#2|)) (-517) (-1150 |#4|) (-1150 (-385 |#5|))) (T -652))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-517)) (-4 *7 (-517)) (-4 *6 (-1150 *5)) (-4 *2 (-1150 (-385 *8))) (-5 *1 (-652 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1150 (-385 *6))) (-4 *8 (-1150 *7)))))
-(-10 -7 (-15 -3165 (|#6| (-1 |#4| |#1|) |#3|)))
-((-4236 (((-108) $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1700 (((-1075) (-798)) 31)) (-2736 (((-1179) (-1075)) 28)) (-3328 (((-1075) (-798)) 24)) (-2456 (((-1075) (-798)) 25)) (-1217 (((-798) $) NIL) (((-1075) (-798)) 23)) (-3955 (((-108) $ $) NIL)))
-(((-653) (-13 (-1020) (-10 -7 (-15 -1217 ((-1075) (-798))) (-15 -3328 ((-1075) (-798))) (-15 -2456 ((-1075) (-798))) (-15 -1700 ((-1075) (-798))) (-15 -2736 ((-1179) (-1075)))))) (T -653))
-((-1217 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1075)) (-5 *1 (-653)))) (-3328 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1075)) (-5 *1 (-653)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1075)) (-5 *1 (-653)))) (-1700 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1075)) (-5 *1 (-653)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-653)))))
-(-13 (-1020) (-10 -7 (-15 -1217 ((-1075) (-798))) (-15 -3328 ((-1075) (-798))) (-15 -2456 ((-1075) (-798))) (-15 -1700 ((-1075) (-798))) (-15 -2736 ((-1179) (-1075)))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2193 (((-108) $ $) NIL)) (-2169 (($) NIL T CONST)) (-1747 (($ $ $) NIL)) (-1284 (($ |#1| |#2|) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-1396 (((-108) $) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2152 ((|#2| $) NIL)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2770 (((-396 $) $) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2200 (((-3 $ "failed") $ $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) ((|#1| $) NIL)) (-3917 (((-713)) NIL)) (-3325 (((-108) $ $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
-(((-654 |#1| |#2| |#3| |#4| |#5|) (-13 (-341) (-10 -8 (-15 -2152 (|#2| $)) (-15 -1217 (|#1| $)) (-15 -1284 ($ |#1| |#2|)) (-15 -2200 ((-3 $ "failed") $ $)))) (-160) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -654))
-((-2152 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-654 *3 *2 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1217 (*1 *2 *1) (-12 (-4 *2 (-160)) (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1284 (*1 *1 *2 *3) (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2200 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-341) (-10 -8 (-15 -2152 (|#2| $)) (-15 -1217 (|#1| $)) (-15 -1284 ($ |#1| |#2|)) (-15 -2200 ((-3 $ "failed") $ $))))
-((-4236 (((-108) $ $) 78)) (-1209 (((-108) $) 30)) (-2315 (((-1174 |#1|) $ (-713)) NIL)) (-2897 (((-592 (-1005)) $) NIL)) (-1801 (($ (-1088 |#1|)) NIL)) (-2744 (((-1088 $) $ (-1005)) NIL) (((-1088 |#1|) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-3212 (((-713) $) NIL) (((-713) $ (-592 (-1005))) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-4001 (($ $ $) NIL (|has| |#1| (-517)))) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-1286 (($ $) NIL (|has| |#1| (-429)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2193 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1834 (((-713)) 47 (|has| |#1| (-346)))) (-2980 (($ $ (-713)) NIL)) (-3682 (($ $ (-713)) NIL)) (-2014 ((|#2| |#2|) 44)) (-2181 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-429)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-1005) "failed") $) NIL)) (-1572 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-1005) $) NIL)) (-3377 (($ $ $ (-1005)) NIL (|has| |#1| (-160))) ((|#1| $ $) NIL (|has| |#1| (-160)))) (-1747 (($ $ $) NIL (|has| |#1| (-341)))) (-3063 (($ $) 34)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-1284 (($ |#2|) 42)) (-3457 (((-3 $ "failed") $) 86)) (-2502 (($) 51 (|has| |#1| (-346)))) (-1733 (($ $ $) NIL (|has| |#1| (-341)))) (-3585 (($ $ $) NIL)) (-2814 (($ $ $) NIL (|has| |#1| (-517)))) (-3696 (((-2 (|:| -3244 |#1|) (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-517)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-1576 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1005)) NIL (|has| |#1| (-429)))) (-3052 (((-592 $) $) NIL)) (-3673 (((-108) $) NIL (|has| |#1| (-844)))) (-1616 (((-892 $)) 80)) (-2188 (($ $ |#1| (-713) $) NIL)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1005) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1005) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-2581 (((-713) $ $) NIL (|has| |#1| (-517)))) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) NIL)) (-3844 (((-3 $ "failed") $) NIL (|has| |#1| (-1068)))) (-2887 (($ (-1088 |#1|) (-1005)) NIL) (($ (-1088 $) (-1005)) NIL)) (-3326 (($ $ (-713)) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-4144 (((-592 $) $) NIL)) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-713)) 77) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ (-1005)) NIL) (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-2152 ((|#2|) 45)) (-2870 (((-713) $) NIL) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2172 (($ (-1 (-713) (-713)) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-1332 (((-1088 |#1|) $) NIL)) (-2431 (((-3 (-1005) "failed") $) NIL)) (-3005 (((-856) $) NIL (|has| |#1| (-346)))) (-1269 ((|#2| $) 41)) (-3031 (($ $) NIL)) (-3043 ((|#1| $) 28)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2619 (((-1075) $) NIL)) (-3203 (((-2 (|:| -2829 $) (|:| -1607 $)) $ (-713)) NIL)) (-1334 (((-3 (-592 $) "failed") $) NIL)) (-2001 (((-3 (-592 $) "failed") $) NIL)) (-2121 (((-3 (-2 (|:| |var| (-1005)) (|:| -4193 (-713))) "failed") $) NIL)) (-1206 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2295 (($) NIL (|has| |#1| (-1068)) CONST)) (-3555 (($ (-856)) NIL (|has| |#1| (-346)))) (-2093 (((-1039) $) NIL)) (-3007 (((-108) $) NIL)) (-3019 ((|#1| $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-429)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1245 (($ $) 79 (|has| |#1| (-327)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2770 (((-396 $) $) NIL (|has| |#1| (-844)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-1715 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-517)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2457 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1005) |#1|) NIL) (($ $ (-592 (-1005)) (-592 |#1|)) NIL) (($ $ (-1005) $) NIL) (($ $ (-592 (-1005)) (-592 $)) NIL)) (-3684 (((-713) $) NIL (|has| |#1| (-341)))) (-3406 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) NIL (|has| |#1| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#1| (-517)))) (-2173 (((-3 $ "failed") $ (-713)) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 87 (|has| |#1| (-341)))) (-1975 (($ $ (-1005)) NIL (|has| |#1| (-160))) ((|#1| $) NIL (|has| |#1| (-160)))) (-3376 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2343 (((-713) $) 32) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-3210 (((-827 (-357)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-1005) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-3658 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1005)) NIL (|has| |#1| (-429)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1871 (((-892 $)) 36)) (-1561 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#1| (-517)))) (-1217 (((-798) $) 61) (($ (-525)) NIL) (($ |#1|) 58) (($ (-1005)) NIL) (($ |#2|) 68) (($ (-385 (-525))) NIL (-3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-1684 (((-592 |#1|) $) NIL)) (-1568 ((|#1| $ (-713)) 63) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-3917 (((-713)) NIL)) (-3716 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 20 T CONST)) (-3977 (((-1174 |#1|) $) 75)) (-1855 (($ (-1174 |#1|)) 50)) (-3359 (($) 8 T CONST)) (-2022 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3908 (((-1174 |#1|) $) NIL)) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) 69)) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4061 (($ $) 72) (($ $ $) NIL)) (-4047 (($ $ $) 33)) (** (($ $ (-856)) NIL) (($ $ (-713)) 81)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 57) (($ $ $) 74) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
-(((-655 |#1| |#2|) (-13 (-1150 |#1|) (-10 -8 (-15 -2014 (|#2| |#2|)) (-15 -2152 (|#2|)) (-15 -1284 ($ |#2|)) (-15 -1269 (|#2| $)) (-15 -1217 ($ |#2|)) (-15 -3977 ((-1174 |#1|) $)) (-15 -1855 ($ (-1174 |#1|))) (-15 -3908 ((-1174 |#1|) $)) (-15 -1616 ((-892 $))) (-15 -1871 ((-892 $))) (IF (|has| |#1| (-327)) (-15 -1245 ($ $)) |%noBranch|) (IF (|has| |#1| (-346)) (-6 (-346)) |%noBranch|))) (-977) (-1150 |#1|)) (T -655))
-((-2014 (*1 *2 *2) (-12 (-4 *3 (-977)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1150 *3)))) (-2152 (*1 *2) (-12 (-4 *2 (-1150 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-977)))) (-1284 (*1 *1 *2) (-12 (-4 *3 (-977)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1150 *3)))) (-1269 (*1 *2 *1) (-12 (-4 *2 (-1150 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-977)))) (-1217 (*1 *1 *2) (-12 (-4 *3 (-977)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1150 *3)))) (-3977 (*1 *2 *1) (-12 (-4 *3 (-977)) (-5 *2 (-1174 *3)) (-5 *1 (-655 *3 *4)) (-4 *4 (-1150 *3)))) (-1855 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-977)) (-5 *1 (-655 *3 *4)) (-4 *4 (-1150 *3)))) (-3908 (*1 *2 *1) (-12 (-4 *3 (-977)) (-5 *2 (-1174 *3)) (-5 *1 (-655 *3 *4)) (-4 *4 (-1150 *3)))) (-1616 (*1 *2) (-12 (-4 *3 (-977)) (-5 *2 (-892 (-655 *3 *4))) (-5 *1 (-655 *3 *4)) (-4 *4 (-1150 *3)))) (-1871 (*1 *2) (-12 (-4 *3 (-977)) (-5 *2 (-892 (-655 *3 *4))) (-5 *1 (-655 *3 *4)) (-4 *4 (-1150 *3)))) (-1245 (*1 *1 *1) (-12 (-4 *2 (-327)) (-4 *2 (-977)) (-5 *1 (-655 *2 *3)) (-4 *3 (-1150 *2)))))
-(-13 (-1150 |#1|) (-10 -8 (-15 -2014 (|#2| |#2|)) (-15 -2152 (|#2|)) (-15 -1284 ($ |#2|)) (-15 -1269 (|#2| $)) (-15 -1217 ($ |#2|)) (-15 -3977 ((-1174 |#1|) $)) (-15 -1855 ($ (-1174 |#1|))) (-15 -3908 ((-1174 |#1|) $)) (-15 -1616 ((-892 $))) (-15 -1871 ((-892 $))) (IF (|has| |#1| (-327)) (-15 -1245 ($ $)) |%noBranch|) (IF (|has| |#1| (-346)) (-6 (-346)) |%noBranch|)))
-((-4236 (((-108) $ $) NIL)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-2619 (((-1075) $) NIL)) (-3555 ((|#1| $) 13)) (-2093 (((-1039) $) NIL)) (-4193 ((|#2| $) 12)) (-1230 (($ |#1| |#2|) 16)) (-1217 (((-798) $) NIL) (($ (-2 (|:| -3555 |#1|) (|:| -4193 |#2|))) 15) (((-2 (|:| -3555 |#1|) (|:| -4193 |#2|)) $) 14)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 11)))
-(((-656 |#1| |#2| |#3|) (-13 (-789) (-10 -8 (-15 -4193 (|#2| $)) (-15 -3555 (|#1| $)) (-15 -1217 ($ (-2 (|:| -3555 |#1|) (|:| -4193 |#2|)))) (-15 -1217 ((-2 (|:| -3555 |#1|) (|:| -4193 |#2|)) $)) (-15 -1230 ($ |#1| |#2|)))) (-789) (-1020) (-1 (-108) (-2 (|:| -3555 |#1|) (|:| -4193 |#2|)) (-2 (|:| -3555 |#1|) (|:| -4193 |#2|)))) (T -656))
-((-4193 (*1 *2 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-656 *3 *2 *4)) (-4 *3 (-789)) (-14 *4 (-1 (-108) (-2 (|:| -3555 *3) (|:| -4193 *2)) (-2 (|:| -3555 *3) (|:| -4193 *2)))))) (-3555 (*1 *2 *1) (-12 (-4 *2 (-789)) (-5 *1 (-656 *2 *3 *4)) (-4 *3 (-1020)) (-14 *4 (-1 (-108) (-2 (|:| -3555 *2) (|:| -4193 *3)) (-2 (|:| -3555 *2) (|:| -4193 *3)))))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3555 *3) (|:| -4193 *4))) (-4 *3 (-789)) (-4 *4 (-1020)) (-5 *1 (-656 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3555 *3) (|:| -4193 *4))) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-1020)) (-14 *5 (-1 (-108) *2 *2)))) (-1230 (*1 *1 *2 *3) (-12 (-5 *1 (-656 *2 *3 *4)) (-4 *2 (-789)) (-4 *3 (-1020)) (-14 *4 (-1 (-108) (-2 (|:| -3555 *2) (|:| -4193 *3)) (-2 (|:| -3555 *2) (|:| -4193 *3)))))))
-(-13 (-789) (-10 -8 (-15 -4193 (|#2| $)) (-15 -3555 (|#1| $)) (-15 -1217 ($ (-2 (|:| -3555 |#1|) (|:| -4193 |#2|)))) (-15 -1217 ((-2 (|:| -3555 |#1|) (|:| -4193 |#2|)) $)) (-15 -1230 ($ |#1| |#2|))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 59)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) 89) (((-3 (-110) "failed") $) 95)) (-1572 ((|#1| $) NIL) (((-110) $) 39)) (-3457 (((-3 $ "failed") $) 90)) (-3980 ((|#2| (-110) |#2|) 82)) (-1396 (((-108) $) NIL)) (-3488 (($ |#1| (-339 (-110))) 14)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-2955 (($ $ (-1 |#2| |#2|)) 58)) (-3719 (($ $ (-1 |#2| |#2|)) 44)) (-3406 ((|#2| $ |#2|) 33)) (-1521 ((|#1| |#1|) 105 (|has| |#1| (-160)))) (-1217 (((-798) $) 66) (($ (-525)) 18) (($ |#1|) 17) (($ (-110)) 23)) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) 37)) (-3041 (($ $) 99 (|has| |#1| (-160))) (($ $ $) 103 (|has| |#1| (-160)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 21 T CONST)) (-3359 (($) 9 T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) 48) (($ $ $) NIL)) (-4047 (($ $ $) 73)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ (-110) (-525)) NIL) (($ $ (-525)) 57)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-160))) (($ $ |#1|) 97 (|has| |#1| (-160)))))
-(((-657 |#1| |#2|) (-13 (-977) (-968 |#1|) (-968 (-110)) (-265 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -3041 ($ $)) (-15 -3041 ($ $ $)) (-15 -1521 (|#1| |#1|))) |%noBranch|) (-15 -3719 ($ $ (-1 |#2| |#2|))) (-15 -2955 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -3980 (|#2| (-110) |#2|)) (-15 -3488 ($ |#1| (-339 (-110)))))) (-977) (-594 |#1|)) (T -657))
-((-3041 (*1 *1 *1) (-12 (-4 *2 (-160)) (-4 *2 (-977)) (-5 *1 (-657 *2 *3)) (-4 *3 (-594 *2)))) (-3041 (*1 *1 *1 *1) (-12 (-4 *2 (-160)) (-4 *2 (-977)) (-5 *1 (-657 *2 *3)) (-4 *3 (-594 *2)))) (-1521 (*1 *2 *2) (-12 (-4 *2 (-160)) (-4 *2 (-977)) (-5 *1 (-657 *2 *3)) (-4 *3 (-594 *2)))) (-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-977)) (-5 *1 (-657 *3 *4)))) (-2955 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-977)) (-5 *1 (-657 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-4 *4 (-977)) (-5 *1 (-657 *4 *5)) (-4 *5 (-594 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *3 (-977)) (-5 *1 (-657 *3 *4)) (-4 *4 (-594 *3)))) (-3980 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-4 *4 (-977)) (-5 *1 (-657 *4 *2)) (-4 *2 (-594 *4)))) (-3488 (*1 *1 *2 *3) (-12 (-5 *3 (-339 (-110))) (-4 *2 (-977)) (-5 *1 (-657 *2 *4)) (-4 *4 (-594 *2)))))
-(-13 (-977) (-968 |#1|) (-968 (-110)) (-265 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -3041 ($ $)) (-15 -3041 ($ $ $)) (-15 -1521 (|#1| |#1|))) |%noBranch|) (-15 -3719 ($ $ (-1 |#2| |#2|))) (-15 -2955 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -3980 (|#2| (-110) |#2|)) (-15 -3488 ($ |#1| (-339 (-110))))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 33)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-1284 (($ |#1| |#2|) 25)) (-3457 (((-3 $ "failed") $) 48)) (-1396 (((-108) $) 35)) (-2152 ((|#2| $) 12)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) 49)) (-2093 (((-1039) $) NIL)) (-2200 (((-3 $ "failed") $ $) 47)) (-1217 (((-798) $) 24) (($ (-525)) 19) ((|#1| $) 13)) (-3917 (((-713)) 28)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 16 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 38)) (-4061 (($ $) 43) (($ $ $) 37)) (-4047 (($ $ $) 40)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 21) (($ $ $) 20)))
-(((-658 |#1| |#2| |#3| |#4| |#5|) (-13 (-977) (-10 -8 (-15 -2152 (|#2| $)) (-15 -1217 (|#1| $)) (-15 -1284 ($ |#1| |#2|)) (-15 -2200 ((-3 $ "failed") $ $)) (-15 -3457 ((-3 $ "failed") $)) (-15 -2997 ($ $)))) (-160) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -658))
-((-3457 (*1 *1 *1) (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2152 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-658 *3 *2 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1217 (*1 *2 *1) (-12 (-4 *2 (-160)) (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1284 (*1 *1 *2 *3) (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2200 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2997 (*1 *1 *1) (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-977) (-10 -8 (-15 -2152 (|#2| $)) (-15 -1217 (|#1| $)) (-15 -1284 ($ |#1| |#2|)) (-15 -2200 ((-3 $ "failed") $ $)) (-15 -3457 ((-3 $ "failed") $)) (-15 -2997 ($ $))))
+((-2016 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-652 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2016 (|#6| (-1 |#4| |#1|) |#3|))) (-517) (-1150 |#1|) (-1150 (-385 |#2|)) (-517) (-1150 |#4|) (-1150 (-385 |#5|))) (T -652))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-517)) (-4 *7 (-517)) (-4 *6 (-1150 *5)) (-4 *2 (-1150 (-385 *8))) (-5 *1 (-652 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1150 (-385 *6))) (-4 *8 (-1150 *7)))))
+(-10 -7 (-15 -2016 (|#6| (-1 |#4| |#1|) |#3|)))
+((-4087 (((-108) $ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-3313 (((-1075) (-798)) 31)) (-2701 (((-1179) (-1075)) 28)) (-1607 (((-1075) (-798)) 24)) (-2260 (((-1075) (-798)) 25)) (-4100 (((-798) $) NIL) (((-1075) (-798)) 23)) (-2775 (((-108) $ $) NIL)))
+(((-653) (-13 (-1020) (-10 -7 (-15 -4100 ((-1075) (-798))) (-15 -1607 ((-1075) (-798))) (-15 -2260 ((-1075) (-798))) (-15 -3313 ((-1075) (-798))) (-15 -2701 ((-1179) (-1075)))))) (T -653))
+((-4100 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1075)) (-5 *1 (-653)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1075)) (-5 *1 (-653)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1075)) (-5 *1 (-653)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1075)) (-5 *1 (-653)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-653)))))
+(-13 (-1020) (-10 -7 (-15 -4100 ((-1075) (-798))) (-15 -1607 ((-1075) (-798))) (-15 -2260 ((-1075) (-798))) (-15 -3313 ((-1075) (-798))) (-15 -2701 ((-1179) (-1075)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-1507 (((-108) $ $) NIL)) (-2475 (($) NIL T CONST)) (-1356 (($ $ $) NIL)) (-3504 (($ |#1| |#2|) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-2278 (((-108) $) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2287 ((|#2| $) NIL)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-4201 (((-396 $) $) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1561 (((-3 $ "failed") $ $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) ((|#1| $) NIL)) (-2448 (((-713)) NIL)) (-1571 (((-108) $ $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
+(((-654 |#1| |#2| |#3| |#4| |#5|) (-13 (-341) (-10 -8 (-15 -2287 (|#2| $)) (-15 -4100 (|#1| $)) (-15 -3504 ($ |#1| |#2|)) (-15 -1561 ((-3 $ "failed") $ $)))) (-160) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -654))
+((-2287 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-654 *3 *2 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4100 (*1 *2 *1) (-12 (-4 *2 (-160)) (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3504 (*1 *1 *2 *3) (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1561 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-341) (-10 -8 (-15 -2287 (|#2| $)) (-15 -4100 (|#1| $)) (-15 -3504 ($ |#1| |#2|)) (-15 -1561 ((-3 $ "failed") $ $))))
+((-4087 (((-108) $ $) 78)) (-2414 (((-108) $) 30)) (-3216 (((-1174 |#1|) $ (-713)) NIL)) (-1296 (((-592 (-1005)) $) NIL)) (-2954 (($ (-1088 |#1|)) NIL)) (-4169 (((-1088 $) $ (-1005)) NIL) (((-1088 |#1|) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-1928 (((-713) $) NIL) (((-713) $ (-592 (-1005))) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-3882 (($ $ $) NIL (|has| |#1| (-517)))) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4195 (($ $) NIL (|has| |#1| (-429)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-1507 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1613 (((-713)) 47 (|has| |#1| (-346)))) (-3474 (($ $ (-713)) NIL)) (-1911 (($ $ (-713)) NIL)) (-3281 ((|#2| |#2|) 44)) (-1396 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-429)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-1005) "failed") $) NIL)) (-4105 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-1005) $) NIL)) (-3801 (($ $ $ (-1005)) NIL (|has| |#1| (-160))) ((|#1| $ $) NIL (|has| |#1| (-160)))) (-1356 (($ $ $) NIL (|has| |#1| (-341)))) (-1451 (($ $) 34)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3504 (($ |#2|) 42)) (-3300 (((-3 $ "failed") $) 86)) (-1903 (($) 51 (|has| |#1| (-346)))) (-1332 (($ $ $) NIL (|has| |#1| (-341)))) (-2149 (($ $ $) NIL)) (-2477 (($ $ $) NIL (|has| |#1| (-517)))) (-3830 (((-2 (|:| -2681 |#1|) (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-517)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3201 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1005)) NIL (|has| |#1| (-429)))) (-1441 (((-592 $) $) NIL)) (-1798 (((-108) $) NIL (|has| |#1| (-844)))) (-3750 (((-892 $)) 80)) (-1457 (($ $ |#1| (-713) $) NIL)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1005) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1005) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-4000 (((-713) $ $) NIL (|has| |#1| (-517)))) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) NIL)) (-2878 (((-3 $ "failed") $) NIL (|has| |#1| (-1068)))) (-1284 (($ (-1088 |#1|) (-1005)) NIL) (($ (-1088 $) (-1005)) NIL)) (-1585 (($ $ (-713)) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2884 (((-592 $) $) NIL)) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-713)) 77) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ (-1005)) NIL) (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2287 ((|#2|) 45)) (-1819 (((-713) $) NIL) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-1314 (($ (-1 (-713) (-713)) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2950 (((-1088 |#1|) $) NIL)) (-2018 (((-3 (-1005) "failed") $) NIL)) (-3685 (((-856) $) NIL (|has| |#1| (-346)))) (-3492 ((|#2| $) 41)) (-1418 (($ $) NIL)) (-1430 ((|#1| $) 28)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1289 (((-1075) $) NIL)) (-1849 (((-2 (|:| -1416 $) (|:| -3681 $)) $ (-713)) NIL)) (-2977 (((-3 (-592 $) "failed") $) NIL)) (-3165 (((-3 (-592 $) "failed") $) NIL)) (-1986 (((-3 (-2 (|:| |var| (-1005)) (|:| -2168 (-713))) "failed") $) NIL)) (-2367 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2948 (($) NIL (|has| |#1| (-1068)) CONST)) (-1722 (($ (-856)) NIL (|has| |#1| (-346)))) (-3993 (((-1039) $) NIL)) (-1399 (((-108) $) NIL)) (-1407 ((|#1| $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-429)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2424 (($ $) 79 (|has| |#1| (-327)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4201 (((-396 $) $) NIL (|has| |#1| (-844)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-1311 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-517)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2825 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1005) |#1|) NIL) (($ $ (-592 (-1005)) (-592 |#1|)) NIL) (($ $ (-1005) $) NIL) (($ $ (-592 (-1005)) (-592 $)) NIL)) (-1927 (((-713) $) NIL (|has| |#1| (-341)))) (-3431 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) NIL (|has| |#1| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#1| (-517)))) (-1326 (((-3 $ "failed") $ (-713)) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 87 (|has| |#1| (-341)))) (-4115 (($ $ (-1005)) NIL (|has| |#1| (-160))) ((|#1| $) NIL (|has| |#1| (-160)))) (-2702 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3529 (((-713) $) 32) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-2069 (((-827 (-357)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-1005) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-1661 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1005)) NIL (|has| |#1| (-429)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1273 (((-892 $)) 36)) (-3070 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#1| (-517)))) (-4100 (((-798) $) 61) (($ (-525)) NIL) (($ |#1|) 58) (($ (-1005)) NIL) (($ |#2|) 68) (($ (-385 (-525))) NIL (-2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3137 (((-592 |#1|) $) NIL)) (-3136 ((|#1| $ (-713)) 63) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2448 (((-713)) NIL)) (-4042 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 20 T CONST)) (-1855 (((-1174 |#1|) $) 75)) (-2311 (($ (-1174 |#1|)) 50)) (-3375 (($) 8 T CONST)) (-2401 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2343 (((-1174 |#1|) $) NIL)) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) 69)) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-2871 (($ $) 72) (($ $ $) NIL)) (-2860 (($ $ $) 33)) (** (($ $ (-856)) NIL) (($ $ (-713)) 81)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 57) (($ $ $) 74) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
+(((-655 |#1| |#2|) (-13 (-1150 |#1|) (-10 -8 (-15 -3281 (|#2| |#2|)) (-15 -2287 (|#2|)) (-15 -3504 ($ |#2|)) (-15 -3492 (|#2| $)) (-15 -4100 ($ |#2|)) (-15 -1855 ((-1174 |#1|) $)) (-15 -2311 ($ (-1174 |#1|))) (-15 -2343 ((-1174 |#1|) $)) (-15 -3750 ((-892 $))) (-15 -1273 ((-892 $))) (IF (|has| |#1| (-327)) (-15 -2424 ($ $)) |%noBranch|) (IF (|has| |#1| (-346)) (-6 (-346)) |%noBranch|))) (-977) (-1150 |#1|)) (T -655))
+((-3281 (*1 *2 *2) (-12 (-4 *3 (-977)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1150 *3)))) (-2287 (*1 *2) (-12 (-4 *2 (-1150 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-977)))) (-3504 (*1 *1 *2) (-12 (-4 *3 (-977)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1150 *3)))) (-3492 (*1 *2 *1) (-12 (-4 *2 (-1150 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-977)))) (-4100 (*1 *1 *2) (-12 (-4 *3 (-977)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1150 *3)))) (-1855 (*1 *2 *1) (-12 (-4 *3 (-977)) (-5 *2 (-1174 *3)) (-5 *1 (-655 *3 *4)) (-4 *4 (-1150 *3)))) (-2311 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-977)) (-5 *1 (-655 *3 *4)) (-4 *4 (-1150 *3)))) (-2343 (*1 *2 *1) (-12 (-4 *3 (-977)) (-5 *2 (-1174 *3)) (-5 *1 (-655 *3 *4)) (-4 *4 (-1150 *3)))) (-3750 (*1 *2) (-12 (-4 *3 (-977)) (-5 *2 (-892 (-655 *3 *4))) (-5 *1 (-655 *3 *4)) (-4 *4 (-1150 *3)))) (-1273 (*1 *2) (-12 (-4 *3 (-977)) (-5 *2 (-892 (-655 *3 *4))) (-5 *1 (-655 *3 *4)) (-4 *4 (-1150 *3)))) (-2424 (*1 *1 *1) (-12 (-4 *2 (-327)) (-4 *2 (-977)) (-5 *1 (-655 *2 *3)) (-4 *3 (-1150 *2)))))
+(-13 (-1150 |#1|) (-10 -8 (-15 -3281 (|#2| |#2|)) (-15 -2287 (|#2|)) (-15 -3504 ($ |#2|)) (-15 -3492 (|#2| $)) (-15 -4100 ($ |#2|)) (-15 -1855 ((-1174 |#1|) $)) (-15 -2311 ($ (-1174 |#1|))) (-15 -2343 ((-1174 |#1|) $)) (-15 -3750 ((-892 $))) (-15 -1273 ((-892 $))) (IF (|has| |#1| (-327)) (-15 -2424 ($ $)) |%noBranch|) (IF (|has| |#1| (-346)) (-6 (-346)) |%noBranch|)))
+((-4087 (((-108) $ $) NIL)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-1289 (((-1075) $) NIL)) (-1722 ((|#1| $) 13)) (-3993 (((-1039) $) NIL)) (-2168 ((|#2| $) 12)) (-4114 (($ |#1| |#2|) 16)) (-4100 (((-798) $) NIL) (($ (-2 (|:| -1722 |#1|) (|:| -2168 |#2|))) 15) (((-2 (|:| -1722 |#1|) (|:| -2168 |#2|)) $) 14)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 11)))
+(((-656 |#1| |#2| |#3|) (-13 (-789) (-10 -8 (-15 -2168 (|#2| $)) (-15 -1722 (|#1| $)) (-15 -4100 ($ (-2 (|:| -1722 |#1|) (|:| -2168 |#2|)))) (-15 -4100 ((-2 (|:| -1722 |#1|) (|:| -2168 |#2|)) $)) (-15 -4114 ($ |#1| |#2|)))) (-789) (-1020) (-1 (-108) (-2 (|:| -1722 |#1|) (|:| -2168 |#2|)) (-2 (|:| -1722 |#1|) (|:| -2168 |#2|)))) (T -656))
+((-2168 (*1 *2 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-656 *3 *2 *4)) (-4 *3 (-789)) (-14 *4 (-1 (-108) (-2 (|:| -1722 *3) (|:| -2168 *2)) (-2 (|:| -1722 *3) (|:| -2168 *2)))))) (-1722 (*1 *2 *1) (-12 (-4 *2 (-789)) (-5 *1 (-656 *2 *3 *4)) (-4 *3 (-1020)) (-14 *4 (-1 (-108) (-2 (|:| -1722 *2) (|:| -2168 *3)) (-2 (|:| -1722 *2) (|:| -2168 *3)))))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1722 *3) (|:| -2168 *4))) (-4 *3 (-789)) (-4 *4 (-1020)) (-5 *1 (-656 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1722 *3) (|:| -2168 *4))) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-1020)) (-14 *5 (-1 (-108) *2 *2)))) (-4114 (*1 *1 *2 *3) (-12 (-5 *1 (-656 *2 *3 *4)) (-4 *2 (-789)) (-4 *3 (-1020)) (-14 *4 (-1 (-108) (-2 (|:| -1722 *2) (|:| -2168 *3)) (-2 (|:| -1722 *2) (|:| -2168 *3)))))))
+(-13 (-789) (-10 -8 (-15 -2168 (|#2| $)) (-15 -1722 (|#1| $)) (-15 -4100 ($ (-2 (|:| -1722 |#1|) (|:| -2168 |#2|)))) (-15 -4100 ((-2 (|:| -1722 |#1|) (|:| -2168 |#2|)) $)) (-15 -4114 ($ |#1| |#2|))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 59)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) 89) (((-3 (-110) "failed") $) 95)) (-4105 ((|#1| $) NIL) (((-110) $) 39)) (-3300 (((-3 $ "failed") $) 90)) (-1879 ((|#2| (-110) |#2|) 82)) (-2278 (((-108) $) NIL)) (-3599 (($ |#1| (-339 (-110))) 14)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-3227 (($ $ (-1 |#2| |#2|)) 58)) (-4076 (($ $ (-1 |#2| |#2|)) 44)) (-3431 ((|#2| $ |#2|) 33)) (-1830 ((|#1| |#1|) 105 (|has| |#1| (-160)))) (-4100 (((-798) $) 66) (($ (-525)) 18) (($ |#1|) 17) (($ (-110)) 23)) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) 37)) (-2799 (($ $) 99 (|has| |#1| (-160))) (($ $ $) 103 (|has| |#1| (-160)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 21 T CONST)) (-3375 (($) 9 T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) 48) (($ $ $) NIL)) (-2860 (($ $ $) 73)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ (-110) (-525)) NIL) (($ $ (-525)) 57)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-160))) (($ $ |#1|) 97 (|has| |#1| (-160)))))
+(((-657 |#1| |#2|) (-13 (-977) (-968 |#1|) (-968 (-110)) (-265 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -2799 ($ $)) (-15 -2799 ($ $ $)) (-15 -1830 (|#1| |#1|))) |%noBranch|) (-15 -4076 ($ $ (-1 |#2| |#2|))) (-15 -3227 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -1879 (|#2| (-110) |#2|)) (-15 -3599 ($ |#1| (-339 (-110)))))) (-977) (-594 |#1|)) (T -657))
+((-2799 (*1 *1 *1) (-12 (-4 *2 (-160)) (-4 *2 (-977)) (-5 *1 (-657 *2 *3)) (-4 *3 (-594 *2)))) (-2799 (*1 *1 *1 *1) (-12 (-4 *2 (-160)) (-4 *2 (-977)) (-5 *1 (-657 *2 *3)) (-4 *3 (-594 *2)))) (-1830 (*1 *2 *2) (-12 (-4 *2 (-160)) (-4 *2 (-977)) (-5 *1 (-657 *2 *3)) (-4 *3 (-594 *2)))) (-4076 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-977)) (-5 *1 (-657 *3 *4)))) (-3227 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-977)) (-5 *1 (-657 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-4 *4 (-977)) (-5 *1 (-657 *4 *5)) (-4 *5 (-594 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *3 (-977)) (-5 *1 (-657 *3 *4)) (-4 *4 (-594 *3)))) (-1879 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-4 *4 (-977)) (-5 *1 (-657 *4 *2)) (-4 *2 (-594 *4)))) (-3599 (*1 *1 *2 *3) (-12 (-5 *3 (-339 (-110))) (-4 *2 (-977)) (-5 *1 (-657 *2 *4)) (-4 *4 (-594 *2)))))
+(-13 (-977) (-968 |#1|) (-968 (-110)) (-265 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -2799 ($ $)) (-15 -2799 ($ $ $)) (-15 -1830 (|#1| |#1|))) |%noBranch|) (-15 -4076 ($ $ (-1 |#2| |#2|))) (-15 -3227 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -1879 (|#2| (-110) |#2|)) (-15 -3599 ($ |#1| (-339 (-110))))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 33)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-3504 (($ |#1| |#2|) 25)) (-3300 (((-3 $ "failed") $) 48)) (-2278 (((-108) $) 35)) (-2287 ((|#2| $) 12)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) 49)) (-3993 (((-1039) $) NIL)) (-1561 (((-3 $ "failed") $ $) 47)) (-4100 (((-798) $) 24) (($ (-525)) 19) ((|#1| $) 13)) (-2448 (((-713)) 28)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 16 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 38)) (-2871 (($ $) 43) (($ $ $) 37)) (-2860 (($ $ $) 40)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 21) (($ $ $) 20)))
+(((-658 |#1| |#2| |#3| |#4| |#5|) (-13 (-977) (-10 -8 (-15 -2287 (|#2| $)) (-15 -4100 (|#1| $)) (-15 -3504 ($ |#1| |#2|)) (-15 -1561 ((-3 $ "failed") $ $)) (-15 -3300 ((-3 $ "failed") $)) (-15 -1387 ($ $)))) (-160) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -658))
+((-3300 (*1 *1 *1) (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2287 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-658 *3 *2 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4100 (*1 *2 *1) (-12 (-4 *2 (-160)) (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3504 (*1 *1 *2 *3) (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1561 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1387 (*1 *1 *1) (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-977) (-10 -8 (-15 -2287 (|#2| $)) (-15 -4100 (|#1| $)) (-15 -3504 ($ |#1| |#2|)) (-15 -1561 ((-3 $ "failed") $ $)) (-15 -3300 ((-3 $ "failed") $)) (-15 -1387 ($ $))))
((* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
(((-659 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|))) (-660 |#2|) (-160)) (T -659))
NIL
(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3349 (($) 18 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3364 (($) 18 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-660 |#1|) (-131) (-160)) (T -660))
NIL
(-13 (-107 |t#1| |t#1|))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-983 |#1|) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-3506 (($ |#1|) 17) (($ $ |#1|) 20)) (-2778 (($ |#1|) 18) (($ $ |#1|) 21)) (-2169 (($) NIL T CONST)) (-3457 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1396 (((-108) $) NIL)) (-3402 (($ |#1| |#1| |#1| |#1|) 8)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) 16)) (-2093 (((-1039) $) NIL)) (-2457 ((|#1| $ |#1|) 24) (((-775 |#1|) $ (-775 |#1|)) 32)) (-1499 (($ $ $) NIL)) (-1990 (($ $ $) NIL)) (-1217 (((-798) $) 39)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3359 (($) 9 T CONST)) (-3955 (((-108) $ $) 44)) (-4075 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ $ $) 14)))
-(((-661 |#1|) (-13 (-450) (-10 -8 (-15 -3402 ($ |#1| |#1| |#1| |#1|)) (-15 -3506 ($ |#1|)) (-15 -2778 ($ |#1|)) (-15 -3457 ($)) (-15 -3506 ($ $ |#1|)) (-15 -2778 ($ $ |#1|)) (-15 -3457 ($ $)) (-15 -2457 (|#1| $ |#1|)) (-15 -2457 ((-775 |#1|) $ (-775 |#1|))))) (-341)) (T -661))
-((-3402 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-3506 (*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-2778 (*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-3457 (*1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-3506 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-2778 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-3457 (*1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-2457 (*1 *2 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-2457 (*1 *2 *1 *2) (-12 (-5 *2 (-775 *3)) (-4 *3 (-341)) (-5 *1 (-661 *3)))))
-(-13 (-450) (-10 -8 (-15 -3402 ($ |#1| |#1| |#1| |#1|)) (-15 -3506 ($ |#1|)) (-15 -2778 ($ |#1|)) (-15 -3457 ($)) (-15 -3506 ($ $ |#1|)) (-15 -2778 ($ $ |#1|)) (-15 -3457 ($ $)) (-15 -2457 (|#1| $ |#1|)) (-15 -2457 ((-775 |#1|) $ (-775 |#1|)))))
-((-2837 (($ $ (-856)) 12)) (-2817 (($ $ (-856)) 13)) (** (($ $ (-856)) 10)))
-(((-662 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-856))) (-15 -2817 (|#1| |#1| (-856))) (-15 -2837 (|#1| |#1| (-856)))) (-663)) (T -662))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-856))) (-15 -2817 (|#1| |#1| (-856))) (-15 -2837 (|#1| |#1| (-856))))
-((-4236 (((-108) $ $) 7)) (-2837 (($ $ (-856)) 15)) (-2817 (($ $ (-856)) 14)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3955 (((-108) $ $) 6)) (** (($ $ (-856)) 13)) (* (($ $ $) 16)))
+((-4087 (((-108) $ $) NIL)) (-3164 (($ |#1|) 17) (($ $ |#1|) 20)) (-2201 (($ |#1|) 18) (($ $ |#1|) 21)) (-2475 (($) NIL T CONST)) (-3300 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2278 (((-108) $) NIL)) (-4056 (($ |#1| |#1| |#1| |#1|) 8)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) 16)) (-3993 (((-1039) $) NIL)) (-2825 ((|#1| $ |#1|) 24) (((-775 |#1|) $ (-775 |#1|)) 32)) (-3055 (($ $ $) NIL)) (-1242 (($ $ $) NIL)) (-4100 (((-798) $) 39)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3375 (($) 9 T CONST)) (-2775 (((-108) $ $) 44)) (-2880 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ $ $) 14)))
+(((-661 |#1|) (-13 (-450) (-10 -8 (-15 -4056 ($ |#1| |#1| |#1| |#1|)) (-15 -3164 ($ |#1|)) (-15 -2201 ($ |#1|)) (-15 -3300 ($)) (-15 -3164 ($ $ |#1|)) (-15 -2201 ($ $ |#1|)) (-15 -3300 ($ $)) (-15 -2825 (|#1| $ |#1|)) (-15 -2825 ((-775 |#1|) $ (-775 |#1|))))) (-341)) (T -661))
+((-4056 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-3164 (*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-2201 (*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-3300 (*1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-3164 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-2201 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-3300 (*1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-2825 (*1 *2 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-2825 (*1 *2 *1 *2) (-12 (-5 *2 (-775 *3)) (-4 *3 (-341)) (-5 *1 (-661 *3)))))
+(-13 (-450) (-10 -8 (-15 -4056 ($ |#1| |#1| |#1| |#1|)) (-15 -3164 ($ |#1|)) (-15 -2201 ($ |#1|)) (-15 -3300 ($)) (-15 -3164 ($ $ |#1|)) (-15 -2201 ($ $ |#1|)) (-15 -3300 ($ $)) (-15 -2825 (|#1| $ |#1|)) (-15 -2825 ((-775 |#1|) $ (-775 |#1|)))))
+((-1488 (($ $ (-856)) 12)) (-2486 (($ $ (-856)) 13)) (** (($ $ (-856)) 10)))
+(((-662 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-856))) (-15 -2486 (|#1| |#1| (-856))) (-15 -1488 (|#1| |#1| (-856)))) (-663)) (T -662))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-856))) (-15 -2486 (|#1| |#1| (-856))) (-15 -1488 (|#1| |#1| (-856))))
+((-4087 (((-108) $ $) 7)) (-1488 (($ $ (-856)) 15)) (-2486 (($ $ (-856)) 14)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-2775 (((-108) $ $) 6)) (** (($ $ (-856)) 13)) (* (($ $ $) 16)))
(((-663) (-131)) (T -663))
-((* (*1 *1 *1 *1) (-4 *1 (-663))) (-2837 (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-856)))) (-2817 (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-856)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-856)))))
-(-13 (-1020) (-10 -8 (-15 * ($ $ $)) (-15 -2837 ($ $ (-856))) (-15 -2817 ($ $ (-856))) (-15 ** ($ $ (-856)))))
+((* (*1 *1 *1 *1) (-4 *1 (-663))) (-1488 (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-856)))) (-2486 (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-856)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-856)))))
+(-13 (-1020) (-10 -8 (-15 * ($ $ $)) (-15 -1488 ($ $ (-856))) (-15 -2486 ($ $ (-856))) (-15 ** ($ $ (-856)))))
(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-2837 (($ $ (-856)) NIL) (($ $ (-713)) 17)) (-1396 (((-108) $) 10)) (-2817 (($ $ (-856)) NIL) (($ $ (-713)) 18)) (** (($ $ (-856)) NIL) (($ $ (-713)) 15)))
-(((-664 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-713))) (-15 -2817 (|#1| |#1| (-713))) (-15 -2837 (|#1| |#1| (-713))) (-15 -1396 ((-108) |#1|)) (-15 ** (|#1| |#1| (-856))) (-15 -2817 (|#1| |#1| (-856))) (-15 -2837 (|#1| |#1| (-856)))) (-665)) (T -664))
+((-1488 (($ $ (-856)) NIL) (($ $ (-713)) 17)) (-2278 (((-108) $) 10)) (-2486 (($ $ (-856)) NIL) (($ $ (-713)) 18)) (** (($ $ (-856)) NIL) (($ $ (-713)) 15)))
+(((-664 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-713))) (-15 -2486 (|#1| |#1| (-713))) (-15 -1488 (|#1| |#1| (-713))) (-15 -2278 ((-108) |#1|)) (-15 ** (|#1| |#1| (-856))) (-15 -2486 (|#1| |#1| (-856))) (-15 -1488 (|#1| |#1| (-856)))) (-665)) (T -664))
NIL
-(-10 -8 (-15 ** (|#1| |#1| (-713))) (-15 -2817 (|#1| |#1| (-713))) (-15 -2837 (|#1| |#1| (-713))) (-15 -1396 ((-108) |#1|)) (-15 ** (|#1| |#1| (-856))) (-15 -2817 (|#1| |#1| (-856))) (-15 -2837 (|#1| |#1| (-856))))
-((-4236 (((-108) $ $) 7)) (-1586 (((-3 $ "failed") $) 17)) (-2837 (($ $ (-856)) 15) (($ $ (-713)) 22)) (-3457 (((-3 $ "failed") $) 19)) (-1396 (((-108) $) 23)) (-4106 (((-3 $ "failed") $) 18)) (-2817 (($ $ (-856)) 14) (($ $ (-713)) 21)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3359 (($) 24 T CONST)) (-3955 (((-108) $ $) 6)) (** (($ $ (-856)) 13) (($ $ (-713)) 20)) (* (($ $ $) 16)))
+(-10 -8 (-15 ** (|#1| |#1| (-713))) (-15 -2486 (|#1| |#1| (-713))) (-15 -1488 (|#1| |#1| (-713))) (-15 -2278 ((-108) |#1|)) (-15 ** (|#1| |#1| (-856))) (-15 -2486 (|#1| |#1| (-856))) (-15 -1488 (|#1| |#1| (-856))))
+((-4087 (((-108) $ $) 7)) (-3322 (((-3 $ "failed") $) 17)) (-1488 (($ $ (-856)) 15) (($ $ (-713)) 22)) (-3300 (((-3 $ "failed") $) 19)) (-2278 (((-108) $) 23)) (-3711 (((-3 $ "failed") $) 18)) (-2486 (($ $ (-856)) 14) (($ $ (-713)) 21)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3375 (($) 24 T CONST)) (-2775 (((-108) $ $) 6)) (** (($ $ (-856)) 13) (($ $ (-713)) 20)) (* (($ $ $) 16)))
(((-665) (-131)) (T -665))
-((-3359 (*1 *1) (-4 *1 (-665))) (-1396 (*1 *2 *1) (-12 (-4 *1 (-665)) (-5 *2 (-108)))) (-2837 (*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))) (-2817 (*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))) (-3457 (*1 *1 *1) (|partial| -4 *1 (-665))) (-4106 (*1 *1 *1) (|partial| -4 *1 (-665))) (-1586 (*1 *1 *1) (|partial| -4 *1 (-665))))
-(-13 (-663) (-10 -8 (-15 (-3359) ($) -2709) (-15 -1396 ((-108) $)) (-15 -2837 ($ $ (-713))) (-15 -2817 ($ $ (-713))) (-15 ** ($ $ (-713))) (-15 -3457 ((-3 $ "failed") $)) (-15 -4106 ((-3 $ "failed") $)) (-15 -1586 ((-3 $ "failed") $))))
+((-3375 (*1 *1) (-4 *1 (-665))) (-2278 (*1 *2 *1) (-12 (-4 *1 (-665)) (-5 *2 (-108)))) (-1488 (*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))) (-2486 (*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))) (-3300 (*1 *1 *1) (|partial| -4 *1 (-665))) (-3711 (*1 *1 *1) (|partial| -4 *1 (-665))) (-3322 (*1 *1 *1) (|partial| -4 *1 (-665))))
+(-13 (-663) (-10 -8 (-15 (-3375) ($) -2247) (-15 -2278 ((-108) $)) (-15 -1488 ($ $ (-713))) (-15 -2486 ($ $ (-713))) (-15 ** ($ $ (-713))) (-15 -3300 ((-3 $ "failed") $)) (-15 -3711 ((-3 $ "failed") $)) (-15 -3322 ((-3 $ "failed") $))))
(((-97) . T) ((-566 (-798)) . T) ((-663) . T) ((-1020) . T))
-((-1834 (((-713)) 35)) (-3077 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1572 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 22)) (-1284 (($ |#3|) NIL) (((-3 $ "failed") (-385 |#3|)) 45)) (-3457 (((-3 $ "failed") $) 65)) (-2502 (($) 39)) (-2382 ((|#2| $) 20)) (-3409 (($) 17)) (-3376 (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-2725 (((-632 |#2|) (-1174 $) (-1 |#2| |#2|)) 60)) (-3210 (((-1174 |#2|) $) NIL) (($ (-1174 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1304 ((|#3| $) 32)) (-3094 (((-1174 $)) 29)))
-(((-666 |#1| |#2| |#3|) (-10 -8 (-15 -3376 (|#1| |#1|)) (-15 -3376 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2502 (|#1|)) (-15 -1834 ((-713))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2725 ((-632 |#2|) (-1174 |#1|) (-1 |#2| |#2|))) (-15 -1284 ((-3 |#1| "failed") (-385 |#3|))) (-15 -3210 (|#1| |#3|)) (-15 -1284 (|#1| |#3|)) (-15 -3409 (|#1|)) (-15 -1572 (|#2| |#1|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-525) |#1|)) (-15 -3210 (|#3| |#1|)) (-15 -3210 (|#1| (-1174 |#2|))) (-15 -3210 ((-1174 |#2|) |#1|)) (-15 -3094 ((-1174 |#1|))) (-15 -1304 (|#3| |#1|)) (-15 -2382 (|#2| |#1|)) (-15 -3457 ((-3 |#1| "failed") |#1|))) (-667 |#2| |#3|) (-160) (-1150 |#2|)) (T -666))
-((-1834 (*1 *2) (-12 (-4 *4 (-160)) (-4 *5 (-1150 *4)) (-5 *2 (-713)) (-5 *1 (-666 *3 *4 *5)) (-4 *3 (-667 *4 *5)))))
-(-10 -8 (-15 -3376 (|#1| |#1|)) (-15 -3376 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2502 (|#1|)) (-15 -1834 ((-713))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2725 ((-632 |#2|) (-1174 |#1|) (-1 |#2| |#2|))) (-15 -1284 ((-3 |#1| "failed") (-385 |#3|))) (-15 -3210 (|#1| |#3|)) (-15 -1284 (|#1| |#3|)) (-15 -3409 (|#1|)) (-15 -1572 (|#2| |#1|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-525) |#1|)) (-15 -3210 (|#3| |#1|)) (-15 -3210 (|#1| (-1174 |#2|))) (-15 -3210 ((-1174 |#2|) |#1|)) (-15 -3094 ((-1174 |#1|))) (-15 -1304 (|#3| |#1|)) (-15 -2382 (|#2| |#1|)) (-15 -3457 ((-3 |#1| "failed") |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 93 (|has| |#1| (-341)))) (-4218 (($ $) 94 (|has| |#1| (-341)))) (-3171 (((-108) $) 96 (|has| |#1| (-341)))) (-1627 (((-632 |#1|) (-1174 $)) 46) (((-632 |#1|)) 61)) (-2952 ((|#1| $) 52)) (-2971 (((-1102 (-856) (-713)) (-525)) 147 (|has| |#1| (-327)))) (-1578 (((-3 $ "failed") $ $) 19)) (-1286 (($ $) 113 (|has| |#1| (-341)))) (-2669 (((-396 $) $) 114 (|has| |#1| (-341)))) (-2193 (((-108) $ $) 104 (|has| |#1| (-341)))) (-1834 (((-713)) 87 (|has| |#1| (-346)))) (-2169 (($) 17 T CONST)) (-3077 (((-3 (-525) "failed") $) 169 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 167 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 166)) (-1572 (((-525) $) 170 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 168 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 165)) (-2064 (($ (-1174 |#1|) (-1174 $)) 48) (($ (-1174 |#1|)) 64)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-327)))) (-1747 (($ $ $) 108 (|has| |#1| (-341)))) (-1906 (((-632 |#1|) $ (-1174 $)) 53) (((-632 |#1|) $) 59)) (-1994 (((-632 (-525)) (-632 $)) 164 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 163 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 162) (((-632 |#1|) (-632 $)) 161)) (-1284 (($ |#2|) 158) (((-3 $ "failed") (-385 |#2|)) 155 (|has| |#1| (-341)))) (-3457 (((-3 $ "failed") $) 34)) (-3622 (((-856)) 54)) (-2502 (($) 90 (|has| |#1| (-346)))) (-1733 (($ $ $) 107 (|has| |#1| (-341)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 102 (|has| |#1| (-341)))) (-2574 (($) 149 (|has| |#1| (-327)))) (-3704 (((-108) $) 150 (|has| |#1| (-327)))) (-3625 (($ $ (-713)) 141 (|has| |#1| (-327))) (($ $) 140 (|has| |#1| (-327)))) (-3673 (((-108) $) 115 (|has| |#1| (-341)))) (-2581 (((-856) $) 152 (|has| |#1| (-327))) (((-775 (-856)) $) 138 (|has| |#1| (-327)))) (-1396 (((-108) $) 31)) (-2382 ((|#1| $) 51)) (-3844 (((-3 $ "failed") $) 142 (|has| |#1| (-327)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 111 (|has| |#1| (-341)))) (-2126 ((|#2| $) 44 (|has| |#1| (-341)))) (-3005 (((-856) $) 89 (|has| |#1| (-346)))) (-1269 ((|#2| $) 156)) (-2556 (($ (-592 $)) 100 (|has| |#1| (-341))) (($ $ $) 99 (|has| |#1| (-341)))) (-2619 (((-1075) $) 9)) (-2997 (($ $) 116 (|has| |#1| (-341)))) (-2295 (($) 143 (|has| |#1| (-327)) CONST)) (-3555 (($ (-856)) 88 (|has| |#1| (-346)))) (-2093 (((-1039) $) 10)) (-3409 (($) 160)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 101 (|has| |#1| (-341)))) (-2589 (($ (-592 $)) 98 (|has| |#1| (-341))) (($ $ $) 97 (|has| |#1| (-341)))) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) 146 (|has| |#1| (-327)))) (-2770 (((-396 $) $) 112 (|has| |#1| (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 109 (|has| |#1| (-341)))) (-1715 (((-3 $ "failed") $ $) 92 (|has| |#1| (-341)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 103 (|has| |#1| (-341)))) (-3684 (((-713) $) 105 (|has| |#1| (-341)))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 106 (|has| |#1| (-341)))) (-1975 ((|#1| (-1174 $)) 47) ((|#1|) 60)) (-3877 (((-713) $) 151 (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) 139 (|has| |#1| (-327)))) (-3376 (($ $) 137 (-3254 (-3762 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) 135 (-3254 (-3762 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1092)) 133 (-3762 (|has| |#1| (-835 (-1092))) (|has| |#1| (-341)))) (($ $ (-592 (-1092))) 132 (-3762 (|has| |#1| (-835 (-1092))) (|has| |#1| (-341)))) (($ $ (-1092) (-713)) 131 (-3762 (|has| |#1| (-835 (-1092))) (|has| |#1| (-341)))) (($ $ (-592 (-1092)) (-592 (-713))) 130 (-3762 (|has| |#1| (-835 (-1092))) (|has| |#1| (-341)))) (($ $ (-1 |#1| |#1|) (-713)) 123 (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-341)))) (-2725 (((-632 |#1|) (-1174 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-341)))) (-2756 ((|#2|) 159)) (-2244 (($) 148 (|has| |#1| (-327)))) (-2387 (((-1174 |#1|) $ (-1174 $)) 50) (((-632 |#1|) (-1174 $) (-1174 $)) 49) (((-1174 |#1|) $) 66) (((-632 |#1|) (-1174 $)) 65)) (-3210 (((-1174 |#1|) $) 63) (($ (-1174 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) 145 (|has| |#1| (-327)))) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-341))) (($ (-385 (-525))) 86 (-3254 (|has| |#1| (-341)) (|has| |#1| (-968 (-385 (-525))))))) (-3637 (($ $) 144 (|has| |#1| (-327))) (((-3 $ "failed") $) 43 (|has| |#1| (-136)))) (-1304 ((|#2| $) 45)) (-3917 (((-713)) 29)) (-3094 (((-1174 $)) 67)) (-3325 (((-108) $ $) 95 (|has| |#1| (-341)))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 117 (|has| |#1| (-341)))) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $) 136 (-3254 (-3762 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) 134 (-3254 (-3762 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1092)) 129 (-3762 (|has| |#1| (-835 (-1092))) (|has| |#1| (-341)))) (($ $ (-592 (-1092))) 128 (-3762 (|has| |#1| (-835 (-1092))) (|has| |#1| (-341)))) (($ $ (-1092) (-713)) 127 (-3762 (|has| |#1| (-835 (-1092))) (|has| |#1| (-341)))) (($ $ (-592 (-1092)) (-592 (-713))) 126 (-3762 (|has| |#1| (-835 (-1092))) (|has| |#1| (-341)))) (($ $ (-1 |#1| |#1|) (-713)) 125 (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-341)))) (-3955 (((-108) $ $) 6)) (-4075 (($ $ $) 121 (|has| |#1| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 118 (|has| |#1| (-341)))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-385 (-525)) $) 120 (|has| |#1| (-341))) (($ $ (-385 (-525))) 119 (|has| |#1| (-341)))))
+((-1613 (((-713)) 35)) (-1934 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-4105 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 22)) (-3504 (($ |#3|) NIL) (((-3 $ "failed") (-385 |#3|)) 45)) (-3300 (((-3 $ "failed") $) 65)) (-1903 (($) 39)) (-2704 ((|#2| $) 20)) (-3817 (($) 17)) (-2702 (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-2897 (((-632 |#2|) (-1174 $) (-1 |#2| |#2|)) 60)) (-2069 (((-1174 |#2|) $) NIL) (($ (-1174 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3153 ((|#3| $) 32)) (-2103 (((-1174 $)) 29)))
+(((-666 |#1| |#2| |#3|) (-10 -8 (-15 -2702 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -1903 (|#1|)) (-15 -1613 ((-713))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2897 ((-632 |#2|) (-1174 |#1|) (-1 |#2| |#2|))) (-15 -3504 ((-3 |#1| "failed") (-385 |#3|))) (-15 -2069 (|#1| |#3|)) (-15 -3504 (|#1| |#3|)) (-15 -3817 (|#1|)) (-15 -4105 (|#2| |#1|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-525) |#1|)) (-15 -2069 (|#3| |#1|)) (-15 -2069 (|#1| (-1174 |#2|))) (-15 -2069 ((-1174 |#2|) |#1|)) (-15 -2103 ((-1174 |#1|))) (-15 -3153 (|#3| |#1|)) (-15 -2704 (|#2| |#1|)) (-15 -3300 ((-3 |#1| "failed") |#1|))) (-667 |#2| |#3|) (-160) (-1150 |#2|)) (T -666))
+((-1613 (*1 *2) (-12 (-4 *4 (-160)) (-4 *5 (-1150 *4)) (-5 *2 (-713)) (-5 *1 (-666 *3 *4 *5)) (-4 *3 (-667 *4 *5)))))
+(-10 -8 (-15 -2702 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -1903 (|#1|)) (-15 -1613 ((-713))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2897 ((-632 |#2|) (-1174 |#1|) (-1 |#2| |#2|))) (-15 -3504 ((-3 |#1| "failed") (-385 |#3|))) (-15 -2069 (|#1| |#3|)) (-15 -3504 (|#1| |#3|)) (-15 -3817 (|#1|)) (-15 -4105 (|#2| |#1|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-525) |#1|)) (-15 -2069 (|#3| |#1|)) (-15 -2069 (|#1| (-1174 |#2|))) (-15 -2069 ((-1174 |#2|) |#1|)) (-15 -2103 ((-1174 |#1|))) (-15 -3153 (|#3| |#1|)) (-15 -2704 (|#2| |#1|)) (-15 -3300 ((-3 |#1| "failed") |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 93 (|has| |#1| (-341)))) (-2433 (($ $) 94 (|has| |#1| (-341)))) (-1568 (((-108) $) 96 (|has| |#1| (-341)))) (-3855 (((-632 |#1|) (-1174 $)) 46) (((-632 |#1|)) 61)) (-2924 ((|#1| $) 52)) (-3395 (((-1102 (-856) (-713)) (-525)) 147 (|has| |#1| (-327)))) (-3222 (((-3 $ "failed") $ $) 19)) (-4195 (($ $) 113 (|has| |#1| (-341)))) (-3586 (((-396 $) $) 114 (|has| |#1| (-341)))) (-1507 (((-108) $ $) 104 (|has| |#1| (-341)))) (-1613 (((-713)) 87 (|has| |#1| (-346)))) (-2475 (($) 17 T CONST)) (-1934 (((-3 (-525) "failed") $) 169 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 167 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 166)) (-4105 (((-525) $) 170 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 168 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 165)) (-2580 (($ (-1174 |#1|) (-1174 $)) 48) (($ (-1174 |#1|)) 64)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-327)))) (-1356 (($ $ $) 108 (|has| |#1| (-341)))) (-1588 (((-632 |#1|) $ (-1174 $)) 53) (((-632 |#1|) $) 59)) (-3090 (((-632 (-525)) (-632 $)) 164 (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 163 (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 162) (((-632 |#1|) (-632 $)) 161)) (-3504 (($ |#2|) 158) (((-3 $ "failed") (-385 |#2|)) 155 (|has| |#1| (-341)))) (-3300 (((-3 $ "failed") $) 34)) (-3085 (((-856)) 54)) (-1903 (($) 90 (|has| |#1| (-346)))) (-1332 (($ $ $) 107 (|has| |#1| (-341)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 102 (|has| |#1| (-341)))) (-3932 (($) 149 (|has| |#1| (-327)))) (-3920 (((-108) $) 150 (|has| |#1| (-327)))) (-1339 (($ $ (-713)) 141 (|has| |#1| (-327))) (($ $) 140 (|has| |#1| (-327)))) (-1798 (((-108) $) 115 (|has| |#1| (-341)))) (-4000 (((-856) $) 152 (|has| |#1| (-327))) (((-775 (-856)) $) 138 (|has| |#1| (-327)))) (-2278 (((-108) $) 31)) (-2704 ((|#1| $) 51)) (-2878 (((-3 $ "failed") $) 142 (|has| |#1| (-327)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 111 (|has| |#1| (-341)))) (-2021 ((|#2| $) 44 (|has| |#1| (-341)))) (-3685 (((-856) $) 89 (|has| |#1| (-346)))) (-3492 ((|#2| $) 156)) (-2739 (($ (-592 $)) 100 (|has| |#1| (-341))) (($ $ $) 99 (|has| |#1| (-341)))) (-1289 (((-1075) $) 9)) (-1387 (($ $) 116 (|has| |#1| (-341)))) (-2948 (($) 143 (|has| |#1| (-327)) CONST)) (-1722 (($ (-856)) 88 (|has| |#1| (-346)))) (-3993 (((-1039) $) 10)) (-3817 (($) 160)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 101 (|has| |#1| (-341)))) (-2772 (($ (-592 $)) 98 (|has| |#1| (-341))) (($ $ $) 97 (|has| |#1| (-341)))) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) 146 (|has| |#1| (-327)))) (-4201 (((-396 $) $) 112 (|has| |#1| (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 109 (|has| |#1| (-341)))) (-1311 (((-3 $ "failed") $ $) 92 (|has| |#1| (-341)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 103 (|has| |#1| (-341)))) (-1927 (((-713) $) 105 (|has| |#1| (-341)))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 106 (|has| |#1| (-341)))) (-4115 ((|#1| (-1174 $)) 47) ((|#1|) 60)) (-2043 (((-713) $) 151 (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) 139 (|has| |#1| (-327)))) (-2702 (($ $) 137 (-2067 (-3944 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) 135 (-2067 (-3944 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1092)) 133 (-3944 (|has| |#1| (-835 (-1092))) (|has| |#1| (-341)))) (($ $ (-592 (-1092))) 132 (-3944 (|has| |#1| (-835 (-1092))) (|has| |#1| (-341)))) (($ $ (-1092) (-713)) 131 (-3944 (|has| |#1| (-835 (-1092))) (|has| |#1| (-341)))) (($ $ (-592 (-1092)) (-592 (-713))) 130 (-3944 (|has| |#1| (-835 (-1092))) (|has| |#1| (-341)))) (($ $ (-1 |#1| |#1|) (-713)) 123 (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-341)))) (-2897 (((-632 |#1|) (-1174 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-341)))) (-2013 ((|#2|) 159)) (-3823 (($) 148 (|has| |#1| (-327)))) (-2754 (((-1174 |#1|) $ (-1174 $)) 50) (((-632 |#1|) (-1174 $) (-1174 $)) 49) (((-1174 |#1|) $) 66) (((-632 |#1|) (-1174 $)) 65)) (-2069 (((-1174 |#1|) $) 63) (($ (-1174 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) 145 (|has| |#1| (-327)))) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-341))) (($ (-385 (-525))) 86 (-2067 (|has| |#1| (-341)) (|has| |#1| (-968 (-385 (-525))))))) (-1463 (($ $) 144 (|has| |#1| (-327))) (((-3 $ "failed") $) 43 (|has| |#1| (-136)))) (-3153 ((|#2| $) 45)) (-2448 (((-713)) 29)) (-2103 (((-1174 $)) 67)) (-1571 (((-108) $ $) 95 (|has| |#1| (-341)))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 117 (|has| |#1| (-341)))) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $) 136 (-2067 (-3944 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) 134 (-2067 (-3944 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1092)) 129 (-3944 (|has| |#1| (-835 (-1092))) (|has| |#1| (-341)))) (($ $ (-592 (-1092))) 128 (-3944 (|has| |#1| (-835 (-1092))) (|has| |#1| (-341)))) (($ $ (-1092) (-713)) 127 (-3944 (|has| |#1| (-835 (-1092))) (|has| |#1| (-341)))) (($ $ (-592 (-1092)) (-592 (-713))) 126 (-3944 (|has| |#1| (-835 (-1092))) (|has| |#1| (-341)))) (($ $ (-1 |#1| |#1|) (-713)) 125 (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-341)))) (-2775 (((-108) $ $) 6)) (-2880 (($ $ $) 121 (|has| |#1| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 118 (|has| |#1| (-341)))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-385 (-525)) $) 120 (|has| |#1| (-341))) (($ $ (-385 (-525))) 119 (|has| |#1| (-341)))))
(((-667 |#1| |#2|) (-131) (-160) (-1150 |t#1|)) (T -667))
-((-3409 (*1 *1) (-12 (-4 *2 (-160)) (-4 *1 (-667 *2 *3)) (-4 *3 (-1150 *2)))) (-2756 (*1 *2) (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1150 *3)))) (-1284 (*1 *1 *2) (-12 (-4 *3 (-160)) (-4 *1 (-667 *3 *2)) (-4 *2 (-1150 *3)))) (-3210 (*1 *1 *2) (-12 (-4 *3 (-160)) (-4 *1 (-667 *3 *2)) (-4 *2 (-1150 *3)))) (-1269 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1150 *3)))) (-1284 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1150 *3)) (-4 *3 (-341)) (-4 *3 (-160)) (-4 *1 (-667 *3 *4)))) (-2725 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) (-4 *1 (-667 *5 *6)) (-4 *5 (-160)) (-4 *6 (-1150 *5)) (-5 *2 (-632 *5)))))
-(-13 (-387 |t#1| |t#2|) (-160) (-567 |t#2|) (-389 |t#1|) (-355 |t#1|) (-10 -8 (-15 -3409 ($)) (-15 -2756 (|t#2|)) (-15 -1284 ($ |t#2|)) (-15 -3210 ($ |t#2|)) (-15 -1269 (|t#2| $)) (IF (|has| |t#1| (-346)) (-6 (-346)) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-6 (-341)) (-6 (-211 |t#1|)) (-15 -1284 ((-3 $ "failed") (-385 |t#2|))) (-15 -2725 ((-632 |t#1|) (-1174 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-327)) (-6 (-327)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-37 |#1|) . T) ((-37 $) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-97) . T) ((-107 #0# #0#) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3254 (|has| |#1| (-327)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) . T) ((-567 |#2|) . T) ((-211 |#1|) |has| |#1| (-341)) ((-213) -3254 (|has| |#1| (-327)) (-12 (|has| |#1| (-213)) (|has| |#1| (-341)))) ((-223) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-269) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-286) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-341) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-380) |has| |#1| (-327)) ((-346) -3254 (|has| |#1| (-346)) (|has| |#1| (-327))) ((-327) |has| |#1| (-327)) ((-348 |#1| |#2|) . T) ((-387 |#1| |#2|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-517) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-594 #0#) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-660 |#1|) . T) ((-660 $) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-669) . T) ((-835 (-1092)) -12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092)))) ((-855) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-983 #0#) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-983 |#1|) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1068) |has| |#1| (-327)) ((-1132) -3254 (|has| |#1| (-327)) (|has| |#1| (-341))))
-((-2169 (($) 14)) (-3457 (((-3 $ "failed") $) 16)) (-1396 (((-108) $) 13)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) 9)) (** (($ $ (-856)) NIL) (($ $ (-713)) 20)))
-(((-668 |#1|) (-10 -8 (-15 -3457 ((-3 |#1| "failed") |#1|)) (-15 -1619 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -1396 ((-108) |#1|)) (-15 -2169 (|#1|)) (-15 -1619 (|#1| |#1| (-856))) (-15 ** (|#1| |#1| (-856)))) (-669)) (T -668))
-NIL
-(-10 -8 (-15 -3457 ((-3 |#1| "failed") |#1|)) (-15 -1619 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -1396 ((-108) |#1|)) (-15 -2169 (|#1|)) (-15 -1619 (|#1| |#1| (-856))) (-15 ** (|#1| |#1| (-856))))
-((-4236 (((-108) $ $) 7)) (-2169 (($) 20 T CONST)) (-3457 (((-3 $ "failed") $) 16)) (-1396 (((-108) $) 19)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-1619 (($ $ (-856)) 13) (($ $ (-713)) 17)) (-3359 (($) 21 T CONST)) (-3955 (((-108) $ $) 6)) (** (($ $ (-856)) 14) (($ $ (-713)) 18)) (* (($ $ $) 15)))
+((-3817 (*1 *1) (-12 (-4 *2 (-160)) (-4 *1 (-667 *2 *3)) (-4 *3 (-1150 *2)))) (-2013 (*1 *2) (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1150 *3)))) (-3504 (*1 *1 *2) (-12 (-4 *3 (-160)) (-4 *1 (-667 *3 *2)) (-4 *2 (-1150 *3)))) (-2069 (*1 *1 *2) (-12 (-4 *3 (-160)) (-4 *1 (-667 *3 *2)) (-4 *2 (-1150 *3)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1150 *3)))) (-3504 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1150 *3)) (-4 *3 (-341)) (-4 *3 (-160)) (-4 *1 (-667 *3 *4)))) (-2897 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) (-4 *1 (-667 *5 *6)) (-4 *5 (-160)) (-4 *6 (-1150 *5)) (-5 *2 (-632 *5)))))
+(-13 (-387 |t#1| |t#2|) (-160) (-567 |t#2|) (-389 |t#1|) (-355 |t#1|) (-10 -8 (-15 -3817 ($)) (-15 -2013 (|t#2|)) (-15 -3504 ($ |t#2|)) (-15 -2069 ($ |t#2|)) (-15 -3492 (|t#2| $)) (IF (|has| |t#1| (-346)) (-6 (-346)) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-6 (-341)) (-6 (-211 |t#1|)) (-15 -3504 ((-3 $ "failed") (-385 |t#2|))) (-15 -2897 ((-632 |t#1|) (-1174 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-327)) (-6 (-327)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-37 |#1|) . T) ((-37 $) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-97) . T) ((-107 #0# #0#) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -2067 (|has| |#1| (-327)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) . T) ((-567 |#2|) . T) ((-211 |#1|) |has| |#1| (-341)) ((-213) -2067 (|has| |#1| (-327)) (-12 (|has| |#1| (-213)) (|has| |#1| (-341)))) ((-223) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-269) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-286) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-341) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-380) |has| |#1| (-327)) ((-346) -2067 (|has| |#1| (-346)) (|has| |#1| (-327))) ((-327) |has| |#1| (-327)) ((-348 |#1| |#2|) . T) ((-387 |#1| |#2|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-517) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-594 #0#) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-660 |#1|) . T) ((-660 $) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-669) . T) ((-835 (-1092)) -12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092)))) ((-855) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-983 #0#) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-983 |#1|) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1068) |has| |#1| (-327)) ((-1132) -2067 (|has| |#1| (-327)) (|has| |#1| (-341))))
+((-2475 (($) 14)) (-3300 (((-3 $ "failed") $) 16)) (-2278 (((-108) $) 13)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) 9)) (** (($ $ (-856)) NIL) (($ $ (-713)) 20)))
+(((-668 |#1|) (-10 -8 (-15 -3300 ((-3 |#1| "failed") |#1|)) (-15 -3706 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -2278 ((-108) |#1|)) (-15 -2475 (|#1|)) (-15 -3706 (|#1| |#1| (-856))) (-15 ** (|#1| |#1| (-856)))) (-669)) (T -668))
+NIL
+(-10 -8 (-15 -3300 ((-3 |#1| "failed") |#1|)) (-15 -3706 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -2278 ((-108) |#1|)) (-15 -2475 (|#1|)) (-15 -3706 (|#1| |#1| (-856))) (-15 ** (|#1| |#1| (-856))))
+((-4087 (((-108) $ $) 7)) (-2475 (($) 20 T CONST)) (-3300 (((-3 $ "failed") $) 16)) (-2278 (((-108) $) 19)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3706 (($ $ (-856)) 13) (($ $ (-713)) 17)) (-3375 (($) 21 T CONST)) (-2775 (((-108) $ $) 6)) (** (($ $ (-856)) 14) (($ $ (-713)) 18)) (* (($ $ $) 15)))
(((-669) (-131)) (T -669))
-((-3359 (*1 *1) (-4 *1 (-669))) (-2169 (*1 *1) (-4 *1 (-669))) (-1396 (*1 *2 *1) (-12 (-4 *1 (-669)) (-5 *2 (-108)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713)))) (-1619 (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713)))) (-3457 (*1 *1 *1) (|partial| -4 *1 (-669))))
-(-13 (-1032) (-10 -8 (-15 (-3359) ($) -2709) (-15 -2169 ($) -2709) (-15 -1396 ((-108) $)) (-15 ** ($ $ (-713))) (-15 -1619 ($ $ (-713))) (-15 -3457 ((-3 $ "failed") $))))
+((-3375 (*1 *1) (-4 *1 (-669))) (-2475 (*1 *1) (-4 *1 (-669))) (-2278 (*1 *2 *1) (-12 (-4 *1 (-669)) (-5 *2 (-108)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713)))) (-3706 (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713)))) (-3300 (*1 *1 *1) (|partial| -4 *1 (-669))))
+(-13 (-1032) (-10 -8 (-15 (-3375) ($) -2247) (-15 -2475 ($) -2247) (-15 -2278 ((-108) $)) (-15 ** ($ $ (-713))) (-15 -3706 ($ $ (-713))) (-15 -3300 ((-3 $ "failed") $))))
(((-97) . T) ((-566 (-798)) . T) ((-1032) . T) ((-1020) . T))
-((-2869 (((-2 (|:| -2687 (-396 |#2|)) (|:| |special| (-396 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1260 (((-2 (|:| -2687 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2786 ((|#2| (-385 |#2|) (-1 |#2| |#2|)) 13)) (-3262 (((-2 (|:| |poly| |#2|) (|:| -2687 (-385 |#2|)) (|:| |special| (-385 |#2|))) (-385 |#2|) (-1 |#2| |#2|)) 47)))
-(((-670 |#1| |#2|) (-10 -7 (-15 -1260 ((-2 (|:| -2687 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2869 ((-2 (|:| -2687 (-396 |#2|)) (|:| |special| (-396 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2786 (|#2| (-385 |#2|) (-1 |#2| |#2|))) (-15 -3262 ((-2 (|:| |poly| |#2|) (|:| -2687 (-385 |#2|)) (|:| |special| (-385 |#2|))) (-385 |#2|) (-1 |#2| |#2|)))) (-341) (-1150 |#1|)) (T -670))
-((-3262 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2687 (-385 *6)) (|:| |special| (-385 *6)))) (-5 *1 (-670 *5 *6)) (-5 *3 (-385 *6)))) (-2786 (*1 *2 *3 *4) (-12 (-5 *3 (-385 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1150 *5)) (-5 *1 (-670 *5 *2)) (-4 *5 (-341)))) (-2869 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -2687 (-396 *3)) (|:| |special| (-396 *3)))) (-5 *1 (-670 *5 *3)))) (-1260 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -2687 *3) (|:| |special| *3))) (-5 *1 (-670 *5 *3)))))
-(-10 -7 (-15 -1260 ((-2 (|:| -2687 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2869 ((-2 (|:| -2687 (-396 |#2|)) (|:| |special| (-396 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2786 (|#2| (-385 |#2|) (-1 |#2| |#2|))) (-15 -3262 ((-2 (|:| |poly| |#2|) (|:| -2687 (-385 |#2|)) (|:| |special| (-385 |#2|))) (-385 |#2|) (-1 |#2| |#2|))))
-((-1798 ((|#7| (-592 |#5|) |#6|) NIL)) (-3165 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
-(((-671 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3165 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1798 (|#7| (-592 |#5|) |#6|))) (-789) (-735) (-735) (-977) (-977) (-884 |#4| |#2| |#1|) (-884 |#5| |#3| |#1|)) (T -671))
-((-1798 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *9)) (-4 *9 (-977)) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *8 (-977)) (-4 *2 (-884 *9 *7 *5)) (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-735)) (-4 *4 (-884 *8 *6 *5)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-977)) (-4 *9 (-977)) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *2 (-884 *9 *7 *5)) (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-735)) (-4 *4 (-884 *8 *6 *5)))))
-(-10 -7 (-15 -3165 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1798 (|#7| (-592 |#5|) |#6|)))
-((-3165 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-672 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3165 (|#7| (-1 |#2| |#1|) |#6|))) (-789) (-789) (-735) (-735) (-977) (-884 |#5| |#3| |#1|) (-884 |#5| |#4| |#2|)) (T -672))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-789)) (-4 *6 (-789)) (-4 *7 (-735)) (-4 *9 (-977)) (-4 *2 (-884 *9 *8 *6)) (-5 *1 (-672 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-735)) (-4 *4 (-884 *9 *7 *5)))))
-(-10 -7 (-15 -3165 (|#7| (-1 |#2| |#1|) |#6|)))
-((-2770 (((-396 |#4|) |#4|) 41)))
-(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2770 ((-396 |#4|) |#4|))) (-735) (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $)) (-15 -2499 ((-3 $ "failed") (-1092))))) (-286) (-884 (-887 |#3|) |#1| |#2|)) (T -673))
-((-2770 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $)) (-15 -2499 ((-3 $ "failed") (-1092)))))) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-884 (-887 *6) *4 *5)))))
-(-10 -7 (-15 -2770 ((-396 |#4|) |#4|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2897 (((-592 (-800 |#1|)) $) NIL)) (-2744 (((-1088 $) $ (-800 |#1|)) NIL) (((-1088 |#2|) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-4218 (($ $) NIL (|has| |#2| (-517)))) (-3171 (((-108) $) NIL (|has| |#2| (-517)))) (-3212 (((-713) $) NIL) (((-713) $ (-592 (-800 |#1|))) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-1286 (($ $) NIL (|has| |#2| (-429)))) (-2669 (((-396 $) $) NIL (|has| |#2| (-429)))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-800 |#1|) "failed") $) NIL)) (-1572 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-800 |#1|) $) NIL)) (-3377 (($ $ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-3063 (($ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1576 (($ $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-3052 (((-592 $) $) NIL)) (-3673 (((-108) $) NIL (|has| |#2| (-844)))) (-2188 (($ $ |#2| (-497 (-800 |#1|)) $) NIL)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) NIL)) (-2887 (($ (-1088 |#2|) (-800 |#1|)) NIL) (($ (-1088 $) (-800 |#1|)) NIL)) (-4144 (((-592 $) $) NIL)) (-1212 (((-108) $) NIL)) (-2876 (($ |#2| (-497 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ (-800 |#1|)) NIL)) (-2870 (((-497 (-800 |#1|)) $) NIL) (((-713) $ (-800 |#1|)) NIL) (((-592 (-713)) $ (-592 (-800 |#1|))) NIL)) (-2638 (($ $ $) NIL (|has| |#2| (-789)))) (-3662 (($ $ $) NIL (|has| |#2| (-789)))) (-2172 (($ (-1 (-497 (-800 |#1|)) (-497 (-800 |#1|))) $) NIL)) (-3165 (($ (-1 |#2| |#2|) $) NIL)) (-2431 (((-3 (-800 |#1|) "failed") $) NIL)) (-3031 (($ $) NIL)) (-3043 ((|#2| $) NIL)) (-2556 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2619 (((-1075) $) NIL)) (-1334 (((-3 (-592 $) "failed") $) NIL)) (-2001 (((-3 (-592 $) "failed") $) NIL)) (-2121 (((-3 (-2 (|:| |var| (-800 |#1|)) (|:| -4193 (-713))) "failed") $) NIL)) (-2093 (((-1039) $) NIL)) (-3007 (((-108) $) NIL)) (-3019 ((|#2| $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#2| (-429)))) (-2589 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-2770 (((-396 $) $) NIL (|has| |#2| (-844)))) (-1715 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-2457 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-800 |#1|) |#2|) NIL) (($ $ (-592 (-800 |#1|)) (-592 |#2|)) NIL) (($ $ (-800 |#1|) $) NIL) (($ $ (-592 (-800 |#1|)) (-592 $)) NIL)) (-1975 (($ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-3376 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-2343 (((-497 (-800 |#1|)) $) NIL) (((-713) $ (-800 |#1|)) NIL) (((-592 (-713)) $ (-592 (-800 |#1|))) NIL)) (-3210 (((-827 (-357)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-800 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-3658 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844))))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-800 |#1|)) NIL) (($ $) NIL (|has| |#2| (-517))) (($ (-385 (-525))) NIL (-3254 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-968 (-385 (-525))))))) (-1684 (((-592 |#2|) $) NIL)) (-1568 ((|#2| $ (-497 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#2| (-136))))) (-3917 (((-713)) NIL)) (-3716 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-3325 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-4011 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4075 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+((-1806 (((-2 (|:| -2392 (-396 |#2|)) (|:| |special| (-396 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3224 (((-2 (|:| -2392 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2255 ((|#2| (-385 |#2|) (-1 |#2| |#2|)) 13)) (-4129 (((-2 (|:| |poly| |#2|) (|:| -2392 (-385 |#2|)) (|:| |special| (-385 |#2|))) (-385 |#2|) (-1 |#2| |#2|)) 47)))
+(((-670 |#1| |#2|) (-10 -7 (-15 -3224 ((-2 (|:| -2392 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1806 ((-2 (|:| -2392 (-396 |#2|)) (|:| |special| (-396 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2255 (|#2| (-385 |#2|) (-1 |#2| |#2|))) (-15 -4129 ((-2 (|:| |poly| |#2|) (|:| -2392 (-385 |#2|)) (|:| |special| (-385 |#2|))) (-385 |#2|) (-1 |#2| |#2|)))) (-341) (-1150 |#1|)) (T -670))
+((-4129 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2392 (-385 *6)) (|:| |special| (-385 *6)))) (-5 *1 (-670 *5 *6)) (-5 *3 (-385 *6)))) (-2255 (*1 *2 *3 *4) (-12 (-5 *3 (-385 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1150 *5)) (-5 *1 (-670 *5 *2)) (-4 *5 (-341)))) (-1806 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -2392 (-396 *3)) (|:| |special| (-396 *3)))) (-5 *1 (-670 *5 *3)))) (-3224 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -2392 *3) (|:| |special| *3))) (-5 *1 (-670 *5 *3)))))
+(-10 -7 (-15 -3224 ((-2 (|:| -2392 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1806 ((-2 (|:| -2392 (-396 |#2|)) (|:| |special| (-396 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2255 (|#2| (-385 |#2|) (-1 |#2| |#2|))) (-15 -4129 ((-2 (|:| |poly| |#2|) (|:| -2392 (-385 |#2|)) (|:| |special| (-385 |#2|))) (-385 |#2|) (-1 |#2| |#2|))))
+((-3741 ((|#7| (-592 |#5|) |#6|) NIL)) (-2016 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
+(((-671 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2016 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3741 (|#7| (-592 |#5|) |#6|))) (-789) (-735) (-735) (-977) (-977) (-884 |#4| |#2| |#1|) (-884 |#5| |#3| |#1|)) (T -671))
+((-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *9)) (-4 *9 (-977)) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *8 (-977)) (-4 *2 (-884 *9 *7 *5)) (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-735)) (-4 *4 (-884 *8 *6 *5)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-977)) (-4 *9 (-977)) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *2 (-884 *9 *7 *5)) (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-735)) (-4 *4 (-884 *8 *6 *5)))))
+(-10 -7 (-15 -2016 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3741 (|#7| (-592 |#5|) |#6|)))
+((-2016 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-672 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2016 (|#7| (-1 |#2| |#1|) |#6|))) (-789) (-789) (-735) (-735) (-977) (-884 |#5| |#3| |#1|) (-884 |#5| |#4| |#2|)) (T -672))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-789)) (-4 *6 (-789)) (-4 *7 (-735)) (-4 *9 (-977)) (-4 *2 (-884 *9 *8 *6)) (-5 *1 (-672 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-735)) (-4 *4 (-884 *9 *7 *5)))))
+(-10 -7 (-15 -2016 (|#7| (-1 |#2| |#1|) |#6|)))
+((-4201 (((-396 |#4|) |#4|) 41)))
+(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4201 ((-396 |#4|) |#4|))) (-735) (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $)) (-15 -3469 ((-3 $ "failed") (-1092))))) (-286) (-884 (-887 |#3|) |#1| |#2|)) (T -673))
+((-4201 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $)) (-15 -3469 ((-3 $ "failed") (-1092)))))) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-884 (-887 *6) *4 *5)))))
+(-10 -7 (-15 -4201 ((-396 |#4|) |#4|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1296 (((-592 (-800 |#1|)) $) NIL)) (-4169 (((-1088 $) $ (-800 |#1|)) NIL) (((-1088 |#2|) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-2433 (($ $) NIL (|has| |#2| (-517)))) (-1568 (((-108) $) NIL (|has| |#2| (-517)))) (-1928 (((-713) $) NIL) (((-713) $ (-592 (-800 |#1|))) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-4195 (($ $) NIL (|has| |#2| (-429)))) (-3586 (((-396 $) $) NIL (|has| |#2| (-429)))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-800 |#1|) "failed") $) NIL)) (-4105 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-800 |#1|) $) NIL)) (-3801 (($ $ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-1451 (($ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3201 (($ $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-1441 (((-592 $) $) NIL)) (-1798 (((-108) $) NIL (|has| |#2| (-844)))) (-1457 (($ $ |#2| (-497 (-800 |#1|)) $) NIL)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) NIL)) (-1284 (($ (-1088 |#2|) (-800 |#1|)) NIL) (($ (-1088 $) (-800 |#1|)) NIL)) (-2884 (((-592 $) $) NIL)) (-2457 (((-108) $) NIL)) (-1272 (($ |#2| (-497 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ (-800 |#1|)) NIL)) (-1819 (((-497 (-800 |#1|)) $) NIL) (((-713) $ (-800 |#1|)) NIL) (((-592 (-713)) $ (-592 (-800 |#1|))) NIL)) (-3033 (($ $ $) NIL (|has| |#2| (-789)))) (-1609 (($ $ $) NIL (|has| |#2| (-789)))) (-1314 (($ (-1 (-497 (-800 |#1|)) (-497 (-800 |#1|))) $) NIL)) (-2016 (($ (-1 |#2| |#2|) $) NIL)) (-2018 (((-3 (-800 |#1|) "failed") $) NIL)) (-1418 (($ $) NIL)) (-1430 ((|#2| $) NIL)) (-2739 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-1289 (((-1075) $) NIL)) (-2977 (((-3 (-592 $) "failed") $) NIL)) (-3165 (((-3 (-592 $) "failed") $) NIL)) (-1986 (((-3 (-2 (|:| |var| (-800 |#1|)) (|:| -2168 (-713))) "failed") $) NIL)) (-3993 (((-1039) $) NIL)) (-1399 (((-108) $) NIL)) (-1407 ((|#2| $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#2| (-429)))) (-2772 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-4201 (((-396 $) $) NIL (|has| |#2| (-844)))) (-1311 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-2825 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-800 |#1|) |#2|) NIL) (($ $ (-592 (-800 |#1|)) (-592 |#2|)) NIL) (($ $ (-800 |#1|) $) NIL) (($ $ (-592 (-800 |#1|)) (-592 $)) NIL)) (-4115 (($ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-2702 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3529 (((-497 (-800 |#1|)) $) NIL) (((-713) $ (-800 |#1|)) NIL) (((-592 (-713)) $ (-592 (-800 |#1|))) NIL)) (-2069 (((-827 (-357)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-800 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-1661 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844))))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-800 |#1|)) NIL) (($ $) NIL (|has| |#2| (-517))) (($ (-385 (-525))) NIL (-2067 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-968 (-385 (-525))))))) (-3137 (((-592 |#2|) $) NIL)) (-3136 ((|#2| $ (-497 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#2| (-136))))) (-2448 (((-713)) NIL)) (-4042 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-1571 (((-108) $ $) NIL (|has| |#2| (-517)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-2830 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2880 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
(((-674 |#1| |#2|) (-884 |#2| (-497 (-800 |#1|)) (-800 |#1|)) (-592 (-1092)) (-977)) (T -674))
NIL
(-884 |#2| (-497 (-800 |#1|)) (-800 |#1|))
-((-2385 (((-2 (|:| -3167 (-887 |#3|)) (|:| -3211 (-887 |#3|))) |#4|) 14)) (-3660 ((|#4| |#4| |#2|) 33)) (-1219 ((|#4| (-385 (-887 |#3|)) |#2|) 64)) (-4153 ((|#4| (-1088 (-887 |#3|)) |#2|) 77)) (-2270 ((|#4| (-1088 |#4|) |#2|) 51)) (-1702 ((|#4| |#4| |#2|) 54)) (-2770 (((-396 |#4|) |#4|) 40)))
-(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2385 ((-2 (|:| -3167 (-887 |#3|)) (|:| -3211 (-887 |#3|))) |#4|)) (-15 -1702 (|#4| |#4| |#2|)) (-15 -2270 (|#4| (-1088 |#4|) |#2|)) (-15 -3660 (|#4| |#4| |#2|)) (-15 -4153 (|#4| (-1088 (-887 |#3|)) |#2|)) (-15 -1219 (|#4| (-385 (-887 |#3|)) |#2|)) (-15 -2770 ((-396 |#4|) |#4|))) (-735) (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $)))) (-517) (-884 (-385 (-887 |#3|)) |#1| |#2|)) (T -675))
-((-2770 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $))))) (-4 *6 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-884 (-385 (-887 *6)) *4 *5)))) (-1219 (*1 *2 *3 *4) (-12 (-4 *6 (-517)) (-4 *2 (-884 *3 *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) (-5 *3 (-385 (-887 *6))) (-4 *5 (-735)) (-4 *4 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $))))))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-1088 (-887 *6))) (-4 *6 (-517)) (-4 *2 (-884 (-385 (-887 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-735)) (-4 *4 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $))))))) (-3660 (*1 *2 *2 *3) (-12 (-4 *4 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $))))) (-4 *5 (-517)) (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-884 (-385 (-887 *5)) *4 *3)))) (-2270 (*1 *2 *3 *4) (-12 (-5 *3 (-1088 *2)) (-4 *2 (-884 (-385 (-887 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-735)) (-4 *4 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $))))) (-4 *6 (-517)))) (-1702 (*1 *2 *2 *3) (-12 (-4 *4 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $))))) (-4 *5 (-517)) (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-884 (-385 (-887 *5)) *4 *3)))) (-2385 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $))))) (-4 *6 (-517)) (-5 *2 (-2 (|:| -3167 (-887 *6)) (|:| -3211 (-887 *6)))) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-884 (-385 (-887 *6)) *4 *5)))))
-(-10 -7 (-15 -2385 ((-2 (|:| -3167 (-887 |#3|)) (|:| -3211 (-887 |#3|))) |#4|)) (-15 -1702 (|#4| |#4| |#2|)) (-15 -2270 (|#4| (-1088 |#4|) |#2|)) (-15 -3660 (|#4| |#4| |#2|)) (-15 -4153 (|#4| (-1088 (-887 |#3|)) |#2|)) (-15 -1219 (|#4| (-385 (-887 |#3|)) |#2|)) (-15 -2770 ((-396 |#4|) |#4|)))
-((-2770 (((-396 |#4|) |#4|) 52)))
-(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2770 ((-396 |#4|) |#4|))) (-735) (-789) (-13 (-286) (-138)) (-884 (-385 |#3|) |#1| |#2|)) (T -676))
-((-2770 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-13 (-286) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-884 (-385 *6) *4 *5)))))
-(-10 -7 (-15 -2770 ((-396 |#4|) |#4|)))
-((-3165 (((-678 |#2| |#3|) (-1 |#2| |#1|) (-678 |#1| |#3|)) 18)))
-(((-677 |#1| |#2| |#3|) (-10 -7 (-15 -3165 ((-678 |#2| |#3|) (-1 |#2| |#1|) (-678 |#1| |#3|)))) (-977) (-977) (-669)) (T -677))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-678 *5 *7)) (-4 *5 (-977)) (-4 *6 (-977)) (-4 *7 (-669)) (-5 *2 (-678 *6 *7)) (-5 *1 (-677 *5 *6 *7)))))
-(-10 -7 (-15 -3165 ((-678 |#2| |#3|) (-1 |#2| |#1|) (-678 |#1| |#3|))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 28)) (-2755 (((-592 (-2 (|:| -3244 |#1|) (|:| -2938 |#2|))) $) 29)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1834 (((-713)) 20 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-1572 ((|#2| $) NIL) ((|#1| $) NIL)) (-3063 (($ $) 79 (|has| |#2| (-789)))) (-3457 (((-3 $ "failed") $) 65)) (-2502 (($) 35 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) 55)) (-4144 (((-592 $) $) 39)) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| |#2|) 16)) (-3165 (($ (-1 |#1| |#1|) $) 54)) (-3005 (((-856) $) 32 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-3031 ((|#2| $) 78 (|has| |#2| (-789)))) (-3043 ((|#1| $) 77 (|has| |#2| (-789)))) (-2619 (((-1075) $) NIL)) (-3555 (($ (-856)) 27 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 76) (($ (-525)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-592 (-2 (|:| -3244 |#1|) (|:| -2938 |#2|)))) 11)) (-1684 (((-592 |#1|) $) 41)) (-1568 ((|#1| $ |#2|) 88)) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 12 T CONST)) (-3359 (($) 33 T CONST)) (-3955 (((-108) $ $) 80)) (-4061 (($ $) 47) (($ $ $) NIL)) (-4047 (($ $ $) 26)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160)))))
-(((-678 |#1| |#2|) (-13 (-977) (-968 |#2|) (-968 |#1|) (-10 -8 (-15 -2876 ($ |#1| |#2|)) (-15 -1568 (|#1| $ |#2|)) (-15 -1217 ($ (-592 (-2 (|:| -3244 |#1|) (|:| -2938 |#2|))))) (-15 -2755 ((-592 (-2 (|:| -3244 |#1|) (|:| -2938 |#2|))) $)) (-15 -3165 ($ (-1 |#1| |#1|) $)) (-15 -1212 ((-108) $)) (-15 -1684 ((-592 |#1|) $)) (-15 -4144 ((-592 $) $)) (-15 -3399 ((-713) $)) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-789)) (PROGN (-15 -3031 (|#2| $)) (-15 -3043 (|#1| $)) (-15 -3063 ($ $))) |%noBranch|))) (-977) (-669)) (T -678))
-((-2876 (*1 *1 *2 *3) (-12 (-5 *1 (-678 *2 *3)) (-4 *2 (-977)) (-4 *3 (-669)))) (-1568 (*1 *2 *1 *3) (-12 (-4 *2 (-977)) (-5 *1 (-678 *2 *3)) (-4 *3 (-669)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3244 *3) (|:| -2938 *4)))) (-4 *3 (-977)) (-4 *4 (-669)) (-5 *1 (-678 *3 *4)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -3244 *3) (|:| -2938 *4)))) (-5 *1 (-678 *3 *4)) (-4 *3 (-977)) (-4 *4 (-669)))) (-3165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-678 *3 *4)) (-4 *4 (-669)))) (-1212 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-678 *3 *4)) (-4 *3 (-977)) (-4 *4 (-669)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-678 *3 *4)) (-4 *3 (-977)) (-4 *4 (-669)))) (-4144 (*1 *2 *1) (-12 (-5 *2 (-592 (-678 *3 *4))) (-5 *1 (-678 *3 *4)) (-4 *3 (-977)) (-4 *4 (-669)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-678 *3 *4)) (-4 *3 (-977)) (-4 *4 (-669)))) (-3031 (*1 *2 *1) (-12 (-4 *2 (-669)) (-4 *2 (-789)) (-5 *1 (-678 *3 *2)) (-4 *3 (-977)))) (-3043 (*1 *2 *1) (-12 (-4 *2 (-977)) (-5 *1 (-678 *2 *3)) (-4 *3 (-789)) (-4 *3 (-669)))) (-3063 (*1 *1 *1) (-12 (-5 *1 (-678 *2 *3)) (-4 *3 (-789)) (-4 *2 (-977)) (-4 *3 (-669)))))
-(-13 (-977) (-968 |#2|) (-968 |#1|) (-10 -8 (-15 -2876 ($ |#1| |#2|)) (-15 -1568 (|#1| $ |#2|)) (-15 -1217 ($ (-592 (-2 (|:| -3244 |#1|) (|:| -2938 |#2|))))) (-15 -2755 ((-592 (-2 (|:| -3244 |#1|) (|:| -2938 |#2|))) $)) (-15 -3165 ($ (-1 |#1| |#1|) $)) (-15 -1212 ((-108) $)) (-15 -1684 ((-592 |#1|) $)) (-15 -4144 ((-592 $) $)) (-15 -3399 ((-713) $)) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-789)) (PROGN (-15 -3031 (|#2| $)) (-15 -3043 (|#1| $)) (-15 -3063 ($ $))) |%noBranch|)))
-((-4236 (((-108) $ $) 19)) (-2600 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3703 (($ $ $) 72)) (-2267 (((-108) $ $) 73)) (-3991 (((-108) $ (-713)) 8)) (-2839 (($ (-592 |#1|)) 68) (($) 67)) (-1676 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4258)))) (-2169 (($) 7 T CONST)) (-3972 (($ $) 62)) (-1910 (($ $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-3271 (($ |#1| $) 47 (|has| $ (-6 -4258))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4258)))) (-1703 (($ |#1| $) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4258)))) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) 9)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22)) (-2099 (($ $ $) 69)) (-2992 ((|#1| $) 39)) (-1262 (($ |#1| $) 40) (($ |#1| $ (-713)) 63)) (-2093 (((-1039) $) 21)) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-4127 ((|#1| $) 41)) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-4113 (((-592 (-2 (|:| -4201 |#1|) (|:| -2110 (-713)))) $) 61)) (-1535 (($ $ |#1|) 71) (($ $ $) 70)) (-1760 (($) 49) (($ (-592 |#1|)) 48)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-3210 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 50)) (-1217 (((-798) $) 18)) (-3240 (($ (-592 |#1|)) 66) (($) 65)) (-1956 (($ (-592 |#1|)) 42)) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20)) (-3978 (((-108) $ $) 64)) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-2733 (((-2 (|:| -1525 (-887 |#3|)) (|:| -1919 (-887 |#3|))) |#4|) 14)) (-1684 ((|#4| |#4| |#2|) 33)) (-1850 ((|#4| (-385 (-887 |#3|)) |#2|) 64)) (-2967 ((|#4| (-1088 (-887 |#3|)) |#2|) 77)) (-4057 ((|#4| (-1088 |#4|) |#2|) 51)) (-3336 ((|#4| |#4| |#2|) 54)) (-4201 (((-396 |#4|) |#4|) 40)))
+(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2733 ((-2 (|:| -1525 (-887 |#3|)) (|:| -1919 (-887 |#3|))) |#4|)) (-15 -3336 (|#4| |#4| |#2|)) (-15 -4057 (|#4| (-1088 |#4|) |#2|)) (-15 -1684 (|#4| |#4| |#2|)) (-15 -2967 (|#4| (-1088 (-887 |#3|)) |#2|)) (-15 -1850 (|#4| (-385 (-887 |#3|)) |#2|)) (-15 -4201 ((-396 |#4|) |#4|))) (-735) (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $)))) (-517) (-884 (-385 (-887 |#3|)) |#1| |#2|)) (T -675))
+((-4201 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $))))) (-4 *6 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-884 (-385 (-887 *6)) *4 *5)))) (-1850 (*1 *2 *3 *4) (-12 (-4 *6 (-517)) (-4 *2 (-884 *3 *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) (-5 *3 (-385 (-887 *6))) (-4 *5 (-735)) (-4 *4 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $))))))) (-2967 (*1 *2 *3 *4) (-12 (-5 *3 (-1088 (-887 *6))) (-4 *6 (-517)) (-4 *2 (-884 (-385 (-887 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-735)) (-4 *4 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $))))))) (-1684 (*1 *2 *2 *3) (-12 (-4 *4 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $))))) (-4 *5 (-517)) (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-884 (-385 (-887 *5)) *4 *3)))) (-4057 (*1 *2 *3 *4) (-12 (-5 *3 (-1088 *2)) (-4 *2 (-884 (-385 (-887 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-735)) (-4 *4 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $))))) (-4 *6 (-517)))) (-3336 (*1 *2 *2 *3) (-12 (-4 *4 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $))))) (-4 *5 (-517)) (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-884 (-385 (-887 *5)) *4 *3)))) (-2733 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $))))) (-4 *6 (-517)) (-5 *2 (-2 (|:| -1525 (-887 *6)) (|:| -1919 (-887 *6)))) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-884 (-385 (-887 *6)) *4 *5)))))
+(-10 -7 (-15 -2733 ((-2 (|:| -1525 (-887 |#3|)) (|:| -1919 (-887 |#3|))) |#4|)) (-15 -3336 (|#4| |#4| |#2|)) (-15 -4057 (|#4| (-1088 |#4|) |#2|)) (-15 -1684 (|#4| |#4| |#2|)) (-15 -2967 (|#4| (-1088 (-887 |#3|)) |#2|)) (-15 -1850 (|#4| (-385 (-887 |#3|)) |#2|)) (-15 -4201 ((-396 |#4|) |#4|)))
+((-4201 (((-396 |#4|) |#4|) 52)))
+(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4201 ((-396 |#4|) |#4|))) (-735) (-789) (-13 (-286) (-138)) (-884 (-385 |#3|) |#1| |#2|)) (T -676))
+((-4201 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-13 (-286) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-884 (-385 *6) *4 *5)))))
+(-10 -7 (-15 -4201 ((-396 |#4|) |#4|)))
+((-2016 (((-678 |#2| |#3|) (-1 |#2| |#1|) (-678 |#1| |#3|)) 18)))
+(((-677 |#1| |#2| |#3|) (-10 -7 (-15 -2016 ((-678 |#2| |#3|) (-1 |#2| |#1|) (-678 |#1| |#3|)))) (-977) (-977) (-669)) (T -677))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-678 *5 *7)) (-4 *5 (-977)) (-4 *6 (-977)) (-4 *7 (-669)) (-5 *2 (-678 *6 *7)) (-5 *1 (-677 *5 *6 *7)))))
+(-10 -7 (-15 -2016 ((-678 |#2| |#3|) (-1 |#2| |#1|) (-678 |#1| |#3|))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 28)) (-2005 (((-592 (-2 (|:| -2681 |#1|) (|:| -2885 |#2|))) $) 29)) (-3222 (((-3 $ "failed") $ $) NIL)) (-1613 (((-713)) 20 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-4105 ((|#2| $) NIL) ((|#1| $) NIL)) (-1451 (($ $) 79 (|has| |#2| (-789)))) (-3300 (((-3 $ "failed") $) 65)) (-1903 (($) 35 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) 55)) (-2884 (((-592 $) $) 39)) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| |#2|) 16)) (-2016 (($ (-1 |#1| |#1|) $) 54)) (-3685 (((-856) $) 32 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-1418 ((|#2| $) 78 (|has| |#2| (-789)))) (-1430 ((|#1| $) 77 (|has| |#2| (-789)))) (-1289 (((-1075) $) NIL)) (-1722 (($ (-856)) 27 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 76) (($ (-525)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-592 (-2 (|:| -2681 |#1|) (|:| -2885 |#2|)))) 11)) (-3137 (((-592 |#1|) $) 41)) (-3136 ((|#1| $ |#2|) 88)) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 12 T CONST)) (-3375 (($) 33 T CONST)) (-2775 (((-108) $ $) 80)) (-2871 (($ $) 47) (($ $ $) NIL)) (-2860 (($ $ $) 26)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160)))))
+(((-678 |#1| |#2|) (-13 (-977) (-968 |#2|) (-968 |#1|) (-10 -8 (-15 -1272 ($ |#1| |#2|)) (-15 -3136 (|#1| $ |#2|)) (-15 -4100 ($ (-592 (-2 (|:| -2681 |#1|) (|:| -2885 |#2|))))) (-15 -2005 ((-592 (-2 (|:| -2681 |#1|) (|:| -2885 |#2|))) $)) (-15 -2016 ($ (-1 |#1| |#1|) $)) (-15 -2457 ((-108) $)) (-15 -3137 ((-592 |#1|) $)) (-15 -2884 ((-592 $) $)) (-15 -4025 ((-713) $)) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-789)) (PROGN (-15 -1418 (|#2| $)) (-15 -1430 (|#1| $)) (-15 -1451 ($ $))) |%noBranch|))) (-977) (-669)) (T -678))
+((-1272 (*1 *1 *2 *3) (-12 (-5 *1 (-678 *2 *3)) (-4 *2 (-977)) (-4 *3 (-669)))) (-3136 (*1 *2 *1 *3) (-12 (-4 *2 (-977)) (-5 *1 (-678 *2 *3)) (-4 *3 (-669)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -2681 *3) (|:| -2885 *4)))) (-4 *3 (-977)) (-4 *4 (-669)) (-5 *1 (-678 *3 *4)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -2681 *3) (|:| -2885 *4)))) (-5 *1 (-678 *3 *4)) (-4 *3 (-977)) (-4 *4 (-669)))) (-2016 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-678 *3 *4)) (-4 *4 (-669)))) (-2457 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-678 *3 *4)) (-4 *3 (-977)) (-4 *4 (-669)))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-678 *3 *4)) (-4 *3 (-977)) (-4 *4 (-669)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-592 (-678 *3 *4))) (-5 *1 (-678 *3 *4)) (-4 *3 (-977)) (-4 *4 (-669)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-678 *3 *4)) (-4 *3 (-977)) (-4 *4 (-669)))) (-1418 (*1 *2 *1) (-12 (-4 *2 (-669)) (-4 *2 (-789)) (-5 *1 (-678 *3 *2)) (-4 *3 (-977)))) (-1430 (*1 *2 *1) (-12 (-4 *2 (-977)) (-5 *1 (-678 *2 *3)) (-4 *3 (-789)) (-4 *3 (-669)))) (-1451 (*1 *1 *1) (-12 (-5 *1 (-678 *2 *3)) (-4 *3 (-789)) (-4 *2 (-977)) (-4 *3 (-669)))))
+(-13 (-977) (-968 |#2|) (-968 |#1|) (-10 -8 (-15 -1272 ($ |#1| |#2|)) (-15 -3136 (|#1| $ |#2|)) (-15 -4100 ($ (-592 (-2 (|:| -2681 |#1|) (|:| -2885 |#2|))))) (-15 -2005 ((-592 (-2 (|:| -2681 |#1|) (|:| -2885 |#2|))) $)) (-15 -2016 ($ (-1 |#1| |#1|) $)) (-15 -2457 ((-108) $)) (-15 -3137 ((-592 |#1|) $)) (-15 -2884 ((-592 $) $)) (-15 -4025 ((-713) $)) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-789)) (PROGN (-15 -1418 (|#2| $)) (-15 -1430 (|#1| $)) (-15 -1451 ($ $))) |%noBranch|)))
+((-4087 (((-108) $ $) 19)) (-1705 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3907 (($ $ $) 72)) (-4026 (((-108) $ $) 73)) (-3779 (((-108) $ (-713)) 8)) (-2805 (($ (-592 |#1|)) 68) (($) 67)) (-3050 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4259)))) (-2475 (($) 7 T CONST)) (-1793 (($ $) 62)) (-1681 (($ $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-4205 (($ |#1| $) 47 (|has| $ (-6 -4259))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4259)))) (-2698 (($ |#1| $) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4259)))) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-4207 (((-108) $ $) 64)) (-2516 (((-108) $ (-713)) 9)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22)) (-2913 (($ $ $) 69)) (-3577 ((|#1| $) 39)) (-3246 (($ |#1| $) 40) (($ |#1| $ (-713)) 63)) (-3993 (((-1039) $) 21)) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-2724 ((|#1| $) 41)) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-2605 (((-592 (-2 (|:| -3448 |#1|) (|:| -4002 (-713)))) $) 61)) (-1292 (($ $ |#1|) 71) (($ $ $) 70)) (-2637 (($) 49) (($ (-592 |#1|)) 48)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-2069 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 50)) (-4100 (((-798) $) 18)) (-2180 (($ (-592 |#1|)) 66) (($) 65)) (-3905 (($ (-592 |#1|)) 42)) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20)) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-679 |#1|) (-131) (-1020)) (T -679))
NIL
(-13 (-637 |t#1|) (-1018 |t#1|))
(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-566 (-798)) . T) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-637 |#1|) . T) ((-1018 |#1|) . T) ((-1020) . T) ((-1128) . T))
-((-4236 (((-108) $ $) NIL)) (-2600 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3703 (($ $ $) 79)) (-2267 (((-108) $ $) 83)) (-3991 (((-108) $ (-713)) NIL)) (-2839 (($ (-592 |#1|)) 24) (($) 16)) (-1676 (($ (-1 (-108) |#1|) $) 70 (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2169 (($) NIL T CONST)) (-3972 (($ $) 71)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3271 (($ |#1| $) 61 (|has| $ (-6 -4258))) (($ (-1 (-108) |#1|) $) 64 (|has| $ (-6 -4258))) (($ |#1| $ (-525)) 62) (($ (-1 (-108) |#1|) $ (-525)) 65)) (-1703 (($ |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (($ |#1| $ (-525)) 67) (($ (-1 (-108) |#1|) $ (-525)) 68)) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4258)))) (-3440 (((-592 |#1|) $) 32 (|has| $ (-6 -4258)))) (-3334 (($) 14) (($ |#1|) 26) (($ (-592 |#1|)) 21)) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 |#1|) $) 38)) (-2004 (((-108) |#1| $) 58 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-2284 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 75)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL)) (-2099 (($ $ $) 77)) (-2992 ((|#1| $) 55)) (-1262 (($ |#1| $) 56) (($ |#1| $ (-713)) 72)) (-2093 (((-1039) $) NIL)) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4127 ((|#1| $) 54)) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) 50)) (-2512 (($) 13)) (-4113 (((-592 (-2 (|:| -4201 |#1|) (|:| -2110 (-713)))) $) 48)) (-1535 (($ $ |#1|) NIL) (($ $ $) 78)) (-1760 (($) 15) (($ (-592 |#1|)) 23)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) 60 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) 66)) (-3210 (((-501) $) 36 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 20)) (-1217 (((-798) $) 44)) (-3240 (($ (-592 |#1|)) 25) (($) 17)) (-1956 (($ (-592 |#1|)) 22)) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 81)) (-3978 (((-108) $ $) 82)) (-3522 (((-713) $) 59 (|has| $ (-6 -4258)))))
-(((-680 |#1|) (-13 (-679 |#1|) (-10 -8 (-6 -4258) (-6 -4259) (-15 -3334 ($)) (-15 -3334 ($ |#1|)) (-15 -3334 ($ (-592 |#1|))) (-15 -2694 ((-592 |#1|) $)) (-15 -1703 ($ |#1| $ (-525))) (-15 -1703 ($ (-1 (-108) |#1|) $ (-525))) (-15 -3271 ($ |#1| $ (-525))) (-15 -3271 ($ (-1 (-108) |#1|) $ (-525))))) (-1020)) (T -680))
-((-3334 (*1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1020)))) (-3334 (*1 *1 *2) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1020)))) (-3334 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-680 *3)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1020)))) (-1703 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1020)))) (-1703 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1020)) (-5 *1 (-680 *4)))) (-3271 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1020)))) (-3271 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1020)) (-5 *1 (-680 *4)))))
-(-13 (-679 |#1|) (-10 -8 (-6 -4258) (-6 -4259) (-15 -3334 ($)) (-15 -3334 ($ |#1|)) (-15 -3334 ($ (-592 |#1|))) (-15 -2694 ((-592 |#1|) $)) (-15 -1703 ($ |#1| $ (-525))) (-15 -1703 ($ (-1 (-108) |#1|) $ (-525))) (-15 -3271 ($ |#1| $ (-525))) (-15 -3271 ($ (-1 (-108) |#1|) $ (-525)))))
-((-2515 (((-1179) (-1075)) 8)))
-(((-681) (-10 -7 (-15 -2515 ((-1179) (-1075))))) (T -681))
-((-2515 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-681)))))
-(-10 -7 (-15 -2515 ((-1179) (-1075))))
-((-2965 (((-592 |#1|) (-592 |#1|) (-592 |#1|)) 10)))
-(((-682 |#1|) (-10 -7 (-15 -2965 ((-592 |#1|) (-592 |#1|) (-592 |#1|)))) (-789)) (T -682))
-((-2965 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-682 *3)))))
-(-10 -7 (-15 -2965 ((-592 |#1|) (-592 |#1|) (-592 |#1|))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2897 (((-592 |#2|) $) 136)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 129 (|has| |#1| (-517)))) (-4218 (($ $) 128 (|has| |#1| (-517)))) (-3171 (((-108) $) 126 (|has| |#1| (-517)))) (-1575 (($ $) 85 (|has| |#1| (-37 (-385 (-525)))))) (-2804 (($ $) 68 (|has| |#1| (-37 (-385 (-525)))))) (-1578 (((-3 $ "failed") $ $) 19)) (-2782 (($ $) 67 (|has| |#1| (-37 (-385 (-525)))))) (-1549 (($ $) 84 (|has| |#1| (-37 (-385 (-525)))))) (-2780 (($ $) 69 (|has| |#1| (-37 (-385 (-525)))))) (-1599 (($ $) 83 (|has| |#1| (-37 (-385 (-525)))))) (-2836 (($ $) 70 (|has| |#1| (-37 (-385 (-525)))))) (-2169 (($) 17 T CONST)) (-3063 (($ $) 120)) (-3457 (((-3 $ "failed") $) 34)) (-3882 (((-887 |#1|) $ (-713)) 98) (((-887 |#1|) $ (-713) (-713)) 97)) (-2398 (((-108) $) 137)) (-3140 (($) 95 (|has| |#1| (-37 (-385 (-525)))))) (-2581 (((-713) $ |#2|) 100) (((-713) $ |#2| (-713)) 99)) (-1396 (((-108) $) 31)) (-2171 (($ $ (-525)) 66 (|has| |#1| (-37 (-385 (-525)))))) (-1212 (((-108) $) 118)) (-2876 (($ $ (-592 |#2|) (-592 (-497 |#2|))) 135) (($ $ |#2| (-497 |#2|)) 134) (($ |#1| (-497 |#2|)) 119) (($ $ |#2| (-713)) 102) (($ $ (-592 |#2|) (-592 (-713))) 101)) (-3165 (($ (-1 |#1| |#1|) $) 117)) (-1517 (($ $) 92 (|has| |#1| (-37 (-385 (-525)))))) (-3031 (($ $) 115)) (-3043 ((|#1| $) 114)) (-2619 (((-1075) $) 9)) (-1206 (($ $ |#2|) 96 (|has| |#1| (-37 (-385 (-525)))))) (-2093 (((-1039) $) 10)) (-3931 (($ $ (-713)) 103)) (-1715 (((-3 $ "failed") $ $) 130 (|has| |#1| (-517)))) (-3096 (($ $) 93 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $ |#2| $) 111) (($ $ (-592 |#2|) (-592 $)) 110) (($ $ (-592 (-273 $))) 109) (($ $ (-273 $)) 108) (($ $ $ $) 107) (($ $ (-592 $) (-592 $)) 106)) (-3376 (($ $ |#2|) 42) (($ $ (-592 |#2|)) 41) (($ $ |#2| (-713)) 40) (($ $ (-592 |#2|) (-592 (-713))) 39)) (-2343 (((-497 |#2|) $) 116)) (-1609 (($ $) 82 (|has| |#1| (-37 (-385 (-525)))))) (-1447 (($ $) 71 (|has| |#1| (-37 (-385 (-525)))))) (-1587 (($ $) 81 (|has| |#1| (-37 (-385 (-525)))))) (-2815 (($ $) 72 (|has| |#1| (-37 (-385 (-525)))))) (-1562 (($ $) 80 (|has| |#1| (-37 (-385 (-525)))))) (-2794 (($ $) 73 (|has| |#1| (-37 (-385 (-525)))))) (-1489 (($ $) 138)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 133 (|has| |#1| (-160))) (($ $) 131 (|has| |#1| (-517))) (($ (-385 (-525))) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1568 ((|#1| $ (-497 |#2|)) 121) (($ $ |#2| (-713)) 105) (($ $ (-592 |#2|) (-592 (-713))) 104)) (-3637 (((-3 $ "failed") $) 132 (|has| |#1| (-136)))) (-3917 (((-713)) 29)) (-1649 (($ $) 91 (|has| |#1| (-37 (-385 (-525)))))) (-1492 (($ $) 79 (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) 127 (|has| |#1| (-517)))) (-1630 (($ $) 90 (|has| |#1| (-37 (-385 (-525)))))) (-1465 (($ $) 78 (|has| |#1| (-37 (-385 (-525)))))) (-1669 (($ $) 89 (|has| |#1| (-37 (-385 (-525)))))) (-1522 (($ $) 77 (|has| |#1| (-37 (-385 (-525)))))) (-2359 (($ $) 88 (|has| |#1| (-37 (-385 (-525)))))) (-1537 (($ $) 76 (|has| |#1| (-37 (-385 (-525)))))) (-1659 (($ $) 87 (|has| |#1| (-37 (-385 (-525)))))) (-1506 (($ $) 75 (|has| |#1| (-37 (-385 (-525)))))) (-1639 (($ $) 86 (|has| |#1| (-37 (-385 (-525)))))) (-1479 (($ $) 74 (|has| |#1| (-37 (-385 (-525)))))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $ |#2|) 38) (($ $ (-592 |#2|)) 37) (($ $ |#2| (-713)) 36) (($ $ (-592 |#2|) (-592 (-713))) 35)) (-3955 (((-108) $ $) 6)) (-4075 (($ $ |#1|) 122 (|has| |#1| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ $) 94 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 65 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 125 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 124 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 113) (($ $ |#1|) 112)))
+((-4087 (((-108) $ $) NIL)) (-1705 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3907 (($ $ $) 79)) (-4026 (((-108) $ $) 83)) (-3779 (((-108) $ (-713)) NIL)) (-2805 (($ (-592 |#1|)) 24) (($) 16)) (-3050 (($ (-1 (-108) |#1|) $) 70 (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2475 (($) NIL T CONST)) (-1793 (($ $) 71)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-4205 (($ |#1| $) 61 (|has| $ (-6 -4259))) (($ (-1 (-108) |#1|) $) 64 (|has| $ (-6 -4259))) (($ |#1| $ (-525)) 62) (($ (-1 (-108) |#1|) $ (-525)) 65)) (-2698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (($ |#1| $ (-525)) 67) (($ (-1 (-108) |#1|) $ (-525)) 68)) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-2175 (((-592 |#1|) $) 32 (|has| $ (-6 -4259)))) (-4207 (((-108) $ $) 82)) (-1666 (($) 14) (($ |#1|) 26) (($ (-592 |#1|)) 21)) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 |#1|) $) 38)) (-3198 (((-108) |#1| $) 58 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3069 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 75)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL)) (-2913 (($ $ $) 77)) (-3577 ((|#1| $) 55)) (-3246 (($ |#1| $) 56) (($ |#1| $ (-713)) 72)) (-3993 (((-1039) $) NIL)) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2724 ((|#1| $) 54)) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) 50)) (-1558 (($) 13)) (-2605 (((-592 (-2 (|:| -3448 |#1|) (|:| -4002 (-713)))) $) 48)) (-1292 (($ $ |#1|) NIL) (($ $ $) 78)) (-2637 (($) 15) (($ (-592 |#1|)) 23)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) 60 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) 66)) (-2069 (((-501) $) 36 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 20)) (-4100 (((-798) $) 44)) (-2180 (($ (-592 |#1|)) 25) (($) 17)) (-3905 (($ (-592 |#1|)) 22)) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 81)) (-2827 (((-713) $) 59 (|has| $ (-6 -4259)))))
+(((-680 |#1|) (-13 (-679 |#1|) (-10 -8 (-6 -4259) (-6 -4260) (-15 -1666 ($)) (-15 -1666 ($ |#1|)) (-15 -1666 ($ (-592 |#1|))) (-15 -2617 ((-592 |#1|) $)) (-15 -2698 ($ |#1| $ (-525))) (-15 -2698 ($ (-1 (-108) |#1|) $ (-525))) (-15 -4205 ($ |#1| $ (-525))) (-15 -4205 ($ (-1 (-108) |#1|) $ (-525))))) (-1020)) (T -680))
+((-1666 (*1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1020)))) (-1666 (*1 *1 *2) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1020)))) (-1666 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-680 *3)))) (-2617 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1020)))) (-2698 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1020)))) (-2698 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1020)) (-5 *1 (-680 *4)))) (-4205 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1020)))) (-4205 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1020)) (-5 *1 (-680 *4)))))
+(-13 (-679 |#1|) (-10 -8 (-6 -4259) (-6 -4260) (-15 -1666 ($)) (-15 -1666 ($ |#1|)) (-15 -1666 ($ (-592 |#1|))) (-15 -2617 ((-592 |#1|) $)) (-15 -2698 ($ |#1| $ (-525))) (-15 -2698 ($ (-1 (-108) |#1|) $ (-525))) (-15 -4205 ($ |#1| $ (-525))) (-15 -4205 ($ (-1 (-108) |#1|) $ (-525)))))
+((-2351 (((-1179) (-1075)) 8)))
+(((-681) (-10 -7 (-15 -2351 ((-1179) (-1075))))) (T -681))
+((-2351 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-681)))))
+(-10 -7 (-15 -2351 ((-1179) (-1075))))
+((-3329 (((-592 |#1|) (-592 |#1|) (-592 |#1|)) 10)))
+(((-682 |#1|) (-10 -7 (-15 -3329 ((-592 |#1|) (-592 |#1|) (-592 |#1|)))) (-789)) (T -682))
+((-3329 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-682 *3)))))
+(-10 -7 (-15 -3329 ((-592 |#1|) (-592 |#1|) (-592 |#1|))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-1296 (((-592 |#2|) $) 136)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 129 (|has| |#1| (-517)))) (-2433 (($ $) 128 (|has| |#1| (-517)))) (-1568 (((-108) $) 126 (|has| |#1| (-517)))) (-1803 (($ $) 85 (|has| |#1| (-37 (-385 (-525)))))) (-3659 (($ $) 68 (|has| |#1| (-37 (-385 (-525)))))) (-3222 (((-3 $ "failed") $ $) 19)) (-4211 (($ $) 67 (|has| |#1| (-37 (-385 (-525)))))) (-1781 (($ $) 84 (|has| |#1| (-37 (-385 (-525)))))) (-3638 (($ $) 69 (|has| |#1| (-37 (-385 (-525)))))) (-1828 (($ $) 83 (|has| |#1| (-37 (-385 (-525)))))) (-3698 (($ $) 70 (|has| |#1| (-37 (-385 (-525)))))) (-2475 (($) 17 T CONST)) (-1451 (($ $) 120)) (-3300 (((-3 $ "failed") $) 34)) (-3565 (((-887 |#1|) $ (-713)) 98) (((-887 |#1|) $ (-713) (-713)) 97)) (-2853 (((-108) $) 137)) (-4106 (($) 95 (|has| |#1| (-37 (-385 (-525)))))) (-4000 (((-713) $ |#2|) 100) (((-713) $ |#2| (-713)) 99)) (-2278 (((-108) $) 31)) (-1303 (($ $ (-525)) 66 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (((-108) $) 118)) (-1272 (($ $ (-592 |#2|) (-592 (-497 |#2|))) 135) (($ $ |#2| (-497 |#2|)) 134) (($ |#1| (-497 |#2|)) 119) (($ $ |#2| (-713)) 102) (($ $ (-592 |#2|) (-592 (-713))) 101)) (-2016 (($ (-1 |#1| |#1|) $) 117)) (-2533 (($ $) 92 (|has| |#1| (-37 (-385 (-525)))))) (-1418 (($ $) 115)) (-1430 ((|#1| $) 114)) (-1289 (((-1075) $) 9)) (-2367 (($ $ |#2|) 96 (|has| |#1| (-37 (-385 (-525)))))) (-3993 (((-1039) $) 10)) (-1397 (($ $ (-713)) 103)) (-1311 (((-3 $ "failed") $ $) 130 (|has| |#1| (-517)))) (-1618 (($ $) 93 (|has| |#1| (-37 (-385 (-525)))))) (-2825 (($ $ |#2| $) 111) (($ $ (-592 |#2|) (-592 $)) 110) (($ $ (-592 (-273 $))) 109) (($ $ (-273 $)) 108) (($ $ $ $) 107) (($ $ (-592 $) (-592 $)) 106)) (-2702 (($ $ |#2|) 42) (($ $ (-592 |#2|)) 41) (($ $ |#2| (-713)) 40) (($ $ (-592 |#2|) (-592 (-713))) 39)) (-3529 (((-497 |#2|) $) 116)) (-1841 (($ $) 82 (|has| |#1| (-37 (-385 (-525)))))) (-3798 (($ $) 71 (|has| |#1| (-37 (-385 (-525)))))) (-1816 (($ $) 81 (|has| |#1| (-37 (-385 (-525)))))) (-3678 (($ $) 72 (|has| |#1| (-37 (-385 (-525)))))) (-1792 (($ $) 80 (|has| |#1| (-37 (-385 (-525)))))) (-3649 (($ $) 73 (|has| |#1| (-37 (-385 (-525)))))) (-3926 (($ $) 138)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 133 (|has| |#1| (-160))) (($ $) 131 (|has| |#1| (-517))) (($ (-385 (-525))) 123 (|has| |#1| (-37 (-385 (-525)))))) (-3136 ((|#1| $ (-497 |#2|)) 121) (($ $ |#2| (-713)) 105) (($ $ (-592 |#2|) (-592 (-713))) 104)) (-1463 (((-3 $ "failed") $) 132 (|has| |#1| (-136)))) (-2448 (((-713)) 29)) (-1876 (($ $) 91 (|has| |#1| (-37 (-385 (-525)))))) (-3853 (($ $) 79 (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) 127 (|has| |#1| (-517)))) (-1853 (($ $) 90 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 78 (|has| |#1| (-37 (-385 (-525)))))) (-1902 (($ $) 89 (|has| |#1| (-37 (-385 (-525)))))) (-1760 (($ $) 77 (|has| |#1| (-37 (-385 (-525)))))) (-3135 (($ $) 88 (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) 76 (|has| |#1| (-37 (-385 (-525)))))) (-1891 (($ $) 87 (|has| |#1| (-37 (-385 (-525)))))) (-1748 (($ $) 75 (|has| |#1| (-37 (-385 (-525)))))) (-1866 (($ $) 86 (|has| |#1| (-37 (-385 (-525)))))) (-3820 (($ $) 74 (|has| |#1| (-37 (-385 (-525)))))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $ |#2|) 38) (($ $ (-592 |#2|)) 37) (($ $ |#2| (-713)) 36) (($ $ (-592 |#2|) (-592 (-713))) 35)) (-2775 (((-108) $ $) 6)) (-2880 (($ $ |#1|) 122 (|has| |#1| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ $) 94 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 65 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 125 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 124 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 113) (($ $ |#1|) 112)))
(((-683 |#1| |#2|) (-131) (-977) (-789)) (T -683))
-((-1568 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-977)) (-4 *2 (-789)))) (-1568 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5)) (-4 *4 (-977)) (-4 *5 (-789)))) (-3931 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-683 *3 *4)) (-4 *3 (-977)) (-4 *4 (-789)))) (-2876 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-977)) (-4 *2 (-789)))) (-2876 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5)) (-4 *4 (-977)) (-4 *5 (-789)))) (-2581 (*1 *2 *1 *3) (-12 (-4 *1 (-683 *4 *3)) (-4 *4 (-977)) (-4 *3 (-789)) (-5 *2 (-713)))) (-2581 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-713)) (-4 *1 (-683 *4 *3)) (-4 *4 (-977)) (-4 *3 (-789)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-977)) (-4 *5 (-789)) (-5 *2 (-887 *4)))) (-3882 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-977)) (-4 *5 (-789)) (-5 *2 (-887 *4)))) (-1206 (*1 *1 *1 *2) (-12 (-4 *1 (-683 *3 *2)) (-4 *3 (-977)) (-4 *2 (-789)) (-4 *3 (-37 (-385 (-525)))))))
-(-13 (-835 |t#2|) (-906 |t#1| (-497 |t#2|) |t#2|) (-486 |t#2| $) (-288 $) (-10 -8 (-15 -1568 ($ $ |t#2| (-713))) (-15 -1568 ($ $ (-592 |t#2|) (-592 (-713)))) (-15 -3931 ($ $ (-713))) (-15 -2876 ($ $ |t#2| (-713))) (-15 -2876 ($ $ (-592 |t#2|) (-592 (-713)))) (-15 -2581 ((-713) $ |t#2|)) (-15 -2581 ((-713) $ |t#2| (-713))) (-15 -3882 ((-887 |t#1|) $ (-713))) (-15 -3882 ((-887 |t#1|) $ (-713) (-713))) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -1206 ($ $ |t#2|)) (-6 (-934)) (-6 (-1114))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-497 |#2|)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3254 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3254 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-269) |has| |#1| (-517)) ((-288 $) . T) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-486 |#2| $) . T) ((-486 $ $) . T) ((-517) |has| |#1| (-517)) ((-594 #1#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-835 |#2|) . T) ((-906 |#1| #0# |#2|) . T) ((-934) |has| |#1| (-37 (-385 (-525)))) ((-983 #1#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1114) |has| |#1| (-37 (-385 (-525)))) ((-1117) |has| |#1| (-37 (-385 (-525)))))
-((-2770 (((-396 (-1088 |#4|)) (-1088 |#4|)) 30) (((-396 |#4|) |#4|) 26)))
-(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2770 ((-396 |#4|) |#4|)) (-15 -2770 ((-396 (-1088 |#4|)) (-1088 |#4|)))) (-789) (-735) (-13 (-286) (-138)) (-884 |#3| |#2| |#1|)) (T -684))
-((-2770 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-884 *6 *5 *4)) (-5 *2 (-396 (-1088 *7))) (-5 *1 (-684 *4 *5 *6 *7)) (-5 *3 (-1088 *7)))) (-2770 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-884 *6 *5 *4)))))
-(-10 -7 (-15 -2770 ((-396 |#4|) |#4|)) (-15 -2770 ((-396 (-1088 |#4|)) (-1088 |#4|))))
-((-1337 (((-396 |#4|) |#4| |#2|) 118)) (-3193 (((-396 |#4|) |#4|) NIL)) (-2669 (((-396 (-1088 |#4|)) (-1088 |#4|)) 109) (((-396 |#4|) |#4|) 40)) (-2157 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-592 (-2 (|:| -2770 (-1088 |#4|)) (|:| -4193 (-525)))))) (-1088 |#4|) (-592 |#2|) (-592 (-592 |#3|))) 68)) (-2094 (((-1088 |#3|) (-1088 |#3|) (-525)) 136)) (-4104 (((-592 (-713)) (-1088 |#4|) (-592 |#2|) (-713)) 60)) (-1269 (((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-1088 |#3|) (-1088 |#3|) |#4| (-592 |#2|) (-592 (-713)) (-592 |#3|)) 64)) (-3970 (((-2 (|:| |upol| (-1088 |#3|)) (|:| |Lval| (-592 |#3|)) (|:| |Lfact| (-592 (-2 (|:| -2770 (-1088 |#3|)) (|:| -4193 (-525))))) (|:| |ctpol| |#3|)) (-1088 |#4|) (-592 |#2|) (-592 (-592 |#3|))) 25)) (-1602 (((-2 (|:| -3101 (-1088 |#4|)) (|:| |polval| (-1088 |#3|))) (-1088 |#4|) (-1088 |#3|) (-525)) 56)) (-2762 (((-525) (-592 (-2 (|:| -2770 (-1088 |#3|)) (|:| -4193 (-525))))) 133)) (-2439 ((|#4| (-525) (-396 |#4|)) 57)) (-3520 (((-108) (-592 (-2 (|:| -2770 (-1088 |#3|)) (|:| -4193 (-525)))) (-592 (-2 (|:| -2770 (-1088 |#3|)) (|:| -4193 (-525))))) NIL)))
-(((-685 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2669 ((-396 |#4|) |#4|)) (-15 -2669 ((-396 (-1088 |#4|)) (-1088 |#4|))) (-15 -3193 ((-396 |#4|) |#4|)) (-15 -2762 ((-525) (-592 (-2 (|:| -2770 (-1088 |#3|)) (|:| -4193 (-525)))))) (-15 -1337 ((-396 |#4|) |#4| |#2|)) (-15 -1602 ((-2 (|:| -3101 (-1088 |#4|)) (|:| |polval| (-1088 |#3|))) (-1088 |#4|) (-1088 |#3|) (-525))) (-15 -2157 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-592 (-2 (|:| -2770 (-1088 |#4|)) (|:| -4193 (-525)))))) (-1088 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -3970 ((-2 (|:| |upol| (-1088 |#3|)) (|:| |Lval| (-592 |#3|)) (|:| |Lfact| (-592 (-2 (|:| -2770 (-1088 |#3|)) (|:| -4193 (-525))))) (|:| |ctpol| |#3|)) (-1088 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -2439 (|#4| (-525) (-396 |#4|))) (-15 -3520 ((-108) (-592 (-2 (|:| -2770 (-1088 |#3|)) (|:| -4193 (-525)))) (-592 (-2 (|:| -2770 (-1088 |#3|)) (|:| -4193 (-525)))))) (-15 -1269 ((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-1088 |#3|) (-1088 |#3|) |#4| (-592 |#2|) (-592 (-713)) (-592 |#3|))) (-15 -4104 ((-592 (-713)) (-1088 |#4|) (-592 |#2|) (-713))) (-15 -2094 ((-1088 |#3|) (-1088 |#3|) (-525)))) (-735) (-789) (-286) (-884 |#3| |#1| |#2|)) (T -685))
-((-2094 (*1 *2 *2 *3) (-12 (-5 *2 (-1088 *6)) (-5 *3 (-525)) (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))) (-4104 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1088 *9)) (-5 *4 (-592 *7)) (-4 *7 (-789)) (-4 *9 (-884 *8 *6 *7)) (-4 *6 (-735)) (-4 *8 (-286)) (-5 *2 (-592 (-713))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *5 (-713)))) (-1269 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1088 *11)) (-5 *6 (-592 *10)) (-5 *7 (-592 (-713))) (-5 *8 (-592 *11)) (-4 *10 (-789)) (-4 *11 (-286)) (-4 *9 (-735)) (-4 *5 (-884 *11 *9 *10)) (-5 *2 (-592 (-1088 *5))) (-5 *1 (-685 *9 *10 *11 *5)) (-5 *3 (-1088 *5)))) (-3520 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-2 (|:| -2770 (-1088 *6)) (|:| -4193 (-525))))) (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))) (-2439 (*1 *2 *3 *4) (-12 (-5 *3 (-525)) (-5 *4 (-396 *2)) (-4 *2 (-884 *7 *5 *6)) (-5 *1 (-685 *5 *6 *7 *2)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-286)))) (-3970 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1088 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8))) (-4 *7 (-789)) (-4 *8 (-286)) (-4 *9 (-884 *8 *6 *7)) (-4 *6 (-735)) (-5 *2 (-2 (|:| |upol| (-1088 *8)) (|:| |Lval| (-592 *8)) (|:| |Lfact| (-592 (-2 (|:| -2770 (-1088 *8)) (|:| -4193 (-525))))) (|:| |ctpol| *8))) (-5 *1 (-685 *6 *7 *8 *9)))) (-2157 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8))) (-4 *7 (-789)) (-4 *8 (-286)) (-4 *6 (-735)) (-4 *9 (-884 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-592 (-2 (|:| -2770 (-1088 *9)) (|:| -4193 (-525))))))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1088 *9)))) (-1602 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-525)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-286)) (-4 *9 (-884 *8 *6 *7)) (-5 *2 (-2 (|:| -3101 (-1088 *9)) (|:| |polval| (-1088 *8)))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1088 *9)) (-5 *4 (-1088 *8)))) (-1337 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-685 *5 *4 *6 *3)) (-4 *3 (-884 *6 *5 *4)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -2770 (-1088 *6)) (|:| -4193 (-525))))) (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))) (-3193 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-884 *6 *4 *5)))) (-2669 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-396 (-1088 *7))) (-5 *1 (-685 *4 *5 *6 *7)) (-5 *3 (-1088 *7)))) (-2669 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-884 *6 *4 *5)))))
-(-10 -7 (-15 -2669 ((-396 |#4|) |#4|)) (-15 -2669 ((-396 (-1088 |#4|)) (-1088 |#4|))) (-15 -3193 ((-396 |#4|) |#4|)) (-15 -2762 ((-525) (-592 (-2 (|:| -2770 (-1088 |#3|)) (|:| -4193 (-525)))))) (-15 -1337 ((-396 |#4|) |#4| |#2|)) (-15 -1602 ((-2 (|:| -3101 (-1088 |#4|)) (|:| |polval| (-1088 |#3|))) (-1088 |#4|) (-1088 |#3|) (-525))) (-15 -2157 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-592 (-2 (|:| -2770 (-1088 |#4|)) (|:| -4193 (-525)))))) (-1088 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -3970 ((-2 (|:| |upol| (-1088 |#3|)) (|:| |Lval| (-592 |#3|)) (|:| |Lfact| (-592 (-2 (|:| -2770 (-1088 |#3|)) (|:| -4193 (-525))))) (|:| |ctpol| |#3|)) (-1088 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -2439 (|#4| (-525) (-396 |#4|))) (-15 -3520 ((-108) (-592 (-2 (|:| -2770 (-1088 |#3|)) (|:| -4193 (-525)))) (-592 (-2 (|:| -2770 (-1088 |#3|)) (|:| -4193 (-525)))))) (-15 -1269 ((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-1088 |#3|) (-1088 |#3|) |#4| (-592 |#2|) (-592 (-713)) (-592 |#3|))) (-15 -4104 ((-592 (-713)) (-1088 |#4|) (-592 |#2|) (-713))) (-15 -2094 ((-1088 |#3|) (-1088 |#3|) (-525))))
-((-3587 (($ $ (-856)) 12)))
-(((-686 |#1| |#2|) (-10 -8 (-15 -3587 (|#1| |#1| (-856)))) (-687 |#2|) (-160)) (T -686))
-NIL
-(-10 -8 (-15 -3587 (|#1| |#1| (-856))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-2837 (($ $ (-856)) 28)) (-3587 (($ $ (-856)) 33)) (-2817 (($ $ (-856)) 29)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1990 (($ $ $) 25)) (-1217 (((-798) $) 11)) (-3746 (($ $ $ $) 26)) (-2597 (($ $ $) 24)) (-3349 (($) 18 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 30)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-3136 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-977)) (-4 *2 (-789)))) (-3136 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5)) (-4 *4 (-977)) (-4 *5 (-789)))) (-1397 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-683 *3 *4)) (-4 *3 (-977)) (-4 *4 (-789)))) (-1272 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-977)) (-4 *2 (-789)))) (-1272 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5)) (-4 *4 (-977)) (-4 *5 (-789)))) (-4000 (*1 *2 *1 *3) (-12 (-4 *1 (-683 *4 *3)) (-4 *4 (-977)) (-4 *3 (-789)) (-5 *2 (-713)))) (-4000 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-713)) (-4 *1 (-683 *4 *3)) (-4 *4 (-977)) (-4 *3 (-789)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-977)) (-4 *5 (-789)) (-5 *2 (-887 *4)))) (-3565 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-977)) (-4 *5 (-789)) (-5 *2 (-887 *4)))) (-2367 (*1 *1 *1 *2) (-12 (-4 *1 (-683 *3 *2)) (-4 *3 (-977)) (-4 *2 (-789)) (-4 *3 (-37 (-385 (-525)))))))
+(-13 (-835 |t#2|) (-906 |t#1| (-497 |t#2|) |t#2|) (-486 |t#2| $) (-288 $) (-10 -8 (-15 -3136 ($ $ |t#2| (-713))) (-15 -3136 ($ $ (-592 |t#2|) (-592 (-713)))) (-15 -1397 ($ $ (-713))) (-15 -1272 ($ $ |t#2| (-713))) (-15 -1272 ($ $ (-592 |t#2|) (-592 (-713)))) (-15 -4000 ((-713) $ |t#2|)) (-15 -4000 ((-713) $ |t#2| (-713))) (-15 -3565 ((-887 |t#1|) $ (-713))) (-15 -3565 ((-887 |t#1|) $ (-713) (-713))) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -2367 ($ $ |t#2|)) (-6 (-934)) (-6 (-1114))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-497 |#2|)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -2067 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -2067 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-269) |has| |#1| (-517)) ((-288 $) . T) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-486 |#2| $) . T) ((-486 $ $) . T) ((-517) |has| |#1| (-517)) ((-594 #1#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-835 |#2|) . T) ((-906 |#1| #0# |#2|) . T) ((-934) |has| |#1| (-37 (-385 (-525)))) ((-983 #1#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1114) |has| |#1| (-37 (-385 (-525)))) ((-1117) |has| |#1| (-37 (-385 (-525)))))
+((-4201 (((-396 (-1088 |#4|)) (-1088 |#4|)) 30) (((-396 |#4|) |#4|) 26)))
+(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4201 ((-396 |#4|) |#4|)) (-15 -4201 ((-396 (-1088 |#4|)) (-1088 |#4|)))) (-789) (-735) (-13 (-286) (-138)) (-884 |#3| |#2| |#1|)) (T -684))
+((-4201 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-884 *6 *5 *4)) (-5 *2 (-396 (-1088 *7))) (-5 *1 (-684 *4 *5 *6 *7)) (-5 *3 (-1088 *7)))) (-4201 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-884 *6 *5 *4)))))
+(-10 -7 (-15 -4201 ((-396 |#4|) |#4|)) (-15 -4201 ((-396 (-1088 |#4|)) (-1088 |#4|))))
+((-3006 (((-396 |#4|) |#4| |#2|) 118)) (-1757 (((-396 |#4|) |#4|) NIL)) (-3586 (((-396 (-1088 |#4|)) (-1088 |#4|)) 109) (((-396 |#4|) |#4|) 40)) (-2341 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-592 (-2 (|:| -4201 (-1088 |#4|)) (|:| -2168 (-525)))))) (-1088 |#4|) (-592 |#2|) (-592 (-592 |#3|))) 68)) (-2866 (((-1088 |#3|) (-1088 |#3|) (-525)) 136)) (-3694 (((-592 (-713)) (-1088 |#4|) (-592 |#2|) (-713)) 60)) (-3492 (((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-1088 |#3|) (-1088 |#3|) |#4| (-592 |#2|) (-592 (-713)) (-592 |#3|)) 64)) (-1772 (((-2 (|:| |upol| (-1088 |#3|)) (|:| |Lval| (-592 |#3|)) (|:| |Lfact| (-592 (-2 (|:| -4201 (-1088 |#3|)) (|:| -2168 (-525))))) (|:| |ctpol| |#3|)) (-1088 |#4|) (-592 |#2|) (-592 (-592 |#3|))) 25)) (-3468 (((-2 (|:| -2158 (-1088 |#4|)) (|:| |polval| (-1088 |#3|))) (-1088 |#4|) (-1088 |#3|) (-525)) 56)) (-2074 (((-525) (-592 (-2 (|:| -4201 (-1088 |#3|)) (|:| -2168 (-525))))) 133)) (-2092 ((|#4| (-525) (-396 |#4|)) 57)) (-2694 (((-108) (-592 (-2 (|:| -4201 (-1088 |#3|)) (|:| -2168 (-525)))) (-592 (-2 (|:| -4201 (-1088 |#3|)) (|:| -2168 (-525))))) NIL)))
+(((-685 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3586 ((-396 |#4|) |#4|)) (-15 -3586 ((-396 (-1088 |#4|)) (-1088 |#4|))) (-15 -1757 ((-396 |#4|) |#4|)) (-15 -2074 ((-525) (-592 (-2 (|:| -4201 (-1088 |#3|)) (|:| -2168 (-525)))))) (-15 -3006 ((-396 |#4|) |#4| |#2|)) (-15 -3468 ((-2 (|:| -2158 (-1088 |#4|)) (|:| |polval| (-1088 |#3|))) (-1088 |#4|) (-1088 |#3|) (-525))) (-15 -2341 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-592 (-2 (|:| -4201 (-1088 |#4|)) (|:| -2168 (-525)))))) (-1088 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -1772 ((-2 (|:| |upol| (-1088 |#3|)) (|:| |Lval| (-592 |#3|)) (|:| |Lfact| (-592 (-2 (|:| -4201 (-1088 |#3|)) (|:| -2168 (-525))))) (|:| |ctpol| |#3|)) (-1088 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -2092 (|#4| (-525) (-396 |#4|))) (-15 -2694 ((-108) (-592 (-2 (|:| -4201 (-1088 |#3|)) (|:| -2168 (-525)))) (-592 (-2 (|:| -4201 (-1088 |#3|)) (|:| -2168 (-525)))))) (-15 -3492 ((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-1088 |#3|) (-1088 |#3|) |#4| (-592 |#2|) (-592 (-713)) (-592 |#3|))) (-15 -3694 ((-592 (-713)) (-1088 |#4|) (-592 |#2|) (-713))) (-15 -2866 ((-1088 |#3|) (-1088 |#3|) (-525)))) (-735) (-789) (-286) (-884 |#3| |#1| |#2|)) (T -685))
+((-2866 (*1 *2 *2 *3) (-12 (-5 *2 (-1088 *6)) (-5 *3 (-525)) (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))) (-3694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1088 *9)) (-5 *4 (-592 *7)) (-4 *7 (-789)) (-4 *9 (-884 *8 *6 *7)) (-4 *6 (-735)) (-4 *8 (-286)) (-5 *2 (-592 (-713))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *5 (-713)))) (-3492 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1088 *11)) (-5 *6 (-592 *10)) (-5 *7 (-592 (-713))) (-5 *8 (-592 *11)) (-4 *10 (-789)) (-4 *11 (-286)) (-4 *9 (-735)) (-4 *5 (-884 *11 *9 *10)) (-5 *2 (-592 (-1088 *5))) (-5 *1 (-685 *9 *10 *11 *5)) (-5 *3 (-1088 *5)))) (-2694 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-2 (|:| -4201 (-1088 *6)) (|:| -2168 (-525))))) (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))) (-2092 (*1 *2 *3 *4) (-12 (-5 *3 (-525)) (-5 *4 (-396 *2)) (-4 *2 (-884 *7 *5 *6)) (-5 *1 (-685 *5 *6 *7 *2)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-286)))) (-1772 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1088 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8))) (-4 *7 (-789)) (-4 *8 (-286)) (-4 *9 (-884 *8 *6 *7)) (-4 *6 (-735)) (-5 *2 (-2 (|:| |upol| (-1088 *8)) (|:| |Lval| (-592 *8)) (|:| |Lfact| (-592 (-2 (|:| -4201 (-1088 *8)) (|:| -2168 (-525))))) (|:| |ctpol| *8))) (-5 *1 (-685 *6 *7 *8 *9)))) (-2341 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8))) (-4 *7 (-789)) (-4 *8 (-286)) (-4 *6 (-735)) (-4 *9 (-884 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-592 (-2 (|:| -4201 (-1088 *9)) (|:| -2168 (-525))))))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1088 *9)))) (-3468 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-525)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-286)) (-4 *9 (-884 *8 *6 *7)) (-5 *2 (-2 (|:| -2158 (-1088 *9)) (|:| |polval| (-1088 *8)))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1088 *9)) (-5 *4 (-1088 *8)))) (-3006 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-685 *5 *4 *6 *3)) (-4 *3 (-884 *6 *5 *4)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -4201 (-1088 *6)) (|:| -2168 (-525))))) (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))) (-1757 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-884 *6 *4 *5)))) (-3586 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-396 (-1088 *7))) (-5 *1 (-685 *4 *5 *6 *7)) (-5 *3 (-1088 *7)))) (-3586 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-884 *6 *4 *5)))))
+(-10 -7 (-15 -3586 ((-396 |#4|) |#4|)) (-15 -3586 ((-396 (-1088 |#4|)) (-1088 |#4|))) (-15 -1757 ((-396 |#4|) |#4|)) (-15 -2074 ((-525) (-592 (-2 (|:| -4201 (-1088 |#3|)) (|:| -2168 (-525)))))) (-15 -3006 ((-396 |#4|) |#4| |#2|)) (-15 -3468 ((-2 (|:| -2158 (-1088 |#4|)) (|:| |polval| (-1088 |#3|))) (-1088 |#4|) (-1088 |#3|) (-525))) (-15 -2341 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-592 (-2 (|:| -4201 (-1088 |#4|)) (|:| -2168 (-525)))))) (-1088 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -1772 ((-2 (|:| |upol| (-1088 |#3|)) (|:| |Lval| (-592 |#3|)) (|:| |Lfact| (-592 (-2 (|:| -4201 (-1088 |#3|)) (|:| -2168 (-525))))) (|:| |ctpol| |#3|)) (-1088 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -2092 (|#4| (-525) (-396 |#4|))) (-15 -2694 ((-108) (-592 (-2 (|:| -4201 (-1088 |#3|)) (|:| -2168 (-525)))) (-592 (-2 (|:| -4201 (-1088 |#3|)) (|:| -2168 (-525)))))) (-15 -3492 ((-3 (-592 (-1088 |#4|)) "failed") (-1088 |#4|) (-1088 |#3|) (-1088 |#3|) |#4| (-592 |#2|) (-592 (-713)) (-592 |#3|))) (-15 -3694 ((-592 (-713)) (-1088 |#4|) (-592 |#2|) (-713))) (-15 -2866 ((-1088 |#3|) (-1088 |#3|) (-525))))
+((-2156 (($ $ (-856)) 12)))
+(((-686 |#1| |#2|) (-10 -8 (-15 -2156 (|#1| |#1| (-856)))) (-687 |#2|) (-160)) (T -686))
+NIL
+(-10 -8 (-15 -2156 (|#1| |#1| (-856))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1488 (($ $ (-856)) 28)) (-2156 (($ $ (-856)) 33)) (-2486 (($ $ (-856)) 29)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1242 (($ $ $) 25)) (-4100 (((-798) $) 11)) (-3133 (($ $ $ $) 26)) (-4148 (($ $ $) 24)) (-3364 (($) 18 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 30)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-687 |#1|) (-131) (-160)) (T -687))
-((-3587 (*1 *1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-687 *3)) (-4 *3 (-160)))))
-(-13 (-704) (-660 |t#1|) (-10 -8 (-15 -3587 ($ $ (-856)))))
+((-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-687 *3)) (-4 *3 (-160)))))
+(-13 (-704) (-660 |t#1|) (-10 -8 (-15 -2156 ($ $ (-856)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-663) . T) ((-704) . T) ((-983 |#1|) . T) ((-1020) . T))
-((-3335 (((-966) (-632 (-205)) (-525) (-108) (-525)) 25)) (-3487 (((-966) (-632 (-205)) (-525) (-108) (-525)) 24)))
-(((-688) (-10 -7 (-15 -3487 ((-966) (-632 (-205)) (-525) (-108) (-525))) (-15 -3335 ((-966) (-632 (-205)) (-525) (-108) (-525))))) (T -688))
-((-3335 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108)) (-5 *2 (-966)) (-5 *1 (-688)))) (-3487 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108)) (-5 *2 (-966)) (-5 *1 (-688)))))
-(-10 -7 (-15 -3487 ((-966) (-632 (-205)) (-525) (-108) (-525))) (-15 -3335 ((-966) (-632 (-205)) (-525) (-108) (-525))))
-((-2998 (((-966) (-525) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))) 43)) (-3191 (((-966) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN)))) 39)) (-3884 (((-966) (-205) (-205) (-205) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819)))) 32)))
-(((-689) (-10 -7 (-15 -3884 ((-966) (-205) (-205) (-205) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819))))) (-15 -3191 ((-966) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN))))) (-15 -2998 ((-966) (-525) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN))))))) (T -689))
-((-2998 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))) (-5 *2 (-966)) (-5 *1 (-689)))) (-3191 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN)))) (-5 *2 (-966)) (-5 *1 (-689)))) (-3884 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819)))) (-5 *2 (-966)) (-5 *1 (-689)))))
-(-10 -7 (-15 -3884 ((-966) (-205) (-205) (-205) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819))))) (-15 -3191 ((-966) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN))))) (-15 -2998 ((-966) (-525) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN))))))
-((-1592 (((-966) (-525) (-525) (-632 (-205)) (-525)) 34)) (-3834 (((-966) (-525) (-525) (-632 (-205)) (-525)) 33)) (-2720 (((-966) (-525) (-632 (-205)) (-525)) 32)) (-3675 (((-966) (-525) (-632 (-205)) (-525)) 31)) (-1564 (((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 30)) (-3869 (((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 29)) (-2132 (((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-525)) 28)) (-2698 (((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-525)) 27)) (-3803 (((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 24)) (-1494 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-525)) 23)) (-3651 (((-966) (-525) (-632 (-205)) (-525)) 22)) (-1539 (((-966) (-525) (-632 (-205)) (-525)) 21)))
-(((-690) (-10 -7 (-15 -1539 ((-966) (-525) (-632 (-205)) (-525))) (-15 -3651 ((-966) (-525) (-632 (-205)) (-525))) (-15 -1494 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3803 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2698 ((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2132 ((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3869 ((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1564 ((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3675 ((-966) (-525) (-632 (-205)) (-525))) (-15 -2720 ((-966) (-525) (-632 (-205)) (-525))) (-15 -3834 ((-966) (-525) (-525) (-632 (-205)) (-525))) (-15 -1592 ((-966) (-525) (-525) (-632 (-205)) (-525))))) (T -690))
-((-1592 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-3834 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-2720 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-3675 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-1564 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1075)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-3869 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1075)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-2132 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1075)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-2698 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1075)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-3803 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-1494 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-3651 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-1539 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))))
-(-10 -7 (-15 -1539 ((-966) (-525) (-632 (-205)) (-525))) (-15 -3651 ((-966) (-525) (-632 (-205)) (-525))) (-15 -1494 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3803 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2698 ((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2132 ((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3869 ((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1564 ((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3675 ((-966) (-525) (-632 (-205)) (-525))) (-15 -2720 ((-966) (-525) (-632 (-205)) (-525))) (-15 -3834 ((-966) (-525) (-525) (-632 (-205)) (-525))) (-15 -1592 ((-966) (-525) (-525) (-632 (-205)) (-525))))
-((-2445 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) 52)) (-1875 (((-966) (-632 (-205)) (-632 (-205)) (-525) (-525)) 51)) (-1518 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) 50)) (-1754 (((-966) (-205) (-205) (-525) (-525) (-525) (-525)) 46)) (-3989 (((-966) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 45)) (-1343 (((-966) (-205) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 44)) (-1938 (((-966) (-205) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 43)) (-1331 (((-966) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 42)) (-3567 (((-966) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819)))) 38)) (-1379 (((-966) (-205) (-205) (-525) (-632 (-205)) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819)))) 37)) (-4019 (((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819)))) 33)) (-2285 (((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819)))) 32)))
-(((-691) (-10 -7 (-15 -2285 ((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819))))) (-15 -4019 ((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819))))) (-15 -1379 ((-966) (-205) (-205) (-525) (-632 (-205)) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819))))) (-15 -3567 ((-966) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819))))) (-15 -1331 ((-966) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -1938 ((-966) (-205) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -1343 ((-966) (-205) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3989 ((-966) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -1754 ((-966) (-205) (-205) (-525) (-525) (-525) (-525))) (-15 -1518 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))) (-15 -1875 ((-966) (-632 (-205)) (-632 (-205)) (-525) (-525))) (-15 -2445 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))))) (T -691))
-((-2445 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-1875 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-691)))) (-1518 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-1754 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-691)))) (-3989 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-1343 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-1938 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-1331 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-3567 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-1379 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819)))) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-691)))) (-4019 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-2285 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819)))) (-5 *2 (-966)) (-5 *1 (-691)))))
-(-10 -7 (-15 -2285 ((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819))))) (-15 -4019 ((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819))))) (-15 -1379 ((-966) (-205) (-205) (-525) (-632 (-205)) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819))))) (-15 -3567 ((-966) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819))))) (-15 -1331 ((-966) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -1938 ((-966) (-205) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -1343 ((-966) (-205) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3989 ((-966) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -1754 ((-966) (-205) (-205) (-525) (-525) (-525) (-525))) (-15 -1518 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))) (-15 -1875 ((-966) (-632 (-205)) (-632 (-205)) (-525) (-525))) (-15 -2445 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))))
-((-2702 (((-966) (-525) (-525) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-3981 (((-966) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))) (-366) (-366)) 69) (((-966) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) 68)) (-3039 (((-966) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG)))) 57)) (-1756 (((-966) (-632 (-205)) (-632 (-205)) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) 50)) (-2349 (((-966) (-205) (-525) (-525) (-1075) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) 49)) (-3627 (((-966) (-205) (-525) (-525) (-205) (-1075) (-205) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) 45)) (-1257 (((-966) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) 42)) (-3891 (((-966) (-205) (-525) (-525) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) 38)))
-(((-692) (-10 -7 (-15 -3891 ((-966) (-205) (-525) (-525) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -1257 ((-966) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -3627 ((-966) (-205) (-525) (-525) (-205) (-1075) (-205) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -2349 ((-966) (-205) (-525) (-525) (-1075) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -1756 ((-966) (-632 (-205)) (-632 (-205)) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -3039 ((-966) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG))))) (-15 -3981 ((-966) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))) (-15 -3981 ((-966) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))) (-366) (-366))) (-15 -2702 ((-966) (-525) (-525) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -692))
-((-2702 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))) (-3981 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-366)) (-5 *2 (-966)) (-5 *1 (-692)))) (-3981 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-966)) (-5 *1 (-692)))) (-3039 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))) (-1756 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *2 (-966)) (-5 *1 (-692)))) (-2349 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-525)) (-5 *5 (-1075)) (-5 *6 (-632 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))) (-3627 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-525)) (-5 *5 (-1075)) (-5 *6 (-632 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))) (-1257 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))) (-3891 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))))
-(-10 -7 (-15 -3891 ((-966) (-205) (-525) (-525) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -1257 ((-966) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -3627 ((-966) (-205) (-525) (-525) (-205) (-1075) (-205) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -2349 ((-966) (-205) (-525) (-525) (-1075) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -1756 ((-966) (-632 (-205)) (-632 (-205)) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -3039 ((-966) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG))))) (-15 -3981 ((-966) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))) (-15 -3981 ((-966) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))) (-366) (-366))) (-15 -2702 ((-966) (-525) (-525) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP))))))
-((-2651 (((-966) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-620 (-205)) (-525)) 45)) (-2848 (((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-1075) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY)))) 41)) (-3593 (((-966) (-525) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 23)))
-(((-693) (-10 -7 (-15 -3593 ((-966) (-525) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2848 ((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-1075) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY))))) (-15 -2651 ((-966) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-620 (-205)) (-525))))) (T -693))
-((-2651 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-620 (-205))) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-693)))) (-2848 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1075)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-966)) (-5 *1 (-693)))) (-3593 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-693)))))
-(-10 -7 (-15 -3593 ((-966) (-525) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2848 ((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-1075) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY))))) (-15 -2651 ((-966) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-620 (-205)) (-525))))
-((-3648 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-632 (-205)) (-205) (-205) (-525)) 35)) (-3034 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-205) (-205) (-525)) 34)) (-2790 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-632 (-205)) (-205) (-205) (-525)) 33)) (-2221 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 29)) (-2229 (((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 28)) (-2900 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525)) 27)) (-1488 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525)) 24)) (-2842 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525)) 23)) (-1809 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-525)) 22)) (-3130 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525)) 21)))
-(((-694) (-10 -7 (-15 -3130 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -1809 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2842 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -1488 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -2900 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525))) (-15 -2229 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2221 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2790 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-632 (-205)) (-205) (-205) (-525))) (-15 -3034 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-205) (-205) (-525))) (-15 -3648 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-632 (-205)) (-205) (-205) (-525))))) (T -694))
-((-3648 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-966)) (-5 *1 (-694)))) (-3034 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-966)) (-5 *1 (-694)))) (-2790 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *6 (-205)) (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-694)))) (-2221 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-694)))) (-2229 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-694)))) (-2900 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-966)) (-5 *1 (-694)))) (-1488 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-694)))) (-2842 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-694)))) (-1809 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-694)))) (-3130 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-694)))))
-(-10 -7 (-15 -3130 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -1809 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2842 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -1488 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -2900 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525))) (-15 -2229 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2221 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2790 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-632 (-205)) (-205) (-205) (-525))) (-15 -3034 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-205) (-205) (-525))) (-15 -3648 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-632 (-205)) (-205) (-205) (-525))))
-((-4175 (((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525)) 45)) (-3707 (((-966) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-525)) 44)) (-3430 (((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525)) 43)) (-1706 (((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 42)) (-2376 (((-966) (-1075) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525)) 41)) (-3556 (((-966) (-1075) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525)) 40)) (-3992 (((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525) (-525) (-525) (-205) (-632 (-205)) (-525)) 39)) (-3657 (((-966) (-1075) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525))) 38)) (-2596 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-525)) 35)) (-3661 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525)) 34)) (-2049 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525)) 33)) (-2747 (((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 32)) (-1357 (((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525)) 31)) (-2932 (((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-525)) 30)) (-2644 (((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-525) (-525) (-525)) 29)) (-2824 (((-966) (-525) (-525) (-525) (-205) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-525)) (-525) (-525) (-525)) 28)) (-2036 (((-966) (-525) (-632 (-205)) (-205) (-525)) 24)) (-1680 (((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 21)))
-(((-695) (-10 -7 (-15 -1680 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2036 ((-966) (-525) (-632 (-205)) (-205) (-525))) (-15 -2824 ((-966) (-525) (-525) (-525) (-205) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-525)) (-525) (-525) (-525))) (-15 -2644 ((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -2932 ((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-525))) (-15 -1357 ((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525))) (-15 -2747 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2049 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525))) (-15 -3661 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525))) (-15 -2596 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3657 ((-966) (-1075) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)))) (-15 -3992 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525) (-525) (-525) (-205) (-632 (-205)) (-525))) (-15 -3556 ((-966) (-1075) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -2376 ((-966) (-1075) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1706 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3430 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -3707 ((-966) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-525))) (-15 -4175 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))))) (T -695))
-((-4175 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-3707 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-3430 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-1706 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-2376 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-3556 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1075)) (-5 *5 (-632 (-205))) (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-695)))) (-3992 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *6 (-205)) (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-695)))) (-3657 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1075)) (-5 *5 (-632 (-205))) (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-695)))) (-2596 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-3661 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-2049 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-2747 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-1357 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-2932 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-2644 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-2824 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) (-5 *3 (-525)) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-2036 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-1680 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))))
-(-10 -7 (-15 -1680 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2036 ((-966) (-525) (-632 (-205)) (-205) (-525))) (-15 -2824 ((-966) (-525) (-525) (-525) (-205) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-525)) (-525) (-525) (-525))) (-15 -2644 ((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -2932 ((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-525))) (-15 -1357 ((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525))) (-15 -2747 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2049 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525))) (-15 -3661 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525))) (-15 -2596 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3657 ((-966) (-1075) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)))) (-15 -3992 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525) (-525) (-525) (-205) (-632 (-205)) (-525))) (-15 -3556 ((-966) (-1075) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -2376 ((-966) (-1075) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1706 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3430 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -3707 ((-966) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-525))) (-15 -4175 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))))
-((-3126 (((-966) (-525) (-525) (-525) (-205) (-632 (-205)) (-525) (-632 (-205)) (-525)) 63)) (-3745 (((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-108) (-205) (-525) (-205) (-205) (-108) (-205) (-205) (-205) (-205) (-108) (-525) (-525) (-525) (-525) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) 62)) (-3653 (((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-108) (-108) (-525) (-525) (-632 (-205)) (-632 (-525)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS)))) 58)) (-2813 (((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-525) (-525) (-632 (-205)) (-525)) 51)) (-3532 (((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1)))) 50)) (-3687 (((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2)))) 46)) (-1547 (((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1)))) 42)) (-2595 (((-966) (-525) (-205) (-205) (-525) (-205) (-108) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) 38)))
-(((-696) (-10 -7 (-15 -2595 ((-966) (-525) (-205) (-205) (-525) (-205) (-108) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -1547 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1))))) (-15 -3687 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2))))) (-15 -3532 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1))))) (-15 -2813 ((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-525) (-525) (-632 (-205)) (-525))) (-15 -3653 ((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-108) (-108) (-525) (-525) (-632 (-205)) (-632 (-525)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS))))) (-15 -3745 ((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-108) (-205) (-525) (-205) (-205) (-108) (-205) (-205) (-205) (-205) (-108) (-525) (-525) (-525) (-525) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -3126 ((-966) (-525) (-525) (-525) (-205) (-632 (-205)) (-525) (-632 (-205)) (-525))))) (T -696))
-((-3126 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-696)))) (-3745 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-108)) (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-696)))) (-3653 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-632 (-205))) (-5 *6 (-108)) (-5 *7 (-632 (-525))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-525)) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-696)))) (-2813 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108)) (-5 *2 (-966)) (-5 *1 (-696)))) (-3532 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-966)) (-5 *1 (-696)))) (-3687 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-966)) (-5 *1 (-696)))) (-1547 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-966)) (-5 *1 (-696)))) (-2595 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-525)) (-5 *5 (-108)) (-5 *6 (-632 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-696)))))
-(-10 -7 (-15 -2595 ((-966) (-525) (-205) (-205) (-525) (-205) (-108) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -1547 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1))))) (-15 -3687 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2))))) (-15 -3532 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1))))) (-15 -2813 ((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-525) (-525) (-632 (-205)) (-525))) (-15 -3653 ((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-108) (-108) (-525) (-525) (-632 (-205)) (-632 (-525)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS))))) (-15 -3745 ((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-108) (-205) (-525) (-205) (-205) (-108) (-205) (-205) (-205) (-205) (-108) (-525) (-525) (-525) (-525) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -3126 ((-966) (-525) (-525) (-525) (-205) (-632 (-205)) (-525) (-632 (-205)) (-525))))
-((-1704 (((-966) (-1075) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525)) 47)) (-3879 (((-966) (-1075) (-1075) (-525) (-525) (-632 (-157 (-205))) (-525) (-632 (-157 (-205))) (-525) (-525) (-632 (-157 (-205))) (-525)) 46)) (-3953 (((-966) (-525) (-525) (-525) (-632 (-157 (-205))) (-525)) 45)) (-1595 (((-966) (-1075) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 40)) (-2606 (((-966) (-1075) (-1075) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)) (-525)) 39)) (-3216 (((-966) (-525) (-525) (-525) (-632 (-205)) (-525)) 36)) (-3782 (((-966) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525)) 35)) (-1946 (((-966) (-525) (-525) (-525) (-525) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-205) (-205) (-525)) 34)) (-3160 (((-966) (-525) (-525) (-525) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-108) (-205) (-108) (-632 (-525)) (-632 (-205)) (-525)) 33)) (-3736 (((-966) (-525) (-525) (-525) (-525) (-205) (-108) (-108) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-525)) 32)))
-(((-697) (-10 -7 (-15 -3736 ((-966) (-525) (-525) (-525) (-525) (-205) (-108) (-108) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-525))) (-15 -3160 ((-966) (-525) (-525) (-525) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-108) (-205) (-108) (-632 (-525)) (-632 (-205)) (-525))) (-15 -1946 ((-966) (-525) (-525) (-525) (-525) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-205) (-205) (-525))) (-15 -3782 ((-966) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525))) (-15 -3216 ((-966) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -2606 ((-966) (-1075) (-1075) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)) (-525))) (-15 -1595 ((-966) (-1075) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3953 ((-966) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -3879 ((-966) (-1075) (-1075) (-525) (-525) (-632 (-157 (-205))) (-525) (-632 (-157 (-205))) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -1704 ((-966) (-1075) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525))))) (T -697))
-((-1704 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205)))) (-5 *2 (-966)) (-5 *1 (-697)))) (-3879 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205)))) (-5 *2 (-966)) (-5 *1 (-697)))) (-3953 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-966)) (-5 *1 (-697)))) (-1595 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-697)))) (-2606 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-697)))) (-3216 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-697)))) (-3782 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-697)))) (-1946 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-592 (-108))) (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) (-5 *7 (-205)) (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-697)))) (-3160 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-632 (-525))) (-5 *5 (-108)) (-5 *7 (-632 (-205))) (-5 *3 (-525)) (-5 *6 (-205)) (-5 *2 (-966)) (-5 *1 (-697)))) (-3736 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-592 (-108))) (-5 *7 (-632 (-205))) (-5 *8 (-632 (-525))) (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108)) (-5 *2 (-966)) (-5 *1 (-697)))))
-(-10 -7 (-15 -3736 ((-966) (-525) (-525) (-525) (-525) (-205) (-108) (-108) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-525))) (-15 -3160 ((-966) (-525) (-525) (-525) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-108) (-205) (-108) (-632 (-525)) (-632 (-205)) (-525))) (-15 -1946 ((-966) (-525) (-525) (-525) (-525) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-205) (-205) (-525))) (-15 -3782 ((-966) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525))) (-15 -3216 ((-966) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -2606 ((-966) (-1075) (-1075) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)) (-525))) (-15 -1595 ((-966) (-1075) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3953 ((-966) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -3879 ((-966) (-1075) (-1075) (-525) (-525) (-632 (-157 (-205))) (-525) (-632 (-157 (-205))) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -1704 ((-966) (-1075) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525))))
-((-2679 (((-966) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525)) 65)) (-2159 (((-966) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525)) 60)) (-1621 (((-966) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))) (-366)) 56) (((-966) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) 55)) (-1951 (((-966) (-525) (-525) (-525) (-205) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525)) 37)) (-1270 (((-966) (-525) (-525) (-205) (-205) (-525) (-525) (-632 (-205)) (-525)) 33)) (-1722 (((-966) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525) (-525)) 30)) (-2120 (((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 29)) (-1438 (((-966) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 28)) (-4183 (((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 27)) (-1214 (((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525)) 26)) (-3597 (((-966) (-525) (-525) (-632 (-205)) (-525)) 25)) (-1378 (((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 24)) (-2976 (((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 23)) (-3092 (((-966) (-632 (-205)) (-525) (-525) (-525) (-525)) 22)) (-1303 (((-966) (-525) (-525) (-632 (-205)) (-525)) 21)))
-(((-698) (-10 -7 (-15 -1303 ((-966) (-525) (-525) (-632 (-205)) (-525))) (-15 -3092 ((-966) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -2976 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1378 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3597 ((-966) (-525) (-525) (-632 (-205)) (-525))) (-15 -1214 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -4183 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1438 ((-966) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2120 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1722 ((-966) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -1270 ((-966) (-525) (-525) (-205) (-205) (-525) (-525) (-632 (-205)) (-525))) (-15 -1951 ((-966) (-525) (-525) (-525) (-205) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1621 ((-966) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))))) (-15 -1621 ((-966) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))) (-366))) (-15 -2159 ((-966) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2679 ((-966) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525))))) (T -698))
-((-2679 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-157 (-205)))) (-5 *2 (-966)) (-5 *1 (-698)))) (-2159 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-1621 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-366)) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-698)))) (-1621 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-698)))) (-1951 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-525)) (-5 *5 (-108)) (-5 *6 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-698)))) (-1270 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-698)))) (-1722 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-698)))) (-2120 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-1438 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-4183 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-1214 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-3597 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-1378 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-2976 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-3092 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-698)))) (-1303 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))))
-(-10 -7 (-15 -1303 ((-966) (-525) (-525) (-632 (-205)) (-525))) (-15 -3092 ((-966) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -2976 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1378 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3597 ((-966) (-525) (-525) (-632 (-205)) (-525))) (-15 -1214 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -4183 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1438 ((-966) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2120 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1722 ((-966) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -1270 ((-966) (-525) (-525) (-205) (-205) (-525) (-525) (-632 (-205)) (-525))) (-15 -1951 ((-966) (-525) (-525) (-525) (-205) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1621 ((-966) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))))) (-15 -1621 ((-966) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))) (-366))) (-15 -2159 ((-966) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2679 ((-966) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525))))
-((-4038 (((-966) (-525) (-525) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))) 61)) (-1513 (((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525)) 57)) (-2988 (((-966) (-525) (-632 (-205)) (-108) (-205) (-525) (-525) (-525) (-525) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE)))) 56)) (-3818 (((-966) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525)) 37)) (-2217 (((-966) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-525)) 36)) (-3672 (((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 33)) (-1638 (((-966) (-525) (-632 (-205)) (-525) (-632 (-525)) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205))) 32)) (-1714 (((-966) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525)) 28)) (-2854 (((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525)) 27)) (-2032 (((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525)) 26)) (-2154 (((-966) (-525) (-632 (-157 (-205))) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-525)) 22)))
-(((-699) (-10 -7 (-15 -2154 ((-966) (-525) (-632 (-157 (-205))) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -2032 ((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -2854 ((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -1714 ((-966) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525))) (-15 -1638 ((-966) (-525) (-632 (-205)) (-525) (-632 (-525)) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)))) (-15 -3672 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2217 ((-966) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3818 ((-966) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -2988 ((-966) (-525) (-632 (-205)) (-108) (-205) (-525) (-525) (-525) (-525) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE))))) (-15 -1513 ((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -4038 ((-966) (-525) (-525) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD))))))) (T -699))
-((-4038 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-699)))) (-1513 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-699)))) (-2988 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108)) (-5 *6 (-205)) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-966)) (-5 *1 (-699)))) (-3818 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-699)))) (-2217 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-699)))) (-3672 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-699)))) (-1638 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-699)))) (-1714 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-699)))) (-2854 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-699)))) (-2032 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-699)))) (-2154 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-966)) (-5 *1 (-699)))))
-(-10 -7 (-15 -2154 ((-966) (-525) (-632 (-157 (-205))) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -2032 ((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -2854 ((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -1714 ((-966) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525))) (-15 -1638 ((-966) (-525) (-632 (-205)) (-525) (-632 (-525)) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)))) (-15 -3672 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2217 ((-966) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3818 ((-966) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -2988 ((-966) (-525) (-632 (-205)) (-108) (-205) (-525) (-525) (-525) (-525) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE))))) (-15 -1513 ((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -4038 ((-966) (-525) (-525) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD))))))
-((-1646 (((-966) (-1075) (-525) (-525) (-632 (-205)) (-525) (-525) (-632 (-205))) 29)) (-1667 (((-966) (-1075) (-525) (-525) (-632 (-205))) 28)) (-1287 (((-966) (-1075) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-205))) 27)) (-2846 (((-966) (-525) (-525) (-525) (-632 (-205))) 21)))
-(((-700) (-10 -7 (-15 -2846 ((-966) (-525) (-525) (-525) (-632 (-205)))) (-15 -1287 ((-966) (-1075) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-205)))) (-15 -1667 ((-966) (-1075) (-525) (-525) (-632 (-205)))) (-15 -1646 ((-966) (-1075) (-525) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)))))) (T -700))
-((-1646 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-700)))) (-1667 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-700)))) (-1287 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1075)) (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-700)))) (-2846 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-700)))))
-(-10 -7 (-15 -2846 ((-966) (-525) (-525) (-525) (-632 (-205)))) (-15 -1287 ((-966) (-1075) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-205)))) (-15 -1667 ((-966) (-1075) (-525) (-525) (-632 (-205)))) (-15 -1646 ((-966) (-1075) (-525) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)))))
-((-2565 (((-966) (-205) (-205) (-205) (-205) (-525)) 62)) (-3862 (((-966) (-205) (-205) (-205) (-525)) 61)) (-1841 (((-966) (-205) (-205) (-205) (-525)) 60)) (-3154 (((-966) (-205) (-205) (-525)) 59)) (-1386 (((-966) (-205) (-525)) 58)) (-2977 (((-966) (-205) (-525)) 57)) (-3541 (((-966) (-205) (-525)) 56)) (-1606 (((-966) (-205) (-525)) 55)) (-3474 (((-966) (-205) (-525)) 54)) (-2460 (((-966) (-205) (-525)) 53)) (-1668 (((-966) (-205) (-157 (-205)) (-525) (-1075) (-525)) 52)) (-4229 (((-966) (-205) (-157 (-205)) (-525) (-1075) (-525)) 51)) (-2533 (((-966) (-205) (-525)) 50)) (-1281 (((-966) (-205) (-525)) 49)) (-2851 (((-966) (-205) (-525)) 48)) (-3436 (((-966) (-205) (-525)) 47)) (-2010 (((-966) (-525) (-205) (-157 (-205)) (-525) (-1075) (-525)) 46)) (-3601 (((-966) (-1075) (-157 (-205)) (-1075) (-525)) 45)) (-1503 (((-966) (-1075) (-157 (-205)) (-1075) (-525)) 44)) (-2942 (((-966) (-205) (-157 (-205)) (-525) (-1075) (-525)) 43)) (-2872 (((-966) (-205) (-157 (-205)) (-525) (-1075) (-525)) 42)) (-1799 (((-966) (-205) (-525)) 39)) (-3113 (((-966) (-205) (-525)) 38)) (-4004 (((-966) (-205) (-525)) 37)) (-2015 (((-966) (-205) (-525)) 36)) (-3269 (((-966) (-205) (-525)) 35)) (-2108 (((-966) (-205) (-525)) 34)) (-2371 (((-966) (-205) (-525)) 33)) (-1971 (((-966) (-205) (-525)) 32)) (-1662 (((-966) (-205) (-525)) 31)) (-2911 (((-966) (-205) (-525)) 30)) (-2484 (((-966) (-205) (-205) (-205) (-525)) 29)) (-2704 (((-966) (-205) (-525)) 28)) (-1647 (((-966) (-205) (-525)) 27)) (-2394 (((-966) (-205) (-525)) 26)) (-1945 (((-966) (-205) (-525)) 25)) (-1658 (((-966) (-205) (-525)) 24)) (-2107 (((-966) (-157 (-205)) (-525)) 21)))
-(((-701) (-10 -7 (-15 -2107 ((-966) (-157 (-205)) (-525))) (-15 -1658 ((-966) (-205) (-525))) (-15 -1945 ((-966) (-205) (-525))) (-15 -2394 ((-966) (-205) (-525))) (-15 -1647 ((-966) (-205) (-525))) (-15 -2704 ((-966) (-205) (-525))) (-15 -2484 ((-966) (-205) (-205) (-205) (-525))) (-15 -2911 ((-966) (-205) (-525))) (-15 -1662 ((-966) (-205) (-525))) (-15 -1971 ((-966) (-205) (-525))) (-15 -2371 ((-966) (-205) (-525))) (-15 -2108 ((-966) (-205) (-525))) (-15 -3269 ((-966) (-205) (-525))) (-15 -2015 ((-966) (-205) (-525))) (-15 -4004 ((-966) (-205) (-525))) (-15 -3113 ((-966) (-205) (-525))) (-15 -1799 ((-966) (-205) (-525))) (-15 -2872 ((-966) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -2942 ((-966) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -1503 ((-966) (-1075) (-157 (-205)) (-1075) (-525))) (-15 -3601 ((-966) (-1075) (-157 (-205)) (-1075) (-525))) (-15 -2010 ((-966) (-525) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -3436 ((-966) (-205) (-525))) (-15 -2851 ((-966) (-205) (-525))) (-15 -1281 ((-966) (-205) (-525))) (-15 -2533 ((-966) (-205) (-525))) (-15 -4229 ((-966) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -1668 ((-966) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -2460 ((-966) (-205) (-525))) (-15 -3474 ((-966) (-205) (-525))) (-15 -1606 ((-966) (-205) (-525))) (-15 -3541 ((-966) (-205) (-525))) (-15 -2977 ((-966) (-205) (-525))) (-15 -1386 ((-966) (-205) (-525))) (-15 -3154 ((-966) (-205) (-205) (-525))) (-15 -1841 ((-966) (-205) (-205) (-205) (-525))) (-15 -3862 ((-966) (-205) (-205) (-205) (-525))) (-15 -2565 ((-966) (-205) (-205) (-205) (-205) (-525))))) (T -701))
-((-2565 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3862 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1841 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3154 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1386 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2977 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3541 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1606 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3474 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1668 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1075)) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))) (-4229 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1075)) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2533 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1281 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2851 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3436 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2010 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-525)) (-5 *5 (-157 (-205))) (-5 *6 (-1075)) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3601 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1075)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1503 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1075)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2942 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1075)) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2872 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1075)) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3113 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2015 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3269 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1971 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2911 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2484 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1647 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2394 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1945 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1658 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-157 (-205))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(-10 -7 (-15 -2107 ((-966) (-157 (-205)) (-525))) (-15 -1658 ((-966) (-205) (-525))) (-15 -1945 ((-966) (-205) (-525))) (-15 -2394 ((-966) (-205) (-525))) (-15 -1647 ((-966) (-205) (-525))) (-15 -2704 ((-966) (-205) (-525))) (-15 -2484 ((-966) (-205) (-205) (-205) (-525))) (-15 -2911 ((-966) (-205) (-525))) (-15 -1662 ((-966) (-205) (-525))) (-15 -1971 ((-966) (-205) (-525))) (-15 -2371 ((-966) (-205) (-525))) (-15 -2108 ((-966) (-205) (-525))) (-15 -3269 ((-966) (-205) (-525))) (-15 -2015 ((-966) (-205) (-525))) (-15 -4004 ((-966) (-205) (-525))) (-15 -3113 ((-966) (-205) (-525))) (-15 -1799 ((-966) (-205) (-525))) (-15 -2872 ((-966) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -2942 ((-966) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -1503 ((-966) (-1075) (-157 (-205)) (-1075) (-525))) (-15 -3601 ((-966) (-1075) (-157 (-205)) (-1075) (-525))) (-15 -2010 ((-966) (-525) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -3436 ((-966) (-205) (-525))) (-15 -2851 ((-966) (-205) (-525))) (-15 -1281 ((-966) (-205) (-525))) (-15 -2533 ((-966) (-205) (-525))) (-15 -4229 ((-966) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -1668 ((-966) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -2460 ((-966) (-205) (-525))) (-15 -3474 ((-966) (-205) (-525))) (-15 -1606 ((-966) (-205) (-525))) (-15 -3541 ((-966) (-205) (-525))) (-15 -2977 ((-966) (-205) (-525))) (-15 -1386 ((-966) (-205) (-525))) (-15 -3154 ((-966) (-205) (-205) (-525))) (-15 -1841 ((-966) (-205) (-205) (-205) (-525))) (-15 -3862 ((-966) (-205) (-205) (-205) (-525))) (-15 -2565 ((-966) (-205) (-205) (-205) (-205) (-525))))
-((-3610 (((-1179)) 18)) (-2624 (((-1075)) 22)) (-1866 (((-1075)) 21)) (-1963 (((-1024) (-1092) (-632 (-525))) 37) (((-1024) (-1092) (-632 (-205))) 32)) (-3941 (((-108)) 16)) (-2467 (((-1075) (-1075)) 25)))
-(((-702) (-10 -7 (-15 -1866 ((-1075))) (-15 -2624 ((-1075))) (-15 -2467 ((-1075) (-1075))) (-15 -1963 ((-1024) (-1092) (-632 (-205)))) (-15 -1963 ((-1024) (-1092) (-632 (-525)))) (-15 -3941 ((-108))) (-15 -3610 ((-1179))))) (T -702))
-((-3610 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-702)))) (-3941 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-702)))) (-1963 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-632 (-525))) (-5 *2 (-1024)) (-5 *1 (-702)))) (-1963 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-632 (-205))) (-5 *2 (-1024)) (-5 *1 (-702)))) (-2467 (*1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-702)))) (-2624 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-702)))) (-1866 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-702)))))
-(-10 -7 (-15 -1866 ((-1075))) (-15 -2624 ((-1075))) (-15 -2467 ((-1075) (-1075))) (-15 -1963 ((-1024) (-1092) (-632 (-205)))) (-15 -1963 ((-1024) (-1092) (-632 (-525)))) (-15 -3941 ((-108))) (-15 -3610 ((-1179))))
-((-1990 (($ $ $) 10)) (-3746 (($ $ $ $) 9)) (-2597 (($ $ $) 12)))
-(((-703 |#1|) (-10 -8 (-15 -2597 (|#1| |#1| |#1|)) (-15 -1990 (|#1| |#1| |#1|)) (-15 -3746 (|#1| |#1| |#1| |#1|))) (-704)) (T -703))
-NIL
-(-10 -8 (-15 -2597 (|#1| |#1| |#1|)) (-15 -1990 (|#1| |#1| |#1|)) (-15 -3746 (|#1| |#1| |#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-2837 (($ $ (-856)) 28)) (-2817 (($ $ (-856)) 29)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1990 (($ $ $) 25)) (-1217 (((-798) $) 11)) (-3746 (($ $ $ $) 26)) (-2597 (($ $ $) 24)) (-3349 (($) 18 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 30)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27)))
+((-1677 (((-966) (-632 (-205)) (-525) (-108) (-525)) 25)) (-3589 (((-966) (-632 (-205)) (-525) (-108) (-525)) 24)))
+(((-688) (-10 -7 (-15 -3589 ((-966) (-632 (-205)) (-525) (-108) (-525))) (-15 -1677 ((-966) (-632 (-205)) (-525) (-108) (-525))))) (T -688))
+((-1677 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108)) (-5 *2 (-966)) (-5 *1 (-688)))) (-3589 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108)) (-5 *2 (-966)) (-5 *1 (-688)))))
+(-10 -7 (-15 -3589 ((-966) (-632 (-205)) (-525) (-108) (-525))) (-15 -1677 ((-966) (-632 (-205)) (-525) (-108) (-525))))
+((-3633 (((-966) (-525) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))) 43)) (-1735 (((-966) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN)))) 39)) (-2107 (((-966) (-205) (-205) (-205) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834)))) 32)))
+(((-689) (-10 -7 (-15 -2107 ((-966) (-205) (-205) (-205) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834))))) (-15 -1735 ((-966) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN))))) (-15 -3633 ((-966) (-525) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN))))))) (T -689))
+((-3633 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))) (-5 *2 (-966)) (-5 *1 (-689)))) (-1735 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN)))) (-5 *2 (-966)) (-5 *1 (-689)))) (-2107 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834)))) (-5 *2 (-966)) (-5 *1 (-689)))))
+(-10 -7 (-15 -2107 ((-966) (-205) (-205) (-205) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834))))) (-15 -1735 ((-966) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN))))) (-15 -3633 ((-966) (-525) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN))))))
+((-3368 (((-966) (-525) (-525) (-632 (-205)) (-525)) 34)) (-2793 (((-966) (-525) (-525) (-632 (-205)) (-525)) 33)) (-2848 (((-966) (-525) (-632 (-205)) (-525)) 32)) (-1823 (((-966) (-525) (-632 (-205)) (-525)) 31)) (-3092 (((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 30)) (-3103 (((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 29)) (-2086 (((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-525)) 28)) (-2653 (((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-525)) 27)) (-3676 (((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 24)) (-3978 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-525)) 23)) (-1579 (((-966) (-525) (-632 (-205)) (-525)) 22)) (-1324 (((-966) (-525) (-632 (-205)) (-525)) 21)))
+(((-690) (-10 -7 (-15 -1324 ((-966) (-525) (-632 (-205)) (-525))) (-15 -1579 ((-966) (-525) (-632 (-205)) (-525))) (-15 -3978 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3676 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2653 ((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2086 ((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3103 ((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3092 ((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1823 ((-966) (-525) (-632 (-205)) (-525))) (-15 -2848 ((-966) (-525) (-632 (-205)) (-525))) (-15 -2793 ((-966) (-525) (-525) (-632 (-205)) (-525))) (-15 -3368 ((-966) (-525) (-525) (-632 (-205)) (-525))))) (T -690))
+((-3368 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-2793 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-2848 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-1823 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-3092 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1075)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-3103 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1075)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-2086 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1075)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-2653 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1075)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-3676 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-3978 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-1579 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-1324 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))))
+(-10 -7 (-15 -1324 ((-966) (-525) (-632 (-205)) (-525))) (-15 -1579 ((-966) (-525) (-632 (-205)) (-525))) (-15 -3978 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3676 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2653 ((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2086 ((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3103 ((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3092 ((-966) (-525) (-525) (-1075) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1823 ((-966) (-525) (-632 (-205)) (-525))) (-15 -2848 ((-966) (-525) (-632 (-205)) (-525))) (-15 -2793 ((-966) (-525) (-525) (-632 (-205)) (-525))) (-15 -3368 ((-966) (-525) (-525) (-632 (-205)) (-525))))
+((-2148 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) 52)) (-1306 (((-966) (-632 (-205)) (-632 (-205)) (-525) (-525)) 51)) (-1789 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) 50)) (-2595 (((-966) (-205) (-205) (-525) (-525) (-525) (-525)) 46)) (-1961 (((-966) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 45)) (-3488 (((-966) (-205) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 44)) (-3722 (((-966) (-205) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 43)) (-2940 (((-966) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 42)) (-2000 (((-966) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834)))) 38)) (-3848 (((-966) (-205) (-205) (-525) (-632 (-205)) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834)))) 37)) (-4072 (((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834)))) 33)) (-4188 (((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834)))) 32)))
+(((-691) (-10 -7 (-15 -4188 ((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834))))) (-15 -4072 ((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834))))) (-15 -3848 ((-966) (-205) (-205) (-525) (-632 (-205)) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834))))) (-15 -2000 ((-966) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834))))) (-15 -2940 ((-966) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3722 ((-966) (-205) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3488 ((-966) (-205) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -1961 ((-966) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -2595 ((-966) (-205) (-205) (-525) (-525) (-525) (-525))) (-15 -1789 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))) (-15 -1306 ((-966) (-632 (-205)) (-632 (-205)) (-525) (-525))) (-15 -2148 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))))) (T -691))
+((-2148 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-1306 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-691)))) (-1789 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-2595 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-691)))) (-1961 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-3488 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-3722 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-2940 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-2000 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-3848 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834)))) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-691)))) (-4072 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-4188 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834)))) (-5 *2 (-966)) (-5 *1 (-691)))))
+(-10 -7 (-15 -4188 ((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834))))) (-15 -4072 ((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834))))) (-15 -3848 ((-966) (-205) (-205) (-525) (-632 (-205)) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834))))) (-15 -2000 ((-966) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834))))) (-15 -2940 ((-966) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3722 ((-966) (-205) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3488 ((-966) (-205) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -1961 ((-966) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -2595 ((-966) (-205) (-205) (-525) (-525) (-525) (-525))) (-15 -1789 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))) (-15 -1306 ((-966) (-632 (-205)) (-632 (-205)) (-525) (-525))) (-15 -2148 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))))
+((-2689 (((-966) (-525) (-525) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-1892 (((-966) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))) (-366) (-366)) 69) (((-966) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) 68)) (-2776 (((-966) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG)))) 57)) (-2601 (((-966) (-632 (-205)) (-632 (-205)) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) 50)) (-3590 (((-966) (-205) (-525) (-525) (-1075) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) 49)) (-1363 (((-966) (-205) (-525) (-525) (-205) (-1075) (-205) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) 45)) (-3190 (((-966) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) 42)) (-2161 (((-966) (-205) (-525) (-525) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) 38)))
+(((-692) (-10 -7 (-15 -2161 ((-966) (-205) (-525) (-525) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -3190 ((-966) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -1363 ((-966) (-205) (-525) (-525) (-205) (-1075) (-205) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -3590 ((-966) (-205) (-525) (-525) (-1075) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -2601 ((-966) (-632 (-205)) (-632 (-205)) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -2776 ((-966) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG))))) (-15 -1892 ((-966) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))) (-15 -1892 ((-966) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))) (-366) (-366))) (-15 -2689 ((-966) (-525) (-525) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -692))
+((-2689 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))) (-1892 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-366)) (-5 *2 (-966)) (-5 *1 (-692)))) (-1892 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-966)) (-5 *1 (-692)))) (-2776 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))) (-2601 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *2 (-966)) (-5 *1 (-692)))) (-3590 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-525)) (-5 *5 (-1075)) (-5 *6 (-632 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))) (-1363 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-525)) (-5 *5 (-1075)) (-5 *6 (-632 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))) (-3190 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))) (-2161 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))))
+(-10 -7 (-15 -2161 ((-966) (-205) (-525) (-525) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -3190 ((-966) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -1363 ((-966) (-205) (-525) (-525) (-205) (-1075) (-205) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -3590 ((-966) (-205) (-525) (-525) (-1075) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -2601 ((-966) (-632 (-205)) (-632 (-205)) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -2776 ((-966) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG))))) (-15 -1892 ((-966) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))) (-15 -1892 ((-966) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))) (-366) (-366))) (-15 -2689 ((-966) (-525) (-525) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP))))))
+((-3399 (((-966) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-620 (-205)) (-525)) 45)) (-1586 (((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-1075) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY)))) 41)) (-2204 (((-966) (-525) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 23)))
+(((-693) (-10 -7 (-15 -2204 ((-966) (-525) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1586 ((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-1075) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY))))) (-15 -3399 ((-966) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-620 (-205)) (-525))))) (T -693))
+((-3399 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-620 (-205))) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-693)))) (-1586 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1075)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-966)) (-5 *1 (-693)))) (-2204 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-693)))))
+(-10 -7 (-15 -2204 ((-966) (-525) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1586 ((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-1075) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY))))) (-15 -3399 ((-966) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-620 (-205)) (-525))))
+((-1546 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-632 (-205)) (-205) (-205) (-525)) 35)) (-2744 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-205) (-205) (-525)) 34)) (-2299 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-632 (-205)) (-205) (-205) (-525)) 33)) (-1790 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 29)) (-1865 (((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 28)) (-3892 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525)) 27)) (-3912 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525)) 24)) (-1519 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525)) 23)) (-1894 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-525)) 22)) (-2395 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525)) 21)))
+(((-694) (-10 -7 (-15 -2395 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -1894 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1519 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -3912 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -3892 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525))) (-15 -1865 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1790 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2299 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-632 (-205)) (-205) (-205) (-525))) (-15 -2744 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-205) (-205) (-525))) (-15 -1546 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-632 (-205)) (-205) (-205) (-525))))) (T -694))
+((-1546 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-966)) (-5 *1 (-694)))) (-2744 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-966)) (-5 *1 (-694)))) (-2299 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *6 (-205)) (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-694)))) (-1790 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-694)))) (-1865 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-694)))) (-3892 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-966)) (-5 *1 (-694)))) (-3912 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-694)))) (-1519 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-694)))) (-1894 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-694)))) (-2395 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-694)))))
+(-10 -7 (-15 -2395 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -1894 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1519 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -3912 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -3892 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525))) (-15 -1865 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1790 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2299 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-632 (-205)) (-205) (-205) (-525))) (-15 -2744 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-205) (-205) (-525))) (-15 -1546 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-632 (-205)) (-205) (-205) (-525))))
+((-2019 (((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525)) 45)) (-3956 (((-966) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-525)) 44)) (-1239 (((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525)) 43)) (-3370 (((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 42)) (-2647 (((-966) (-1075) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525)) 41)) (-3029 (((-966) (-1075) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525)) 40)) (-3791 (((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525) (-525) (-525) (-205) (-632 (-205)) (-525)) 39)) (-1650 (((-966) (-1075) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525))) 38)) (-4136 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-525)) 35)) (-1694 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525)) 34)) (-3602 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525)) 33)) (-3058 (((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 32)) (-2832 (((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525)) 31)) (-1207 (((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-525)) 30)) (-3333 (((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-525) (-525) (-525)) 29)) (-2554 (((-966) (-525) (-525) (-525) (-205) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-525)) (-525) (-525) (-525)) 28)) (-3477 (((-966) (-525) (-632 (-205)) (-205) (-525)) 24)) (-3094 (((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 21)))
+(((-695) (-10 -7 (-15 -3094 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3477 ((-966) (-525) (-632 (-205)) (-205) (-525))) (-15 -2554 ((-966) (-525) (-525) (-525) (-205) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-525)) (-525) (-525) (-525))) (-15 -3333 ((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -1207 ((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-525))) (-15 -2832 ((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525))) (-15 -3058 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3602 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525))) (-15 -1694 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525))) (-15 -4136 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1650 ((-966) (-1075) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)))) (-15 -3791 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525) (-525) (-525) (-205) (-632 (-205)) (-525))) (-15 -3029 ((-966) (-1075) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -2647 ((-966) (-1075) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3370 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1239 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -3956 ((-966) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2019 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))))) (T -695))
+((-2019 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-3956 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-1239 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-3370 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-2647 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-3029 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1075)) (-5 *5 (-632 (-205))) (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-695)))) (-3791 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *6 (-205)) (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-695)))) (-1650 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1075)) (-5 *5 (-632 (-205))) (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-695)))) (-4136 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-1694 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-3602 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-3058 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-2832 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-1207 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-3333 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-2554 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) (-5 *3 (-525)) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-3477 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-3094 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))))
+(-10 -7 (-15 -3094 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3477 ((-966) (-525) (-632 (-205)) (-205) (-525))) (-15 -2554 ((-966) (-525) (-525) (-525) (-205) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-525)) (-525) (-525) (-525))) (-15 -3333 ((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -1207 ((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-525))) (-15 -2832 ((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525))) (-15 -3058 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3602 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525))) (-15 -1694 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525))) (-15 -4136 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1650 ((-966) (-1075) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)))) (-15 -3791 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525) (-525) (-525) (-205) (-632 (-205)) (-525))) (-15 -3029 ((-966) (-1075) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -2647 ((-966) (-1075) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3370 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1239 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -3956 ((-966) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2019 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))))
+((-2348 (((-966) (-525) (-525) (-525) (-205) (-632 (-205)) (-525) (-632 (-205)) (-525)) 63)) (-1321 (((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-108) (-205) (-525) (-205) (-205) (-108) (-205) (-205) (-205) (-205) (-108) (-525) (-525) (-525) (-525) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) 62)) (-1603 (((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-108) (-108) (-525) (-525) (-632 (-205)) (-632 (-525)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS)))) 58)) (-2467 (((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-525) (-525) (-632 (-205)) (-525)) 51)) (-2809 (((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1)))) 50)) (-3749 (((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2)))) 46)) (-1640 (((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1)))) 42)) (-4125 (((-966) (-525) (-205) (-205) (-525) (-205) (-108) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) 38)))
+(((-696) (-10 -7 (-15 -4125 ((-966) (-525) (-205) (-205) (-525) (-205) (-108) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -1640 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1))))) (-15 -3749 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2))))) (-15 -2809 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1))))) (-15 -2467 ((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-525) (-525) (-632 (-205)) (-525))) (-15 -1603 ((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-108) (-108) (-525) (-525) (-632 (-205)) (-632 (-525)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS))))) (-15 -1321 ((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-108) (-205) (-525) (-205) (-205) (-108) (-205) (-205) (-205) (-205) (-108) (-525) (-525) (-525) (-525) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -2348 ((-966) (-525) (-525) (-525) (-205) (-632 (-205)) (-525) (-632 (-205)) (-525))))) (T -696))
+((-2348 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-696)))) (-1321 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-108)) (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-696)))) (-1603 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-632 (-205))) (-5 *6 (-108)) (-5 *7 (-632 (-525))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-525)) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-696)))) (-2467 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108)) (-5 *2 (-966)) (-5 *1 (-696)))) (-2809 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-966)) (-5 *1 (-696)))) (-3749 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-966)) (-5 *1 (-696)))) (-1640 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-966)) (-5 *1 (-696)))) (-4125 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-525)) (-5 *5 (-108)) (-5 *6 (-632 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-696)))))
+(-10 -7 (-15 -4125 ((-966) (-525) (-205) (-205) (-525) (-205) (-108) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -1640 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1))))) (-15 -3749 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2))))) (-15 -2809 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1))))) (-15 -2467 ((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-525) (-525) (-632 (-205)) (-525))) (-15 -1603 ((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-108) (-108) (-525) (-525) (-632 (-205)) (-632 (-525)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS))))) (-15 -1321 ((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-108) (-205) (-525) (-205) (-205) (-108) (-205) (-205) (-205) (-205) (-108) (-525) (-525) (-525) (-525) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -2348 ((-966) (-525) (-525) (-525) (-205) (-632 (-205)) (-525) (-632 (-205)) (-525))))
+((-3348 (((-966) (-1075) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525)) 47)) (-2064 (((-966) (-1075) (-1075) (-525) (-525) (-632 (-157 (-205))) (-525) (-632 (-157 (-205))) (-525) (-525) (-632 (-157 (-205))) (-525)) 46)) (-1620 (((-966) (-525) (-525) (-525) (-632 (-157 (-205))) (-525)) 45)) (-3401 (((-966) (-1075) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 40)) (-4203 (((-966) (-1075) (-1075) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)) (-525)) 39)) (-1968 (((-966) (-525) (-525) (-525) (-632 (-205)) (-525)) 36)) (-3466 (((-966) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525)) 35)) (-3794 (((-966) (-525) (-525) (-525) (-525) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-205) (-205) (-525)) 34)) (-1465 (((-966) (-525) (-525) (-525) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-108) (-205) (-108) (-632 (-525)) (-632 (-205)) (-525)) 33)) (-1234 (((-966) (-525) (-525) (-525) (-525) (-205) (-108) (-108) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-525)) 32)))
+(((-697) (-10 -7 (-15 -1234 ((-966) (-525) (-525) (-525) (-525) (-205) (-108) (-108) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-525))) (-15 -1465 ((-966) (-525) (-525) (-525) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-108) (-205) (-108) (-632 (-525)) (-632 (-205)) (-525))) (-15 -3794 ((-966) (-525) (-525) (-525) (-525) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-205) (-205) (-525))) (-15 -3466 ((-966) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525))) (-15 -1968 ((-966) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -4203 ((-966) (-1075) (-1075) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)) (-525))) (-15 -3401 ((-966) (-1075) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1620 ((-966) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -2064 ((-966) (-1075) (-1075) (-525) (-525) (-632 (-157 (-205))) (-525) (-632 (-157 (-205))) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -3348 ((-966) (-1075) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525))))) (T -697))
+((-3348 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205)))) (-5 *2 (-966)) (-5 *1 (-697)))) (-2064 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205)))) (-5 *2 (-966)) (-5 *1 (-697)))) (-1620 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-966)) (-5 *1 (-697)))) (-3401 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-697)))) (-4203 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-697)))) (-1968 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-697)))) (-3466 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-697)))) (-3794 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-592 (-108))) (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) (-5 *7 (-205)) (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-697)))) (-1465 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-632 (-525))) (-5 *5 (-108)) (-5 *7 (-632 (-205))) (-5 *3 (-525)) (-5 *6 (-205)) (-5 *2 (-966)) (-5 *1 (-697)))) (-1234 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-592 (-108))) (-5 *7 (-632 (-205))) (-5 *8 (-632 (-525))) (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108)) (-5 *2 (-966)) (-5 *1 (-697)))))
+(-10 -7 (-15 -1234 ((-966) (-525) (-525) (-525) (-525) (-205) (-108) (-108) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-525))) (-15 -1465 ((-966) (-525) (-525) (-525) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-108) (-205) (-108) (-632 (-525)) (-632 (-205)) (-525))) (-15 -3794 ((-966) (-525) (-525) (-525) (-525) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-205) (-205) (-525))) (-15 -3466 ((-966) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525))) (-15 -1968 ((-966) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -4203 ((-966) (-1075) (-1075) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)) (-525))) (-15 -3401 ((-966) (-1075) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1620 ((-966) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -2064 ((-966) (-1075) (-1075) (-525) (-525) (-632 (-157 (-205))) (-525) (-632 (-157 (-205))) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -3348 ((-966) (-1075) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525))))
+((-3669 (((-966) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525)) 65)) (-2365 (((-966) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525)) 60)) (-3788 (((-966) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))) (-366)) 56) (((-966) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) 55)) (-3849 (((-966) (-525) (-525) (-525) (-205) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525)) 37)) (-3921 (((-966) (-525) (-525) (-205) (-205) (-525) (-525) (-632 (-205)) (-525)) 33)) (-3515 (((-966) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525) (-525)) 30)) (-1979 (((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 29)) (-2254 (((-966) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 28)) (-2094 (((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 27)) (-1801 (((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525)) 26)) (-2246 (((-966) (-525) (-525) (-632 (-205)) (-525)) 25)) (-3839 (((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 24)) (-3441 (((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 23)) (-2082 (((-966) (-632 (-205)) (-525) (-525) (-525) (-525)) 22)) (-3142 (((-966) (-525) (-525) (-632 (-205)) (-525)) 21)))
+(((-698) (-10 -7 (-15 -3142 ((-966) (-525) (-525) (-632 (-205)) (-525))) (-15 -2082 ((-966) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -3441 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3839 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2246 ((-966) (-525) (-525) (-632 (-205)) (-525))) (-15 -1801 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -2094 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2254 ((-966) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1979 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3515 ((-966) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -3921 ((-966) (-525) (-525) (-205) (-205) (-525) (-525) (-632 (-205)) (-525))) (-15 -3849 ((-966) (-525) (-525) (-525) (-205) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3788 ((-966) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))))) (-15 -3788 ((-966) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))) (-366))) (-15 -2365 ((-966) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3669 ((-966) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525))))) (T -698))
+((-3669 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-157 (-205)))) (-5 *2 (-966)) (-5 *1 (-698)))) (-2365 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-3788 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-366)) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-698)))) (-3788 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-698)))) (-3849 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-525)) (-5 *5 (-108)) (-5 *6 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-698)))) (-3921 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-698)))) (-3515 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-698)))) (-1979 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-2254 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-2094 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-1801 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-2246 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-3839 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-3441 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-2082 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-698)))) (-3142 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))))
+(-10 -7 (-15 -3142 ((-966) (-525) (-525) (-632 (-205)) (-525))) (-15 -2082 ((-966) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -3441 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3839 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2246 ((-966) (-525) (-525) (-632 (-205)) (-525))) (-15 -1801 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -2094 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2254 ((-966) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1979 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3515 ((-966) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -3921 ((-966) (-525) (-525) (-205) (-205) (-525) (-525) (-632 (-205)) (-525))) (-15 -3849 ((-966) (-525) (-525) (-525) (-205) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3788 ((-966) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))))) (-15 -3788 ((-966) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))) (-366))) (-15 -2365 ((-966) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3669 ((-966) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525))))
+((-1251 (((-966) (-525) (-525) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))) 61)) (-3282 (((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525)) 57)) (-3539 (((-966) (-525) (-632 (-205)) (-108) (-205) (-525) (-525) (-525) (-525) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE)))) 56)) (-2645 (((-966) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525)) 37)) (-1747 (((-966) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-525)) 36)) (-1787 (((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 33)) (-3959 (((-966) (-525) (-632 (-205)) (-525) (-632 (-525)) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205))) 32)) (-3458 (((-966) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525)) 28)) (-1645 (((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525)) 27)) (-3442 (((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525)) 26)) (-2306 (((-966) (-525) (-632 (-157 (-205))) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-525)) 22)))
+(((-699) (-10 -7 (-15 -2306 ((-966) (-525) (-632 (-157 (-205))) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -3442 ((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -1645 ((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -3458 ((-966) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525))) (-15 -3959 ((-966) (-525) (-632 (-205)) (-525) (-632 (-525)) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)))) (-15 -1787 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1747 ((-966) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2645 ((-966) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -3539 ((-966) (-525) (-632 (-205)) (-108) (-205) (-525) (-525) (-525) (-525) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE))))) (-15 -3282 ((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -1251 ((-966) (-525) (-525) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD))))))) (T -699))
+((-1251 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-699)))) (-3282 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-699)))) (-3539 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108)) (-5 *6 (-205)) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-966)) (-5 *1 (-699)))) (-2645 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-699)))) (-1747 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-699)))) (-1787 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-699)))) (-3959 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-699)))) (-3458 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-699)))) (-1645 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-699)))) (-3442 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-699)))) (-2306 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-966)) (-5 *1 (-699)))))
+(-10 -7 (-15 -2306 ((-966) (-525) (-632 (-157 (-205))) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -3442 ((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -1645 ((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -3458 ((-966) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525))) (-15 -3959 ((-966) (-525) (-632 (-205)) (-525) (-632 (-525)) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)))) (-15 -1787 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1747 ((-966) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2645 ((-966) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -3539 ((-966) (-525) (-632 (-205)) (-108) (-205) (-525) (-525) (-525) (-525) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE))))) (-15 -3282 ((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -1251 ((-966) (-525) (-525) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD))))))
+((-4024 (((-966) (-1075) (-525) (-525) (-632 (-205)) (-525) (-525) (-632 (-205))) 29)) (-4217 (((-966) (-1075) (-525) (-525) (-632 (-205))) 28)) (-1255 (((-966) (-1075) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-205))) 27)) (-1562 (((-966) (-525) (-525) (-525) (-632 (-205))) 21)))
+(((-700) (-10 -7 (-15 -1562 ((-966) (-525) (-525) (-525) (-632 (-205)))) (-15 -1255 ((-966) (-1075) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-205)))) (-15 -4217 ((-966) (-1075) (-525) (-525) (-632 (-205)))) (-15 -4024 ((-966) (-1075) (-525) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)))))) (T -700))
+((-4024 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-700)))) (-4217 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-700)))) (-1255 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1075)) (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-700)))) (-1562 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-700)))))
+(-10 -7 (-15 -1562 ((-966) (-525) (-525) (-525) (-632 (-205)))) (-15 -1255 ((-966) (-1075) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-205)))) (-15 -4217 ((-966) (-1075) (-525) (-525) (-632 (-205)))) (-15 -4024 ((-966) (-1075) (-525) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)))))
+((-3840 (((-966) (-205) (-205) (-205) (-205) (-525)) 62)) (-3038 (((-966) (-205) (-205) (-205) (-525)) 61)) (-2174 (((-966) (-205) (-205) (-205) (-525)) 60)) (-2589 (((-966) (-205) (-205) (-525)) 59)) (-3628 (((-966) (-205) (-525)) 58)) (-3451 (((-966) (-205) (-525)) 57)) (-2901 (((-966) (-205) (-525)) 56)) (-3671 (((-966) (-205) (-525)) 55)) (-3459 (((-966) (-205) (-525)) 54)) (-2272 (((-966) (-205) (-525)) 53)) (-4229 (((-966) (-205) (-157 (-205)) (-525) (-1075) (-525)) 52)) (-2541 (((-966) (-205) (-157 (-205)) (-525) (-1075) (-525)) 51)) (-1733 (((-966) (-205) (-525)) 50)) (-4141 (((-966) (-205) (-525)) 49)) (-1623 (((-966) (-205) (-525)) 48)) (-3096 (((-966) (-205) (-525)) 47)) (-3251 (((-966) (-525) (-205) (-157 (-205)) (-525) (-1075) (-525)) 46)) (-2292 (((-966) (-1075) (-157 (-205)) (-1075) (-525)) 45)) (-3112 (((-966) (-1075) (-157 (-205)) (-1075) (-525)) 44)) (-1305 (((-966) (-205) (-157 (-205)) (-525) (-1075) (-525)) 43)) (-1844 (((-966) (-205) (-157 (-205)) (-525) (-1075) (-525)) 42)) (-2935 (((-966) (-205) (-525)) 39)) (-2249 (((-966) (-205) (-525)) 38)) (-3914 (((-966) (-205) (-525)) 37)) (-3293 (((-966) (-205) (-525)) 36)) (-4185 (((-966) (-205) (-525)) 35)) (-2998 (((-966) (-205) (-525)) 34)) (-2611 (((-966) (-205) (-525)) 33)) (-4074 (((-966) (-205) (-525)) 32)) (-4167 (((-966) (-205) (-525)) 31)) (-4018 (((-966) (-205) (-525)) 30)) (-2498 (((-966) (-205) (-205) (-205) (-525)) 29)) (-2710 (((-966) (-205) (-525)) 28)) (-4035 (((-966) (-205) (-525)) 27)) (-2819 (((-966) (-205) (-525)) 26)) (-3784 (((-966) (-205) (-525)) 25)) (-4131 (((-966) (-205) (-525)) 24)) (-2988 (((-966) (-157 (-205)) (-525)) 21)))
+(((-701) (-10 -7 (-15 -2988 ((-966) (-157 (-205)) (-525))) (-15 -4131 ((-966) (-205) (-525))) (-15 -3784 ((-966) (-205) (-525))) (-15 -2819 ((-966) (-205) (-525))) (-15 -4035 ((-966) (-205) (-525))) (-15 -2710 ((-966) (-205) (-525))) (-15 -2498 ((-966) (-205) (-205) (-205) (-525))) (-15 -4018 ((-966) (-205) (-525))) (-15 -4167 ((-966) (-205) (-525))) (-15 -4074 ((-966) (-205) (-525))) (-15 -2611 ((-966) (-205) (-525))) (-15 -2998 ((-966) (-205) (-525))) (-15 -4185 ((-966) (-205) (-525))) (-15 -3293 ((-966) (-205) (-525))) (-15 -3914 ((-966) (-205) (-525))) (-15 -2249 ((-966) (-205) (-525))) (-15 -2935 ((-966) (-205) (-525))) (-15 -1844 ((-966) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -1305 ((-966) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -3112 ((-966) (-1075) (-157 (-205)) (-1075) (-525))) (-15 -2292 ((-966) (-1075) (-157 (-205)) (-1075) (-525))) (-15 -3251 ((-966) (-525) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -3096 ((-966) (-205) (-525))) (-15 -1623 ((-966) (-205) (-525))) (-15 -4141 ((-966) (-205) (-525))) (-15 -1733 ((-966) (-205) (-525))) (-15 -2541 ((-966) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -4229 ((-966) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -2272 ((-966) (-205) (-525))) (-15 -3459 ((-966) (-205) (-525))) (-15 -3671 ((-966) (-205) (-525))) (-15 -2901 ((-966) (-205) (-525))) (-15 -3451 ((-966) (-205) (-525))) (-15 -3628 ((-966) (-205) (-525))) (-15 -2589 ((-966) (-205) (-205) (-525))) (-15 -2174 ((-966) (-205) (-205) (-205) (-525))) (-15 -3038 ((-966) (-205) (-205) (-205) (-525))) (-15 -3840 ((-966) (-205) (-205) (-205) (-205) (-525))))) (T -701))
+((-3840 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3038 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2174 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2589 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3451 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2901 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2272 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-4229 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1075)) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2541 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1075)) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1733 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-4141 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1623 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3096 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3251 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-525)) (-5 *5 (-157 (-205))) (-5 *6 (-1075)) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2292 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1075)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3112 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1075)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1305 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1075)) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1844 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1075)) (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2935 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3914 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3293 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-4185 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2998 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-4074 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-4018 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2498 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-4035 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2819 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3784 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2988 (*1 *2 *3 *4) (-12 (-5 *3 (-157 (-205))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(-10 -7 (-15 -2988 ((-966) (-157 (-205)) (-525))) (-15 -4131 ((-966) (-205) (-525))) (-15 -3784 ((-966) (-205) (-525))) (-15 -2819 ((-966) (-205) (-525))) (-15 -4035 ((-966) (-205) (-525))) (-15 -2710 ((-966) (-205) (-525))) (-15 -2498 ((-966) (-205) (-205) (-205) (-525))) (-15 -4018 ((-966) (-205) (-525))) (-15 -4167 ((-966) (-205) (-525))) (-15 -4074 ((-966) (-205) (-525))) (-15 -2611 ((-966) (-205) (-525))) (-15 -2998 ((-966) (-205) (-525))) (-15 -4185 ((-966) (-205) (-525))) (-15 -3293 ((-966) (-205) (-525))) (-15 -3914 ((-966) (-205) (-525))) (-15 -2249 ((-966) (-205) (-525))) (-15 -2935 ((-966) (-205) (-525))) (-15 -1844 ((-966) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -1305 ((-966) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -3112 ((-966) (-1075) (-157 (-205)) (-1075) (-525))) (-15 -2292 ((-966) (-1075) (-157 (-205)) (-1075) (-525))) (-15 -3251 ((-966) (-525) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -3096 ((-966) (-205) (-525))) (-15 -1623 ((-966) (-205) (-525))) (-15 -4141 ((-966) (-205) (-525))) (-15 -1733 ((-966) (-205) (-525))) (-15 -2541 ((-966) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -4229 ((-966) (-205) (-157 (-205)) (-525) (-1075) (-525))) (-15 -2272 ((-966) (-205) (-525))) (-15 -3459 ((-966) (-205) (-525))) (-15 -3671 ((-966) (-205) (-525))) (-15 -2901 ((-966) (-205) (-525))) (-15 -3451 ((-966) (-205) (-525))) (-15 -3628 ((-966) (-205) (-525))) (-15 -2589 ((-966) (-205) (-205) (-525))) (-15 -2174 ((-966) (-205) (-205) (-205) (-525))) (-15 -3038 ((-966) (-205) (-205) (-205) (-525))) (-15 -3840 ((-966) (-205) (-205) (-205) (-205) (-525))))
+((-2397 (((-1179)) 18)) (-3145 (((-1075)) 22)) (-2419 (((-1075)) 21)) (-3986 (((-1024) (-1092) (-632 (-525))) 37) (((-1024) (-1092) (-632 (-205))) 32)) (-2084 (((-108)) 16)) (-2335 (((-1075) (-1075)) 25)))
+(((-702) (-10 -7 (-15 -2419 ((-1075))) (-15 -3145 ((-1075))) (-15 -2335 ((-1075) (-1075))) (-15 -3986 ((-1024) (-1092) (-632 (-205)))) (-15 -3986 ((-1024) (-1092) (-632 (-525)))) (-15 -2084 ((-108))) (-15 -2397 ((-1179))))) (T -702))
+((-2397 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-702)))) (-2084 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-702)))) (-3986 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-632 (-525))) (-5 *2 (-1024)) (-5 *1 (-702)))) (-3986 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-632 (-205))) (-5 *2 (-1024)) (-5 *1 (-702)))) (-2335 (*1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-702)))) (-3145 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-702)))) (-2419 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-702)))))
+(-10 -7 (-15 -2419 ((-1075))) (-15 -3145 ((-1075))) (-15 -2335 ((-1075) (-1075))) (-15 -3986 ((-1024) (-1092) (-632 (-205)))) (-15 -3986 ((-1024) (-1092) (-632 (-525)))) (-15 -2084 ((-108))) (-15 -2397 ((-1179))))
+((-1242 (($ $ $) 10)) (-3133 (($ $ $ $) 9)) (-4148 (($ $ $) 12)))
+(((-703 |#1|) (-10 -8 (-15 -4148 (|#1| |#1| |#1|)) (-15 -1242 (|#1| |#1| |#1|)) (-15 -3133 (|#1| |#1| |#1| |#1|))) (-704)) (T -703))
+NIL
+(-10 -8 (-15 -4148 (|#1| |#1| |#1|)) (-15 -1242 (|#1| |#1| |#1|)) (-15 -3133 (|#1| |#1| |#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1488 (($ $ (-856)) 28)) (-2486 (($ $ (-856)) 29)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1242 (($ $ $) 25)) (-4100 (((-798) $) 11)) (-3133 (($ $ $ $) 26)) (-4148 (($ $ $) 24)) (-3364 (($) 18 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 30)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27)))
(((-704) (-131)) (T -704))
-((-3746 (*1 *1 *1 *1 *1) (-4 *1 (-704))) (-1990 (*1 *1 *1 *1) (-4 *1 (-704))) (-2597 (*1 *1 *1 *1) (-4 *1 (-704))))
-(-13 (-21) (-663) (-10 -8 (-15 -3746 ($ $ $ $)) (-15 -1990 ($ $ $)) (-15 -2597 ($ $ $))))
+((-3133 (*1 *1 *1 *1 *1) (-4 *1 (-704))) (-1242 (*1 *1 *1 *1) (-4 *1 (-704))) (-4148 (*1 *1 *1 *1) (-4 *1 (-704))))
+(-13 (-21) (-663) (-10 -8 (-15 -3133 ($ $ $ $)) (-15 -1242 ($ $ $)) (-15 -4148 ($ $ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-663) . T) ((-1020) . T))
-((-1217 (((-798) $) NIL) (($ (-525)) 10)))
-(((-705 |#1|) (-10 -8 (-15 -1217 (|#1| (-525))) (-15 -1217 ((-798) |#1|))) (-706)) (T -705))
+((-4100 (((-798) $) NIL) (($ (-525)) 10)))
+(((-705 |#1|) (-10 -8 (-15 -4100 (|#1| (-525))) (-15 -4100 ((-798) |#1|))) (-706)) (T -705))
NIL
-(-10 -8 (-15 -1217 (|#1| (-525))) (-15 -1217 ((-798) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-1586 (((-3 $ "failed") $) 40)) (-2837 (($ $ (-856)) 28) (($ $ (-713)) 35)) (-3457 (((-3 $ "failed") $) 38)) (-1396 (((-108) $) 34)) (-4106 (((-3 $ "failed") $) 39)) (-2817 (($ $ (-856)) 29) (($ $ (-713)) 36)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1990 (($ $ $) 25)) (-1217 (((-798) $) 11) (($ (-525)) 31)) (-3917 (((-713)) 32)) (-3746 (($ $ $ $) 26)) (-2597 (($ $ $) 24)) (-3349 (($) 18 T CONST)) (-3359 (($) 33 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 30) (($ $ (-713)) 37)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27)))
+(-10 -8 (-15 -4100 (|#1| (-525))) (-15 -4100 ((-798) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3322 (((-3 $ "failed") $) 40)) (-1488 (($ $ (-856)) 28) (($ $ (-713)) 35)) (-3300 (((-3 $ "failed") $) 38)) (-2278 (((-108) $) 34)) (-3711 (((-3 $ "failed") $) 39)) (-2486 (($ $ (-856)) 29) (($ $ (-713)) 36)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1242 (($ $ $) 25)) (-4100 (((-798) $) 11) (($ (-525)) 31)) (-2448 (((-713)) 32)) (-3133 (($ $ $ $) 26)) (-4148 (($ $ $) 24)) (-3364 (($) 18 T CONST)) (-3375 (($) 33 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 30) (($ $ (-713)) 37)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27)))
(((-706) (-131)) (T -706))
-((-3917 (*1 *2) (-12 (-4 *1 (-706)) (-5 *2 (-713)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-706)))))
-(-13 (-704) (-665) (-10 -8 (-15 -3917 ((-713))) (-15 -1217 ($ (-525)))))
+((-2448 (*1 *2) (-12 (-4 *1 (-706)) (-5 *2 (-713)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-706)))))
+(-13 (-704) (-665) (-10 -8 (-15 -2448 ((-713))) (-15 -4100 ($ (-525)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-663) . T) ((-665) . T) ((-704) . T) ((-1020) . T))
-((-1968 (((-592 (-2 (|:| |outval| (-157 |#1|)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 |#1|)))))) (-632 (-157 (-385 (-525)))) |#1|) 33)) (-1208 (((-592 (-157 |#1|)) (-632 (-157 (-385 (-525)))) |#1|) 23)) (-1304 (((-887 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))) (-1092)) 20) (((-887 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525))))) 19)))
-(((-707 |#1|) (-10 -7 (-15 -1304 ((-887 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))))) (-15 -1304 ((-887 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))) (-1092))) (-15 -1208 ((-592 (-157 |#1|)) (-632 (-157 (-385 (-525)))) |#1|)) (-15 -1968 ((-592 (-2 (|:| |outval| (-157 |#1|)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 |#1|)))))) (-632 (-157 (-385 (-525)))) |#1|))) (-13 (-341) (-787))) (T -707))
-((-1968 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-592 (-2 (|:| |outval| (-157 *4)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 *4))))))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))) (-1208 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))) (-1304 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *4 (-1092)) (-5 *2 (-887 (-157 (-385 (-525))))) (-5 *1 (-707 *5)) (-4 *5 (-13 (-341) (-787))))) (-1304 (*1 *2 *3) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-887 (-157 (-385 (-525))))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))))
-(-10 -7 (-15 -1304 ((-887 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))))) (-15 -1304 ((-887 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))) (-1092))) (-15 -1208 ((-592 (-157 |#1|)) (-632 (-157 (-385 (-525)))) |#1|)) (-15 -1968 ((-592 (-2 (|:| |outval| (-157 |#1|)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 |#1|)))))) (-632 (-157 (-385 (-525)))) |#1|)))
-((-2272 (((-161 (-525)) |#1|) 25)))
-(((-708 |#1|) (-10 -7 (-15 -2272 ((-161 (-525)) |#1|))) (-382)) (T -708))
-((-2272 (*1 *2 *3) (-12 (-5 *2 (-161 (-525))) (-5 *1 (-708 *3)) (-4 *3 (-382)))))
-(-10 -7 (-15 -2272 ((-161 (-525)) |#1|)))
-((-3927 ((|#1| |#1| |#1|) 24)) (-2752 ((|#1| |#1| |#1|) 23)) (-3468 ((|#1| |#1| |#1|) 32)) (-3968 ((|#1| |#1| |#1|) 28)) (-2240 (((-3 |#1| "failed") |#1| |#1|) 27)) (-1282 (((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|) 22)))
-(((-709 |#1| |#2|) (-10 -7 (-15 -1282 ((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|)) (-15 -2752 (|#1| |#1| |#1|)) (-15 -3927 (|#1| |#1| |#1|)) (-15 -2240 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3968 (|#1| |#1| |#1|)) (-15 -3468 (|#1| |#1| |#1|))) (-651 |#2|) (-341)) (T -709))
-((-3468 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-3968 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-2240 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-3927 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-2752 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-1282 (*1 *2 *3 *3) (-12 (-4 *4 (-341)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1607 *3))) (-5 *1 (-709 *3 *4)) (-4 *3 (-651 *4)))))
-(-10 -7 (-15 -1282 ((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|)) (-15 -2752 (|#1| |#1| |#1|)) (-15 -3927 (|#1| |#1| |#1|)) (-15 -2240 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3968 (|#1| |#1| |#1|)) (-15 -3468 (|#1| |#1| |#1|)))
-((-2868 (((-2 (|:| -3094 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))) (-525)) 59)) (-2641 (((-2 (|:| -3094 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525))))) 57)) (-1975 (((-525)) 70)))
-(((-710 |#1| |#2|) (-10 -7 (-15 -1975 ((-525))) (-15 -2641 ((-2 (|:| -3094 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))))) (-15 -2868 ((-2 (|:| -3094 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))) (-525)))) (-1150 (-525)) (-387 (-525) |#1|)) (T -710))
-((-2868 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-1150 *3)) (-5 *2 (-2 (|:| -3094 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-710 *4 *5)) (-4 *5 (-387 *3 *4)))) (-2641 (*1 *2) (-12 (-4 *3 (-1150 (-525))) (-5 *2 (-2 (|:| -3094 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525))))) (-5 *1 (-710 *3 *4)) (-4 *4 (-387 (-525) *3)))) (-1975 (*1 *2) (-12 (-4 *3 (-1150 *2)) (-5 *2 (-525)) (-5 *1 (-710 *3 *4)) (-4 *4 (-387 *2 *3)))))
-(-10 -7 (-15 -1975 ((-525))) (-15 -2641 ((-2 (|:| -3094 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))))) (-15 -2868 ((-2 (|:| -3094 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))) (-525))))
-((-4236 (((-108) $ $) NIL)) (-1572 (((-3 (|:| |nia| (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) $) 21)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 20) (($ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 13) (($ (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) 18)) (-3955 (((-108) $ $) NIL)))
-(((-711) (-13 (-1020) (-10 -8 (-15 -1217 ($ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1217 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1217 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (-15 -1217 ((-798) $)) (-15 -1572 ((-3 (|:| |nia| (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) $))))) (T -711))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-711)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-711)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-711)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) (-5 *1 (-711)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) (-5 *1 (-711)))))
-(-13 (-1020) (-10 -8 (-15 -1217 ($ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1217 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1217 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (-15 -1217 ((-798) $)) (-15 -1572 ((-3 (|:| |nia| (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) $))))
-((-1360 (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|))) 18) (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)) (-592 (-1092))) 17)) (-3922 (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|))) 20) (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)) (-592 (-1092))) 19)))
-(((-712 |#1|) (-10 -7 (-15 -1360 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)) (-592 (-1092)))) (-15 -1360 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)))) (-15 -3922 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)) (-592 (-1092)))) (-15 -3922 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|))))) (-517)) (T -712))
-((-3922 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *4)))))) (-5 *1 (-712 *4)))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-592 (-1092))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *5)))))) (-5 *1 (-712 *5)))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *4)))))) (-5 *1 (-712 *4)))) (-1360 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-592 (-1092))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *5)))))) (-5 *1 (-712 *5)))))
-(-10 -7 (-15 -1360 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)) (-592 (-1092)))) (-15 -1360 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)))) (-15 -3922 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)) (-592 (-1092)))) (-15 -3922 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-3167 (($ $ $) 6)) (-1578 (((-3 $ "failed") $ $) 9)) (-3506 (($ $ (-525)) 7)) (-2169 (($) NIL T CONST)) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($ $) NIL)) (-1733 (($ $ $) NIL)) (-1396 (((-108) $) NIL)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-2589 (($ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-1217 (((-798) $) NIL)) (-1619 (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ $ $) NIL)))
-(((-713) (-13 (-735) (-669) (-10 -8 (-15 -1733 ($ $ $)) (-15 -1747 ($ $ $)) (-15 -2589 ($ $ $)) (-15 -2818 ((-2 (|:| -2829 $) (|:| -1607 $)) $ $)) (-15 -1715 ((-3 $ "failed") $ $)) (-15 -3506 ($ $ (-525))) (-15 -2502 ($ $)) (-6 (-4260 "*"))))) (T -713))
-((-1733 (*1 *1 *1 *1) (-5 *1 (-713))) (-1747 (*1 *1 *1 *1) (-5 *1 (-713))) (-2589 (*1 *1 *1 *1) (-5 *1 (-713))) (-2818 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2829 (-713)) (|:| -1607 (-713)))) (-5 *1 (-713)))) (-1715 (*1 *1 *1 *1) (|partial| -5 *1 (-713))) (-3506 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-713)))) (-2502 (*1 *1 *1) (-5 *1 (-713))))
-(-13 (-735) (-669) (-10 -8 (-15 -1733 ($ $ $)) (-15 -1747 ($ $ $)) (-15 -2589 ($ $ $)) (-15 -2818 ((-2 (|:| -2829 $) (|:| -1607 $)) $ $)) (-15 -1715 ((-3 $ "failed") $ $)) (-15 -3506 ($ $ (-525))) (-15 -2502 ($ $)) (-6 (-4260 "*"))))
-((-3922 (((-3 |#2| "failed") |#2| |#2| (-110) (-1092)) 35)))
-(((-714 |#1| |#2|) (-10 -7 (-15 -3922 ((-3 |#2| "failed") |#2| |#2| (-110) (-1092)))) (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1114) (-893))) (T -714))
-((-3922 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1092)) (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *1 (-714 *5 *2)) (-4 *2 (-13 (-29 *5) (-1114) (-893))))))
-(-10 -7 (-15 -3922 ((-3 |#2| "failed") |#2| |#2| (-110) (-1092))))
-((-1217 (((-716) |#1|) 8)))
-(((-715 |#1|) (-10 -7 (-15 -1217 ((-716) |#1|))) (-1128)) (T -715))
-((-1217 (*1 *2 *3) (-12 (-5 *2 (-716)) (-5 *1 (-715 *3)) (-4 *3 (-1128)))))
-(-10 -7 (-15 -1217 ((-716) |#1|)))
-((-4236 (((-108) $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 7)) (-3955 (((-108) $ $) 9)))
+((-4041 (((-592 (-2 (|:| |outval| (-157 |#1|)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 |#1|)))))) (-632 (-157 (-385 (-525)))) |#1|) 33)) (-2404 (((-592 (-157 |#1|)) (-632 (-157 (-385 (-525)))) |#1|) 23)) (-3153 (((-887 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))) (-1092)) 20) (((-887 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525))))) 19)))
+(((-707 |#1|) (-10 -7 (-15 -3153 ((-887 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))))) (-15 -3153 ((-887 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))) (-1092))) (-15 -2404 ((-592 (-157 |#1|)) (-632 (-157 (-385 (-525)))) |#1|)) (-15 -4041 ((-592 (-2 (|:| |outval| (-157 |#1|)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 |#1|)))))) (-632 (-157 (-385 (-525)))) |#1|))) (-13 (-341) (-787))) (T -707))
+((-4041 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-592 (-2 (|:| |outval| (-157 *4)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 *4))))))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))) (-2404 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))) (-3153 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *4 (-1092)) (-5 *2 (-887 (-157 (-385 (-525))))) (-5 *1 (-707 *5)) (-4 *5 (-13 (-341) (-787))))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-887 (-157 (-385 (-525))))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))))
+(-10 -7 (-15 -3153 ((-887 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))))) (-15 -3153 ((-887 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))) (-1092))) (-15 -2404 ((-592 (-157 |#1|)) (-632 (-157 (-385 (-525)))) |#1|)) (-15 -4041 ((-592 (-2 (|:| |outval| (-157 |#1|)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 |#1|)))))) (-632 (-157 (-385 (-525)))) |#1|)))
+((-4070 (((-161 (-525)) |#1|) 25)))
+(((-708 |#1|) (-10 -7 (-15 -4070 ((-161 (-525)) |#1|))) (-382)) (T -708))
+((-4070 (*1 *2 *3) (-12 (-5 *2 (-161 (-525))) (-5 *1 (-708 *3)) (-4 *3 (-382)))))
+(-10 -7 (-15 -4070 ((-161 (-525)) |#1|)))
+((-2544 ((|#1| |#1| |#1|) 24)) (-3114 ((|#1| |#1| |#1|) 23)) (-3405 ((|#1| |#1| |#1|) 32)) (-1749 ((|#1| |#1| |#1|) 28)) (-3777 (((-3 |#1| "failed") |#1| |#1|) 27)) (-4150 (((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|) 22)))
+(((-709 |#1| |#2|) (-10 -7 (-15 -4150 ((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|)) (-15 -3114 (|#1| |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -3777 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1749 (|#1| |#1| |#1|)) (-15 -3405 (|#1| |#1| |#1|))) (-651 |#2|) (-341)) (T -709))
+((-3405 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-1749 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-3777 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-2544 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-3114 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-4150 (*1 *2 *3 *3) (-12 (-4 *4 (-341)) (-5 *2 (-2 (|:| -1416 *3) (|:| -3681 *3))) (-5 *1 (-709 *3 *4)) (-4 *3 (-651 *4)))))
+(-10 -7 (-15 -4150 ((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|)) (-15 -3114 (|#1| |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -3777 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1749 (|#1| |#1| |#1|)) (-15 -3405 (|#1| |#1| |#1|)))
+((-1794 (((-2 (|:| -2103 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))) (-525)) 59)) (-3295 (((-2 (|:| -2103 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525))))) 57)) (-4115 (((-525)) 70)))
+(((-710 |#1| |#2|) (-10 -7 (-15 -4115 ((-525))) (-15 -3295 ((-2 (|:| -2103 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))))) (-15 -1794 ((-2 (|:| -2103 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))) (-525)))) (-1150 (-525)) (-387 (-525) |#1|)) (T -710))
+((-1794 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-1150 *3)) (-5 *2 (-2 (|:| -2103 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-710 *4 *5)) (-4 *5 (-387 *3 *4)))) (-3295 (*1 *2) (-12 (-4 *3 (-1150 (-525))) (-5 *2 (-2 (|:| -2103 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525))))) (-5 *1 (-710 *3 *4)) (-4 *4 (-387 (-525) *3)))) (-4115 (*1 *2) (-12 (-4 *3 (-1150 *2)) (-5 *2 (-525)) (-5 *1 (-710 *3 *4)) (-4 *4 (-387 *2 *3)))))
+(-10 -7 (-15 -4115 ((-525))) (-15 -3295 ((-2 (|:| -2103 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))))) (-15 -1794 ((-2 (|:| -2103 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))) (-525))))
+((-4087 (((-108) $ $) NIL)) (-4105 (((-3 (|:| |nia| (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) $) 21)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 20) (($ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 13) (($ (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) 18)) (-2775 (((-108) $ $) NIL)))
+(((-711) (-13 (-1020) (-10 -8 (-15 -4100 ($ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4100 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4100 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (-15 -4100 ((-798) $)) (-15 -4105 ((-3 (|:| |nia| (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) $))))) (T -711))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-711)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-711)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-711)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) (-5 *1 (-711)))) (-4105 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) (-5 *1 (-711)))))
+(-13 (-1020) (-10 -8 (-15 -4100 ($ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4100 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4100 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (-15 -4100 ((-798) $)) (-15 -4105 ((-3 (|:| |nia| (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) $))))
+((-2875 (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|))) 18) (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)) (-592 (-1092))) 17)) (-2496 (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|))) 20) (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)) (-592 (-1092))) 19)))
+(((-712 |#1|) (-10 -7 (-15 -2875 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)) (-592 (-1092)))) (-15 -2875 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)))) (-15 -2496 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)) (-592 (-1092)))) (-15 -2496 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|))))) (-517)) (T -712))
+((-2496 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *4)))))) (-5 *1 (-712 *4)))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-592 (-1092))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *5)))))) (-5 *1 (-712 *5)))) (-2875 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *4)))))) (-5 *1 (-712 *4)))) (-2875 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-592 (-1092))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *5)))))) (-5 *1 (-712 *5)))))
+(-10 -7 (-15 -2875 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)) (-592 (-1092)))) (-15 -2875 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)))) (-15 -2496 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)) (-592 (-1092)))) (-15 -2496 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1525 (($ $ $) 6)) (-3222 (((-3 $ "failed") $ $) 9)) (-3164 (($ $ (-525)) 7)) (-2475 (($) NIL T CONST)) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($ $) NIL)) (-1332 (($ $ $) NIL)) (-2278 (((-108) $) NIL)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2772 (($ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-4100 (((-798) $) NIL)) (-3706 (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ $ $) NIL)))
+(((-713) (-13 (-735) (-669) (-10 -8 (-15 -1332 ($ $ $)) (-15 -1356 ($ $ $)) (-15 -2772 ($ $ $)) (-15 -2494 ((-2 (|:| -1416 $) (|:| -3681 $)) $ $)) (-15 -1311 ((-3 $ "failed") $ $)) (-15 -3164 ($ $ (-525))) (-15 -1903 ($ $)) (-6 (-4261 "*"))))) (T -713))
+((-1332 (*1 *1 *1 *1) (-5 *1 (-713))) (-1356 (*1 *1 *1 *1) (-5 *1 (-713))) (-2772 (*1 *1 *1 *1) (-5 *1 (-713))) (-2494 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1416 (-713)) (|:| -3681 (-713)))) (-5 *1 (-713)))) (-1311 (*1 *1 *1 *1) (|partial| -5 *1 (-713))) (-3164 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-713)))) (-1903 (*1 *1 *1) (-5 *1 (-713))))
+(-13 (-735) (-669) (-10 -8 (-15 -1332 ($ $ $)) (-15 -1356 ($ $ $)) (-15 -2772 ($ $ $)) (-15 -2494 ((-2 (|:| -1416 $) (|:| -3681 $)) $ $)) (-15 -1311 ((-3 $ "failed") $ $)) (-15 -3164 ($ $ (-525))) (-15 -1903 ($ $)) (-6 (-4261 "*"))))
+((-2496 (((-3 |#2| "failed") |#2| |#2| (-110) (-1092)) 35)))
+(((-714 |#1| |#2|) (-10 -7 (-15 -2496 ((-3 |#2| "failed") |#2| |#2| (-110) (-1092)))) (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1114) (-893))) (T -714))
+((-2496 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1092)) (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *1 (-714 *5 *2)) (-4 *2 (-13 (-29 *5) (-1114) (-893))))))
+(-10 -7 (-15 -2496 ((-3 |#2| "failed") |#2| |#2| (-110) (-1092))))
+((-4100 (((-716) |#1|) 8)))
+(((-715 |#1|) (-10 -7 (-15 -4100 ((-716) |#1|))) (-1128)) (T -715))
+((-4100 (*1 *2 *3) (-12 (-5 *2 (-716)) (-5 *1 (-715 *3)) (-4 *3 (-1128)))))
+(-10 -7 (-15 -4100 ((-716) |#1|)))
+((-4087 (((-108) $ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 7)) (-2775 (((-108) $ $) 9)))
(((-716) (-1020)) (T -716))
NIL
(-1020)
-((-2382 ((|#2| |#4|) 35)))
-(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2382 (|#2| |#4|))) (-429) (-1150 |#1|) (-667 |#1| |#2|) (-1150 |#3|)) (T -717))
-((-2382 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-667 *4 *2)) (-4 *2 (-1150 *4)) (-5 *1 (-717 *4 *2 *5 *3)) (-4 *3 (-1150 *5)))))
-(-10 -7 (-15 -2382 (|#2| |#4|)))
-((-3457 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2716 (((-1179) (-1075) (-1075) |#4| |#5|) 33)) (-2774 ((|#4| |#4| |#5|) 73)) (-1745 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#5|) 77)) (-1228 (((-592 (-2 (|:| |val| (-108)) (|:| -2563 |#5|))) |#4| |#5|) 16)))
-(((-718 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3457 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2774 (|#4| |#4| |#5|)) (-15 -1745 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#5|)) (-15 -2716 ((-1179) (-1075) (-1075) |#4| |#5|)) (-15 -1228 ((-592 (-2 (|:| |val| (-108)) (|:| -2563 |#5|))) |#4| |#5|))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|)) (T -718))
-((-1228 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2563 *4)))) (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-2716 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1075)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *4 (-991 *6 *7 *8)) (-5 *2 (-1179)) (-5 *1 (-718 *6 *7 *8 *4 *5)) (-4 *5 (-996 *6 *7 *8 *4)))) (-1745 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4)))) (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-2774 (*1 *2 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *2 (-991 *4 *5 *6)) (-5 *1 (-718 *4 *5 *6 *2 *3)) (-4 *3 (-996 *4 *5 *6 *2)))) (-3457 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
-(-10 -7 (-15 -3457 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2774 (|#4| |#4| |#5|)) (-15 -1745 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#5|)) (-15 -2716 ((-1179) (-1075) (-1075) |#4| |#5|)) (-15 -1228 ((-592 (-2 (|:| |val| (-108)) (|:| -2563 |#5|))) |#4| |#5|)))
-((-3077 (((-3 (-1088 (-1088 |#1|)) "failed") |#4|) 43)) (-2040 (((-592 |#4|) |#4|) 15)) (-3127 ((|#4| |#4|) 11)))
-(((-719 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2040 ((-592 |#4|) |#4|)) (-15 -3077 ((-3 (-1088 (-1088 |#1|)) "failed") |#4|)) (-15 -3127 (|#4| |#4|))) (-327) (-307 |#1|) (-1150 |#2|) (-1150 |#3|) (-856)) (T -719))
-((-3127 (*1 *2 *2) (-12 (-4 *3 (-327)) (-4 *4 (-307 *3)) (-4 *5 (-1150 *4)) (-5 *1 (-719 *3 *4 *5 *2 *6)) (-4 *2 (-1150 *5)) (-14 *6 (-856)))) (-3077 (*1 *2 *3) (|partial| -12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1150 *5)) (-5 *2 (-1088 (-1088 *4))) (-5 *1 (-719 *4 *5 *6 *3 *7)) (-4 *3 (-1150 *6)) (-14 *7 (-856)))) (-2040 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1150 *5)) (-5 *2 (-592 *3)) (-5 *1 (-719 *4 *5 *6 *3 *7)) (-4 *3 (-1150 *6)) (-14 *7 (-856)))))
-(-10 -7 (-15 -2040 ((-592 |#4|) |#4|)) (-15 -3077 ((-3 (-1088 (-1088 |#1|)) "failed") |#4|)) (-15 -3127 (|#4| |#4|)))
-((-1965 (((-2 (|:| |deter| (-592 (-1088 |#5|))) (|:| |dterm| (-592 (-592 (-2 (|:| -2087 (-713)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-592 |#1|)) (|:| |nlead| (-592 |#5|))) (-1088 |#5|) (-592 |#1|) (-592 |#5|)) 54)) (-3466 (((-592 (-713)) |#1|) 13)))
-(((-720 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1965 ((-2 (|:| |deter| (-592 (-1088 |#5|))) (|:| |dterm| (-592 (-592 (-2 (|:| -2087 (-713)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-592 |#1|)) (|:| |nlead| (-592 |#5|))) (-1088 |#5|) (-592 |#1|) (-592 |#5|))) (-15 -3466 ((-592 (-713)) |#1|))) (-1150 |#4|) (-735) (-789) (-286) (-884 |#4| |#2| |#3|)) (T -720))
-((-3466 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-592 (-713))) (-5 *1 (-720 *3 *4 *5 *6 *7)) (-4 *3 (-1150 *6)) (-4 *7 (-884 *6 *4 *5)))) (-1965 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1150 *9)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-286)) (-4 *10 (-884 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-592 (-1088 *10))) (|:| |dterm| (-592 (-592 (-2 (|:| -2087 (-713)) (|:| |pcoef| *10))))) (|:| |nfacts| (-592 *6)) (|:| |nlead| (-592 *10)))) (-5 *1 (-720 *6 *7 *8 *9 *10)) (-5 *3 (-1088 *10)) (-5 *4 (-592 *6)) (-5 *5 (-592 *10)))))
-(-10 -7 (-15 -1965 ((-2 (|:| |deter| (-592 (-1088 |#5|))) (|:| |dterm| (-592 (-592 (-2 (|:| -2087 (-713)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-592 |#1|)) (|:| |nlead| (-592 |#5|))) (-1088 |#5|) (-592 |#1|) (-592 |#5|))) (-15 -3466 ((-592 (-713)) |#1|)))
-((-3852 (((-592 (-2 (|:| |outval| |#1|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#1|))))) (-632 (-385 (-525))) |#1|) 31)) (-2207 (((-592 |#1|) (-632 (-385 (-525))) |#1|) 21)) (-1304 (((-887 (-385 (-525))) (-632 (-385 (-525))) (-1092)) 18) (((-887 (-385 (-525))) (-632 (-385 (-525)))) 17)))
-(((-721 |#1|) (-10 -7 (-15 -1304 ((-887 (-385 (-525))) (-632 (-385 (-525))))) (-15 -1304 ((-887 (-385 (-525))) (-632 (-385 (-525))) (-1092))) (-15 -2207 ((-592 |#1|) (-632 (-385 (-525))) |#1|)) (-15 -3852 ((-592 (-2 (|:| |outval| |#1|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#1|))))) (-632 (-385 (-525))) |#1|))) (-13 (-341) (-787))) (T -721))
-((-3852 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-592 (-2 (|:| |outval| *4) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 *4)))))) (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))) (-2207 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))) (-1304 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *4 (-1092)) (-5 *2 (-887 (-385 (-525)))) (-5 *1 (-721 *5)) (-4 *5 (-13 (-341) (-787))))) (-1304 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-887 (-385 (-525)))) (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))))
-(-10 -7 (-15 -1304 ((-887 (-385 (-525))) (-632 (-385 (-525))))) (-15 -1304 ((-887 (-385 (-525))) (-632 (-385 (-525))) (-1092))) (-15 -2207 ((-592 |#1|) (-632 (-385 (-525))) |#1|)) (-15 -3852 ((-592 (-2 (|:| |outval| |#1|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#1|))))) (-632 (-385 (-525))) |#1|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 34)) (-2897 (((-592 |#2|) $) NIL)) (-2744 (((-1088 $) $ |#2|) NIL) (((-1088 |#1|) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-3212 (((-713) $) NIL) (((-713) $ (-592 |#2|)) NIL)) (-2798 (($ $) 28)) (-1289 (((-108) $ $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-4001 (($ $ $) 93 (|has| |#1| (-517)))) (-3496 (((-592 $) $ $) 106 (|has| |#1| (-517)))) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-1286 (($ $) NIL (|has| |#1| (-429)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-887 (-385 (-525)))) NIL (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1092))))) (((-3 $ "failed") (-887 (-525))) NIL (-3254 (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1092))) (-1850 (|has| |#1| (-37 (-385 (-525)))))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1092)))))) (((-3 $ "failed") (-887 |#1|)) NIL (-3254 (-12 (|has| |#2| (-567 (-1092))) (-1850 (|has| |#1| (-37 (-385 (-525))))) (-1850 (|has| |#1| (-37 (-525))))) (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1092))) (-1850 (|has| |#1| (-37 (-385 (-525))))) (-1850 (|has| |#1| (-510)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1092))) (-1850 (|has| |#1| (-925 (-525))))))) (((-3 (-1044 |#1| |#2|) "failed") $) 18)) (-1572 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) ((|#2| $) NIL) (($ (-887 (-385 (-525)))) NIL (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1092))))) (($ (-887 (-525))) NIL (-3254 (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1092))) (-1850 (|has| |#1| (-37 (-385 (-525)))))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1092)))))) (($ (-887 |#1|)) NIL (-3254 (-12 (|has| |#2| (-567 (-1092))) (-1850 (|has| |#1| (-37 (-385 (-525))))) (-1850 (|has| |#1| (-37 (-525))))) (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1092))) (-1850 (|has| |#1| (-37 (-385 (-525))))) (-1850 (|has| |#1| (-510)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1092))) (-1850 (|has| |#1| (-925 (-525))))))) (((-1044 |#1| |#2|) $) NIL)) (-3377 (($ $ $ |#2|) NIL (|has| |#1| (-160))) (($ $ $) 104 (|has| |#1| (-517)))) (-3063 (($ $) NIL) (($ $ |#2|) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-1961 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-3543 (((-108) $) NIL)) (-3696 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 70)) (-2046 (($ $) 119 (|has| |#1| (-429)))) (-1576 (($ $) NIL (|has| |#1| (-429))) (($ $ |#2|) NIL (|has| |#1| (-429)))) (-3052 (((-592 $) $) NIL)) (-3673 (((-108) $) NIL (|has| |#1| (-844)))) (-2204 (($ $) NIL (|has| |#1| (-517)))) (-1392 (($ $) NIL (|has| |#1| (-517)))) (-1995 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-1296 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-2188 (($ $ |#1| (-497 |#2|) $) NIL)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| |#1| (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| |#1| (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) NIL)) (-2633 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-2358 (($ $ $ $ $) 90 (|has| |#1| (-517)))) (-3153 ((|#2| $) 19)) (-2887 (($ (-1088 |#1|) |#2|) NIL) (($ (-1088 $) |#2|) NIL)) (-4144 (((-592 $) $) NIL)) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-497 |#2|)) NIL) (($ $ |#2| (-713)) 36) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-2413 (($ $ $) 60)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ |#2|) NIL)) (-3892 (((-108) $) NIL)) (-2870 (((-497 |#2|) $) NIL) (((-713) $ |#2|) NIL) (((-592 (-713)) $ (-592 |#2|)) NIL)) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-1216 (((-713) $) 20)) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2172 (($ (-1 (-497 |#2|) (-497 |#2|)) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2431 (((-3 |#2| "failed") $) NIL)) (-3870 (($ $) NIL (|has| |#1| (-429)))) (-2262 (($ $) NIL (|has| |#1| (-429)))) (-2524 (((-592 $) $) NIL)) (-1765 (($ $) 37)) (-3962 (($ $) NIL (|has| |#1| (-429)))) (-1422 (((-592 $) $) 41)) (-3600 (($ $) 39)) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2117 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3047 (-713))) $ $) 82)) (-2420 (((-2 (|:| -3244 $) (|:| |gap| (-713)) (|:| -2829 $) (|:| -1607 $)) $ $) 67) (((-2 (|:| -3244 $) (|:| |gap| (-713)) (|:| -2829 $) (|:| -1607 $)) $ $ |#2|) NIL)) (-4171 (((-2 (|:| -3244 $) (|:| |gap| (-713)) (|:| -1607 $)) $ $) NIL) (((-2 (|:| -3244 $) (|:| |gap| (-713)) (|:| -1607 $)) $ $ |#2|) NIL)) (-3614 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3259 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-2619 (((-1075) $) NIL)) (-2370 (($ $ $) 108 (|has| |#1| (-517)))) (-3001 (((-592 $) $) 30)) (-1334 (((-3 (-592 $) "failed") $) NIL)) (-2001 (((-3 (-592 $) "failed") $) NIL)) (-2121 (((-3 (-2 (|:| |var| |#2|) (|:| -4193 (-713))) "failed") $) NIL)) (-2686 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-2423 (($ $ $) NIL)) (-2295 (($ $) 21)) (-2338 (((-108) $ $) NIL)) (-2696 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-3872 (($ $ $) NIL)) (-2451 (($ $) 23)) (-2093 (((-1039) $) NIL)) (-2738 (((-2 (|:| -2589 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-517)))) (-2835 (((-2 (|:| -2589 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-517)))) (-3007 (((-108) $) 52)) (-3019 ((|#1| $) 55)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-429)))) (-2589 ((|#1| |#1| $) 116 (|has| |#1| (-429))) (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2770 (((-396 $) $) NIL (|has| |#1| (-844)))) (-3926 (((-2 (|:| -2589 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-517)))) (-1715 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-517)))) (-1267 (($ $ |#1|) 112 (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-1565 (($ $ |#1|) 111 (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-2457 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-592 |#2|) (-592 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-592 |#2|) (-592 $)) NIL)) (-1975 (($ $ |#2|) NIL (|has| |#1| (-160)))) (-3376 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-2343 (((-497 |#2|) $) NIL) (((-713) $ |#2|) 43) (((-592 (-713)) $ (-592 |#2|)) NIL)) (-2650 (($ $) NIL)) (-2537 (($ $) 33)) (-3210 (((-827 (-357)) $) NIL (-12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| |#1| (-567 (-501))) (|has| |#2| (-567 (-501))))) (($ (-887 (-385 (-525)))) NIL (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1092))))) (($ (-887 (-525))) NIL (-3254 (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1092))) (-1850 (|has| |#1| (-37 (-385 (-525)))))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1092)))))) (($ (-887 |#1|)) NIL (|has| |#2| (-567 (-1092)))) (((-1075) $) NIL (-12 (|has| |#1| (-968 (-525))) (|has| |#2| (-567 (-1092))))) (((-887 |#1|) $) NIL (|has| |#2| (-567 (-1092))))) (-3658 ((|#1| $) 115 (|has| |#1| (-429))) (($ $ |#2|) NIL (|has| |#1| (-429)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-887 |#1|) $) NIL (|has| |#2| (-567 (-1092)))) (((-1044 |#1| |#2|) $) 15) (($ (-1044 |#1| |#2|)) 16) (($ (-385 (-525))) NIL (-3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-1684 (((-592 |#1|) $) NIL)) (-1568 ((|#1| $ (-497 |#2|)) NIL) (($ $ |#2| (-713)) 44) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-3917 (((-713)) NIL)) (-3716 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 13 T CONST)) (-3439 (((-3 (-108) "failed") $ $) NIL)) (-3359 (($) 35 T CONST)) (-3373 (($ $ $ $ (-713)) 88 (|has| |#1| (-517)))) (-3134 (($ $ $ (-713)) 87 (|has| |#1| (-517)))) (-2022 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) 54)) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) 64)) (-4047 (($ $ $) 74)) (** (($ $ (-856)) NIL) (($ $ (-713)) 61)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 59) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
+((-2704 ((|#2| |#4|) 35)))
+(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2704 (|#2| |#4|))) (-429) (-1150 |#1|) (-667 |#1| |#2|) (-1150 |#3|)) (T -717))
+((-2704 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-667 *4 *2)) (-4 *2 (-1150 *4)) (-5 *1 (-717 *4 *2 *5 *3)) (-4 *3 (-1150 *5)))))
+(-10 -7 (-15 -2704 (|#2| |#4|)))
+((-3300 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2824 (((-1179) (-1075) (-1075) |#4| |#5|) 33)) (-2162 ((|#4| |#4| |#5|) 73)) (-2528 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#5|) 77)) (-1948 (((-592 (-2 (|:| |val| (-108)) (|:| -1285 |#5|))) |#4| |#5|) 16)))
+(((-718 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3300 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2162 (|#4| |#4| |#5|)) (-15 -2528 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#5|)) (-15 -2824 ((-1179) (-1075) (-1075) |#4| |#5|)) (-15 -1948 ((-592 (-2 (|:| |val| (-108)) (|:| -1285 |#5|))) |#4| |#5|))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|)) (T -718))
+((-1948 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1285 *4)))) (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-2824 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1075)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *4 (-991 *6 *7 *8)) (-5 *2 (-1179)) (-5 *1 (-718 *6 *7 *8 *4 *5)) (-4 *5 (-996 *6 *7 *8 *4)))) (-2528 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4)))) (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-2162 (*1 *2 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *2 (-991 *4 *5 *6)) (-5 *1 (-718 *4 *5 *6 *2 *3)) (-4 *3 (-996 *4 *5 *6 *2)))) (-3300 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(-10 -7 (-15 -3300 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2162 (|#4| |#4| |#5|)) (-15 -2528 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#5|)) (-15 -2824 ((-1179) (-1075) (-1075) |#4| |#5|)) (-15 -1948 ((-592 (-2 (|:| |val| (-108)) (|:| -1285 |#5|))) |#4| |#5|)))
+((-1934 (((-3 (-1088 (-1088 |#1|)) "failed") |#4|) 43)) (-3512 (((-592 |#4|) |#4|) 15)) (-2363 ((|#4| |#4|) 11)))
+(((-719 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3512 ((-592 |#4|) |#4|)) (-15 -1934 ((-3 (-1088 (-1088 |#1|)) "failed") |#4|)) (-15 -2363 (|#4| |#4|))) (-327) (-307 |#1|) (-1150 |#2|) (-1150 |#3|) (-856)) (T -719))
+((-2363 (*1 *2 *2) (-12 (-4 *3 (-327)) (-4 *4 (-307 *3)) (-4 *5 (-1150 *4)) (-5 *1 (-719 *3 *4 *5 *2 *6)) (-4 *2 (-1150 *5)) (-14 *6 (-856)))) (-1934 (*1 *2 *3) (|partial| -12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1150 *5)) (-5 *2 (-1088 (-1088 *4))) (-5 *1 (-719 *4 *5 *6 *3 *7)) (-4 *3 (-1150 *6)) (-14 *7 (-856)))) (-3512 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1150 *5)) (-5 *2 (-592 *3)) (-5 *1 (-719 *4 *5 *6 *3 *7)) (-4 *3 (-1150 *6)) (-14 *7 (-856)))))
+(-10 -7 (-15 -3512 ((-592 |#4|) |#4|)) (-15 -1934 ((-3 (-1088 (-1088 |#1|)) "failed") |#4|)) (-15 -2363 (|#4| |#4|)))
+((-4010 (((-2 (|:| |deter| (-592 (-1088 |#5|))) (|:| |dterm| (-592 (-592 (-2 (|:| -2801 (-713)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-592 |#1|)) (|:| |nlead| (-592 |#5|))) (-1088 |#5|) (-592 |#1|) (-592 |#5|)) 54)) (-3393 (((-592 (-713)) |#1|) 13)))
+(((-720 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4010 ((-2 (|:| |deter| (-592 (-1088 |#5|))) (|:| |dterm| (-592 (-592 (-2 (|:| -2801 (-713)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-592 |#1|)) (|:| |nlead| (-592 |#5|))) (-1088 |#5|) (-592 |#1|) (-592 |#5|))) (-15 -3393 ((-592 (-713)) |#1|))) (-1150 |#4|) (-735) (-789) (-286) (-884 |#4| |#2| |#3|)) (T -720))
+((-3393 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-592 (-713))) (-5 *1 (-720 *3 *4 *5 *6 *7)) (-4 *3 (-1150 *6)) (-4 *7 (-884 *6 *4 *5)))) (-4010 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1150 *9)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-286)) (-4 *10 (-884 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-592 (-1088 *10))) (|:| |dterm| (-592 (-592 (-2 (|:| -2801 (-713)) (|:| |pcoef| *10))))) (|:| |nfacts| (-592 *6)) (|:| |nlead| (-592 *10)))) (-5 *1 (-720 *6 *7 *8 *9 *10)) (-5 *3 (-1088 *10)) (-5 *4 (-592 *6)) (-5 *5 (-592 *10)))))
+(-10 -7 (-15 -4010 ((-2 (|:| |deter| (-592 (-1088 |#5|))) (|:| |dterm| (-592 (-592 (-2 (|:| -2801 (-713)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-592 |#1|)) (|:| |nlead| (-592 |#5|))) (-1088 |#5|) (-592 |#1|) (-592 |#5|))) (-15 -3393 ((-592 (-713)) |#1|)))
+((-2942 (((-592 (-2 (|:| |outval| |#1|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#1|))))) (-632 (-385 (-525))) |#1|) 31)) (-1643 (((-592 |#1|) (-632 (-385 (-525))) |#1|) 21)) (-3153 (((-887 (-385 (-525))) (-632 (-385 (-525))) (-1092)) 18) (((-887 (-385 (-525))) (-632 (-385 (-525)))) 17)))
+(((-721 |#1|) (-10 -7 (-15 -3153 ((-887 (-385 (-525))) (-632 (-385 (-525))))) (-15 -3153 ((-887 (-385 (-525))) (-632 (-385 (-525))) (-1092))) (-15 -1643 ((-592 |#1|) (-632 (-385 (-525))) |#1|)) (-15 -2942 ((-592 (-2 (|:| |outval| |#1|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#1|))))) (-632 (-385 (-525))) |#1|))) (-13 (-341) (-787))) (T -721))
+((-2942 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-592 (-2 (|:| |outval| *4) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 *4)))))) (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))) (-3153 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *4 (-1092)) (-5 *2 (-887 (-385 (-525)))) (-5 *1 (-721 *5)) (-4 *5 (-13 (-341) (-787))))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-887 (-385 (-525)))) (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))))
+(-10 -7 (-15 -3153 ((-887 (-385 (-525))) (-632 (-385 (-525))))) (-15 -3153 ((-887 (-385 (-525))) (-632 (-385 (-525))) (-1092))) (-15 -1643 ((-592 |#1|) (-632 (-385 (-525))) |#1|)) (-15 -2942 ((-592 (-2 (|:| |outval| |#1|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#1|))))) (-632 (-385 (-525))) |#1|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 34)) (-1296 (((-592 |#2|) $) NIL)) (-4169 (((-1088 $) $ |#2|) NIL) (((-1088 |#1|) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-1928 (((-713) $) NIL) (((-713) $ (-592 |#2|)) NIL)) (-3979 (($ $) 28)) (-1277 (((-108) $ $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-3882 (($ $ $) 93 (|has| |#1| (-517)))) (-3683 (((-592 $) $ $) 106 (|has| |#1| (-517)))) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4195 (($ $) NIL (|has| |#1| (-429)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-887 (-385 (-525)))) NIL (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1092))))) (((-3 $ "failed") (-887 (-525))) NIL (-2067 (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1092))) (-3272 (|has| |#1| (-37 (-385 (-525)))))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1092)))))) (((-3 $ "failed") (-887 |#1|)) NIL (-2067 (-12 (|has| |#2| (-567 (-1092))) (-3272 (|has| |#1| (-37 (-385 (-525))))) (-3272 (|has| |#1| (-37 (-525))))) (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1092))) (-3272 (|has| |#1| (-37 (-385 (-525))))) (-3272 (|has| |#1| (-510)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1092))) (-3272 (|has| |#1| (-925 (-525))))))) (((-3 (-1044 |#1| |#2|) "failed") $) 18)) (-4105 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) ((|#2| $) NIL) (($ (-887 (-385 (-525)))) NIL (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1092))))) (($ (-887 (-525))) NIL (-2067 (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1092))) (-3272 (|has| |#1| (-37 (-385 (-525)))))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1092)))))) (($ (-887 |#1|)) NIL (-2067 (-12 (|has| |#2| (-567 (-1092))) (-3272 (|has| |#1| (-37 (-385 (-525))))) (-3272 (|has| |#1| (-37 (-525))))) (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1092))) (-3272 (|has| |#1| (-37 (-385 (-525))))) (-3272 (|has| |#1| (-510)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1092))) (-3272 (|has| |#1| (-925 (-525))))))) (((-1044 |#1| |#2|) $) NIL)) (-3801 (($ $ $ |#2|) NIL (|has| |#1| (-160))) (($ $ $) 104 (|has| |#1| (-517)))) (-1451 (($ $) NIL) (($ $ |#2|) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3964 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-2918 (((-108) $) NIL)) (-3830 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 70)) (-3574 (($ $) 119 (|has| |#1| (-429)))) (-3201 (($ $) NIL (|has| |#1| (-429))) (($ $ |#2|) NIL (|has| |#1| (-429)))) (-1441 (((-592 $) $) NIL)) (-1798 (((-108) $) NIL (|has| |#1| (-844)))) (-1608 (($ $) NIL (|has| |#1| (-517)))) (-3699 (($ $) NIL (|has| |#1| (-517)))) (-3101 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-1374 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1457 (($ $ |#1| (-497 |#2|) $) NIL)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| |#1| (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| |#1| (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) NIL)) (-3221 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-3673 (($ $ $ $ $) 90 (|has| |#1| (-517)))) (-2577 ((|#2| $) 19)) (-1284 (($ (-1088 |#1|) |#2|) NIL) (($ (-1088 $) |#2|) NIL)) (-2884 (((-592 $) $) NIL)) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-497 |#2|)) NIL) (($ $ |#2| (-713)) 36) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-2983 (($ $ $) 60)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ |#2|) NIL)) (-2171 (((-108) $) NIL)) (-1819 (((-497 |#2|) $) NIL) (((-713) $ |#2|) NIL) (((-592 (-713)) $ (-592 |#2|)) NIL)) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-1827 (((-713) $) 20)) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-1314 (($ (-1 (-497 |#2|) (-497 |#2|)) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2018 (((-3 |#2| "failed") $) NIL)) (-3115 (($ $) NIL (|has| |#1| (-429)))) (-3982 (($ $) NIL (|has| |#1| (-429)))) (-1662 (((-592 $) $) NIL)) (-2672 (($ $) 37)) (-1700 (($ $) NIL (|has| |#1| (-429)))) (-3476 (((-592 $) $) 41)) (-2282 (($ $) 39)) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1949 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2855 (-713))) $ $) 82)) (-3043 (((-2 (|:| -2681 $) (|:| |gap| (-713)) (|:| -1416 $) (|:| -3681 $)) $ $) 67) (((-2 (|:| -2681 $) (|:| |gap| (-713)) (|:| -1416 $) (|:| -3681 $)) $ $ |#2|) NIL)) (-3120 (((-2 (|:| -2681 $) (|:| |gap| (-713)) (|:| -3681 $)) $ $) NIL) (((-2 (|:| -2681 $) (|:| |gap| (-713)) (|:| -3681 $)) $ $ |#2|) NIL)) (-2442 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-4104 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1289 (((-1075) $) NIL)) (-2602 (($ $ $) 108 (|has| |#1| (-517)))) (-3654 (((-592 $) $) 30)) (-2977 (((-3 (-592 $) "failed") $) NIL)) (-3165 (((-3 (-592 $) "failed") $) NIL)) (-1986 (((-3 (-2 (|:| |var| |#2|) (|:| -2168 (-713))) "failed") $) NIL)) (-3732 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-3076 (($ $ $) NIL)) (-2948 (($ $) 21)) (-3472 (((-108) $ $) NIL)) (-2635 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-1998 (($ $ $) NIL)) (-2205 (($ $) 23)) (-3993 (((-1039) $) NIL)) (-2980 (((-2 (|:| -2772 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-517)))) (-1479 (((-2 (|:| -2772 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-517)))) (-1399 (((-108) $) 52)) (-1407 ((|#1| $) 55)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-429)))) (-2772 ((|#1| |#1| $) 116 (|has| |#1| (-429))) (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4201 (((-396 $) $) NIL (|has| |#1| (-844)))) (-2536 (((-2 (|:| -2772 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-517)))) (-1311 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-517)))) (-3887 (($ $ |#1|) 112 (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-3104 (($ $ |#1|) 111 (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-2825 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-592 |#2|) (-592 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-592 |#2|) (-592 $)) NIL)) (-4115 (($ $ |#2|) NIL (|has| |#1| (-160)))) (-2702 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3529 (((-497 |#2|) $) NIL) (((-713) $ |#2|) 43) (((-592 (-713)) $ (-592 |#2|)) NIL)) (-3389 (($ $) NIL)) (-1776 (($ $) 33)) (-2069 (((-827 (-357)) $) NIL (-12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| |#1| (-567 (-501))) (|has| |#2| (-567 (-501))))) (($ (-887 (-385 (-525)))) NIL (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1092))))) (($ (-887 (-525))) NIL (-2067 (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1092))) (-3272 (|has| |#1| (-37 (-385 (-525)))))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1092)))))) (($ (-887 |#1|)) NIL (|has| |#2| (-567 (-1092)))) (((-1075) $) NIL (-12 (|has| |#1| (-968 (-525))) (|has| |#2| (-567 (-1092))))) (((-887 |#1|) $) NIL (|has| |#2| (-567 (-1092))))) (-1661 ((|#1| $) 115 (|has| |#1| (-429))) (($ $ |#2|) NIL (|has| |#1| (-429)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-887 |#1|) $) NIL (|has| |#2| (-567 (-1092)))) (((-1044 |#1| |#2|) $) 15) (($ (-1044 |#1| |#2|)) 16) (($ (-385 (-525))) NIL (-2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3137 (((-592 |#1|) $) NIL)) (-3136 ((|#1| $ (-497 |#2|)) NIL) (($ $ |#2| (-713)) 44) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2448 (((-713)) NIL)) (-4042 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 13 T CONST)) (-3126 (((-3 (-108) "failed") $ $) NIL)) (-3375 (($) 35 T CONST)) (-3778 (($ $ $ $ (-713)) 88 (|has| |#1| (-517)))) (-2434 (($ $ $ (-713)) 87 (|has| |#1| (-517)))) (-2401 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) 54)) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) 64)) (-2860 (($ $ $) 74)) (** (($ $ (-856)) NIL) (($ $ (-713)) 61)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 59) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
(((-722 |#1| |#2|) (-13 (-991 |#1| (-497 |#2|) |#2|) (-566 (-1044 |#1| |#2|)) (-968 (-1044 |#1| |#2|))) (-977) (-789)) (T -722))
NIL
(-13 (-991 |#1| (-497 |#2|) |#2|) (-566 (-1044 |#1| |#2|)) (-968 (-1044 |#1| |#2|)))
-((-3165 (((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|)) 13)))
-(((-723 |#1| |#2|) (-10 -7 (-15 -3165 ((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|)))) (-977) (-977)) (T -723))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-724 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-5 *2 (-724 *6)) (-5 *1 (-723 *5 *6)))))
-(-10 -7 (-15 -3165 ((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 12)) (-2315 (((-1174 |#1|) $ (-713)) NIL)) (-2897 (((-592 (-1005)) $) NIL)) (-1801 (($ (-1088 |#1|)) NIL)) (-2744 (((-1088 $) $ (-1005)) NIL) (((-1088 |#1|) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-3212 (((-713) $) NIL) (((-713) $ (-592 (-1005))) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1991 (((-592 $) $ $) 39 (|has| |#1| (-517)))) (-4001 (($ $ $) 35 (|has| |#1| (-517)))) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-1286 (($ $) NIL (|has| |#1| (-429)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2193 (((-108) $ $) NIL (|has| |#1| (-341)))) (-2980 (($ $ (-713)) NIL)) (-3682 (($ $ (-713)) NIL)) (-2181 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-429)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-1005) "failed") $) NIL) (((-3 (-1088 |#1|) "failed") $) 10)) (-1572 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-1005) $) NIL) (((-1088 |#1|) $) NIL)) (-3377 (($ $ $ (-1005)) NIL (|has| |#1| (-160))) ((|#1| $ $) 43 (|has| |#1| (-160)))) (-1747 (($ $ $) NIL (|has| |#1| (-341)))) (-3063 (($ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1733 (($ $ $) NIL (|has| |#1| (-341)))) (-3585 (($ $ $) NIL)) (-2814 (($ $ $) 71 (|has| |#1| (-517)))) (-3696 (((-2 (|:| -3244 |#1|) (|:| -2829 $) (|:| -1607 $)) $ $) 70 (|has| |#1| (-517)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-1576 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1005)) NIL (|has| |#1| (-429)))) (-3052 (((-592 $) $) NIL)) (-3673 (((-108) $) NIL (|has| |#1| (-844)))) (-2188 (($ $ |#1| (-713) $) NIL)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1005) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1005) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-2581 (((-713) $ $) NIL (|has| |#1| (-517)))) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) NIL)) (-3844 (((-3 $ "failed") $) NIL (|has| |#1| (-1068)))) (-2887 (($ (-1088 |#1|) (-1005)) NIL) (($ (-1088 $) (-1005)) NIL)) (-3326 (($ $ (-713)) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-4144 (((-592 $) $) NIL)) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-713)) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-2413 (($ $ $) 20)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ (-1005)) NIL) (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-2870 (((-713) $) NIL) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2172 (($ (-1 (-713) (-713)) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-1332 (((-1088 |#1|) $) NIL)) (-2431 (((-3 (-1005) "failed") $) NIL)) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2117 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3047 (-713))) $ $) 26)) (-3120 (($ $ $) 29)) (-2147 (($ $ $) 32)) (-2420 (((-2 (|:| -3244 |#1|) (|:| |gap| (-713)) (|:| -2829 $) (|:| -1607 $)) $ $) 31)) (-2619 (((-1075) $) NIL)) (-2370 (($ $ $) 41 (|has| |#1| (-517)))) (-3203 (((-2 (|:| -2829 $) (|:| -1607 $)) $ (-713)) NIL)) (-1334 (((-3 (-592 $) "failed") $) NIL)) (-2001 (((-3 (-592 $) "failed") $) NIL)) (-2121 (((-3 (-2 (|:| |var| (-1005)) (|:| -4193 (-713))) "failed") $) NIL)) (-1206 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2295 (($) NIL (|has| |#1| (-1068)) CONST)) (-2093 (((-1039) $) NIL)) (-2738 (((-2 (|:| -2589 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-517)))) (-2835 (((-2 (|:| -2589 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-517)))) (-1856 (((-2 (|:| -3377 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-517)))) (-2961 (((-2 (|:| -3377 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-517)))) (-3007 (((-108) $) 13)) (-3019 ((|#1| $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-429)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3493 (($ $ (-713) |#1| $) 19)) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2770 (((-396 $) $) NIL (|has| |#1| (-844)))) (-3926 (((-2 (|:| -2589 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-517)))) (-4150 (((-2 (|:| -3377 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-517)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-1715 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2457 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1005) |#1|) NIL) (($ $ (-592 (-1005)) (-592 |#1|)) NIL) (($ $ (-1005) $) NIL) (($ $ (-592 (-1005)) (-592 $)) NIL)) (-3684 (((-713) $) NIL (|has| |#1| (-341)))) (-3406 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) NIL (|has| |#1| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#1| (-517)))) (-2173 (((-3 $ "failed") $ (-713)) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-341)))) (-1975 (($ $ (-1005)) NIL (|has| |#1| (-160))) ((|#1| $) NIL (|has| |#1| (-160)))) (-3376 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2343 (((-713) $) NIL) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-3210 (((-827 (-357)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-1005) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-3658 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1005)) NIL (|has| |#1| (-429)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1561 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#1| (-517)))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-1005)) NIL) (((-1088 |#1|) $) 7) (($ (-1088 |#1|)) 8) (($ (-385 (-525))) NIL (-3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-1684 (((-592 |#1|) $) NIL)) (-1568 ((|#1| $ (-713)) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-3917 (((-713)) NIL)) (-3716 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 21 T CONST)) (-3359 (($) 24 T CONST)) (-2022 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4061 (($ $) 28) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
-(((-724 |#1|) (-13 (-1150 |#1|) (-566 (-1088 |#1|)) (-968 (-1088 |#1|)) (-10 -8 (-15 -3493 ($ $ (-713) |#1| $)) (-15 -2413 ($ $ $)) (-15 -2117 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3047 (-713))) $ $)) (-15 -3120 ($ $ $)) (-15 -2420 ((-2 (|:| -3244 |#1|) (|:| |gap| (-713)) (|:| -2829 $) (|:| -1607 $)) $ $)) (-15 -2147 ($ $ $)) (IF (|has| |#1| (-517)) (PROGN (-15 -1991 ((-592 $) $ $)) (-15 -2370 ($ $ $)) (-15 -3926 ((-2 (|:| -2589 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2835 ((-2 (|:| -2589 $) (|:| |coef1| $)) $ $)) (-15 -2738 ((-2 (|:| -2589 $) (|:| |coef2| $)) $ $)) (-15 -4150 ((-2 (|:| -3377 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2961 ((-2 (|:| -3377 |#1|) (|:| |coef1| $)) $ $)) (-15 -1856 ((-2 (|:| -3377 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-977)) (T -724))
-((-3493 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-713)) (-5 *1 (-724 *3)) (-4 *3 (-977)))) (-2413 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-977)))) (-2117 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-724 *3)) (|:| |polden| *3) (|:| -3047 (-713)))) (-5 *1 (-724 *3)) (-4 *3 (-977)))) (-3120 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-977)))) (-2420 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3244 *3) (|:| |gap| (-713)) (|:| -2829 (-724 *3)) (|:| -1607 (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-977)))) (-2147 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-977)))) (-1991 (*1 *2 *1 *1) (-12 (-5 *2 (-592 (-724 *3))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))) (-2370 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-517)) (-4 *2 (-977)))) (-3926 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2589 (-724 *3)) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))) (-2835 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2589 (-724 *3)) (|:| |coef1| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))) (-2738 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2589 (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))) (-4150 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3377 *3) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))) (-2961 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3377 *3) (|:| |coef1| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))) (-1856 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3377 *3) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))))
-(-13 (-1150 |#1|) (-566 (-1088 |#1|)) (-968 (-1088 |#1|)) (-10 -8 (-15 -3493 ($ $ (-713) |#1| $)) (-15 -2413 ($ $ $)) (-15 -2117 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3047 (-713))) $ $)) (-15 -3120 ($ $ $)) (-15 -2420 ((-2 (|:| -3244 |#1|) (|:| |gap| (-713)) (|:| -2829 $) (|:| -1607 $)) $ $)) (-15 -2147 ($ $ $)) (IF (|has| |#1| (-517)) (PROGN (-15 -1991 ((-592 $) $ $)) (-15 -2370 ($ $ $)) (-15 -3926 ((-2 (|:| -2589 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2835 ((-2 (|:| -2589 $) (|:| |coef1| $)) $ $)) (-15 -2738 ((-2 (|:| -2589 $) (|:| |coef2| $)) $ $)) (-15 -4150 ((-2 (|:| -3377 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2961 ((-2 (|:| -3377 |#1|) (|:| |coef1| $)) $ $)) (-15 -1856 ((-2 (|:| -3377 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-3748 ((|#1| (-713) |#1|) 32 (|has| |#1| (-37 (-385 (-525)))))) (-1300 ((|#1| (-713) |#1|) 22)) (-4168 ((|#1| (-713) |#1|) 34 (|has| |#1| (-37 (-385 (-525)))))))
-(((-725 |#1|) (-10 -7 (-15 -1300 (|#1| (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -4168 (|#1| (-713) |#1|)) (-15 -3748 (|#1| (-713) |#1|))) |%noBranch|)) (-160)) (T -725))
-((-3748 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-160)))) (-4168 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-160)))) (-1300 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-160)))))
-(-10 -7 (-15 -1300 (|#1| (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -4168 (|#1| (-713) |#1|)) (-15 -3748 (|#1| (-713) |#1|))) |%noBranch|))
-((-4236 (((-108) $ $) 7)) (-1463 (((-592 (-2 (|:| -2719 $) (|:| -3459 (-592 |#4|)))) (-592 |#4|)) 85)) (-1589 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-2897 (((-592 |#3|) $) 33)) (-2437 (((-108) $) 26)) (-2750 (((-108) $) 17 (|has| |#1| (-517)))) (-3950 (((-108) |#4| $) 101) (((-108) $) 97)) (-2495 ((|#4| |#4| $) 92)) (-1286 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 $))) |#4| $) 126)) (-2458 (((-2 (|:| |under| $) (|:| -2487 $) (|:| |upper| $)) $ |#3|) 27)) (-3991 (((-108) $ (-713)) 44)) (-3785 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4258))) (((-3 |#4| "failed") $ |#3|) 79)) (-2169 (($) 45 T CONST)) (-4089 (((-108) $) 22 (|has| |#1| (-517)))) (-2480 (((-108) $ $) 24 (|has| |#1| (-517)))) (-1207 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3339 (((-108) $) 25 (|has| |#1| (-517)))) (-2712 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3767 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-3333 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-3077 (((-3 $ "failed") (-592 |#4|)) 36)) (-1572 (($ (-592 |#4|)) 35)) (-1886 (((-3 $ "failed") $) 82)) (-3901 ((|#4| |#4| $) 89)) (-1910 (($ $) 68 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258))))) (-1703 (($ |#4| $) 67 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4258)))) (-1607 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-1961 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2834 ((|#4| |#4| $) 87)) (-1284 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4258))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4258))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1877 (((-2 (|:| -2719 (-592 |#4|)) (|:| -3459 (-592 |#4|))) $) 105)) (-1816 (((-108) |#4| $) 136)) (-3458 (((-108) |#4| $) 133)) (-2116 (((-108) |#4| $) 137) (((-108) $) 134)) (-3440 (((-592 |#4|) $) 52 (|has| $ (-6 -4258)))) (-2633 (((-108) |#4| $) 104) (((-108) $) 103)) (-3153 ((|#3| $) 34)) (-3924 (((-108) $ (-713)) 43)) (-2694 (((-592 |#4|) $) 53 (|has| $ (-6 -4258)))) (-2004 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#4| |#4|) $) 47)) (-1598 (((-592 |#3|) $) 32)) (-3919 (((-108) |#3| $) 31)) (-2912 (((-108) $ (-713)) 42)) (-2619 (((-1075) $) 9)) (-4028 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-2370 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 $))) |#4| |#4| $) 127)) (-1717 (((-3 |#4| "failed") $) 83)) (-3606 (((-592 $) |#4| $) 129)) (-3486 (((-3 (-108) (-592 $)) |#4| $) 132)) (-3070 (((-592 (-2 (|:| |val| (-108)) (|:| -2563 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2099 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-3644 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-3159 (((-592 |#4|) $) 107)) (-2686 (((-108) |#4| $) 99) (((-108) $) 95)) (-2423 ((|#4| |#4| $) 90)) (-2338 (((-108) $ $) 110)) (-1806 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2696 (((-108) |#4| $) 100) (((-108) $) 96)) (-3872 ((|#4| |#4| $) 91)) (-2093 (((-1039) $) 10)) (-1872 (((-3 |#4| "failed") $) 84)) (-1983 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3044 (((-3 $ "failed") $ |#4|) 78)) (-3931 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-3944 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-2614 (((-108) $ $) 38)) (-2659 (((-108) $) 41)) (-2512 (($) 40)) (-2343 (((-713) $) 106)) (-2110 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4258)))) (-1462 (($ $) 39)) (-3210 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-1230 (($ (-592 |#4|)) 60)) (-3264 (($ $ |#3|) 28)) (-1425 (($ $ |#3|) 30)) (-1320 (($ $) 88)) (-4008 (($ $ |#3|) 29)) (-1217 (((-798) $) 11) (((-592 |#4|) $) 37)) (-3735 (((-713) $) 76 (|has| |#3| (-346)))) (-1622 (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4027 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-1384 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-3029 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4258)))) (-1221 (((-592 |#3|) $) 81)) (-3162 (((-108) |#4| $) 135)) (-2081 (((-108) |#3| $) 80)) (-3955 (((-108) $ $) 6)) (-3522 (((-713) $) 46 (|has| $ (-6 -4258)))))
+((-2016 (((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|)) 13)))
+(((-723 |#1| |#2|) (-10 -7 (-15 -2016 ((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|)))) (-977) (-977)) (T -723))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-724 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-5 *2 (-724 *6)) (-5 *1 (-723 *5 *6)))))
+(-10 -7 (-15 -2016 ((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 12)) (-3216 (((-1174 |#1|) $ (-713)) NIL)) (-1296 (((-592 (-1005)) $) NIL)) (-2954 (($ (-1088 |#1|)) NIL)) (-4169 (((-1088 $) $ (-1005)) NIL) (((-1088 |#1|) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-1928 (((-713) $) NIL) (((-713) $ (-592 (-1005))) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-3056 (((-592 $) $ $) 39 (|has| |#1| (-517)))) (-3882 (($ $ $) 35 (|has| |#1| (-517)))) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4195 (($ $) NIL (|has| |#1| (-429)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-1507 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3474 (($ $ (-713)) NIL)) (-1911 (($ $ (-713)) NIL)) (-1396 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-429)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-1005) "failed") $) NIL) (((-3 (-1088 |#1|) "failed") $) 10)) (-4105 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-1005) $) NIL) (((-1088 |#1|) $) NIL)) (-3801 (($ $ $ (-1005)) NIL (|has| |#1| (-160))) ((|#1| $ $) 43 (|has| |#1| (-160)))) (-1356 (($ $ $) NIL (|has| |#1| (-341)))) (-1451 (($ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1332 (($ $ $) NIL (|has| |#1| (-341)))) (-2149 (($ $ $) NIL)) (-2477 (($ $ $) 71 (|has| |#1| (-517)))) (-3830 (((-2 (|:| -2681 |#1|) (|:| -1416 $) (|:| -3681 $)) $ $) 70 (|has| |#1| (-517)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3201 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1005)) NIL (|has| |#1| (-429)))) (-1441 (((-592 $) $) NIL)) (-1798 (((-108) $) NIL (|has| |#1| (-844)))) (-1457 (($ $ |#1| (-713) $) NIL)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1005) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1005) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-4000 (((-713) $ $) NIL (|has| |#1| (-517)))) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) NIL)) (-2878 (((-3 $ "failed") $) NIL (|has| |#1| (-1068)))) (-1284 (($ (-1088 |#1|) (-1005)) NIL) (($ (-1088 $) (-1005)) NIL)) (-1585 (($ $ (-713)) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2884 (((-592 $) $) NIL)) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-713)) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-2983 (($ $ $) 20)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ (-1005)) NIL) (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-1819 (((-713) $) NIL) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-1314 (($ (-1 (-713) (-713)) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2950 (((-1088 |#1|) $) NIL)) (-2018 (((-3 (-1005) "failed") $) NIL)) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1949 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2855 (-713))) $ $) 26)) (-2303 (($ $ $) 29)) (-2228 (($ $ $) 32)) (-3043 (((-2 (|:| -2681 |#1|) (|:| |gap| (-713)) (|:| -1416 $) (|:| -3681 $)) $ $) 31)) (-1289 (((-1075) $) NIL)) (-2602 (($ $ $) 41 (|has| |#1| (-517)))) (-1849 (((-2 (|:| -1416 $) (|:| -3681 $)) $ (-713)) NIL)) (-2977 (((-3 (-592 $) "failed") $) NIL)) (-3165 (((-3 (-592 $) "failed") $) NIL)) (-1986 (((-3 (-2 (|:| |var| (-1005)) (|:| -2168 (-713))) "failed") $) NIL)) (-2367 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2948 (($) NIL (|has| |#1| (-1068)) CONST)) (-3993 (((-1039) $) NIL)) (-2980 (((-2 (|:| -2772 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-517)))) (-1479 (((-2 (|:| -2772 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-517)))) (-2322 (((-2 (|:| -3801 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-517)))) (-3292 (((-2 (|:| -3801 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-517)))) (-1399 (((-108) $) 13)) (-1407 ((|#1| $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-429)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3653 (($ $ (-713) |#1| $) 19)) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4201 (((-396 $) $) NIL (|has| |#1| (-844)))) (-2536 (((-2 (|:| -2772 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-517)))) (-2939 (((-2 (|:| -3801 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-517)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-1311 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2825 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1005) |#1|) NIL) (($ $ (-592 (-1005)) (-592 |#1|)) NIL) (($ $ (-1005) $) NIL) (($ $ (-592 (-1005)) (-592 $)) NIL)) (-1927 (((-713) $) NIL (|has| |#1| (-341)))) (-3431 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) NIL (|has| |#1| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#1| (-517)))) (-1326 (((-3 $ "failed") $ (-713)) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-341)))) (-4115 (($ $ (-1005)) NIL (|has| |#1| (-160))) ((|#1| $) NIL (|has| |#1| (-160)))) (-2702 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3529 (((-713) $) NIL) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-2069 (((-827 (-357)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-1005) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-1661 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1005)) NIL (|has| |#1| (-429)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-3070 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#1| (-517)))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-1005)) NIL) (((-1088 |#1|) $) 7) (($ (-1088 |#1|)) 8) (($ (-385 (-525))) NIL (-2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3137 (((-592 |#1|) $) NIL)) (-3136 ((|#1| $ (-713)) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2448 (((-713)) NIL)) (-4042 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 21 T CONST)) (-3375 (($) 24 T CONST)) (-2401 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-2871 (($ $) 28) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
+(((-724 |#1|) (-13 (-1150 |#1|) (-566 (-1088 |#1|)) (-968 (-1088 |#1|)) (-10 -8 (-15 -3653 ($ $ (-713) |#1| $)) (-15 -2983 ($ $ $)) (-15 -1949 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2855 (-713))) $ $)) (-15 -2303 ($ $ $)) (-15 -3043 ((-2 (|:| -2681 |#1|) (|:| |gap| (-713)) (|:| -1416 $) (|:| -3681 $)) $ $)) (-15 -2228 ($ $ $)) (IF (|has| |#1| (-517)) (PROGN (-15 -3056 ((-592 $) $ $)) (-15 -2602 ($ $ $)) (-15 -2536 ((-2 (|:| -2772 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1479 ((-2 (|:| -2772 $) (|:| |coef1| $)) $ $)) (-15 -2980 ((-2 (|:| -2772 $) (|:| |coef2| $)) $ $)) (-15 -2939 ((-2 (|:| -3801 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3292 ((-2 (|:| -3801 |#1|) (|:| |coef1| $)) $ $)) (-15 -2322 ((-2 (|:| -3801 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-977)) (T -724))
+((-3653 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-713)) (-5 *1 (-724 *3)) (-4 *3 (-977)))) (-2983 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-977)))) (-1949 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-724 *3)) (|:| |polden| *3) (|:| -2855 (-713)))) (-5 *1 (-724 *3)) (-4 *3 (-977)))) (-2303 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-977)))) (-3043 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2681 *3) (|:| |gap| (-713)) (|:| -1416 (-724 *3)) (|:| -3681 (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-977)))) (-2228 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-977)))) (-3056 (*1 *2 *1 *1) (-12 (-5 *2 (-592 (-724 *3))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))) (-2602 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-517)) (-4 *2 (-977)))) (-2536 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2772 (-724 *3)) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))) (-1479 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2772 (-724 *3)) (|:| |coef1| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))) (-2980 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2772 (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))) (-2939 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3801 *3) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))) (-3292 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3801 *3) (|:| |coef1| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))) (-2322 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3801 *3) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))))
+(-13 (-1150 |#1|) (-566 (-1088 |#1|)) (-968 (-1088 |#1|)) (-10 -8 (-15 -3653 ($ $ (-713) |#1| $)) (-15 -2983 ($ $ $)) (-15 -1949 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2855 (-713))) $ $)) (-15 -2303 ($ $ $)) (-15 -3043 ((-2 (|:| -2681 |#1|) (|:| |gap| (-713)) (|:| -1416 $) (|:| -3681 $)) $ $)) (-15 -2228 ($ $ $)) (IF (|has| |#1| (-517)) (PROGN (-15 -3056 ((-592 $) $ $)) (-15 -2602 ($ $ $)) (-15 -2536 ((-2 (|:| -2772 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1479 ((-2 (|:| -2772 $) (|:| |coef1| $)) $ $)) (-15 -2980 ((-2 (|:| -2772 $) (|:| |coef2| $)) $ $)) (-15 -2939 ((-2 (|:| -3801 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3292 ((-2 (|:| -3801 |#1|) (|:| |coef1| $)) $ $)) (-15 -2322 ((-2 (|:| -3801 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-3156 ((|#1| (-713) |#1|) 32 (|has| |#1| (-37 (-385 (-525)))))) (-3099 ((|#1| (-713) |#1|) 22)) (-3088 ((|#1| (-713) |#1|) 34 (|has| |#1| (-37 (-385 (-525)))))))
+(((-725 |#1|) (-10 -7 (-15 -3099 (|#1| (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -3088 (|#1| (-713) |#1|)) (-15 -3156 (|#1| (-713) |#1|))) |%noBranch|)) (-160)) (T -725))
+((-3156 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-160)))) (-3088 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-160)))) (-3099 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-160)))))
+(-10 -7 (-15 -3099 (|#1| (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -3088 (|#1| (-713) |#1|)) (-15 -3156 (|#1| (-713) |#1|))) |%noBranch|))
+((-4087 (((-108) $ $) 7)) (-2562 (((-592 (-2 (|:| -2682 $) (|:| -2046 (-592 |#4|)))) (-592 |#4|)) 85)) (-3347 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-1296 (((-592 |#3|) $) 33)) (-2071 (((-108) $) 26)) (-3093 (((-108) $) 17 (|has| |#1| (-517)))) (-1587 (((-108) |#4| $) 101) (((-108) $) 97)) (-1402 ((|#4| |#4| $) 92)) (-4195 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 $))) |#4| $) 126)) (-1842 (((-2 (|:| |under| $) (|:| -1340 $) (|:| |upper| $)) $ |#3|) 27)) (-3779 (((-108) $ (-713)) 44)) (-2399 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4259))) (((-3 |#4| "failed") $ |#3|) 79)) (-2475 (($) 45 T CONST)) (-3542 (((-108) $) 22 (|has| |#1| (-517)))) (-2462 (((-108) $ $) 24 (|has| |#1| (-517)))) (-2390 (((-108) $ $) 23 (|has| |#1| (-517)))) (-1698 (((-108) $) 25 (|has| |#1| (-517)))) (-2783 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3308 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-1655 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-1934 (((-3 $ "failed") (-592 |#4|)) 36)) (-4105 (($ (-592 |#4|)) 35)) (-1659 (((-3 $ "failed") $) 82)) (-2268 ((|#4| |#4| $) 89)) (-1681 (($ $) 68 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259))))) (-2698 (($ |#4| $) 67 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4259)))) (-3681 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-3964 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-1469 ((|#4| |#4| $) 87)) (-3504 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4259))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4259))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1329 (((-2 (|:| -2682 (-592 |#4|)) (|:| -2046 (-592 |#4|))) $) 105)) (-1954 (((-108) |#4| $) 136)) (-3315 (((-108) |#4| $) 133)) (-1941 (((-108) |#4| $) 137) (((-108) $) 134)) (-2175 (((-592 |#4|) $) 52 (|has| $ (-6 -4259)))) (-3221 (((-108) |#4| $) 104) (((-108) $) 103)) (-2577 ((|#3| $) 34)) (-2516 (((-108) $ (-713)) 43)) (-2617 (((-592 |#4|) $) 53 (|has| $ (-6 -4259)))) (-3198 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#4| |#4|) $) 47)) (-3435 (((-592 |#3|) $) 32)) (-2468 (((-108) |#3| $) 31)) (-4028 (((-108) $ (-713)) 42)) (-1289 (((-1075) $) 9)) (-4180 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-2602 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 $))) |#4| |#4| $) 127)) (-2718 (((-3 |#4| "failed") $) 83)) (-2346 (((-592 $) |#4| $) 129)) (-3580 (((-3 (-108) (-592 $)) |#4| $) 132)) (-3022 (((-592 (-2 (|:| |val| (-108)) (|:| -1285 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2913 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-1513 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-1455 (((-592 |#4|) $) 107)) (-3732 (((-108) |#4| $) 99) (((-108) $) 95)) (-3076 ((|#4| |#4| $) 90)) (-3472 (((-108) $ $) 110)) (-2991 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2635 (((-108) |#4| $) 100) (((-108) $) 96)) (-1998 ((|#4| |#4| $) 91)) (-3993 (((-1039) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-4202 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2821 (((-3 $ "failed") $ |#4|) 78)) (-1397 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-1518 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-1231 (((-108) $ $) 38)) (-3479 (((-108) $) 41)) (-1558 (($) 40)) (-3529 (((-713) $) 106)) (-4002 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4259)))) (-2503 (($ $) 39)) (-2069 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-4114 (($ (-592 |#4|)) 60)) (-4151 (($ $ |#3|) 28)) (-3522 (($ $ |#3|) 30)) (-1411 (($ $) 88)) (-3963 (($ $ |#3|) 29)) (-4100 (((-798) $) 11) (((-592 |#4|) $) 37)) (-1223 (((-713) $) 76 (|has| |#3| (-346)))) (-3799 (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4170 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-3605 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-2706 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4259)))) (-1874 (((-592 |#3|) $) 81)) (-1484 (((-108) |#4| $) 135)) (-2738 (((-108) |#3| $) 80)) (-2775 (((-108) $ $) 6)) (-2827 (((-713) $) 46 (|has| $ (-6 -4259)))))
(((-726 |#1| |#2| |#3| |#4|) (-131) (-429) (-735) (-789) (-991 |t#1| |t#2| |t#3|)) (T -726))
NIL
(-13 (-996 |t#1| |t#2| |t#3| |t#4|))
(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-798)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-909 |#1| |#2| |#3| |#4|) . T) ((-996 |#1| |#2| |#3| |#4|) . T) ((-1020) . T) ((-1122 |#1| |#2| |#3| |#4|) . T) ((-1128) . T))
-((-3754 (((-3 (-357) "failed") (-294 |#1|) (-856)) 62 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-357) "failed") (-294 |#1|)) 54 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-357) "failed") (-385 (-887 |#1|)) (-856)) 41 (|has| |#1| (-517))) (((-3 (-357) "failed") (-385 (-887 |#1|))) 40 (|has| |#1| (-517))) (((-3 (-357) "failed") (-887 |#1|) (-856)) 31 (|has| |#1| (-977))) (((-3 (-357) "failed") (-887 |#1|)) 30 (|has| |#1| (-977)))) (-4049 (((-357) (-294 |#1|) (-856)) 99 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-357) (-294 |#1|)) 94 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-357) (-385 (-887 |#1|)) (-856)) 91 (|has| |#1| (-517))) (((-357) (-385 (-887 |#1|))) 90 (|has| |#1| (-517))) (((-357) (-887 |#1|) (-856)) 86 (|has| |#1| (-977))) (((-357) (-887 |#1|)) 85 (|has| |#1| (-977))) (((-357) |#1| (-856)) 76) (((-357) |#1|) 22)) (-3809 (((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)) (-856)) 71 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-294 (-157 |#1|))) 70 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-294 |#1|) (-856)) 63 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-294 |#1|)) 61 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-385 (-887 (-157 |#1|))) (-856)) 46 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-385 (-887 (-157 |#1|)))) 45 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-385 (-887 |#1|)) (-856)) 39 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-385 (-887 |#1|))) 38 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-887 |#1|) (-856)) 28 (|has| |#1| (-977))) (((-3 (-157 (-357)) "failed") (-887 |#1|)) 26 (|has| |#1| (-977))) (((-3 (-157 (-357)) "failed") (-887 (-157 |#1|)) (-856)) 18 (|has| |#1| (-160))) (((-3 (-157 (-357)) "failed") (-887 (-157 |#1|))) 15 (|has| |#1| (-160)))) (-2717 (((-157 (-357)) (-294 (-157 |#1|)) (-856)) 102 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-294 (-157 |#1|))) 101 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-294 |#1|) (-856)) 100 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-294 |#1|)) 98 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-385 (-887 (-157 |#1|))) (-856)) 93 (|has| |#1| (-517))) (((-157 (-357)) (-385 (-887 (-157 |#1|)))) 92 (|has| |#1| (-517))) (((-157 (-357)) (-385 (-887 |#1|)) (-856)) 89 (|has| |#1| (-517))) (((-157 (-357)) (-385 (-887 |#1|))) 88 (|has| |#1| (-517))) (((-157 (-357)) (-887 |#1|) (-856)) 84 (|has| |#1| (-977))) (((-157 (-357)) (-887 |#1|)) 83 (|has| |#1| (-977))) (((-157 (-357)) (-887 (-157 |#1|)) (-856)) 78 (|has| |#1| (-160))) (((-157 (-357)) (-887 (-157 |#1|))) 77 (|has| |#1| (-160))) (((-157 (-357)) (-157 |#1|) (-856)) 80 (|has| |#1| (-160))) (((-157 (-357)) (-157 |#1|)) 79 (|has| |#1| (-160))) (((-157 (-357)) |#1| (-856)) 27) (((-157 (-357)) |#1|) 25)))
-(((-727 |#1|) (-10 -7 (-15 -4049 ((-357) |#1|)) (-15 -4049 ((-357) |#1| (-856))) (-15 -2717 ((-157 (-357)) |#1|)) (-15 -2717 ((-157 (-357)) |#1| (-856))) (IF (|has| |#1| (-160)) (PROGN (-15 -2717 ((-157 (-357)) (-157 |#1|))) (-15 -2717 ((-157 (-357)) (-157 |#1|) (-856))) (-15 -2717 ((-157 (-357)) (-887 (-157 |#1|)))) (-15 -2717 ((-157 (-357)) (-887 (-157 |#1|)) (-856)))) |%noBranch|) (IF (|has| |#1| (-977)) (PROGN (-15 -4049 ((-357) (-887 |#1|))) (-15 -4049 ((-357) (-887 |#1|) (-856))) (-15 -2717 ((-157 (-357)) (-887 |#1|))) (-15 -2717 ((-157 (-357)) (-887 |#1|) (-856)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -4049 ((-357) (-385 (-887 |#1|)))) (-15 -4049 ((-357) (-385 (-887 |#1|)) (-856))) (-15 -2717 ((-157 (-357)) (-385 (-887 |#1|)))) (-15 -2717 ((-157 (-357)) (-385 (-887 |#1|)) (-856))) (-15 -2717 ((-157 (-357)) (-385 (-887 (-157 |#1|))))) (-15 -2717 ((-157 (-357)) (-385 (-887 (-157 |#1|))) (-856))) (IF (|has| |#1| (-789)) (PROGN (-15 -4049 ((-357) (-294 |#1|))) (-15 -4049 ((-357) (-294 |#1|) (-856))) (-15 -2717 ((-157 (-357)) (-294 |#1|))) (-15 -2717 ((-157 (-357)) (-294 |#1|) (-856))) (-15 -2717 ((-157 (-357)) (-294 (-157 |#1|)))) (-15 -2717 ((-157 (-357)) (-294 (-157 |#1|)) (-856)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-15 -3809 ((-3 (-157 (-357)) "failed") (-887 (-157 |#1|)))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-887 (-157 |#1|)) (-856)))) |%noBranch|) (IF (|has| |#1| (-977)) (PROGN (-15 -3754 ((-3 (-357) "failed") (-887 |#1|))) (-15 -3754 ((-3 (-357) "failed") (-887 |#1|) (-856))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-887 |#1|))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-887 |#1|) (-856)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -3754 ((-3 (-357) "failed") (-385 (-887 |#1|)))) (-15 -3754 ((-3 (-357) "failed") (-385 (-887 |#1|)) (-856))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-385 (-887 |#1|)))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-385 (-887 |#1|)) (-856))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-385 (-887 (-157 |#1|))))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-385 (-887 (-157 |#1|))) (-856))) (IF (|has| |#1| (-789)) (PROGN (-15 -3754 ((-3 (-357) "failed") (-294 |#1|))) (-15 -3754 ((-3 (-357) "failed") (-294 |#1|) (-856))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-294 |#1|))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-294 |#1|) (-856))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)) (-856)))) |%noBranch|)) |%noBranch|)) (-567 (-357))) (T -727))
-((-3809 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3809 (*1 *2 *3) (|partial| -12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3809 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3809 (*1 *2 *3) (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3754 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-3754 (*1 *2 *3) (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-3809 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-385 (-887 (-157 *5)))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3809 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-887 (-157 *4)))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3809 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3809 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3754 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-3754 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-3809 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3809 (*1 *2 *3) (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3754 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977)) (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-3754 (*1 *2 *3) (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-3809 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-887 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-160)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3809 (*1 *2 *3) (|partial| -12 (-5 *3 (-887 (-157 *4))) (-4 *4 (-160)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-2717 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-2717 (*1 *2 *3 *4) (-12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-4049 (*1 *2 *3 *4) (-12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-4049 (*1 *2 *3) (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-2717 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 (-157 *5)))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 (-157 *4)))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-2717 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-4049 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-4049 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-2717 (*1 *2 *3 *4) (-12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-4049 (*1 *2 *3 *4) (-12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977)) (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-4049 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-2717 (*1 *2 *3 *4) (-12 (-5 *3 (-887 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-160)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-887 (-157 *4))) (-4 *4 (-160)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-2717 (*1 *2 *3 *4) (-12 (-5 *3 (-157 *5)) (-5 *4 (-856)) (-4 *5 (-160)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-157 *4)) (-4 *4 (-160)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-2717 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-5 *2 (-157 (-357))) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357))))) (-2717 (*1 *2 *3) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357))))) (-4049 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-5 *2 (-357)) (-5 *1 (-727 *3)) (-4 *3 (-567 *2)))) (-4049 (*1 *2 *3) (-12 (-5 *2 (-357)) (-5 *1 (-727 *3)) (-4 *3 (-567 *2)))))
-(-10 -7 (-15 -4049 ((-357) |#1|)) (-15 -4049 ((-357) |#1| (-856))) (-15 -2717 ((-157 (-357)) |#1|)) (-15 -2717 ((-157 (-357)) |#1| (-856))) (IF (|has| |#1| (-160)) (PROGN (-15 -2717 ((-157 (-357)) (-157 |#1|))) (-15 -2717 ((-157 (-357)) (-157 |#1|) (-856))) (-15 -2717 ((-157 (-357)) (-887 (-157 |#1|)))) (-15 -2717 ((-157 (-357)) (-887 (-157 |#1|)) (-856)))) |%noBranch|) (IF (|has| |#1| (-977)) (PROGN (-15 -4049 ((-357) (-887 |#1|))) (-15 -4049 ((-357) (-887 |#1|) (-856))) (-15 -2717 ((-157 (-357)) (-887 |#1|))) (-15 -2717 ((-157 (-357)) (-887 |#1|) (-856)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -4049 ((-357) (-385 (-887 |#1|)))) (-15 -4049 ((-357) (-385 (-887 |#1|)) (-856))) (-15 -2717 ((-157 (-357)) (-385 (-887 |#1|)))) (-15 -2717 ((-157 (-357)) (-385 (-887 |#1|)) (-856))) (-15 -2717 ((-157 (-357)) (-385 (-887 (-157 |#1|))))) (-15 -2717 ((-157 (-357)) (-385 (-887 (-157 |#1|))) (-856))) (IF (|has| |#1| (-789)) (PROGN (-15 -4049 ((-357) (-294 |#1|))) (-15 -4049 ((-357) (-294 |#1|) (-856))) (-15 -2717 ((-157 (-357)) (-294 |#1|))) (-15 -2717 ((-157 (-357)) (-294 |#1|) (-856))) (-15 -2717 ((-157 (-357)) (-294 (-157 |#1|)))) (-15 -2717 ((-157 (-357)) (-294 (-157 |#1|)) (-856)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-15 -3809 ((-3 (-157 (-357)) "failed") (-887 (-157 |#1|)))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-887 (-157 |#1|)) (-856)))) |%noBranch|) (IF (|has| |#1| (-977)) (PROGN (-15 -3754 ((-3 (-357) "failed") (-887 |#1|))) (-15 -3754 ((-3 (-357) "failed") (-887 |#1|) (-856))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-887 |#1|))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-887 |#1|) (-856)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -3754 ((-3 (-357) "failed") (-385 (-887 |#1|)))) (-15 -3754 ((-3 (-357) "failed") (-385 (-887 |#1|)) (-856))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-385 (-887 |#1|)))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-385 (-887 |#1|)) (-856))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-385 (-887 (-157 |#1|))))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-385 (-887 (-157 |#1|))) (-856))) (IF (|has| |#1| (-789)) (PROGN (-15 -3754 ((-3 (-357) "failed") (-294 |#1|))) (-15 -3754 ((-3 (-357) "failed") (-294 |#1|) (-856))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-294 |#1|))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-294 |#1|) (-856))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)))) (-15 -3809 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)) (-856)))) |%noBranch|)) |%noBranch|))
-((-1301 (((-856) (-1075)) 65)) (-1698 (((-3 (-357) "failed") (-1075)) 33)) (-1757 (((-357) (-1075)) 31)) (-3020 (((-856) (-1075)) 54)) (-2453 (((-1075) (-856)) 55)) (-3750 (((-1075) (-856)) 53)))
-(((-728) (-10 -7 (-15 -3750 ((-1075) (-856))) (-15 -3020 ((-856) (-1075))) (-15 -2453 ((-1075) (-856))) (-15 -1301 ((-856) (-1075))) (-15 -1757 ((-357) (-1075))) (-15 -1698 ((-3 (-357) "failed") (-1075))))) (T -728))
-((-1698 (*1 *2 *3) (|partial| -12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-728)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-728)))) (-1301 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-856)) (-5 *1 (-728)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1075)) (-5 *1 (-728)))) (-3020 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-856)) (-5 *1 (-728)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1075)) (-5 *1 (-728)))))
-(-10 -7 (-15 -3750 ((-1075) (-856))) (-15 -3020 ((-856) (-1075))) (-15 -2453 ((-1075) (-856))) (-15 -1301 ((-856) (-1075))) (-15 -1757 ((-357) (-1075))) (-15 -1698 ((-3 (-357) "failed") (-1075))))
-((-4236 (((-108) $ $) 7)) (-3909 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 15) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 13)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 16) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 14)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3955 (((-108) $ $) 6)))
+((-3178 (((-3 (-357) "failed") (-294 |#1|) (-856)) 62 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-357) "failed") (-294 |#1|)) 54 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-357) "failed") (-385 (-887 |#1|)) (-856)) 41 (|has| |#1| (-517))) (((-3 (-357) "failed") (-385 (-887 |#1|))) 40 (|has| |#1| (-517))) (((-3 (-357) "failed") (-887 |#1|) (-856)) 31 (|has| |#1| (-977))) (((-3 (-357) "failed") (-887 |#1|)) 30 (|has| |#1| (-977)))) (-2615 (((-357) (-294 |#1|) (-856)) 99 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-357) (-294 |#1|)) 94 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-357) (-385 (-887 |#1|)) (-856)) 91 (|has| |#1| (-517))) (((-357) (-385 (-887 |#1|))) 90 (|has| |#1| (-517))) (((-357) (-887 |#1|) (-856)) 86 (|has| |#1| (-977))) (((-357) (-887 |#1|)) 85 (|has| |#1| (-977))) (((-357) |#1| (-856)) 76) (((-357) |#1|) 22)) (-3731 (((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)) (-856)) 71 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-294 (-157 |#1|))) 70 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-294 |#1|) (-856)) 63 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-294 |#1|)) 61 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-385 (-887 (-157 |#1|))) (-856)) 46 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-385 (-887 (-157 |#1|)))) 45 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-385 (-887 |#1|)) (-856)) 39 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-385 (-887 |#1|))) 38 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-887 |#1|) (-856)) 28 (|has| |#1| (-977))) (((-3 (-157 (-357)) "failed") (-887 |#1|)) 26 (|has| |#1| (-977))) (((-3 (-157 (-357)) "failed") (-887 (-157 |#1|)) (-856)) 18 (|has| |#1| (-160))) (((-3 (-157 (-357)) "failed") (-887 (-157 |#1|))) 15 (|has| |#1| (-160)))) (-1431 (((-157 (-357)) (-294 (-157 |#1|)) (-856)) 102 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-294 (-157 |#1|))) 101 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-294 |#1|) (-856)) 100 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-294 |#1|)) 98 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-385 (-887 (-157 |#1|))) (-856)) 93 (|has| |#1| (-517))) (((-157 (-357)) (-385 (-887 (-157 |#1|)))) 92 (|has| |#1| (-517))) (((-157 (-357)) (-385 (-887 |#1|)) (-856)) 89 (|has| |#1| (-517))) (((-157 (-357)) (-385 (-887 |#1|))) 88 (|has| |#1| (-517))) (((-157 (-357)) (-887 |#1|) (-856)) 84 (|has| |#1| (-977))) (((-157 (-357)) (-887 |#1|)) 83 (|has| |#1| (-977))) (((-157 (-357)) (-887 (-157 |#1|)) (-856)) 78 (|has| |#1| (-160))) (((-157 (-357)) (-887 (-157 |#1|))) 77 (|has| |#1| (-160))) (((-157 (-357)) (-157 |#1|) (-856)) 80 (|has| |#1| (-160))) (((-157 (-357)) (-157 |#1|)) 79 (|has| |#1| (-160))) (((-157 (-357)) |#1| (-856)) 27) (((-157 (-357)) |#1|) 25)))
+(((-727 |#1|) (-10 -7 (-15 -2615 ((-357) |#1|)) (-15 -2615 ((-357) |#1| (-856))) (-15 -1431 ((-157 (-357)) |#1|)) (-15 -1431 ((-157 (-357)) |#1| (-856))) (IF (|has| |#1| (-160)) (PROGN (-15 -1431 ((-157 (-357)) (-157 |#1|))) (-15 -1431 ((-157 (-357)) (-157 |#1|) (-856))) (-15 -1431 ((-157 (-357)) (-887 (-157 |#1|)))) (-15 -1431 ((-157 (-357)) (-887 (-157 |#1|)) (-856)))) |%noBranch|) (IF (|has| |#1| (-977)) (PROGN (-15 -2615 ((-357) (-887 |#1|))) (-15 -2615 ((-357) (-887 |#1|) (-856))) (-15 -1431 ((-157 (-357)) (-887 |#1|))) (-15 -1431 ((-157 (-357)) (-887 |#1|) (-856)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -2615 ((-357) (-385 (-887 |#1|)))) (-15 -2615 ((-357) (-385 (-887 |#1|)) (-856))) (-15 -1431 ((-157 (-357)) (-385 (-887 |#1|)))) (-15 -1431 ((-157 (-357)) (-385 (-887 |#1|)) (-856))) (-15 -1431 ((-157 (-357)) (-385 (-887 (-157 |#1|))))) (-15 -1431 ((-157 (-357)) (-385 (-887 (-157 |#1|))) (-856))) (IF (|has| |#1| (-789)) (PROGN (-15 -2615 ((-357) (-294 |#1|))) (-15 -2615 ((-357) (-294 |#1|) (-856))) (-15 -1431 ((-157 (-357)) (-294 |#1|))) (-15 -1431 ((-157 (-357)) (-294 |#1|) (-856))) (-15 -1431 ((-157 (-357)) (-294 (-157 |#1|)))) (-15 -1431 ((-157 (-357)) (-294 (-157 |#1|)) (-856)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-15 -3731 ((-3 (-157 (-357)) "failed") (-887 (-157 |#1|)))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-887 (-157 |#1|)) (-856)))) |%noBranch|) (IF (|has| |#1| (-977)) (PROGN (-15 -3178 ((-3 (-357) "failed") (-887 |#1|))) (-15 -3178 ((-3 (-357) "failed") (-887 |#1|) (-856))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-887 |#1|))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-887 |#1|) (-856)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -3178 ((-3 (-357) "failed") (-385 (-887 |#1|)))) (-15 -3178 ((-3 (-357) "failed") (-385 (-887 |#1|)) (-856))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-385 (-887 |#1|)))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-385 (-887 |#1|)) (-856))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-385 (-887 (-157 |#1|))))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-385 (-887 (-157 |#1|))) (-856))) (IF (|has| |#1| (-789)) (PROGN (-15 -3178 ((-3 (-357) "failed") (-294 |#1|))) (-15 -3178 ((-3 (-357) "failed") (-294 |#1|) (-856))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-294 |#1|))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-294 |#1|) (-856))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)) (-856)))) |%noBranch|)) |%noBranch|)) (-567 (-357))) (T -727))
+((-3731 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3731 (*1 *2 *3) (|partial| -12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3731 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3731 (*1 *2 *3) (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3178 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-3178 (*1 *2 *3) (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-3731 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-385 (-887 (-157 *5)))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3731 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-887 (-157 *4)))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3731 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3731 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3178 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-3178 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-3731 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3731 (*1 *2 *3) (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3178 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977)) (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-3178 (*1 *2 *3) (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-3731 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-887 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-160)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3731 (*1 *2 *3) (|partial| -12 (-5 *3 (-887 (-157 *4))) (-4 *4 (-160)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-1431 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-1431 (*1 *2 *3 *4) (-12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-2615 (*1 *2 *3 *4) (-12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-1431 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 (-157 *5)))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 (-157 *4)))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-1431 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-2615 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-1431 (*1 *2 *3 *4) (-12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-2615 (*1 *2 *3 *4) (-12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977)) (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-1431 (*1 *2 *3 *4) (-12 (-5 *3 (-887 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-160)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-887 (-157 *4))) (-4 *4 (-160)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-1431 (*1 *2 *3 *4) (-12 (-5 *3 (-157 *5)) (-5 *4 (-856)) (-4 *5 (-160)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-157 *4)) (-4 *4 (-160)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-1431 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-5 *2 (-157 (-357))) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357))))) (-1431 (*1 *2 *3) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357))))) (-2615 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-5 *2 (-357)) (-5 *1 (-727 *3)) (-4 *3 (-567 *2)))) (-2615 (*1 *2 *3) (-12 (-5 *2 (-357)) (-5 *1 (-727 *3)) (-4 *3 (-567 *2)))))
+(-10 -7 (-15 -2615 ((-357) |#1|)) (-15 -2615 ((-357) |#1| (-856))) (-15 -1431 ((-157 (-357)) |#1|)) (-15 -1431 ((-157 (-357)) |#1| (-856))) (IF (|has| |#1| (-160)) (PROGN (-15 -1431 ((-157 (-357)) (-157 |#1|))) (-15 -1431 ((-157 (-357)) (-157 |#1|) (-856))) (-15 -1431 ((-157 (-357)) (-887 (-157 |#1|)))) (-15 -1431 ((-157 (-357)) (-887 (-157 |#1|)) (-856)))) |%noBranch|) (IF (|has| |#1| (-977)) (PROGN (-15 -2615 ((-357) (-887 |#1|))) (-15 -2615 ((-357) (-887 |#1|) (-856))) (-15 -1431 ((-157 (-357)) (-887 |#1|))) (-15 -1431 ((-157 (-357)) (-887 |#1|) (-856)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -2615 ((-357) (-385 (-887 |#1|)))) (-15 -2615 ((-357) (-385 (-887 |#1|)) (-856))) (-15 -1431 ((-157 (-357)) (-385 (-887 |#1|)))) (-15 -1431 ((-157 (-357)) (-385 (-887 |#1|)) (-856))) (-15 -1431 ((-157 (-357)) (-385 (-887 (-157 |#1|))))) (-15 -1431 ((-157 (-357)) (-385 (-887 (-157 |#1|))) (-856))) (IF (|has| |#1| (-789)) (PROGN (-15 -2615 ((-357) (-294 |#1|))) (-15 -2615 ((-357) (-294 |#1|) (-856))) (-15 -1431 ((-157 (-357)) (-294 |#1|))) (-15 -1431 ((-157 (-357)) (-294 |#1|) (-856))) (-15 -1431 ((-157 (-357)) (-294 (-157 |#1|)))) (-15 -1431 ((-157 (-357)) (-294 (-157 |#1|)) (-856)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-15 -3731 ((-3 (-157 (-357)) "failed") (-887 (-157 |#1|)))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-887 (-157 |#1|)) (-856)))) |%noBranch|) (IF (|has| |#1| (-977)) (PROGN (-15 -3178 ((-3 (-357) "failed") (-887 |#1|))) (-15 -3178 ((-3 (-357) "failed") (-887 |#1|) (-856))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-887 |#1|))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-887 |#1|) (-856)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -3178 ((-3 (-357) "failed") (-385 (-887 |#1|)))) (-15 -3178 ((-3 (-357) "failed") (-385 (-887 |#1|)) (-856))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-385 (-887 |#1|)))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-385 (-887 |#1|)) (-856))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-385 (-887 (-157 |#1|))))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-385 (-887 (-157 |#1|))) (-856))) (IF (|has| |#1| (-789)) (PROGN (-15 -3178 ((-3 (-357) "failed") (-294 |#1|))) (-15 -3178 ((-3 (-357) "failed") (-294 |#1|) (-856))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-294 |#1|))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-294 |#1|) (-856))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)))) (-15 -3731 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)) (-856)))) |%noBranch|)) |%noBranch|))
+((-3110 (((-856) (-1075)) 65)) (-3288 (((-3 (-357) "failed") (-1075)) 33)) (-2610 (((-357) (-1075)) 31)) (-2632 (((-856) (-1075)) 54)) (-2224 (((-1075) (-856)) 55)) (-3167 (((-1075) (-856)) 53)))
+(((-728) (-10 -7 (-15 -3167 ((-1075) (-856))) (-15 -2632 ((-856) (-1075))) (-15 -2224 ((-1075) (-856))) (-15 -3110 ((-856) (-1075))) (-15 -2610 ((-357) (-1075))) (-15 -3288 ((-3 (-357) "failed") (-1075))))) (T -728))
+((-3288 (*1 *2 *3) (|partial| -12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-728)))) (-2610 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-728)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-856)) (-5 *1 (-728)))) (-2224 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1075)) (-5 *1 (-728)))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-856)) (-5 *1 (-728)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1075)) (-5 *1 (-728)))))
+(-10 -7 (-15 -3167 ((-1075) (-856))) (-15 -2632 ((-856) (-1075))) (-15 -2224 ((-1075) (-856))) (-15 -3110 ((-856) (-1075))) (-15 -2610 ((-357) (-1075))) (-15 -3288 ((-3 (-357) "failed") (-1075))))
+((-4087 (((-108) $ $) 7)) (-2354 (((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 15) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 13)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 16) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 14)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-2775 (((-108) $ $) 6)))
(((-729) (-131)) (T -729))
-((-1533 (*1 *2 *3 *4) (-12 (-4 *1 (-729)) (-5 *3 (-989)) (-5 *4 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966)))))) (-3909 (*1 *2 *3 *2) (-12 (-4 *1 (-729)) (-5 *2 (-966)) (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) (-1533 (*1 *2 *3 *4) (-12 (-4 *1 (-729)) (-5 *3 (-989)) (-5 *4 (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966)))))) (-3909 (*1 *2 *3 *2) (-12 (-4 *1 (-729)) (-5 *2 (-966)) (-5 *3 (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))))
-(-13 (-1020) (-10 -7 (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3909 ((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966))) (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3909 ((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)))))
+((-1257 (*1 *2 *3 *4) (-12 (-4 *1 (-729)) (-5 *3 (-989)) (-5 *4 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966)))))) (-2354 (*1 *2 *3 *2) (-12 (-4 *1 (-729)) (-5 *2 (-966)) (-5 *3 (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) (-1257 (*1 *2 *3 *4) (-12 (-4 *1 (-729)) (-5 *3 (-989)) (-5 *4 (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966)))))) (-2354 (*1 *2 *3 *2) (-12 (-4 *1 (-729)) (-5 *2 (-966)) (-5 *3 (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))))
+(-13 (-1020) (-10 -7 (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2354 ((-966) (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205))) (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966))) (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2354 ((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)))))
(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-1979 (((-1179) (-1174 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2393 (-357))) (-357) (-1174 (-357)) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357))) 44) (((-1179) (-1174 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2393 (-357))) (-357) (-1174 (-357)) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357))) 43)) (-2251 (((-1179) (-1174 (-357)) (-525) (-357) (-357) (-525) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357))) 50)) (-3343 (((-1179) (-1174 (-357)) (-525) (-357) (-357) (-357) (-357) (-525) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357))) 41)) (-3512 (((-1179) (-1174 (-357)) (-525) (-357) (-357) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357))) 52) (((-1179) (-1174 (-357)) (-525) (-357) (-357) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357))) 51)))
-(((-730) (-10 -7 (-15 -3512 ((-1179) (-1174 (-357)) (-525) (-357) (-357) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)))) (-15 -3512 ((-1179) (-1174 (-357)) (-525) (-357) (-357) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)))) (-15 -3343 ((-1179) (-1174 (-357)) (-525) (-357) (-357) (-357) (-357) (-525) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)))) (-15 -1979 ((-1179) (-1174 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2393 (-357))) (-357) (-1174 (-357)) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)))) (-15 -1979 ((-1179) (-1174 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2393 (-357))) (-357) (-1174 (-357)) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)))) (-15 -2251 ((-1179) (-1174 (-357)) (-525) (-357) (-357) (-525) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)))))) (T -730))
-((-2251 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1179) (-1174 *5) (-1174 *5) (-357))) (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179)) (-5 *1 (-730)))) (-1979 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-525)) (-5 *6 (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2393 (-357)))) (-5 *7 (-1 (-1179) (-1174 *5) (-1174 *5) (-357))) (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179)) (-5 *1 (-730)))) (-1979 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-525)) (-5 *6 (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2393 (-357)))) (-5 *7 (-1 (-1179) (-1174 *5) (-1174 *5) (-357))) (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179)) (-5 *1 (-730)))) (-3343 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1179) (-1174 *5) (-1174 *5) (-357))) (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179)) (-5 *1 (-730)))) (-3512 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1179) (-1174 *5) (-1174 *5) (-357))) (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179)) (-5 *1 (-730)))) (-3512 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1179) (-1174 *5) (-1174 *5) (-357))) (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179)) (-5 *1 (-730)))))
-(-10 -7 (-15 -3512 ((-1179) (-1174 (-357)) (-525) (-357) (-357) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)))) (-15 -3512 ((-1179) (-1174 (-357)) (-525) (-357) (-357) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)))) (-15 -3343 ((-1179) (-1174 (-357)) (-525) (-357) (-357) (-357) (-357) (-525) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)))) (-15 -1979 ((-1179) (-1174 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2393 (-357))) (-357) (-1174 (-357)) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)))) (-15 -1979 ((-1179) (-1174 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2393 (-357))) (-357) (-1174 (-357)) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)))) (-15 -2251 ((-1179) (-1174 (-357)) (-525) (-357) (-357) (-525) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)))))
-((-2613 (((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 53)) (-3958 (((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 31)) (-3971 (((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 52)) (-1428 (((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 29)) (-2308 (((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 51)) (-4115 (((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 19)) (-3331 (((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525)) 32)) (-1618 (((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525)) 30)) (-4207 (((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525)) 28)))
-(((-731) (-10 -7 (-15 -4207 ((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -1618 ((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -3331 ((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -4115 ((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -1428 ((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3958 ((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2308 ((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3971 ((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2613 ((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))))) (T -731))
-((-2613 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3284 *4) (|:| -1213 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-3971 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3284 *4) (|:| -1213 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-2308 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3284 *4) (|:| -1213 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-3958 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3284 *4) (|:| -1213 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-1428 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3284 *4) (|:| -1213 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-4115 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3284 *4) (|:| -1213 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-3331 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3284 *4) (|:| -1213 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-1618 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3284 *4) (|:| -1213 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-4207 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3284 *4) (|:| -1213 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))))
-(-10 -7 (-15 -4207 ((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -1618 ((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -3331 ((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -4115 ((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -1428 ((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3958 ((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2308 ((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3971 ((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2613 ((-2 (|:| -3284 (-357)) (|:| -1213 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))))
-((-3702 (((-1124 |#1|) |#1| (-205) (-525)) 46)))
-(((-732 |#1|) (-10 -7 (-15 -3702 ((-1124 |#1|) |#1| (-205) (-525)))) (-907)) (T -732))
-((-3702 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-205)) (-5 *5 (-525)) (-5 *2 (-1124 *3)) (-5 *1 (-732 *3)) (-4 *3 (-907)))))
-(-10 -7 (-15 -3702 ((-1124 |#1|) |#1| (-205) (-525))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 24)) (-1578 (((-3 $ "failed") $ $) 26)) (-2169 (($) 23 T CONST)) (-2638 (($ $ $) 13)) (-3662 (($ $ $) 14)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3349 (($) 22 T CONST)) (-4011 (((-108) $ $) 16)) (-3987 (((-108) $ $) 17)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 15)) (-3978 (((-108) $ $) 18)) (-4061 (($ $ $) 28) (($ $) 27)) (-4047 (($ $ $) 20)) (* (($ (-856) $) 21) (($ (-713) $) 25) (($ (-525) $) 29)))
+((-4159 (((-1179) (-1174 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -1286 (-357))) (-357) (-1174 (-357)) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357))) 44) (((-1179) (-1174 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -1286 (-357))) (-357) (-1174 (-357)) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357))) 43)) (-3891 (((-1179) (-1174 (-357)) (-525) (-357) (-357) (-525) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357))) 50)) (-1728 (((-1179) (-1174 (-357)) (-525) (-357) (-357) (-357) (-357) (-525) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357))) 41)) (-2631 (((-1179) (-1174 (-357)) (-525) (-357) (-357) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357))) 52) (((-1179) (-1174 (-357)) (-525) (-357) (-357) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357))) 51)))
+(((-730) (-10 -7 (-15 -2631 ((-1179) (-1174 (-357)) (-525) (-357) (-357) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)))) (-15 -2631 ((-1179) (-1174 (-357)) (-525) (-357) (-357) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)))) (-15 -1728 ((-1179) (-1174 (-357)) (-525) (-357) (-357) (-357) (-357) (-525) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)))) (-15 -4159 ((-1179) (-1174 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -1286 (-357))) (-357) (-1174 (-357)) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)))) (-15 -4159 ((-1179) (-1174 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -1286 (-357))) (-357) (-1174 (-357)) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)))) (-15 -3891 ((-1179) (-1174 (-357)) (-525) (-357) (-357) (-525) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)))))) (T -730))
+((-3891 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1179) (-1174 *5) (-1174 *5) (-357))) (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179)) (-5 *1 (-730)))) (-4159 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-525)) (-5 *6 (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -1286 (-357)))) (-5 *7 (-1 (-1179) (-1174 *5) (-1174 *5) (-357))) (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179)) (-5 *1 (-730)))) (-4159 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-525)) (-5 *6 (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -1286 (-357)))) (-5 *7 (-1 (-1179) (-1174 *5) (-1174 *5) (-357))) (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179)) (-5 *1 (-730)))) (-1728 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1179) (-1174 *5) (-1174 *5) (-357))) (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179)) (-5 *1 (-730)))) (-2631 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1179) (-1174 *5) (-1174 *5) (-357))) (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179)) (-5 *1 (-730)))) (-2631 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1179) (-1174 *5) (-1174 *5) (-357))) (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179)) (-5 *1 (-730)))))
+(-10 -7 (-15 -2631 ((-1179) (-1174 (-357)) (-525) (-357) (-357) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)))) (-15 -2631 ((-1179) (-1174 (-357)) (-525) (-357) (-357) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)))) (-15 -1728 ((-1179) (-1174 (-357)) (-525) (-357) (-357) (-357) (-357) (-525) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)))) (-15 -4159 ((-1179) (-1174 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -1286 (-357))) (-357) (-1174 (-357)) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)))) (-15 -4159 ((-1179) (-1174 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -1286 (-357))) (-357) (-1174 (-357)) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)) (-1174 (-357)))) (-15 -3891 ((-1179) (-1174 (-357)) (-525) (-357) (-357) (-525) (-1 (-1179) (-1174 (-357)) (-1174 (-357)) (-357)))))
+((-1222 (((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 53)) (-1656 (((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 31)) (-1782 (((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 52)) (-3562 (((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 29)) (-3150 (((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 51)) (-2614 (((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 19)) (-1631 (((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525)) 32)) (-3769 (((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525)) 30)) (-2304 (((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525)) 28)))
+(((-731) (-10 -7 (-15 -2304 ((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -3769 ((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -1631 ((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -2614 ((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3562 ((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -1656 ((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3150 ((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -1782 ((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -1222 ((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))))) (T -731))
+((-1222 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -2219 *4) (|:| -2188 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-1782 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -2219 *4) (|:| -2188 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-3150 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -2219 *4) (|:| -2188 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-1656 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -2219 *4) (|:| -2188 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-3562 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -2219 *4) (|:| -2188 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-2614 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -2219 *4) (|:| -2188 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-1631 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -2219 *4) (|:| -2188 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-3769 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -2219 *4) (|:| -2188 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-2304 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -2219 *4) (|:| -2188 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))))
+(-10 -7 (-15 -2304 ((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -3769 ((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -1631 ((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -2614 ((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3562 ((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -1656 ((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3150 ((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -1782 ((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -1222 ((-2 (|:| -2219 (-357)) (|:| -2188 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))))
+((-3897 (((-1124 |#1|) |#1| (-205) (-525)) 46)))
+(((-732 |#1|) (-10 -7 (-15 -3897 ((-1124 |#1|) |#1| (-205) (-525)))) (-907)) (T -732))
+((-3897 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-205)) (-5 *5 (-525)) (-5 *2 (-1124 *3)) (-5 *1 (-732 *3)) (-4 *3 (-907)))))
+(-10 -7 (-15 -3897 ((-1124 |#1|) |#1| (-205) (-525))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 24)) (-3222 (((-3 $ "failed") $ $) 26)) (-2475 (($) 23 T CONST)) (-3033 (($ $ $) 13)) (-1609 (($ $ $) 14)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3364 (($) 22 T CONST)) (-2830 (((-108) $ $) 16)) (-2807 (((-108) $ $) 17)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 15)) (-2795 (((-108) $ $) 18)) (-2871 (($ $ $) 28) (($ $) 27)) (-2860 (($ $ $) 20)) (* (($ (-856) $) 21) (($ (-713) $) 25) (($ (-525) $) 29)))
(((-733) (-131)) (T -733))
NIL
(-13 (-737) (-21))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-789) . T) ((-1020) . T))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 24)) (-2169 (($) 23 T CONST)) (-2638 (($ $ $) 13)) (-3662 (($ $ $) 14)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3349 (($) 22 T CONST)) (-4011 (((-108) $ $) 16)) (-3987 (((-108) $ $) 17)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 15)) (-3978 (((-108) $ $) 18)) (-4047 (($ $ $) 20)) (* (($ (-856) $) 21) (($ (-713) $) 25)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 24)) (-2475 (($) 23 T CONST)) (-3033 (($ $ $) 13)) (-1609 (($ $ $) 14)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3364 (($) 22 T CONST)) (-2830 (((-108) $ $) 16)) (-2807 (((-108) $ $) 17)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 15)) (-2795 (((-108) $ $) 18)) (-2860 (($ $ $) 20)) (* (($ (-856) $) 21) (($ (-713) $) 25)))
(((-734) (-131)) (T -734))
NIL
(-13 (-736) (-23))
(((-23) . T) ((-25) . T) ((-97) . T) ((-566 (-798)) . T) ((-736) . T) ((-789) . T) ((-1020) . T))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 24)) (-3167 (($ $ $) 27)) (-1578 (((-3 $ "failed") $ $) 26)) (-2169 (($) 23 T CONST)) (-2638 (($ $ $) 13)) (-3662 (($ $ $) 14)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3349 (($) 22 T CONST)) (-4011 (((-108) $ $) 16)) (-3987 (((-108) $ $) 17)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 15)) (-3978 (((-108) $ $) 18)) (-4047 (($ $ $) 20)) (* (($ (-856) $) 21) (($ (-713) $) 25)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 24)) (-1525 (($ $ $) 27)) (-3222 (((-3 $ "failed") $ $) 26)) (-2475 (($) 23 T CONST)) (-3033 (($ $ $) 13)) (-1609 (($ $ $) 14)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3364 (($) 22 T CONST)) (-2830 (((-108) $ $) 16)) (-2807 (((-108) $ $) 17)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 15)) (-2795 (((-108) $ $) 18)) (-2860 (($ $ $) 20)) (* (($ (-856) $) 21) (($ (-713) $) 25)))
(((-735) (-131)) (T -735))
-((-3167 (*1 *1 *1 *1) (-4 *1 (-735))))
-(-13 (-737) (-10 -8 (-15 -3167 ($ $ $))))
+((-1525 (*1 *1 *1 *1) (-4 *1 (-735))))
+(-13 (-737) (-10 -8 (-15 -1525 ($ $ $))))
(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-789) . T) ((-1020) . T))
-((-4236 (((-108) $ $) 7)) (-2638 (($ $ $) 13)) (-3662 (($ $ $) 14)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-4011 (((-108) $ $) 16)) (-3987 (((-108) $ $) 17)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 15)) (-3978 (((-108) $ $) 18)) (-4047 (($ $ $) 20)) (* (($ (-856) $) 21)))
+((-4087 (((-108) $ $) 7)) (-3033 (($ $ $) 13)) (-1609 (($ $ $) 14)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-2830 (((-108) $ $) 16)) (-2807 (((-108) $ $) 17)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 15)) (-2795 (((-108) $ $) 18)) (-2860 (($ $ $) 20)) (* (($ (-856) $) 21)))
(((-736) (-131)) (T -736))
NIL
(-13 (-789) (-25))
(((-25) . T) ((-97) . T) ((-566 (-798)) . T) ((-789) . T) ((-1020) . T))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 24)) (-1578 (((-3 $ "failed") $ $) 26)) (-2169 (($) 23 T CONST)) (-2638 (($ $ $) 13)) (-3662 (($ $ $) 14)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3349 (($) 22 T CONST)) (-4011 (((-108) $ $) 16)) (-3987 (((-108) $ $) 17)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 15)) (-3978 (((-108) $ $) 18)) (-4047 (($ $ $) 20)) (* (($ (-856) $) 21) (($ (-713) $) 25)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 24)) (-3222 (((-3 $ "failed") $ $) 26)) (-2475 (($) 23 T CONST)) (-3033 (($ $ $) 13)) (-1609 (($ $ $) 14)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3364 (($) 22 T CONST)) (-2830 (((-108) $ $) 16)) (-2807 (((-108) $ $) 17)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 15)) (-2795 (((-108) $ $) 18)) (-2860 (($ $ $) 20)) (* (($ (-856) $) 21) (($ (-713) $) 25)))
(((-737) (-131)) (T -737))
NIL
(-13 (-734) (-126))
(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-734) . T) ((-736) . T) ((-789) . T) ((-1020) . T))
-((-1209 (((-108) $) 41)) (-3077 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-1572 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 42)) (-1514 (((-3 (-385 (-525)) "failed") $) 78)) (-3933 (((-108) $) 72)) (-3303 (((-385 (-525)) $) 76)) (-2382 ((|#2| $) 26)) (-3165 (($ (-1 |#2| |#2|) $) 23)) (-2997 (($ $) 61)) (-3210 (((-501) $) 67)) (-1499 (($ $) 21)) (-1217 (((-798) $) 56) (($ (-525)) 39) (($ |#2|) 37) (($ (-385 (-525))) NIL)) (-3917 (((-713)) 10)) (-2802 ((|#2| $) 71)) (-3955 (((-108) $ $) 29)) (-3978 (((-108) $ $) 69)) (-4061 (($ $) 31) (($ $ $) NIL)) (-4047 (($ $ $) 30)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
-(((-738 |#1| |#2|) (-10 -8 (-15 -3978 ((-108) |#1| |#1|)) (-15 -3210 ((-501) |#1|)) (-15 -2997 (|#1| |#1|)) (-15 -1514 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3303 ((-385 (-525)) |#1|)) (-15 -3933 ((-108) |#1|)) (-15 -2802 (|#2| |#1|)) (-15 -2382 (|#2| |#1|)) (-15 -1499 (|#1| |#1|)) (-15 -3165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-525) |#1|)) (-15 -1217 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1217 (|#1| (-525))) (-15 -3917 ((-713))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4061 (|#1| |#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -1209 ((-108) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -1217 ((-798) |#1|)) (-15 -3955 ((-108) |#1| |#1|))) (-739 |#2|) (-160)) (T -738))
-((-3917 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-738 *3 *4)) (-4 *3 (-739 *4)))))
-(-10 -8 (-15 -3978 ((-108) |#1| |#1|)) (-15 -3210 ((-501) |#1|)) (-15 -2997 (|#1| |#1|)) (-15 -1514 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3303 ((-385 (-525)) |#1|)) (-15 -3933 ((-108) |#1|)) (-15 -2802 (|#2| |#1|)) (-15 -2382 (|#2| |#1|)) (-15 -1499 (|#1| |#1|)) (-15 -3165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-525) |#1|)) (-15 -1217 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1217 (|#1| (-525))) (-15 -3917 ((-713))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4061 (|#1| |#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -1209 ((-108) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -1217 ((-798) |#1|)) (-15 -3955 ((-108) |#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-1834 (((-713)) 53 (|has| |#1| (-346)))) (-2169 (($) 17 T CONST)) (-3077 (((-3 (-525) "failed") $) 94 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 92 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 90)) (-1572 (((-525) $) 95 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 93 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 89)) (-3457 (((-3 $ "failed") $) 34)) (-2796 ((|#1| $) 79)) (-1514 (((-3 (-385 (-525)) "failed") $) 66 (|has| |#1| (-510)))) (-3933 (((-108) $) 68 (|has| |#1| (-510)))) (-3303 (((-385 (-525)) $) 67 (|has| |#1| (-510)))) (-2502 (($) 56 (|has| |#1| (-346)))) (-1396 (((-108) $) 31)) (-3294 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-2382 ((|#1| $) 71)) (-2638 (($ $ $) 62 (|has| |#1| (-789)))) (-3662 (($ $ $) 61 (|has| |#1| (-789)))) (-3165 (($ (-1 |#1| |#1|) $) 81)) (-3005 (((-856) $) 55 (|has| |#1| (-346)))) (-2619 (((-1075) $) 9)) (-2997 (($ $) 65 (|has| |#1| (-341)))) (-3555 (($ (-856)) 54 (|has| |#1| (-346)))) (-3397 ((|#1| $) 76)) (-4006 ((|#1| $) 77)) (-1818 ((|#1| $) 78)) (-4237 ((|#1| $) 72)) (-1839 ((|#1| $) 73)) (-2035 ((|#1| $) 74)) (-2684 ((|#1| $) 75)) (-2093 (((-1039) $) 10)) (-2457 (($ $ (-592 |#1|) (-592 |#1|)) 87 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 85 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 84 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) 83 (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) |#1|) 82 (|has| |#1| (-486 (-1092) |#1|)))) (-3406 (($ $ |#1|) 88 (|has| |#1| (-265 |#1| |#1|)))) (-3210 (((-501) $) 63 (|has| |#1| (-567 (-501))))) (-1499 (($ $) 80)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ (-385 (-525))) 91 (|has| |#1| (-968 (-385 (-525)))))) (-3637 (((-3 $ "failed") $) 64 (|has| |#1| (-136)))) (-3917 (((-713)) 29)) (-2802 ((|#1| $) 69 (|has| |#1| (-986)))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-4011 (((-108) $ $) 59 (|has| |#1| (-789)))) (-3987 (((-108) $ $) 58 (|has| |#1| (-789)))) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 60 (|has| |#1| (-789)))) (-3978 (((-108) $ $) 57 (|has| |#1| (-789)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+((-2414 (((-108) $) 41)) (-1934 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-4105 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 42)) (-3306 (((-3 (-385 (-525)) "failed") $) 78)) (-1417 (((-108) $) 72)) (-1367 (((-385 (-525)) $) 76)) (-2704 ((|#2| $) 26)) (-2016 (($ (-1 |#2| |#2|) $) 23)) (-1387 (($ $) 61)) (-2069 (((-501) $) 67)) (-3055 (($ $) 21)) (-4100 (((-798) $) 56) (($ (-525)) 39) (($ |#2|) 37) (($ (-385 (-525))) NIL)) (-2448 (((-713)) 10)) (-2380 ((|#2| $) 71)) (-2775 (((-108) $ $) 29)) (-2795 (((-108) $ $) 69)) (-2871 (($ $) 31) (($ $ $) NIL)) (-2860 (($ $ $) 30)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
+(((-738 |#1| |#2|) (-10 -8 (-15 -2795 ((-108) |#1| |#1|)) (-15 -2069 ((-501) |#1|)) (-15 -1387 (|#1| |#1|)) (-15 -3306 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1367 ((-385 (-525)) |#1|)) (-15 -1417 ((-108) |#1|)) (-15 -2380 (|#2| |#1|)) (-15 -2704 (|#2| |#1|)) (-15 -3055 (|#1| |#1|)) (-15 -2016 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4105 (|#2| |#1|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-525) |#1|)) (-15 -4100 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4100 (|#1| (-525))) (-15 -2448 ((-713))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -2414 ((-108) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -4100 ((-798) |#1|)) (-15 -2775 ((-108) |#1| |#1|))) (-739 |#2|) (-160)) (T -738))
+((-2448 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-738 *3 *4)) (-4 *3 (-739 *4)))))
+(-10 -8 (-15 -2795 ((-108) |#1| |#1|)) (-15 -2069 ((-501) |#1|)) (-15 -1387 (|#1| |#1|)) (-15 -3306 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1367 ((-385 (-525)) |#1|)) (-15 -1417 ((-108) |#1|)) (-15 -2380 (|#2| |#1|)) (-15 -2704 (|#2| |#1|)) (-15 -3055 (|#1| |#1|)) (-15 -2016 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4105 (|#2| |#1|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-525) |#1|)) (-15 -4100 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4100 (|#1| (-525))) (-15 -2448 ((-713))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -2414 ((-108) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -4100 ((-798) |#1|)) (-15 -2775 ((-108) |#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-1613 (((-713)) 53 (|has| |#1| (-346)))) (-2475 (($) 17 T CONST)) (-1934 (((-3 (-525) "failed") $) 94 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 92 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 90)) (-4105 (((-525) $) 95 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 93 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 89)) (-3300 (((-3 $ "failed") $) 34)) (-4220 ((|#1| $) 79)) (-3306 (((-3 (-385 (-525)) "failed") $) 66 (|has| |#1| (-510)))) (-1417 (((-108) $) 68 (|has| |#1| (-510)))) (-1367 (((-385 (-525)) $) 67 (|has| |#1| (-510)))) (-1903 (($) 56 (|has| |#1| (-346)))) (-2278 (((-108) $) 31)) (-1382 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-2704 ((|#1| $) 71)) (-3033 (($ $ $) 62 (|has| |#1| (-789)))) (-1609 (($ $ $) 61 (|has| |#1| (-789)))) (-2016 (($ (-1 |#1| |#1|) $) 81)) (-3685 (((-856) $) 55 (|has| |#1| (-346)))) (-1289 (((-1075) $) 9)) (-1387 (($ $) 65 (|has| |#1| (-341)))) (-1722 (($ (-856)) 54 (|has| |#1| (-346)))) (-4005 ((|#1| $) 76)) (-3940 ((|#1| $) 77)) (-1975 ((|#1| $) 78)) (-1413 ((|#1| $) 72)) (-2155 ((|#1| $) 73)) (-3465 ((|#1| $) 74)) (-3715 ((|#1| $) 75)) (-3993 (((-1039) $) 10)) (-2825 (($ $ (-592 |#1|) (-592 |#1|)) 87 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 85 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 84 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) 83 (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) |#1|) 82 (|has| |#1| (-486 (-1092) |#1|)))) (-3431 (($ $ |#1|) 88 (|has| |#1| (-265 |#1| |#1|)))) (-2069 (((-501) $) 63 (|has| |#1| (-567 (-501))))) (-3055 (($ $) 80)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ (-385 (-525))) 91 (|has| |#1| (-968 (-385 (-525)))))) (-1463 (((-3 $ "failed") $) 64 (|has| |#1| (-136)))) (-2448 (((-713)) 29)) (-2380 ((|#1| $) 69 (|has| |#1| (-986)))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2830 (((-108) $ $) 59 (|has| |#1| (-789)))) (-2807 (((-108) $ $) 58 (|has| |#1| (-789)))) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 60 (|has| |#1| (-789)))) (-2795 (((-108) $ $) 57 (|has| |#1| (-789)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
(((-739 |#1|) (-131) (-160)) (T -739))
-((-1499 (*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2796 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-4006 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2684 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-4237 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2382 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-3294 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2802 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-986)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-1514 (*1 *2 *1) (|partial| -12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-2997 (*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-341)))))
-(-13 (-37 |t#1|) (-389 |t#1|) (-316 |t#1|) (-10 -8 (-15 -1499 ($ $)) (-15 -2796 (|t#1| $)) (-15 -1818 (|t#1| $)) (-15 -4006 (|t#1| $)) (-15 -3397 (|t#1| $)) (-15 -2684 (|t#1| $)) (-15 -2035 (|t#1| $)) (-15 -1839 (|t#1| $)) (-15 -4237 (|t#1| $)) (-15 -2382 (|t#1| $)) (-15 -3294 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-346)) (-6 (-346)) |%noBranch|) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-986)) (-15 -2802 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -3933 ((-108) $)) (-15 -3303 ((-385 (-525)) $)) (-15 -1514 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-341)) (-15 -2997 ($ $)) |%noBranch|)))
+((-3055 (*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-4220 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-1975 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-3715 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-1413 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2704 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-1382 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2380 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-986)))) (-1417 (*1 *2 *1) (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) (-1367 (*1 *2 *1) (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-3306 (*1 *2 *1) (|partial| -12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-1387 (*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-341)))))
+(-13 (-37 |t#1|) (-389 |t#1|) (-316 |t#1|) (-10 -8 (-15 -3055 ($ $)) (-15 -4220 (|t#1| $)) (-15 -1975 (|t#1| $)) (-15 -3940 (|t#1| $)) (-15 -4005 (|t#1| $)) (-15 -3715 (|t#1| $)) (-15 -3465 (|t#1| $)) (-15 -2155 (|t#1| $)) (-15 -1413 (|t#1| $)) (-15 -2704 (|t#1| $)) (-15 -1382 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-346)) (-6 (-346)) |%noBranch|) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-986)) (-15 -2380 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -1417 ((-108) $)) (-15 -1367 ((-385 (-525)) $)) (-15 -3306 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-341)) (-15 -1387 ($ $)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-346) |has| |#1| (-346)) ((-316 |#1|) . T) ((-389 |#1|) . T) ((-486 (-1092) |#1|) |has| |#1| (-486 (-1092) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) . T) ((-669) . T) ((-789) |has| |#1| (-789)) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-983 |#1|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-3165 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-740 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3165 (|#3| (-1 |#4| |#2|) |#1|))) (-739 |#2|) (-160) (-739 |#4|) (-160)) (T -740))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-4 *2 (-739 *6)) (-5 *1 (-740 *4 *5 *2 *6)) (-4 *4 (-739 *5)))))
-(-10 -7 (-15 -3165 (|#3| (-1 |#4| |#2|) |#1|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1834 (((-713)) NIL (|has| |#1| (-346)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) NIL) (((-3 (-931 |#1|) "failed") $) 35) (((-3 (-525) "failed") $) NIL (-3254 (|has| (-931 |#1|) (-968 (-525))) (|has| |#1| (-968 (-525))))) (((-3 (-385 (-525)) "failed") $) NIL (-3254 (|has| (-931 |#1|) (-968 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-1572 ((|#1| $) NIL) (((-931 |#1|) $) 33) (((-525) $) NIL (-3254 (|has| (-931 |#1|) (-968 (-525))) (|has| |#1| (-968 (-525))))) (((-385 (-525)) $) NIL (-3254 (|has| (-931 |#1|) (-968 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-3457 (((-3 $ "failed") $) NIL)) (-2796 ((|#1| $) 16)) (-1514 (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-510)))) (-3933 (((-108) $) NIL (|has| |#1| (-510)))) (-3303 (((-385 (-525)) $) NIL (|has| |#1| (-510)))) (-2502 (($) NIL (|has| |#1| (-346)))) (-1396 (((-108) $) NIL)) (-3294 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-931 |#1|) (-931 |#1|)) 29)) (-2382 ((|#1| $) NIL)) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-3005 (((-856) $) NIL (|has| |#1| (-346)))) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL (|has| |#1| (-341)))) (-3555 (($ (-856)) NIL (|has| |#1| (-346)))) (-3397 ((|#1| $) 22)) (-4006 ((|#1| $) 20)) (-1818 ((|#1| $) 18)) (-4237 ((|#1| $) 26)) (-1839 ((|#1| $) 25)) (-2035 ((|#1| $) 24)) (-2684 ((|#1| $) 23)) (-2093 (((-1039) $) NIL)) (-2457 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) |#1|) NIL (|has| |#1| (-486 (-1092) |#1|)))) (-3406 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-3210 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1499 (($ $) NIL)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-931 |#1|)) 30) (($ (-385 (-525))) NIL (-3254 (|has| (-931 |#1|) (-968 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) NIL)) (-2802 ((|#1| $) NIL (|has| |#1| (-986)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 8 T CONST)) (-3359 (($) 12 T CONST)) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-741 |#1|) (-13 (-739 |#1|) (-389 (-931 |#1|)) (-10 -8 (-15 -3294 ($ (-931 |#1|) (-931 |#1|))))) (-160)) (T -741))
-((-3294 (*1 *1 *2 *2) (-12 (-5 *2 (-931 *3)) (-4 *3 (-160)) (-5 *1 (-741 *3)))))
-(-13 (-739 |#1|) (-389 (-931 |#1|)) (-10 -8 (-15 -3294 ($ (-931 |#1|) (-931 |#1|)))))
-((-4236 (((-108) $ $) 7)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 14)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-2999 (((-966) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 13)) (-3955 (((-108) $ $) 6)))
+((-2016 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-740 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2016 (|#3| (-1 |#4| |#2|) |#1|))) (-739 |#2|) (-160) (-739 |#4|) (-160)) (T -740))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-4 *2 (-739 *6)) (-5 *1 (-740 *4 *5 *2 *6)) (-4 *4 (-739 *5)))))
+(-10 -7 (-15 -2016 (|#3| (-1 |#4| |#2|) |#1|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-1613 (((-713)) NIL (|has| |#1| (-346)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) NIL) (((-3 (-931 |#1|) "failed") $) 35) (((-3 (-525) "failed") $) NIL (-2067 (|has| (-931 |#1|) (-968 (-525))) (|has| |#1| (-968 (-525))))) (((-3 (-385 (-525)) "failed") $) NIL (-2067 (|has| (-931 |#1|) (-968 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-4105 ((|#1| $) NIL) (((-931 |#1|) $) 33) (((-525) $) NIL (-2067 (|has| (-931 |#1|) (-968 (-525))) (|has| |#1| (-968 (-525))))) (((-385 (-525)) $) NIL (-2067 (|has| (-931 |#1|) (-968 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-3300 (((-3 $ "failed") $) NIL)) (-4220 ((|#1| $) 16)) (-3306 (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-510)))) (-1417 (((-108) $) NIL (|has| |#1| (-510)))) (-1367 (((-385 (-525)) $) NIL (|has| |#1| (-510)))) (-1903 (($) NIL (|has| |#1| (-346)))) (-2278 (((-108) $) NIL)) (-1382 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-931 |#1|) (-931 |#1|)) 29)) (-2704 ((|#1| $) NIL)) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-3685 (((-856) $) NIL (|has| |#1| (-346)))) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL (|has| |#1| (-341)))) (-1722 (($ (-856)) NIL (|has| |#1| (-346)))) (-4005 ((|#1| $) 22)) (-3940 ((|#1| $) 20)) (-1975 ((|#1| $) 18)) (-1413 ((|#1| $) 26)) (-2155 ((|#1| $) 25)) (-3465 ((|#1| $) 24)) (-3715 ((|#1| $) 23)) (-3993 (((-1039) $) NIL)) (-2825 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) |#1|) NIL (|has| |#1| (-486 (-1092) |#1|)))) (-3431 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-2069 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-3055 (($ $) NIL)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-931 |#1|)) 30) (($ (-385 (-525))) NIL (-2067 (|has| (-931 |#1|) (-968 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) NIL)) (-2380 ((|#1| $) NIL (|has| |#1| (-986)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 8 T CONST)) (-3375 (($) 12 T CONST)) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-741 |#1|) (-13 (-739 |#1|) (-389 (-931 |#1|)) (-10 -8 (-15 -1382 ($ (-931 |#1|) (-931 |#1|))))) (-160)) (T -741))
+((-1382 (*1 *1 *2 *2) (-12 (-5 *2 (-931 *3)) (-4 *3 (-160)) (-5 *1 (-741 *3)))))
+(-13 (-739 |#1|) (-389 (-931 |#1|)) (-10 -8 (-15 -1382 ($ (-931 |#1|) (-931 |#1|)))))
+((-4087 (((-108) $ $) 7)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 14)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3643 (((-966) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 13)) (-2775 (((-108) $ $) 6)))
(((-742) (-131)) (T -742))
-((-1533 (*1 *2 *3 *4) (-12 (-4 *1 (-742)) (-5 *3 (-989)) (-5 *4 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)))))) (-2999 (*1 *2 *3) (-12 (-4 *1 (-742)) (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-966)))))
-(-13 (-1020) (-10 -7 (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2999 ((-966) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))))
+((-1257 (*1 *2 *3 *4) (-12 (-4 *1 (-742)) (-5 *3 (-989)) (-5 *4 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)))))) (-3643 (*1 *2 *3) (-12 (-4 *1 (-742)) (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-966)))))
+(-13 (-1020) (-10 -7 (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3643 ((-966) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))))
(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-1986 (((-2 (|:| |particular| |#2|) (|:| -3094 (-592 |#2|))) |#3| |#2| (-1092)) 19)))
-(((-743 |#1| |#2| |#3|) (-10 -7 (-15 -1986 ((-2 (|:| |particular| |#2|) (|:| -3094 (-592 |#2|))) |#3| |#2| (-1092)))) (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1114) (-893)) (-602 |#2|)) (T -743))
-((-1986 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1092)) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-4 *4 (-13 (-29 *6) (-1114) (-893))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3094 (-592 *4)))) (-5 *1 (-743 *6 *4 *3)) (-4 *3 (-602 *4)))))
-(-10 -7 (-15 -1986 ((-2 (|:| |particular| |#2|) (|:| -3094 (-592 |#2|))) |#3| |#2| (-1092))))
-((-3922 (((-3 |#2| "failed") |#2| (-110) (-273 |#2|) (-592 |#2|)) 28) (((-3 |#2| "failed") (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3094 (-592 |#2|))) |#2| "failed") |#2| (-110) (-1092)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3094 (-592 |#2|))) |#2| "failed") (-273 |#2|) (-110) (-1092)) 18) (((-3 (-2 (|:| |particular| (-1174 |#2|)) (|:| -3094 (-592 (-1174 |#2|)))) "failed") (-592 |#2|) (-592 (-110)) (-1092)) 24) (((-3 (-2 (|:| |particular| (-1174 |#2|)) (|:| -3094 (-592 (-1174 |#2|)))) "failed") (-592 (-273 |#2|)) (-592 (-110)) (-1092)) 26) (((-3 (-592 (-1174 |#2|)) "failed") (-632 |#2|) (-1092)) 37) (((-3 (-2 (|:| |particular| (-1174 |#2|)) (|:| -3094 (-592 (-1174 |#2|)))) "failed") (-632 |#2|) (-1174 |#2|) (-1092)) 35)))
-(((-744 |#1| |#2|) (-10 -7 (-15 -3922 ((-3 (-2 (|:| |particular| (-1174 |#2|)) (|:| -3094 (-592 (-1174 |#2|)))) "failed") (-632 |#2|) (-1174 |#2|) (-1092))) (-15 -3922 ((-3 (-592 (-1174 |#2|)) "failed") (-632 |#2|) (-1092))) (-15 -3922 ((-3 (-2 (|:| |particular| (-1174 |#2|)) (|:| -3094 (-592 (-1174 |#2|)))) "failed") (-592 (-273 |#2|)) (-592 (-110)) (-1092))) (-15 -3922 ((-3 (-2 (|:| |particular| (-1174 |#2|)) (|:| -3094 (-592 (-1174 |#2|)))) "failed") (-592 |#2|) (-592 (-110)) (-1092))) (-15 -3922 ((-3 (-2 (|:| |particular| |#2|) (|:| -3094 (-592 |#2|))) |#2| "failed") (-273 |#2|) (-110) (-1092))) (-15 -3922 ((-3 (-2 (|:| |particular| |#2|) (|:| -3094 (-592 |#2|))) |#2| "failed") |#2| (-110) (-1092))) (-15 -3922 ((-3 |#2| "failed") (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -3922 ((-3 |#2| "failed") |#2| (-110) (-273 |#2|) (-592 |#2|)))) (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1114) (-893))) (T -744))
-((-3922 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-273 *2)) (-5 *5 (-592 *2)) (-4 *2 (-13 (-29 *6) (-1114) (-893))) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *1 (-744 *6 *2)))) (-3922 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-273 *2)) (-5 *4 (-110)) (-5 *5 (-592 *2)) (-4 *2 (-13 (-29 *6) (-1114) (-893))) (-5 *1 (-744 *6 *2)) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))))) (-3922 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-5 *5 (-1092)) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3094 (-592 *3))) *3 "failed")) (-5 *1 (-744 *6 *3)) (-4 *3 (-13 (-29 *6) (-1114) (-893))))) (-3922 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-1092)) (-4 *7 (-13 (-29 *6) (-1114) (-893))) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3094 (-592 *7))) *7 "failed")) (-5 *1 (-744 *6 *7)))) (-3922 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110))) (-5 *5 (-1092)) (-4 *7 (-13 (-29 *6) (-1114) (-893))) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-2 (|:| |particular| (-1174 *7)) (|:| -3094 (-592 (-1174 *7))))) (-5 *1 (-744 *6 *7)))) (-3922 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-592 (-273 *7))) (-5 *4 (-592 (-110))) (-5 *5 (-1092)) (-4 *7 (-13 (-29 *6) (-1114) (-893))) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-2 (|:| |particular| (-1174 *7)) (|:| -3094 (-592 (-1174 *7))))) (-5 *1 (-744 *6 *7)))) (-3922 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-632 *6)) (-5 *4 (-1092)) (-4 *6 (-13 (-29 *5) (-1114) (-893))) (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-1174 *6))) (-5 *1 (-744 *5 *6)))) (-3922 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-632 *7)) (-5 *5 (-1092)) (-4 *7 (-13 (-29 *6) (-1114) (-893))) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-2 (|:| |particular| (-1174 *7)) (|:| -3094 (-592 (-1174 *7))))) (-5 *1 (-744 *6 *7)) (-5 *4 (-1174 *7)))))
-(-10 -7 (-15 -3922 ((-3 (-2 (|:| |particular| (-1174 |#2|)) (|:| -3094 (-592 (-1174 |#2|)))) "failed") (-632 |#2|) (-1174 |#2|) (-1092))) (-15 -3922 ((-3 (-592 (-1174 |#2|)) "failed") (-632 |#2|) (-1092))) (-15 -3922 ((-3 (-2 (|:| |particular| (-1174 |#2|)) (|:| -3094 (-592 (-1174 |#2|)))) "failed") (-592 (-273 |#2|)) (-592 (-110)) (-1092))) (-15 -3922 ((-3 (-2 (|:| |particular| (-1174 |#2|)) (|:| -3094 (-592 (-1174 |#2|)))) "failed") (-592 |#2|) (-592 (-110)) (-1092))) (-15 -3922 ((-3 (-2 (|:| |particular| |#2|) (|:| -3094 (-592 |#2|))) |#2| "failed") (-273 |#2|) (-110) (-1092))) (-15 -3922 ((-3 (-2 (|:| |particular| |#2|) (|:| -3094 (-592 |#2|))) |#2| "failed") |#2| (-110) (-1092))) (-15 -3922 ((-3 |#2| "failed") (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -3922 ((-3 |#2| "failed") |#2| (-110) (-273 |#2|) (-592 |#2|))))
-((-3740 (($) 9)) (-3285 (((-3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))) "failed") (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 31)) (-2356 (((-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $) 28)) (-1262 (($ (-2 (|:| -3364 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))) 25)) (-1728 (($ (-592 (-2 (|:| -3364 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) 23)) (-4212 (((-1179)) 12)))
-(((-745) (-10 -8 (-15 -3740 ($)) (-15 -4212 ((-1179))) (-15 -2356 ((-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -1728 ($ (-592 (-2 (|:| -3364 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))))) (-15 -1262 ($ (-2 (|:| -3364 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) (-15 -3285 ((-3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))) "failed") (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -745))
-((-3285 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) (-5 *1 (-745)))) (-1262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3364 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))) (-5 *1 (-745)))) (-1728 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3364 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) (-5 *1 (-745)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-5 *1 (-745)))) (-4212 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-745)))) (-3740 (*1 *1) (-5 *1 (-745))))
-(-10 -8 (-15 -3740 ($)) (-15 -4212 ((-1179))) (-15 -2356 ((-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -1728 ($ (-592 (-2 (|:| -3364 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))))) (-15 -1262 ($ (-2 (|:| -3364 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -4201 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) (-15 -3285 ((-3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))) "failed") (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
-((-3848 ((|#2| |#2| (-1092)) 16)) (-2175 ((|#2| |#2| (-1092)) 51)) (-1718 (((-1 |#2| |#2|) (-1092)) 11)))
-(((-746 |#1| |#2|) (-10 -7 (-15 -3848 (|#2| |#2| (-1092))) (-15 -2175 (|#2| |#2| (-1092))) (-15 -1718 ((-1 |#2| |#2|) (-1092)))) (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1114) (-893))) (T -746))
-((-1718 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-1 *5 *5)) (-5 *1 (-746 *4 *5)) (-4 *5 (-13 (-29 *4) (-1114) (-893))))) (-2175 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-893))))) (-3848 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-893))))))
-(-10 -7 (-15 -3848 (|#2| |#2| (-1092))) (-15 -2175 (|#2| |#2| (-1092))) (-15 -1718 ((-1 |#2| |#2|) (-1092))))
-((-3922 (((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357) (-357)) 116) (((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357)) 117) (((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-592 (-357)) (-357)) 119) (((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-357)) 120) (((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-357)) 121) (((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357))) 122) (((-966) (-750) (-989)) 108) (((-966) (-750)) 109)) (-1533 (((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))) (-750) (-989)) 75) (((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))) (-750)) 77)))
-(((-747) (-10 -7 (-15 -3922 ((-966) (-750))) (-15 -3922 ((-966) (-750) (-989))) (-15 -3922 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)))) (-15 -3922 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-357))) (-15 -3922 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-357))) (-15 -3922 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-592 (-357)) (-357))) (-15 -3922 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357))) (-15 -3922 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357) (-357))) (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))) (-750))) (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))) (-750) (-989))))) (T -747))
-((-1533 (*1 *2 *3 *4) (-12 (-5 *3 (-750)) (-5 *4 (-989)) (-5 *2 (-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))))) (-5 *1 (-747)))) (-1533 (*1 *2 *3) (-12 (-5 *3 (-750)) (-5 *2 (-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))))) (-5 *1 (-747)))) (-3922 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1174 (-294 *4))) (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *4 (-357)) (-5 *2 (-966)) (-5 *1 (-747)))) (-3922 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1174 (-294 *4))) (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *4 (-357)) (-5 *2 (-966)) (-5 *1 (-747)))) (-3922 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1174 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 *4)) (-5 *2 (-966)) (-5 *1 (-747)))) (-3922 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1174 (-294 *4))) (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *4 (-357)) (-5 *2 (-966)) (-5 *1 (-747)))) (-3922 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1174 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 *4)) (-5 *2 (-966)) (-5 *1 (-747)))) (-3922 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1174 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 *4)) (-5 *2 (-966)) (-5 *1 (-747)))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-750)) (-5 *4 (-989)) (-5 *2 (-966)) (-5 *1 (-747)))) (-3922 (*1 *2 *3) (-12 (-5 *3 (-750)) (-5 *2 (-966)) (-5 *1 (-747)))))
-(-10 -7 (-15 -3922 ((-966) (-750))) (-15 -3922 ((-966) (-750) (-989))) (-15 -3922 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)))) (-15 -3922 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-357))) (-15 -3922 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-357))) (-15 -3922 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-592 (-357)) (-357))) (-15 -3922 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357))) (-15 -3922 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357) (-357))) (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))) (-750))) (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))) (-750) (-989))))
-((-4176 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3094 (-592 |#4|))) (-599 |#4|) |#4|) 35)))
-(((-748 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4176 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3094 (-592 |#4|))) (-599 |#4|) |#4|))) (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))) (-1150 |#1|) (-1150 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -748))
-((-4176 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *4)) (-4 *4 (-320 *5 *6 *7)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3094 (-592 *4)))) (-5 *1 (-748 *5 *6 *7 *4)))))
-(-10 -7 (-15 -4176 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3094 (-592 |#4|))) (-599 |#4|) |#4|)))
-((-3711 (((-2 (|:| -3025 |#3|) (|:| |rh| (-592 (-385 |#2|)))) |#4| (-592 (-385 |#2|))) 52)) (-3591 (((-592 (-2 (|:| -1340 |#2|) (|:| -2011 |#2|))) |#4| |#2|) 60) (((-592 (-2 (|:| -1340 |#2|) (|:| -2011 |#2|))) |#4|) 59) (((-592 (-2 (|:| -1340 |#2|) (|:| -2011 |#2|))) |#3| |#2|) 20) (((-592 (-2 (|:| -1340 |#2|) (|:| -2011 |#2|))) |#3|) 21)) (-1998 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-1867 ((|#2| |#3| (-592 (-385 |#2|))) 93) (((-3 |#2| "failed") |#3| (-385 |#2|)) 90)))
-(((-749 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1867 ((-3 |#2| "failed") |#3| (-385 |#2|))) (-15 -1867 (|#2| |#3| (-592 (-385 |#2|)))) (-15 -3591 ((-592 (-2 (|:| -1340 |#2|) (|:| -2011 |#2|))) |#3|)) (-15 -3591 ((-592 (-2 (|:| -1340 |#2|) (|:| -2011 |#2|))) |#3| |#2|)) (-15 -1998 (|#2| |#3| |#1|)) (-15 -3591 ((-592 (-2 (|:| -1340 |#2|) (|:| -2011 |#2|))) |#4|)) (-15 -3591 ((-592 (-2 (|:| -1340 |#2|) (|:| -2011 |#2|))) |#4| |#2|)) (-15 -1998 (|#2| |#4| |#1|)) (-15 -3711 ((-2 (|:| -3025 |#3|) (|:| |rh| (-592 (-385 |#2|)))) |#4| (-592 (-385 |#2|))))) (-13 (-341) (-138) (-968 (-385 (-525)))) (-1150 |#1|) (-602 |#2|) (-602 (-385 |#2|))) (T -749))
-((-3711 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *6 (-1150 *5)) (-5 *2 (-2 (|:| -3025 *7) (|:| |rh| (-592 (-385 *6))))) (-5 *1 (-749 *5 *6 *7 *3)) (-5 *4 (-592 (-385 *6))) (-4 *7 (-602 *6)) (-4 *3 (-602 (-385 *6))))) (-1998 (*1 *2 *3 *4) (-12 (-4 *2 (-1150 *4)) (-5 *1 (-749 *4 *2 *5 *3)) (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-602 *2)) (-4 *3 (-602 (-385 *2))))) (-3591 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *4 (-1150 *5)) (-5 *2 (-592 (-2 (|:| -1340 *4) (|:| -2011 *4)))) (-5 *1 (-749 *5 *4 *6 *3)) (-4 *6 (-602 *4)) (-4 *3 (-602 (-385 *4))))) (-3591 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-1150 *4)) (-5 *2 (-592 (-2 (|:| -1340 *5) (|:| -2011 *5)))) (-5 *1 (-749 *4 *5 *6 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 (-385 *5))))) (-1998 (*1 *2 *3 *4) (-12 (-4 *2 (-1150 *4)) (-5 *1 (-749 *4 *2 *3 *5)) (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *5 (-602 (-385 *2))))) (-3591 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *4 (-1150 *5)) (-5 *2 (-592 (-2 (|:| -1340 *4) (|:| -2011 *4)))) (-5 *1 (-749 *5 *4 *3 *6)) (-4 *3 (-602 *4)) (-4 *6 (-602 (-385 *4))))) (-3591 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-1150 *4)) (-5 *2 (-592 (-2 (|:| -1340 *5) (|:| -2011 *5)))) (-5 *1 (-749 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-385 *5))))) (-1867 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-385 *2))) (-4 *2 (-1150 *5)) (-5 *1 (-749 *5 *2 *3 *6)) (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *6 (-602 (-385 *2))))) (-1867 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-385 *2)) (-4 *2 (-1150 *5)) (-5 *1 (-749 *5 *2 *3 *6)) (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *6 (-602 *4)))))
-(-10 -7 (-15 -1867 ((-3 |#2| "failed") |#3| (-385 |#2|))) (-15 -1867 (|#2| |#3| (-592 (-385 |#2|)))) (-15 -3591 ((-592 (-2 (|:| -1340 |#2|) (|:| -2011 |#2|))) |#3|)) (-15 -3591 ((-592 (-2 (|:| -1340 |#2|) (|:| -2011 |#2|))) |#3| |#2|)) (-15 -1998 (|#2| |#3| |#1|)) (-15 -3591 ((-592 (-2 (|:| -1340 |#2|) (|:| -2011 |#2|))) |#4|)) (-15 -3591 ((-592 (-2 (|:| -1340 |#2|) (|:| -2011 |#2|))) |#4| |#2|)) (-15 -1998 (|#2| |#4| |#1|)) (-15 -3711 ((-2 (|:| -3025 |#3|) (|:| |rh| (-592 (-385 |#2|)))) |#4| (-592 (-385 |#2|)))))
-((-4236 (((-108) $ $) NIL)) (-1572 (((-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) $) 13)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 15) (($ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 12)) (-3955 (((-108) $ $) NIL)))
-(((-750) (-13 (-1020) (-10 -8 (-15 -1217 ($ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1217 ((-798) $)) (-15 -1572 ((-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) $))))) (T -750))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-750)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-750)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-750)))))
-(-13 (-1020) (-10 -8 (-15 -1217 ($ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1217 ((-798) $)) (-15 -1572 ((-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) $))))
-((-3893 (((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -3025 |#3|))) |#3| (-1 (-592 |#2|) |#2| (-1088 |#2|)) (-1 (-396 |#2|) |#2|)) 118)) (-3380 (((-592 (-2 (|:| |poly| |#2|) (|:| -3025 |#3|))) |#3| (-1 (-592 |#1|) |#2|)) 46)) (-2218 (((-592 (-2 (|:| |deg| (-713)) (|:| -3025 |#2|))) |#3|) 95)) (-1641 ((|#2| |#3|) 37)) (-3664 (((-592 (-2 (|:| -2709 |#1|) (|:| -3025 |#3|))) |#3| (-1 (-592 |#1|) |#2|)) 82)) (-4016 ((|#3| |#3| (-385 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
-(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1641 (|#2| |#3|)) (-15 -2218 ((-592 (-2 (|:| |deg| (-713)) (|:| -3025 |#2|))) |#3|)) (-15 -3664 ((-592 (-2 (|:| -2709 |#1|) (|:| -3025 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -3380 ((-592 (-2 (|:| |poly| |#2|) (|:| -3025 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -3893 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -3025 |#3|))) |#3| (-1 (-592 |#2|) |#2| (-1088 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -4016 (|#3| |#3| |#2|)) (-15 -4016 (|#3| |#3| (-385 |#2|)))) (-13 (-341) (-138) (-968 (-385 (-525)))) (-1150 |#1|) (-602 |#2|) (-602 (-385 |#2|))) (T -751))
-((-4016 (*1 *2 *2 *3) (-12 (-5 *3 (-385 *5)) (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-1150 *4)) (-5 *1 (-751 *4 *5 *2 *6)) (-4 *2 (-602 *5)) (-4 *6 (-602 *3)))) (-4016 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-1150 *4)) (-5 *1 (-751 *4 *3 *2 *5)) (-4 *2 (-602 *3)) (-4 *5 (-602 (-385 *3))))) (-3893 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-592 *7) *7 (-1088 *7))) (-5 *5 (-1 (-396 *7) *7)) (-4 *7 (-1150 *6)) (-4 *6 (-13 (-341) (-138) (-968 (-385 (-525))))) (-5 *2 (-592 (-2 (|:| |frac| (-385 *7)) (|:| -3025 *3)))) (-5 *1 (-751 *6 *7 *3 *8)) (-4 *3 (-602 *7)) (-4 *8 (-602 (-385 *7))))) (-3380 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *6 (-1150 *5)) (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -3025 *3)))) (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-385 *6))))) (-3664 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *6 (-1150 *5)) (-5 *2 (-592 (-2 (|:| -2709 *5) (|:| -3025 *3)))) (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-385 *6))))) (-2218 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-1150 *4)) (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -3025 *5)))) (-5 *1 (-751 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-385 *5))))) (-1641 (*1 *2 *3) (-12 (-4 *2 (-1150 *4)) (-5 *1 (-751 *4 *2 *3 *5)) (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *5 (-602 (-385 *2))))))
-(-10 -7 (-15 -1641 (|#2| |#3|)) (-15 -2218 ((-592 (-2 (|:| |deg| (-713)) (|:| -3025 |#2|))) |#3|)) (-15 -3664 ((-592 (-2 (|:| -2709 |#1|) (|:| -3025 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -3380 ((-592 (-2 (|:| |poly| |#2|) (|:| -3025 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -3893 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -3025 |#3|))) |#3| (-1 (-592 |#2|) |#2| (-1088 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -4016 (|#3| |#3| |#2|)) (-15 -4016 (|#3| |#3| (-385 |#2|))))
-((-2390 (((-2 (|:| -3094 (-592 (-385 |#2|))) (|:| -3407 (-632 |#1|))) (-600 |#2| (-385 |#2|)) (-592 (-385 |#2|))) 121) (((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -3094 (-592 (-385 |#2|)))) (-600 |#2| (-385 |#2|)) (-385 |#2|)) 120) (((-2 (|:| -3094 (-592 (-385 |#2|))) (|:| -3407 (-632 |#1|))) (-599 (-385 |#2|)) (-592 (-385 |#2|))) 115) (((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -3094 (-592 (-385 |#2|)))) (-599 (-385 |#2|)) (-385 |#2|)) 113)) (-3743 ((|#2| (-600 |#2| (-385 |#2|))) 80) ((|#2| (-599 (-385 |#2|))) 83)))
-(((-752 |#1| |#2|) (-10 -7 (-15 -2390 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -3094 (-592 (-385 |#2|)))) (-599 (-385 |#2|)) (-385 |#2|))) (-15 -2390 ((-2 (|:| -3094 (-592 (-385 |#2|))) (|:| -3407 (-632 |#1|))) (-599 (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -2390 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -3094 (-592 (-385 |#2|)))) (-600 |#2| (-385 |#2|)) (-385 |#2|))) (-15 -2390 ((-2 (|:| -3094 (-592 (-385 |#2|))) (|:| -3407 (-632 |#1|))) (-600 |#2| (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -3743 (|#2| (-599 (-385 |#2|)))) (-15 -3743 (|#2| (-600 |#2| (-385 |#2|))))) (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))) (-1150 |#1|)) (T -752))
-((-3743 (*1 *2 *3) (-12 (-5 *3 (-600 *2 (-385 *2))) (-4 *2 (-1150 *4)) (-5 *1 (-752 *4 *2)) (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-599 (-385 *2))) (-4 *2 (-1150 *4)) (-5 *1 (-752 *4 *2)) (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))))) (-2390 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-2 (|:| -3094 (-592 (-385 *6))) (|:| -3407 (-632 *5)))) (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6))))) (-2390 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3094 (-592 *4)))) (-5 *1 (-752 *5 *6)))) (-2390 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-2 (|:| -3094 (-592 (-385 *6))) (|:| -3407 (-632 *5)))) (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6))))) (-2390 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3094 (-592 *4)))) (-5 *1 (-752 *5 *6)))))
-(-10 -7 (-15 -2390 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -3094 (-592 (-385 |#2|)))) (-599 (-385 |#2|)) (-385 |#2|))) (-15 -2390 ((-2 (|:| -3094 (-592 (-385 |#2|))) (|:| -3407 (-632 |#1|))) (-599 (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -2390 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -3094 (-592 (-385 |#2|)))) (-600 |#2| (-385 |#2|)) (-385 |#2|))) (-15 -2390 ((-2 (|:| -3094 (-592 (-385 |#2|))) (|:| -3407 (-632 |#1|))) (-600 |#2| (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -3743 (|#2| (-599 (-385 |#2|)))) (-15 -3743 (|#2| (-600 |#2| (-385 |#2|)))))
-((-2516 (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#1|))) |#5| |#4|) 48)))
-(((-753 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2516 ((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#1|))) |#5| |#4|))) (-341) (-602 |#1|) (-1150 |#1|) (-667 |#1| |#3|) (-602 |#4|)) (T -753))
-((-2516 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *7 (-1150 *5)) (-4 *4 (-667 *5 *7)) (-5 *2 (-2 (|:| -3407 (-632 *6)) (|:| |vec| (-1174 *5)))) (-5 *1 (-753 *5 *6 *7 *4 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 *4)))))
-(-10 -7 (-15 -2516 ((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#1|))) |#5| |#4|)))
-((-3893 (((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -3025 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)) 47)) (-1773 (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|))) 138 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-396 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-599 (-385 |#2|))) 140 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|)) 38) (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 39) (((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|)) 36) (((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 37)) (-3380 (((-592 (-2 (|:| |poly| |#2|) (|:| -3025 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 83)))
-(((-754 |#1| |#2|) (-10 -7 (-15 -1773 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -1773 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -1773 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -1773 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -3893 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -3025 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -3380 ((-592 (-2 (|:| |poly| |#2|) (|:| -3025 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1773 ((-592 (-385 |#2|)) (-599 (-385 |#2|)))) (-15 -1773 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -1773 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)))) (-15 -1773 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)))) |%noBranch|)) (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))) (-1150 |#1|)) (T -754))
-((-1773 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1150 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-600 *5 (-385 *5))) (-4 *5 (-1150 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5)))) (-1773 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1150 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-599 (-385 *5))) (-4 *5 (-1150 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5)))) (-3380 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *6 (-1150 *5)) (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -3025 (-600 *6 (-385 *6)))))) (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6))))) (-3893 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-592 (-2 (|:| |frac| (-385 *6)) (|:| -3025 (-600 *6 (-385 *6)))))) (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6))))) (-1773 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-600 *7 (-385 *7))) (-5 *4 (-1 (-592 *6) *7)) (-5 *5 (-1 (-396 *7) *7)) (-4 *6 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *7 (-1150 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7)))) (-1773 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *6 (-1150 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))) (-1773 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-385 *7))) (-5 *4 (-1 (-592 *6) *7)) (-5 *5 (-1 (-396 *7) *7)) (-4 *6 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *7 (-1150 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7)))) (-1773 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *6 (-1150 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))))
-(-10 -7 (-15 -1773 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -1773 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -1773 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -1773 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -3893 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -3025 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -3380 ((-592 (-2 (|:| |poly| |#2|) (|:| -3025 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1773 ((-592 (-385 |#2|)) (-599 (-385 |#2|)))) (-15 -1773 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -1773 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)))) (-15 -1773 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)))) |%noBranch|))
-((-3602 (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#1|))) (-632 |#2|) (-1174 |#1|)) 85) (((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1174 |#1|)) (|:| -3025 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1174 |#1|)) 15)) (-1360 (((-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -3094 (-592 (-1174 |#1|)))) (-632 |#2|) (-1174 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3094 (-592 |#1|))) |#2| |#1|)) 92)) (-3922 (((-3 (-2 (|:| |particular| (-1174 |#1|)) (|:| -3094 (-632 |#1|))) "failed") (-632 |#1|) (-1174 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3094 (-592 |#1|))) "failed") |#2| |#1|)) 43)))
-(((-755 |#1| |#2|) (-10 -7 (-15 -3602 ((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1174 |#1|)) (|:| -3025 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1174 |#1|))) (-15 -3602 ((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#1|))) (-632 |#2|) (-1174 |#1|))) (-15 -3922 ((-3 (-2 (|:| |particular| (-1174 |#1|)) (|:| -3094 (-632 |#1|))) "failed") (-632 |#1|) (-1174 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3094 (-592 |#1|))) "failed") |#2| |#1|))) (-15 -1360 ((-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -3094 (-592 (-1174 |#1|)))) (-632 |#2|) (-1174 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3094 (-592 |#1|))) |#2| |#1|)))) (-341) (-602 |#1|)) (T -755))
-((-1360 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3094 (-592 *6))) *7 *6)) (-4 *6 (-341)) (-4 *7 (-602 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1174 *6) "failed")) (|:| -3094 (-592 (-1174 *6))))) (-5 *1 (-755 *6 *7)) (-5 *4 (-1174 *6)))) (-3922 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3094 (-592 *6))) "failed") *7 *6)) (-4 *6 (-341)) (-4 *7 (-602 *6)) (-5 *2 (-2 (|:| |particular| (-1174 *6)) (|:| -3094 (-632 *6)))) (-5 *1 (-755 *6 *7)) (-5 *3 (-632 *6)) (-5 *4 (-1174 *6)))) (-3602 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-602 *5)) (-5 *2 (-2 (|:| -3407 (-632 *6)) (|:| |vec| (-1174 *5)))) (-5 *1 (-755 *5 *6)) (-5 *3 (-632 *6)) (-5 *4 (-1174 *5)))) (-3602 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-5 *2 (-2 (|:| A (-632 *5)) (|:| |eqs| (-592 (-2 (|:| C (-632 *5)) (|:| |g| (-1174 *5)) (|:| -3025 *6) (|:| |rh| *5)))))) (-5 *1 (-755 *5 *6)) (-5 *3 (-632 *5)) (-5 *4 (-1174 *5)) (-4 *6 (-602 *5)))))
-(-10 -7 (-15 -3602 ((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1174 |#1|)) (|:| -3025 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1174 |#1|))) (-15 -3602 ((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#1|))) (-632 |#2|) (-1174 |#1|))) (-15 -3922 ((-3 (-2 (|:| |particular| (-1174 |#1|)) (|:| -3094 (-632 |#1|))) "failed") (-632 |#1|) (-1174 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3094 (-592 |#1|))) "failed") |#2| |#1|))) (-15 -1360 ((-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -3094 (-592 (-1174 |#1|)))) (-632 |#2|) (-1174 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3094 (-592 |#1|))) |#2| |#1|))))
-((-1315 (((-632 |#1|) (-592 |#1|) (-713)) 13) (((-632 |#1|) (-592 |#1|)) 14)) (-2195 (((-3 (-1174 |#1|) "failed") |#2| |#1| (-592 |#1|)) 34)) (-3434 (((-3 |#1| "failed") |#2| |#1| (-592 |#1|) (-1 |#1| |#1|)) 42)))
-(((-756 |#1| |#2|) (-10 -7 (-15 -1315 ((-632 |#1|) (-592 |#1|))) (-15 -1315 ((-632 |#1|) (-592 |#1|) (-713))) (-15 -2195 ((-3 (-1174 |#1|) "failed") |#2| |#1| (-592 |#1|))) (-15 -3434 ((-3 |#1| "failed") |#2| |#1| (-592 |#1|) (-1 |#1| |#1|)))) (-341) (-602 |#1|)) (T -756))
-((-3434 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-592 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-341)) (-5 *1 (-756 *2 *3)) (-4 *3 (-602 *2)))) (-2195 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-1174 *4)) (-5 *1 (-756 *4 *3)) (-4 *3 (-602 *4)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-341)) (-5 *2 (-632 *5)) (-5 *1 (-756 *5 *6)) (-4 *6 (-602 *5)))) (-1315 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-632 *4)) (-5 *1 (-756 *4 *5)) (-4 *5 (-602 *4)))))
-(-10 -7 (-15 -1315 ((-632 |#1|) (-592 |#1|))) (-15 -1315 ((-632 |#1|) (-592 |#1|) (-713))) (-15 -2195 ((-3 (-1174 |#1|) "failed") |#2| |#1| (-592 |#1|))) (-15 -3434 ((-3 |#1| "failed") |#2| |#1| (-592 |#1|) (-1 |#1| |#1|))))
-((-4236 (((-108) $ $) NIL (|has| |#2| (-1020)))) (-1209 (((-108) $) NIL (|has| |#2| (-126)))) (-4083 (($ (-856)) NIL (|has| |#2| (-977)))) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-3167 (($ $ $) NIL (|has| |#2| (-735)))) (-1578 (((-3 $ "failed") $ $) NIL (|has| |#2| (-126)))) (-3991 (((-108) $ (-713)) NIL)) (-1834 (((-713)) NIL (|has| |#2| (-346)))) (-3855 (((-525) $) NIL (|has| |#2| (-787)))) (-1430 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4259)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1020)))) (-1572 (((-525) $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) ((|#2| $) NIL (|has| |#2| (-1020)))) (-1994 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL (|has| |#2| (-977))) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-977)))) (-3457 (((-3 $ "failed") $) NIL (|has| |#2| (-669)))) (-2502 (($) NIL (|has| |#2| (-346)))) (-2301 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#2| $ (-525)) NIL)) (-1222 (((-108) $) NIL (|has| |#2| (-787)))) (-3440 (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-1396 (((-108) $) NIL (|has| |#2| (-669)))) (-3256 (((-108) $) NIL (|has| |#2| (-787)))) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) NIL (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (-3254 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2694 (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (-3254 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2284 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#2| |#2|) $) NIL)) (-3005 (((-856) $) NIL (|has| |#2| (-346)))) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#2| (-1020)))) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-3555 (($ (-856)) NIL (|has| |#2| (-346)))) (-2093 (((-1039) $) NIL (|has| |#2| (-1020)))) (-1872 ((|#2| $) NIL (|has| (-525) (-789)))) (-1420 (($ $ |#2|) NIL (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-3341 (((-592 |#2|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) NIL)) (-2047 ((|#2| $ $) NIL (|has| |#2| (-977)))) (-2816 (($ (-1174 |#2|)) NIL)) (-3705 (((-128)) NIL (|has| |#2| (-341)))) (-3376 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-977)))) (-2110 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-1462 (($ $) NIL)) (-1217 (((-1174 |#2|) $) NIL) (($ (-525)) NIL (-3254 (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) (|has| |#2| (-977)))) (($ (-385 (-525))) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (($ |#2|) NIL (|has| |#2| (-1020))) (((-798) $) NIL (|has| |#2| (-566 (-798))))) (-3917 (((-713)) NIL (|has| |#2| (-977)))) (-3029 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-2802 (($ $) NIL (|has| |#2| (-787)))) (-1619 (($ $ (-713)) NIL (|has| |#2| (-669))) (($ $ (-856)) NIL (|has| |#2| (-669)))) (-3349 (($) NIL (|has| |#2| (-126)) CONST)) (-3359 (($) NIL (|has| |#2| (-669)) CONST)) (-2022 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-977)))) (-4011 (((-108) $ $) NIL (-3254 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3987 (((-108) $ $) NIL (-3254 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3955 (((-108) $ $) NIL (|has| |#2| (-1020)))) (-3999 (((-108) $ $) NIL (-3254 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3978 (((-108) $ $) 11 (-3254 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-4075 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4061 (($ $ $) NIL (|has| |#2| (-977))) (($ $) NIL (|has| |#2| (-977)))) (-4047 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-713)) NIL (|has| |#2| (-669))) (($ $ (-856)) NIL (|has| |#2| (-669)))) (* (($ (-525) $) NIL (|has| |#2| (-977))) (($ $ $) NIL (|has| |#2| (-669))) (($ $ |#2|) NIL (|has| |#2| (-669))) (($ |#2| $) NIL (|has| |#2| (-669))) (($ (-713) $) NIL (|has| |#2| (-126))) (($ (-856) $) NIL (|has| |#2| (-25)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
+((-4234 (((-2 (|:| |particular| |#2|) (|:| -2103 (-592 |#2|))) |#3| |#2| (-1092)) 19)))
+(((-743 |#1| |#2| |#3|) (-10 -7 (-15 -4234 ((-2 (|:| |particular| |#2|) (|:| -2103 (-592 |#2|))) |#3| |#2| (-1092)))) (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1114) (-893)) (-602 |#2|)) (T -743))
+((-4234 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1092)) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-4 *4 (-13 (-29 *6) (-1114) (-893))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2103 (-592 *4)))) (-5 *1 (-743 *6 *4 *3)) (-4 *3 (-602 *4)))))
+(-10 -7 (-15 -4234 ((-2 (|:| |particular| |#2|) (|:| -2103 (-592 |#2|))) |#3| |#2| (-1092))))
+((-2496 (((-3 |#2| "failed") |#2| (-110) (-273 |#2|) (-592 |#2|)) 28) (((-3 |#2| "failed") (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2103 (-592 |#2|))) |#2| "failed") |#2| (-110) (-1092)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2103 (-592 |#2|))) |#2| "failed") (-273 |#2|) (-110) (-1092)) 18) (((-3 (-2 (|:| |particular| (-1174 |#2|)) (|:| -2103 (-592 (-1174 |#2|)))) "failed") (-592 |#2|) (-592 (-110)) (-1092)) 24) (((-3 (-2 (|:| |particular| (-1174 |#2|)) (|:| -2103 (-592 (-1174 |#2|)))) "failed") (-592 (-273 |#2|)) (-592 (-110)) (-1092)) 26) (((-3 (-592 (-1174 |#2|)) "failed") (-632 |#2|) (-1092)) 37) (((-3 (-2 (|:| |particular| (-1174 |#2|)) (|:| -2103 (-592 (-1174 |#2|)))) "failed") (-632 |#2|) (-1174 |#2|) (-1092)) 35)))
+(((-744 |#1| |#2|) (-10 -7 (-15 -2496 ((-3 (-2 (|:| |particular| (-1174 |#2|)) (|:| -2103 (-592 (-1174 |#2|)))) "failed") (-632 |#2|) (-1174 |#2|) (-1092))) (-15 -2496 ((-3 (-592 (-1174 |#2|)) "failed") (-632 |#2|) (-1092))) (-15 -2496 ((-3 (-2 (|:| |particular| (-1174 |#2|)) (|:| -2103 (-592 (-1174 |#2|)))) "failed") (-592 (-273 |#2|)) (-592 (-110)) (-1092))) (-15 -2496 ((-3 (-2 (|:| |particular| (-1174 |#2|)) (|:| -2103 (-592 (-1174 |#2|)))) "failed") (-592 |#2|) (-592 (-110)) (-1092))) (-15 -2496 ((-3 (-2 (|:| |particular| |#2|) (|:| -2103 (-592 |#2|))) |#2| "failed") (-273 |#2|) (-110) (-1092))) (-15 -2496 ((-3 (-2 (|:| |particular| |#2|) (|:| -2103 (-592 |#2|))) |#2| "failed") |#2| (-110) (-1092))) (-15 -2496 ((-3 |#2| "failed") (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -2496 ((-3 |#2| "failed") |#2| (-110) (-273 |#2|) (-592 |#2|)))) (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1114) (-893))) (T -744))
+((-2496 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-273 *2)) (-5 *5 (-592 *2)) (-4 *2 (-13 (-29 *6) (-1114) (-893))) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *1 (-744 *6 *2)))) (-2496 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-273 *2)) (-5 *4 (-110)) (-5 *5 (-592 *2)) (-4 *2 (-13 (-29 *6) (-1114) (-893))) (-5 *1 (-744 *6 *2)) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))))) (-2496 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-5 *5 (-1092)) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2103 (-592 *3))) *3 "failed")) (-5 *1 (-744 *6 *3)) (-4 *3 (-13 (-29 *6) (-1114) (-893))))) (-2496 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-1092)) (-4 *7 (-13 (-29 *6) (-1114) (-893))) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2103 (-592 *7))) *7 "failed")) (-5 *1 (-744 *6 *7)))) (-2496 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110))) (-5 *5 (-1092)) (-4 *7 (-13 (-29 *6) (-1114) (-893))) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-2 (|:| |particular| (-1174 *7)) (|:| -2103 (-592 (-1174 *7))))) (-5 *1 (-744 *6 *7)))) (-2496 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-592 (-273 *7))) (-5 *4 (-592 (-110))) (-5 *5 (-1092)) (-4 *7 (-13 (-29 *6) (-1114) (-893))) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-2 (|:| |particular| (-1174 *7)) (|:| -2103 (-592 (-1174 *7))))) (-5 *1 (-744 *6 *7)))) (-2496 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-632 *6)) (-5 *4 (-1092)) (-4 *6 (-13 (-29 *5) (-1114) (-893))) (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-1174 *6))) (-5 *1 (-744 *5 *6)))) (-2496 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-632 *7)) (-5 *5 (-1092)) (-4 *7 (-13 (-29 *6) (-1114) (-893))) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-2 (|:| |particular| (-1174 *7)) (|:| -2103 (-592 (-1174 *7))))) (-5 *1 (-744 *6 *7)) (-5 *4 (-1174 *7)))))
+(-10 -7 (-15 -2496 ((-3 (-2 (|:| |particular| (-1174 |#2|)) (|:| -2103 (-592 (-1174 |#2|)))) "failed") (-632 |#2|) (-1174 |#2|) (-1092))) (-15 -2496 ((-3 (-592 (-1174 |#2|)) "failed") (-632 |#2|) (-1092))) (-15 -2496 ((-3 (-2 (|:| |particular| (-1174 |#2|)) (|:| -2103 (-592 (-1174 |#2|)))) "failed") (-592 (-273 |#2|)) (-592 (-110)) (-1092))) (-15 -2496 ((-3 (-2 (|:| |particular| (-1174 |#2|)) (|:| -2103 (-592 (-1174 |#2|)))) "failed") (-592 |#2|) (-592 (-110)) (-1092))) (-15 -2496 ((-3 (-2 (|:| |particular| |#2|) (|:| -2103 (-592 |#2|))) |#2| "failed") (-273 |#2|) (-110) (-1092))) (-15 -2496 ((-3 (-2 (|:| |particular| |#2|) (|:| -2103 (-592 |#2|))) |#2| "failed") |#2| (-110) (-1092))) (-15 -2496 ((-3 |#2| "failed") (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -2496 ((-3 |#2| "failed") |#2| (-110) (-273 |#2|) (-592 |#2|))))
+((-1264 (($) 9)) (-1290 (((-3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))) "failed") (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 31)) (-1398 (((-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $) 28)) (-3246 (($ (-2 (|:| -1556 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))) 25)) (-3559 (($ (-592 (-2 (|:| -1556 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) 23)) (-2362 (((-1179)) 12)))
+(((-745) (-10 -8 (-15 -1264 ($)) (-15 -2362 ((-1179))) (-15 -1398 ((-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -3559 ($ (-592 (-2 (|:| -1556 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))))) (-15 -3246 ($ (-2 (|:| -1556 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) (-15 -1290 ((-3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))) "failed") (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -745))
+((-1290 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) (-5 *1 (-745)))) (-3246 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1556 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))) (-5 *1 (-745)))) (-3559 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -1556 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) (-5 *1 (-745)))) (-1398 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-5 *1 (-745)))) (-2362 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-745)))) (-1264 (*1 *1) (-5 *1 (-745))))
+(-10 -8 (-15 -1264 ($)) (-15 -2362 ((-1179))) (-15 -1398 ((-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -3559 ($ (-592 (-2 (|:| -1556 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))))) (-15 -3246 ($ (-2 (|:| -1556 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3448 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) (-15 -1290 ((-3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))) "failed") (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
+((-2915 ((|#2| |#2| (-1092)) 16)) (-1346 ((|#2| |#2| (-1092)) 51)) (-3470 (((-1 |#2| |#2|) (-1092)) 11)))
+(((-746 |#1| |#2|) (-10 -7 (-15 -2915 (|#2| |#2| (-1092))) (-15 -1346 (|#2| |#2| (-1092))) (-15 -3470 ((-1 |#2| |#2|) (-1092)))) (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1114) (-893))) (T -746))
+((-3470 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-1 *5 *5)) (-5 *1 (-746 *4 *5)) (-4 *5 (-13 (-29 *4) (-1114) (-893))))) (-1346 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-893))))) (-2915 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-893))))))
+(-10 -7 (-15 -2915 (|#2| |#2| (-1092))) (-15 -1346 (|#2| |#2| (-1092))) (-15 -3470 ((-1 |#2| |#2|) (-1092))))
+((-2496 (((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357) (-357)) 116) (((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357)) 117) (((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-592 (-357)) (-357)) 119) (((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-357)) 120) (((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-357)) 121) (((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357))) 122) (((-966) (-750) (-989)) 108) (((-966) (-750)) 109)) (-1257 (((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))) (-750) (-989)) 75) (((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))) (-750)) 77)))
+(((-747) (-10 -7 (-15 -2496 ((-966) (-750))) (-15 -2496 ((-966) (-750) (-989))) (-15 -2496 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)))) (-15 -2496 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-357))) (-15 -2496 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-357))) (-15 -2496 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-592 (-357)) (-357))) (-15 -2496 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357))) (-15 -2496 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357) (-357))) (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))) (-750))) (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))) (-750) (-989))))) (T -747))
+((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-750)) (-5 *4 (-989)) (-5 *2 (-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))))) (-5 *1 (-747)))) (-1257 (*1 *2 *3) (-12 (-5 *3 (-750)) (-5 *2 (-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))))) (-5 *1 (-747)))) (-2496 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1174 (-294 *4))) (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *4 (-357)) (-5 *2 (-966)) (-5 *1 (-747)))) (-2496 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1174 (-294 *4))) (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *4 (-357)) (-5 *2 (-966)) (-5 *1 (-747)))) (-2496 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1174 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 *4)) (-5 *2 (-966)) (-5 *1 (-747)))) (-2496 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1174 (-294 *4))) (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *4 (-357)) (-5 *2 (-966)) (-5 *1 (-747)))) (-2496 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1174 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 *4)) (-5 *2 (-966)) (-5 *1 (-747)))) (-2496 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1174 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 *4)) (-5 *2 (-966)) (-5 *1 (-747)))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-750)) (-5 *4 (-989)) (-5 *2 (-966)) (-5 *1 (-747)))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-750)) (-5 *2 (-966)) (-5 *1 (-747)))))
+(-10 -7 (-15 -2496 ((-966) (-750))) (-15 -2496 ((-966) (-750) (-989))) (-15 -2496 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)))) (-15 -2496 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-357))) (-15 -2496 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-357))) (-15 -2496 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-592 (-357)) (-357))) (-15 -2496 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357))) (-15 -2496 ((-966) (-1174 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357) (-357))) (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))) (-750))) (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))) (-750) (-989))))
+((-2029 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2103 (-592 |#4|))) (-599 |#4|) |#4|) 35)))
+(((-748 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2029 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2103 (-592 |#4|))) (-599 |#4|) |#4|))) (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))) (-1150 |#1|) (-1150 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -748))
+((-2029 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *4)) (-4 *4 (-320 *5 *6 *7)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2103 (-592 *4)))) (-5 *1 (-748 *5 *6 *7 *4)))))
+(-10 -7 (-15 -2029 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2103 (-592 |#4|))) (-599 |#4|) |#4|)))
+((-3999 (((-2 (|:| -1537 |#3|) (|:| |rh| (-592 (-385 |#2|)))) |#4| (-592 (-385 |#2|))) 52)) (-2184 (((-592 (-2 (|:| -1423 |#2|) (|:| -3237 |#2|))) |#4| |#2|) 60) (((-592 (-2 (|:| -1423 |#2|) (|:| -3237 |#2|))) |#4|) 59) (((-592 (-2 (|:| -1423 |#2|) (|:| -3237 |#2|))) |#3| |#2|) 20) (((-592 (-2 (|:| -1423 |#2|) (|:| -3237 |#2|))) |#3|) 21)) (-3132 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2430 ((|#2| |#3| (-592 (-385 |#2|))) 93) (((-3 |#2| "failed") |#3| (-385 |#2|)) 90)))
+(((-749 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2430 ((-3 |#2| "failed") |#3| (-385 |#2|))) (-15 -2430 (|#2| |#3| (-592 (-385 |#2|)))) (-15 -2184 ((-592 (-2 (|:| -1423 |#2|) (|:| -3237 |#2|))) |#3|)) (-15 -2184 ((-592 (-2 (|:| -1423 |#2|) (|:| -3237 |#2|))) |#3| |#2|)) (-15 -3132 (|#2| |#3| |#1|)) (-15 -2184 ((-592 (-2 (|:| -1423 |#2|) (|:| -3237 |#2|))) |#4|)) (-15 -2184 ((-592 (-2 (|:| -1423 |#2|) (|:| -3237 |#2|))) |#4| |#2|)) (-15 -3132 (|#2| |#4| |#1|)) (-15 -3999 ((-2 (|:| -1537 |#3|) (|:| |rh| (-592 (-385 |#2|)))) |#4| (-592 (-385 |#2|))))) (-13 (-341) (-138) (-968 (-385 (-525)))) (-1150 |#1|) (-602 |#2|) (-602 (-385 |#2|))) (T -749))
+((-3999 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *6 (-1150 *5)) (-5 *2 (-2 (|:| -1537 *7) (|:| |rh| (-592 (-385 *6))))) (-5 *1 (-749 *5 *6 *7 *3)) (-5 *4 (-592 (-385 *6))) (-4 *7 (-602 *6)) (-4 *3 (-602 (-385 *6))))) (-3132 (*1 *2 *3 *4) (-12 (-4 *2 (-1150 *4)) (-5 *1 (-749 *4 *2 *5 *3)) (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-602 *2)) (-4 *3 (-602 (-385 *2))))) (-2184 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *4 (-1150 *5)) (-5 *2 (-592 (-2 (|:| -1423 *4) (|:| -3237 *4)))) (-5 *1 (-749 *5 *4 *6 *3)) (-4 *6 (-602 *4)) (-4 *3 (-602 (-385 *4))))) (-2184 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-1150 *4)) (-5 *2 (-592 (-2 (|:| -1423 *5) (|:| -3237 *5)))) (-5 *1 (-749 *4 *5 *6 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 (-385 *5))))) (-3132 (*1 *2 *3 *4) (-12 (-4 *2 (-1150 *4)) (-5 *1 (-749 *4 *2 *3 *5)) (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *5 (-602 (-385 *2))))) (-2184 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *4 (-1150 *5)) (-5 *2 (-592 (-2 (|:| -1423 *4) (|:| -3237 *4)))) (-5 *1 (-749 *5 *4 *3 *6)) (-4 *3 (-602 *4)) (-4 *6 (-602 (-385 *4))))) (-2184 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-1150 *4)) (-5 *2 (-592 (-2 (|:| -1423 *5) (|:| -3237 *5)))) (-5 *1 (-749 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-385 *5))))) (-2430 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-385 *2))) (-4 *2 (-1150 *5)) (-5 *1 (-749 *5 *2 *3 *6)) (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *6 (-602 (-385 *2))))) (-2430 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-385 *2)) (-4 *2 (-1150 *5)) (-5 *1 (-749 *5 *2 *3 *6)) (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *6 (-602 *4)))))
+(-10 -7 (-15 -2430 ((-3 |#2| "failed") |#3| (-385 |#2|))) (-15 -2430 (|#2| |#3| (-592 (-385 |#2|)))) (-15 -2184 ((-592 (-2 (|:| -1423 |#2|) (|:| -3237 |#2|))) |#3|)) (-15 -2184 ((-592 (-2 (|:| -1423 |#2|) (|:| -3237 |#2|))) |#3| |#2|)) (-15 -3132 (|#2| |#3| |#1|)) (-15 -2184 ((-592 (-2 (|:| -1423 |#2|) (|:| -3237 |#2|))) |#4|)) (-15 -2184 ((-592 (-2 (|:| -1423 |#2|) (|:| -3237 |#2|))) |#4| |#2|)) (-15 -3132 (|#2| |#4| |#1|)) (-15 -3999 ((-2 (|:| -1537 |#3|) (|:| |rh| (-592 (-385 |#2|)))) |#4| (-592 (-385 |#2|)))))
+((-4087 (((-108) $ $) NIL)) (-4105 (((-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) $) 13)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 15) (($ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 12)) (-2775 (((-108) $ $) NIL)))
+(((-750) (-13 (-1020) (-10 -8 (-15 -4100 ($ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4100 ((-798) $)) (-15 -4105 ((-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) $))))) (T -750))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-750)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-750)))) (-4105 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-750)))))
+(-13 (-1020) (-10 -8 (-15 -4100 ($ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4100 ((-798) $)) (-15 -4105 ((-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) $))))
+((-2181 (((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -1537 |#3|))) |#3| (-1 (-592 |#2|) |#2| (-1088 |#2|)) (-1 (-396 |#2|) |#2|)) 118)) (-3824 (((-592 (-2 (|:| |poly| |#2|) (|:| -1537 |#3|))) |#3| (-1 (-592 |#1|) |#2|)) 46)) (-1758 (((-592 (-2 (|:| |deg| (-713)) (|:| -1537 |#2|))) |#3|) 95)) (-3980 ((|#2| |#3|) 37)) (-1713 (((-592 (-2 (|:| -2247 |#1|) (|:| -1537 |#3|))) |#3| (-1 (-592 |#1|) |#2|)) 82)) (-4038 ((|#3| |#3| (-385 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
+(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3980 (|#2| |#3|)) (-15 -1758 ((-592 (-2 (|:| |deg| (-713)) (|:| -1537 |#2|))) |#3|)) (-15 -1713 ((-592 (-2 (|:| -2247 |#1|) (|:| -1537 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -3824 ((-592 (-2 (|:| |poly| |#2|) (|:| -1537 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -2181 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -1537 |#3|))) |#3| (-1 (-592 |#2|) |#2| (-1088 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -4038 (|#3| |#3| |#2|)) (-15 -4038 (|#3| |#3| (-385 |#2|)))) (-13 (-341) (-138) (-968 (-385 (-525)))) (-1150 |#1|) (-602 |#2|) (-602 (-385 |#2|))) (T -751))
+((-4038 (*1 *2 *2 *3) (-12 (-5 *3 (-385 *5)) (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-1150 *4)) (-5 *1 (-751 *4 *5 *2 *6)) (-4 *2 (-602 *5)) (-4 *6 (-602 *3)))) (-4038 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-1150 *4)) (-5 *1 (-751 *4 *3 *2 *5)) (-4 *2 (-602 *3)) (-4 *5 (-602 (-385 *3))))) (-2181 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-592 *7) *7 (-1088 *7))) (-5 *5 (-1 (-396 *7) *7)) (-4 *7 (-1150 *6)) (-4 *6 (-13 (-341) (-138) (-968 (-385 (-525))))) (-5 *2 (-592 (-2 (|:| |frac| (-385 *7)) (|:| -1537 *3)))) (-5 *1 (-751 *6 *7 *3 *8)) (-4 *3 (-602 *7)) (-4 *8 (-602 (-385 *7))))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *6 (-1150 *5)) (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -1537 *3)))) (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-385 *6))))) (-1713 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *6 (-1150 *5)) (-5 *2 (-592 (-2 (|:| -2247 *5) (|:| -1537 *3)))) (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-385 *6))))) (-1758 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-1150 *4)) (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -1537 *5)))) (-5 *1 (-751 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-385 *5))))) (-3980 (*1 *2 *3) (-12 (-4 *2 (-1150 *4)) (-5 *1 (-751 *4 *2 *3 *5)) (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *5 (-602 (-385 *2))))))
+(-10 -7 (-15 -3980 (|#2| |#3|)) (-15 -1758 ((-592 (-2 (|:| |deg| (-713)) (|:| -1537 |#2|))) |#3|)) (-15 -1713 ((-592 (-2 (|:| -2247 |#1|) (|:| -1537 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -3824 ((-592 (-2 (|:| |poly| |#2|) (|:| -1537 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -2181 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -1537 |#3|))) |#3| (-1 (-592 |#2|) |#2| (-1088 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -4038 (|#3| |#3| |#2|)) (-15 -4038 (|#3| |#3| (-385 |#2|))))
+((-2786 (((-2 (|:| -2103 (-592 (-385 |#2|))) (|:| -4108 (-632 |#1|))) (-600 |#2| (-385 |#2|)) (-592 (-385 |#2|))) 121) (((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -2103 (-592 (-385 |#2|)))) (-600 |#2| (-385 |#2|)) (-385 |#2|)) 120) (((-2 (|:| -2103 (-592 (-385 |#2|))) (|:| -4108 (-632 |#1|))) (-599 (-385 |#2|)) (-592 (-385 |#2|))) 115) (((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -2103 (-592 (-385 |#2|)))) (-599 (-385 |#2|)) (-385 |#2|)) 113)) (-1298 ((|#2| (-600 |#2| (-385 |#2|))) 80) ((|#2| (-599 (-385 |#2|))) 83)))
+(((-752 |#1| |#2|) (-10 -7 (-15 -2786 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -2103 (-592 (-385 |#2|)))) (-599 (-385 |#2|)) (-385 |#2|))) (-15 -2786 ((-2 (|:| -2103 (-592 (-385 |#2|))) (|:| -4108 (-632 |#1|))) (-599 (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -2786 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -2103 (-592 (-385 |#2|)))) (-600 |#2| (-385 |#2|)) (-385 |#2|))) (-15 -2786 ((-2 (|:| -2103 (-592 (-385 |#2|))) (|:| -4108 (-632 |#1|))) (-600 |#2| (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -1298 (|#2| (-599 (-385 |#2|)))) (-15 -1298 (|#2| (-600 |#2| (-385 |#2|))))) (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))) (-1150 |#1|)) (T -752))
+((-1298 (*1 *2 *3) (-12 (-5 *3 (-600 *2 (-385 *2))) (-4 *2 (-1150 *4)) (-5 *1 (-752 *4 *2)) (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))))) (-1298 (*1 *2 *3) (-12 (-5 *3 (-599 (-385 *2))) (-4 *2 (-1150 *4)) (-5 *1 (-752 *4 *2)) (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))))) (-2786 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-2 (|:| -2103 (-592 (-385 *6))) (|:| -4108 (-632 *5)))) (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6))))) (-2786 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2103 (-592 *4)))) (-5 *1 (-752 *5 *6)))) (-2786 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-2 (|:| -2103 (-592 (-385 *6))) (|:| -4108 (-632 *5)))) (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6))))) (-2786 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2103 (-592 *4)))) (-5 *1 (-752 *5 *6)))))
+(-10 -7 (-15 -2786 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -2103 (-592 (-385 |#2|)))) (-599 (-385 |#2|)) (-385 |#2|))) (-15 -2786 ((-2 (|:| -2103 (-592 (-385 |#2|))) (|:| -4108 (-632 |#1|))) (-599 (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -2786 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -2103 (-592 (-385 |#2|)))) (-600 |#2| (-385 |#2|)) (-385 |#2|))) (-15 -2786 ((-2 (|:| -2103 (-592 (-385 |#2|))) (|:| -4108 (-632 |#1|))) (-600 |#2| (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -1298 (|#2| (-599 (-385 |#2|)))) (-15 -1298 (|#2| (-600 |#2| (-385 |#2|)))))
+((-1593 (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#1|))) |#5| |#4|) 48)))
+(((-753 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1593 ((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#1|))) |#5| |#4|))) (-341) (-602 |#1|) (-1150 |#1|) (-667 |#1| |#3|) (-602 |#4|)) (T -753))
+((-1593 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *7 (-1150 *5)) (-4 *4 (-667 *5 *7)) (-5 *2 (-2 (|:| -4108 (-632 *6)) (|:| |vec| (-1174 *5)))) (-5 *1 (-753 *5 *6 *7 *4 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 *4)))))
+(-10 -7 (-15 -1593 ((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#1|))) |#5| |#4|)))
+((-2181 (((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -1537 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)) 47)) (-2732 (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|))) 138 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-396 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-599 (-385 |#2|))) 140 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|)) 38) (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 39) (((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|)) 36) (((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 37)) (-3824 (((-592 (-2 (|:| |poly| |#2|) (|:| -1537 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 83)))
+(((-754 |#1| |#2|) (-10 -7 (-15 -2732 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -2732 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -2732 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -2732 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -2181 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -1537 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -3824 ((-592 (-2 (|:| |poly| |#2|) (|:| -1537 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2732 ((-592 (-385 |#2|)) (-599 (-385 |#2|)))) (-15 -2732 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -2732 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)))) (-15 -2732 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)))) |%noBranch|)) (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))) (-1150 |#1|)) (T -754))
+((-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1150 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-600 *5 (-385 *5))) (-4 *5 (-1150 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5)))) (-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1150 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-599 (-385 *5))) (-4 *5 (-1150 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *6 (-1150 *5)) (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -1537 (-600 *6 (-385 *6)))))) (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6))))) (-2181 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-592 (-2 (|:| |frac| (-385 *6)) (|:| -1537 (-600 *6 (-385 *6)))))) (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6))))) (-2732 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-600 *7 (-385 *7))) (-5 *4 (-1 (-592 *6) *7)) (-5 *5 (-1 (-396 *7) *7)) (-4 *6 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *7 (-1150 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7)))) (-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *6 (-1150 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))) (-2732 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-385 *7))) (-5 *4 (-1 (-592 *6) *7)) (-5 *5 (-1 (-396 *7) *7)) (-4 *6 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *7 (-1150 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7)))) (-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *6 (-1150 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))))
+(-10 -7 (-15 -2732 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -2732 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -2732 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -2732 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -2181 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -1537 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -3824 ((-592 (-2 (|:| |poly| |#2|) (|:| -1537 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2732 ((-592 (-385 |#2|)) (-599 (-385 |#2|)))) (-15 -2732 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -2732 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)))) (-15 -2732 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)))) |%noBranch|))
+((-2301 (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#1|))) (-632 |#2|) (-1174 |#1|)) 85) (((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1174 |#1|)) (|:| -1537 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1174 |#1|)) 15)) (-2875 (((-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -2103 (-592 (-1174 |#1|)))) (-632 |#2|) (-1174 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2103 (-592 |#1|))) |#2| |#1|)) 92)) (-2496 (((-3 (-2 (|:| |particular| (-1174 |#1|)) (|:| -2103 (-632 |#1|))) "failed") (-632 |#1|) (-1174 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2103 (-592 |#1|))) "failed") |#2| |#1|)) 43)))
+(((-755 |#1| |#2|) (-10 -7 (-15 -2301 ((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1174 |#1|)) (|:| -1537 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1174 |#1|))) (-15 -2301 ((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#1|))) (-632 |#2|) (-1174 |#1|))) (-15 -2496 ((-3 (-2 (|:| |particular| (-1174 |#1|)) (|:| -2103 (-632 |#1|))) "failed") (-632 |#1|) (-1174 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2103 (-592 |#1|))) "failed") |#2| |#1|))) (-15 -2875 ((-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -2103 (-592 (-1174 |#1|)))) (-632 |#2|) (-1174 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2103 (-592 |#1|))) |#2| |#1|)))) (-341) (-602 |#1|)) (T -755))
+((-2875 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2103 (-592 *6))) *7 *6)) (-4 *6 (-341)) (-4 *7 (-602 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1174 *6) "failed")) (|:| -2103 (-592 (-1174 *6))))) (-5 *1 (-755 *6 *7)) (-5 *4 (-1174 *6)))) (-2496 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2103 (-592 *6))) "failed") *7 *6)) (-4 *6 (-341)) (-4 *7 (-602 *6)) (-5 *2 (-2 (|:| |particular| (-1174 *6)) (|:| -2103 (-632 *6)))) (-5 *1 (-755 *6 *7)) (-5 *3 (-632 *6)) (-5 *4 (-1174 *6)))) (-2301 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-602 *5)) (-5 *2 (-2 (|:| -4108 (-632 *6)) (|:| |vec| (-1174 *5)))) (-5 *1 (-755 *5 *6)) (-5 *3 (-632 *6)) (-5 *4 (-1174 *5)))) (-2301 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-5 *2 (-2 (|:| A (-632 *5)) (|:| |eqs| (-592 (-2 (|:| C (-632 *5)) (|:| |g| (-1174 *5)) (|:| -1537 *6) (|:| |rh| *5)))))) (-5 *1 (-755 *5 *6)) (-5 *3 (-632 *5)) (-5 *4 (-1174 *5)) (-4 *6 (-602 *5)))))
+(-10 -7 (-15 -2301 ((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1174 |#1|)) (|:| -1537 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1174 |#1|))) (-15 -2301 ((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#1|))) (-632 |#2|) (-1174 |#1|))) (-15 -2496 ((-3 (-2 (|:| |particular| (-1174 |#1|)) (|:| -2103 (-632 |#1|))) "failed") (-632 |#1|) (-1174 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2103 (-592 |#1|))) "failed") |#2| |#1|))) (-15 -2875 ((-2 (|:| |particular| (-3 (-1174 |#1|) "failed")) (|:| -2103 (-592 (-1174 |#1|)))) (-632 |#2|) (-1174 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2103 (-592 |#1|))) |#2| |#1|))))
+((-3358 (((-632 |#1|) (-592 |#1|) (-713)) 13) (((-632 |#1|) (-592 |#1|)) 14)) (-1516 (((-3 (-1174 |#1|) "failed") |#2| |#1| (-592 |#1|)) 34)) (-1270 (((-3 |#1| "failed") |#2| |#1| (-592 |#1|) (-1 |#1| |#1|)) 42)))
+(((-756 |#1| |#2|) (-10 -7 (-15 -3358 ((-632 |#1|) (-592 |#1|))) (-15 -3358 ((-632 |#1|) (-592 |#1|) (-713))) (-15 -1516 ((-3 (-1174 |#1|) "failed") |#2| |#1| (-592 |#1|))) (-15 -1270 ((-3 |#1| "failed") |#2| |#1| (-592 |#1|) (-1 |#1| |#1|)))) (-341) (-602 |#1|)) (T -756))
+((-1270 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-592 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-341)) (-5 *1 (-756 *2 *3)) (-4 *3 (-602 *2)))) (-1516 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-1174 *4)) (-5 *1 (-756 *4 *3)) (-4 *3 (-602 *4)))) (-3358 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-341)) (-5 *2 (-632 *5)) (-5 *1 (-756 *5 *6)) (-4 *6 (-602 *5)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-632 *4)) (-5 *1 (-756 *4 *5)) (-4 *5 (-602 *4)))))
+(-10 -7 (-15 -3358 ((-632 |#1|) (-592 |#1|))) (-15 -3358 ((-632 |#1|) (-592 |#1|) (-713))) (-15 -1516 ((-3 (-1174 |#1|) "failed") |#2| |#1| (-592 |#1|))) (-15 -1270 ((-3 |#1| "failed") |#2| |#1| (-592 |#1|) (-1 |#1| |#1|))))
+((-4087 (((-108) $ $) NIL (|has| |#2| (-1020)))) (-2414 (((-108) $) NIL (|has| |#2| (-126)))) (-3473 (($ (-856)) NIL (|has| |#2| (-977)))) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-1525 (($ $ $) NIL (|has| |#2| (-735)))) (-3222 (((-3 $ "failed") $ $) NIL (|has| |#2| (-126)))) (-3779 (((-108) $ (-713)) NIL)) (-1613 (((-713)) NIL (|has| |#2| (-346)))) (-2971 (((-525) $) NIL (|has| |#2| (-787)))) (-1233 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4260)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1020)))) (-4105 (((-525) $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) ((|#2| $) NIL (|has| |#2| (-1020)))) (-3090 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL (|has| |#2| (-977))) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-977)))) (-3300 (((-3 $ "failed") $) NIL (|has| |#2| (-669)))) (-1903 (($) NIL (|has| |#2| (-346)))) (-3081 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#2| $ (-525)) NIL)) (-1889 (((-108) $) NIL (|has| |#2| (-787)))) (-2175 (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-2278 (((-108) $) NIL (|has| |#2| (-669)))) (-4079 (((-108) $) NIL (|has| |#2| (-787)))) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) NIL (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (-2067 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2617 (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (-2067 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3069 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#2| |#2|) $) NIL)) (-3685 (((-856) $) NIL (|has| |#2| (-346)))) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#2| (-1020)))) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-1722 (($ (-856)) NIL (|has| |#2| (-346)))) (-3993 (((-1039) $) NIL (|has| |#2| (-1020)))) (-1647 ((|#2| $) NIL (|has| (-525) (-789)))) (-3453 (($ $ |#2|) NIL (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-1717 (((-592 |#2|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) NIL)) (-3584 ((|#2| $ $) NIL (|has| |#2| (-977)))) (-4238 (($ (-1174 |#2|)) NIL)) (-3933 (((-128)) NIL (|has| |#2| (-341)))) (-2702 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-977)))) (-4002 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-2503 (($ $) NIL)) (-4100 (((-1174 |#2|) $) NIL) (($ (-525)) NIL (-2067 (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) (|has| |#2| (-977)))) (($ (-385 (-525))) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (($ |#2|) NIL (|has| |#2| (-1020))) (((-798) $) NIL (|has| |#2| (-566 (-798))))) (-2448 (((-713)) NIL (|has| |#2| (-977)))) (-2706 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2380 (($ $) NIL (|has| |#2| (-787)))) (-3706 (($ $ (-713)) NIL (|has| |#2| (-669))) (($ $ (-856)) NIL (|has| |#2| (-669)))) (-3364 (($) NIL (|has| |#2| (-126)) CONST)) (-3375 (($) NIL (|has| |#2| (-669)) CONST)) (-2401 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#2| (-835 (-1092))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-977)))) (-2830 (((-108) $ $) NIL (-2067 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2807 (((-108) $ $) NIL (-2067 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2775 (((-108) $ $) NIL (|has| |#2| (-1020)))) (-2817 (((-108) $ $) NIL (-2067 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2795 (((-108) $ $) 11 (-2067 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2880 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-2871 (($ $ $) NIL (|has| |#2| (-977))) (($ $) NIL (|has| |#2| (-977)))) (-2860 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-713)) NIL (|has| |#2| (-669))) (($ $ (-856)) NIL (|has| |#2| (-669)))) (* (($ (-525) $) NIL (|has| |#2| (-977))) (($ $ $) NIL (|has| |#2| (-669))) (($ $ |#2|) NIL (|has| |#2| (-669))) (($ |#2| $) NIL (|has| |#2| (-669))) (($ (-713) $) NIL (|has| |#2| (-126))) (($ (-856) $) NIL (|has| |#2| (-25)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
(((-757 |#1| |#2| |#3|) (-218 |#1| |#2|) (-713) (-735) (-1 (-108) (-1174 |#2|) (-1174 |#2|))) (T -757))
NIL
(-218 |#1| |#2|)
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2865 (((-592 (-713)) $) NIL) (((-592 (-713)) $ (-1092)) NIL)) (-3398 (((-713) $) NIL) (((-713) $ (-1092)) NIL)) (-2897 (((-592 (-760 (-1092))) $) NIL)) (-2744 (((-1088 $) $ (-760 (-1092))) NIL) (((-1088 |#1|) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-3212 (((-713) $) NIL) (((-713) $ (-592 (-760 (-1092)))) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-1286 (($ $) NIL (|has| |#1| (-429)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2970 (($ $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-760 (-1092)) "failed") $) NIL) (((-3 (-1092) "failed") $) NIL) (((-3 (-1044 |#1| (-1092)) "failed") $) NIL)) (-1572 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-760 (-1092)) $) NIL) (((-1092) $) NIL) (((-1044 |#1| (-1092)) $) NIL)) (-3377 (($ $ $ (-760 (-1092))) NIL (|has| |#1| (-160)))) (-3063 (($ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1576 (($ $) NIL (|has| |#1| (-429))) (($ $ (-760 (-1092))) NIL (|has| |#1| (-429)))) (-3052 (((-592 $) $) NIL)) (-3673 (((-108) $) NIL (|has| |#1| (-844)))) (-2188 (($ $ |#1| (-497 (-760 (-1092))) $) NIL)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-760 (-1092)) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-760 (-1092)) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-2581 (((-713) $ (-1092)) NIL) (((-713) $) NIL)) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) NIL)) (-2887 (($ (-1088 |#1|) (-760 (-1092))) NIL) (($ (-1088 $) (-760 (-1092))) NIL)) (-4144 (((-592 $) $) NIL)) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-497 (-760 (-1092)))) NIL) (($ $ (-760 (-1092)) (-713)) NIL) (($ $ (-592 (-760 (-1092))) (-592 (-713))) NIL)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ (-760 (-1092))) NIL)) (-2870 (((-497 (-760 (-1092))) $) NIL) (((-713) $ (-760 (-1092))) NIL) (((-592 (-713)) $ (-592 (-760 (-1092)))) NIL)) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2172 (($ (-1 (-497 (-760 (-1092))) (-497 (-760 (-1092)))) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2822 (((-1 $ (-713)) (-1092)) NIL) (((-1 $ (-713)) $) NIL (|has| |#1| (-213)))) (-2431 (((-3 (-760 (-1092)) "failed") $) NIL)) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2564 (((-760 (-1092)) $) NIL)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2619 (((-1075) $) NIL)) (-3916 (((-108) $) NIL)) (-1334 (((-3 (-592 $) "failed") $) NIL)) (-2001 (((-3 (-592 $) "failed") $) NIL)) (-2121 (((-3 (-2 (|:| |var| (-760 (-1092))) (|:| -4193 (-713))) "failed") $) NIL)) (-2253 (($ $) NIL)) (-2093 (((-1039) $) NIL)) (-3007 (((-108) $) NIL)) (-3019 ((|#1| $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-429)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2770 (((-396 $) $) NIL (|has| |#1| (-844)))) (-1715 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2457 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-760 (-1092)) |#1|) NIL) (($ $ (-592 (-760 (-1092))) (-592 |#1|)) NIL) (($ $ (-760 (-1092)) $) NIL) (($ $ (-592 (-760 (-1092))) (-592 $)) NIL) (($ $ (-1092) $) NIL (|has| |#1| (-213))) (($ $ (-592 (-1092)) (-592 $)) NIL (|has| |#1| (-213))) (($ $ (-1092) |#1|) NIL (|has| |#1| (-213))) (($ $ (-592 (-1092)) (-592 |#1|)) NIL (|has| |#1| (-213)))) (-1975 (($ $ (-760 (-1092))) NIL (|has| |#1| (-160)))) (-3376 (($ $ (-760 (-1092))) NIL) (($ $ (-592 (-760 (-1092)))) NIL) (($ $ (-760 (-1092)) (-713)) NIL) (($ $ (-592 (-760 (-1092))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2866 (((-592 (-1092)) $) NIL)) (-2343 (((-497 (-760 (-1092))) $) NIL) (((-713) $ (-760 (-1092))) NIL) (((-592 (-713)) $ (-592 (-760 (-1092)))) NIL) (((-713) $ (-1092)) NIL)) (-3210 (((-827 (-357)) $) NIL (-12 (|has| (-760 (-1092)) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-760 (-1092)) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-760 (-1092)) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-3658 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-760 (-1092))) NIL (|has| |#1| (-429)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-760 (-1092))) NIL) (($ (-1092)) NIL) (($ (-1044 |#1| (-1092))) NIL) (($ (-385 (-525))) NIL (-3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-1684 (((-592 |#1|) $) NIL)) (-1568 ((|#1| $ (-497 (-760 (-1092)))) NIL) (($ $ (-760 (-1092)) (-713)) NIL) (($ $ (-592 (-760 (-1092))) (-592 (-713))) NIL)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-3917 (((-713)) NIL)) (-3716 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $ (-760 (-1092))) NIL) (($ $ (-592 (-760 (-1092)))) NIL) (($ $ (-760 (-1092)) (-713)) NIL) (($ $ (-592 (-760 (-1092))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1761 (((-592 (-713)) $) NIL) (((-592 (-713)) $ (-1092)) NIL)) (-4016 (((-713) $) NIL) (((-713) $ (-1092)) NIL)) (-1296 (((-592 (-760 (-1092))) $) NIL)) (-4169 (((-1088 $) $ (-760 (-1092))) NIL) (((-1088 |#1|) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-1928 (((-713) $) NIL) (((-713) $ (-592 (-760 (-1092)))) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4195 (($ $) NIL (|has| |#1| (-429)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-3385 (($ $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-760 (-1092)) "failed") $) NIL) (((-3 (-1092) "failed") $) NIL) (((-3 (-1044 |#1| (-1092)) "failed") $) NIL)) (-4105 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-760 (-1092)) $) NIL) (((-1092) $) NIL) (((-1044 |#1| (-1092)) $) NIL)) (-3801 (($ $ $ (-760 (-1092))) NIL (|has| |#1| (-160)))) (-1451 (($ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3201 (($ $) NIL (|has| |#1| (-429))) (($ $ (-760 (-1092))) NIL (|has| |#1| (-429)))) (-1441 (((-592 $) $) NIL)) (-1798 (((-108) $) NIL (|has| |#1| (-844)))) (-1457 (($ $ |#1| (-497 (-760 (-1092))) $) NIL)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-760 (-1092)) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-760 (-1092)) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-4000 (((-713) $ (-1092)) NIL) (((-713) $) NIL)) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) NIL)) (-1284 (($ (-1088 |#1|) (-760 (-1092))) NIL) (($ (-1088 $) (-760 (-1092))) NIL)) (-2884 (((-592 $) $) NIL)) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-497 (-760 (-1092)))) NIL) (($ $ (-760 (-1092)) (-713)) NIL) (($ $ (-592 (-760 (-1092))) (-592 (-713))) NIL)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ (-760 (-1092))) NIL)) (-1819 (((-497 (-760 (-1092))) $) NIL) (((-713) $ (-760 (-1092))) NIL) (((-592 (-713)) $ (-592 (-760 (-1092)))) NIL)) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-1314 (($ (-1 (-497 (-760 (-1092))) (-497 (-760 (-1092)))) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2535 (((-1 $ (-713)) (-1092)) NIL) (((-1 $ (-713)) $) NIL (|has| |#1| (-213)))) (-2018 (((-3 (-760 (-1092)) "failed") $) NIL)) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-3481 (((-760 (-1092)) $) NIL)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1289 (((-1075) $) NIL)) (-2438 (((-108) $) NIL)) (-2977 (((-3 (-592 $) "failed") $) NIL)) (-3165 (((-3 (-592 $) "failed") $) NIL)) (-1986 (((-3 (-2 (|:| |var| (-760 (-1092))) (|:| -2168 (-713))) "failed") $) NIL)) (-3343 (($ $) NIL)) (-3993 (((-1039) $) NIL)) (-1399 (((-108) $) NIL)) (-1407 ((|#1| $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-429)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4201 (((-396 $) $) NIL (|has| |#1| (-844)))) (-1311 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2825 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-760 (-1092)) |#1|) NIL) (($ $ (-592 (-760 (-1092))) (-592 |#1|)) NIL) (($ $ (-760 (-1092)) $) NIL) (($ $ (-592 (-760 (-1092))) (-592 $)) NIL) (($ $ (-1092) $) NIL (|has| |#1| (-213))) (($ $ (-592 (-1092)) (-592 $)) NIL (|has| |#1| (-213))) (($ $ (-1092) |#1|) NIL (|has| |#1| (-213))) (($ $ (-592 (-1092)) (-592 |#1|)) NIL (|has| |#1| (-213)))) (-4115 (($ $ (-760 (-1092))) NIL (|has| |#1| (-160)))) (-2702 (($ $ (-760 (-1092))) NIL) (($ $ (-592 (-760 (-1092)))) NIL) (($ $ (-760 (-1092)) (-713)) NIL) (($ $ (-592 (-760 (-1092))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1771 (((-592 (-1092)) $) NIL)) (-3529 (((-497 (-760 (-1092))) $) NIL) (((-713) $ (-760 (-1092))) NIL) (((-592 (-713)) $ (-592 (-760 (-1092)))) NIL) (((-713) $ (-1092)) NIL)) (-2069 (((-827 (-357)) $) NIL (-12 (|has| (-760 (-1092)) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-760 (-1092)) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-760 (-1092)) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-1661 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-760 (-1092))) NIL (|has| |#1| (-429)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-760 (-1092))) NIL) (($ (-1092)) NIL) (($ (-1044 |#1| (-1092))) NIL) (($ (-385 (-525))) NIL (-2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3137 (((-592 |#1|) $) NIL)) (-3136 ((|#1| $ (-497 (-760 (-1092)))) NIL) (($ $ (-760 (-1092)) (-713)) NIL) (($ $ (-592 (-760 (-1092))) (-592 (-713))) NIL)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2448 (((-713)) NIL)) (-4042 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $ (-760 (-1092))) NIL) (($ $ (-592 (-760 (-1092)))) NIL) (($ $ (-760 (-1092)) (-713)) NIL) (($ $ (-592 (-760 (-1092))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-758 |#1|) (-13 (-232 |#1| (-1092) (-760 (-1092)) (-497 (-760 (-1092)))) (-968 (-1044 |#1| (-1092)))) (-977)) (T -758))
NIL
(-13 (-232 |#1| (-1092) (-760 (-1092)) (-497 (-760 (-1092)))) (-968 (-1044 |#1| (-1092))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#2| (-341)))) (-4218 (($ $) NIL (|has| |#2| (-341)))) (-3171 (((-108) $) NIL (|has| |#2| (-341)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL (|has| |#2| (-341)))) (-2669 (((-396 $) $) NIL (|has| |#2| (-341)))) (-2193 (((-108) $ $) NIL (|has| |#2| (-341)))) (-2169 (($) NIL T CONST)) (-1747 (($ $ $) NIL (|has| |#2| (-341)))) (-3457 (((-3 $ "failed") $) NIL)) (-1733 (($ $ $) NIL (|has| |#2| (-341)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| |#2| (-341)))) (-3673 (((-108) $) NIL (|has| |#2| (-341)))) (-1396 (((-108) $) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-2556 (($ (-592 $)) NIL (|has| |#2| (-341))) (($ $ $) NIL (|has| |#2| (-341)))) (-2619 (((-1075) $) NIL)) (-2997 (($ $) 20 (|has| |#2| (-341)))) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#2| (-341)))) (-2589 (($ (-592 $)) NIL (|has| |#2| (-341))) (($ $ $) NIL (|has| |#2| (-341)))) (-2770 (((-396 $) $) NIL (|has| |#2| (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#2| (-341)))) (-1715 (((-3 $ "failed") $ $) NIL (|has| |#2| (-341)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-3684 (((-713) $) NIL (|has| |#2| (-341)))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#2| (-341)))) (-3376 (($ $ (-713)) NIL) (($ $) 13)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-385 (-525))) NIL (|has| |#2| (-341))) (($ $) NIL (|has| |#2| (-341)))) (-3917 (((-713)) NIL)) (-3325 (((-108) $ $) NIL (|has| |#2| (-341)))) (-1619 (($ $ (-713)) NIL) (($ $ (-856)) NIL) (($ $ (-525)) NIL (|has| |#2| (-341)))) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $ (-713)) NIL) (($ $) NIL)) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ $) 15 (|has| |#2| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL) (($ $ (-525)) 18 (|has| |#2| (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-385 (-525)) $) NIL (|has| |#2| (-341))) (($ $ (-385 (-525))) NIL (|has| |#2| (-341)))))
-(((-759 |#1| |#2| |#3|) (-13 (-107 $ $) (-213) (-10 -8 (IF (|has| |#2| (-341)) (-6 (-341)) |%noBranch|) (-15 -1217 ($ |#2|)) (-15 -1217 (|#2| $)))) (-1020) (-835 |#1|) |#1|) (T -759))
-((-1217 (*1 *1 *2) (-12 (-4 *3 (-1020)) (-14 *4 *3) (-5 *1 (-759 *3 *2 *4)) (-4 *2 (-835 *3)))) (-1217 (*1 *2 *1) (-12 (-4 *2 (-835 *3)) (-5 *1 (-759 *3 *2 *4)) (-4 *3 (-1020)) (-14 *4 *3))))
-(-13 (-107 $ $) (-213) (-10 -8 (IF (|has| |#2| (-341)) (-6 (-341)) |%noBranch|) (-15 -1217 ($ |#2|)) (-15 -1217 (|#2| $))))
-((-4236 (((-108) $ $) NIL)) (-3398 (((-713) $) NIL)) (-2499 ((|#1| $) 10)) (-3077 (((-3 |#1| "failed") $) NIL)) (-1572 ((|#1| $) NIL)) (-2581 (((-713) $) 11)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-2822 (($ |#1| (-713)) 9)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3376 (($ $) NIL) (($ $ (-713)) NIL)) (-1217 (((-798) $) NIL) (($ |#1|) NIL)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#2| (-341)))) (-2433 (($ $) NIL (|has| |#2| (-341)))) (-1568 (((-108) $) NIL (|has| |#2| (-341)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL (|has| |#2| (-341)))) (-3586 (((-396 $) $) NIL (|has| |#2| (-341)))) (-1507 (((-108) $ $) NIL (|has| |#2| (-341)))) (-2475 (($) NIL T CONST)) (-1356 (($ $ $) NIL (|has| |#2| (-341)))) (-3300 (((-3 $ "failed") $) NIL)) (-1332 (($ $ $) NIL (|has| |#2| (-341)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| |#2| (-341)))) (-1798 (((-108) $) NIL (|has| |#2| (-341)))) (-2278 (((-108) $) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-2739 (($ (-592 $)) NIL (|has| |#2| (-341))) (($ $ $) NIL (|has| |#2| (-341)))) (-1289 (((-1075) $) NIL)) (-1387 (($ $) 20 (|has| |#2| (-341)))) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#2| (-341)))) (-2772 (($ (-592 $)) NIL (|has| |#2| (-341))) (($ $ $) NIL (|has| |#2| (-341)))) (-4201 (((-396 $) $) NIL (|has| |#2| (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#2| (-341)))) (-1311 (((-3 $ "failed") $ $) NIL (|has| |#2| (-341)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-1927 (((-713) $) NIL (|has| |#2| (-341)))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#2| (-341)))) (-2702 (($ $ (-713)) NIL) (($ $) 13)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-385 (-525))) NIL (|has| |#2| (-341))) (($ $) NIL (|has| |#2| (-341)))) (-2448 (((-713)) NIL)) (-1571 (((-108) $ $) NIL (|has| |#2| (-341)))) (-3706 (($ $ (-713)) NIL) (($ $ (-856)) NIL) (($ $ (-525)) NIL (|has| |#2| (-341)))) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $ (-713)) NIL) (($ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ $) 15 (|has| |#2| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL) (($ $ (-525)) 18 (|has| |#2| (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-385 (-525)) $) NIL (|has| |#2| (-341))) (($ $ (-385 (-525))) NIL (|has| |#2| (-341)))))
+(((-759 |#1| |#2| |#3|) (-13 (-107 $ $) (-213) (-10 -8 (IF (|has| |#2| (-341)) (-6 (-341)) |%noBranch|) (-15 -4100 ($ |#2|)) (-15 -4100 (|#2| $)))) (-1020) (-835 |#1|) |#1|) (T -759))
+((-4100 (*1 *1 *2) (-12 (-4 *3 (-1020)) (-14 *4 *3) (-5 *1 (-759 *3 *2 *4)) (-4 *2 (-835 *3)))) (-4100 (*1 *2 *1) (-12 (-4 *2 (-835 *3)) (-5 *1 (-759 *3 *2 *4)) (-4 *3 (-1020)) (-14 *4 *3))))
+(-13 (-107 $ $) (-213) (-10 -8 (IF (|has| |#2| (-341)) (-6 (-341)) |%noBranch|) (-15 -4100 ($ |#2|)) (-15 -4100 (|#2| $))))
+((-4087 (((-108) $ $) NIL)) (-4016 (((-713) $) NIL)) (-3469 ((|#1| $) 10)) (-1934 (((-3 |#1| "failed") $) NIL)) (-4105 ((|#1| $) NIL)) (-4000 (((-713) $) 11)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-2535 (($ |#1| (-713)) 9)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2702 (($ $) NIL) (($ $ (-713)) NIL)) (-4100 (((-798) $) NIL) (($ |#1|) NIL)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) NIL)))
(((-760 |#1|) (-245 |#1|) (-789)) (T -760))
NIL
(-245 |#1|)
-((-4236 (((-108) $ $) NIL)) (-2726 (((-592 |#1|) $) 29)) (-1834 (((-713) $) NIL)) (-2169 (($) NIL T CONST)) (-2579 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3077 (((-3 |#1| "failed") $) NIL)) (-1572 ((|#1| $) NIL)) (-1886 (($ $) 31)) (-3457 (((-3 $ "failed") $) NIL)) (-1453 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1396 (((-108) $) NIL)) (-1726 ((|#1| $ (-525)) NIL)) (-3084 (((-713) $ (-525)) NIL)) (-1276 (($ $) 36)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-1530 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-1298 (((-108) $ $) 34)) (-4178 (((-713) $) 25)) (-2619 (((-1075) $) NIL)) (-3346 (($ $ $) NIL)) (-3634 (($ $ $) NIL)) (-2093 (((-1039) $) NIL)) (-1872 ((|#1| $) 30)) (-3843 (((-592 (-2 (|:| |gen| |#1|) (|:| -3096 (-713)))) $) NIL)) (-1724 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-1217 (((-798) $) NIL) (($ |#1|) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3359 (($) 15 T CONST)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 35)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ |#1| (-713)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-761 |#1|) (-13 (-785) (-968 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -1872 (|#1| $)) (-15 -1886 ($ $)) (-15 -1276 ($ $)) (-15 -1298 ((-108) $ $)) (-15 -3634 ($ $ $)) (-15 -3346 ($ $ $)) (-15 -1530 ((-3 $ "failed") $ $)) (-15 -2579 ((-3 $ "failed") $ $)) (-15 -1530 ((-3 $ "failed") $ |#1|)) (-15 -2579 ((-3 $ "failed") $ |#1|)) (-15 -1724 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1453 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1834 ((-713) $)) (-15 -3084 ((-713) $ (-525))) (-15 -1726 (|#1| $ (-525))) (-15 -3843 ((-592 (-2 (|:| |gen| |#1|) (|:| -3096 (-713)))) $)) (-15 -4178 ((-713) $)) (-15 -2726 ((-592 |#1|) $)))) (-789)) (T -761))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1872 (*1 *2 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1886 (*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1276 (*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1298 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-3634 (*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-3346 (*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1530 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-2579 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1530 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-2579 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1724 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-761 *3)) (|:| |rm| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-1453 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-761 *3)) (|:| |mm| (-761 *3)) (|:| |rm| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-3084 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-761 *4)) (-4 *4 (-789)))) (-1726 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -3096 (-713))))) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-761 *3)) (-4 *3 (-789)))))
-(-13 (-785) (-968 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -1872 (|#1| $)) (-15 -1886 ($ $)) (-15 -1276 ($ $)) (-15 -1298 ((-108) $ $)) (-15 -3634 ($ $ $)) (-15 -3346 ($ $ $)) (-15 -1530 ((-3 $ "failed") $ $)) (-15 -2579 ((-3 $ "failed") $ $)) (-15 -1530 ((-3 $ "failed") $ |#1|)) (-15 -2579 ((-3 $ "failed") $ |#1|)) (-15 -1724 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1453 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1834 ((-713) $)) (-15 -3084 ((-713) $ (-525))) (-15 -1726 (|#1| $ (-525))) (-15 -3843 ((-592 (-2 (|:| |gen| |#1|) (|:| -3096 (-713)))) $)) (-15 -4178 ((-713) $)) (-15 -2726 ((-592 |#1|) $))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-1578 (((-3 $ "failed") $ $) 19)) (-3855 (((-525) $) 53)) (-2169 (($) 17 T CONST)) (-3457 (((-3 $ "failed") $) 34)) (-1222 (((-108) $) 51)) (-1396 (((-108) $) 31)) (-3256 (((-108) $) 52)) (-2638 (($ $ $) 50)) (-3662 (($ $ $) 49)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1715 (((-3 $ "failed") $ $) 42)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-3917 (((-713)) 29)) (-3325 (((-108) $ $) 39)) (-2802 (($ $) 54)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-4011 (((-108) $ $) 47)) (-3987 (((-108) $ $) 46)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 48)) (-3978 (((-108) $ $) 45)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-4087 (((-108) $ $) NIL)) (-2668 (((-592 |#1|) $) 29)) (-1613 (((-713) $) NIL)) (-2475 (($) NIL T CONST)) (-3976 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-1934 (((-3 |#1| "failed") $) NIL)) (-4105 ((|#1| $) NIL)) (-1659 (($ $) 31)) (-3300 (((-3 $ "failed") $) NIL)) (-2474 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2278 (((-108) $) NIL)) (-3538 ((|#1| $ (-525)) NIL)) (-2020 (((-713) $ (-525)) NIL)) (-4064 (($ $) 36)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-1225 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-3078 (((-108) $ $) 34)) (-4128 (((-713) $) 25)) (-1289 (((-1075) $) NIL)) (-1759 (($ $ $) NIL)) (-1433 (($ $ $) NIL)) (-3993 (((-1039) $) NIL)) (-1647 ((|#1| $) 30)) (-2868 (((-592 (-2 (|:| |gen| |#1|) (|:| -1618 (-713)))) $) NIL)) (-1322 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4100 (((-798) $) NIL) (($ |#1|) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3375 (($) 15 T CONST)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 35)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ |#1| (-713)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-761 |#1|) (-13 (-785) (-968 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -1647 (|#1| $)) (-15 -1659 ($ $)) (-15 -4064 ($ $)) (-15 -3078 ((-108) $ $)) (-15 -1433 ($ $ $)) (-15 -1759 ($ $ $)) (-15 -1225 ((-3 $ "failed") $ $)) (-15 -3976 ((-3 $ "failed") $ $)) (-15 -1225 ((-3 $ "failed") $ |#1|)) (-15 -3976 ((-3 $ "failed") $ |#1|)) (-15 -1322 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2474 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1613 ((-713) $)) (-15 -2020 ((-713) $ (-525))) (-15 -3538 (|#1| $ (-525))) (-15 -2868 ((-592 (-2 (|:| |gen| |#1|) (|:| -1618 (-713)))) $)) (-15 -4128 ((-713) $)) (-15 -2668 ((-592 |#1|) $)))) (-789)) (T -761))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1647 (*1 *2 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1659 (*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-4064 (*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-3078 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-1433 (*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1759 (*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1225 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-3976 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1225 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-3976 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1322 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-761 *3)) (|:| |rm| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-2474 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-761 *3)) (|:| |mm| (-761 *3)) (|:| |rm| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-2020 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-761 *4)) (-4 *4 (-789)))) (-3538 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1618 (-713))))) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-4128 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-761 *3)) (-4 *3 (-789)))))
+(-13 (-785) (-968 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -1647 (|#1| $)) (-15 -1659 ($ $)) (-15 -4064 ($ $)) (-15 -3078 ((-108) $ $)) (-15 -1433 ($ $ $)) (-15 -1759 ($ $ $)) (-15 -1225 ((-3 $ "failed") $ $)) (-15 -3976 ((-3 $ "failed") $ $)) (-15 -1225 ((-3 $ "failed") $ |#1|)) (-15 -3976 ((-3 $ "failed") $ |#1|)) (-15 -1322 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2474 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1613 ((-713) $)) (-15 -2020 ((-713) $ (-525))) (-15 -3538 (|#1| $ (-525))) (-15 -2868 ((-592 (-2 (|:| |gen| |#1|) (|:| -1618 (-713)))) $)) (-15 -4128 ((-713) $)) (-15 -2668 ((-592 |#1|) $))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-3222 (((-3 $ "failed") $ $) 19)) (-2971 (((-525) $) 53)) (-2475 (($) 17 T CONST)) (-3300 (((-3 $ "failed") $) 34)) (-1889 (((-108) $) 51)) (-2278 (((-108) $) 31)) (-4079 (((-108) $) 52)) (-3033 (($ $ $) 50)) (-1609 (($ $ $) 49)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1311 (((-3 $ "failed") $ $) 42)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-2448 (((-713)) 29)) (-1571 (((-108) $ $) 39)) (-2380 (($ $) 54)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2830 (((-108) $ $) 47)) (-2807 (((-108) $ $) 46)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 48)) (-2795 (((-108) $ $) 45)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-762) (-131)) (T -762))
NIL
(-13 (-517) (-787))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-269) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-787) . T) ((-789) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-2653 (($ (-1039)) 7)) (-2505 (((-108) $ (-1075) (-1039)) 15)) (-2500 (((-764) $) 12)) (-1324 (((-764) $) 11)) (-1751 (((-1179) $) 9)) (-1628 (((-108) $ (-1039)) 16)))
-(((-763) (-10 -8 (-15 -2653 ($ (-1039))) (-15 -1751 ((-1179) $)) (-15 -1324 ((-764) $)) (-15 -2500 ((-764) $)) (-15 -2505 ((-108) $ (-1075) (-1039))) (-15 -1628 ((-108) $ (-1039))))) (T -763))
-((-1628 (*1 *2 *1 *3) (-12 (-5 *3 (-1039)) (-5 *2 (-108)) (-5 *1 (-763)))) (-2505 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-1039)) (-5 *2 (-108)) (-5 *1 (-763)))) (-2500 (*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763)))) (-1751 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-763)))) (-2653 (*1 *1 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-763)))))
-(-10 -8 (-15 -2653 ($ (-1039))) (-15 -1751 ((-1179) $)) (-15 -1324 ((-764) $)) (-15 -2500 ((-764) $)) (-15 -2505 ((-108) $ (-1075) (-1039))) (-15 -1628 ((-108) $ (-1039))))
-((-3996 (((-1179) $ (-765)) 12)) (-3475 (((-1179) $ (-1092)) 32)) (-4002 (((-1179) $ (-1075) (-1075)) 34)) (-4048 (((-1179) $ (-1075)) 33)) (-1306 (((-1179) $) 19)) (-1976 (((-1179) $ (-525)) 28)) (-2787 (((-1179) $ (-205)) 30)) (-1325 (((-1179) $) 18)) (-1372 (((-1179) $) 26)) (-1631 (((-1179) $) 25)) (-1382 (((-1179) $) 23)) (-3561 (((-1179) $) 24)) (-3472 (((-1179) $) 22)) (-1731 (((-1179) $) 21)) (-2501 (((-1179) $) 20)) (-3286 (((-1179) $) 16)) (-2077 (((-1179) $) 17)) (-2428 (((-1179) $) 15)) (-2855 (((-1179) $) 14)) (-2759 (((-1179) $) 13)) (-2685 (($ (-1075) (-765)) 9)) (-1406 (($ (-1075) (-1075) (-765)) 8)) (-3588 (((-1092) $) 51)) (-2210 (((-1092) $) 55)) (-3536 (((-2 (|:| |cd| (-1075)) (|:| -3257 (-1075))) $) 54)) (-3178 (((-1075) $) 52)) (-1812 (((-1179) $) 41)) (-3304 (((-525) $) 49)) (-1694 (((-205) $) 50)) (-2083 (((-1179) $) 40)) (-2535 (((-1179) $) 48)) (-3551 (((-1179) $) 47)) (-3050 (((-1179) $) 45)) (-3701 (((-1179) $) 46)) (-3175 (((-1179) $) 44)) (-1817 (((-1179) $) 43)) (-2571 (((-1179) $) 42)) (-2727 (((-1179) $) 38)) (-2607 (((-1179) $) 39)) (-2326 (((-1179) $) 37)) (-3810 (((-1179) $) 36)) (-4182 (((-1179) $) 35)) (-4000 (((-1179) $) 11)))
-(((-764) (-10 -8 (-15 -1406 ($ (-1075) (-1075) (-765))) (-15 -2685 ($ (-1075) (-765))) (-15 -4000 ((-1179) $)) (-15 -3996 ((-1179) $ (-765))) (-15 -2759 ((-1179) $)) (-15 -2855 ((-1179) $)) (-15 -2428 ((-1179) $)) (-15 -3286 ((-1179) $)) (-15 -2077 ((-1179) $)) (-15 -1325 ((-1179) $)) (-15 -1306 ((-1179) $)) (-15 -2501 ((-1179) $)) (-15 -1731 ((-1179) $)) (-15 -3472 ((-1179) $)) (-15 -1382 ((-1179) $)) (-15 -3561 ((-1179) $)) (-15 -1631 ((-1179) $)) (-15 -1372 ((-1179) $)) (-15 -1976 ((-1179) $ (-525))) (-15 -2787 ((-1179) $ (-205))) (-15 -3475 ((-1179) $ (-1092))) (-15 -4048 ((-1179) $ (-1075))) (-15 -4002 ((-1179) $ (-1075) (-1075))) (-15 -4182 ((-1179) $)) (-15 -3810 ((-1179) $)) (-15 -2326 ((-1179) $)) (-15 -2727 ((-1179) $)) (-15 -2607 ((-1179) $)) (-15 -2083 ((-1179) $)) (-15 -1812 ((-1179) $)) (-15 -2571 ((-1179) $)) (-15 -1817 ((-1179) $)) (-15 -3175 ((-1179) $)) (-15 -3050 ((-1179) $)) (-15 -3701 ((-1179) $)) (-15 -3551 ((-1179) $)) (-15 -2535 ((-1179) $)) (-15 -3304 ((-525) $)) (-15 -1694 ((-205) $)) (-15 -3588 ((-1092) $)) (-15 -3178 ((-1075) $)) (-15 -3536 ((-2 (|:| |cd| (-1075)) (|:| -3257 (-1075))) $)) (-15 -2210 ((-1092) $)))) (T -764))
-((-2210 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-764)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1075)) (|:| -3257 (-1075)))) (-5 *1 (-764)))) (-3178 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-764)))) (-3588 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-764)))) (-1694 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-764)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-764)))) (-2535 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3551 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3050 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3175 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2083 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2326 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3810 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-4182 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-4002 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-764)))) (-4048 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-764)))) (-3475 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-764)))) (-2787 (*1 *2 *1 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1179)) (-5 *1 (-764)))) (-1976 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-764)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3561 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3472 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-1731 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2501 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-1306 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3286 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3996 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1179)) (-5 *1 (-764)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2685 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-765)) (-5 *1 (-764)))) (-1406 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-765)) (-5 *1 (-764)))))
-(-10 -8 (-15 -1406 ($ (-1075) (-1075) (-765))) (-15 -2685 ($ (-1075) (-765))) (-15 -4000 ((-1179) $)) (-15 -3996 ((-1179) $ (-765))) (-15 -2759 ((-1179) $)) (-15 -2855 ((-1179) $)) (-15 -2428 ((-1179) $)) (-15 -3286 ((-1179) $)) (-15 -2077 ((-1179) $)) (-15 -1325 ((-1179) $)) (-15 -1306 ((-1179) $)) (-15 -2501 ((-1179) $)) (-15 -1731 ((-1179) $)) (-15 -3472 ((-1179) $)) (-15 -1382 ((-1179) $)) (-15 -3561 ((-1179) $)) (-15 -1631 ((-1179) $)) (-15 -1372 ((-1179) $)) (-15 -1976 ((-1179) $ (-525))) (-15 -2787 ((-1179) $ (-205))) (-15 -3475 ((-1179) $ (-1092))) (-15 -4048 ((-1179) $ (-1075))) (-15 -4002 ((-1179) $ (-1075) (-1075))) (-15 -4182 ((-1179) $)) (-15 -3810 ((-1179) $)) (-15 -2326 ((-1179) $)) (-15 -2727 ((-1179) $)) (-15 -2607 ((-1179) $)) (-15 -2083 ((-1179) $)) (-15 -1812 ((-1179) $)) (-15 -2571 ((-1179) $)) (-15 -1817 ((-1179) $)) (-15 -3175 ((-1179) $)) (-15 -3050 ((-1179) $)) (-15 -3701 ((-1179) $)) (-15 -3551 ((-1179) $)) (-15 -2535 ((-1179) $)) (-15 -3304 ((-525) $)) (-15 -1694 ((-205) $)) (-15 -3588 ((-1092) $)) (-15 -3178 ((-1075) $)) (-15 -3536 ((-2 (|:| |cd| (-1075)) (|:| -3257 (-1075))) $)) (-15 -2210 ((-1092) $)))
-((-4236 (((-108) $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 12)) (-2928 (($) 15)) (-3354 (($) 13)) (-3035 (($) 16)) (-1210 (($) 14)) (-3955 (((-108) $ $) 8)))
-(((-765) (-13 (-1020) (-10 -8 (-15 -3354 ($)) (-15 -2928 ($)) (-15 -3035 ($)) (-15 -1210 ($))))) (T -765))
-((-3354 (*1 *1) (-5 *1 (-765))) (-2928 (*1 *1) (-5 *1 (-765))) (-3035 (*1 *1) (-5 *1 (-765))) (-1210 (*1 *1) (-5 *1 (-765))))
-(-13 (-1020) (-10 -8 (-15 -3354 ($)) (-15 -2928 ($)) (-15 -3035 ($)) (-15 -1210 ($))))
-((-4236 (((-108) $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 21) (($ (-1092)) 17)) (-3369 (((-108) $) 10)) (-2341 (((-108) $) 9)) (-4215 (((-108) $) 11)) (-2058 (((-108) $) 8)) (-3955 (((-108) $ $) 19)))
-(((-766) (-13 (-1020) (-10 -8 (-15 -1217 ($ (-1092))) (-15 -2058 ((-108) $)) (-15 -2341 ((-108) $)) (-15 -3369 ((-108) $)) (-15 -4215 ((-108) $))))) (T -766))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-766)))) (-2058 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))) (-3369 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
-(-13 (-1020) (-10 -8 (-15 -1217 ($ (-1092))) (-15 -2058 ((-108) $)) (-15 -2341 ((-108) $)) (-15 -3369 ((-108) $)) (-15 -4215 ((-108) $))))
-((-4236 (((-108) $ $) NIL)) (-3795 (($ (-766) (-592 (-1092))) 24)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3022 (((-766) $) 25)) (-3697 (((-592 (-1092)) $) 26)) (-1217 (((-798) $) 23)) (-3955 (((-108) $ $) NIL)))
-(((-767) (-13 (-1020) (-10 -8 (-15 -3022 ((-766) $)) (-15 -3697 ((-592 (-1092)) $)) (-15 -3795 ($ (-766) (-592 (-1092))))))) (T -767))
-((-3022 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-767)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-767)))) (-3795 (*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *3 (-592 (-1092))) (-5 *1 (-767)))))
-(-13 (-1020) (-10 -8 (-15 -3022 ((-766) $)) (-15 -3697 ((-592 (-1092)) $)) (-15 -3795 ($ (-766) (-592 (-1092))))))
-((-1388 (((-1179) (-764) (-294 |#1|) (-108)) 23) (((-1179) (-764) (-294 |#1|)) 79) (((-1075) (-294 |#1|) (-108)) 78) (((-1075) (-294 |#1|)) 77)))
-(((-768 |#1|) (-10 -7 (-15 -1388 ((-1075) (-294 |#1|))) (-15 -1388 ((-1075) (-294 |#1|) (-108))) (-15 -1388 ((-1179) (-764) (-294 |#1|))) (-15 -1388 ((-1179) (-764) (-294 |#1|) (-108)))) (-13 (-770) (-789) (-977))) (T -768))
-((-1388 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-764)) (-5 *4 (-294 *6)) (-5 *5 (-108)) (-4 *6 (-13 (-770) (-789) (-977))) (-5 *2 (-1179)) (-5 *1 (-768 *6)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-764)) (-5 *4 (-294 *5)) (-4 *5 (-13 (-770) (-789) (-977))) (-5 *2 (-1179)) (-5 *1 (-768 *5)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-294 *5)) (-5 *4 (-108)) (-4 *5 (-13 (-770) (-789) (-977))) (-5 *2 (-1075)) (-5 *1 (-768 *5)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-294 *4)) (-4 *4 (-13 (-770) (-789) (-977))) (-5 *2 (-1075)) (-5 *1 (-768 *4)))))
-(-10 -7 (-15 -1388 ((-1075) (-294 |#1|))) (-15 -1388 ((-1075) (-294 |#1|) (-108))) (-15 -1388 ((-1179) (-764) (-294 |#1|))) (-15 -1388 ((-1179) (-764) (-294 |#1|) (-108))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3063 (($ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-3317 ((|#1| $) 10)) (-4188 (($ |#1|) 9)) (-1396 (((-108) $) NIL)) (-2876 (($ |#2| (-713)) NIL)) (-2870 (((-713) $) NIL)) (-3043 ((|#2| $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3376 (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-2343 (((-713) $) NIL)) (-1217 (((-798) $) 17) (($ (-525)) NIL) (($ |#2|) NIL (|has| |#2| (-160)))) (-1568 ((|#2| $ (-713)) NIL)) (-3917 (((-713)) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-769 |#1| |#2|) (-13 (-651 |#2|) (-10 -8 (IF (|has| |#1| (-213)) (-6 (-213)) |%noBranch|) (-15 -4188 ($ |#1|)) (-15 -3317 (|#1| $)))) (-651 |#2|) (-977)) (T -769))
-((-4188 (*1 *1 *2) (-12 (-4 *3 (-977)) (-5 *1 (-769 *2 *3)) (-4 *2 (-651 *3)))) (-3317 (*1 *2 *1) (-12 (-4 *2 (-651 *3)) (-5 *1 (-769 *2 *3)) (-4 *3 (-977)))))
-(-13 (-651 |#2|) (-10 -8 (IF (|has| |#1| (-213)) (-6 (-213)) |%noBranch|) (-15 -4188 ($ |#1|)) (-15 -3317 (|#1| $))))
-((-1388 (((-1179) (-764) $ (-108)) 9) (((-1179) (-764) $) 8) (((-1075) $ (-108)) 7) (((-1075) $) 6)))
+((-3421 (($ (-1039)) 7)) (-1482 (((-108) $ (-1075) (-1039)) 15)) (-1444 (((-764) $) 12)) (-1464 (((-764) $) 11)) (-2564 (((-1179) $) 9)) (-3867 (((-108) $ (-1039)) 16)))
+(((-763) (-10 -8 (-15 -3421 ($ (-1039))) (-15 -2564 ((-1179) $)) (-15 -1464 ((-764) $)) (-15 -1444 ((-764) $)) (-15 -1482 ((-108) $ (-1075) (-1039))) (-15 -3867 ((-108) $ (-1039))))) (T -763))
+((-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-1039)) (-5 *2 (-108)) (-5 *1 (-763)))) (-1482 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-1039)) (-5 *2 (-108)) (-5 *1 (-763)))) (-1444 (*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-763)))) (-3421 (*1 *1 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-763)))))
+(-10 -8 (-15 -3421 ($ (-1039))) (-15 -2564 ((-1179) $)) (-15 -1464 ((-764) $)) (-15 -1444 ((-764) $)) (-15 -1482 ((-108) $ (-1075) (-1039))) (-15 -3867 ((-108) $ (-1039))))
+((-3837 (((-1179) $ (-765)) 12)) (-3471 (((-1179) $ (-1092)) 32)) (-3893 (((-1179) $ (-1075) (-1075)) 34)) (-1337 (((-1179) $ (-1075)) 33)) (-3175 (((-1179) $) 19)) (-4126 (((-1179) $ (-525)) 28)) (-2267 (((-1179) $ (-205)) 30)) (-1474 (((-1179) $) 18)) (-3772 (((-1179) $) 26)) (-3889 (((-1179) $) 25)) (-3872 (((-1179) $) 23)) (-1956 (((-1179) $) 24)) (-3439 (((-1179) $) 22)) (-3578 (((-1179) $) 21)) (-1454 (((-1179) $) 20)) (-1300 (((-1179) $) 16)) (-2697 (((-1179) $) 17)) (-1993 (((-1179) $) 15)) (-1657 (((-1179) $) 14)) (-2044 (((-1179) $) 13)) (-3724 (($ (-1075) (-765)) 9)) (-1966 (($ (-1075) (-1075) (-765)) 8)) (-2165 (((-1092) $) 51)) (-1678 (((-1092) $) 55)) (-2852 (((-2 (|:| |cd| (-1075)) (|:| -2411 (-1075))) $) 54)) (-1629 (((-1075) $) 52)) (-1924 (((-1179) $) 41)) (-1376 (((-525) $) 49)) (-3234 (((-205) $) 50)) (-2758 (((-1179) $) 40)) (-1755 (((-1179) $) 48)) (-2992 (((-1179) $) 47)) (-2872 (((-1179) $) 45)) (-3884 (((-1179) $) 46)) (-1594 (((-1179) $) 44)) (-1965 (((-1179) $) 43)) (-3896 (((-1179) $) 42)) (-2905 (((-1179) $) 38)) (-4215 (((-1179) $) 39)) (-3337 (((-1179) $) 37)) (-2572 (((-1179) $) 36)) (-2083 (((-1179) $) 35)) (-3871 (((-1179) $) 11)))
+(((-764) (-10 -8 (-15 -1966 ($ (-1075) (-1075) (-765))) (-15 -3724 ($ (-1075) (-765))) (-15 -3871 ((-1179) $)) (-15 -3837 ((-1179) $ (-765))) (-15 -2044 ((-1179) $)) (-15 -1657 ((-1179) $)) (-15 -1993 ((-1179) $)) (-15 -1300 ((-1179) $)) (-15 -2697 ((-1179) $)) (-15 -1474 ((-1179) $)) (-15 -3175 ((-1179) $)) (-15 -1454 ((-1179) $)) (-15 -3578 ((-1179) $)) (-15 -3439 ((-1179) $)) (-15 -3872 ((-1179) $)) (-15 -1956 ((-1179) $)) (-15 -3889 ((-1179) $)) (-15 -3772 ((-1179) $)) (-15 -4126 ((-1179) $ (-525))) (-15 -2267 ((-1179) $ (-205))) (-15 -3471 ((-1179) $ (-1092))) (-15 -1337 ((-1179) $ (-1075))) (-15 -3893 ((-1179) $ (-1075) (-1075))) (-15 -2083 ((-1179) $)) (-15 -2572 ((-1179) $)) (-15 -3337 ((-1179) $)) (-15 -2905 ((-1179) $)) (-15 -4215 ((-1179) $)) (-15 -2758 ((-1179) $)) (-15 -1924 ((-1179) $)) (-15 -3896 ((-1179) $)) (-15 -1965 ((-1179) $)) (-15 -1594 ((-1179) $)) (-15 -2872 ((-1179) $)) (-15 -3884 ((-1179) $)) (-15 -2992 ((-1179) $)) (-15 -1755 ((-1179) $)) (-15 -1376 ((-525) $)) (-15 -3234 ((-205) $)) (-15 -2165 ((-1092) $)) (-15 -1629 ((-1075) $)) (-15 -2852 ((-2 (|:| |cd| (-1075)) (|:| -2411 (-1075))) $)) (-15 -1678 ((-1092) $)))) (T -764))
+((-1678 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-764)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1075)) (|:| -2411 (-1075)))) (-5 *1 (-764)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-764)))) (-2165 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-764)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-764)))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-764)))) (-1755 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2992 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3896 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2905 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2083 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3893 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-764)))) (-1337 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-764)))) (-3471 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-764)))) (-2267 (*1 *2 *1 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1179)) (-5 *1 (-764)))) (-4126 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-764)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-1956 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3175 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-1657 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3837 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1179)) (-5 *1 (-764)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))) (-3724 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-765)) (-5 *1 (-764)))) (-1966 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-765)) (-5 *1 (-764)))))
+(-10 -8 (-15 -1966 ($ (-1075) (-1075) (-765))) (-15 -3724 ($ (-1075) (-765))) (-15 -3871 ((-1179) $)) (-15 -3837 ((-1179) $ (-765))) (-15 -2044 ((-1179) $)) (-15 -1657 ((-1179) $)) (-15 -1993 ((-1179) $)) (-15 -1300 ((-1179) $)) (-15 -2697 ((-1179) $)) (-15 -1474 ((-1179) $)) (-15 -3175 ((-1179) $)) (-15 -1454 ((-1179) $)) (-15 -3578 ((-1179) $)) (-15 -3439 ((-1179) $)) (-15 -3872 ((-1179) $)) (-15 -1956 ((-1179) $)) (-15 -3889 ((-1179) $)) (-15 -3772 ((-1179) $)) (-15 -4126 ((-1179) $ (-525))) (-15 -2267 ((-1179) $ (-205))) (-15 -3471 ((-1179) $ (-1092))) (-15 -1337 ((-1179) $ (-1075))) (-15 -3893 ((-1179) $ (-1075) (-1075))) (-15 -2083 ((-1179) $)) (-15 -2572 ((-1179) $)) (-15 -3337 ((-1179) $)) (-15 -2905 ((-1179) $)) (-15 -4215 ((-1179) $)) (-15 -2758 ((-1179) $)) (-15 -1924 ((-1179) $)) (-15 -3896 ((-1179) $)) (-15 -1965 ((-1179) $)) (-15 -1594 ((-1179) $)) (-15 -2872 ((-1179) $)) (-15 -3884 ((-1179) $)) (-15 -2992 ((-1179) $)) (-15 -1755 ((-1179) $)) (-15 -1376 ((-525) $)) (-15 -3234 ((-205) $)) (-15 -2165 ((-1092) $)) (-15 -1629 ((-1075) $)) (-15 -2852 ((-2 (|:| |cd| (-1075)) (|:| -2411 (-1075))) $)) (-15 -1678 ((-1092) $)))
+((-4087 (((-108) $ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 12)) (-4212 (($) 15)) (-1815 (($) 13)) (-2755 (($) 16)) (-2425 (($) 14)) (-2775 (((-108) $ $) 8)))
+(((-765) (-13 (-1020) (-10 -8 (-15 -1815 ($)) (-15 -4212 ($)) (-15 -2755 ($)) (-15 -2425 ($))))) (T -765))
+((-1815 (*1 *1) (-5 *1 (-765))) (-4212 (*1 *1) (-5 *1 (-765))) (-2755 (*1 *1) (-5 *1 (-765))) (-2425 (*1 *1) (-5 *1 (-765))))
+(-13 (-1020) (-10 -8 (-15 -1815 ($)) (-15 -4212 ($)) (-15 -2755 ($)) (-15 -2425 ($))))
+((-4087 (((-108) $ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 21) (($ (-1092)) 17)) (-3752 (((-108) $) 10)) (-3509 (((-108) $) 9)) (-2400 (((-108) $) 11)) (-2522 (((-108) $) 8)) (-2775 (((-108) $ $) 19)))
+(((-766) (-13 (-1020) (-10 -8 (-15 -4100 ($ (-1092))) (-15 -2522 ((-108) $)) (-15 -3509 ((-108) $)) (-15 -3752 ((-108) $)) (-15 -2400 ((-108) $))))) (T -766))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-766)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))) (-2400 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
+(-13 (-1020) (-10 -8 (-15 -4100 ($ (-1092))) (-15 -2522 ((-108) $)) (-15 -3509 ((-108) $)) (-15 -3752 ((-108) $)) (-15 -2400 ((-108) $))))
+((-4087 (((-108) $ $) NIL)) (-3595 (($ (-766) (-592 (-1092))) 24)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2650 (((-766) $) 25)) (-3841 (((-592 (-1092)) $) 26)) (-4100 (((-798) $) 23)) (-2775 (((-108) $ $) NIL)))
+(((-767) (-13 (-1020) (-10 -8 (-15 -2650 ((-766) $)) (-15 -3841 ((-592 (-1092)) $)) (-15 -3595 ($ (-766) (-592 (-1092))))))) (T -767))
+((-2650 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-767)))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-767)))) (-3595 (*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *3 (-592 (-1092))) (-5 *1 (-767)))))
+(-13 (-1020) (-10 -8 (-15 -2650 ((-766) $)) (-15 -3841 ((-592 (-1092)) $)) (-15 -3595 ($ (-766) (-592 (-1092))))))
+((-3660 (((-1179) (-764) (-294 |#1|) (-108)) 23) (((-1179) (-764) (-294 |#1|)) 79) (((-1075) (-294 |#1|) (-108)) 78) (((-1075) (-294 |#1|)) 77)))
+(((-768 |#1|) (-10 -7 (-15 -3660 ((-1075) (-294 |#1|))) (-15 -3660 ((-1075) (-294 |#1|) (-108))) (-15 -3660 ((-1179) (-764) (-294 |#1|))) (-15 -3660 ((-1179) (-764) (-294 |#1|) (-108)))) (-13 (-770) (-789) (-977))) (T -768))
+((-3660 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-764)) (-5 *4 (-294 *6)) (-5 *5 (-108)) (-4 *6 (-13 (-770) (-789) (-977))) (-5 *2 (-1179)) (-5 *1 (-768 *6)))) (-3660 (*1 *2 *3 *4) (-12 (-5 *3 (-764)) (-5 *4 (-294 *5)) (-4 *5 (-13 (-770) (-789) (-977))) (-5 *2 (-1179)) (-5 *1 (-768 *5)))) (-3660 (*1 *2 *3 *4) (-12 (-5 *3 (-294 *5)) (-5 *4 (-108)) (-4 *5 (-13 (-770) (-789) (-977))) (-5 *2 (-1075)) (-5 *1 (-768 *5)))) (-3660 (*1 *2 *3) (-12 (-5 *3 (-294 *4)) (-4 *4 (-13 (-770) (-789) (-977))) (-5 *2 (-1075)) (-5 *1 (-768 *4)))))
+(-10 -7 (-15 -3660 ((-1075) (-294 |#1|))) (-15 -3660 ((-1075) (-294 |#1|) (-108))) (-15 -3660 ((-1179) (-764) (-294 |#1|))) (-15 -3660 ((-1179) (-764) (-294 |#1|) (-108))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-1451 (($ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1487 ((|#1| $) 10)) (-1534 (($ |#1|) 9)) (-2278 (((-108) $) NIL)) (-1272 (($ |#2| (-713)) NIL)) (-1819 (((-713) $) NIL)) (-1430 ((|#2| $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2702 (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-3529 (((-713) $) NIL)) (-4100 (((-798) $) 17) (($ (-525)) NIL) (($ |#2|) NIL (|has| |#2| (-160)))) (-3136 ((|#2| $ (-713)) NIL)) (-2448 (((-713)) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-769 |#1| |#2|) (-13 (-651 |#2|) (-10 -8 (IF (|has| |#1| (-213)) (-6 (-213)) |%noBranch|) (-15 -1534 ($ |#1|)) (-15 -1487 (|#1| $)))) (-651 |#2|) (-977)) (T -769))
+((-1534 (*1 *1 *2) (-12 (-4 *3 (-977)) (-5 *1 (-769 *2 *3)) (-4 *2 (-651 *3)))) (-1487 (*1 *2 *1) (-12 (-4 *2 (-651 *3)) (-5 *1 (-769 *2 *3)) (-4 *3 (-977)))))
+(-13 (-651 |#2|) (-10 -8 (IF (|has| |#1| (-213)) (-6 (-213)) |%noBranch|) (-15 -1534 ($ |#1|)) (-15 -1487 (|#1| $))))
+((-3660 (((-1179) (-764) $ (-108)) 9) (((-1179) (-764) $) 8) (((-1075) $ (-108)) 7) (((-1075) $) 6)))
(((-770) (-131)) (T -770))
-((-1388 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *4 (-108)) (-5 *2 (-1179)))) (-1388 (*1 *2 *3 *1) (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *2 (-1179)))) (-1388 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-108)) (-5 *2 (-1075)))) (-1388 (*1 *2 *1) (-12 (-4 *1 (-770)) (-5 *2 (-1075)))))
-(-13 (-10 -8 (-15 -1388 ((-1075) $)) (-15 -1388 ((-1075) $ (-108))) (-15 -1388 ((-1179) (-764) $)) (-15 -1388 ((-1179) (-764) $ (-108)))))
-((-2016 (((-290) (-1075) (-1075)) 12)) (-2366 (((-108) (-1075) (-1075)) 34)) (-1344 (((-108) (-1075)) 33)) (-1900 (((-51) (-1075)) 25)) (-3245 (((-51) (-1075)) 23)) (-2318 (((-51) (-764)) 17)) (-3515 (((-592 (-1075)) (-1075)) 28)) (-1581 (((-592 (-1075))) 27)))
-(((-771) (-10 -7 (-15 -2318 ((-51) (-764))) (-15 -3245 ((-51) (-1075))) (-15 -1900 ((-51) (-1075))) (-15 -1581 ((-592 (-1075)))) (-15 -3515 ((-592 (-1075)) (-1075))) (-15 -1344 ((-108) (-1075))) (-15 -2366 ((-108) (-1075) (-1075))) (-15 -2016 ((-290) (-1075) (-1075))))) (T -771))
-((-2016 (*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-290)) (-5 *1 (-771)))) (-2366 (*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-108)) (-5 *1 (-771)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-108)) (-5 *1 (-771)))) (-3515 (*1 *2 *3) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-771)) (-5 *3 (-1075)))) (-1581 (*1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-771)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-51)) (-5 *1 (-771)))) (-3245 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-51)) (-5 *1 (-771)))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-764)) (-5 *2 (-51)) (-5 *1 (-771)))))
-(-10 -7 (-15 -2318 ((-51) (-764))) (-15 -3245 ((-51) (-1075))) (-15 -1900 ((-51) (-1075))) (-15 -1581 ((-592 (-1075)))) (-15 -3515 ((-592 (-1075)) (-1075))) (-15 -1344 ((-108) (-1075))) (-15 -2366 ((-108) (-1075) (-1075))) (-15 -2016 ((-290) (-1075) (-1075))))
-((-4236 (((-108) $ $) 19)) (-2600 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3703 (($ $ $) 72)) (-2267 (((-108) $ $) 73)) (-3991 (((-108) $ (-713)) 8)) (-2839 (($ (-592 |#1|)) 68) (($) 67)) (-1676 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4258)))) (-2169 (($) 7 T CONST)) (-3972 (($ $) 62)) (-1910 (($ $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-3271 (($ |#1| $) 47 (|has| $ (-6 -4258))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4258)))) (-1703 (($ |#1| $) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4258)))) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) 9)) (-2638 ((|#1| $) 78)) (-2639 (($ $ $) 81)) (-1577 (($ $ $) 80)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-3662 ((|#1| $) 79)) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22)) (-2099 (($ $ $) 69)) (-2992 ((|#1| $) 39)) (-1262 (($ |#1| $) 40) (($ |#1| $ (-713)) 63)) (-2093 (((-1039) $) 21)) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-4127 ((|#1| $) 41)) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-4113 (((-592 (-2 (|:| -4201 |#1|) (|:| -2110 (-713)))) $) 61)) (-1535 (($ $ |#1|) 71) (($ $ $) 70)) (-1760 (($) 49) (($ (-592 |#1|)) 48)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-3210 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 50)) (-1217 (((-798) $) 18)) (-3240 (($ (-592 |#1|)) 66) (($) 65)) (-1956 (($ (-592 |#1|)) 42)) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20)) (-3978 (((-108) $ $) 64)) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-3660 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *4 (-108)) (-5 *2 (-1179)))) (-3660 (*1 *2 *3 *1) (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *2 (-1179)))) (-3660 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-108)) (-5 *2 (-1075)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-770)) (-5 *2 (-1075)))))
+(-13 (-10 -8 (-15 -3660 ((-1075) $)) (-15 -3660 ((-1075) $ (-108))) (-15 -3660 ((-1179) (-764) $)) (-15 -3660 ((-1179) (-764) $ (-108)))))
+((-3305 (((-290) (-1075) (-1075)) 12)) (-2565 (((-108) (-1075) (-1075)) 34)) (-3500 (((-108) (-1075)) 33)) (-1532 (((-51) (-1075)) 25)) (-3977 (((-51) (-1075)) 23)) (-3248 (((-51) (-764)) 17)) (-2655 (((-592 (-1075)) (-1075)) 28)) (-3256 (((-592 (-1075))) 27)))
+(((-771) (-10 -7 (-15 -3248 ((-51) (-764))) (-15 -3977 ((-51) (-1075))) (-15 -1532 ((-51) (-1075))) (-15 -3256 ((-592 (-1075)))) (-15 -2655 ((-592 (-1075)) (-1075))) (-15 -3500 ((-108) (-1075))) (-15 -2565 ((-108) (-1075) (-1075))) (-15 -3305 ((-290) (-1075) (-1075))))) (T -771))
+((-3305 (*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-290)) (-5 *1 (-771)))) (-2565 (*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-108)) (-5 *1 (-771)))) (-3500 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-108)) (-5 *1 (-771)))) (-2655 (*1 *2 *3) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-771)) (-5 *3 (-1075)))) (-3256 (*1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-771)))) (-1532 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-51)) (-5 *1 (-771)))) (-3977 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-51)) (-5 *1 (-771)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-764)) (-5 *2 (-51)) (-5 *1 (-771)))))
+(-10 -7 (-15 -3248 ((-51) (-764))) (-15 -3977 ((-51) (-1075))) (-15 -1532 ((-51) (-1075))) (-15 -3256 ((-592 (-1075)))) (-15 -2655 ((-592 (-1075)) (-1075))) (-15 -3500 ((-108) (-1075))) (-15 -2565 ((-108) (-1075) (-1075))) (-15 -3305 ((-290) (-1075) (-1075))))
+((-4087 (((-108) $ $) 19)) (-1705 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3907 (($ $ $) 72)) (-4026 (((-108) $ $) 73)) (-3779 (((-108) $ (-713)) 8)) (-2805 (($ (-592 |#1|)) 68) (($) 67)) (-3050 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4259)))) (-2475 (($) 7 T CONST)) (-1793 (($ $) 62)) (-1681 (($ $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-4205 (($ |#1| $) 47 (|has| $ (-6 -4259))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4259)))) (-2698 (($ |#1| $) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4259)))) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-4207 (((-108) $ $) 64)) (-2516 (((-108) $ (-713)) 9)) (-3033 ((|#1| $) 78)) (-3269 (($ $ $) 81)) (-3212 (($ $ $) 80)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-1609 ((|#1| $) 79)) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22)) (-2913 (($ $ $) 69)) (-3577 ((|#1| $) 39)) (-3246 (($ |#1| $) 40) (($ |#1| $ (-713)) 63)) (-3993 (((-1039) $) 21)) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-2724 ((|#1| $) 41)) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-2605 (((-592 (-2 (|:| -3448 |#1|) (|:| -4002 (-713)))) $) 61)) (-1292 (($ $ |#1|) 71) (($ $ $) 70)) (-2637 (($) 49) (($ (-592 |#1|)) 48)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-2069 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 50)) (-4100 (((-798) $) 18)) (-2180 (($ (-592 |#1|)) 66) (($) 65)) (-3905 (($ (-592 |#1|)) 42)) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20)) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-772 |#1|) (-131) (-789)) (T -772))
-((-2638 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-789)))))
-(-13 (-679 |t#1|) (-902 |t#1|) (-10 -8 (-15 -2638 (|t#1| $))))
+((-3033 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-789)))))
+(-13 (-679 |t#1|) (-902 |t#1|) (-10 -8 (-15 -3033 (|t#1| $))))
(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-566 (-798)) . T) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-637 |#1|) . T) ((-679 |#1|) . T) ((-902 |#1|) . T) ((-1018 |#1|) . T) ((-1020) . T) ((-1128) . T))
-((-3969 (((-1179) (-1039) (-1039)) 47)) (-2958 (((-1179) (-763) (-51)) 44)) (-4195 (((-51) (-763)) 16)))
-(((-773) (-10 -7 (-15 -4195 ((-51) (-763))) (-15 -2958 ((-1179) (-763) (-51))) (-15 -3969 ((-1179) (-1039) (-1039))))) (T -773))
-((-3969 (*1 *2 *3 *3) (-12 (-5 *3 (-1039)) (-5 *2 (-1179)) (-5 *1 (-773)))) (-2958 (*1 *2 *3 *4) (-12 (-5 *3 (-763)) (-5 *4 (-51)) (-5 *2 (-1179)) (-5 *1 (-773)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-51)) (-5 *1 (-773)))))
-(-10 -7 (-15 -4195 ((-51) (-763))) (-15 -2958 ((-1179) (-763) (-51))) (-15 -3969 ((-1179) (-1039) (-1039))))
-((-3165 (((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|)) 12) (((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|)) 13)))
-(((-774 |#1| |#2|) (-10 -7 (-15 -3165 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|))) (-15 -3165 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|)))) (-1020) (-1020)) (T -774))
-((-3165 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-775 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *1 (-774 *5 *6)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-775 *6)) (-5 *1 (-774 *5 *6)))))
-(-10 -7 (-15 -3165 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|))) (-15 -3165 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL (|has| |#1| (-21)))) (-1578 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3855 (((-525) $) NIL (|has| |#1| (-787)))) (-2169 (($) NIL (|has| |#1| (-21)) CONST)) (-3077 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 15)) (-1572 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 9)) (-3457 (((-3 $ "failed") $) 40 (|has| |#1| (-787)))) (-1514 (((-3 (-385 (-525)) "failed") $) 49 (|has| |#1| (-510)))) (-3933 (((-108) $) 43 (|has| |#1| (-510)))) (-3303 (((-385 (-525)) $) 46 (|has| |#1| (-510)))) (-1222 (((-108) $) NIL (|has| |#1| (-787)))) (-1396 (((-108) $) NIL (|has| |#1| (-787)))) (-3256 (((-108) $) NIL (|has| |#1| (-787)))) (-2638 (($ $ $) NIL (|has| |#1| (-787)))) (-3662 (($ $ $) NIL (|has| |#1| (-787)))) (-2619 (((-1075) $) NIL)) (-3149 (($) 13)) (-2201 (((-108) $) 12)) (-2093 (((-1039) $) NIL)) (-2052 (((-108) $) 11)) (-1217 (((-798) $) 18) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) 8) (($ (-525)) NIL (-3254 (|has| |#1| (-787)) (|has| |#1| (-968 (-525)))))) (-3917 (((-713)) 34 (|has| |#1| (-787)))) (-2802 (($ $) NIL (|has| |#1| (-787)))) (-1619 (($ $ (-856)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (-3349 (($) 22 (|has| |#1| (-21)) CONST)) (-3359 (($) 31 (|has| |#1| (-787)) CONST)) (-4011 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3955 (((-108) $ $) 20)) (-3999 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3978 (((-108) $ $) 42 (|has| |#1| (-787)))) (-4061 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4047 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-856)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (* (($ $ $) 37 (|has| |#1| (-787))) (($ (-525) $) 25 (|has| |#1| (-21))) (($ (-713) $) NIL (|has| |#1| (-21))) (($ (-856) $) NIL (|has| |#1| (-21)))))
-(((-775 |#1|) (-13 (-1020) (-389 |#1|) (-10 -8 (-15 -3149 ($)) (-15 -2052 ((-108) $)) (-15 -2201 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -3933 ((-108) $)) (-15 -3303 ((-385 (-525)) $)) (-15 -1514 ((-3 (-385 (-525)) "failed") $))) |%noBranch|))) (-1020)) (T -775))
-((-3149 (*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1020)))) (-2052 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1020)))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1020)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1020)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1020)))) (-1514 (*1 *2 *1) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1020)))))
-(-13 (-1020) (-389 |#1|) (-10 -8 (-15 -3149 ($)) (-15 -2052 ((-108) $)) (-15 -2201 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -3933 ((-108) $)) (-15 -3303 ((-385 (-525)) $)) (-15 -1514 ((-3 (-385 (-525)) "failed") $))) |%noBranch|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) NIL) (((-3 (-110) "failed") $) NIL)) (-1572 ((|#1| $) NIL) (((-110) $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-3980 ((|#1| (-110) |#1|) NIL)) (-1396 (((-108) $) NIL)) (-3488 (($ |#1| (-339 (-110))) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-2955 (($ $ (-1 |#1| |#1|)) NIL)) (-3719 (($ $ (-1 |#1| |#1|)) NIL)) (-3406 ((|#1| $ |#1|) NIL)) (-1521 ((|#1| |#1|) NIL (|has| |#1| (-160)))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-110)) NIL)) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) NIL)) (-3041 (($ $) NIL (|has| |#1| (-160))) (($ $ $) NIL (|has| |#1| (-160)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ (-110) (-525)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160)))))
-(((-776 |#1|) (-13 (-977) (-968 |#1|) (-968 (-110)) (-265 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -3041 ($ $)) (-15 -3041 ($ $ $)) (-15 -1521 (|#1| |#1|))) |%noBranch|) (-15 -3719 ($ $ (-1 |#1| |#1|))) (-15 -2955 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -3980 (|#1| (-110) |#1|)) (-15 -3488 ($ |#1| (-339 (-110)))))) (-977)) (T -776))
-((-3041 (*1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-977)))) (-3041 (*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-977)))) (-1521 (*1 *2 *2) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-977)))) (-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-776 *3)))) (-2955 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-776 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-5 *1 (-776 *4)) (-4 *4 (-977)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-776 *3)) (-4 *3 (-977)))) (-3980 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-776 *2)) (-4 *2 (-977)))) (-3488 (*1 *1 *2 *3) (-12 (-5 *3 (-339 (-110))) (-5 *1 (-776 *2)) (-4 *2 (-977)))))
-(-13 (-977) (-968 |#1|) (-968 (-110)) (-265 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -3041 ($ $)) (-15 -3041 ($ $ $)) (-15 -1521 (|#1| |#1|))) |%noBranch|) (-15 -3719 ($ $ (-1 |#1| |#1|))) (-15 -2955 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -3980 (|#1| (-110) |#1|)) (-15 -3488 ($ |#1| (-339 (-110))))))
-((-1876 (((-195 (-475)) (-1075)) 9)))
-(((-777) (-10 -7 (-15 -1876 ((-195 (-475)) (-1075))))) (T -777))
-((-1876 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-195 (-475))) (-5 *1 (-777)))))
-(-10 -7 (-15 -1876 ((-195 (-475)) (-1075))))
-((-4236 (((-108) $ $) 7)) (-2048 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) 14) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 13)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 16) (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) 15)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3955 (((-108) $ $) 6)))
+((-1762 (((-1179) (-1039) (-1039)) 47)) (-3264 (((-1179) (-763) (-51)) 44)) (-2187 (((-51) (-763)) 16)))
+(((-773) (-10 -7 (-15 -2187 ((-51) (-763))) (-15 -3264 ((-1179) (-763) (-51))) (-15 -1762 ((-1179) (-1039) (-1039))))) (T -773))
+((-1762 (*1 *2 *3 *3) (-12 (-5 *3 (-1039)) (-5 *2 (-1179)) (-5 *1 (-773)))) (-3264 (*1 *2 *3 *4) (-12 (-5 *3 (-763)) (-5 *4 (-51)) (-5 *2 (-1179)) (-5 *1 (-773)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-51)) (-5 *1 (-773)))))
+(-10 -7 (-15 -2187 ((-51) (-763))) (-15 -3264 ((-1179) (-763) (-51))) (-15 -1762 ((-1179) (-1039) (-1039))))
+((-2016 (((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|)) 12) (((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|)) 13)))
+(((-774 |#1| |#2|) (-10 -7 (-15 -2016 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|))) (-15 -2016 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|)))) (-1020) (-1020)) (T -774))
+((-2016 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-775 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *1 (-774 *5 *6)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-775 *6)) (-5 *1 (-774 *5 *6)))))
+(-10 -7 (-15 -2016 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|))) (-15 -2016 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL (|has| |#1| (-21)))) (-3222 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2971 (((-525) $) NIL (|has| |#1| (-787)))) (-2475 (($) NIL (|has| |#1| (-21)) CONST)) (-1934 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 15)) (-4105 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 9)) (-3300 (((-3 $ "failed") $) 40 (|has| |#1| (-787)))) (-3306 (((-3 (-385 (-525)) "failed") $) 49 (|has| |#1| (-510)))) (-1417 (((-108) $) 43 (|has| |#1| (-510)))) (-1367 (((-385 (-525)) $) 46 (|has| |#1| (-510)))) (-1889 (((-108) $) NIL (|has| |#1| (-787)))) (-2278 (((-108) $) NIL (|has| |#1| (-787)))) (-4079 (((-108) $) NIL (|has| |#1| (-787)))) (-3033 (($ $ $) NIL (|has| |#1| (-787)))) (-1609 (($ $ $) NIL (|has| |#1| (-787)))) (-1289 (((-1075) $) NIL)) (-4119 (($) 13)) (-1572 (((-108) $) 12)) (-3993 (((-1039) $) NIL)) (-3635 (((-108) $) 11)) (-4100 (((-798) $) 18) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) 8) (($ (-525)) NIL (-2067 (|has| |#1| (-787)) (|has| |#1| (-968 (-525)))))) (-2448 (((-713)) 34 (|has| |#1| (-787)))) (-2380 (($ $) NIL (|has| |#1| (-787)))) (-3706 (($ $ (-856)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (-3364 (($) 22 (|has| |#1| (-21)) CONST)) (-3375 (($) 31 (|has| |#1| (-787)) CONST)) (-2830 (((-108) $ $) NIL (|has| |#1| (-787)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-787)))) (-2775 (((-108) $ $) 20)) (-2817 (((-108) $ $) NIL (|has| |#1| (-787)))) (-2795 (((-108) $ $) 42 (|has| |#1| (-787)))) (-2871 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2860 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-856)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (* (($ $ $) 37 (|has| |#1| (-787))) (($ (-525) $) 25 (|has| |#1| (-21))) (($ (-713) $) NIL (|has| |#1| (-21))) (($ (-856) $) NIL (|has| |#1| (-21)))))
+(((-775 |#1|) (-13 (-1020) (-389 |#1|) (-10 -8 (-15 -4119 ($)) (-15 -3635 ((-108) $)) (-15 -1572 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -1417 ((-108) $)) (-15 -1367 ((-385 (-525)) $)) (-15 -3306 ((-3 (-385 (-525)) "failed") $))) |%noBranch|))) (-1020)) (T -775))
+((-4119 (*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1020)))) (-3635 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1020)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1020)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1020)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1020)))) (-3306 (*1 *2 *1) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1020)))))
+(-13 (-1020) (-389 |#1|) (-10 -8 (-15 -4119 ($)) (-15 -3635 ((-108) $)) (-15 -1572 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -1417 ((-108) $)) (-15 -1367 ((-385 (-525)) $)) (-15 -3306 ((-3 (-385 (-525)) "failed") $))) |%noBranch|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) NIL) (((-3 (-110) "failed") $) NIL)) (-4105 ((|#1| $) NIL) (((-110) $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1879 ((|#1| (-110) |#1|) NIL)) (-2278 (((-108) $) NIL)) (-3599 (($ |#1| (-339 (-110))) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-3227 (($ $ (-1 |#1| |#1|)) NIL)) (-4076 (($ $ (-1 |#1| |#1|)) NIL)) (-3431 ((|#1| $ |#1|) NIL)) (-1830 ((|#1| |#1|) NIL (|has| |#1| (-160)))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-110)) NIL)) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) NIL)) (-2799 (($ $) NIL (|has| |#1| (-160))) (($ $ $) NIL (|has| |#1| (-160)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ (-110) (-525)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160)))))
+(((-776 |#1|) (-13 (-977) (-968 |#1|) (-968 (-110)) (-265 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -2799 ($ $)) (-15 -2799 ($ $ $)) (-15 -1830 (|#1| |#1|))) |%noBranch|) (-15 -4076 ($ $ (-1 |#1| |#1|))) (-15 -3227 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -1879 (|#1| (-110) |#1|)) (-15 -3599 ($ |#1| (-339 (-110)))))) (-977)) (T -776))
+((-2799 (*1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-977)))) (-2799 (*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-977)))) (-1830 (*1 *2 *2) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-977)))) (-4076 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-776 *3)))) (-3227 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-776 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-5 *1 (-776 *4)) (-4 *4 (-977)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-776 *3)) (-4 *3 (-977)))) (-1879 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-776 *2)) (-4 *2 (-977)))) (-3599 (*1 *1 *2 *3) (-12 (-5 *3 (-339 (-110))) (-5 *1 (-776 *2)) (-4 *2 (-977)))))
+(-13 (-977) (-968 |#1|) (-968 (-110)) (-265 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -2799 ($ $)) (-15 -2799 ($ $ $)) (-15 -1830 (|#1| |#1|))) |%noBranch|) (-15 -4076 ($ $ (-1 |#1| |#1|))) (-15 -3227 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -1879 (|#1| (-110) |#1|)) (-15 -3599 ($ |#1| (-339 (-110))))))
+((-1318 (((-195 (-475)) (-1075)) 9)))
+(((-777) (-10 -7 (-15 -1318 ((-195 (-475)) (-1075))))) (T -777))
+((-1318 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-195 (-475))) (-5 *1 (-777)))))
+(-10 -7 (-15 -1318 ((-195 (-475)) (-1075))))
+((-4087 (((-108) $ $) 7)) (-3593 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) 14) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 13)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 16) (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) 15)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-2775 (((-108) $ $) 6)))
(((-778) (-131)) (T -778))
-((-1533 (*1 *2 *3 *4) (-12 (-4 *1 (-778)) (-5 *3 (-989)) (-5 *4 (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *2 (-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)))))) (-1533 (*1 *2 *3 *4) (-12 (-4 *1 (-778)) (-5 *3 (-989)) (-5 *4 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) (-5 *2 (-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)))))) (-2048 (*1 *2 *3) (-12 (-4 *1 (-778)) (-5 *3 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) (-5 *2 (-966)))) (-2048 (*1 *2 *3) (-12 (-4 *1 (-778)) (-5 *3 (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *2 (-966)))))
-(-13 (-1020) (-10 -7 (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))) (-15 -2048 ((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))) (-15 -2048 ((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))))))
+((-1257 (*1 *2 *3 *4) (-12 (-4 *1 (-778)) (-5 *3 (-989)) (-5 *4 (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *2 (-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)))))) (-1257 (*1 *2 *3 *4) (-12 (-4 *1 (-778)) (-5 *3 (-989)) (-5 *4 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) (-5 *2 (-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)))))) (-3593 (*1 *2 *3) (-12 (-4 *1 (-778)) (-5 *3 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) (-5 *2 (-966)))) (-3593 (*1 *2 *3) (-12 (-4 *1 (-778)) (-5 *3 (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *2 (-966)))))
+(-13 (-1020) (-10 -7 (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))) (-15 -3593 ((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))) (-15 -3593 ((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))))))
(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-2017 (((-966) (-592 (-294 (-357))) (-592 (-357))) 147) (((-966) (-294 (-357)) (-592 (-357))) 145) (((-966) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-782 (-357)))) 144) (((-966) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-294 (-357))) (-592 (-782 (-357)))) 143) (((-966) (-780)) 117) (((-966) (-780) (-989)) 116)) (-1533 (((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))) (-780) (-989)) 82) (((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))) (-780)) 84)) (-3251 (((-966) (-592 (-294 (-357))) (-592 (-357))) 148) (((-966) (-780)) 133)))
-(((-779) (-10 -7 (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))) (-780))) (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))) (-780) (-989))) (-15 -2017 ((-966) (-780) (-989))) (-15 -2017 ((-966) (-780))) (-15 -3251 ((-966) (-780))) (-15 -2017 ((-966) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-294 (-357))) (-592 (-782 (-357))))) (-15 -2017 ((-966) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-782 (-357))))) (-15 -2017 ((-966) (-294 (-357)) (-592 (-357)))) (-15 -2017 ((-966) (-592 (-294 (-357))) (-592 (-357)))) (-15 -3251 ((-966) (-592 (-294 (-357))) (-592 (-357)))))) (T -779))
-((-3251 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357))) (-5 *2 (-966)) (-5 *1 (-779)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357))) (-5 *2 (-966)) (-5 *1 (-779)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357))) (-5 *2 (-966)) (-5 *1 (-779)))) (-2017 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357))) (-5 *5 (-592 (-782 (-357)))) (-5 *2 (-966)) (-5 *1 (-779)))) (-2017 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-592 (-357))) (-5 *5 (-592 (-782 (-357)))) (-5 *6 (-592 (-294 (-357)))) (-5 *3 (-294 (-357))) (-5 *2 (-966)) (-5 *1 (-779)))) (-3251 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-966)) (-5 *1 (-779)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-966)) (-5 *1 (-779)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-989)) (-5 *2 (-966)) (-5 *1 (-779)))) (-1533 (*1 *2 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-989)) (-5 *2 (-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))))) (-5 *1 (-779)))) (-1533 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))))) (-5 *1 (-779)))))
-(-10 -7 (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))) (-780))) (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))) (-780) (-989))) (-15 -2017 ((-966) (-780) (-989))) (-15 -2017 ((-966) (-780))) (-15 -3251 ((-966) (-780))) (-15 -2017 ((-966) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-294 (-357))) (-592 (-782 (-357))))) (-15 -2017 ((-966) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-782 (-357))))) (-15 -2017 ((-966) (-294 (-357)) (-592 (-357)))) (-15 -2017 ((-966) (-592 (-294 (-357))) (-592 (-357)))) (-15 -3251 ((-966) (-592 (-294 (-357))) (-592 (-357)))))
-((-4236 (((-108) $ $) NIL)) (-1572 (((-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))) $) 21)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 20) (($ (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 14) (($ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))))) 18)) (-3955 (((-108) $ $) NIL)))
-(((-780) (-13 (-1020) (-10 -8 (-15 -1217 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -1217 ($ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))) (-15 -1217 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))))) (-15 -1217 ((-798) $)) (-15 -1572 ((-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))) $))))) (T -780))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-780)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *1 (-780)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))) (-5 *1 (-780)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))))) (-5 *1 (-780)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205))))))) (-5 *1 (-780)))))
-(-13 (-1020) (-10 -8 (-15 -1217 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -1217 ($ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))) (-15 -1217 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))))) (-15 -1217 ((-798) $)) (-15 -1572 ((-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))) $))))
-((-3165 (((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|) (-782 |#2|) (-782 |#2|)) 13) (((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)) 14)))
-(((-781 |#1| |#2|) (-10 -7 (-15 -3165 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|))) (-15 -3165 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|) (-782 |#2|) (-782 |#2|)))) (-1020) (-1020)) (T -781))
-((-3165 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-782 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *1 (-781 *5 *6)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6)))))
-(-10 -7 (-15 -3165 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|))) (-15 -3165 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|) (-782 |#2|) (-782 |#2|))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL (|has| |#1| (-21)))) (-3876 (((-1039) $) 24)) (-1578 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3855 (((-525) $) NIL (|has| |#1| (-787)))) (-2169 (($) NIL (|has| |#1| (-21)) CONST)) (-3077 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 16)) (-1572 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 9)) (-3457 (((-3 $ "failed") $) 47 (|has| |#1| (-787)))) (-1514 (((-3 (-385 (-525)) "failed") $) 54 (|has| |#1| (-510)))) (-3933 (((-108) $) 49 (|has| |#1| (-510)))) (-3303 (((-385 (-525)) $) 52 (|has| |#1| (-510)))) (-1222 (((-108) $) NIL (|has| |#1| (-787)))) (-2468 (($) 13)) (-1396 (((-108) $) NIL (|has| |#1| (-787)))) (-3256 (((-108) $) NIL (|has| |#1| (-787)))) (-2477 (($) 14)) (-2638 (($ $ $) NIL (|has| |#1| (-787)))) (-3662 (($ $ $) NIL (|has| |#1| (-787)))) (-2619 (((-1075) $) NIL)) (-2201 (((-108) $) 12)) (-2093 (((-1039) $) NIL)) (-2052 (((-108) $) 11)) (-1217 (((-798) $) 22) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) 8) (($ (-525)) NIL (-3254 (|has| |#1| (-787)) (|has| |#1| (-968 (-525)))))) (-3917 (((-713)) 41 (|has| |#1| (-787)))) (-2802 (($ $) NIL (|has| |#1| (-787)))) (-1619 (($ $ (-856)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (-3349 (($) 29 (|has| |#1| (-21)) CONST)) (-3359 (($) 38 (|has| |#1| (-787)) CONST)) (-4011 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3955 (((-108) $ $) 27)) (-3999 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3978 (((-108) $ $) 48 (|has| |#1| (-787)))) (-4061 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4047 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-856)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (* (($ $ $) 44 (|has| |#1| (-787))) (($ (-525) $) 32 (|has| |#1| (-21))) (($ (-713) $) NIL (|has| |#1| (-21))) (($ (-856) $) NIL (|has| |#1| (-21)))))
-(((-782 |#1|) (-13 (-1020) (-389 |#1|) (-10 -8 (-15 -2468 ($)) (-15 -2477 ($)) (-15 -2052 ((-108) $)) (-15 -2201 ((-108) $)) (-15 -3876 ((-1039) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -3933 ((-108) $)) (-15 -3303 ((-385 (-525)) $)) (-15 -1514 ((-3 (-385 (-525)) "failed") $))) |%noBranch|))) (-1020)) (T -782))
-((-2468 (*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1020)))) (-2477 (*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1020)))) (-2052 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1020)))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1020)))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-782 *3)) (-4 *3 (-1020)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1020)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1020)))) (-1514 (*1 *2 *1) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1020)))))
-(-13 (-1020) (-389 |#1|) (-10 -8 (-15 -2468 ($)) (-15 -2477 ($)) (-15 -2052 ((-108) $)) (-15 -2201 ((-108) $)) (-15 -3876 ((-1039) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -3933 ((-108) $)) (-15 -3303 ((-385 (-525)) $)) (-15 -1514 ((-3 (-385 (-525)) "failed") $))) |%noBranch|)))
-((-4236 (((-108) $ $) 7)) (-1834 (((-713)) 20)) (-2502 (($) 23)) (-2638 (($ $ $) 13)) (-3662 (($ $ $) 14)) (-3005 (((-856) $) 22)) (-2619 (((-1075) $) 9)) (-3555 (($ (-856)) 21)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-4011 (((-108) $ $) 16)) (-3987 (((-108) $ $) 17)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 15)) (-3978 (((-108) $ $) 18)))
+((-2969 (((-966) (-592 (-294 (-357))) (-592 (-357))) 147) (((-966) (-294 (-357)) (-592 (-357))) 145) (((-966) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-782 (-357)))) 144) (((-966) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-294 (-357))) (-592 (-782 (-357)))) 143) (((-966) (-780)) 117) (((-966) (-780) (-989)) 116)) (-1257 (((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))) (-780) (-989)) 82) (((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))) (-780)) 84)) (-4044 (((-966) (-592 (-294 (-357))) (-592 (-357))) 148) (((-966) (-780)) 133)))
+(((-779) (-10 -7 (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))) (-780))) (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))) (-780) (-989))) (-15 -2969 ((-966) (-780) (-989))) (-15 -2969 ((-966) (-780))) (-15 -4044 ((-966) (-780))) (-15 -2969 ((-966) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-294 (-357))) (-592 (-782 (-357))))) (-15 -2969 ((-966) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-782 (-357))))) (-15 -2969 ((-966) (-294 (-357)) (-592 (-357)))) (-15 -2969 ((-966) (-592 (-294 (-357))) (-592 (-357)))) (-15 -4044 ((-966) (-592 (-294 (-357))) (-592 (-357)))))) (T -779))
+((-4044 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357))) (-5 *2 (-966)) (-5 *1 (-779)))) (-2969 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357))) (-5 *2 (-966)) (-5 *1 (-779)))) (-2969 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357))) (-5 *2 (-966)) (-5 *1 (-779)))) (-2969 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357))) (-5 *5 (-592 (-782 (-357)))) (-5 *2 (-966)) (-5 *1 (-779)))) (-2969 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-592 (-357))) (-5 *5 (-592 (-782 (-357)))) (-5 *6 (-592 (-294 (-357)))) (-5 *3 (-294 (-357))) (-5 *2 (-966)) (-5 *1 (-779)))) (-4044 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-966)) (-5 *1 (-779)))) (-2969 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-966)) (-5 *1 (-779)))) (-2969 (*1 *2 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-989)) (-5 *2 (-966)) (-5 *1 (-779)))) (-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-989)) (-5 *2 (-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))))) (-5 *1 (-779)))) (-1257 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))))) (-5 *1 (-779)))))
+(-10 -7 (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))) (-780))) (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))) (-780) (-989))) (-15 -2969 ((-966) (-780) (-989))) (-15 -2969 ((-966) (-780))) (-15 -4044 ((-966) (-780))) (-15 -2969 ((-966) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-294 (-357))) (-592 (-782 (-357))))) (-15 -2969 ((-966) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-782 (-357))))) (-15 -2969 ((-966) (-294 (-357)) (-592 (-357)))) (-15 -2969 ((-966) (-592 (-294 (-357))) (-592 (-357)))) (-15 -4044 ((-966) (-592 (-294 (-357))) (-592 (-357)))))
+((-4087 (((-108) $ $) NIL)) (-4105 (((-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))) $) 21)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 20) (($ (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 14) (($ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))))) 18)) (-2775 (((-108) $ $) NIL)))
+(((-780) (-13 (-1020) (-10 -8 (-15 -4100 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -4100 ($ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))) (-15 -4100 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))))) (-15 -4100 ((-798) $)) (-15 -4105 ((-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))) $))))) (T -780))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-780)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *1 (-780)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))) (-5 *1 (-780)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))))) (-5 *1 (-780)))) (-4105 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205))))))) (-5 *1 (-780)))))
+(-13 (-1020) (-10 -8 (-15 -4100 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -4100 ($ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))) (-15 -4100 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))))) (-15 -4100 ((-798) $)) (-15 -4105 ((-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))) $))))
+((-2016 (((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|) (-782 |#2|) (-782 |#2|)) 13) (((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)) 14)))
+(((-781 |#1| |#2|) (-10 -7 (-15 -2016 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|))) (-15 -2016 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|) (-782 |#2|) (-782 |#2|)))) (-1020) (-1020)) (T -781))
+((-2016 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-782 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *1 (-781 *5 *6)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6)))))
+(-10 -7 (-15 -2016 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|))) (-15 -2016 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|) (-782 |#2|) (-782 |#2|))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL (|has| |#1| (-21)))) (-2033 (((-1039) $) 24)) (-3222 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2971 (((-525) $) NIL (|has| |#1| (-787)))) (-2475 (($) NIL (|has| |#1| (-21)) CONST)) (-1934 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 16)) (-4105 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 9)) (-3300 (((-3 $ "failed") $) 47 (|has| |#1| (-787)))) (-3306 (((-3 (-385 (-525)) "failed") $) 54 (|has| |#1| (-510)))) (-1417 (((-108) $) 49 (|has| |#1| (-510)))) (-1367 (((-385 (-525)) $) 52 (|has| |#1| (-510)))) (-1889 (((-108) $) NIL (|has| |#1| (-787)))) (-4083 (($) 13)) (-2278 (((-108) $) NIL (|has| |#1| (-787)))) (-4079 (((-108) $) NIL (|has| |#1| (-787)))) (-4095 (($) 14)) (-3033 (($ $ $) NIL (|has| |#1| (-787)))) (-1609 (($ $ $) NIL (|has| |#1| (-787)))) (-1289 (((-1075) $) NIL)) (-1572 (((-108) $) 12)) (-3993 (((-1039) $) NIL)) (-3635 (((-108) $) 11)) (-4100 (((-798) $) 22) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) 8) (($ (-525)) NIL (-2067 (|has| |#1| (-787)) (|has| |#1| (-968 (-525)))))) (-2448 (((-713)) 41 (|has| |#1| (-787)))) (-2380 (($ $) NIL (|has| |#1| (-787)))) (-3706 (($ $ (-856)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (-3364 (($) 29 (|has| |#1| (-21)) CONST)) (-3375 (($) 38 (|has| |#1| (-787)) CONST)) (-2830 (((-108) $ $) NIL (|has| |#1| (-787)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-787)))) (-2775 (((-108) $ $) 27)) (-2817 (((-108) $ $) NIL (|has| |#1| (-787)))) (-2795 (((-108) $ $) 48 (|has| |#1| (-787)))) (-2871 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2860 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-856)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (* (($ $ $) 44 (|has| |#1| (-787))) (($ (-525) $) 32 (|has| |#1| (-21))) (($ (-713) $) NIL (|has| |#1| (-21))) (($ (-856) $) NIL (|has| |#1| (-21)))))
+(((-782 |#1|) (-13 (-1020) (-389 |#1|) (-10 -8 (-15 -4083 ($)) (-15 -4095 ($)) (-15 -3635 ((-108) $)) (-15 -1572 ((-108) $)) (-15 -2033 ((-1039) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -1417 ((-108) $)) (-15 -1367 ((-385 (-525)) $)) (-15 -3306 ((-3 (-385 (-525)) "failed") $))) |%noBranch|))) (-1020)) (T -782))
+((-4083 (*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1020)))) (-4095 (*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1020)))) (-3635 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1020)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1020)))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-782 *3)) (-4 *3 (-1020)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1020)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1020)))) (-3306 (*1 *2 *1) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1020)))))
+(-13 (-1020) (-389 |#1|) (-10 -8 (-15 -4083 ($)) (-15 -4095 ($)) (-15 -3635 ((-108) $)) (-15 -1572 ((-108) $)) (-15 -2033 ((-1039) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -1417 ((-108) $)) (-15 -1367 ((-385 (-525)) $)) (-15 -3306 ((-3 (-385 (-525)) "failed") $))) |%noBranch|)))
+((-4087 (((-108) $ $) 7)) (-1613 (((-713)) 20)) (-1903 (($) 23)) (-3033 (($ $ $) 13)) (-1609 (($ $ $) 14)) (-3685 (((-856) $) 22)) (-1289 (((-1075) $) 9)) (-1722 (($ (-856)) 21)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-2830 (((-108) $ $) 16)) (-2807 (((-108) $ $) 17)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 15)) (-2795 (((-108) $ $) 18)))
(((-783) (-131)) (T -783))
NIL
(-13 (-789) (-346))
(((-97) . T) ((-566 (-798)) . T) ((-346) . T) ((-789) . T) ((-1020) . T))
-((-4213 (((-108) (-1174 |#2|) (-1174 |#2|)) 17)) (-2250 (((-108) (-1174 |#2|) (-1174 |#2|)) 18)) (-3531 (((-108) (-1174 |#2|) (-1174 |#2|)) 14)))
-(((-784 |#1| |#2|) (-10 -7 (-15 -3531 ((-108) (-1174 |#2|) (-1174 |#2|))) (-15 -4213 ((-108) (-1174 |#2|) (-1174 |#2|))) (-15 -2250 ((-108) (-1174 |#2|) (-1174 |#2|)))) (-713) (-734)) (T -784))
-((-2250 (*1 *2 *3 *3) (-12 (-5 *3 (-1174 *5)) (-4 *5 (-734)) (-5 *2 (-108)) (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))) (-4213 (*1 *2 *3 *3) (-12 (-5 *3 (-1174 *5)) (-4 *5 (-734)) (-5 *2 (-108)) (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))) (-3531 (*1 *2 *3 *3) (-12 (-5 *3 (-1174 *5)) (-4 *5 (-734)) (-5 *2 (-108)) (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))))
-(-10 -7 (-15 -3531 ((-108) (-1174 |#2|) (-1174 |#2|))) (-15 -4213 ((-108) (-1174 |#2|) (-1174 |#2|))) (-15 -2250 ((-108) (-1174 |#2|) (-1174 |#2|))))
-((-4236 (((-108) $ $) 7)) (-2169 (($) 24 T CONST)) (-3457 (((-3 $ "failed") $) 28)) (-1396 (((-108) $) 25)) (-2638 (($ $ $) 13)) (-3662 (($ $ $) 14)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-1619 (($ $ (-856)) 22) (($ $ (-713)) 27)) (-3359 (($) 23 T CONST)) (-4011 (((-108) $ $) 16)) (-3987 (((-108) $ $) 17)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 15)) (-3978 (((-108) $ $) 18)) (** (($ $ (-856)) 21) (($ $ (-713)) 26)) (* (($ $ $) 20)))
+((-2375 (((-108) (-1174 |#2|) (-1174 |#2|)) 17)) (-3880 (((-108) (-1174 |#2|) (-1174 |#2|)) 18)) (-2796 (((-108) (-1174 |#2|) (-1174 |#2|)) 14)))
+(((-784 |#1| |#2|) (-10 -7 (-15 -2796 ((-108) (-1174 |#2|) (-1174 |#2|))) (-15 -2375 ((-108) (-1174 |#2|) (-1174 |#2|))) (-15 -3880 ((-108) (-1174 |#2|) (-1174 |#2|)))) (-713) (-734)) (T -784))
+((-3880 (*1 *2 *3 *3) (-12 (-5 *3 (-1174 *5)) (-4 *5 (-734)) (-5 *2 (-108)) (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))) (-2375 (*1 *2 *3 *3) (-12 (-5 *3 (-1174 *5)) (-4 *5 (-734)) (-5 *2 (-108)) (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))) (-2796 (*1 *2 *3 *3) (-12 (-5 *3 (-1174 *5)) (-4 *5 (-734)) (-5 *2 (-108)) (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))))
+(-10 -7 (-15 -2796 ((-108) (-1174 |#2|) (-1174 |#2|))) (-15 -2375 ((-108) (-1174 |#2|) (-1174 |#2|))) (-15 -3880 ((-108) (-1174 |#2|) (-1174 |#2|))))
+((-4087 (((-108) $ $) 7)) (-2475 (($) 24 T CONST)) (-3300 (((-3 $ "failed") $) 28)) (-2278 (((-108) $) 25)) (-3033 (($ $ $) 13)) (-1609 (($ $ $) 14)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3706 (($ $ (-856)) 22) (($ $ (-713)) 27)) (-3375 (($) 23 T CONST)) (-2830 (((-108) $ $) 16)) (-2807 (((-108) $ $) 17)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 15)) (-2795 (((-108) $ $) 18)) (** (($ $ (-856)) 21) (($ $ (-713)) 26)) (* (($ $ $) 20)))
(((-785) (-131)) (T -785))
NIL
(-13 (-796) (-669))
(((-97) . T) ((-566 (-798)) . T) ((-669) . T) ((-796) . T) ((-789) . T) ((-1032) . T) ((-1020) . T))
-((-3855 (((-525) $) 17)) (-1222 (((-108) $) 10)) (-3256 (((-108) $) 11)) (-2802 (($ $) 19)))
-(((-786 |#1|) (-10 -8 (-15 -2802 (|#1| |#1|)) (-15 -3855 ((-525) |#1|)) (-15 -3256 ((-108) |#1|)) (-15 -1222 ((-108) |#1|))) (-787)) (T -786))
+((-2971 (((-525) $) 17)) (-1889 (((-108) $) 10)) (-4079 (((-108) $) 11)) (-2380 (($ $) 19)))
+(((-786 |#1|) (-10 -8 (-15 -2380 (|#1| |#1|)) (-15 -2971 ((-525) |#1|)) (-15 -4079 ((-108) |#1|)) (-15 -1889 ((-108) |#1|))) (-787)) (T -786))
NIL
-(-10 -8 (-15 -2802 (|#1| |#1|)) (-15 -3855 ((-525) |#1|)) (-15 -3256 ((-108) |#1|)) (-15 -1222 ((-108) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 24)) (-1578 (((-3 $ "failed") $ $) 26)) (-3855 (((-525) $) 33)) (-2169 (($) 23 T CONST)) (-3457 (((-3 $ "failed") $) 39)) (-1222 (((-108) $) 35)) (-1396 (((-108) $) 42)) (-3256 (((-108) $) 34)) (-2638 (($ $ $) 13)) (-3662 (($ $ $) 14)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11) (($ (-525)) 45)) (-3917 (((-713)) 44)) (-2802 (($ $) 32)) (-1619 (($ $ (-713)) 40) (($ $ (-856)) 36)) (-3349 (($) 22 T CONST)) (-3359 (($) 43 T CONST)) (-4011 (((-108) $ $) 16)) (-3987 (((-108) $ $) 17)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 15)) (-3978 (((-108) $ $) 18)) (-4061 (($ $ $) 28) (($ $) 27)) (-4047 (($ $ $) 20)) (** (($ $ (-713)) 41) (($ $ (-856)) 37)) (* (($ (-856) $) 21) (($ (-713) $) 25) (($ (-525) $) 29) (($ $ $) 38)))
+(-10 -8 (-15 -2380 (|#1| |#1|)) (-15 -2971 ((-525) |#1|)) (-15 -4079 ((-108) |#1|)) (-15 -1889 ((-108) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 24)) (-3222 (((-3 $ "failed") $ $) 26)) (-2971 (((-525) $) 33)) (-2475 (($) 23 T CONST)) (-3300 (((-3 $ "failed") $) 39)) (-1889 (((-108) $) 35)) (-2278 (((-108) $) 42)) (-4079 (((-108) $) 34)) (-3033 (($ $ $) 13)) (-1609 (($ $ $) 14)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11) (($ (-525)) 45)) (-2448 (((-713)) 44)) (-2380 (($ $) 32)) (-3706 (($ $ (-713)) 40) (($ $ (-856)) 36)) (-3364 (($) 22 T CONST)) (-3375 (($) 43 T CONST)) (-2830 (((-108) $ $) 16)) (-2807 (((-108) $ $) 17)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 15)) (-2795 (((-108) $ $) 18)) (-2871 (($ $ $) 28) (($ $) 27)) (-2860 (($ $ $) 20)) (** (($ $ (-713)) 41) (($ $ (-856)) 37)) (* (($ (-856) $) 21) (($ (-713) $) 25) (($ (-525) $) 29) (($ $ $) 38)))
(((-787) (-131)) (T -787))
-((-1222 (*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108)))) (-3855 (*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-525)))) (-2802 (*1 *1 *1) (-4 *1 (-787))))
-(-13 (-733) (-977) (-669) (-10 -8 (-15 -1222 ((-108) $)) (-15 -3256 ((-108) $)) (-15 -3855 ((-525) $)) (-15 -2802 ($ $))))
+((-1889 (*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108)))) (-4079 (*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108)))) (-2971 (*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-525)))) (-2380 (*1 *1 *1) (-4 *1 (-787))))
+(-13 (-733) (-977) (-669) (-10 -8 (-15 -1889 ((-108) $)) (-15 -4079 ((-108) $)) (-15 -2971 ((-525) $)) (-15 -2380 ($ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-789) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-2638 (($ $ $) 10)) (-3662 (($ $ $) 9)) (-4011 (((-108) $ $) 13)) (-3987 (((-108) $ $) 11)) (-3999 (((-108) $ $) 14)))
-(((-788 |#1|) (-10 -8 (-15 -2638 (|#1| |#1| |#1|)) (-15 -3662 (|#1| |#1| |#1|)) (-15 -3999 ((-108) |#1| |#1|)) (-15 -4011 ((-108) |#1| |#1|)) (-15 -3987 ((-108) |#1| |#1|))) (-789)) (T -788))
+((-3033 (($ $ $) 10)) (-1609 (($ $ $) 9)) (-2830 (((-108) $ $) 13)) (-2807 (((-108) $ $) 11)) (-2817 (((-108) $ $) 14)))
+(((-788 |#1|) (-10 -8 (-15 -3033 (|#1| |#1| |#1|)) (-15 -1609 (|#1| |#1| |#1|)) (-15 -2817 ((-108) |#1| |#1|)) (-15 -2830 ((-108) |#1| |#1|)) (-15 -2807 ((-108) |#1| |#1|))) (-789)) (T -788))
NIL
-(-10 -8 (-15 -2638 (|#1| |#1| |#1|)) (-15 -3662 (|#1| |#1| |#1|)) (-15 -3999 ((-108) |#1| |#1|)) (-15 -4011 ((-108) |#1| |#1|)) (-15 -3987 ((-108) |#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-2638 (($ $ $) 13)) (-3662 (($ $ $) 14)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-4011 (((-108) $ $) 16)) (-3987 (((-108) $ $) 17)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 15)) (-3978 (((-108) $ $) 18)))
+(-10 -8 (-15 -3033 (|#1| |#1| |#1|)) (-15 -1609 (|#1| |#1| |#1|)) (-15 -2817 ((-108) |#1| |#1|)) (-15 -2830 ((-108) |#1| |#1|)) (-15 -2807 ((-108) |#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-3033 (($ $ $) 13)) (-1609 (($ $ $) 14)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-2830 (((-108) $ $) 16)) (-2807 (((-108) $ $) 17)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 15)) (-2795 (((-108) $ $) 18)))
(((-789) (-131)) (T -789))
-((-3978 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-3987 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-4011 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-3999 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-3662 (*1 *1 *1 *1) (-4 *1 (-789))) (-2638 (*1 *1 *1 *1) (-4 *1 (-789))))
-(-13 (-1020) (-10 -8 (-15 -3978 ((-108) $ $)) (-15 -3987 ((-108) $ $)) (-15 -4011 ((-108) $ $)) (-15 -3999 ((-108) $ $)) (-15 -3662 ($ $ $)) (-15 -2638 ($ $ $))))
+((-2795 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-2807 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-2830 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-2817 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-1609 (*1 *1 *1 *1) (-4 *1 (-789))) (-3033 (*1 *1 *1 *1) (-4 *1 (-789))))
+(-13 (-1020) (-10 -8 (-15 -2795 ((-108) $ $)) (-15 -2807 ((-108) $ $)) (-15 -2830 ((-108) $ $)) (-15 -2817 ((-108) $ $)) (-15 -1609 ($ $ $)) (-15 -3033 ($ $ $))))
(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-1469 (($ $ $) 45)) (-2967 (($ $ $) 44)) (-1461 (($ $ $) 42)) (-2043 (($ $ $) 51)) (-4139 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 46)) (-4111 (((-3 $ "failed") $ $) 49)) (-3077 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1576 (($ $) 35)) (-3927 (($ $ $) 39)) (-2752 (($ $ $) 38)) (-3468 (($ $ $) 47)) (-3968 (($ $ $) 53)) (-2000 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 41)) (-2240 (((-3 $ "failed") $ $) 48)) (-1715 (((-3 $ "failed") $ |#2|) 28)) (-3658 ((|#2| $) 32)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ |#2|) 12)) (-1684 (((-592 |#2|) $) 18)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
-(((-790 |#1| |#2|) (-10 -8 (-15 -3468 (|#1| |#1| |#1|)) (-15 -4139 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3409 |#1|)) |#1| |#1|)) (-15 -2043 (|#1| |#1| |#1|)) (-15 -4111 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1469 (|#1| |#1| |#1|)) (-15 -2967 (|#1| |#1| |#1|)) (-15 -1461 (|#1| |#1| |#1|)) (-15 -2000 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3409 |#1|)) |#1| |#1|)) (-15 -3968 (|#1| |#1| |#1|)) (-15 -2240 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3927 (|#1| |#1| |#1|)) (-15 -2752 (|#1| |#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -3658 (|#2| |#1|)) (-15 -1715 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1684 ((-592 |#2|) |#1|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -1217 (|#1| |#2|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1217 (|#1| (-525))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -1217 ((-798) |#1|))) (-791 |#2|) (-977)) (T -790))
+((-2609 (($ $ $) 45)) (-3351 (($ $ $) 44)) (-2553 (($ $ $) 42)) (-3545 (($ $ $) 51)) (-2833 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 46)) (-3754 (((-3 $ "failed") $ $) 49)) (-1934 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3201 (($ $) 35)) (-2544 (($ $ $) 39)) (-3114 (($ $ $) 38)) (-3405 (($ $ $) 47)) (-1749 (($ $ $) 53)) (-3155 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 41)) (-3777 (((-3 $ "failed") $ $) 48)) (-1311 (((-3 $ "failed") $ |#2|) 28)) (-1661 ((|#2| $) 32)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ |#2|) 12)) (-3137 (((-592 |#2|) $) 18)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
+(((-790 |#1| |#2|) (-10 -8 (-15 -3405 (|#1| |#1| |#1|)) (-15 -2833 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3817 |#1|)) |#1| |#1|)) (-15 -3545 (|#1| |#1| |#1|)) (-15 -3754 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2609 (|#1| |#1| |#1|)) (-15 -3351 (|#1| |#1| |#1|)) (-15 -2553 (|#1| |#1| |#1|)) (-15 -3155 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3817 |#1|)) |#1| |#1|)) (-15 -1749 (|#1| |#1| |#1|)) (-15 -3777 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -3114 (|#1| |#1| |#1|)) (-15 -3201 (|#1| |#1|)) (-15 -1661 (|#2| |#1|)) (-15 -1311 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3137 ((-592 |#2|) |#1|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -4100 (|#1| |#2|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4100 (|#1| (-525))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -4100 ((-798) |#1|))) (-791 |#2|) (-977)) (T -790))
NIL
-(-10 -8 (-15 -3468 (|#1| |#1| |#1|)) (-15 -4139 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3409 |#1|)) |#1| |#1|)) (-15 -2043 (|#1| |#1| |#1|)) (-15 -4111 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1469 (|#1| |#1| |#1|)) (-15 -2967 (|#1| |#1| |#1|)) (-15 -1461 (|#1| |#1| |#1|)) (-15 -2000 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3409 |#1|)) |#1| |#1|)) (-15 -3968 (|#1| |#1| |#1|)) (-15 -2240 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3927 (|#1| |#1| |#1|)) (-15 -2752 (|#1| |#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -3658 (|#2| |#1|)) (-15 -1715 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1684 ((-592 |#2|) |#1|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -1217 (|#1| |#2|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1217 (|#1| (-525))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -1217 ((-798) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-1469 (($ $ $) 45 (|has| |#1| (-341)))) (-2967 (($ $ $) 46 (|has| |#1| (-341)))) (-1461 (($ $ $) 48 (|has| |#1| (-341)))) (-2043 (($ $ $) 43 (|has| |#1| (-341)))) (-4139 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 42 (|has| |#1| (-341)))) (-4111 (((-3 $ "failed") $ $) 44 (|has| |#1| (-341)))) (-3122 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 47 (|has| |#1| (-341)))) (-3077 (((-3 (-525) "failed") $) 74 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 72 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 69)) (-1572 (((-525) $) 75 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 73 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 68)) (-3063 (($ $) 64)) (-3457 (((-3 $ "failed") $) 34)) (-1576 (($ $) 55 (|has| |#1| (-429)))) (-1396 (((-108) $) 31)) (-2876 (($ |#1| (-713)) 62)) (-1891 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 57 (|has| |#1| (-517)))) (-3831 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 58 (|has| |#1| (-517)))) (-2870 (((-713) $) 66)) (-3927 (($ $ $) 52 (|has| |#1| (-341)))) (-2752 (($ $ $) 53 (|has| |#1| (-341)))) (-3468 (($ $ $) 41 (|has| |#1| (-341)))) (-3968 (($ $ $) 50 (|has| |#1| (-341)))) (-2000 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 49 (|has| |#1| (-341)))) (-2240 (((-3 $ "failed") $ $) 51 (|has| |#1| (-341)))) (-1282 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 54 (|has| |#1| (-341)))) (-3043 ((|#1| $) 65)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1715 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-517)))) (-2343 (((-713) $) 67)) (-3658 ((|#1| $) 56 (|has| |#1| (-429)))) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 71 (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) 70)) (-1684 (((-592 |#1|) $) 61)) (-1568 ((|#1| $ (-713)) 63)) (-3917 (((-713)) 29)) (-1814 ((|#1| $ |#1| |#1|) 60)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(-10 -8 (-15 -3405 (|#1| |#1| |#1|)) (-15 -2833 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3817 |#1|)) |#1| |#1|)) (-15 -3545 (|#1| |#1| |#1|)) (-15 -3754 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2609 (|#1| |#1| |#1|)) (-15 -3351 (|#1| |#1| |#1|)) (-15 -2553 (|#1| |#1| |#1|)) (-15 -3155 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3817 |#1|)) |#1| |#1|)) (-15 -1749 (|#1| |#1| |#1|)) (-15 -3777 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -3114 (|#1| |#1| |#1|)) (-15 -3201 (|#1| |#1|)) (-15 -1661 (|#2| |#1|)) (-15 -1311 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3137 ((-592 |#2|) |#1|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -4100 (|#1| |#2|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4100 (|#1| (-525))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -4100 ((-798) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-2609 (($ $ $) 45 (|has| |#1| (-341)))) (-3351 (($ $ $) 46 (|has| |#1| (-341)))) (-2553 (($ $ $) 48 (|has| |#1| (-341)))) (-3545 (($ $ $) 43 (|has| |#1| (-341)))) (-2833 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 42 (|has| |#1| (-341)))) (-3754 (((-3 $ "failed") $ $) 44 (|has| |#1| (-341)))) (-2325 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 47 (|has| |#1| (-341)))) (-1934 (((-3 (-525) "failed") $) 74 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 72 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 69)) (-4105 (((-525) $) 75 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 73 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 68)) (-1451 (($ $) 64)) (-3300 (((-3 $ "failed") $) 34)) (-3201 (($ $) 55 (|has| |#1| (-429)))) (-2278 (((-108) $) 31)) (-1272 (($ |#1| (-713)) 62)) (-1452 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 57 (|has| |#1| (-517)))) (-2760 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 58 (|has| |#1| (-517)))) (-1819 (((-713) $) 66)) (-2544 (($ $ $) 52 (|has| |#1| (-341)))) (-3114 (($ $ $) 53 (|has| |#1| (-341)))) (-3405 (($ $ $) 41 (|has| |#1| (-341)))) (-1749 (($ $ $) 50 (|has| |#1| (-341)))) (-3155 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 49 (|has| |#1| (-341)))) (-3777 (((-3 $ "failed") $ $) 51 (|has| |#1| (-341)))) (-4150 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 54 (|has| |#1| (-341)))) (-1430 ((|#1| $) 65)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1311 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-517)))) (-3529 (((-713) $) 67)) (-1661 ((|#1| $) 56 (|has| |#1| (-429)))) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 71 (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) 70)) (-3137 (((-592 |#1|) $) 61)) (-3136 ((|#1| $ (-713)) 63)) (-2448 (((-713)) 29)) (-1590 ((|#1| $ |#1| |#1|) 60)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
(((-791 |#1|) (-131) (-977)) (T -791))
-((-2343 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-977)) (-5 *2 (-713)))) (-2870 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-977)) (-5 *2 (-713)))) (-3043 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)))) (-3063 (*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)))) (-1568 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-977)))) (-2876 (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-977)))) (-1684 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-977)) (-5 *2 (-592 *3)))) (-1814 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)))) (-1715 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-517)))) (-3831 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-5 *2 (-2 (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-791 *3)))) (-1891 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-5 *2 (-2 (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-791 *3)))) (-3658 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-429)))) (-1576 (*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-429)))) (-1282 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-977)) (-5 *2 (-2 (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-791 *3)))) (-2752 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-3927 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-2240 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-3968 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-2000 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-977)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3409 *1))) (-4 *1 (-791 *3)))) (-1461 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-3122 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-977)) (-5 *2 (-2 (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-791 *3)))) (-2967 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-1469 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-4111 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-2043 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-4139 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-977)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3409 *1))) (-4 *1 (-791 *3)))) (-3468 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
-(-13 (-977) (-107 |t#1| |t#1|) (-389 |t#1|) (-10 -8 (-15 -2343 ((-713) $)) (-15 -2870 ((-713) $)) (-15 -3043 (|t#1| $)) (-15 -3063 ($ $)) (-15 -1568 (|t#1| $ (-713))) (-15 -2876 ($ |t#1| (-713))) (-15 -1684 ((-592 |t#1|) $)) (-15 -1814 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-15 -1715 ((-3 $ "failed") $ |t#1|)) (-15 -3831 ((-2 (|:| -2829 $) (|:| -1607 $)) $ $)) (-15 -1891 ((-2 (|:| -2829 $) (|:| -1607 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-15 -3658 (|t#1| $)) (-15 -1576 ($ $))) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-15 -1282 ((-2 (|:| -2829 $) (|:| -1607 $)) $ $)) (-15 -2752 ($ $ $)) (-15 -3927 ($ $ $)) (-15 -2240 ((-3 $ "failed") $ $)) (-15 -3968 ($ $ $)) (-15 -2000 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $)) (-15 -1461 ($ $ $)) (-15 -3122 ((-2 (|:| -2829 $) (|:| -1607 $)) $ $)) (-15 -2967 ($ $ $)) (-15 -1469 ($ $ $)) (-15 -4111 ((-3 $ "failed") $ $)) (-15 -2043 ($ $ $)) (-15 -4139 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $)) (-15 -3468 ($ $ $))) |%noBranch|)))
+((-3529 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-977)) (-5 *2 (-713)))) (-1819 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-977)) (-5 *2 (-713)))) (-1430 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)))) (-1451 (*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)))) (-3136 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-977)))) (-1272 (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-977)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-977)) (-5 *2 (-592 *3)))) (-1590 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)))) (-1311 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-517)))) (-2760 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-5 *2 (-2 (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-791 *3)))) (-1452 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-5 *2 (-2 (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-791 *3)))) (-1661 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-429)))) (-3201 (*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-429)))) (-4150 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-977)) (-5 *2 (-2 (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-791 *3)))) (-3114 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-2544 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-3777 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-1749 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-3155 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-977)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3817 *1))) (-4 *1 (-791 *3)))) (-2553 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-2325 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-977)) (-5 *2 (-2 (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-791 *3)))) (-3351 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-2609 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-3754 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-3545 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-2833 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-977)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3817 *1))) (-4 *1 (-791 *3)))) (-3405 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(-13 (-977) (-107 |t#1| |t#1|) (-389 |t#1|) (-10 -8 (-15 -3529 ((-713) $)) (-15 -1819 ((-713) $)) (-15 -1430 (|t#1| $)) (-15 -1451 ($ $)) (-15 -3136 (|t#1| $ (-713))) (-15 -1272 ($ |t#1| (-713))) (-15 -3137 ((-592 |t#1|) $)) (-15 -1590 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-15 -1311 ((-3 $ "failed") $ |t#1|)) (-15 -2760 ((-2 (|:| -1416 $) (|:| -3681 $)) $ $)) (-15 -1452 ((-2 (|:| -1416 $) (|:| -3681 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-15 -1661 (|t#1| $)) (-15 -3201 ($ $))) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-15 -4150 ((-2 (|:| -1416 $) (|:| -3681 $)) $ $)) (-15 -3114 ($ $ $)) (-15 -2544 ($ $ $)) (-15 -3777 ((-3 $ "failed") $ $)) (-15 -1749 ($ $ $)) (-15 -3155 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $)) (-15 -2553 ($ $ $)) (-15 -2325 ((-2 (|:| -1416 $) (|:| -3681 $)) $ $)) (-15 -3351 ($ $ $)) (-15 -2609 ($ $ $)) (-15 -3754 ((-3 $ "failed") $ $)) (-15 -3545 ($ $ $)) (-15 -2833 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $)) (-15 -3405 ($ $ $))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-389 |#1|) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) |has| |#1| (-160)) ((-669) . T) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-983 |#1|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-2898 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 20)) (-3122 (((-2 (|:| -2829 |#2|) (|:| -1607 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-341)))) (-1891 (((-2 (|:| -2829 |#2|) (|:| -1607 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-517)))) (-3831 (((-2 (|:| -2829 |#2|) (|:| -1607 |#2|)) |#2| |#2| (-94 |#1|)) 39 (|has| |#1| (-517)))) (-1282 (((-2 (|:| -2829 |#2|) (|:| -1607 |#2|)) |#2| |#2| (-94 |#1|)) 42 (|has| |#1| (-341)))) (-1814 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 31)))
-(((-792 |#1| |#2|) (-10 -7 (-15 -2898 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1814 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-517)) (PROGN (-15 -3831 ((-2 (|:| -2829 |#2|) (|:| -1607 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1891 ((-2 (|:| -2829 |#2|) (|:| -1607 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -1282 ((-2 (|:| -2829 |#2|) (|:| -1607 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3122 ((-2 (|:| -2829 |#2|) (|:| -1607 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-977) (-791 |#1|)) (T -792))
-((-3122 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-977)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1607 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-1282 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-977)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1607 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-1891 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-977)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1607 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-3831 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-977)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1607 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-1814 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-977)) (-5 *1 (-792 *2 *3)) (-4 *3 (-791 *2)))) (-2898 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-977)) (-5 *1 (-792 *5 *2)) (-4 *2 (-791 *5)))))
-(-10 -7 (-15 -2898 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1814 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-517)) (PROGN (-15 -3831 ((-2 (|:| -2829 |#2|) (|:| -1607 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1891 ((-2 (|:| -2829 |#2|) (|:| -1607 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -1282 ((-2 (|:| -2829 |#2|) (|:| -1607 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3122 ((-2 (|:| -2829 |#2|) (|:| -1607 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-1469 (($ $ $) NIL (|has| |#1| (-341)))) (-2967 (($ $ $) NIL (|has| |#1| (-341)))) (-1461 (($ $ $) NIL (|has| |#1| (-341)))) (-2043 (($ $ $) NIL (|has| |#1| (-341)))) (-4139 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-4111 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-3122 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 25 (|has| |#1| (-341)))) (-3077 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-1572 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-3063 (($ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1576 (($ $) NIL (|has| |#1| (-429)))) (-3846 (((-798) $ (-798)) NIL)) (-1396 (((-108) $) NIL)) (-2876 (($ |#1| (-713)) NIL)) (-1891 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 21 (|has| |#1| (-517)))) (-3831 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 19 (|has| |#1| (-517)))) (-2870 (((-713) $) NIL)) (-3927 (($ $ $) NIL (|has| |#1| (-341)))) (-2752 (($ $ $) NIL (|has| |#1| (-341)))) (-3468 (($ $ $) NIL (|has| |#1| (-341)))) (-3968 (($ $ $) NIL (|has| |#1| (-341)))) (-2000 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-2240 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-1282 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 23 (|has| |#1| (-341)))) (-3043 ((|#1| $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1715 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-2343 (((-713) $) NIL)) (-3658 ((|#1| $) NIL (|has| |#1| (-429)))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) NIL)) (-1684 (((-592 |#1|) $) NIL)) (-1568 ((|#1| $ (-713)) NIL)) (-3917 (((-713)) NIL)) (-1814 ((|#1| $ |#1| |#1|) 15)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-793 |#1| |#2| |#3|) (-13 (-791 |#1|) (-10 -8 (-15 -3846 ((-798) $ (-798))))) (-977) (-94 |#1|) (-1 |#1| |#1|)) (T -793))
-((-3846 (*1 *2 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-793 *3 *4 *5)) (-4 *3 (-977)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-791 |#1|) (-10 -8 (-15 -3846 ((-798) $ (-798)))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-1469 (($ $ $) NIL (|has| |#2| (-341)))) (-2967 (($ $ $) NIL (|has| |#2| (-341)))) (-1461 (($ $ $) NIL (|has| |#2| (-341)))) (-2043 (($ $ $) NIL (|has| |#2| (-341)))) (-4139 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#2| (-341)))) (-4111 (((-3 $ "failed") $ $) NIL (|has| |#2| (-341)))) (-3122 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#2| (-341)))) (-3077 (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 |#2| "failed") $) NIL)) (-1572 (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) ((|#2| $) NIL)) (-3063 (($ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1576 (($ $) NIL (|has| |#2| (-429)))) (-1396 (((-108) $) NIL)) (-2876 (($ |#2| (-713)) 16)) (-1891 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#2| (-517)))) (-3831 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#2| (-517)))) (-2870 (((-713) $) NIL)) (-3927 (($ $ $) NIL (|has| |#2| (-341)))) (-2752 (($ $ $) NIL (|has| |#2| (-341)))) (-3468 (($ $ $) NIL (|has| |#2| (-341)))) (-3968 (($ $ $) NIL (|has| |#2| (-341)))) (-2000 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#2| (-341)))) (-2240 (((-3 $ "failed") $ $) NIL (|has| |#2| (-341)))) (-1282 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#2| (-341)))) (-3043 ((|#2| $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1715 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517)))) (-2343 (((-713) $) NIL)) (-3658 ((|#2| $) NIL (|has| |#2| (-429)))) (-1217 (((-798) $) 23) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#2| (-968 (-385 (-525))))) (($ |#2|) NIL) (($ (-1170 |#1|)) 18)) (-1684 (((-592 |#2|) $) NIL)) (-1568 ((|#2| $ (-713)) NIL)) (-3917 (((-713)) NIL)) (-1814 ((|#2| $ |#2| |#2|) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) 13 T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-794 |#1| |#2| |#3| |#4|) (-13 (-791 |#2|) (-10 -8 (-15 -1217 ($ (-1170 |#1|))))) (-1092) (-977) (-94 |#2|) (-1 |#2| |#2|)) (T -794))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-14 *3 (-1092)) (-5 *1 (-794 *3 *4 *5 *6)) (-4 *4 (-977)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))))
-(-13 (-791 |#2|) (-10 -8 (-15 -1217 ($ (-1170 |#1|)))))
-((-1365 ((|#1| (-713) |#1|) 35 (|has| |#1| (-37 (-385 (-525)))))) (-3918 ((|#1| (-713) (-713) |#1|) 27) ((|#1| (-713) |#1|) 20)) (-4020 ((|#1| (-713) |#1|) 31)) (-2517 ((|#1| (-713) |#1|) 29)) (-2588 ((|#1| (-713) |#1|) 28)))
-(((-795 |#1|) (-10 -7 (-15 -2588 (|#1| (-713) |#1|)) (-15 -2517 (|#1| (-713) |#1|)) (-15 -4020 (|#1| (-713) |#1|)) (-15 -3918 (|#1| (-713) |#1|)) (-15 -3918 (|#1| (-713) (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1365 (|#1| (-713) |#1|)) |%noBranch|)) (-160)) (T -795))
-((-1365 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-160)))) (-3918 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-3918 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-4020 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-2517 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-2588 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))))
-(-10 -7 (-15 -2588 (|#1| (-713) |#1|)) (-15 -2517 (|#1| (-713) |#1|)) (-15 -4020 (|#1| (-713) |#1|)) (-15 -3918 (|#1| (-713) |#1|)) (-15 -3918 (|#1| (-713) (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1365 (|#1| (-713) |#1|)) |%noBranch|))
-((-4236 (((-108) $ $) 7)) (-2638 (($ $ $) 13)) (-3662 (($ $ $) 14)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-1619 (($ $ (-856)) 22)) (-4011 (((-108) $ $) 16)) (-3987 (((-108) $ $) 17)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 15)) (-3978 (((-108) $ $) 18)) (** (($ $ (-856)) 21)) (* (($ $ $) 20)))
+((-2846 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 20)) (-2325 (((-2 (|:| -1416 |#2|) (|:| -3681 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-341)))) (-1452 (((-2 (|:| -1416 |#2|) (|:| -3681 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-517)))) (-2760 (((-2 (|:| -1416 |#2|) (|:| -3681 |#2|)) |#2| |#2| (-94 |#1|)) 39 (|has| |#1| (-517)))) (-4150 (((-2 (|:| -1416 |#2|) (|:| -3681 |#2|)) |#2| |#2| (-94 |#1|)) 42 (|has| |#1| (-341)))) (-1590 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 31)))
+(((-792 |#1| |#2|) (-10 -7 (-15 -2846 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1590 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-517)) (PROGN (-15 -2760 ((-2 (|:| -1416 |#2|) (|:| -3681 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1452 ((-2 (|:| -1416 |#2|) (|:| -3681 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -4150 ((-2 (|:| -1416 |#2|) (|:| -3681 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2325 ((-2 (|:| -1416 |#2|) (|:| -3681 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-977) (-791 |#1|)) (T -792))
+((-2325 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-977)) (-5 *2 (-2 (|:| -1416 *3) (|:| -3681 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-4150 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-977)) (-5 *2 (-2 (|:| -1416 *3) (|:| -3681 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-1452 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-977)) (-5 *2 (-2 (|:| -1416 *3) (|:| -3681 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-2760 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-977)) (-5 *2 (-2 (|:| -1416 *3) (|:| -3681 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-1590 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-977)) (-5 *1 (-792 *2 *3)) (-4 *3 (-791 *2)))) (-2846 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-977)) (-5 *1 (-792 *5 *2)) (-4 *2 (-791 *5)))))
+(-10 -7 (-15 -2846 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1590 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-517)) (PROGN (-15 -2760 ((-2 (|:| -1416 |#2|) (|:| -3681 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1452 ((-2 (|:| -1416 |#2|) (|:| -3681 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -4150 ((-2 (|:| -1416 |#2|) (|:| -3681 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2325 ((-2 (|:| -1416 |#2|) (|:| -3681 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-2609 (($ $ $) NIL (|has| |#1| (-341)))) (-3351 (($ $ $) NIL (|has| |#1| (-341)))) (-2553 (($ $ $) NIL (|has| |#1| (-341)))) (-3545 (($ $ $) NIL (|has| |#1| (-341)))) (-2833 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-3754 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2325 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 25 (|has| |#1| (-341)))) (-1934 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-4105 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-1451 (($ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3201 (($ $) NIL (|has| |#1| (-429)))) (-2898 (((-798) $ (-798)) NIL)) (-2278 (((-108) $) NIL)) (-1272 (($ |#1| (-713)) NIL)) (-1452 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 21 (|has| |#1| (-517)))) (-2760 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 19 (|has| |#1| (-517)))) (-1819 (((-713) $) NIL)) (-2544 (($ $ $) NIL (|has| |#1| (-341)))) (-3114 (($ $ $) NIL (|has| |#1| (-341)))) (-3405 (($ $ $) NIL (|has| |#1| (-341)))) (-1749 (($ $ $) NIL (|has| |#1| (-341)))) (-3155 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-3777 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-4150 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 23 (|has| |#1| (-341)))) (-1430 ((|#1| $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1311 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3529 (((-713) $) NIL)) (-1661 ((|#1| $) NIL (|has| |#1| (-429)))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) NIL)) (-3137 (((-592 |#1|) $) NIL)) (-3136 ((|#1| $ (-713)) NIL)) (-2448 (((-713)) NIL)) (-1590 ((|#1| $ |#1| |#1|) 15)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-793 |#1| |#2| |#3|) (-13 (-791 |#1|) (-10 -8 (-15 -2898 ((-798) $ (-798))))) (-977) (-94 |#1|) (-1 |#1| |#1|)) (T -793))
+((-2898 (*1 *2 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-793 *3 *4 *5)) (-4 *3 (-977)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-791 |#1|) (-10 -8 (-15 -2898 ((-798) $ (-798)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-2609 (($ $ $) NIL (|has| |#2| (-341)))) (-3351 (($ $ $) NIL (|has| |#2| (-341)))) (-2553 (($ $ $) NIL (|has| |#2| (-341)))) (-3545 (($ $ $) NIL (|has| |#2| (-341)))) (-2833 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#2| (-341)))) (-3754 (((-3 $ "failed") $ $) NIL (|has| |#2| (-341)))) (-2325 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#2| (-341)))) (-1934 (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 |#2| "failed") $) NIL)) (-4105 (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) ((|#2| $) NIL)) (-1451 (($ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3201 (($ $) NIL (|has| |#2| (-429)))) (-2278 (((-108) $) NIL)) (-1272 (($ |#2| (-713)) 16)) (-1452 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#2| (-517)))) (-2760 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#2| (-517)))) (-1819 (((-713) $) NIL)) (-2544 (($ $ $) NIL (|has| |#2| (-341)))) (-3114 (($ $ $) NIL (|has| |#2| (-341)))) (-3405 (($ $ $) NIL (|has| |#2| (-341)))) (-1749 (($ $ $) NIL (|has| |#2| (-341)))) (-3155 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#2| (-341)))) (-3777 (((-3 $ "failed") $ $) NIL (|has| |#2| (-341)))) (-4150 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#2| (-341)))) (-1430 ((|#2| $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1311 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517)))) (-3529 (((-713) $) NIL)) (-1661 ((|#2| $) NIL (|has| |#2| (-429)))) (-4100 (((-798) $) 23) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#2| (-968 (-385 (-525))))) (($ |#2|) NIL) (($ (-1170 |#1|)) 18)) (-3137 (((-592 |#2|) $) NIL)) (-3136 ((|#2| $ (-713)) NIL)) (-2448 (((-713)) NIL)) (-1590 ((|#2| $ |#2| |#2|) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) 13 T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-794 |#1| |#2| |#3| |#4|) (-13 (-791 |#2|) (-10 -8 (-15 -4100 ($ (-1170 |#1|))))) (-1092) (-977) (-94 |#2|) (-1 |#2| |#2|)) (T -794))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-14 *3 (-1092)) (-5 *1 (-794 *3 *4 *5 *6)) (-4 *4 (-977)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))))
+(-13 (-791 |#2|) (-10 -8 (-15 -4100 ($ (-1170 |#1|)))))
+((-1775 ((|#1| (-713) |#1|) 35 (|has| |#1| (-37 (-385 (-525)))))) (-2459 ((|#1| (-713) (-713) |#1|) 27) ((|#1| (-713) |#1|) 20)) (-4086 ((|#1| (-713) |#1|) 31)) (-1604 ((|#1| (-713) |#1|) 29)) (-4062 ((|#1| (-713) |#1|) 28)))
+(((-795 |#1|) (-10 -7 (-15 -4062 (|#1| (-713) |#1|)) (-15 -1604 (|#1| (-713) |#1|)) (-15 -4086 (|#1| (-713) |#1|)) (-15 -2459 (|#1| (-713) |#1|)) (-15 -2459 (|#1| (-713) (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1775 (|#1| (-713) |#1|)) |%noBranch|)) (-160)) (T -795))
+((-1775 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-160)))) (-2459 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-2459 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-4086 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-1604 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-4062 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))))
+(-10 -7 (-15 -4062 (|#1| (-713) |#1|)) (-15 -1604 (|#1| (-713) |#1|)) (-15 -4086 (|#1| (-713) |#1|)) (-15 -2459 (|#1| (-713) |#1|)) (-15 -2459 (|#1| (-713) (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1775 (|#1| (-713) |#1|)) |%noBranch|))
+((-4087 (((-108) $ $) 7)) (-3033 (($ $ $) 13)) (-1609 (($ $ $) 14)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3706 (($ $ (-856)) 22)) (-2830 (((-108) $ $) 16)) (-2807 (((-108) $ $) 17)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 15)) (-2795 (((-108) $ $) 18)) (** (($ $ (-856)) 21)) (* (($ $ $) 20)))
(((-796) (-131)) (T -796))
NIL
(-13 (-789) (-1032))
(((-97) . T) ((-566 (-798)) . T) ((-789) . T) ((-1032) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-3284 (((-525) $) 12)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 18) (($ (-525)) 11)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 8)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 9)))
-(((-797) (-13 (-789) (-10 -8 (-15 -1217 ($ (-525))) (-15 -3284 ((-525) $))))) (T -797))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-3284 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797)))))
-(-13 (-789) (-10 -8 (-15 -1217 ($ (-525))) (-15 -3284 ((-525) $))))
-((-4236 (((-108) $ $) NIL) (($ $ $) 77)) (-3012 (($ $ $) 115)) (-1297 (((-525) $) 30) (((-525)) 35)) (-2156 (($ (-525)) 44)) (-3202 (($ $ $) 45) (($ (-592 $)) 76)) (-1597 (($ $ (-592 $)) 74)) (-3713 (((-525) $) 33)) (-3194 (($ $ $) 63)) (-3509 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2975 (((-525) $) 32)) (-2673 (($ $ $) 62)) (-2986 (($ $) 105)) (-3923 (($ $ $) 119)) (-1265 (($ (-592 $)) 52)) (-4191 (($ $ (-592 $)) 69)) (-3747 (($ (-525) (-525)) 46)) (-2649 (($ $) 116) (($ $ $) 117)) (-3519 (($ $ (-525)) 40) (($ $) 43)) (-1747 (($ $ $) 89)) (-3297 (($ $ $) 122)) (-3502 (($ $) 106)) (-1733 (($ $ $) 90)) (-3724 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-3108 (((-1179) $) 8)) (-1742 (($ $) 109) (($ $ (-713)) 112)) (-2849 (($ $ $) 65)) (-2990 (($ $ $) 64)) (-2033 (($ $ (-592 $)) 100)) (-1439 (($ $ $) 104)) (-1777 (($ (-592 $)) 50)) (-3437 (($ $) 60) (($ (-592 $)) 61)) (-1346 (($ $ $) 113)) (-1596 (($ $) 107)) (-3812 (($ $ $) 118)) (-3846 (($ (-525)) 20) (($ (-1092)) 22) (($ (-1075)) 29) (($ (-205)) 24)) (-3749 (($ $ $) 93)) (-1850 (($ $) 94)) (-2510 (((-1179) (-1075)) 14)) (-3669 (($ (-1075)) 13)) (-1716 (($ (-592 (-592 $))) 49)) (-3507 (($ $ (-525)) 39) (($ $) 42)) (-2619 (((-1075) $) NIL)) (-1904 (($ $ $) 121)) (-3848 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-1730 (((-108) $) 98)) (-4198 (($ $ (-592 $)) 102) (($ $ $ $) 103)) (-3549 (($ (-525)) 36)) (-1794 (((-525) $) 31) (((-525)) 34)) (-3548 (($ $ $) 37) (($ (-592 $)) 75)) (-2093 (((-1039) $) NIL)) (-1715 (($ $ $) 91)) (-2512 (($) 12)) (-3406 (($ $ (-592 $)) 99)) (-2047 (($ $) 108) (($ $ (-713)) 111)) (-1724 (($ $ $) 88)) (-3376 (($ $ (-713)) 127)) (-1723 (($ (-592 $)) 51)) (-1217 (((-798) $) 18)) (-1340 (($ $ (-525)) 38) (($ $) 41)) (-3438 (($ $) 58) (($ (-592 $)) 59)) (-3240 (($ $) 56) (($ (-592 $)) 57)) (-1381 (($ $) 114)) (-1924 (($ (-592 $)) 55)) (-3163 (($ $ $) 97)) (-2494 (($ $ $) 120)) (-3762 (($ $ $) 92)) (-3195 (($ $ $) 95) (($ $) 96)) (-4011 (($ $ $) 81)) (-3987 (($ $ $) 79)) (-3955 (((-108) $ $) 15) (($ $ $) 16)) (-3999 (($ $ $) 80)) (-3978 (($ $ $) 78)) (-4075 (($ $ $) 86)) (-4061 (($ $ $) 83) (($ $) 84)) (-4047 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
-(((-798) (-13 (-1020) (-10 -8 (-15 -3108 ((-1179) $)) (-15 -3669 ($ (-1075))) (-15 -2510 ((-1179) (-1075))) (-15 -3846 ($ (-525))) (-15 -3846 ($ (-1092))) (-15 -3846 ($ (-1075))) (-15 -3846 ($ (-205))) (-15 -2512 ($)) (-15 -1297 ((-525) $)) (-15 -1794 ((-525) $)) (-15 -1297 ((-525))) (-15 -1794 ((-525))) (-15 -2975 ((-525) $)) (-15 -3713 ((-525) $)) (-15 -3549 ($ (-525))) (-15 -2156 ($ (-525))) (-15 -3747 ($ (-525) (-525))) (-15 -3507 ($ $ (-525))) (-15 -3519 ($ $ (-525))) (-15 -1340 ($ $ (-525))) (-15 -3507 ($ $)) (-15 -3519 ($ $)) (-15 -1340 ($ $)) (-15 -3548 ($ $ $)) (-15 -3202 ($ $ $)) (-15 -3548 ($ (-592 $))) (-15 -3202 ($ (-592 $))) (-15 -2033 ($ $ (-592 $))) (-15 -4198 ($ $ (-592 $))) (-15 -4198 ($ $ $ $)) (-15 -1439 ($ $ $)) (-15 -1730 ((-108) $)) (-15 -3406 ($ $ (-592 $))) (-15 -2986 ($ $)) (-15 -1904 ($ $ $)) (-15 -1381 ($ $)) (-15 -1716 ($ (-592 (-592 $)))) (-15 -3012 ($ $ $)) (-15 -2649 ($ $)) (-15 -2649 ($ $ $)) (-15 -3812 ($ $ $)) (-15 -3923 ($ $ $)) (-15 -2494 ($ $ $)) (-15 -3297 ($ $ $)) (-15 -3376 ($ $ (-713))) (-15 -3163 ($ $ $)) (-15 -2673 ($ $ $)) (-15 -3194 ($ $ $)) (-15 -2990 ($ $ $)) (-15 -2849 ($ $ $)) (-15 -4191 ($ $ (-592 $))) (-15 -1597 ($ $ (-592 $))) (-15 -3502 ($ $)) (-15 -2047 ($ $)) (-15 -2047 ($ $ (-713))) (-15 -1742 ($ $)) (-15 -1742 ($ $ (-713))) (-15 -1596 ($ $)) (-15 -1346 ($ $ $)) (-15 -3509 ($ $)) (-15 -3509 ($ $ $)) (-15 -3509 ($ $ $ $)) (-15 -3724 ($ $)) (-15 -3724 ($ $ $)) (-15 -3724 ($ $ $ $)) (-15 -3848 ($ $)) (-15 -3848 ($ $ $)) (-15 -3848 ($ $ $ $)) (-15 -3240 ($ $)) (-15 -3240 ($ (-592 $))) (-15 -3438 ($ $)) (-15 -3438 ($ (-592 $))) (-15 -3437 ($ $)) (-15 -3437 ($ (-592 $))) (-15 -1777 ($ (-592 $))) (-15 -1723 ($ (-592 $))) (-15 -1265 ($ (-592 $))) (-15 -1924 ($ (-592 $))) (-15 -3955 ($ $ $)) (-15 -4236 ($ $ $)) (-15 -3978 ($ $ $)) (-15 -3987 ($ $ $)) (-15 -3999 ($ $ $)) (-15 -4011 ($ $ $)) (-15 -4047 ($ $ $)) (-15 -4061 ($ $ $)) (-15 -4061 ($ $)) (-15 * ($ $ $)) (-15 -4075 ($ $ $)) (-15 ** ($ $ $)) (-15 -1724 ($ $ $)) (-15 -1747 ($ $ $)) (-15 -1733 ($ $ $)) (-15 -1715 ($ $ $)) (-15 -3762 ($ $ $)) (-15 -3749 ($ $ $)) (-15 -1850 ($ $)) (-15 -3195 ($ $ $)) (-15 -3195 ($ $))))) (T -798))
-((-3108 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-798)))) (-3669 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-798)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-798)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-798)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-798)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-798)))) (-2512 (*1 *1) (-5 *1 (-798))) (-1297 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-1794 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-1297 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-1794 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3713 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3549 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-2156 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3747 (*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3507 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-1340 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3507 (*1 *1 *1) (-5 *1 (-798))) (-3519 (*1 *1 *1) (-5 *1 (-798))) (-1340 (*1 *1 *1) (-5 *1 (-798))) (-3548 (*1 *1 *1 *1) (-5 *1 (-798))) (-3202 (*1 *1 *1 *1) (-5 *1 (-798))) (-3548 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-3202 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-2033 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-4198 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-4198 (*1 *1 *1 *1 *1) (-5 *1 (-798))) (-1439 (*1 *1 *1 *1) (-5 *1 (-798))) (-1730 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-798)))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-2986 (*1 *1 *1) (-5 *1 (-798))) (-1904 (*1 *1 *1 *1) (-5 *1 (-798))) (-1381 (*1 *1 *1) (-5 *1 (-798))) (-1716 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-798)))) (-5 *1 (-798)))) (-3012 (*1 *1 *1 *1) (-5 *1 (-798))) (-2649 (*1 *1 *1) (-5 *1 (-798))) (-2649 (*1 *1 *1 *1) (-5 *1 (-798))) (-3812 (*1 *1 *1 *1) (-5 *1 (-798))) (-3923 (*1 *1 *1 *1) (-5 *1 (-798))) (-2494 (*1 *1 *1 *1) (-5 *1 (-798))) (-3297 (*1 *1 *1 *1) (-5 *1 (-798))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-798)))) (-3163 (*1 *1 *1 *1) (-5 *1 (-798))) (-2673 (*1 *1 *1 *1) (-5 *1 (-798))) (-3194 (*1 *1 *1 *1) (-5 *1 (-798))) (-2990 (*1 *1 *1 *1) (-5 *1 (-798))) (-2849 (*1 *1 *1 *1) (-5 *1 (-798))) (-4191 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-1597 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-3502 (*1 *1 *1) (-5 *1 (-798))) (-2047 (*1 *1 *1) (-5 *1 (-798))) (-2047 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-798)))) (-1742 (*1 *1 *1) (-5 *1 (-798))) (-1742 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-798)))) (-1596 (*1 *1 *1) (-5 *1 (-798))) (-1346 (*1 *1 *1 *1) (-5 *1 (-798))) (-3509 (*1 *1 *1) (-5 *1 (-798))) (-3509 (*1 *1 *1 *1) (-5 *1 (-798))) (-3509 (*1 *1 *1 *1 *1) (-5 *1 (-798))) (-3724 (*1 *1 *1) (-5 *1 (-798))) (-3724 (*1 *1 *1 *1) (-5 *1 (-798))) (-3724 (*1 *1 *1 *1 *1) (-5 *1 (-798))) (-3848 (*1 *1 *1) (-5 *1 (-798))) (-3848 (*1 *1 *1 *1) (-5 *1 (-798))) (-3848 (*1 *1 *1 *1 *1) (-5 *1 (-798))) (-3240 (*1 *1 *1) (-5 *1 (-798))) (-3240 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-3438 (*1 *1 *1) (-5 *1 (-798))) (-3438 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-3437 (*1 *1 *1) (-5 *1 (-798))) (-3437 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-1777 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-1723 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-1265 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-1924 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-3955 (*1 *1 *1 *1) (-5 *1 (-798))) (-4236 (*1 *1 *1 *1) (-5 *1 (-798))) (-3978 (*1 *1 *1 *1) (-5 *1 (-798))) (-3987 (*1 *1 *1 *1) (-5 *1 (-798))) (-3999 (*1 *1 *1 *1) (-5 *1 (-798))) (-4011 (*1 *1 *1 *1) (-5 *1 (-798))) (-4047 (*1 *1 *1 *1) (-5 *1 (-798))) (-4061 (*1 *1 *1 *1) (-5 *1 (-798))) (-4061 (*1 *1 *1) (-5 *1 (-798))) (* (*1 *1 *1 *1) (-5 *1 (-798))) (-4075 (*1 *1 *1 *1) (-5 *1 (-798))) (** (*1 *1 *1 *1) (-5 *1 (-798))) (-1724 (*1 *1 *1 *1) (-5 *1 (-798))) (-1747 (*1 *1 *1 *1) (-5 *1 (-798))) (-1733 (*1 *1 *1 *1) (-5 *1 (-798))) (-1715 (*1 *1 *1 *1) (-5 *1 (-798))) (-3762 (*1 *1 *1 *1) (-5 *1 (-798))) (-3749 (*1 *1 *1 *1) (-5 *1 (-798))) (-1850 (*1 *1 *1) (-5 *1 (-798))) (-3195 (*1 *1 *1 *1) (-5 *1 (-798))) (-3195 (*1 *1 *1) (-5 *1 (-798))))
-(-13 (-1020) (-10 -8 (-15 -3108 ((-1179) $)) (-15 -3669 ($ (-1075))) (-15 -2510 ((-1179) (-1075))) (-15 -3846 ($ (-525))) (-15 -3846 ($ (-1092))) (-15 -3846 ($ (-1075))) (-15 -3846 ($ (-205))) (-15 -2512 ($)) (-15 -1297 ((-525) $)) (-15 -1794 ((-525) $)) (-15 -1297 ((-525))) (-15 -1794 ((-525))) (-15 -2975 ((-525) $)) (-15 -3713 ((-525) $)) (-15 -3549 ($ (-525))) (-15 -2156 ($ (-525))) (-15 -3747 ($ (-525) (-525))) (-15 -3507 ($ $ (-525))) (-15 -3519 ($ $ (-525))) (-15 -1340 ($ $ (-525))) (-15 -3507 ($ $)) (-15 -3519 ($ $)) (-15 -1340 ($ $)) (-15 -3548 ($ $ $)) (-15 -3202 ($ $ $)) (-15 -3548 ($ (-592 $))) (-15 -3202 ($ (-592 $))) (-15 -2033 ($ $ (-592 $))) (-15 -4198 ($ $ (-592 $))) (-15 -4198 ($ $ $ $)) (-15 -1439 ($ $ $)) (-15 -1730 ((-108) $)) (-15 -3406 ($ $ (-592 $))) (-15 -2986 ($ $)) (-15 -1904 ($ $ $)) (-15 -1381 ($ $)) (-15 -1716 ($ (-592 (-592 $)))) (-15 -3012 ($ $ $)) (-15 -2649 ($ $)) (-15 -2649 ($ $ $)) (-15 -3812 ($ $ $)) (-15 -3923 ($ $ $)) (-15 -2494 ($ $ $)) (-15 -3297 ($ $ $)) (-15 -3376 ($ $ (-713))) (-15 -3163 ($ $ $)) (-15 -2673 ($ $ $)) (-15 -3194 ($ $ $)) (-15 -2990 ($ $ $)) (-15 -2849 ($ $ $)) (-15 -4191 ($ $ (-592 $))) (-15 -1597 ($ $ (-592 $))) (-15 -3502 ($ $)) (-15 -2047 ($ $)) (-15 -2047 ($ $ (-713))) (-15 -1742 ($ $)) (-15 -1742 ($ $ (-713))) (-15 -1596 ($ $)) (-15 -1346 ($ $ $)) (-15 -3509 ($ $)) (-15 -3509 ($ $ $)) (-15 -3509 ($ $ $ $)) (-15 -3724 ($ $)) (-15 -3724 ($ $ $)) (-15 -3724 ($ $ $ $)) (-15 -3848 ($ $)) (-15 -3848 ($ $ $)) (-15 -3848 ($ $ $ $)) (-15 -3240 ($ $)) (-15 -3240 ($ (-592 $))) (-15 -3438 ($ $)) (-15 -3438 ($ (-592 $))) (-15 -3437 ($ $)) (-15 -3437 ($ (-592 $))) (-15 -1777 ($ (-592 $))) (-15 -1723 ($ (-592 $))) (-15 -1265 ($ (-592 $))) (-15 -1924 ($ (-592 $))) (-15 -3955 ($ $ $)) (-15 -4236 ($ $ $)) (-15 -3978 ($ $ $)) (-15 -3987 ($ $ $)) (-15 -3999 ($ $ $)) (-15 -4011 ($ $ $)) (-15 -4047 ($ $ $)) (-15 -4061 ($ $ $)) (-15 -4061 ($ $)) (-15 * ($ $ $)) (-15 -4075 ($ $ $)) (-15 ** ($ $ $)) (-15 -1724 ($ $ $)) (-15 -1747 ($ $ $)) (-15 -1733 ($ $ $)) (-15 -1715 ($ $ $)) (-15 -3762 ($ $ $)) (-15 -3749 ($ $ $)) (-15 -1850 ($ $)) (-15 -3195 ($ $ $)) (-15 -3195 ($ $))))
-((-3102 (((-1179) (-592 (-51))) 24)) (-2793 (((-1179) (-1075) (-798)) 14) (((-1179) (-798)) 9) (((-1179) (-1075)) 11)))
-(((-799) (-10 -7 (-15 -2793 ((-1179) (-1075))) (-15 -2793 ((-1179) (-798))) (-15 -2793 ((-1179) (-1075) (-798))) (-15 -3102 ((-1179) (-592 (-51)))))) (T -799))
-((-3102 (*1 *2 *3) (-12 (-5 *3 (-592 (-51))) (-5 *2 (-1179)) (-5 *1 (-799)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-798)) (-5 *2 (-1179)) (-5 *1 (-799)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-799)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-799)))))
-(-10 -7 (-15 -2793 ((-1179) (-1075))) (-15 -2793 ((-1179) (-798))) (-15 -2793 ((-1179) (-1075) (-798))) (-15 -3102 ((-1179) (-592 (-51)))))
-((-4236 (((-108) $ $) NIL)) (-2499 (((-3 $ "failed") (-1092)) 33)) (-1834 (((-713)) 31)) (-2502 (($) NIL)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-3005 (((-856) $) 29)) (-2619 (((-1075) $) 39)) (-3555 (($ (-856)) 28)) (-2093 (((-1039) $) NIL)) (-3210 (((-1092) $) 13) (((-501) $) 19) (((-827 (-357)) $) 26) (((-827 (-525)) $) 22)) (-1217 (((-798) $) 16)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 36)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 35)))
-(((-800 |#1|) (-13 (-783) (-567 (-1092)) (-567 (-501)) (-567 (-827 (-357))) (-567 (-827 (-525))) (-10 -8 (-15 -2499 ((-3 $ "failed") (-1092))))) (-592 (-1092))) (T -800))
-((-2499 (*1 *1 *2) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-800 *3)) (-14 *3 (-592 *2)))))
-(-13 (-783) (-567 (-1092)) (-567 (-501)) (-567 (-827 (-357))) (-567 (-827 (-525))) (-10 -8 (-15 -2499 ((-3 $ "failed") (-1092)))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3457 (((-3 $ "failed") $) NIL)) (-1396 (((-108) $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (((-887 |#1|) $) NIL) (($ (-887 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-160)))) (-3917 (((-713)) NIL)) (-2214 (((-1179) (-713)) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-3955 (((-108) $ $) NIL)) (-4075 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160)))))
-(((-801 |#1| |#2| |#3| |#4|) (-13 (-977) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1217 ((-887 |#1|) $)) (-15 -1217 ($ (-887 |#1|))) (IF (|has| |#1| (-341)) (-15 -4075 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2214 ((-1179) (-713))))) (-977) (-592 (-1092)) (-592 (-713)) (-713)) (T -801))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-887 *3)) (-5 *1 (-801 *3 *4 *5 *6)) (-4 *3 (-977)) (-14 *4 (-592 (-1092))) (-14 *5 (-592 (-713))) (-14 *6 (-713)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-887 *3)) (-4 *3 (-977)) (-5 *1 (-801 *3 *4 *5 *6)) (-14 *4 (-592 (-1092))) (-14 *5 (-592 (-713))) (-14 *6 (-713)))) (-4075 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-801 *2 *3 *4 *5)) (-4 *2 (-341)) (-4 *2 (-977)) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-713))) (-14 *5 (-713)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-801 *4 *5 *6 *7)) (-4 *4 (-977)) (-14 *5 (-592 (-1092))) (-14 *6 (-592 *3)) (-14 *7 *3))))
-(-13 (-977) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1217 ((-887 |#1|) $)) (-15 -1217 ($ (-887 |#1|))) (IF (|has| |#1| (-341)) (-15 -4075 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2214 ((-1179) (-713)))))
-((-4010 (((-3 (-161 |#3|) "failed") (-713) (-713) |#2| |#2|) 31)) (-4154 (((-3 (-385 |#3|) "failed") (-713) (-713) |#2| |#2|) 24)))
-(((-802 |#1| |#2| |#3|) (-10 -7 (-15 -4154 ((-3 (-385 |#3|) "failed") (-713) (-713) |#2| |#2|)) (-15 -4010 ((-3 (-161 |#3|) "failed") (-713) (-713) |#2| |#2|))) (-341) (-1165 |#1|) (-1150 |#1|)) (T -802))
-((-4010 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-161 *6)) (-5 *1 (-802 *5 *4 *6)) (-4 *4 (-1165 *5)) (-4 *6 (-1150 *5)))) (-4154 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-385 *6)) (-5 *1 (-802 *5 *4 *6)) (-4 *4 (-1165 *5)) (-4 *6 (-1150 *5)))))
-(-10 -7 (-15 -4154 ((-3 (-385 |#3|) "failed") (-713) (-713) |#2| |#2|)) (-15 -4010 ((-3 (-161 |#3|) "failed") (-713) (-713) |#2| |#2|)))
-((-4154 (((-3 (-385 (-1147 |#2| |#1|)) "failed") (-713) (-713) (-1166 |#1| |#2| |#3|)) 28) (((-3 (-385 (-1147 |#2| |#1|)) "failed") (-713) (-713) (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) 26)))
-(((-803 |#1| |#2| |#3|) (-10 -7 (-15 -4154 ((-3 (-385 (-1147 |#2| |#1|)) "failed") (-713) (-713) (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|))) (-15 -4154 ((-3 (-385 (-1147 |#2| |#1|)) "failed") (-713) (-713) (-1166 |#1| |#2| |#3|)))) (-341) (-1092) |#1|) (T -803))
-((-4154 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1166 *5 *6 *7)) (-4 *5 (-341)) (-14 *6 (-1092)) (-14 *7 *5) (-5 *2 (-385 (-1147 *6 *5))) (-5 *1 (-803 *5 *6 *7)))) (-4154 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1166 *5 *6 *7)) (-4 *5 (-341)) (-14 *6 (-1092)) (-14 *7 *5) (-5 *2 (-385 (-1147 *6 *5))) (-5 *1 (-803 *5 *6 *7)))))
-(-10 -7 (-15 -4154 ((-3 (-385 (-1147 |#2| |#1|)) "failed") (-713) (-713) (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|))) (-15 -4154 ((-3 (-385 (-1147 |#2| |#1|)) "failed") (-713) (-713) (-1166 |#1| |#2| |#3|))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-1578 (((-3 $ "failed") $ $) 19)) (-2782 (($ $ (-525)) 62)) (-2193 (((-108) $ $) 59)) (-2169 (($) 17 T CONST)) (-2649 (($ (-1088 (-525)) (-525)) 61)) (-1747 (($ $ $) 55)) (-3457 (((-3 $ "failed") $) 34)) (-1786 (($ $) 64)) (-1733 (($ $ $) 56)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 51)) (-2581 (((-713) $) 69)) (-1396 (((-108) $) 31)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2152 (((-525)) 66)) (-3571 (((-525) $) 65)) (-2556 (($ $ $) 46) (($ (-592 $)) 45)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2589 (($ $ $) 48) (($ (-592 $)) 47)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3931 (($ $ (-525)) 68)) (-1715 (((-3 $ "failed") $ $) 42)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-3684 (((-713) $) 58)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 57)) (-3780 (((-1073 (-525)) $) 70)) (-1489 (($ $) 67)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-3917 (((-713)) 29)) (-3325 (((-108) $ $) 39)) (-1454 (((-525) $ (-525)) 63)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-4087 (((-108) $ $) NIL)) (-2219 (((-525) $) 12)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 18) (($ (-525)) 11)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 8)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 9)))
+(((-797) (-13 (-789) (-10 -8 (-15 -4100 ($ (-525))) (-15 -2219 ((-525) $))))) (T -797))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-2219 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797)))))
+(-13 (-789) (-10 -8 (-15 -4100 ($ (-525))) (-15 -2219 ((-525) $))))
+((-4087 (((-108) $ $) NIL) (($ $ $) 77)) (-3738 (($ $ $) 115)) (-3327 (((-525) $) 30) (((-525)) 35)) (-2329 (($ (-525)) 44)) (-1837 (($ $ $) 45) (($ (-592 $)) 76)) (-3424 (($ $ (-592 $)) 74)) (-4021 (((-525) $) 33)) (-1766 (($ $ $) 63)) (-3764 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-3429 (((-525) $) 32)) (-3626 (($ $ $) 62)) (-3298 (($ $) 105)) (-2506 (($ $ $) 119)) (-3865 (($ (-592 $)) 52)) (-4139 (($ $ (-592 $)) 69)) (-3146 (($ (-525) (-525)) 46)) (-3378 (($ $) 116) (($ $ $) 117)) (-3446 (($ $ (-525)) 40) (($ $) 43)) (-1356 (($ $ $) 89)) (-1315 (($ $ $) 122)) (-2566 (($ $) 106)) (-1332 (($ $ $) 90)) (-4138 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-2492 (((-1179) $) 8)) (-2497 (($ $) 109) (($ $ (-713)) 112)) (-1598 (($ $ $) 65)) (-3563 (($ $ $) 64)) (-2093 (($ $ (-592 $)) 100)) (-2266 (($ $ $) 104)) (-2774 (($ (-592 $)) 50)) (-3106 (($ $) 60) (($ (-592 $)) 61)) (-3532 (($ $ $) 113)) (-3413 (($ $) 107)) (-2590 (($ $ $) 118)) (-2898 (($ (-525)) 20) (($ (-1092)) 22) (($ (-1075)) 29) (($ (-205)) 24)) (-3307 (($ $ $) 93)) (-3272 (($ $) 94)) (-1535 (((-1179) (-1075)) 14)) (-2408 (($ (-1075)) 13)) (-4054 (($ (-592 (-592 $))) 49)) (-3436 (($ $ (-525)) 39) (($ $) 42)) (-1289 (((-1075) $) NIL)) (-2108 (($ $ $) 121)) (-2915 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-2835 (((-108) $) 98)) (-2217 (($ $ (-592 $)) 102) (($ $ $ $) 103)) (-2973 (($ (-525)) 36)) (-2934 (((-525) $) 31) (((-525)) 34)) (-2965 (($ $ $) 37) (($ (-592 $)) 75)) (-3993 (((-1039) $) NIL)) (-1311 (($ $ $) 91)) (-1558 (($) 12)) (-3431 (($ $ (-592 $)) 99)) (-3584 (($ $) 108) (($ $ (-713)) 111)) (-1322 (($ $ $) 88)) (-2702 (($ $ (-713)) 127)) (-3527 (($ (-592 $)) 51)) (-4100 (((-798) $) 18)) (-1423 (($ $ (-525)) 38) (($ $) 41)) (-3119 (($ $) 58) (($ (-592 $)) 59)) (-2180 (($ $) 56) (($ (-592 $)) 57)) (-2239 (($ $) 114)) (-1763 (($ (-592 $)) 55)) (-1494 (($ $ $) 97)) (-1390 (($ $ $) 120)) (-3944 (($ $ $) 92)) (-1393 (($ $ $) 95) (($ $) 96)) (-2830 (($ $ $) 81)) (-2807 (($ $ $) 79)) (-2775 (((-108) $ $) 15) (($ $ $) 16)) (-2817 (($ $ $) 80)) (-2795 (($ $ $) 78)) (-2880 (($ $ $) 86)) (-2871 (($ $ $) 83) (($ $) 84)) (-2860 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
+(((-798) (-13 (-1020) (-10 -8 (-15 -2492 ((-1179) $)) (-15 -2408 ($ (-1075))) (-15 -1535 ((-1179) (-1075))) (-15 -2898 ($ (-525))) (-15 -2898 ($ (-1092))) (-15 -2898 ($ (-1075))) (-15 -2898 ($ (-205))) (-15 -1558 ($)) (-15 -3327 ((-525) $)) (-15 -2934 ((-525) $)) (-15 -3327 ((-525))) (-15 -2934 ((-525))) (-15 -3429 ((-525) $)) (-15 -4021 ((-525) $)) (-15 -2973 ($ (-525))) (-15 -2329 ($ (-525))) (-15 -3146 ($ (-525) (-525))) (-15 -3436 ($ $ (-525))) (-15 -3446 ($ $ (-525))) (-15 -1423 ($ $ (-525))) (-15 -3436 ($ $)) (-15 -3446 ($ $)) (-15 -1423 ($ $)) (-15 -2965 ($ $ $)) (-15 -1837 ($ $ $)) (-15 -2965 ($ (-592 $))) (-15 -1837 ($ (-592 $))) (-15 -2093 ($ $ (-592 $))) (-15 -2217 ($ $ (-592 $))) (-15 -2217 ($ $ $ $)) (-15 -2266 ($ $ $)) (-15 -2835 ((-108) $)) (-15 -3431 ($ $ (-592 $))) (-15 -3298 ($ $)) (-15 -2108 ($ $ $)) (-15 -2239 ($ $)) (-15 -4054 ($ (-592 (-592 $)))) (-15 -3738 ($ $ $)) (-15 -3378 ($ $)) (-15 -3378 ($ $ $)) (-15 -2590 ($ $ $)) (-15 -2506 ($ $ $)) (-15 -1390 ($ $ $)) (-15 -1315 ($ $ $)) (-15 -2702 ($ $ (-713))) (-15 -1494 ($ $ $)) (-15 -3626 ($ $ $)) (-15 -1766 ($ $ $)) (-15 -3563 ($ $ $)) (-15 -1598 ($ $ $)) (-15 -4139 ($ $ (-592 $))) (-15 -3424 ($ $ (-592 $))) (-15 -2566 ($ $)) (-15 -3584 ($ $)) (-15 -3584 ($ $ (-713))) (-15 -2497 ($ $)) (-15 -2497 ($ $ (-713))) (-15 -3413 ($ $)) (-15 -3532 ($ $ $)) (-15 -3764 ($ $)) (-15 -3764 ($ $ $)) (-15 -3764 ($ $ $ $)) (-15 -4138 ($ $)) (-15 -4138 ($ $ $)) (-15 -4138 ($ $ $ $)) (-15 -2915 ($ $)) (-15 -2915 ($ $ $)) (-15 -2915 ($ $ $ $)) (-15 -2180 ($ $)) (-15 -2180 ($ (-592 $))) (-15 -3119 ($ $)) (-15 -3119 ($ (-592 $))) (-15 -3106 ($ $)) (-15 -3106 ($ (-592 $))) (-15 -2774 ($ (-592 $))) (-15 -3527 ($ (-592 $))) (-15 -3865 ($ (-592 $))) (-15 -1763 ($ (-592 $))) (-15 -2775 ($ $ $)) (-15 -4087 ($ $ $)) (-15 -2795 ($ $ $)) (-15 -2807 ($ $ $)) (-15 -2817 ($ $ $)) (-15 -2830 ($ $ $)) (-15 -2860 ($ $ $)) (-15 -2871 ($ $ $)) (-15 -2871 ($ $)) (-15 * ($ $ $)) (-15 -2880 ($ $ $)) (-15 ** ($ $ $)) (-15 -1322 ($ $ $)) (-15 -1356 ($ $ $)) (-15 -1332 ($ $ $)) (-15 -1311 ($ $ $)) (-15 -3944 ($ $ $)) (-15 -3307 ($ $ $)) (-15 -3272 ($ $)) (-15 -1393 ($ $ $)) (-15 -1393 ($ $))))) (T -798))
+((-2492 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-798)))) (-2408 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-798)))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-798)))) (-2898 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-2898 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-798)))) (-2898 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-798)))) (-2898 (*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-798)))) (-1558 (*1 *1) (-5 *1 (-798))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3327 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-2934 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3429 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-2973 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-2329 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3146 (*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3436 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3446 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-1423 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3436 (*1 *1 *1) (-5 *1 (-798))) (-3446 (*1 *1 *1) (-5 *1 (-798))) (-1423 (*1 *1 *1) (-5 *1 (-798))) (-2965 (*1 *1 *1 *1) (-5 *1 (-798))) (-1837 (*1 *1 *1 *1) (-5 *1 (-798))) (-2965 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-1837 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-2093 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-2217 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-2217 (*1 *1 *1 *1 *1) (-5 *1 (-798))) (-2266 (*1 *1 *1 *1) (-5 *1 (-798))) (-2835 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-798)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-3298 (*1 *1 *1) (-5 *1 (-798))) (-2108 (*1 *1 *1 *1) (-5 *1 (-798))) (-2239 (*1 *1 *1) (-5 *1 (-798))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-798)))) (-5 *1 (-798)))) (-3738 (*1 *1 *1 *1) (-5 *1 (-798))) (-3378 (*1 *1 *1) (-5 *1 (-798))) (-3378 (*1 *1 *1 *1) (-5 *1 (-798))) (-2590 (*1 *1 *1 *1) (-5 *1 (-798))) (-2506 (*1 *1 *1 *1) (-5 *1 (-798))) (-1390 (*1 *1 *1 *1) (-5 *1 (-798))) (-1315 (*1 *1 *1 *1) (-5 *1 (-798))) (-2702 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-798)))) (-1494 (*1 *1 *1 *1) (-5 *1 (-798))) (-3626 (*1 *1 *1 *1) (-5 *1 (-798))) (-1766 (*1 *1 *1 *1) (-5 *1 (-798))) (-3563 (*1 *1 *1 *1) (-5 *1 (-798))) (-1598 (*1 *1 *1 *1) (-5 *1 (-798))) (-4139 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-3424 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-2566 (*1 *1 *1) (-5 *1 (-798))) (-3584 (*1 *1 *1) (-5 *1 (-798))) (-3584 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-798)))) (-2497 (*1 *1 *1) (-5 *1 (-798))) (-2497 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-798)))) (-3413 (*1 *1 *1) (-5 *1 (-798))) (-3532 (*1 *1 *1 *1) (-5 *1 (-798))) (-3764 (*1 *1 *1) (-5 *1 (-798))) (-3764 (*1 *1 *1 *1) (-5 *1 (-798))) (-3764 (*1 *1 *1 *1 *1) (-5 *1 (-798))) (-4138 (*1 *1 *1) (-5 *1 (-798))) (-4138 (*1 *1 *1 *1) (-5 *1 (-798))) (-4138 (*1 *1 *1 *1 *1) (-5 *1 (-798))) (-2915 (*1 *1 *1) (-5 *1 (-798))) (-2915 (*1 *1 *1 *1) (-5 *1 (-798))) (-2915 (*1 *1 *1 *1 *1) (-5 *1 (-798))) (-2180 (*1 *1 *1) (-5 *1 (-798))) (-2180 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-3119 (*1 *1 *1) (-5 *1 (-798))) (-3119 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-3106 (*1 *1 *1) (-5 *1 (-798))) (-3106 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-2774 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-3865 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-1763 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-2775 (*1 *1 *1 *1) (-5 *1 (-798))) (-4087 (*1 *1 *1 *1) (-5 *1 (-798))) (-2795 (*1 *1 *1 *1) (-5 *1 (-798))) (-2807 (*1 *1 *1 *1) (-5 *1 (-798))) (-2817 (*1 *1 *1 *1) (-5 *1 (-798))) (-2830 (*1 *1 *1 *1) (-5 *1 (-798))) (-2860 (*1 *1 *1 *1) (-5 *1 (-798))) (-2871 (*1 *1 *1 *1) (-5 *1 (-798))) (-2871 (*1 *1 *1) (-5 *1 (-798))) (* (*1 *1 *1 *1) (-5 *1 (-798))) (-2880 (*1 *1 *1 *1) (-5 *1 (-798))) (** (*1 *1 *1 *1) (-5 *1 (-798))) (-1322 (*1 *1 *1 *1) (-5 *1 (-798))) (-1356 (*1 *1 *1 *1) (-5 *1 (-798))) (-1332 (*1 *1 *1 *1) (-5 *1 (-798))) (-1311 (*1 *1 *1 *1) (-5 *1 (-798))) (-3944 (*1 *1 *1 *1) (-5 *1 (-798))) (-3307 (*1 *1 *1 *1) (-5 *1 (-798))) (-3272 (*1 *1 *1) (-5 *1 (-798))) (-1393 (*1 *1 *1 *1) (-5 *1 (-798))) (-1393 (*1 *1 *1) (-5 *1 (-798))))
+(-13 (-1020) (-10 -8 (-15 -2492 ((-1179) $)) (-15 -2408 ($ (-1075))) (-15 -1535 ((-1179) (-1075))) (-15 -2898 ($ (-525))) (-15 -2898 ($ (-1092))) (-15 -2898 ($ (-1075))) (-15 -2898 ($ (-205))) (-15 -1558 ($)) (-15 -3327 ((-525) $)) (-15 -2934 ((-525) $)) (-15 -3327 ((-525))) (-15 -2934 ((-525))) (-15 -3429 ((-525) $)) (-15 -4021 ((-525) $)) (-15 -2973 ($ (-525))) (-15 -2329 ($ (-525))) (-15 -3146 ($ (-525) (-525))) (-15 -3436 ($ $ (-525))) (-15 -3446 ($ $ (-525))) (-15 -1423 ($ $ (-525))) (-15 -3436 ($ $)) (-15 -3446 ($ $)) (-15 -1423 ($ $)) (-15 -2965 ($ $ $)) (-15 -1837 ($ $ $)) (-15 -2965 ($ (-592 $))) (-15 -1837 ($ (-592 $))) (-15 -2093 ($ $ (-592 $))) (-15 -2217 ($ $ (-592 $))) (-15 -2217 ($ $ $ $)) (-15 -2266 ($ $ $)) (-15 -2835 ((-108) $)) (-15 -3431 ($ $ (-592 $))) (-15 -3298 ($ $)) (-15 -2108 ($ $ $)) (-15 -2239 ($ $)) (-15 -4054 ($ (-592 (-592 $)))) (-15 -3738 ($ $ $)) (-15 -3378 ($ $)) (-15 -3378 ($ $ $)) (-15 -2590 ($ $ $)) (-15 -2506 ($ $ $)) (-15 -1390 ($ $ $)) (-15 -1315 ($ $ $)) (-15 -2702 ($ $ (-713))) (-15 -1494 ($ $ $)) (-15 -3626 ($ $ $)) (-15 -1766 ($ $ $)) (-15 -3563 ($ $ $)) (-15 -1598 ($ $ $)) (-15 -4139 ($ $ (-592 $))) (-15 -3424 ($ $ (-592 $))) (-15 -2566 ($ $)) (-15 -3584 ($ $)) (-15 -3584 ($ $ (-713))) (-15 -2497 ($ $)) (-15 -2497 ($ $ (-713))) (-15 -3413 ($ $)) (-15 -3532 ($ $ $)) (-15 -3764 ($ $)) (-15 -3764 ($ $ $)) (-15 -3764 ($ $ $ $)) (-15 -4138 ($ $)) (-15 -4138 ($ $ $)) (-15 -4138 ($ $ $ $)) (-15 -2915 ($ $)) (-15 -2915 ($ $ $)) (-15 -2915 ($ $ $ $)) (-15 -2180 ($ $)) (-15 -2180 ($ (-592 $))) (-15 -3119 ($ $)) (-15 -3119 ($ (-592 $))) (-15 -3106 ($ $)) (-15 -3106 ($ (-592 $))) (-15 -2774 ($ (-592 $))) (-15 -3527 ($ (-592 $))) (-15 -3865 ($ (-592 $))) (-15 -1763 ($ (-592 $))) (-15 -2775 ($ $ $)) (-15 -4087 ($ $ $)) (-15 -2795 ($ $ $)) (-15 -2807 ($ $ $)) (-15 -2817 ($ $ $)) (-15 -2830 ($ $ $)) (-15 -2860 ($ $ $)) (-15 -2871 ($ $ $)) (-15 -2871 ($ $)) (-15 * ($ $ $)) (-15 -2880 ($ $ $)) (-15 ** ($ $ $)) (-15 -1322 ($ $ $)) (-15 -1356 ($ $ $)) (-15 -1332 ($ $ $)) (-15 -1311 ($ $ $)) (-15 -3944 ($ $ $)) (-15 -3307 ($ $ $)) (-15 -3272 ($ $)) (-15 -1393 ($ $ $)) (-15 -1393 ($ $))))
+((-2252 (((-1179) (-592 (-51))) 24)) (-3990 (((-1179) (-1075) (-798)) 14) (((-1179) (-798)) 9) (((-1179) (-1075)) 11)))
+(((-799) (-10 -7 (-15 -3990 ((-1179) (-1075))) (-15 -3990 ((-1179) (-798))) (-15 -3990 ((-1179) (-1075) (-798))) (-15 -2252 ((-1179) (-592 (-51)))))) (T -799))
+((-2252 (*1 *2 *3) (-12 (-5 *3 (-592 (-51))) (-5 *2 (-1179)) (-5 *1 (-799)))) (-3990 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-798)) (-5 *2 (-1179)) (-5 *1 (-799)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-799)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-799)))))
+(-10 -7 (-15 -3990 ((-1179) (-1075))) (-15 -3990 ((-1179) (-798))) (-15 -3990 ((-1179) (-1075) (-798))) (-15 -2252 ((-1179) (-592 (-51)))))
+((-4087 (((-108) $ $) NIL)) (-3469 (((-3 $ "failed") (-1092)) 33)) (-1613 (((-713)) 31)) (-1903 (($) NIL)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-3685 (((-856) $) 29)) (-1289 (((-1075) $) 39)) (-1722 (($ (-856)) 28)) (-3993 (((-1039) $) NIL)) (-2069 (((-1092) $) 13) (((-501) $) 19) (((-827 (-357)) $) 26) (((-827 (-525)) $) 22)) (-4100 (((-798) $) 16)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 36)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 35)))
+(((-800 |#1|) (-13 (-783) (-567 (-1092)) (-567 (-501)) (-567 (-827 (-357))) (-567 (-827 (-525))) (-10 -8 (-15 -3469 ((-3 $ "failed") (-1092))))) (-592 (-1092))) (T -800))
+((-3469 (*1 *1 *2) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-800 *3)) (-14 *3 (-592 *2)))))
+(-13 (-783) (-567 (-1092)) (-567 (-501)) (-567 (-827 (-357))) (-567 (-827 (-525))) (-10 -8 (-15 -3469 ((-3 $ "failed") (-1092)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-3300 (((-3 $ "failed") $) NIL)) (-2278 (((-108) $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (((-887 |#1|) $) NIL) (($ (-887 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-160)))) (-2448 (((-713)) NIL)) (-1718 (((-1179) (-713)) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2775 (((-108) $ $) NIL)) (-2880 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160)))))
+(((-801 |#1| |#2| |#3| |#4|) (-13 (-977) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4100 ((-887 |#1|) $)) (-15 -4100 ($ (-887 |#1|))) (IF (|has| |#1| (-341)) (-15 -2880 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1718 ((-1179) (-713))))) (-977) (-592 (-1092)) (-592 (-713)) (-713)) (T -801))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-887 *3)) (-5 *1 (-801 *3 *4 *5 *6)) (-4 *3 (-977)) (-14 *4 (-592 (-1092))) (-14 *5 (-592 (-713))) (-14 *6 (-713)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-887 *3)) (-4 *3 (-977)) (-5 *1 (-801 *3 *4 *5 *6)) (-14 *4 (-592 (-1092))) (-14 *5 (-592 (-713))) (-14 *6 (-713)))) (-2880 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-801 *2 *3 *4 *5)) (-4 *2 (-341)) (-4 *2 (-977)) (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-713))) (-14 *5 (-713)))) (-1718 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-801 *4 *5 *6 *7)) (-4 *4 (-977)) (-14 *5 (-592 (-1092))) (-14 *6 (-592 *3)) (-14 *7 *3))))
+(-13 (-977) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4100 ((-887 |#1|) $)) (-15 -4100 ($ (-887 |#1|))) (IF (|has| |#1| (-341)) (-15 -2880 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1718 ((-1179) (-713)))))
+((-3984 (((-3 (-161 |#3|) "failed") (-713) (-713) |#2| |#2|) 31)) (-2976 (((-3 (-385 |#3|) "failed") (-713) (-713) |#2| |#2|) 24)))
+(((-802 |#1| |#2| |#3|) (-10 -7 (-15 -2976 ((-3 (-385 |#3|) "failed") (-713) (-713) |#2| |#2|)) (-15 -3984 ((-3 (-161 |#3|) "failed") (-713) (-713) |#2| |#2|))) (-341) (-1165 |#1|) (-1150 |#1|)) (T -802))
+((-3984 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-161 *6)) (-5 *1 (-802 *5 *4 *6)) (-4 *4 (-1165 *5)) (-4 *6 (-1150 *5)))) (-2976 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-385 *6)) (-5 *1 (-802 *5 *4 *6)) (-4 *4 (-1165 *5)) (-4 *6 (-1150 *5)))))
+(-10 -7 (-15 -2976 ((-3 (-385 |#3|) "failed") (-713) (-713) |#2| |#2|)) (-15 -3984 ((-3 (-161 |#3|) "failed") (-713) (-713) |#2| |#2|)))
+((-2976 (((-3 (-385 (-1147 |#2| |#1|)) "failed") (-713) (-713) (-1166 |#1| |#2| |#3|)) 28) (((-3 (-385 (-1147 |#2| |#1|)) "failed") (-713) (-713) (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) 26)))
+(((-803 |#1| |#2| |#3|) (-10 -7 (-15 -2976 ((-3 (-385 (-1147 |#2| |#1|)) "failed") (-713) (-713) (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|))) (-15 -2976 ((-3 (-385 (-1147 |#2| |#1|)) "failed") (-713) (-713) (-1166 |#1| |#2| |#3|)))) (-341) (-1092) |#1|) (T -803))
+((-2976 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1166 *5 *6 *7)) (-4 *5 (-341)) (-14 *6 (-1092)) (-14 *7 *5) (-5 *2 (-385 (-1147 *6 *5))) (-5 *1 (-803 *5 *6 *7)))) (-2976 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1166 *5 *6 *7)) (-4 *5 (-341)) (-14 *6 (-1092)) (-14 *7 *5) (-5 *2 (-385 (-1147 *6 *5))) (-5 *1 (-803 *5 *6 *7)))))
+(-10 -7 (-15 -2976 ((-3 (-385 (-1147 |#2| |#1|)) "failed") (-713) (-713) (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|))) (-15 -2976 ((-3 (-385 (-1147 |#2| |#1|)) "failed") (-713) (-713) (-1166 |#1| |#2| |#3|))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-3222 (((-3 $ "failed") $ $) 19)) (-4211 (($ $ (-525)) 62)) (-1507 (((-108) $ $) 59)) (-2475 (($) 17 T CONST)) (-3378 (($ (-1088 (-525)) (-525)) 61)) (-1356 (($ $ $) 55)) (-3300 (((-3 $ "failed") $) 34)) (-2840 (($ $) 64)) (-1332 (($ $ $) 56)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 51)) (-4000 (((-713) $) 69)) (-2278 (((-108) $) 31)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2287 (((-525)) 66)) (-2027 (((-525) $) 65)) (-2739 (($ $ $) 46) (($ (-592 $)) 45)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2772 (($ $ $) 48) (($ (-592 $)) 47)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1397 (($ $ (-525)) 68)) (-1311 (((-3 $ "failed") $ $) 42)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1927 (((-713) $) 58)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 57)) (-3444 (((-1073 (-525)) $) 70)) (-3926 (($ $) 67)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-2448 (((-713)) 29)) (-1571 (((-108) $ $) 39)) (-1485 (((-525) $ (-525)) 63)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-804 |#1|) (-131) (-525)) (T -804))
-((-3780 (*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-1073 (-525))))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-713)))) (-3931 (*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))) (-1489 (*1 *1 *1) (-4 *1 (-804 *2))) (-2152 (*1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))) (-1786 (*1 *1 *1) (-4 *1 (-804 *2))) (-1454 (*1 *2 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))) (-2782 (*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))) (-2649 (*1 *1 *2 *3) (-12 (-5 *2 (-1088 (-525))) (-5 *3 (-525)) (-4 *1 (-804 *4)))))
-(-13 (-286) (-138) (-10 -8 (-15 -3780 ((-1073 (-525)) $)) (-15 -2581 ((-713) $)) (-15 -3931 ($ $ (-525))) (-15 -1489 ($ $)) (-15 -2152 ((-525))) (-15 -3571 ((-525) $)) (-15 -1786 ($ $)) (-15 -1454 ((-525) $ (-525))) (-15 -2782 ($ $ (-525))) (-15 -2649 ($ (-1088 (-525)) (-525)))))
+((-3444 (*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-1073 (-525))))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-713)))) (-1397 (*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))) (-3926 (*1 *1 *1) (-4 *1 (-804 *2))) (-2287 (*1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))) (-2027 (*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))) (-2840 (*1 *1 *1) (-4 *1 (-804 *2))) (-1485 (*1 *2 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))) (-4211 (*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))) (-3378 (*1 *1 *2 *3) (-12 (-5 *2 (-1088 (-525))) (-5 *3 (-525)) (-4 *1 (-804 *4)))))
+(-13 (-286) (-138) (-10 -8 (-15 -3444 ((-1073 (-525)) $)) (-15 -4000 ((-713) $)) (-15 -1397 ($ $ (-525))) (-15 -3926 ($ $)) (-15 -2287 ((-525))) (-15 -2027 ((-525) $)) (-15 -2840 ($ $)) (-15 -1485 ((-525) $ (-525))) (-15 -4211 ($ $ (-525))) (-15 -3378 ($ (-1088 (-525)) (-525)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-798)) . T) ((-160) . T) ((-269) . T) ((-286) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-855) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2782 (($ $ (-525)) NIL)) (-2193 (((-108) $ $) NIL)) (-2169 (($) NIL T CONST)) (-2649 (($ (-1088 (-525)) (-525)) NIL)) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1786 (($ $) NIL)) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-2581 (((-713) $) NIL)) (-1396 (((-108) $) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2152 (((-525)) NIL)) (-3571 (((-525) $) NIL)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3931 (($ $ (-525)) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3780 (((-1073 (-525)) $) NIL)) (-1489 (($ $) NIL)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL)) (-3917 (((-713)) NIL)) (-3325 (((-108) $ $) NIL)) (-1454 (((-525) $ (-525)) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $ (-525)) NIL)) (-1507 (((-108) $ $) NIL)) (-2475 (($) NIL T CONST)) (-3378 (($ (-1088 (-525)) (-525)) NIL)) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-2840 (($ $) NIL)) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-4000 (((-713) $) NIL)) (-2278 (((-108) $) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2287 (((-525)) NIL)) (-2027 (((-525) $) NIL)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1397 (($ $ (-525)) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-3444 (((-1073 (-525)) $) NIL)) (-3926 (($ $) NIL)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL)) (-2448 (((-713)) NIL)) (-1571 (((-108) $ $) NIL)) (-1485 (((-525) $ (-525)) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL)))
(((-805 |#1|) (-804 |#1|) (-525)) (T -805))
NIL
(-804 |#1|)
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1548 (((-805 |#1|) $) NIL (|has| (-805 |#1|) (-286)))) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-805 |#1|) (-844)))) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| (-805 |#1|) (-844)))) (-2193 (((-108) $ $) NIL)) (-3855 (((-525) $) NIL (|has| (-805 |#1|) (-762)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-805 |#1|) "failed") $) NIL) (((-3 (-1092) "failed") $) NIL (|has| (-805 |#1|) (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-805 |#1|) (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-805 |#1|) (-968 (-525))))) (-1572 (((-805 |#1|) $) NIL) (((-1092) $) NIL (|has| (-805 |#1|) (-968 (-1092)))) (((-385 (-525)) $) NIL (|has| (-805 |#1|) (-968 (-525)))) (((-525) $) NIL (|has| (-805 |#1|) (-968 (-525))))) (-3318 (($ $) NIL) (($ (-525) $) NIL)) (-1747 (($ $ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| (-805 |#1|) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-805 |#1|) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-805 |#1|))) (|:| |vec| (-1174 (-805 |#1|)))) (-632 $) (-1174 $)) NIL) (((-632 (-805 |#1|)) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($) NIL (|has| (-805 |#1|) (-510)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-1222 (((-108) $) NIL (|has| (-805 |#1|) (-762)))) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-805 |#1|) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-805 |#1|) (-821 (-357))))) (-1396 (((-108) $) NIL)) (-3858 (($ $) NIL)) (-3114 (((-805 |#1|) $) NIL)) (-3844 (((-3 $ "failed") $) NIL (|has| (-805 |#1|) (-1068)))) (-3256 (((-108) $) NIL (|has| (-805 |#1|) (-762)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2638 (($ $ $) NIL (|has| (-805 |#1|) (-789)))) (-3662 (($ $ $) NIL (|has| (-805 |#1|) (-789)))) (-3165 (($ (-1 (-805 |#1|) (-805 |#1|)) $) NIL)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2295 (($) NIL (|has| (-805 |#1|) (-1068)) CONST)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3628 (($ $) NIL (|has| (-805 |#1|) (-286)))) (-2487 (((-805 |#1|) $) NIL (|has| (-805 |#1|) (-510)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-805 |#1|) (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-805 |#1|) (-844)))) (-2770 (((-396 $) $) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2457 (($ $ (-592 (-805 |#1|)) (-592 (-805 |#1|))) NIL (|has| (-805 |#1|) (-288 (-805 |#1|)))) (($ $ (-805 |#1|) (-805 |#1|)) NIL (|has| (-805 |#1|) (-288 (-805 |#1|)))) (($ $ (-273 (-805 |#1|))) NIL (|has| (-805 |#1|) (-288 (-805 |#1|)))) (($ $ (-592 (-273 (-805 |#1|)))) NIL (|has| (-805 |#1|) (-288 (-805 |#1|)))) (($ $ (-592 (-1092)) (-592 (-805 |#1|))) NIL (|has| (-805 |#1|) (-486 (-1092) (-805 |#1|)))) (($ $ (-1092) (-805 |#1|)) NIL (|has| (-805 |#1|) (-486 (-1092) (-805 |#1|))))) (-3684 (((-713) $) NIL)) (-3406 (($ $ (-805 |#1|)) NIL (|has| (-805 |#1|) (-265 (-805 |#1|) (-805 |#1|))))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3376 (($ $) NIL (|has| (-805 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-805 |#1|) (-213))) (($ $ (-1092)) NIL (|has| (-805 |#1|) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-805 |#1|) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-805 |#1|) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-805 |#1|) (-835 (-1092)))) (($ $ (-1 (-805 |#1|) (-805 |#1|)) (-713)) NIL) (($ $ (-1 (-805 |#1|) (-805 |#1|))) NIL)) (-4143 (($ $) NIL)) (-3123 (((-805 |#1|) $) NIL)) (-3210 (((-827 (-525)) $) NIL (|has| (-805 |#1|) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-805 |#1|) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-805 |#1|) (-567 (-501)))) (((-357) $) NIL (|has| (-805 |#1|) (-953))) (((-205) $) NIL (|has| (-805 |#1|) (-953)))) (-2272 (((-161 (-385 (-525))) $) NIL)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-805 |#1|) (-844))))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-805 |#1|)) NIL) (($ (-1092)) NIL (|has| (-805 |#1|) (-968 (-1092))))) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| (-805 |#1|) (-844))) (|has| (-805 |#1|) (-136))))) (-3917 (((-713)) NIL)) (-3074 (((-805 |#1|) $) NIL (|has| (-805 |#1|) (-510)))) (-3325 (((-108) $ $) NIL)) (-1454 (((-385 (-525)) $ (-525)) NIL)) (-2802 (($ $) NIL (|has| (-805 |#1|) (-762)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $) NIL (|has| (-805 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-805 |#1|) (-213))) (($ $ (-1092)) NIL (|has| (-805 |#1|) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-805 |#1|) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-805 |#1|) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-805 |#1|) (-835 (-1092)))) (($ $ (-1 (-805 |#1|) (-805 |#1|)) (-713)) NIL) (($ $ (-1 (-805 |#1|) (-805 |#1|))) NIL)) (-4011 (((-108) $ $) NIL (|has| (-805 |#1|) (-789)))) (-3987 (((-108) $ $) NIL (|has| (-805 |#1|) (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| (-805 |#1|) (-789)))) (-3978 (((-108) $ $) NIL (|has| (-805 |#1|) (-789)))) (-4075 (($ $ $) NIL) (($ (-805 |#1|) (-805 |#1|)) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-805 |#1|) $) NIL) (($ $ (-805 |#1|)) NIL)))
-(((-806 |#1|) (-13 (-925 (-805 |#1|)) (-10 -8 (-15 -1454 ((-385 (-525)) $ (-525))) (-15 -2272 ((-161 (-385 (-525))) $)) (-15 -3318 ($ $)) (-15 -3318 ($ (-525) $)))) (-525)) (T -806))
-((-1454 (*1 *2 *1 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-806 *4)) (-14 *4 *3) (-5 *3 (-525)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-806 *3)) (-14 *3 (-525)))) (-3318 (*1 *1 *1) (-12 (-5 *1 (-806 *2)) (-14 *2 (-525)))) (-3318 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-806 *3)) (-14 *3 *2))))
-(-13 (-925 (-805 |#1|)) (-10 -8 (-15 -1454 ((-385 (-525)) $ (-525))) (-15 -2272 ((-161 (-385 (-525))) $)) (-15 -3318 ($ $)) (-15 -3318 ($ (-525) $))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1548 ((|#2| $) NIL (|has| |#2| (-286)))) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-2193 (((-108) $ $) NIL)) (-3855 (((-525) $) NIL (|has| |#2| (-762)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#2| "failed") $) NIL) (((-3 (-1092) "failed") $) NIL (|has| |#2| (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525))))) (-1572 ((|#2| $) NIL) (((-1092) $) NIL (|has| |#2| (-968 (-1092)))) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-525)))) (((-525) $) NIL (|has| |#2| (-968 (-525))))) (-3318 (($ $) 31) (($ (-525) $) 32)) (-1747 (($ $ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) 53)) (-2502 (($) NIL (|has| |#2| (-510)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-1222 (((-108) $) NIL (|has| |#2| (-762)))) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| |#2| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| |#2| (-821 (-357))))) (-1396 (((-108) $) NIL)) (-3858 (($ $) NIL)) (-3114 ((|#2| $) NIL)) (-3844 (((-3 $ "failed") $) NIL (|has| |#2| (-1068)))) (-3256 (((-108) $) NIL (|has| |#2| (-762)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2638 (($ $ $) NIL (|has| |#2| (-789)))) (-3662 (($ $ $) NIL (|has| |#2| (-789)))) (-3165 (($ (-1 |#2| |#2|) $) NIL)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) 49)) (-2295 (($) NIL (|has| |#2| (-1068)) CONST)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3628 (($ $) NIL (|has| |#2| (-286)))) (-2487 ((|#2| $) NIL (|has| |#2| (-510)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-2770 (((-396 $) $) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2457 (($ $ (-592 |#2|) (-592 |#2|)) NIL (|has| |#2| (-288 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-288 |#2|))) (($ $ (-273 |#2|)) NIL (|has| |#2| (-288 |#2|))) (($ $ (-592 (-273 |#2|))) NIL (|has| |#2| (-288 |#2|))) (($ $ (-592 (-1092)) (-592 |#2|)) NIL (|has| |#2| (-486 (-1092) |#2|))) (($ $ (-1092) |#2|) NIL (|has| |#2| (-486 (-1092) |#2|)))) (-3684 (((-713) $) NIL)) (-3406 (($ $ |#2|) NIL (|has| |#2| (-265 |#2| |#2|)))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3376 (($ $) NIL (|has| |#2| (-213))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4143 (($ $) NIL)) (-3123 ((|#2| $) NIL)) (-3210 (((-827 (-525)) $) NIL (|has| |#2| (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| |#2| (-567 (-827 (-357))))) (((-501) $) NIL (|has| |#2| (-567 (-501)))) (((-357) $) NIL (|has| |#2| (-953))) (((-205) $) NIL (|has| |#2| (-953)))) (-2272 (((-161 (-385 (-525))) $) 68)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844))))) (-1217 (((-798) $) 87) (($ (-525)) 19) (($ $) NIL) (($ (-385 (-525))) 24) (($ |#2|) 18) (($ (-1092)) NIL (|has| |#2| (-968 (-1092))))) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#2| (-136))))) (-3917 (((-713)) NIL)) (-3074 ((|#2| $) NIL (|has| |#2| (-510)))) (-3325 (((-108) $ $) NIL)) (-1454 (((-385 (-525)) $ (-525)) 60)) (-2802 (($ $) NIL (|has| |#2| (-762)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) 14 T CONST)) (-3359 (($) 16 T CONST)) (-2022 (($ $) NIL (|has| |#2| (-213))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4011 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3955 (((-108) $ $) 35)) (-3999 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4075 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4061 (($ $) 39) (($ $ $) 41)) (-4047 (($ $ $) 37)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 50)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 42) (($ $ $) 44) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
-(((-807 |#1| |#2|) (-13 (-925 |#2|) (-10 -8 (-15 -1454 ((-385 (-525)) $ (-525))) (-15 -2272 ((-161 (-385 (-525))) $)) (-15 -3318 ($ $)) (-15 -3318 ($ (-525) $)))) (-525) (-804 |#1|)) (T -807))
-((-1454 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-385 (-525))) (-5 *1 (-807 *4 *5)) (-5 *3 (-525)) (-4 *5 (-804 *4)))) (-2272 (*1 *2 *1) (-12 (-14 *3 (-525)) (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-807 *3 *4)) (-4 *4 (-804 *3)))) (-3318 (*1 *1 *1) (-12 (-14 *2 (-525)) (-5 *1 (-807 *2 *3)) (-4 *3 (-804 *2)))) (-3318 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-14 *3 *2) (-5 *1 (-807 *3 *4)) (-4 *4 (-804 *3)))))
-(-13 (-925 |#2|) (-10 -8 (-15 -1454 ((-385 (-525)) $ (-525))) (-15 -2272 ((-161 (-385 (-525))) $)) (-15 -3318 ($ $)) (-15 -3318 ($ (-525) $))))
-((-4236 (((-108) $ $) NIL (-12 (|has| |#1| (-1020)) (|has| |#2| (-1020))))) (-3570 ((|#2| $) 12)) (-3589 (($ |#1| |#2|) 9)) (-2619 (((-1075) $) NIL (-12 (|has| |#1| (-1020)) (|has| |#2| (-1020))))) (-2093 (((-1039) $) NIL (-12 (|has| |#1| (-1020)) (|has| |#2| (-1020))))) (-1872 ((|#1| $) 11)) (-1230 (($ |#1| |#2|) 10)) (-1217 (((-798) $) 18 (-3254 (-12 (|has| |#1| (-566 (-798))) (|has| |#2| (-566 (-798)))) (-12 (|has| |#1| (-1020)) (|has| |#2| (-1020)))))) (-3955 (((-108) $ $) 22 (-12 (|has| |#1| (-1020)) (|has| |#2| (-1020))))))
-(((-808 |#1| |#2|) (-13 (-1128) (-10 -8 (IF (|has| |#1| (-566 (-798))) (IF (|has| |#2| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1020)) (IF (|has| |#2| (-1020)) (-6 (-1020)) |%noBranch|) |%noBranch|) (-15 -3589 ($ |#1| |#2|)) (-15 -1230 ($ |#1| |#2|)) (-15 -1872 (|#1| $)) (-15 -3570 (|#2| $)))) (-1128) (-1128)) (T -808))
-((-3589 (*1 *1 *2 *3) (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128)))) (-1230 (*1 *1 *2 *3) (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128)))) (-1872 (*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-808 *2 *3)) (-4 *3 (-1128)))) (-3570 (*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-808 *3 *2)) (-4 *3 (-1128)))))
-(-13 (-1128) (-10 -8 (IF (|has| |#1| (-566 (-798))) (IF (|has| |#2| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1020)) (IF (|has| |#2| (-1020)) (-6 (-1020)) |%noBranch|) |%noBranch|) (-15 -3589 ($ |#1| |#2|)) (-15 -1230 ($ |#1| |#2|)) (-15 -1872 (|#1| $)) (-15 -3570 (|#2| $))))
-((-4236 (((-108) $ $) NIL)) (-2233 (((-525) $) 15)) (-3151 (($ (-146)) 11)) (-1820 (($ (-146)) 12)) (-2619 (((-1075) $) NIL)) (-2412 (((-146) $) 13)) (-2093 (((-1039) $) NIL)) (-2122 (($ (-146)) 9)) (-2407 (($ (-146)) 8)) (-1217 (((-798) $) 23) (($ (-146)) 16)) (-2979 (($ (-146)) 10)) (-3955 (((-108) $ $) NIL)))
-(((-809) (-13 (-1020) (-10 -8 (-15 -2407 ($ (-146))) (-15 -2122 ($ (-146))) (-15 -2979 ($ (-146))) (-15 -3151 ($ (-146))) (-15 -1820 ($ (-146))) (-15 -2412 ((-146) $)) (-15 -2233 ((-525) $)) (-15 -1217 ($ (-146)))))) (T -809))
-((-2407 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))) (-2122 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))) (-2979 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))) (-3151 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))) (-1820 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))) (-2412 (*1 *2 *1) (-12 (-5 *2 (-146)) (-5 *1 (-809)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-809)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))))
-(-13 (-1020) (-10 -8 (-15 -2407 ($ (-146))) (-15 -2122 ($ (-146))) (-15 -2979 ($ (-146))) (-15 -3151 ($ (-146))) (-15 -1820 ($ (-146))) (-15 -2412 ((-146) $)) (-15 -2233 ((-525) $)) (-15 -1217 ($ (-146)))))
-((-1217 (((-294 (-525)) (-385 (-887 (-47)))) 23) (((-294 (-525)) (-887 (-47))) 18)))
-(((-810) (-10 -7 (-15 -1217 ((-294 (-525)) (-887 (-47)))) (-15 -1217 ((-294 (-525)) (-385 (-887 (-47))))))) (T -810))
-((-1217 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 (-47)))) (-5 *2 (-294 (-525))) (-5 *1 (-810)))) (-1217 (*1 *2 *3) (-12 (-5 *3 (-887 (-47))) (-5 *2 (-294 (-525))) (-5 *1 (-810)))))
-(-10 -7 (-15 -1217 ((-294 (-525)) (-887 (-47)))) (-15 -1217 ((-294 (-525)) (-385 (-887 (-47))))))
-((-3165 (((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|)) 14)))
-(((-811 |#1| |#2|) (-10 -7 (-15 -3165 ((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|)))) (-1128) (-1128)) (T -811))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-812 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-812 *6)) (-5 *1 (-811 *5 *6)))))
-(-10 -7 (-15 -3165 ((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|))))
-((-2351 (($ |#1| |#1|) 8)) (-2566 ((|#1| $ (-713)) 10)))
-(((-812 |#1|) (-10 -8 (-15 -2351 ($ |#1| |#1|)) (-15 -2566 (|#1| $ (-713)))) (-1128)) (T -812))
-((-2566 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-812 *2)) (-4 *2 (-1128)))) (-2351 (*1 *1 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1128)))))
-(-10 -8 (-15 -2351 ($ |#1| |#1|)) (-15 -2566 (|#1| $ (-713))))
-((-3165 (((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)) 14)))
-(((-813 |#1| |#2|) (-10 -7 (-15 -3165 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)))) (-1128) (-1128)) (T -813))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6)))))
-(-10 -7 (-15 -3165 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|))))
-((-2351 (($ |#1| |#1| |#1|) 8)) (-2566 ((|#1| $ (-713)) 10)))
-(((-814 |#1|) (-10 -8 (-15 -2351 ($ |#1| |#1| |#1|)) (-15 -2566 (|#1| $ (-713)))) (-1128)) (T -814))
-((-2566 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-814 *2)) (-4 *2 (-1128)))) (-2351 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1128)))))
-(-10 -8 (-15 -2351 ($ |#1| |#1| |#1|)) (-15 -2566 (|#1| $ (-713))))
-((-2742 (((-592 (-1097)) (-1075)) 9)))
-(((-815) (-10 -7 (-15 -2742 ((-592 (-1097)) (-1075))))) (T -815))
-((-2742 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-592 (-1097))) (-5 *1 (-815)))))
-(-10 -7 (-15 -2742 ((-592 (-1097)) (-1075))))
-((-3165 (((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|)) 14)))
-(((-816 |#1| |#2|) (-10 -7 (-15 -3165 ((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|)))) (-1128) (-1128)) (T -816))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-817 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-817 *6)) (-5 *1 (-816 *5 *6)))))
-(-10 -7 (-15 -3165 ((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|))))
-((-3656 (($ |#1| |#1| |#1|) 8)) (-2566 ((|#1| $ (-713)) 10)))
-(((-817 |#1|) (-10 -8 (-15 -3656 ($ |#1| |#1| |#1|)) (-15 -2566 (|#1| $ (-713)))) (-1128)) (T -817))
-((-2566 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-817 *2)) (-4 *2 (-1128)))) (-3656 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-1128)))))
-(-10 -8 (-15 -3656 ($ |#1| |#1| |#1|)) (-15 -2566 (|#1| $ (-713))))
-((-2840 (((-1073 (-592 (-525))) (-592 (-525)) (-1073 (-592 (-525)))) 32)) (-1992 (((-1073 (-592 (-525))) (-592 (-525)) (-592 (-525))) 28)) (-2134 (((-1073 (-592 (-525))) (-592 (-525))) 41) (((-1073 (-592 (-525))) (-592 (-525)) (-592 (-525))) 40)) (-1852 (((-1073 (-592 (-525))) (-525)) 42)) (-1851 (((-1073 (-592 (-525))) (-525) (-525)) 22) (((-1073 (-592 (-525))) (-525)) 16) (((-1073 (-592 (-525))) (-525) (-525) (-525)) 12)) (-2321 (((-1073 (-592 (-525))) (-1073 (-592 (-525)))) 26)) (-1499 (((-592 (-525)) (-592 (-525))) 25)))
-(((-818) (-10 -7 (-15 -1851 ((-1073 (-592 (-525))) (-525) (-525) (-525))) (-15 -1851 ((-1073 (-592 (-525))) (-525))) (-15 -1851 ((-1073 (-592 (-525))) (-525) (-525))) (-15 -1499 ((-592 (-525)) (-592 (-525)))) (-15 -2321 ((-1073 (-592 (-525))) (-1073 (-592 (-525))))) (-15 -1992 ((-1073 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -2840 ((-1073 (-592 (-525))) (-592 (-525)) (-1073 (-592 (-525))))) (-15 -2134 ((-1073 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -2134 ((-1073 (-592 (-525))) (-592 (-525)))) (-15 -1852 ((-1073 (-592 (-525))) (-525))))) (T -818))
-((-1852 (*1 *2 *3) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525)))) (-2134 (*1 *2 *3) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-592 (-525))))) (-2134 (*1 *2 *3 *3) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-592 (-525))))) (-2840 (*1 *2 *3 *2) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *3 (-592 (-525))) (-5 *1 (-818)))) (-1992 (*1 *2 *3 *3) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-592 (-525))))) (-2321 (*1 *2 *2) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)))) (-1499 (*1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-818)))) (-1851 (*1 *2 *3 *3) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525)))) (-1851 (*1 *2 *3) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525)))) (-1851 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525)))))
-(-10 -7 (-15 -1851 ((-1073 (-592 (-525))) (-525) (-525) (-525))) (-15 -1851 ((-1073 (-592 (-525))) (-525))) (-15 -1851 ((-1073 (-592 (-525))) (-525) (-525))) (-15 -1499 ((-592 (-525)) (-592 (-525)))) (-15 -2321 ((-1073 (-592 (-525))) (-1073 (-592 (-525))))) (-15 -1992 ((-1073 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -2840 ((-1073 (-592 (-525))) (-592 (-525)) (-1073 (-592 (-525))))) (-15 -2134 ((-1073 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -2134 ((-1073 (-592 (-525))) (-592 (-525)))) (-15 -1852 ((-1073 (-592 (-525))) (-525))))
-((-3210 (((-827 (-357)) $) 9 (|has| |#1| (-567 (-827 (-357))))) (((-827 (-525)) $) 8 (|has| |#1| (-567 (-827 (-525)))))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1653 (((-805 |#1|) $) NIL (|has| (-805 |#1|) (-286)))) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-805 |#1|) (-844)))) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| (-805 |#1|) (-844)))) (-1507 (((-108) $ $) NIL)) (-2971 (((-525) $) NIL (|has| (-805 |#1|) (-762)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-805 |#1|) "failed") $) NIL) (((-3 (-1092) "failed") $) NIL (|has| (-805 |#1|) (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-805 |#1|) (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-805 |#1|) (-968 (-525))))) (-4105 (((-805 |#1|) $) NIL) (((-1092) $) NIL (|has| (-805 |#1|) (-968 (-1092)))) (((-385 (-525)) $) NIL (|has| (-805 |#1|) (-968 (-525)))) (((-525) $) NIL (|has| (-805 |#1|) (-968 (-525))))) (-1498 (($ $) NIL) (($ (-525) $) NIL)) (-1356 (($ $ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| (-805 |#1|) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-805 |#1|) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-805 |#1|))) (|:| |vec| (-1174 (-805 |#1|)))) (-632 $) (-1174 $)) NIL) (((-632 (-805 |#1|)) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($) NIL (|has| (-805 |#1|) (-510)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-1889 (((-108) $) NIL (|has| (-805 |#1|) (-762)))) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-805 |#1|) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-805 |#1|) (-821 (-357))))) (-2278 (((-108) $) NIL)) (-2999 (($ $) NIL)) (-4066 (((-805 |#1|) $) NIL)) (-2878 (((-3 $ "failed") $) NIL (|has| (-805 |#1|) (-1068)))) (-4079 (((-108) $) NIL (|has| (-805 |#1|) (-762)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3033 (($ $ $) NIL (|has| (-805 |#1|) (-789)))) (-1609 (($ $ $) NIL (|has| (-805 |#1|) (-789)))) (-2016 (($ (-1 (-805 |#1|) (-805 |#1|)) $) NIL)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-2948 (($) NIL (|has| (-805 |#1|) (-1068)) CONST)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1372 (($ $) NIL (|has| (-805 |#1|) (-286)))) (-1340 (((-805 |#1|) $) NIL (|has| (-805 |#1|) (-510)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-805 |#1|) (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-805 |#1|) (-844)))) (-4201 (((-396 $) $) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2825 (($ $ (-592 (-805 |#1|)) (-592 (-805 |#1|))) NIL (|has| (-805 |#1|) (-288 (-805 |#1|)))) (($ $ (-805 |#1|) (-805 |#1|)) NIL (|has| (-805 |#1|) (-288 (-805 |#1|)))) (($ $ (-273 (-805 |#1|))) NIL (|has| (-805 |#1|) (-288 (-805 |#1|)))) (($ $ (-592 (-273 (-805 |#1|)))) NIL (|has| (-805 |#1|) (-288 (-805 |#1|)))) (($ $ (-592 (-1092)) (-592 (-805 |#1|))) NIL (|has| (-805 |#1|) (-486 (-1092) (-805 |#1|)))) (($ $ (-1092) (-805 |#1|)) NIL (|has| (-805 |#1|) (-486 (-1092) (-805 |#1|))))) (-1927 (((-713) $) NIL)) (-3431 (($ $ (-805 |#1|)) NIL (|has| (-805 |#1|) (-265 (-805 |#1|) (-805 |#1|))))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2702 (($ $) NIL (|has| (-805 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-805 |#1|) (-213))) (($ $ (-1092)) NIL (|has| (-805 |#1|) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-805 |#1|) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-805 |#1|) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-805 |#1|) (-835 (-1092)))) (($ $ (-1 (-805 |#1|) (-805 |#1|)) (-713)) NIL) (($ $ (-1 (-805 |#1|) (-805 |#1|))) NIL)) (-2874 (($ $) NIL)) (-4080 (((-805 |#1|) $) NIL)) (-2069 (((-827 (-525)) $) NIL (|has| (-805 |#1|) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-805 |#1|) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-805 |#1|) (-567 (-501)))) (((-357) $) NIL (|has| (-805 |#1|) (-953))) (((-205) $) NIL (|has| (-805 |#1|) (-953)))) (-4070 (((-161 (-385 (-525))) $) NIL)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-805 |#1|) (-844))))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-805 |#1|)) NIL) (($ (-1092)) NIL (|has| (-805 |#1|) (-968 (-1092))))) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| (-805 |#1|) (-844))) (|has| (-805 |#1|) (-136))))) (-2448 (((-713)) NIL)) (-3064 (((-805 |#1|) $) NIL (|has| (-805 |#1|) (-510)))) (-1571 (((-108) $ $) NIL)) (-1485 (((-385 (-525)) $ (-525)) NIL)) (-2380 (($ $) NIL (|has| (-805 |#1|) (-762)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $) NIL (|has| (-805 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-805 |#1|) (-213))) (($ $ (-1092)) NIL (|has| (-805 |#1|) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-805 |#1|) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-805 |#1|) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-805 |#1|) (-835 (-1092)))) (($ $ (-1 (-805 |#1|) (-805 |#1|)) (-713)) NIL) (($ $ (-1 (-805 |#1|) (-805 |#1|))) NIL)) (-2830 (((-108) $ $) NIL (|has| (-805 |#1|) (-789)))) (-2807 (((-108) $ $) NIL (|has| (-805 |#1|) (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| (-805 |#1|) (-789)))) (-2795 (((-108) $ $) NIL (|has| (-805 |#1|) (-789)))) (-2880 (($ $ $) NIL) (($ (-805 |#1|) (-805 |#1|)) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-805 |#1|) $) NIL) (($ $ (-805 |#1|)) NIL)))
+(((-806 |#1|) (-13 (-925 (-805 |#1|)) (-10 -8 (-15 -1485 ((-385 (-525)) $ (-525))) (-15 -4070 ((-161 (-385 (-525))) $)) (-15 -1498 ($ $)) (-15 -1498 ($ (-525) $)))) (-525)) (T -806))
+((-1485 (*1 *2 *1 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-806 *4)) (-14 *4 *3) (-5 *3 (-525)))) (-4070 (*1 *2 *1) (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-806 *3)) (-14 *3 (-525)))) (-1498 (*1 *1 *1) (-12 (-5 *1 (-806 *2)) (-14 *2 (-525)))) (-1498 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-806 *3)) (-14 *3 *2))))
+(-13 (-925 (-805 |#1|)) (-10 -8 (-15 -1485 ((-385 (-525)) $ (-525))) (-15 -4070 ((-161 (-385 (-525))) $)) (-15 -1498 ($ $)) (-15 -1498 ($ (-525) $))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1653 ((|#2| $) NIL (|has| |#2| (-286)))) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-1507 (((-108) $ $) NIL)) (-2971 (((-525) $) NIL (|has| |#2| (-762)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#2| "failed") $) NIL) (((-3 (-1092) "failed") $) NIL (|has| |#2| (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525))))) (-4105 ((|#2| $) NIL) (((-1092) $) NIL (|has| |#2| (-968 (-1092)))) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-525)))) (((-525) $) NIL (|has| |#2| (-968 (-525))))) (-1498 (($ $) 31) (($ (-525) $) 32)) (-1356 (($ $ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) 53)) (-1903 (($) NIL (|has| |#2| (-510)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-1889 (((-108) $) NIL (|has| |#2| (-762)))) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| |#2| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| |#2| (-821 (-357))))) (-2278 (((-108) $) NIL)) (-2999 (($ $) NIL)) (-4066 ((|#2| $) NIL)) (-2878 (((-3 $ "failed") $) NIL (|has| |#2| (-1068)))) (-4079 (((-108) $) NIL (|has| |#2| (-762)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3033 (($ $ $) NIL (|has| |#2| (-789)))) (-1609 (($ $ $) NIL (|has| |#2| (-789)))) (-2016 (($ (-1 |#2| |#2|) $) NIL)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) 49)) (-2948 (($) NIL (|has| |#2| (-1068)) CONST)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1372 (($ $) NIL (|has| |#2| (-286)))) (-1340 ((|#2| $) NIL (|has| |#2| (-510)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-4201 (((-396 $) $) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2825 (($ $ (-592 |#2|) (-592 |#2|)) NIL (|has| |#2| (-288 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-288 |#2|))) (($ $ (-273 |#2|)) NIL (|has| |#2| (-288 |#2|))) (($ $ (-592 (-273 |#2|))) NIL (|has| |#2| (-288 |#2|))) (($ $ (-592 (-1092)) (-592 |#2|)) NIL (|has| |#2| (-486 (-1092) |#2|))) (($ $ (-1092) |#2|) NIL (|has| |#2| (-486 (-1092) |#2|)))) (-1927 (((-713) $) NIL)) (-3431 (($ $ |#2|) NIL (|has| |#2| (-265 |#2| |#2|)))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2702 (($ $) NIL (|has| |#2| (-213))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2874 (($ $) NIL)) (-4080 ((|#2| $) NIL)) (-2069 (((-827 (-525)) $) NIL (|has| |#2| (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| |#2| (-567 (-827 (-357))))) (((-501) $) NIL (|has| |#2| (-567 (-501)))) (((-357) $) NIL (|has| |#2| (-953))) (((-205) $) NIL (|has| |#2| (-953)))) (-4070 (((-161 (-385 (-525))) $) 68)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844))))) (-4100 (((-798) $) 87) (($ (-525)) 19) (($ $) NIL) (($ (-385 (-525))) 24) (($ |#2|) 18) (($ (-1092)) NIL (|has| |#2| (-968 (-1092))))) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#2| (-136))))) (-2448 (((-713)) NIL)) (-3064 ((|#2| $) NIL (|has| |#2| (-510)))) (-1571 (((-108) $ $) NIL)) (-1485 (((-385 (-525)) $ (-525)) 60)) (-2380 (($ $) NIL (|has| |#2| (-762)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) 14 T CONST)) (-3375 (($) 16 T CONST)) (-2401 (($ $) NIL (|has| |#2| (-213))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2830 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2775 (((-108) $ $) 35)) (-2817 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2880 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2871 (($ $) 39) (($ $ $) 41)) (-2860 (($ $ $) 37)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 50)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 42) (($ $ $) 44) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
+(((-807 |#1| |#2|) (-13 (-925 |#2|) (-10 -8 (-15 -1485 ((-385 (-525)) $ (-525))) (-15 -4070 ((-161 (-385 (-525))) $)) (-15 -1498 ($ $)) (-15 -1498 ($ (-525) $)))) (-525) (-804 |#1|)) (T -807))
+((-1485 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-385 (-525))) (-5 *1 (-807 *4 *5)) (-5 *3 (-525)) (-4 *5 (-804 *4)))) (-4070 (*1 *2 *1) (-12 (-14 *3 (-525)) (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-807 *3 *4)) (-4 *4 (-804 *3)))) (-1498 (*1 *1 *1) (-12 (-14 *2 (-525)) (-5 *1 (-807 *2 *3)) (-4 *3 (-804 *2)))) (-1498 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-14 *3 *2) (-5 *1 (-807 *3 *4)) (-4 *4 (-804 *3)))))
+(-13 (-925 |#2|) (-10 -8 (-15 -1485 ((-385 (-525)) $ (-525))) (-15 -4070 ((-161 (-385 (-525))) $)) (-15 -1498 ($ $)) (-15 -1498 ($ (-525) $))))
+((-4087 (((-108) $ $) NIL (-12 (|has| |#1| (-1020)) (|has| |#2| (-1020))))) (-2237 ((|#2| $) 12)) (-1753 (($ |#1| |#2|) 9)) (-1289 (((-1075) $) NIL (-12 (|has| |#1| (-1020)) (|has| |#2| (-1020))))) (-3993 (((-1039) $) NIL (-12 (|has| |#1| (-1020)) (|has| |#2| (-1020))))) (-1647 ((|#1| $) 11)) (-4114 (($ |#1| |#2|) 10)) (-4100 (((-798) $) 18 (-2067 (-12 (|has| |#1| (-566 (-798))) (|has| |#2| (-566 (-798)))) (-12 (|has| |#1| (-1020)) (|has| |#2| (-1020)))))) (-2775 (((-108) $ $) 22 (-12 (|has| |#1| (-1020)) (|has| |#2| (-1020))))))
+(((-808 |#1| |#2|) (-13 (-1128) (-10 -8 (IF (|has| |#1| (-566 (-798))) (IF (|has| |#2| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1020)) (IF (|has| |#2| (-1020)) (-6 (-1020)) |%noBranch|) |%noBranch|) (-15 -1753 ($ |#1| |#2|)) (-15 -4114 ($ |#1| |#2|)) (-15 -1647 (|#1| $)) (-15 -2237 (|#2| $)))) (-1128) (-1128)) (T -808))
+((-1753 (*1 *1 *2 *3) (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128)))) (-4114 (*1 *1 *2 *3) (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128)))) (-1647 (*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-808 *2 *3)) (-4 *3 (-1128)))) (-2237 (*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-808 *3 *2)) (-4 *3 (-1128)))))
+(-13 (-1128) (-10 -8 (IF (|has| |#1| (-566 (-798))) (IF (|has| |#2| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1020)) (IF (|has| |#2| (-1020)) (-6 (-1020)) |%noBranch|) |%noBranch|) (-15 -1753 ($ |#1| |#2|)) (-15 -4114 ($ |#1| |#2|)) (-15 -1647 (|#1| $)) (-15 -2237 (|#2| $))))
+((-4087 (((-108) $ $) NIL)) (-3718 (((-525) $) 15)) (-2559 (($ (-146)) 11)) (-1992 (($ (-146)) 12)) (-1289 (((-1075) $) NIL)) (-2974 (((-146) $) 13)) (-3993 (((-1039) $) NIL)) (-2041 (($ (-146)) 9)) (-2937 (($ (-146)) 8)) (-4100 (((-798) $) 23) (($ (-146)) 16)) (-2070 (($ (-146)) 10)) (-2775 (((-108) $ $) NIL)))
+(((-809) (-13 (-1020) (-10 -8 (-15 -2937 ($ (-146))) (-15 -2041 ($ (-146))) (-15 -2070 ($ (-146))) (-15 -2559 ($ (-146))) (-15 -1992 ($ (-146))) (-15 -2974 ((-146) $)) (-15 -3718 ((-525) $)) (-15 -4100 ($ (-146)))))) (T -809))
+((-2937 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))) (-2041 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))) (-2070 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))) (-2559 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))) (-1992 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))) (-2974 (*1 *2 *1) (-12 (-5 *2 (-146)) (-5 *1 (-809)))) (-3718 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-809)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))))
+(-13 (-1020) (-10 -8 (-15 -2937 ($ (-146))) (-15 -2041 ($ (-146))) (-15 -2070 ($ (-146))) (-15 -2559 ($ (-146))) (-15 -1992 ($ (-146))) (-15 -2974 ((-146) $)) (-15 -3718 ((-525) $)) (-15 -4100 ($ (-146)))))
+((-4100 (((-294 (-525)) (-385 (-887 (-47)))) 23) (((-294 (-525)) (-887 (-47))) 18)))
+(((-810) (-10 -7 (-15 -4100 ((-294 (-525)) (-887 (-47)))) (-15 -4100 ((-294 (-525)) (-385 (-887 (-47))))))) (T -810))
+((-4100 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 (-47)))) (-5 *2 (-294 (-525))) (-5 *1 (-810)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-887 (-47))) (-5 *2 (-294 (-525))) (-5 *1 (-810)))))
+(-10 -7 (-15 -4100 ((-294 (-525)) (-887 (-47)))) (-15 -4100 ((-294 (-525)) (-385 (-887 (-47))))))
+((-2016 (((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|)) 14)))
+(((-811 |#1| |#2|) (-10 -7 (-15 -2016 ((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|)))) (-1128) (-1128)) (T -811))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-812 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-812 *6)) (-5 *1 (-811 *5 *6)))))
+(-10 -7 (-15 -2016 ((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|))))
+((-3609 (($ |#1| |#1|) 8)) (-3850 ((|#1| $ (-713)) 10)))
+(((-812 |#1|) (-10 -8 (-15 -3609 ($ |#1| |#1|)) (-15 -3850 (|#1| $ (-713)))) (-1128)) (T -812))
+((-3850 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-812 *2)) (-4 *2 (-1128)))) (-3609 (*1 *1 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1128)))))
+(-10 -8 (-15 -3609 ($ |#1| |#1|)) (-15 -3850 (|#1| $ (-713))))
+((-2016 (((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)) 14)))
+(((-813 |#1| |#2|) (-10 -7 (-15 -2016 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)))) (-1128) (-1128)) (T -813))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6)))))
+(-10 -7 (-15 -2016 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|))))
+((-3609 (($ |#1| |#1| |#1|) 8)) (-3850 ((|#1| $ (-713)) 10)))
+(((-814 |#1|) (-10 -8 (-15 -3609 ($ |#1| |#1| |#1|)) (-15 -3850 (|#1| $ (-713)))) (-1128)) (T -814))
+((-3850 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-814 *2)) (-4 *2 (-1128)))) (-3609 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1128)))))
+(-10 -8 (-15 -3609 ($ |#1| |#1| |#1|)) (-15 -3850 (|#1| $ (-713))))
+((-3018 (((-592 (-1097)) (-1075)) 9)))
+(((-815) (-10 -7 (-15 -3018 ((-592 (-1097)) (-1075))))) (T -815))
+((-3018 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-592 (-1097))) (-5 *1 (-815)))))
+(-10 -7 (-15 -3018 ((-592 (-1097)) (-1075))))
+((-2016 (((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|)) 14)))
+(((-816 |#1| |#2|) (-10 -7 (-15 -2016 ((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|)))) (-1128) (-1128)) (T -816))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-817 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-817 *6)) (-5 *1 (-816 *5 *6)))))
+(-10 -7 (-15 -2016 ((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|))))
+((-1637 (($ |#1| |#1| |#1|) 8)) (-3850 ((|#1| $ (-713)) 10)))
+(((-817 |#1|) (-10 -8 (-15 -1637 ($ |#1| |#1| |#1|)) (-15 -3850 (|#1| $ (-713)))) (-1128)) (T -817))
+((-3850 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-817 *2)) (-4 *2 (-1128)))) (-1637 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-1128)))))
+(-10 -8 (-15 -1637 ($ |#1| |#1| |#1|)) (-15 -3850 (|#1| $ (-713))))
+((-1501 (((-1073 (-592 (-525))) (-592 (-525)) (-1073 (-592 (-525)))) 32)) (-3067 (((-1073 (-592 (-525))) (-592 (-525)) (-592 (-525))) 28)) (-2105 (((-1073 (-592 (-525))) (-592 (-525))) 41) (((-1073 (-592 (-525))) (-592 (-525)) (-592 (-525))) 40)) (-2280 (((-1073 (-592 (-525))) (-525)) 42)) (-2270 (((-1073 (-592 (-525))) (-525) (-525)) 22) (((-1073 (-592 (-525))) (-525)) 16) (((-1073 (-592 (-525))) (-525) (-525) (-525)) 12)) (-3290 (((-1073 (-592 (-525))) (-1073 (-592 (-525)))) 26)) (-3055 (((-592 (-525)) (-592 (-525))) 25)))
+(((-818) (-10 -7 (-15 -2270 ((-1073 (-592 (-525))) (-525) (-525) (-525))) (-15 -2270 ((-1073 (-592 (-525))) (-525))) (-15 -2270 ((-1073 (-592 (-525))) (-525) (-525))) (-15 -3055 ((-592 (-525)) (-592 (-525)))) (-15 -3290 ((-1073 (-592 (-525))) (-1073 (-592 (-525))))) (-15 -3067 ((-1073 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -1501 ((-1073 (-592 (-525))) (-592 (-525)) (-1073 (-592 (-525))))) (-15 -2105 ((-1073 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -2105 ((-1073 (-592 (-525))) (-592 (-525)))) (-15 -2280 ((-1073 (-592 (-525))) (-525))))) (T -818))
+((-2280 (*1 *2 *3) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525)))) (-2105 (*1 *2 *3) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-592 (-525))))) (-2105 (*1 *2 *3 *3) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-592 (-525))))) (-1501 (*1 *2 *3 *2) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *3 (-592 (-525))) (-5 *1 (-818)))) (-3067 (*1 *2 *3 *3) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-592 (-525))))) (-3290 (*1 *2 *2) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)))) (-3055 (*1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-818)))) (-2270 (*1 *2 *3 *3) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525)))) (-2270 (*1 *2 *3) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525)))) (-2270 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525)))))
+(-10 -7 (-15 -2270 ((-1073 (-592 (-525))) (-525) (-525) (-525))) (-15 -2270 ((-1073 (-592 (-525))) (-525))) (-15 -2270 ((-1073 (-592 (-525))) (-525) (-525))) (-15 -3055 ((-592 (-525)) (-592 (-525)))) (-15 -3290 ((-1073 (-592 (-525))) (-1073 (-592 (-525))))) (-15 -3067 ((-1073 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -1501 ((-1073 (-592 (-525))) (-592 (-525)) (-1073 (-592 (-525))))) (-15 -2105 ((-1073 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -2105 ((-1073 (-592 (-525))) (-592 (-525)))) (-15 -2280 ((-1073 (-592 (-525))) (-525))))
+((-2069 (((-827 (-357)) $) 9 (|has| |#1| (-567 (-827 (-357))))) (((-827 (-525)) $) 8 (|has| |#1| (-567 (-827 (-525)))))))
(((-819 |#1|) (-131) (-1128)) (T -819))
NIL
(-13 (-10 -7 (IF (|has| |t#1| (-567 (-827 (-525)))) (-6 (-567 (-827 (-525)))) |%noBranch|) (IF (|has| |t#1| (-567 (-827 (-357)))) (-6 (-567 (-827 (-357)))) |%noBranch|)))
(((-567 (-827 (-357))) |has| |#1| (-567 (-827 (-357)))) ((-567 (-827 (-525))) |has| |#1| (-567 (-827 (-525)))))
-((-4236 (((-108) $ $) NIL)) (-3416 (($) 14)) (-3650 (($ (-824 |#1| |#2|) (-824 |#1| |#3|)) 27)) (-3685 (((-824 |#1| |#3|) $) 16)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3045 (((-108) $) 22)) (-4159 (($) 19)) (-1217 (((-798) $) 30)) (-3565 (((-824 |#1| |#2|) $) 15)) (-3955 (((-108) $ $) 25)))
-(((-820 |#1| |#2| |#3|) (-13 (-1020) (-10 -8 (-15 -3045 ((-108) $)) (-15 -4159 ($)) (-15 -3416 ($)) (-15 -3650 ($ (-824 |#1| |#2|) (-824 |#1| |#3|))) (-15 -3565 ((-824 |#1| |#2|) $)) (-15 -3685 ((-824 |#1| |#3|) $)))) (-1020) (-1020) (-612 |#2|)) (T -820))
-((-3045 (*1 *2 *1) (-12 (-4 *4 (-1020)) (-5 *2 (-108)) (-5 *1 (-820 *3 *4 *5)) (-4 *3 (-1020)) (-4 *5 (-612 *4)))) (-4159 (*1 *1) (-12 (-4 *3 (-1020)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1020)) (-4 *4 (-612 *3)))) (-3416 (*1 *1) (-12 (-4 *3 (-1020)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1020)) (-4 *4 (-612 *3)))) (-3650 (*1 *1 *2 *3) (-12 (-5 *2 (-824 *4 *5)) (-5 *3 (-824 *4 *6)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-612 *5)) (-5 *1 (-820 *4 *5 *6)))) (-3565 (*1 *2 *1) (-12 (-4 *4 (-1020)) (-5 *2 (-824 *3 *4)) (-5 *1 (-820 *3 *4 *5)) (-4 *3 (-1020)) (-4 *5 (-612 *4)))) (-3685 (*1 *2 *1) (-12 (-4 *4 (-1020)) (-5 *2 (-824 *3 *5)) (-5 *1 (-820 *3 *4 *5)) (-4 *3 (-1020)) (-4 *5 (-612 *4)))))
-(-13 (-1020) (-10 -8 (-15 -3045 ((-108) $)) (-15 -4159 ($)) (-15 -3416 ($)) (-15 -3650 ($ (-824 |#1| |#2|) (-824 |#1| |#3|))) (-15 -3565 ((-824 |#1| |#2|) $)) (-15 -3685 ((-824 |#1| |#3|) $))))
-((-4236 (((-108) $ $) 7)) (-2989 (((-824 |#1| $) $ (-827 |#1|) (-824 |#1| $)) 13)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3955 (((-108) $ $) 6)))
+((-4087 (((-108) $ $) NIL)) (-3324 (($) 14)) (-1567 (($ (-824 |#1| |#2|) (-824 |#1| |#3|)) 27)) (-3148 (((-824 |#1| |#3|) $) 16)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2834 (((-108) $) 22)) (-1669 (($) 19)) (-4100 (((-798) $) 30)) (-1983 (((-824 |#1| |#2|) $) 15)) (-2775 (((-108) $ $) 25)))
+(((-820 |#1| |#2| |#3|) (-13 (-1020) (-10 -8 (-15 -2834 ((-108) $)) (-15 -1669 ($)) (-15 -3324 ($)) (-15 -1567 ($ (-824 |#1| |#2|) (-824 |#1| |#3|))) (-15 -1983 ((-824 |#1| |#2|) $)) (-15 -3148 ((-824 |#1| |#3|) $)))) (-1020) (-1020) (-612 |#2|)) (T -820))
+((-2834 (*1 *2 *1) (-12 (-4 *4 (-1020)) (-5 *2 (-108)) (-5 *1 (-820 *3 *4 *5)) (-4 *3 (-1020)) (-4 *5 (-612 *4)))) (-1669 (*1 *1) (-12 (-4 *3 (-1020)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1020)) (-4 *4 (-612 *3)))) (-3324 (*1 *1) (-12 (-4 *3 (-1020)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1020)) (-4 *4 (-612 *3)))) (-1567 (*1 *1 *2 *3) (-12 (-5 *2 (-824 *4 *5)) (-5 *3 (-824 *4 *6)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-612 *5)) (-5 *1 (-820 *4 *5 *6)))) (-1983 (*1 *2 *1) (-12 (-4 *4 (-1020)) (-5 *2 (-824 *3 *4)) (-5 *1 (-820 *3 *4 *5)) (-4 *3 (-1020)) (-4 *5 (-612 *4)))) (-3148 (*1 *2 *1) (-12 (-4 *4 (-1020)) (-5 *2 (-824 *3 *5)) (-5 *1 (-820 *3 *4 *5)) (-4 *3 (-1020)) (-4 *5 (-612 *4)))))
+(-13 (-1020) (-10 -8 (-15 -2834 ((-108) $)) (-15 -1669 ($)) (-15 -3324 ($)) (-15 -1567 ($ (-824 |#1| |#2|) (-824 |#1| |#3|))) (-15 -1983 ((-824 |#1| |#2|) $)) (-15 -3148 ((-824 |#1| |#3|) $))))
+((-4087 (((-108) $ $) 7)) (-3552 (((-824 |#1| $) $ (-827 |#1|) (-824 |#1| $)) 13)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-2775 (((-108) $ $) 6)))
(((-821 |#1|) (-131) (-1020)) (T -821))
-((-2989 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-824 *4 *1)) (-5 *3 (-827 *4)) (-4 *1 (-821 *4)) (-4 *4 (-1020)))))
-(-13 (-1020) (-10 -8 (-15 -2989 ((-824 |t#1| $) $ (-827 |t#1|) (-824 |t#1| $)))))
+((-3552 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-824 *4 *1)) (-5 *3 (-827 *4)) (-4 *1 (-821 *4)) (-4 *4 (-1020)))))
+(-13 (-1020) (-10 -8 (-15 -3552 ((-824 |t#1| $) $ (-827 |t#1|) (-824 |t#1| $)))))
(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-3131 (((-108) (-592 |#2|) |#3|) 23) (((-108) |#2| |#3|) 18)) (-3413 (((-824 |#1| |#2|) |#2| |#3|) 43 (-12 (-1850 (|has| |#2| (-968 (-1092)))) (-1850 (|has| |#2| (-977))))) (((-592 (-273 (-887 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-977)) (-1850 (|has| |#2| (-968 (-1092)))))) (((-592 (-273 |#2|)) |#2| |#3|) 35 (|has| |#2| (-968 (-1092)))) (((-820 |#1| |#2| (-592 |#2|)) (-592 |#2|) |#3|) 21)))
-(((-822 |#1| |#2| |#3|) (-10 -7 (-15 -3131 ((-108) |#2| |#3|)) (-15 -3131 ((-108) (-592 |#2|) |#3|)) (-15 -3413 ((-820 |#1| |#2| (-592 |#2|)) (-592 |#2|) |#3|)) (IF (|has| |#2| (-968 (-1092))) (-15 -3413 ((-592 (-273 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-977)) (-15 -3413 ((-592 (-273 (-887 |#2|))) |#2| |#3|)) (-15 -3413 ((-824 |#1| |#2|) |#2| |#3|))))) (-1020) (-821 |#1|) (-567 (-827 |#1|))) (T -822))
-((-3413 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-5 *2 (-824 *5 *3)) (-5 *1 (-822 *5 *3 *4)) (-1850 (-4 *3 (-968 (-1092)))) (-1850 (-4 *3 (-977))) (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5))))) (-3413 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-5 *2 (-592 (-273 (-887 *3)))) (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-977)) (-1850 (-4 *3 (-968 (-1092)))) (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5))))) (-3413 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-5 *2 (-592 (-273 *3))) (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-968 (-1092))) (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5))))) (-3413 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-4 *6 (-821 *5)) (-5 *2 (-820 *5 *6 (-592 *6))) (-5 *1 (-822 *5 *6 *4)) (-5 *3 (-592 *6)) (-4 *4 (-567 (-827 *5))))) (-3131 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-4 *6 (-821 *5)) (-4 *5 (-1020)) (-5 *2 (-108)) (-5 *1 (-822 *5 *6 *4)) (-4 *4 (-567 (-827 *5))))) (-3131 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-5 *2 (-108)) (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5))))))
-(-10 -7 (-15 -3131 ((-108) |#2| |#3|)) (-15 -3131 ((-108) (-592 |#2|) |#3|)) (-15 -3413 ((-820 |#1| |#2| (-592 |#2|)) (-592 |#2|) |#3|)) (IF (|has| |#2| (-968 (-1092))) (-15 -3413 ((-592 (-273 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-977)) (-15 -3413 ((-592 (-273 (-887 |#2|))) |#2| |#3|)) (-15 -3413 ((-824 |#1| |#2|) |#2| |#3|)))))
-((-3165 (((-824 |#1| |#3|) (-1 |#3| |#2|) (-824 |#1| |#2|)) 22)))
-(((-823 |#1| |#2| |#3|) (-10 -7 (-15 -3165 ((-824 |#1| |#3|) (-1 |#3| |#2|) (-824 |#1| |#2|)))) (-1020) (-1020) (-1020)) (T -823))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-824 *5 *6)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-824 *5 *7)) (-5 *1 (-823 *5 *6 *7)))))
-(-10 -7 (-15 -3165 ((-824 |#1| |#3|) (-1 |#3| |#2|) (-824 |#1| |#2|))))
-((-4236 (((-108) $ $) NIL)) (-2600 (($ $ $) 39)) (-3723 (((-3 (-108) "failed") $ (-827 |#1|)) 36)) (-3416 (($) 12)) (-2619 (((-1075) $) NIL)) (-2234 (($ (-827 |#1|) |#2| $) 20)) (-2093 (((-1039) $) NIL)) (-3441 (((-3 |#2| "failed") (-827 |#1|) $) 50)) (-3045 (((-108) $) 15)) (-4159 (($) 13)) (-2838 (((-592 (-2 (|:| -3364 (-1092)) (|:| -4201 |#2|))) $) 25)) (-1230 (($ (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 |#2|)))) 23)) (-1217 (((-798) $) 44)) (-2661 (($ (-827 |#1|) |#2| $ |#2|) 48)) (-1666 (($ (-827 |#1|) |#2| $) 47)) (-3955 (((-108) $ $) 41)))
-(((-824 |#1| |#2|) (-13 (-1020) (-10 -8 (-15 -3045 ((-108) $)) (-15 -4159 ($)) (-15 -3416 ($)) (-15 -2600 ($ $ $)) (-15 -3441 ((-3 |#2| "failed") (-827 |#1|) $)) (-15 -1666 ($ (-827 |#1|) |#2| $)) (-15 -2234 ($ (-827 |#1|) |#2| $)) (-15 -2661 ($ (-827 |#1|) |#2| $ |#2|)) (-15 -2838 ((-592 (-2 (|:| -3364 (-1092)) (|:| -4201 |#2|))) $)) (-15 -1230 ($ (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 |#2|))))) (-15 -3723 ((-3 (-108) "failed") $ (-827 |#1|))))) (-1020) (-1020)) (T -824))
-((-3045 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-824 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-4159 (*1 *1) (-12 (-5 *1 (-824 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-3416 (*1 *1) (-12 (-5 *1 (-824 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-2600 (*1 *1 *1 *1) (-12 (-5 *1 (-824 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-3441 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-4 *2 (-1020)) (-5 *1 (-824 *4 *2)))) (-1666 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1020)))) (-2234 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1020)))) (-2661 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1020)))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 *4)))) (-5 *1 (-824 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-1230 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 *4)))) (-4 *4 (-1020)) (-5 *1 (-824 *3 *4)) (-4 *3 (-1020)))) (-3723 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-5 *2 (-108)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1020)))))
-(-13 (-1020) (-10 -8 (-15 -3045 ((-108) $)) (-15 -4159 ($)) (-15 -3416 ($)) (-15 -2600 ($ $ $)) (-15 -3441 ((-3 |#2| "failed") (-827 |#1|) $)) (-15 -1666 ($ (-827 |#1|) |#2| $)) (-15 -2234 ($ (-827 |#1|) |#2| $)) (-15 -2661 ($ (-827 |#1|) |#2| $ |#2|)) (-15 -2838 ((-592 (-2 (|:| -3364 (-1092)) (|:| -4201 |#2|))) $)) (-15 -1230 ($ (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 |#2|))))) (-15 -3723 ((-3 (-108) "failed") $ (-827 |#1|)))))
-((-2263 (((-827 |#1|) (-827 |#1|) (-592 (-1092)) (-1 (-108) (-592 |#2|))) 32) (((-827 |#1|) (-827 |#1|) (-592 (-1 (-108) |#2|))) 43) (((-827 |#1|) (-827 |#1|) (-1 (-108) |#2|)) 35)) (-3723 (((-108) (-592 |#2|) (-827 |#1|)) 40) (((-108) |#2| (-827 |#1|)) 36)) (-2538 (((-1 (-108) |#2|) (-827 |#1|)) 16)) (-3799 (((-592 |#2|) (-827 |#1|)) 24)) (-3562 (((-827 |#1|) (-827 |#1|) |#2|) 20)))
-(((-825 |#1| |#2|) (-10 -7 (-15 -2263 ((-827 |#1|) (-827 |#1|) (-1 (-108) |#2|))) (-15 -2263 ((-827 |#1|) (-827 |#1|) (-592 (-1 (-108) |#2|)))) (-15 -2263 ((-827 |#1|) (-827 |#1|) (-592 (-1092)) (-1 (-108) (-592 |#2|)))) (-15 -2538 ((-1 (-108) |#2|) (-827 |#1|))) (-15 -3723 ((-108) |#2| (-827 |#1|))) (-15 -3723 ((-108) (-592 |#2|) (-827 |#1|))) (-15 -3562 ((-827 |#1|) (-827 |#1|) |#2|)) (-15 -3799 ((-592 |#2|) (-827 |#1|)))) (-1020) (-1128)) (T -825))
-((-3799 (*1 *2 *3) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-5 *2 (-592 *5)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1128)))) (-3562 (*1 *2 *2 *3) (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-825 *4 *3)) (-4 *3 (-1128)))) (-3723 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *6 (-1128)) (-5 *2 (-108)) (-5 *1 (-825 *5 *6)))) (-3723 (*1 *2 *3 *4) (-12 (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-5 *2 (-108)) (-5 *1 (-825 *5 *3)) (-4 *3 (-1128)))) (-2538 (*1 *2 *3) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1128)))) (-2263 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-827 *5)) (-5 *3 (-592 (-1092))) (-5 *4 (-1 (-108) (-592 *6))) (-4 *5 (-1020)) (-4 *6 (-1128)) (-5 *1 (-825 *5 *6)))) (-2263 (*1 *2 *2 *3) (-12 (-5 *2 (-827 *4)) (-5 *3 (-592 (-1 (-108) *5))) (-4 *4 (-1020)) (-4 *5 (-1128)) (-5 *1 (-825 *4 *5)))) (-2263 (*1 *2 *2 *3) (-12 (-5 *2 (-827 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1020)) (-4 *5 (-1128)) (-5 *1 (-825 *4 *5)))))
-(-10 -7 (-15 -2263 ((-827 |#1|) (-827 |#1|) (-1 (-108) |#2|))) (-15 -2263 ((-827 |#1|) (-827 |#1|) (-592 (-1 (-108) |#2|)))) (-15 -2263 ((-827 |#1|) (-827 |#1|) (-592 (-1092)) (-1 (-108) (-592 |#2|)))) (-15 -2538 ((-1 (-108) |#2|) (-827 |#1|))) (-15 -3723 ((-108) |#2| (-827 |#1|))) (-15 -3723 ((-108) (-592 |#2|) (-827 |#1|))) (-15 -3562 ((-827 |#1|) (-827 |#1|) |#2|)) (-15 -3799 ((-592 |#2|) (-827 |#1|))))
-((-3165 (((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|)) 19)))
-(((-826 |#1| |#2|) (-10 -7 (-15 -3165 ((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|)))) (-1020) (-1020)) (T -826))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-827 *6)) (-5 *1 (-826 *5 *6)))))
-(-10 -7 (-15 -3165 ((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|))))
-((-4236 (((-108) $ $) NIL)) (-3204 (($ $ (-592 (-51))) 64)) (-2897 (((-592 $) $) 118)) (-1391 (((-2 (|:| |var| (-592 (-1092))) (|:| |pred| (-51))) $) 24)) (-1305 (((-108) $) 30)) (-3357 (($ $ (-592 (-1092)) (-51)) 25)) (-2825 (($ $ (-592 (-51))) 63)) (-3077 (((-3 |#1| "failed") $) 61) (((-3 (-1092) "failed") $) 140)) (-1572 ((|#1| $) 58) (((-1092) $) NIL)) (-2705 (($ $) 108)) (-3336 (((-108) $) 47)) (-3275 (((-592 (-51)) $) 45)) (-3298 (($ (-1092) (-108) (-108) (-108)) 65)) (-2378 (((-3 (-592 $) "failed") (-592 $)) 72)) (-3546 (((-108) $) 50)) (-2347 (((-108) $) 49)) (-2619 (((-1075) $) NIL)) (-1334 (((-3 (-592 $) "failed") $) 36)) (-1748 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-1687 (((-3 (-2 (|:| |val| $) (|:| -4193 $)) "failed") $) 83)) (-2001 (((-3 (-592 $) "failed") $) 33)) (-2090 (((-3 (-592 $) "failed") $ (-110)) 107) (((-3 (-2 (|:| -4188 (-110)) (|:| |arg| (-592 $))) "failed") $) 95)) (-3208 (((-3 (-592 $) "failed") $) 37)) (-2121 (((-3 (-2 (|:| |val| $) (|:| -4193 (-713))) "failed") $) 40)) (-1881 (((-108) $) 29)) (-2093 (((-1039) $) NIL)) (-1235 (((-108) $) 21)) (-1505 (((-108) $) 46)) (-4189 (((-592 (-51)) $) 111)) (-3448 (((-108) $) 48)) (-3406 (($ (-110) (-592 $)) 92)) (-1769 (((-713) $) 28)) (-1462 (($ $) 62)) (-3210 (($ (-592 $)) 59)) (-1226 (((-108) $) 26)) (-1217 (((-798) $) 53) (($ |#1|) 18) (($ (-1092)) 66)) (-3562 (($ $ (-51)) 110)) (-3349 (($) 91 T CONST)) (-3359 (($) 73 T CONST)) (-3955 (((-108) $ $) 79)) (-4075 (($ $ $) 100)) (-4047 (($ $ $) 104)) (** (($ $ (-713)) 99) (($ $ $) 54)) (* (($ $ $) 105)))
-(((-827 |#1|) (-13 (-1020) (-968 |#1|) (-968 (-1092)) (-10 -8 (-15 0 ($) -2709) (-15 1 ($) -2709) (-15 -2001 ((-3 (-592 $) "failed") $)) (-15 -1334 ((-3 (-592 $) "failed") $)) (-15 -2090 ((-3 (-592 $) "failed") $ (-110))) (-15 -2090 ((-3 (-2 (|:| -4188 (-110)) (|:| |arg| (-592 $))) "failed") $)) (-15 -2121 ((-3 (-2 (|:| |val| $) (|:| -4193 (-713))) "failed") $)) (-15 -1748 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3208 ((-3 (-592 $) "failed") $)) (-15 -1687 ((-3 (-2 (|:| |val| $) (|:| -4193 $)) "failed") $)) (-15 -3406 ($ (-110) (-592 $))) (-15 -4047 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ $)) (-15 -4075 ($ $ $)) (-15 -1769 ((-713) $)) (-15 -3210 ($ (-592 $))) (-15 -1462 ($ $)) (-15 -1881 ((-108) $)) (-15 -3336 ((-108) $)) (-15 -1305 ((-108) $)) (-15 -1226 ((-108) $)) (-15 -3448 ((-108) $)) (-15 -2347 ((-108) $)) (-15 -3546 ((-108) $)) (-15 -1505 ((-108) $)) (-15 -3275 ((-592 (-51)) $)) (-15 -2825 ($ $ (-592 (-51)))) (-15 -3204 ($ $ (-592 (-51)))) (-15 -3298 ($ (-1092) (-108) (-108) (-108))) (-15 -3357 ($ $ (-592 (-1092)) (-51))) (-15 -1391 ((-2 (|:| |var| (-592 (-1092))) (|:| |pred| (-51))) $)) (-15 -1235 ((-108) $)) (-15 -2705 ($ $)) (-15 -3562 ($ $ (-51))) (-15 -4189 ((-592 (-51)) $)) (-15 -2897 ((-592 $) $)) (-15 -2378 ((-3 (-592 $) "failed") (-592 $))))) (-1020)) (T -827))
-((-3349 (*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (-3359 (*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (-2001 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1334 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2090 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-827 *4))) (-5 *1 (-827 *4)) (-4 *4 (-1020)))) (-2090 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4188 (-110)) (|:| |arg| (-592 (-827 *3))))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2121 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-827 *3)) (|:| -4193 (-713)))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1748 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-827 *3)) (|:| |den| (-827 *3)))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-3208 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1687 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-827 *3)) (|:| -4193 (-827 *3)))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-3406 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 (-827 *4))) (-5 *1 (-827 *4)) (-4 *4 (-1020)))) (-4047 (*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (-4075 (*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-3210 (*1 *1 *2) (-12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1462 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-3336 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1305 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1226 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2347 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1505 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2825 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-3204 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-3298 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-108)) (-5 *1 (-827 *4)) (-4 *4 (-1020)))) (-3357 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-51)) (-5 *1 (-827 *4)) (-4 *4 (-1020)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-592 (-1092))) (|:| |pred| (-51)))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1235 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2705 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (-3562 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-4189 (*1 *2 *1) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2897 (*1 *2 *1) (-12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2378 (*1 *2 *2) (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
-(-13 (-1020) (-968 |#1|) (-968 (-1092)) (-10 -8 (-15 (-3349) ($) -2709) (-15 (-3359) ($) -2709) (-15 -2001 ((-3 (-592 $) "failed") $)) (-15 -1334 ((-3 (-592 $) "failed") $)) (-15 -2090 ((-3 (-592 $) "failed") $ (-110))) (-15 -2090 ((-3 (-2 (|:| -4188 (-110)) (|:| |arg| (-592 $))) "failed") $)) (-15 -2121 ((-3 (-2 (|:| |val| $) (|:| -4193 (-713))) "failed") $)) (-15 -1748 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3208 ((-3 (-592 $) "failed") $)) (-15 -1687 ((-3 (-2 (|:| |val| $) (|:| -4193 $)) "failed") $)) (-15 -3406 ($ (-110) (-592 $))) (-15 -4047 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ $)) (-15 -4075 ($ $ $)) (-15 -1769 ((-713) $)) (-15 -3210 ($ (-592 $))) (-15 -1462 ($ $)) (-15 -1881 ((-108) $)) (-15 -3336 ((-108) $)) (-15 -1305 ((-108) $)) (-15 -1226 ((-108) $)) (-15 -3448 ((-108) $)) (-15 -2347 ((-108) $)) (-15 -3546 ((-108) $)) (-15 -1505 ((-108) $)) (-15 -3275 ((-592 (-51)) $)) (-15 -2825 ($ $ (-592 (-51)))) (-15 -3204 ($ $ (-592 (-51)))) (-15 -3298 ($ (-1092) (-108) (-108) (-108))) (-15 -3357 ($ $ (-592 (-1092)) (-51))) (-15 -1391 ((-2 (|:| |var| (-592 (-1092))) (|:| |pred| (-51))) $)) (-15 -1235 ((-108) $)) (-15 -2705 ($ $)) (-15 -3562 ($ $ (-51))) (-15 -4189 ((-592 (-51)) $)) (-15 -2897 ((-592 $) $)) (-15 -2378 ((-3 (-592 $) "failed") (-592 $)))))
-((-4236 (((-108) $ $) NIL)) (-2726 (((-592 |#1|) $) 16)) (-4063 (((-108) $) 38)) (-3077 (((-3 (-617 |#1|) "failed") $) 43)) (-1572 (((-617 |#1|) $) 41)) (-1886 (($ $) 18)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-4178 (((-713) $) 46)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1872 (((-617 |#1|) $) 17)) (-1217 (((-798) $) 37) (($ (-617 |#1|)) 21) (((-761 |#1|) $) 27) (($ |#1|) 20)) (-3359 (($) 8 T CONST)) (-1719 (((-592 (-617 |#1|)) $) 23)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 11)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 49)))
-(((-828 |#1|) (-13 (-789) (-968 (-617 |#1|)) (-10 -8 (-15 1 ($) -2709) (-15 -1217 ((-761 |#1|) $)) (-15 -1217 ($ |#1|)) (-15 -1872 ((-617 |#1|) $)) (-15 -4178 ((-713) $)) (-15 -1719 ((-592 (-617 |#1|)) $)) (-15 -1886 ($ $)) (-15 -4063 ((-108) $)) (-15 -2726 ((-592 |#1|) $)))) (-789)) (T -828))
-((-3359 (*1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-789)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-828 *3)) (-4 *3 (-789)))) (-1217 (*1 *1 *2) (-12 (-5 *1 (-828 *2)) (-4 *2 (-789)))) (-1872 (*1 *2 *1) (-12 (-5 *2 (-617 *3)) (-5 *1 (-828 *3)) (-4 *3 (-789)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-828 *3)) (-4 *3 (-789)))) (-1719 (*1 *2 *1) (-12 (-5 *2 (-592 (-617 *3))) (-5 *1 (-828 *3)) (-4 *3 (-789)))) (-1886 (*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-789)))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-828 *3)) (-4 *3 (-789)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-828 *3)) (-4 *3 (-789)))))
-(-13 (-789) (-968 (-617 |#1|)) (-10 -8 (-15 (-3359) ($) -2709) (-15 -1217 ((-761 |#1|) $)) (-15 -1217 ($ |#1|)) (-15 -1872 ((-617 |#1|) $)) (-15 -4178 ((-713) $)) (-15 -1719 ((-592 (-617 |#1|)) $)) (-15 -1886 ($ $)) (-15 -4063 ((-108) $)) (-15 -2726 ((-592 |#1|) $))))
-((-3011 ((|#1| |#1| |#1|) 19)))
-(((-829 |#1| |#2|) (-10 -7 (-15 -3011 (|#1| |#1| |#1|))) (-1150 |#2|) (-977)) (T -829))
-((-3011 (*1 *2 *2 *2) (-12 (-4 *3 (-977)) (-5 *1 (-829 *2 *3)) (-4 *2 (-1150 *3)))))
-(-10 -7 (-15 -3011 (|#1| |#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-1533 (((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) 14)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3804 (((-966) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) 13)) (-3955 (((-108) $ $) 6)))
+((-2412 (((-108) (-592 |#2|) |#3|) 23) (((-108) |#2| |#3|) 18)) (-4143 (((-824 |#1| |#2|) |#2| |#3|) 43 (-12 (-3272 (|has| |#2| (-968 (-1092)))) (-3272 (|has| |#2| (-977))))) (((-592 (-273 (-887 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-977)) (-3272 (|has| |#2| (-968 (-1092)))))) (((-592 (-273 |#2|)) |#2| |#3|) 35 (|has| |#2| (-968 (-1092)))) (((-820 |#1| |#2| (-592 |#2|)) (-592 |#2|) |#3|) 21)))
+(((-822 |#1| |#2| |#3|) (-10 -7 (-15 -2412 ((-108) |#2| |#3|)) (-15 -2412 ((-108) (-592 |#2|) |#3|)) (-15 -4143 ((-820 |#1| |#2| (-592 |#2|)) (-592 |#2|) |#3|)) (IF (|has| |#2| (-968 (-1092))) (-15 -4143 ((-592 (-273 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-977)) (-15 -4143 ((-592 (-273 (-887 |#2|))) |#2| |#3|)) (-15 -4143 ((-824 |#1| |#2|) |#2| |#3|))))) (-1020) (-821 |#1|) (-567 (-827 |#1|))) (T -822))
+((-4143 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-5 *2 (-824 *5 *3)) (-5 *1 (-822 *5 *3 *4)) (-3272 (-4 *3 (-968 (-1092)))) (-3272 (-4 *3 (-977))) (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5))))) (-4143 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-5 *2 (-592 (-273 (-887 *3)))) (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-977)) (-3272 (-4 *3 (-968 (-1092)))) (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5))))) (-4143 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-5 *2 (-592 (-273 *3))) (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-968 (-1092))) (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5))))) (-4143 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-4 *6 (-821 *5)) (-5 *2 (-820 *5 *6 (-592 *6))) (-5 *1 (-822 *5 *6 *4)) (-5 *3 (-592 *6)) (-4 *4 (-567 (-827 *5))))) (-2412 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-4 *6 (-821 *5)) (-4 *5 (-1020)) (-5 *2 (-108)) (-5 *1 (-822 *5 *6 *4)) (-4 *4 (-567 (-827 *5))))) (-2412 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-5 *2 (-108)) (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5))))))
+(-10 -7 (-15 -2412 ((-108) |#2| |#3|)) (-15 -2412 ((-108) (-592 |#2|) |#3|)) (-15 -4143 ((-820 |#1| |#2| (-592 |#2|)) (-592 |#2|) |#3|)) (IF (|has| |#2| (-968 (-1092))) (-15 -4143 ((-592 (-273 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-977)) (-15 -4143 ((-592 (-273 (-887 |#2|))) |#2| |#3|)) (-15 -4143 ((-824 |#1| |#2|) |#2| |#3|)))))
+((-2016 (((-824 |#1| |#3|) (-1 |#3| |#2|) (-824 |#1| |#2|)) 22)))
+(((-823 |#1| |#2| |#3|) (-10 -7 (-15 -2016 ((-824 |#1| |#3|) (-1 |#3| |#2|) (-824 |#1| |#2|)))) (-1020) (-1020) (-1020)) (T -823))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-824 *5 *6)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-824 *5 *7)) (-5 *1 (-823 *5 *6 *7)))))
+(-10 -7 (-15 -2016 ((-824 |#1| |#3|) (-1 |#3| |#2|) (-824 |#1| |#2|))))
+((-4087 (((-108) $ $) NIL)) (-1705 (($ $ $) 39)) (-4127 (((-3 (-108) "failed") $ (-827 |#1|)) 36)) (-3324 (($) 12)) (-1289 (((-1075) $) NIL)) (-3726 (($ (-827 |#1|) |#2| $) 20)) (-3993 (((-1039) $) NIL)) (-3138 (((-3 |#2| "failed") (-827 |#1|) $) 50)) (-2834 (((-108) $) 15)) (-1669 (($) 13)) (-1230 (((-592 (-2 (|:| -1556 (-1092)) (|:| -3448 |#2|))) $) 25)) (-4114 (($ (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 |#2|)))) 23)) (-4100 (((-798) $) 44)) (-3505 (($ (-827 |#1|) |#2| $ |#2|) 48)) (-4208 (($ (-827 |#1|) |#2| $) 47)) (-2775 (((-108) $ $) 41)))
+(((-824 |#1| |#2|) (-13 (-1020) (-10 -8 (-15 -2834 ((-108) $)) (-15 -1669 ($)) (-15 -3324 ($)) (-15 -1705 ($ $ $)) (-15 -3138 ((-3 |#2| "failed") (-827 |#1|) $)) (-15 -4208 ($ (-827 |#1|) |#2| $)) (-15 -3726 ($ (-827 |#1|) |#2| $)) (-15 -3505 ($ (-827 |#1|) |#2| $ |#2|)) (-15 -1230 ((-592 (-2 (|:| -1556 (-1092)) (|:| -3448 |#2|))) $)) (-15 -4114 ($ (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 |#2|))))) (-15 -4127 ((-3 (-108) "failed") $ (-827 |#1|))))) (-1020) (-1020)) (T -824))
+((-2834 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-824 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-1669 (*1 *1) (-12 (-5 *1 (-824 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-3324 (*1 *1) (-12 (-5 *1 (-824 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-1705 (*1 *1 *1 *1) (-12 (-5 *1 (-824 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-3138 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-4 *2 (-1020)) (-5 *1 (-824 *4 *2)))) (-4208 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1020)))) (-3726 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1020)))) (-3505 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1020)))) (-1230 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 *4)))) (-5 *1 (-824 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 *4)))) (-4 *4 (-1020)) (-5 *1 (-824 *3 *4)) (-4 *3 (-1020)))) (-4127 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-5 *2 (-108)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1020)))))
+(-13 (-1020) (-10 -8 (-15 -2834 ((-108) $)) (-15 -1669 ($)) (-15 -3324 ($)) (-15 -1705 ($ $ $)) (-15 -3138 ((-3 |#2| "failed") (-827 |#1|) $)) (-15 -4208 ($ (-827 |#1|) |#2| $)) (-15 -3726 ($ (-827 |#1|) |#2| $)) (-15 -3505 ($ (-827 |#1|) |#2| $ |#2|)) (-15 -1230 ((-592 (-2 (|:| -1556 (-1092)) (|:| -3448 |#2|))) $)) (-15 -4114 ($ (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 |#2|))))) (-15 -4127 ((-3 (-108) "failed") $ (-827 |#1|)))))
+((-4113 (((-827 |#1|) (-827 |#1|) (-592 (-1092)) (-1 (-108) (-592 |#2|))) 32) (((-827 |#1|) (-827 |#1|) (-592 (-1 (-108) |#2|))) 43) (((-827 |#1|) (-827 |#1|) (-1 (-108) |#2|)) 35)) (-4127 (((-108) (-592 |#2|) (-827 |#1|)) 40) (((-108) |#2| (-827 |#1|)) 36)) (-2285 (((-1 (-108) |#2|) (-827 |#1|)) 16)) (-3636 (((-592 |#2|) (-827 |#1|)) 24)) (-1967 (((-827 |#1|) (-827 |#1|) |#2|) 20)))
+(((-825 |#1| |#2|) (-10 -7 (-15 -4113 ((-827 |#1|) (-827 |#1|) (-1 (-108) |#2|))) (-15 -4113 ((-827 |#1|) (-827 |#1|) (-592 (-1 (-108) |#2|)))) (-15 -4113 ((-827 |#1|) (-827 |#1|) (-592 (-1092)) (-1 (-108) (-592 |#2|)))) (-15 -2285 ((-1 (-108) |#2|) (-827 |#1|))) (-15 -4127 ((-108) |#2| (-827 |#1|))) (-15 -4127 ((-108) (-592 |#2|) (-827 |#1|))) (-15 -1967 ((-827 |#1|) (-827 |#1|) |#2|)) (-15 -3636 ((-592 |#2|) (-827 |#1|)))) (-1020) (-1128)) (T -825))
+((-3636 (*1 *2 *3) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-5 *2 (-592 *5)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1128)))) (-1967 (*1 *2 *2 *3) (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-825 *4 *3)) (-4 *3 (-1128)))) (-4127 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *6 (-1128)) (-5 *2 (-108)) (-5 *1 (-825 *5 *6)))) (-4127 (*1 *2 *3 *4) (-12 (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-5 *2 (-108)) (-5 *1 (-825 *5 *3)) (-4 *3 (-1128)))) (-2285 (*1 *2 *3) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1128)))) (-4113 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-827 *5)) (-5 *3 (-592 (-1092))) (-5 *4 (-1 (-108) (-592 *6))) (-4 *5 (-1020)) (-4 *6 (-1128)) (-5 *1 (-825 *5 *6)))) (-4113 (*1 *2 *2 *3) (-12 (-5 *2 (-827 *4)) (-5 *3 (-592 (-1 (-108) *5))) (-4 *4 (-1020)) (-4 *5 (-1128)) (-5 *1 (-825 *4 *5)))) (-4113 (*1 *2 *2 *3) (-12 (-5 *2 (-827 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1020)) (-4 *5 (-1128)) (-5 *1 (-825 *4 *5)))))
+(-10 -7 (-15 -4113 ((-827 |#1|) (-827 |#1|) (-1 (-108) |#2|))) (-15 -4113 ((-827 |#1|) (-827 |#1|) (-592 (-1 (-108) |#2|)))) (-15 -4113 ((-827 |#1|) (-827 |#1|) (-592 (-1092)) (-1 (-108) (-592 |#2|)))) (-15 -2285 ((-1 (-108) |#2|) (-827 |#1|))) (-15 -4127 ((-108) |#2| (-827 |#1|))) (-15 -4127 ((-108) (-592 |#2|) (-827 |#1|))) (-15 -1967 ((-827 |#1|) (-827 |#1|) |#2|)) (-15 -3636 ((-592 |#2|) (-827 |#1|))))
+((-2016 (((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|)) 19)))
+(((-826 |#1| |#2|) (-10 -7 (-15 -2016 ((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|)))) (-1020) (-1020)) (T -826))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-827 *6)) (-5 *1 (-826 *5 *6)))))
+(-10 -7 (-15 -2016 ((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|))))
+((-4087 (((-108) $ $) NIL)) (-1860 (($ $ (-592 (-51))) 64)) (-1296 (((-592 $) $) 118)) (-3689 (((-2 (|:| |var| (-592 (-1092))) (|:| |pred| (-51))) $) 24)) (-3162 (((-108) $) 30)) (-1851 (($ $ (-592 (-1092)) (-51)) 25)) (-1378 (($ $ (-592 (-51))) 63)) (-1934 (((-3 |#1| "failed") $) 61) (((-3 (-1092) "failed") $) 140)) (-4105 ((|#1| $) 58) (((-1092) $) NIL)) (-2717 (($ $) 108)) (-1687 (((-108) $) 47)) (-4237 (((-592 (-51)) $) 45)) (-1325 (($ (-1092) (-108) (-108) (-108)) 65)) (-2665 (((-3 (-592 $) "failed") (-592 $)) 72)) (-2947 (((-108) $) 50)) (-3570 (((-108) $) 49)) (-1289 (((-1075) $) NIL)) (-2977 (((-3 (-592 $) "failed") $) 36)) (-2889 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-3159 (((-3 (-2 (|:| |val| $) (|:| -2168 $)) "failed") $) 83)) (-3165 (((-3 (-592 $) "failed") $) 33)) (-2836 (((-3 (-592 $) "failed") $ (-110)) 107) (((-3 (-2 (|:| -1534 (-110)) (|:| |arg| (-592 $))) "failed") $) 95)) (-1898 (((-3 (-592 $) "failed") $) 37)) (-1986 (((-3 (-2 (|:| |val| $) (|:| -2168 (-713))) "failed") $) 40)) (-1362 (((-108) $) 29)) (-3993 (((-1039) $) NIL)) (-1235 (((-108) $) 21)) (-3131 (((-108) $) 46)) (-2142 (((-592 (-51)) $) 111)) (-3215 (((-108) $) 48)) (-3431 (($ (-110) (-592 $)) 92)) (-2895 (((-713) $) 28)) (-2503 (($ $) 62)) (-2069 (($ (-592 $)) 59)) (-1930 (((-108) $) 26)) (-4100 (((-798) $) 53) (($ |#1|) 18) (($ (-1092)) 66)) (-1967 (($ $ (-51)) 110)) (-3364 (($) 91 T CONST)) (-3375 (($) 73 T CONST)) (-2775 (((-108) $ $) 79)) (-2880 (($ $ $) 100)) (-2860 (($ $ $) 104)) (** (($ $ (-713)) 99) (($ $ $) 54)) (* (($ $ $) 105)))
+(((-827 |#1|) (-13 (-1020) (-968 |#1|) (-968 (-1092)) (-10 -8 (-15 0 ($) -2247) (-15 1 ($) -2247) (-15 -3165 ((-3 (-592 $) "failed") $)) (-15 -2977 ((-3 (-592 $) "failed") $)) (-15 -2836 ((-3 (-592 $) "failed") $ (-110))) (-15 -2836 ((-3 (-2 (|:| -1534 (-110)) (|:| |arg| (-592 $))) "failed") $)) (-15 -1986 ((-3 (-2 (|:| |val| $) (|:| -2168 (-713))) "failed") $)) (-15 -2889 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1898 ((-3 (-592 $) "failed") $)) (-15 -3159 ((-3 (-2 (|:| |val| $) (|:| -2168 $)) "failed") $)) (-15 -3431 ($ (-110) (-592 $))) (-15 -2860 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ $)) (-15 -2880 ($ $ $)) (-15 -2895 ((-713) $)) (-15 -2069 ($ (-592 $))) (-15 -2503 ($ $)) (-15 -1362 ((-108) $)) (-15 -1687 ((-108) $)) (-15 -3162 ((-108) $)) (-15 -1930 ((-108) $)) (-15 -3215 ((-108) $)) (-15 -3570 ((-108) $)) (-15 -2947 ((-108) $)) (-15 -3131 ((-108) $)) (-15 -4237 ((-592 (-51)) $)) (-15 -1378 ($ $ (-592 (-51)))) (-15 -1860 ($ $ (-592 (-51)))) (-15 -1325 ($ (-1092) (-108) (-108) (-108))) (-15 -1851 ($ $ (-592 (-1092)) (-51))) (-15 -3689 ((-2 (|:| |var| (-592 (-1092))) (|:| |pred| (-51))) $)) (-15 -1235 ((-108) $)) (-15 -2717 ($ $)) (-15 -1967 ($ $ (-51))) (-15 -2142 ((-592 (-51)) $)) (-15 -1296 ((-592 $) $)) (-15 -2665 ((-3 (-592 $) "failed") (-592 $))))) (-1020)) (T -827))
+((-3364 (*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (-3375 (*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (-3165 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2977 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2836 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-827 *4))) (-5 *1 (-827 *4)) (-4 *4 (-1020)))) (-2836 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1534 (-110)) (|:| |arg| (-592 (-827 *3))))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1986 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-827 *3)) (|:| -2168 (-713)))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2889 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-827 *3)) (|:| |den| (-827 *3)))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1898 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-3159 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-827 *3)) (|:| -2168 (-827 *3)))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-3431 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 (-827 *4))) (-5 *1 (-827 *4)) (-4 *4 (-1020)))) (-2860 (*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (-2880 (*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (-2895 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2069 (*1 *1 *2) (-12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2503 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1687 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-3215 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-3131 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-4237 (*1 *2 *1) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1378 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1860 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1325 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-108)) (-5 *1 (-827 *4)) (-4 *4 (-1020)))) (-1851 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-51)) (-5 *1 (-827 *4)) (-4 *4 (-1020)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-592 (-1092))) (|:| |pred| (-51)))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1235 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2717 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (-1967 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2142 (*1 *2 *1) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1296 (*1 *2 *1) (-12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2665 (*1 *2 *2) (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(-13 (-1020) (-968 |#1|) (-968 (-1092)) (-10 -8 (-15 (-3364) ($) -2247) (-15 (-3375) ($) -2247) (-15 -3165 ((-3 (-592 $) "failed") $)) (-15 -2977 ((-3 (-592 $) "failed") $)) (-15 -2836 ((-3 (-592 $) "failed") $ (-110))) (-15 -2836 ((-3 (-2 (|:| -1534 (-110)) (|:| |arg| (-592 $))) "failed") $)) (-15 -1986 ((-3 (-2 (|:| |val| $) (|:| -2168 (-713))) "failed") $)) (-15 -2889 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1898 ((-3 (-592 $) "failed") $)) (-15 -3159 ((-3 (-2 (|:| |val| $) (|:| -2168 $)) "failed") $)) (-15 -3431 ($ (-110) (-592 $))) (-15 -2860 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ $)) (-15 -2880 ($ $ $)) (-15 -2895 ((-713) $)) (-15 -2069 ($ (-592 $))) (-15 -2503 ($ $)) (-15 -1362 ((-108) $)) (-15 -1687 ((-108) $)) (-15 -3162 ((-108) $)) (-15 -1930 ((-108) $)) (-15 -3215 ((-108) $)) (-15 -3570 ((-108) $)) (-15 -2947 ((-108) $)) (-15 -3131 ((-108) $)) (-15 -4237 ((-592 (-51)) $)) (-15 -1378 ($ $ (-592 (-51)))) (-15 -1860 ($ $ (-592 (-51)))) (-15 -1325 ($ (-1092) (-108) (-108) (-108))) (-15 -1851 ($ $ (-592 (-1092)) (-51))) (-15 -3689 ((-2 (|:| |var| (-592 (-1092))) (|:| |pred| (-51))) $)) (-15 -1235 ((-108) $)) (-15 -2717 ($ $)) (-15 -1967 ($ $ (-51))) (-15 -2142 ((-592 (-51)) $)) (-15 -1296 ((-592 $) $)) (-15 -2665 ((-3 (-592 $) "failed") (-592 $)))))
+((-4087 (((-108) $ $) NIL)) (-2668 (((-592 |#1|) $) 16)) (-3278 (((-108) $) 38)) (-1934 (((-3 (-617 |#1|) "failed") $) 43)) (-4105 (((-617 |#1|) $) 41)) (-1659 (($ $) 18)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-4128 (((-713) $) 46)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1647 (((-617 |#1|) $) 17)) (-4100 (((-798) $) 37) (($ (-617 |#1|)) 21) (((-761 |#1|) $) 27) (($ |#1|) 20)) (-3375 (($) 8 T CONST)) (-3482 (((-592 (-617 |#1|)) $) 23)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 11)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 49)))
+(((-828 |#1|) (-13 (-789) (-968 (-617 |#1|)) (-10 -8 (-15 1 ($) -2247) (-15 -4100 ((-761 |#1|) $)) (-15 -4100 ($ |#1|)) (-15 -1647 ((-617 |#1|) $)) (-15 -4128 ((-713) $)) (-15 -3482 ((-592 (-617 |#1|)) $)) (-15 -1659 ($ $)) (-15 -3278 ((-108) $)) (-15 -2668 ((-592 |#1|) $)))) (-789)) (T -828))
+((-3375 (*1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-789)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-828 *3)) (-4 *3 (-789)))) (-4100 (*1 *1 *2) (-12 (-5 *1 (-828 *2)) (-4 *2 (-789)))) (-1647 (*1 *2 *1) (-12 (-5 *2 (-617 *3)) (-5 *1 (-828 *3)) (-4 *3 (-789)))) (-4128 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-828 *3)) (-4 *3 (-789)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-592 (-617 *3))) (-5 *1 (-828 *3)) (-4 *3 (-789)))) (-1659 (*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-789)))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-828 *3)) (-4 *3 (-789)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-828 *3)) (-4 *3 (-789)))))
+(-13 (-789) (-968 (-617 |#1|)) (-10 -8 (-15 (-3375) ($) -2247) (-15 -4100 ((-761 |#1|) $)) (-15 -4100 ($ |#1|)) (-15 -1647 ((-617 |#1|) $)) (-15 -4128 ((-713) $)) (-15 -3482 ((-592 (-617 |#1|)) $)) (-15 -1659 ($ $)) (-15 -3278 ((-108) $)) (-15 -2668 ((-592 |#1|) $))))
+((-3728 ((|#1| |#1| |#1|) 19)))
+(((-829 |#1| |#2|) (-10 -7 (-15 -3728 (|#1| |#1| |#1|))) (-1150 |#2|) (-977)) (T -829))
+((-3728 (*1 *2 *2 *2) (-12 (-4 *3 (-977)) (-5 *1 (-829 *2 *3)) (-4 *2 (-1150 *3)))))
+(-10 -7 (-15 -3728 (|#1| |#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-1257 (((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) 14)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3688 (((-966) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) 13)) (-2775 (((-108) $ $) 6)))
(((-830) (-131)) (T -830))
-((-1533 (*1 *2 *3 *4) (-12 (-4 *1 (-830)) (-5 *3 (-989)) (-5 *4 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) (-5 *2 (-2 (|:| -1533 (-357)) (|:| |explanations| (-1075)))))) (-3804 (*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *3 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) (-5 *2 (-966)))))
-(-13 (-1020) (-10 -7 (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205))))) (-15 -3804 ((-966) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))))))
+((-1257 (*1 *2 *3 *4) (-12 (-4 *1 (-830)) (-5 *3 (-989)) (-5 *4 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) (-5 *2 (-2 (|:| -1257 (-357)) (|:| |explanations| (-1075)))))) (-3688 (*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *3 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) (-5 *2 (-966)))))
+(-13 (-1020) (-10 -7 (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))) (-989) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205))))) (-15 -3688 ((-966) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))))))
(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-3410 ((|#1| |#1| (-713)) 24)) (-1211 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3262 (((-3 (-2 (|:| -3507 |#1|) (|:| -3519 |#1|)) "failed") |#1| (-713) (-713)) 27) (((-592 |#1|) |#1|) 29)))
-(((-831 |#1| |#2|) (-10 -7 (-15 -3262 ((-592 |#1|) |#1|)) (-15 -3262 ((-3 (-2 (|:| -3507 |#1|) (|:| -3519 |#1|)) "failed") |#1| (-713) (-713))) (-15 -1211 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3410 (|#1| |#1| (-713)))) (-1150 |#2|) (-341)) (T -831))
-((-3410 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-5 *1 (-831 *2 *4)) (-4 *2 (-1150 *4)))) (-1211 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-341)) (-5 *1 (-831 *2 *3)) (-4 *2 (-1150 *3)))) (-3262 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-713)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -3507 *3) (|:| -3519 *3))) (-5 *1 (-831 *3 *5)) (-4 *3 (-1150 *5)))) (-3262 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-831 *3 *4)) (-4 *3 (-1150 *4)))))
-(-10 -7 (-15 -3262 ((-592 |#1|) |#1|)) (-15 -3262 ((-3 (-2 (|:| -3507 |#1|) (|:| -3519 |#1|)) "failed") |#1| (-713) (-713))) (-15 -1211 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3410 (|#1| |#1| (-713))))
-((-3922 (((-966) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1075)) 96) (((-966) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1075) (-205)) 91) (((-966) (-833) (-989)) 83) (((-966) (-833)) 84)) (-1533 (((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))) (-833) (-989)) 59) (((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))) (-833)) 61)))
-(((-832) (-10 -7 (-15 -3922 ((-966) (-833))) (-15 -3922 ((-966) (-833) (-989))) (-15 -3922 ((-966) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1075) (-205))) (-15 -3922 ((-966) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1075))) (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))) (-833))) (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))) (-833) (-989))))) (T -832))
-((-1533 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-989)) (-5 *2 (-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))))) (-5 *1 (-832)))) (-1533 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075))))) (-5 *1 (-832)))) (-3922 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-713)) (-5 *6 (-592 (-592 (-294 *3)))) (-5 *7 (-1075)) (-5 *5 (-592 (-294 (-357)))) (-5 *3 (-357)) (-5 *2 (-966)) (-5 *1 (-832)))) (-3922 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-713)) (-5 *6 (-592 (-592 (-294 *3)))) (-5 *7 (-1075)) (-5 *8 (-205)) (-5 *5 (-592 (-294 (-357)))) (-5 *3 (-357)) (-5 *2 (-966)) (-5 *1 (-832)))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-989)) (-5 *2 (-966)) (-5 *1 (-832)))) (-3922 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-966)) (-5 *1 (-832)))))
-(-10 -7 (-15 -3922 ((-966) (-833))) (-15 -3922 ((-966) (-833) (-989))) (-15 -3922 ((-966) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1075) (-205))) (-15 -3922 ((-966) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1075))) (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))) (-833))) (-15 -1533 ((-2 (|:| -1533 (-357)) (|:| -3257 (-1075)) (|:| |explanations| (-592 (-1075)))) (-833) (-989))))
-((-4236 (((-108) $ $) NIL)) (-1572 (((-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205))) $) 19)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 21) (($ (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) 18)) (-3955 (((-108) $ $) NIL)))
-(((-833) (-13 (-1020) (-10 -8 (-15 -1217 ($ (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205))))) (-15 -1217 ((-798) $)) (-15 -1572 ((-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205))) $))))) (T -833))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-833)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) (-5 *1 (-833)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) (-5 *1 (-833)))))
-(-13 (-1020) (-10 -8 (-15 -1217 ($ (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205))))) (-15 -1217 ((-798) $)) (-15 -1572 ((-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205))) $))))
-((-3376 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) 10) (($ $ |#2| (-713)) 12) (($ $ (-592 |#2|) (-592 (-713))) 15)) (-2022 (($ $ |#2|) 16) (($ $ (-592 |#2|)) 18) (($ $ |#2| (-713)) 19) (($ $ (-592 |#2|) (-592 (-713))) 21)))
-(((-834 |#1| |#2|) (-10 -8 (-15 -2022 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -2022 (|#1| |#1| |#2| (-713))) (-15 -2022 (|#1| |#1| (-592 |#2|))) (-15 -2022 (|#1| |#1| |#2|)) (-15 -3376 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -3376 (|#1| |#1| |#2| (-713))) (-15 -3376 (|#1| |#1| (-592 |#2|))) (-15 -3376 (|#1| |#1| |#2|))) (-835 |#2|) (-1020)) (T -834))
-NIL
-(-10 -8 (-15 -2022 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -2022 (|#1| |#1| |#2| (-713))) (-15 -2022 (|#1| |#1| (-592 |#2|))) (-15 -2022 (|#1| |#1| |#2|)) (-15 -3376 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -3376 (|#1| |#1| |#2| (-713))) (-15 -3376 (|#1| |#1| (-592 |#2|))) (-15 -3376 (|#1| |#1| |#2|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-3376 (($ $ |#1|) 42) (($ $ (-592 |#1|)) 41) (($ $ |#1| (-713)) 40) (($ $ (-592 |#1|) (-592 (-713))) 39)) (-1217 (((-798) $) 11) (($ (-525)) 28)) (-3917 (((-713)) 29)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $ |#1|) 38) (($ $ (-592 |#1|)) 37) (($ $ |#1| (-713)) 36) (($ $ (-592 |#1|) (-592 (-713))) 35)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-4133 ((|#1| |#1| (-713)) 24)) (-2437 (((-3 |#1| "failed") |#1| |#1|) 22)) (-4129 (((-3 (-2 (|:| -3436 |#1|) (|:| -3446 |#1|)) "failed") |#1| (-713) (-713)) 27) (((-592 |#1|) |#1|) 29)))
+(((-831 |#1| |#2|) (-10 -7 (-15 -4129 ((-592 |#1|) |#1|)) (-15 -4129 ((-3 (-2 (|:| -3436 |#1|) (|:| -3446 |#1|)) "failed") |#1| (-713) (-713))) (-15 -2437 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4133 (|#1| |#1| (-713)))) (-1150 |#2|) (-341)) (T -831))
+((-4133 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-5 *1 (-831 *2 *4)) (-4 *2 (-1150 *4)))) (-2437 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-341)) (-5 *1 (-831 *2 *3)) (-4 *2 (-1150 *3)))) (-4129 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-713)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -3436 *3) (|:| -3446 *3))) (-5 *1 (-831 *3 *5)) (-4 *3 (-1150 *5)))) (-4129 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-831 *3 *4)) (-4 *3 (-1150 *4)))))
+(-10 -7 (-15 -4129 ((-592 |#1|) |#1|)) (-15 -4129 ((-3 (-2 (|:| -3436 |#1|) (|:| -3446 |#1|)) "failed") |#1| (-713) (-713))) (-15 -2437 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4133 (|#1| |#1| (-713))))
+((-2496 (((-966) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1075)) 96) (((-966) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1075) (-205)) 91) (((-966) (-833) (-989)) 83) (((-966) (-833)) 84)) (-1257 (((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))) (-833) (-989)) 59) (((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))) (-833)) 61)))
+(((-832) (-10 -7 (-15 -2496 ((-966) (-833))) (-15 -2496 ((-966) (-833) (-989))) (-15 -2496 ((-966) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1075) (-205))) (-15 -2496 ((-966) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1075))) (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))) (-833))) (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))) (-833) (-989))))) (T -832))
+((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-989)) (-5 *2 (-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))))) (-5 *1 (-832)))) (-1257 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075))))) (-5 *1 (-832)))) (-2496 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-713)) (-5 *6 (-592 (-592 (-294 *3)))) (-5 *7 (-1075)) (-5 *5 (-592 (-294 (-357)))) (-5 *3 (-357)) (-5 *2 (-966)) (-5 *1 (-832)))) (-2496 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-713)) (-5 *6 (-592 (-592 (-294 *3)))) (-5 *7 (-1075)) (-5 *8 (-205)) (-5 *5 (-592 (-294 (-357)))) (-5 *3 (-357)) (-5 *2 (-966)) (-5 *1 (-832)))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-989)) (-5 *2 (-966)) (-5 *1 (-832)))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-966)) (-5 *1 (-832)))))
+(-10 -7 (-15 -2496 ((-966) (-833))) (-15 -2496 ((-966) (-833) (-989))) (-15 -2496 ((-966) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1075) (-205))) (-15 -2496 ((-966) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1075))) (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))) (-833))) (-15 -1257 ((-2 (|:| -1257 (-357)) (|:| -2411 (-1075)) (|:| |explanations| (-592 (-1075)))) (-833) (-989))))
+((-4087 (((-108) $ $) NIL)) (-4105 (((-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205))) $) 19)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 21) (($ (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) 18)) (-2775 (((-108) $ $) NIL)))
+(((-833) (-13 (-1020) (-10 -8 (-15 -4100 ($ (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205))))) (-15 -4100 ((-798) $)) (-15 -4105 ((-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205))) $))))) (T -833))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-833)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) (-5 *1 (-833)))) (-4105 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205)))) (-5 *1 (-833)))))
+(-13 (-1020) (-10 -8 (-15 -4100 ($ (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205))))) (-15 -4100 ((-798) $)) (-15 -4105 ((-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075)) (|:| |tol| (-205))) $))))
+((-2702 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) 10) (($ $ |#2| (-713)) 12) (($ $ (-592 |#2|) (-592 (-713))) 15)) (-2401 (($ $ |#2|) 16) (($ $ (-592 |#2|)) 18) (($ $ |#2| (-713)) 19) (($ $ (-592 |#2|) (-592 (-713))) 21)))
+(((-834 |#1| |#2|) (-10 -8 (-15 -2401 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -2401 (|#1| |#1| |#2| (-713))) (-15 -2401 (|#1| |#1| (-592 |#2|))) (-15 -2401 (|#1| |#1| |#2|)) (-15 -2702 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -2702 (|#1| |#1| |#2| (-713))) (-15 -2702 (|#1| |#1| (-592 |#2|))) (-15 -2702 (|#1| |#1| |#2|))) (-835 |#2|) (-1020)) (T -834))
+NIL
+(-10 -8 (-15 -2401 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -2401 (|#1| |#1| |#2| (-713))) (-15 -2401 (|#1| |#1| (-592 |#2|))) (-15 -2401 (|#1| |#1| |#2|)) (-15 -2702 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -2702 (|#1| |#1| |#2| (-713))) (-15 -2702 (|#1| |#1| (-592 |#2|))) (-15 -2702 (|#1| |#1| |#2|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-2702 (($ $ |#1|) 42) (($ $ (-592 |#1|)) 41) (($ $ |#1| (-713)) 40) (($ $ (-592 |#1|) (-592 (-713))) 39)) (-4100 (((-798) $) 11) (($ (-525)) 28)) (-2448 (((-713)) 29)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $ |#1|) 38) (($ $ (-592 |#1|)) 37) (($ $ |#1| (-713)) 36) (($ $ (-592 |#1|) (-592 (-713))) 35)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-835 |#1|) (-131) (-1020)) (T -835))
-((-3376 (*1 *1 *1 *2) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1020)))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-835 *3)) (-4 *3 (-1020)))) (-3376 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-835 *2)) (-4 *2 (-1020)))) (-3376 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-835 *4)) (-4 *4 (-1020)))) (-2022 (*1 *1 *1 *2) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1020)))) (-2022 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-835 *3)) (-4 *3 (-1020)))) (-2022 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-835 *2)) (-4 *2 (-1020)))) (-2022 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-835 *4)) (-4 *4 (-1020)))))
-(-13 (-977) (-10 -8 (-15 -3376 ($ $ |t#1|)) (-15 -3376 ($ $ (-592 |t#1|))) (-15 -3376 ($ $ |t#1| (-713))) (-15 -3376 ($ $ (-592 |t#1|) (-592 (-713)))) (-15 -2022 ($ $ |t#1|)) (-15 -2022 ($ $ (-592 |t#1|))) (-15 -2022 ($ $ |t#1| (-713))) (-15 -2022 ($ $ (-592 |t#1|) (-592 (-713))))))
+((-2702 (*1 *1 *1 *2) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1020)))) (-2702 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-835 *3)) (-4 *3 (-1020)))) (-2702 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-835 *2)) (-4 *2 (-1020)))) (-2702 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-835 *4)) (-4 *4 (-1020)))) (-2401 (*1 *1 *1 *2) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1020)))) (-2401 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-835 *3)) (-4 *3 (-1020)))) (-2401 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-835 *2)) (-4 *2 (-1020)))) (-2401 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-835 *4)) (-4 *4 (-1020)))))
+(-13 (-977) (-10 -8 (-15 -2702 ($ $ |t#1|)) (-15 -2702 ($ $ (-592 |t#1|))) (-15 -2702 ($ $ |t#1| (-713))) (-15 -2702 ($ $ (-592 |t#1|) (-592 (-713)))) (-15 -2401 ($ $ |t#1|)) (-15 -2401 ($ $ (-592 |t#1|))) (-15 -2401 ($ $ |t#1| (-713))) (-15 -2401 ($ $ (-592 |t#1|) (-592 (-713))))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-669) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3284 ((|#1| $) 26)) (-3991 (((-108) $ (-713)) NIL)) (-3214 ((|#1| $ |#1|) NIL (|has| $ (-6 -4259)))) (-3121 (($ $ $) NIL (|has| $ (-6 -4259)))) (-3720 (($ $ $) NIL (|has| $ (-6 -4259)))) (-1430 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4259))) (($ $ "left" $) NIL (|has| $ (-6 -4259))) (($ $ "right" $) NIL (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) NIL (|has| $ (-6 -4259)))) (-2169 (($) NIL T CONST)) (-3519 (($ $) 25)) (-2632 (($ |#1|) 12) (($ $ $) 17)) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-3396 (((-592 $) $) NIL)) (-1729 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-3507 (($ $) 23)) (-2803 (((-592 |#1|) $) NIL)) (-3786 (((-108) $) 20)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3340 (((-525) $ $) NIL)) (-2905 (((-108) $) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) NIL)) (-1217 (((-1115 |#1|) $) 9) (((-798) $) 29 (|has| |#1| (-566 (-798))))) (-3793 (((-592 $) $) NIL)) (-3351 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 21 (|has| |#1| (-1020)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-836 |#1|) (-13 (-115 |#1|) (-10 -8 (-15 -2632 ($ |#1|)) (-15 -2632 ($ $ $)) (-15 -1217 ((-1115 |#1|) $)))) (-1020)) (T -836))
-((-2632 (*1 *1 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1020)))) (-2632 (*1 *1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1020)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-1115 *3)) (-5 *1 (-836 *3)) (-4 *3 (-1020)))))
-(-13 (-115 |#1|) (-10 -8 (-15 -2632 ($ |#1|)) (-15 -2632 ($ $ $)) (-15 -1217 ((-1115 |#1|) $))))
-((-3013 ((|#2| (-1059 |#1| |#2|)) 41)))
-(((-837 |#1| |#2|) (-10 -7 (-15 -3013 (|#2| (-1059 |#1| |#2|)))) (-856) (-13 (-977) (-10 -7 (-6 (-4260 "*"))))) (T -837))
-((-3013 (*1 *2 *3) (-12 (-5 *3 (-1059 *4 *2)) (-14 *4 (-856)) (-4 *2 (-13 (-977) (-10 -7 (-6 (-4260 "*"))))) (-5 *1 (-837 *4 *2)))))
-(-10 -7 (-15 -3013 (|#2| (-1059 |#1| |#2|))))
-((-4236 (((-108) $ $) 7)) (-2169 (($) 20 T CONST)) (-3457 (((-3 $ "failed") $) 16)) (-1980 (((-1022 |#1|) $ |#1|) 35)) (-1396 (((-108) $) 19)) (-2638 (($ $ $) 33 (-3254 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-3662 (($ $ $) 32 (-3254 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-2619 (((-1075) $) 9)) (-2997 (($ $) 27)) (-2093 (((-1039) $) 10)) (-2457 ((|#1| $ |#1|) 37)) (-3406 ((|#1| $ |#1|) 36)) (-1418 (($ (-592 (-592 |#1|))) 38)) (-1510 (($ (-592 |#1|)) 39)) (-1499 (($ $ $) 23)) (-1990 (($ $ $) 22)) (-1217 (((-798) $) 11)) (-1619 (($ $ (-856)) 13) (($ $ (-713)) 17) (($ $ (-525)) 24)) (-3359 (($) 21 T CONST)) (-4011 (((-108) $ $) 30 (-3254 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-3987 (((-108) $ $) 29 (-3254 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 31 (-3254 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-3978 (((-108) $ $) 34)) (-4075 (($ $ $) 26)) (** (($ $ (-856)) 14) (($ $ (-713)) 18) (($ $ (-525)) 25)) (* (($ $ $) 15)))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2219 ((|#1| $) 26)) (-3779 (((-108) $ (-713)) NIL)) (-1947 ((|#1| $ |#1|) NIL (|has| $ (-6 -4260)))) (-2314 (($ $ $) NIL (|has| $ (-6 -4260)))) (-4089 (($ $ $) NIL (|has| $ (-6 -4260)))) (-1233 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4260))) (($ $ "left" $) NIL (|has| $ (-6 -4260))) (($ $ "right" $) NIL (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) NIL (|has| $ (-6 -4260)))) (-2475 (($) NIL T CONST)) (-3446 (($ $) 25)) (-3316 (($ |#1|) 12) (($ $ $) 17)) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3994 (((-592 $) $) NIL)) (-3569 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-3436 (($ $) 23)) (-2010 (((-592 |#1|) $) NIL)) (-3506 (((-108) $) 20)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1707 (((-525) $ $) NIL)) (-3953 (((-108) $) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) NIL)) (-4100 (((-1115 |#1|) $) 9) (((-798) $) 29 (|has| |#1| (-566 (-798))))) (-3576 (((-592 $) $) NIL)) (-1791 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 21 (|has| |#1| (-1020)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-836 |#1|) (-13 (-115 |#1|) (-10 -8 (-15 -3316 ($ |#1|)) (-15 -3316 ($ $ $)) (-15 -4100 ((-1115 |#1|) $)))) (-1020)) (T -836))
+((-3316 (*1 *1 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1020)))) (-3316 (*1 *1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1020)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1115 *3)) (-5 *1 (-836 *3)) (-4 *3 (-1020)))))
+(-13 (-115 |#1|) (-10 -8 (-15 -3316 ($ |#1|)) (-15 -3316 ($ $ $)) (-15 -4100 ((-1115 |#1|) $))))
+((-3745 ((|#2| (-1059 |#1| |#2|)) 41)))
+(((-837 |#1| |#2|) (-10 -7 (-15 -3745 (|#2| (-1059 |#1| |#2|)))) (-856) (-13 (-977) (-10 -7 (-6 (-4261 "*"))))) (T -837))
+((-3745 (*1 *2 *3) (-12 (-5 *3 (-1059 *4 *2)) (-14 *4 (-856)) (-4 *2 (-13 (-977) (-10 -7 (-6 (-4261 "*"))))) (-5 *1 (-837 *4 *2)))))
+(-10 -7 (-15 -3745 (|#2| (-1059 |#1| |#2|))))
+((-4087 (((-108) $ $) 7)) (-2475 (($) 20 T CONST)) (-3300 (((-3 $ "failed") $) 16)) (-4172 (((-1022 |#1|) $ |#1|) 35)) (-2278 (((-108) $) 19)) (-3033 (($ $ $) 33 (-2067 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-1609 (($ $ $) 32 (-2067 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-1289 (((-1075) $) 9)) (-1387 (($ $) 27)) (-3993 (((-1039) $) 10)) (-2825 ((|#1| $ |#1|) 37)) (-3431 ((|#1| $ |#1|) 36)) (-3419 (($ (-592 (-592 |#1|))) 38)) (-3241 (($ (-592 |#1|)) 39)) (-3055 (($ $ $) 23)) (-1242 (($ $ $) 22)) (-4100 (((-798) $) 11)) (-3706 (($ $ (-856)) 13) (($ $ (-713)) 17) (($ $ (-525)) 24)) (-3375 (($) 21 T CONST)) (-2830 (((-108) $ $) 30 (-2067 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-2807 (((-108) $ $) 29 (-2067 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 31 (-2067 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-2795 (((-108) $ $) 34)) (-2880 (($ $ $) 26)) (** (($ $ (-856)) 14) (($ $ (-713)) 18) (($ $ (-525)) 25)) (* (($ $ $) 15)))
(((-838 |#1|) (-131) (-1020)) (T -838))
-((-1510 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-838 *3)))) (-1418 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-4 *1 (-838 *3)))) (-2457 (*1 *2 *1 *2) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1020)))) (-3406 (*1 *2 *1 *2) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1020)))) (-1980 (*1 *2 *1 *3) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1020)) (-5 *2 (-1022 *3)))) (-3978 (*1 *2 *1 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1020)) (-5 *2 (-108)))))
-(-13 (-450) (-10 -8 (-15 -1510 ($ (-592 |t#1|))) (-15 -1418 ($ (-592 (-592 |t#1|)))) (-15 -2457 (|t#1| $ |t#1|)) (-15 -3406 (|t#1| $ |t#1|)) (-15 -1980 ((-1022 |t#1|) $ |t#1|)) (-15 -3978 ((-108) $ $)) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-346)) (-6 (-789)) |%noBranch|)))
-(((-97) . T) ((-566 (-798)) . T) ((-450) . T) ((-669) . T) ((-789) -3254 (|has| |#1| (-789)) (|has| |#1| (-346))) ((-1032) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-2328 (((-592 (-592 (-713))) $) 109)) (-3940 (((-592 (-713)) (-840 |#1|) $) 131)) (-1890 (((-592 (-713)) (-840 |#1|) $) 132)) (-3452 (((-592 (-840 |#1|)) $) 99)) (-2502 (((-840 |#1|) $ (-525)) 104) (((-840 |#1|) $) 105)) (-1752 (($ (-592 (-840 |#1|))) 111)) (-2581 (((-713) $) 106)) (-1274 (((-1022 (-1022 |#1|)) $) 129)) (-1980 (((-1022 |#1|) $ |#1|) 122) (((-1022 (-1022 |#1|)) $ (-1022 |#1|)) 140) (((-1022 (-592 |#1|)) $ (-592 |#1|)) 143)) (-1361 (((-1022 |#1|) $) 102)) (-2004 (((-108) (-840 |#1|) $) 93)) (-2619 (((-1075) $) NIL)) (-2894 (((-1179) $) 96) (((-1179) $ (-525) (-525)) 144)) (-2093 (((-1039) $) NIL)) (-2485 (((-592 (-840 |#1|)) $) 97)) (-3406 (((-840 |#1|) $ (-713)) 100)) (-2343 (((-713) $) 107)) (-1217 (((-798) $) 120) (((-592 (-840 |#1|)) $) 23) (($ (-592 (-840 |#1|))) 110)) (-3379 (((-592 |#1|) $) 108)) (-3955 (((-108) $ $) 137)) (-3999 (((-108) $ $) 135)) (-3978 (((-108) $ $) 134)))
-(((-839 |#1|) (-13 (-1020) (-10 -8 (-15 -1217 ((-592 (-840 |#1|)) $)) (-15 -2485 ((-592 (-840 |#1|)) $)) (-15 -3406 ((-840 |#1|) $ (-713))) (-15 -2502 ((-840 |#1|) $ (-525))) (-15 -2502 ((-840 |#1|) $)) (-15 -2581 ((-713) $)) (-15 -2343 ((-713) $)) (-15 -3379 ((-592 |#1|) $)) (-15 -3452 ((-592 (-840 |#1|)) $)) (-15 -2328 ((-592 (-592 (-713))) $)) (-15 -1217 ($ (-592 (-840 |#1|)))) (-15 -1752 ($ (-592 (-840 |#1|)))) (-15 -1980 ((-1022 |#1|) $ |#1|)) (-15 -1274 ((-1022 (-1022 |#1|)) $)) (-15 -1980 ((-1022 (-1022 |#1|)) $ (-1022 |#1|))) (-15 -1980 ((-1022 (-592 |#1|)) $ (-592 |#1|))) (-15 -2004 ((-108) (-840 |#1|) $)) (-15 -3940 ((-592 (-713)) (-840 |#1|) $)) (-15 -1890 ((-592 (-713)) (-840 |#1|) $)) (-15 -1361 ((-1022 |#1|) $)) (-15 -3978 ((-108) $ $)) (-15 -3999 ((-108) $ $)) (-15 -2894 ((-1179) $)) (-15 -2894 ((-1179) $ (-525) (-525))))) (-1020)) (T -839))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-3406 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-840 *4)) (-5 *1 (-839 *4)) (-4 *4 (-1020)))) (-2502 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-840 *4)) (-5 *1 (-839 *4)) (-4 *4 (-1020)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-3452 (*1 *2 *1) (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-2328 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-713)))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-592 (-840 *3))) (-4 *3 (-1020)) (-5 *1 (-839 *3)))) (-1752 (*1 *1 *2) (-12 (-5 *2 (-592 (-840 *3))) (-4 *3 (-1020)) (-5 *1 (-839 *3)))) (-1980 (*1 *2 *1 *3) (-12 (-5 *2 (-1022 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-1274 (*1 *2 *1) (-12 (-5 *2 (-1022 (-1022 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-1980 (*1 *2 *1 *3) (-12 (-4 *4 (-1020)) (-5 *2 (-1022 (-1022 *4))) (-5 *1 (-839 *4)) (-5 *3 (-1022 *4)))) (-1980 (*1 *2 *1 *3) (-12 (-4 *4 (-1020)) (-5 *2 (-1022 (-592 *4))) (-5 *1 (-839 *4)) (-5 *3 (-592 *4)))) (-2004 (*1 *2 *3 *1) (-12 (-5 *3 (-840 *4)) (-4 *4 (-1020)) (-5 *2 (-108)) (-5 *1 (-839 *4)))) (-3940 (*1 *2 *3 *1) (-12 (-5 *3 (-840 *4)) (-4 *4 (-1020)) (-5 *2 (-592 (-713))) (-5 *1 (-839 *4)))) (-1890 (*1 *2 *3 *1) (-12 (-5 *3 (-840 *4)) (-4 *4 (-1020)) (-5 *2 (-592 (-713))) (-5 *1 (-839 *4)))) (-1361 (*1 *2 *1) (-12 (-5 *2 (-1022 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-3978 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-3999 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-2894 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-839 *4)) (-4 *4 (-1020)))))
-(-13 (-1020) (-10 -8 (-15 -1217 ((-592 (-840 |#1|)) $)) (-15 -2485 ((-592 (-840 |#1|)) $)) (-15 -3406 ((-840 |#1|) $ (-713))) (-15 -2502 ((-840 |#1|) $ (-525))) (-15 -2502 ((-840 |#1|) $)) (-15 -2581 ((-713) $)) (-15 -2343 ((-713) $)) (-15 -3379 ((-592 |#1|) $)) (-15 -3452 ((-592 (-840 |#1|)) $)) (-15 -2328 ((-592 (-592 (-713))) $)) (-15 -1217 ($ (-592 (-840 |#1|)))) (-15 -1752 ($ (-592 (-840 |#1|)))) (-15 -1980 ((-1022 |#1|) $ |#1|)) (-15 -1274 ((-1022 (-1022 |#1|)) $)) (-15 -1980 ((-1022 (-1022 |#1|)) $ (-1022 |#1|))) (-15 -1980 ((-1022 (-592 |#1|)) $ (-592 |#1|))) (-15 -2004 ((-108) (-840 |#1|) $)) (-15 -3940 ((-592 (-713)) (-840 |#1|) $)) (-15 -1890 ((-592 (-713)) (-840 |#1|) $)) (-15 -1361 ((-1022 |#1|) $)) (-15 -3978 ((-108) $ $)) (-15 -3999 ((-108) $ $)) (-15 -2894 ((-1179) $)) (-15 -2894 ((-1179) $ (-525) (-525)))))
-((-4236 (((-108) $ $) NIL)) (-2458 (((-592 $) (-592 $)) 77)) (-3855 (((-525) $) 60)) (-2169 (($) NIL T CONST)) (-3457 (((-3 $ "failed") $) NIL)) (-2581 (((-713) $) 58)) (-1980 (((-1022 |#1|) $ |#1|) 49)) (-1396 (((-108) $) NIL)) (-1673 (((-108) $) 63)) (-4039 (((-713) $) 61)) (-1361 (((-1022 |#1|) $) 42)) (-2638 (($ $ $) NIL (-3254 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-3662 (($ $ $) NIL (-3254 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-2878 (((-2 (|:| |preimage| (-592 |#1|)) (|:| |image| (-592 |#1|))) $) 37)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) 93)) (-2093 (((-1039) $) NIL)) (-2228 (((-1022 |#1|) $) 100 (|has| |#1| (-346)))) (-3699 (((-108) $) 59)) (-2457 ((|#1| $ |#1|) 47)) (-3406 ((|#1| $ |#1|) 94)) (-2343 (((-713) $) 44)) (-1418 (($ (-592 (-592 |#1|))) 85)) (-4130 (((-904) $) 53)) (-1510 (($ (-592 |#1|)) 21)) (-1499 (($ $ $) NIL)) (-1990 (($ $ $) NIL)) (-2065 (($ (-592 (-592 |#1|))) 39)) (-4184 (($ (-592 (-592 |#1|))) 88)) (-3584 (($ (-592 |#1|)) 96)) (-1217 (((-798) $) 84) (($ (-592 (-592 |#1|))) 66) (($ (-592 |#1|)) 67)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3359 (($) 16 T CONST)) (-4011 (((-108) $ $) NIL (-3254 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-3987 (((-108) $ $) NIL (-3254 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-3955 (((-108) $ $) 45)) (-3999 (((-108) $ $) NIL (-3254 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-3978 (((-108) $ $) 65)) (-4075 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ $ $) 22)))
-(((-840 |#1|) (-13 (-838 |#1|) (-10 -8 (-15 -2878 ((-2 (|:| |preimage| (-592 |#1|)) (|:| |image| (-592 |#1|))) $)) (-15 -2065 ($ (-592 (-592 |#1|)))) (-15 -1217 ($ (-592 (-592 |#1|)))) (-15 -1217 ($ (-592 |#1|))) (-15 -4184 ($ (-592 (-592 |#1|)))) (-15 -2343 ((-713) $)) (-15 -1361 ((-1022 |#1|) $)) (-15 -4130 ((-904) $)) (-15 -2581 ((-713) $)) (-15 -4039 ((-713) $)) (-15 -3855 ((-525) $)) (-15 -3699 ((-108) $)) (-15 -1673 ((-108) $)) (-15 -2458 ((-592 $) (-592 $))) (IF (|has| |#1| (-346)) (-15 -2228 ((-1022 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-510)) (-15 -3584 ($ (-592 |#1|))) (IF (|has| |#1| (-346)) (-15 -3584 ($ (-592 |#1|))) |%noBranch|)))) (-1020)) (T -840))
-((-2878 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-592 *3)) (|:| |image| (-592 *3)))) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-2065 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-840 *3)))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3)))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-1361 (*1 *2 *1) (-12 (-5 *2 (-1022 *3)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-904)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-4039 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-1673 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-2458 (*1 *2 *2) (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-2228 (*1 *2 *1) (-12 (-5 *2 (-1022 *3)) (-5 *1 (-840 *3)) (-4 *3 (-346)) (-4 *3 (-1020)))) (-3584 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-840 *3)))))
-(-13 (-838 |#1|) (-10 -8 (-15 -2878 ((-2 (|:| |preimage| (-592 |#1|)) (|:| |image| (-592 |#1|))) $)) (-15 -2065 ($ (-592 (-592 |#1|)))) (-15 -1217 ($ (-592 (-592 |#1|)))) (-15 -1217 ($ (-592 |#1|))) (-15 -4184 ($ (-592 (-592 |#1|)))) (-15 -2343 ((-713) $)) (-15 -1361 ((-1022 |#1|) $)) (-15 -4130 ((-904) $)) (-15 -2581 ((-713) $)) (-15 -4039 ((-713) $)) (-15 -3855 ((-525) $)) (-15 -3699 ((-108) $)) (-15 -1673 ((-108) $)) (-15 -2458 ((-592 $) (-592 $))) (IF (|has| |#1| (-346)) (-15 -2228 ((-1022 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-510)) (-15 -3584 ($ (-592 |#1|))) (IF (|has| |#1| (-346)) (-15 -3584 ($ (-592 |#1|))) |%noBranch|))))
-((-4022 (((-3 (-592 (-1088 |#4|)) "failed") (-592 (-1088 |#4|)) (-1088 |#4|)) 128)) (-2809 ((|#1|) 77)) (-2337 (((-396 (-1088 |#4|)) (-1088 |#4|)) 137)) (-1643 (((-396 (-1088 |#4|)) (-592 |#3|) (-1088 |#4|)) 69)) (-3423 (((-396 (-1088 |#4|)) (-1088 |#4|)) 147)) (-4053 (((-3 (-592 (-1088 |#4|)) "failed") (-592 (-1088 |#4|)) (-1088 |#4|) |#3|) 92)))
-(((-841 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4022 ((-3 (-592 (-1088 |#4|)) "failed") (-592 (-1088 |#4|)) (-1088 |#4|))) (-15 -3423 ((-396 (-1088 |#4|)) (-1088 |#4|))) (-15 -2337 ((-396 (-1088 |#4|)) (-1088 |#4|))) (-15 -2809 (|#1|)) (-15 -4053 ((-3 (-592 (-1088 |#4|)) "failed") (-592 (-1088 |#4|)) (-1088 |#4|) |#3|)) (-15 -1643 ((-396 (-1088 |#4|)) (-592 |#3|) (-1088 |#4|)))) (-844) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -841))
-((-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *7)) (-4 *7 (-789)) (-4 *5 (-844)) (-4 *6 (-735)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-396 (-1088 *8))) (-5 *1 (-841 *5 *6 *7 *8)) (-5 *4 (-1088 *8)))) (-4053 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-592 (-1088 *7))) (-5 *3 (-1088 *7)) (-4 *7 (-884 *5 *6 *4)) (-4 *5 (-844)) (-4 *6 (-735)) (-4 *4 (-789)) (-5 *1 (-841 *5 *6 *4 *7)))) (-2809 (*1 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-844)) (-5 *1 (-841 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (-2337 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-396 (-1088 *7))) (-5 *1 (-841 *4 *5 *6 *7)) (-5 *3 (-1088 *7)))) (-3423 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-396 (-1088 *7))) (-5 *1 (-841 *4 *5 *6 *7)) (-5 *3 (-1088 *7)))) (-4022 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1088 *7))) (-5 *3 (-1088 *7)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-844)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-841 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4022 ((-3 (-592 (-1088 |#4|)) "failed") (-592 (-1088 |#4|)) (-1088 |#4|))) (-15 -3423 ((-396 (-1088 |#4|)) (-1088 |#4|))) (-15 -2337 ((-396 (-1088 |#4|)) (-1088 |#4|))) (-15 -2809 (|#1|)) (-15 -4053 ((-3 (-592 (-1088 |#4|)) "failed") (-592 (-1088 |#4|)) (-1088 |#4|) |#3|)) (-15 -1643 ((-396 (-1088 |#4|)) (-592 |#3|) (-1088 |#4|))))
-((-4022 (((-3 (-592 (-1088 |#2|)) "failed") (-592 (-1088 |#2|)) (-1088 |#2|)) 36)) (-2809 ((|#1|) 54)) (-2337 (((-396 (-1088 |#2|)) (-1088 |#2|)) 102)) (-1643 (((-396 (-1088 |#2|)) (-1088 |#2|)) 90)) (-3423 (((-396 (-1088 |#2|)) (-1088 |#2|)) 113)))
-(((-842 |#1| |#2|) (-10 -7 (-15 -4022 ((-3 (-592 (-1088 |#2|)) "failed") (-592 (-1088 |#2|)) (-1088 |#2|))) (-15 -3423 ((-396 (-1088 |#2|)) (-1088 |#2|))) (-15 -2337 ((-396 (-1088 |#2|)) (-1088 |#2|))) (-15 -2809 (|#1|)) (-15 -1643 ((-396 (-1088 |#2|)) (-1088 |#2|)))) (-844) (-1150 |#1|)) (T -842))
-((-1643 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-1150 *4)) (-5 *2 (-396 (-1088 *5))) (-5 *1 (-842 *4 *5)) (-5 *3 (-1088 *5)))) (-2809 (*1 *2) (-12 (-4 *2 (-844)) (-5 *1 (-842 *2 *3)) (-4 *3 (-1150 *2)))) (-2337 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-1150 *4)) (-5 *2 (-396 (-1088 *5))) (-5 *1 (-842 *4 *5)) (-5 *3 (-1088 *5)))) (-3423 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-1150 *4)) (-5 *2 (-396 (-1088 *5))) (-5 *1 (-842 *4 *5)) (-5 *3 (-1088 *5)))) (-4022 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1088 *5))) (-5 *3 (-1088 *5)) (-4 *5 (-1150 *4)) (-4 *4 (-844)) (-5 *1 (-842 *4 *5)))))
-(-10 -7 (-15 -4022 ((-3 (-592 (-1088 |#2|)) "failed") (-592 (-1088 |#2|)) (-1088 |#2|))) (-15 -3423 ((-396 (-1088 |#2|)) (-1088 |#2|))) (-15 -2337 ((-396 (-1088 |#2|)) (-1088 |#2|))) (-15 -2809 (|#1|)) (-15 -1643 ((-396 (-1088 |#2|)) (-1088 |#2|))))
-((-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 41)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 18)) (-3637 (((-3 $ "failed") $) 35)))
-(((-843 |#1|) (-10 -8 (-15 -3637 ((-3 |#1| "failed") |#1|)) (-15 -2969 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|))) (-15 -1883 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|)))) (-844)) (T -843))
-NIL
-(-10 -8 (-15 -3637 ((-3 |#1| "failed") |#1|)) (-15 -2969 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|))) (-15 -1883 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-1578 (((-3 $ "failed") $ $) 19)) (-1448 (((-396 (-1088 $)) (-1088 $)) 60)) (-1286 (($ $) 51)) (-2669 (((-396 $) $) 52)) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 57)) (-2169 (($) 17 T CONST)) (-3457 (((-3 $ "failed") $) 34)) (-3673 (((-108) $) 53)) (-1396 (((-108) $) 31)) (-2556 (($ $ $) 46) (($ (-592 $)) 45)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2589 (($ $ $) 48) (($ (-592 $)) 47)) (-3076 (((-396 (-1088 $)) (-1088 $)) 58)) (-4099 (((-396 (-1088 $)) (-1088 $)) 59)) (-2770 (((-396 $) $) 50)) (-1715 (((-3 $ "failed") $ $) 42)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) 56 (|has| $ (-136)))) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-3637 (((-3 $ "failed") $) 55 (|has| $ (-136)))) (-3917 (((-713)) 29)) (-3325 (((-108) $ $) 39)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-3241 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-838 *3)))) (-3419 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-4 *1 (-838 *3)))) (-2825 (*1 *2 *1 *2) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1020)))) (-3431 (*1 *2 *1 *2) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1020)))) (-4172 (*1 *2 *1 *3) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1020)) (-5 *2 (-1022 *3)))) (-2795 (*1 *2 *1 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1020)) (-5 *2 (-108)))))
+(-13 (-450) (-10 -8 (-15 -3241 ($ (-592 |t#1|))) (-15 -3419 ($ (-592 (-592 |t#1|)))) (-15 -2825 (|t#1| $ |t#1|)) (-15 -3431 (|t#1| $ |t#1|)) (-15 -4172 ((-1022 |t#1|) $ |t#1|)) (-15 -2795 ((-108) $ $)) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-346)) (-6 (-789)) |%noBranch|)))
+(((-97) . T) ((-566 (-798)) . T) ((-450) . T) ((-669) . T) ((-789) -2067 (|has| |#1| (-789)) (|has| |#1| (-346))) ((-1032) . T) ((-1020) . T))
+((-4087 (((-108) $ $) NIL)) (-3360 (((-592 (-592 (-713))) $) 109)) (-1489 (((-592 (-713)) (-840 |#1|) $) 131)) (-1443 (((-592 (-713)) (-840 |#1|) $) 132)) (-3236 (((-592 (-840 |#1|)) $) 99)) (-1903 (((-840 |#1|) $ (-525)) 104) (((-840 |#1|) $) 105)) (-2574 (($ (-592 (-840 |#1|))) 111)) (-4000 (((-713) $) 106)) (-3968 (((-1022 (-1022 |#1|)) $) 129)) (-4172 (((-1022 |#1|) $ |#1|) 122) (((-1022 (-1022 |#1|)) $ (-1022 |#1|)) 140) (((-1022 (-592 |#1|)) $ (-592 |#1|)) 143)) (-1725 (((-1022 |#1|) $) 102)) (-3198 (((-108) (-840 |#1|) $) 93)) (-1289 (((-1075) $) NIL)) (-3847 (((-1179) $) 96) (((-1179) $ (-525) (-525)) 144)) (-3993 (((-1039) $) NIL)) (-2509 (((-592 (-840 |#1|)) $) 97)) (-3431 (((-840 |#1|) $ (-713)) 100)) (-3529 (((-713) $) 107)) (-4100 (((-798) $) 120) (((-592 (-840 |#1|)) $) 23) (($ (-592 (-840 |#1|))) 110)) (-3771 (((-592 |#1|) $) 108)) (-2775 (((-108) $ $) 137)) (-2817 (((-108) $ $) 135)) (-2795 (((-108) $ $) 134)))
+(((-839 |#1|) (-13 (-1020) (-10 -8 (-15 -4100 ((-592 (-840 |#1|)) $)) (-15 -2509 ((-592 (-840 |#1|)) $)) (-15 -3431 ((-840 |#1|) $ (-713))) (-15 -1903 ((-840 |#1|) $ (-525))) (-15 -1903 ((-840 |#1|) $)) (-15 -4000 ((-713) $)) (-15 -3529 ((-713) $)) (-15 -3771 ((-592 |#1|) $)) (-15 -3236 ((-592 (-840 |#1|)) $)) (-15 -3360 ((-592 (-592 (-713))) $)) (-15 -4100 ($ (-592 (-840 |#1|)))) (-15 -2574 ($ (-592 (-840 |#1|)))) (-15 -4172 ((-1022 |#1|) $ |#1|)) (-15 -3968 ((-1022 (-1022 |#1|)) $)) (-15 -4172 ((-1022 (-1022 |#1|)) $ (-1022 |#1|))) (-15 -4172 ((-1022 (-592 |#1|)) $ (-592 |#1|))) (-15 -3198 ((-108) (-840 |#1|) $)) (-15 -1489 ((-592 (-713)) (-840 |#1|) $)) (-15 -1443 ((-592 (-713)) (-840 |#1|) $)) (-15 -1725 ((-1022 |#1|) $)) (-15 -2795 ((-108) $ $)) (-15 -2817 ((-108) $ $)) (-15 -3847 ((-1179) $)) (-15 -3847 ((-1179) $ (-525) (-525))))) (-1020)) (T -839))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-2509 (*1 *2 *1) (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-3431 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-840 *4)) (-5 *1 (-839 *4)) (-4 *4 (-1020)))) (-1903 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-840 *4)) (-5 *1 (-839 *4)) (-4 *4 (-1020)))) (-1903 (*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-3360 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-713)))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-592 (-840 *3))) (-4 *3 (-1020)) (-5 *1 (-839 *3)))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-592 (-840 *3))) (-4 *3 (-1020)) (-5 *1 (-839 *3)))) (-4172 (*1 *2 *1 *3) (-12 (-5 *2 (-1022 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-1022 (-1022 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-4172 (*1 *2 *1 *3) (-12 (-4 *4 (-1020)) (-5 *2 (-1022 (-1022 *4))) (-5 *1 (-839 *4)) (-5 *3 (-1022 *4)))) (-4172 (*1 *2 *1 *3) (-12 (-4 *4 (-1020)) (-5 *2 (-1022 (-592 *4))) (-5 *1 (-839 *4)) (-5 *3 (-592 *4)))) (-3198 (*1 *2 *3 *1) (-12 (-5 *3 (-840 *4)) (-4 *4 (-1020)) (-5 *2 (-108)) (-5 *1 (-839 *4)))) (-1489 (*1 *2 *3 *1) (-12 (-5 *3 (-840 *4)) (-4 *4 (-1020)) (-5 *2 (-592 (-713))) (-5 *1 (-839 *4)))) (-1443 (*1 *2 *3 *1) (-12 (-5 *3 (-840 *4)) (-4 *4 (-1020)) (-5 *2 (-592 (-713))) (-5 *1 (-839 *4)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-1022 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-2795 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-2817 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-3847 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-839 *4)) (-4 *4 (-1020)))))
+(-13 (-1020) (-10 -8 (-15 -4100 ((-592 (-840 |#1|)) $)) (-15 -2509 ((-592 (-840 |#1|)) $)) (-15 -3431 ((-840 |#1|) $ (-713))) (-15 -1903 ((-840 |#1|) $ (-525))) (-15 -1903 ((-840 |#1|) $)) (-15 -4000 ((-713) $)) (-15 -3529 ((-713) $)) (-15 -3771 ((-592 |#1|) $)) (-15 -3236 ((-592 (-840 |#1|)) $)) (-15 -3360 ((-592 (-592 (-713))) $)) (-15 -4100 ($ (-592 (-840 |#1|)))) (-15 -2574 ($ (-592 (-840 |#1|)))) (-15 -4172 ((-1022 |#1|) $ |#1|)) (-15 -3968 ((-1022 (-1022 |#1|)) $)) (-15 -4172 ((-1022 (-1022 |#1|)) $ (-1022 |#1|))) (-15 -4172 ((-1022 (-592 |#1|)) $ (-592 |#1|))) (-15 -3198 ((-108) (-840 |#1|) $)) (-15 -1489 ((-592 (-713)) (-840 |#1|) $)) (-15 -1443 ((-592 (-713)) (-840 |#1|) $)) (-15 -1725 ((-1022 |#1|) $)) (-15 -2795 ((-108) $ $)) (-15 -2817 ((-108) $ $)) (-15 -3847 ((-1179) $)) (-15 -3847 ((-1179) $ (-525) (-525)))))
+((-4087 (((-108) $ $) NIL)) (-1842 (((-592 $) (-592 $)) 77)) (-2971 (((-525) $) 60)) (-2475 (($) NIL T CONST)) (-3300 (((-3 $ "failed") $) NIL)) (-4000 (((-713) $) 58)) (-4172 (((-1022 |#1|) $ |#1|) 49)) (-2278 (((-108) $) NIL)) (-3028 (((-108) $) 63)) (-1261 (((-713) $) 61)) (-1725 (((-1022 |#1|) $) 42)) (-3033 (($ $ $) NIL (-2067 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-1609 (($ $ $) NIL (-2067 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-1893 (((-2 (|:| |preimage| (-592 |#1|)) (|:| |image| (-592 |#1|))) $) 37)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) 93)) (-3993 (((-1039) $) NIL)) (-1852 (((-1022 |#1|) $) 100 (|has| |#1| (-346)))) (-3864 (((-108) $) 59)) (-2825 ((|#1| $ |#1|) 47)) (-3431 ((|#1| $ |#1|) 94)) (-3529 (((-713) $) 44)) (-3419 (($ (-592 (-592 |#1|))) 85)) (-2745 (((-904) $) 53)) (-3241 (($ (-592 |#1|)) 21)) (-3055 (($ $ $) NIL)) (-1242 (($ $ $) NIL)) (-2591 (($ (-592 (-592 |#1|))) 39)) (-2104 (($ (-592 (-592 |#1|))) 88)) (-2140 (($ (-592 |#1|)) 96)) (-4100 (((-798) $) 84) (($ (-592 (-592 |#1|))) 66) (($ (-592 |#1|)) 67)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3375 (($) 16 T CONST)) (-2830 (((-108) $ $) NIL (-2067 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-2807 (((-108) $ $) NIL (-2067 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-2775 (((-108) $ $) 45)) (-2817 (((-108) $ $) NIL (-2067 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-2795 (((-108) $ $) 65)) (-2880 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ $ $) 22)))
+(((-840 |#1|) (-13 (-838 |#1|) (-10 -8 (-15 -1893 ((-2 (|:| |preimage| (-592 |#1|)) (|:| |image| (-592 |#1|))) $)) (-15 -2591 ($ (-592 (-592 |#1|)))) (-15 -4100 ($ (-592 (-592 |#1|)))) (-15 -4100 ($ (-592 |#1|))) (-15 -2104 ($ (-592 (-592 |#1|)))) (-15 -3529 ((-713) $)) (-15 -1725 ((-1022 |#1|) $)) (-15 -2745 ((-904) $)) (-15 -4000 ((-713) $)) (-15 -1261 ((-713) $)) (-15 -2971 ((-525) $)) (-15 -3864 ((-108) $)) (-15 -3028 ((-108) $)) (-15 -1842 ((-592 $) (-592 $))) (IF (|has| |#1| (-346)) (-15 -1852 ((-1022 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-510)) (-15 -2140 ($ (-592 |#1|))) (IF (|has| |#1| (-346)) (-15 -2140 ($ (-592 |#1|))) |%noBranch|)))) (-1020)) (T -840))
+((-1893 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-592 *3)) (|:| |image| (-592 *3)))) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-840 *3)))) (-2104 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-1022 *3)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-904)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-1261 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-1842 (*1 *2 *2) (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-1852 (*1 *2 *1) (-12 (-5 *2 (-1022 *3)) (-5 *1 (-840 *3)) (-4 *3 (-346)) (-4 *3 (-1020)))) (-2140 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-840 *3)))))
+(-13 (-838 |#1|) (-10 -8 (-15 -1893 ((-2 (|:| |preimage| (-592 |#1|)) (|:| |image| (-592 |#1|))) $)) (-15 -2591 ($ (-592 (-592 |#1|)))) (-15 -4100 ($ (-592 (-592 |#1|)))) (-15 -4100 ($ (-592 |#1|))) (-15 -2104 ($ (-592 (-592 |#1|)))) (-15 -3529 ((-713) $)) (-15 -1725 ((-1022 |#1|) $)) (-15 -2745 ((-904) $)) (-15 -4000 ((-713) $)) (-15 -1261 ((-713) $)) (-15 -2971 ((-525) $)) (-15 -3864 ((-108) $)) (-15 -3028 ((-108) $)) (-15 -1842 ((-592 $) (-592 $))) (IF (|has| |#1| (-346)) (-15 -1852 ((-1022 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-510)) (-15 -2140 ($ (-592 |#1|))) (IF (|has| |#1| (-346)) (-15 -2140 ($ (-592 |#1|))) |%noBranch|))))
+((-4110 (((-3 (-592 (-1088 |#4|)) "failed") (-592 (-1088 |#4|)) (-1088 |#4|)) 128)) (-2428 ((|#1|) 77)) (-3460 (((-396 (-1088 |#4|)) (-1088 |#4|)) 137)) (-4004 (((-396 (-1088 |#4|)) (-592 |#3|) (-1088 |#4|)) 69)) (-4209 (((-396 (-1088 |#4|)) (-1088 |#4|)) 147)) (-3184 (((-3 (-592 (-1088 |#4|)) "failed") (-592 (-1088 |#4|)) (-1088 |#4|) |#3|) 92)))
+(((-841 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4110 ((-3 (-592 (-1088 |#4|)) "failed") (-592 (-1088 |#4|)) (-1088 |#4|))) (-15 -4209 ((-396 (-1088 |#4|)) (-1088 |#4|))) (-15 -3460 ((-396 (-1088 |#4|)) (-1088 |#4|))) (-15 -2428 (|#1|)) (-15 -3184 ((-3 (-592 (-1088 |#4|)) "failed") (-592 (-1088 |#4|)) (-1088 |#4|) |#3|)) (-15 -4004 ((-396 (-1088 |#4|)) (-592 |#3|) (-1088 |#4|)))) (-844) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -841))
+((-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *7)) (-4 *7 (-789)) (-4 *5 (-844)) (-4 *6 (-735)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-396 (-1088 *8))) (-5 *1 (-841 *5 *6 *7 *8)) (-5 *4 (-1088 *8)))) (-3184 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-592 (-1088 *7))) (-5 *3 (-1088 *7)) (-4 *7 (-884 *5 *6 *4)) (-4 *5 (-844)) (-4 *6 (-735)) (-4 *4 (-789)) (-5 *1 (-841 *5 *6 *4 *7)))) (-2428 (*1 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-844)) (-5 *1 (-841 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (-3460 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-396 (-1088 *7))) (-5 *1 (-841 *4 *5 *6 *7)) (-5 *3 (-1088 *7)))) (-4209 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-396 (-1088 *7))) (-5 *1 (-841 *4 *5 *6 *7)) (-5 *3 (-1088 *7)))) (-4110 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1088 *7))) (-5 *3 (-1088 *7)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-844)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-841 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4110 ((-3 (-592 (-1088 |#4|)) "failed") (-592 (-1088 |#4|)) (-1088 |#4|))) (-15 -4209 ((-396 (-1088 |#4|)) (-1088 |#4|))) (-15 -3460 ((-396 (-1088 |#4|)) (-1088 |#4|))) (-15 -2428 (|#1|)) (-15 -3184 ((-3 (-592 (-1088 |#4|)) "failed") (-592 (-1088 |#4|)) (-1088 |#4|) |#3|)) (-15 -4004 ((-396 (-1088 |#4|)) (-592 |#3|) (-1088 |#4|))))
+((-4110 (((-3 (-592 (-1088 |#2|)) "failed") (-592 (-1088 |#2|)) (-1088 |#2|)) 36)) (-2428 ((|#1|) 54)) (-3460 (((-396 (-1088 |#2|)) (-1088 |#2|)) 102)) (-4004 (((-396 (-1088 |#2|)) (-1088 |#2|)) 90)) (-4209 (((-396 (-1088 |#2|)) (-1088 |#2|)) 113)))
+(((-842 |#1| |#2|) (-10 -7 (-15 -4110 ((-3 (-592 (-1088 |#2|)) "failed") (-592 (-1088 |#2|)) (-1088 |#2|))) (-15 -4209 ((-396 (-1088 |#2|)) (-1088 |#2|))) (-15 -3460 ((-396 (-1088 |#2|)) (-1088 |#2|))) (-15 -2428 (|#1|)) (-15 -4004 ((-396 (-1088 |#2|)) (-1088 |#2|)))) (-844) (-1150 |#1|)) (T -842))
+((-4004 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-1150 *4)) (-5 *2 (-396 (-1088 *5))) (-5 *1 (-842 *4 *5)) (-5 *3 (-1088 *5)))) (-2428 (*1 *2) (-12 (-4 *2 (-844)) (-5 *1 (-842 *2 *3)) (-4 *3 (-1150 *2)))) (-3460 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-1150 *4)) (-5 *2 (-396 (-1088 *5))) (-5 *1 (-842 *4 *5)) (-5 *3 (-1088 *5)))) (-4209 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-1150 *4)) (-5 *2 (-396 (-1088 *5))) (-5 *1 (-842 *4 *5)) (-5 *3 (-1088 *5)))) (-4110 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1088 *5))) (-5 *3 (-1088 *5)) (-4 *5 (-1150 *4)) (-4 *4 (-844)) (-5 *1 (-842 *4 *5)))))
+(-10 -7 (-15 -4110 ((-3 (-592 (-1088 |#2|)) "failed") (-592 (-1088 |#2|)) (-1088 |#2|))) (-15 -4209 ((-396 (-1088 |#2|)) (-1088 |#2|))) (-15 -3460 ((-396 (-1088 |#2|)) (-1088 |#2|))) (-15 -2428 (|#1|)) (-15 -4004 ((-396 (-1088 |#2|)) (-1088 |#2|))))
+((-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 41)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 18)) (-1463 (((-3 $ "failed") $) 35)))
+(((-843 |#1|) (-10 -8 (-15 -1463 ((-3 |#1| "failed") |#1|)) (-15 -3373 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|))) (-15 -1379 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|)))) (-844)) (T -843))
+NIL
+(-10 -8 (-15 -1463 ((-3 |#1| "failed") |#1|)) (-15 -3373 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|))) (-15 -1379 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-3222 (((-3 $ "failed") $ $) 19)) (-2426 (((-396 (-1088 $)) (-1088 $)) 60)) (-4195 (($ $) 51)) (-3586 (((-396 $) $) 52)) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 57)) (-2475 (($) 17 T CONST)) (-3300 (((-3 $ "failed") $) 34)) (-1798 (((-108) $) 53)) (-2278 (((-108) $) 31)) (-2739 (($ $ $) 46) (($ (-592 $)) 45)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2772 (($ $ $) 48) (($ (-592 $)) 47)) (-3089 (((-396 (-1088 $)) (-1088 $)) 58)) (-3644 (((-396 (-1088 $)) (-1088 $)) 59)) (-4201 (((-396 $) $) 50)) (-1311 (((-3 $ "failed") $ $) 42)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) 56 (|has| $ (-136)))) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-1463 (((-3 $ "failed") $) 55 (|has| $ (-136)))) (-2448 (((-713)) 29)) (-1571 (((-108) $ $) 39)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-844) (-131)) (T -844))
-((-1883 (*1 *2 *2 *2) (-12 (-5 *2 (-1088 *1)) (-4 *1 (-844)))) (-1448 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *2 (-396 (-1088 *1))) (-5 *3 (-1088 *1)))) (-4099 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *2 (-396 (-1088 *1))) (-5 *3 (-1088 *1)))) (-3076 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *2 (-396 (-1088 *1))) (-5 *3 (-1088 *1)))) (-2969 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1088 *1))) (-5 *3 (-1088 *1)) (-4 *1 (-844)))) (-1940 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-136)) (-4 *1 (-844)) (-5 *2 (-1174 *1)))) (-3637 (*1 *1 *1) (|partial| -12 (-4 *1 (-136)) (-4 *1 (-844)))))
-(-13 (-1132) (-10 -8 (-15 -1448 ((-396 (-1088 $)) (-1088 $))) (-15 -4099 ((-396 (-1088 $)) (-1088 $))) (-15 -3076 ((-396 (-1088 $)) (-1088 $))) (-15 -1883 ((-1088 $) (-1088 $) (-1088 $))) (-15 -2969 ((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $))) (IF (|has| $ (-136)) (PROGN (-15 -1940 ((-3 (-1174 $) "failed") (-632 $))) (-15 -3637 ((-3 $ "failed") $))) |%noBranch|)))
+((-1379 (*1 *2 *2 *2) (-12 (-5 *2 (-1088 *1)) (-4 *1 (-844)))) (-2426 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *2 (-396 (-1088 *1))) (-5 *3 (-1088 *1)))) (-3644 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *2 (-396 (-1088 *1))) (-5 *3 (-1088 *1)))) (-3089 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *2 (-396 (-1088 *1))) (-5 *3 (-1088 *1)))) (-3373 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1088 *1))) (-5 *3 (-1088 *1)) (-4 *1 (-844)))) (-3739 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-136)) (-4 *1 (-844)) (-5 *2 (-1174 *1)))) (-1463 (*1 *1 *1) (|partial| -12 (-4 *1 (-136)) (-4 *1 (-844)))))
+(-13 (-1132) (-10 -8 (-15 -2426 ((-396 (-1088 $)) (-1088 $))) (-15 -3644 ((-396 (-1088 $)) (-1088 $))) (-15 -3089 ((-396 (-1088 $)) (-1088 $))) (-15 -1379 ((-1088 $) (-1088 $) (-1088 $))) (-15 -3373 ((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $))) (IF (|has| $ (-136)) (PROGN (-15 -3739 ((-3 (-1174 $) "failed") (-632 $))) (-15 -1463 ((-3 $ "failed") $))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1132) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1259 (((-108) $) NIL)) (-3098 (((-713)) NIL)) (-2952 (($ $ (-856)) NIL (|has| $ (-346))) (($ $) NIL)) (-2971 (((-1102 (-856) (-713)) (-525)) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2193 (((-108) $ $) NIL)) (-1834 (((-713)) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 $ "failed") $) NIL)) (-1572 (($ $) NIL)) (-2064 (($ (-1174 $)) NIL)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($) NIL)) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-2574 (($) NIL)) (-3704 (((-108) $) NIL)) (-3625 (($ $) NIL) (($ $ (-713)) NIL)) (-3673 (((-108) $) NIL)) (-2581 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-1396 (((-108) $) NIL)) (-1273 (($) NIL (|has| $ (-346)))) (-1527 (((-108) $) NIL (|has| $ (-346)))) (-2382 (($ $ (-856)) NIL (|has| $ (-346))) (($ $) NIL)) (-3844 (((-3 $ "failed") $) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2126 (((-1088 $) $ (-856)) NIL (|has| $ (-346))) (((-1088 $) $) NIL)) (-3005 (((-856) $) NIL)) (-1283 (((-1088 $) $) NIL (|has| $ (-346)))) (-2577 (((-3 (-1088 $) "failed") $ $) NIL (|has| $ (-346))) (((-1088 $) $) NIL (|has| $ (-346)))) (-2324 (($ $ (-1088 $)) NIL (|has| $ (-346)))) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2295 (($) NIL T CONST)) (-3555 (($ (-856)) NIL)) (-2703 (((-108) $) NIL)) (-2093 (((-1039) $) NIL)) (-3409 (($) NIL (|has| $ (-346)))) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) NIL)) (-2770 (((-396 $) $) NIL)) (-2858 (((-856)) NIL) (((-775 (-856))) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3877 (((-3 (-713) "failed") $ $) NIL) (((-713) $) NIL)) (-3705 (((-128)) NIL)) (-3376 (($ $ (-713)) NIL) (($ $) NIL)) (-2343 (((-856) $) NIL) (((-775 (-856)) $) NIL)) (-2756 (((-1088 $)) NIL)) (-2244 (($) NIL)) (-2254 (($) NIL (|has| $ (-346)))) (-2387 (((-632 $) (-1174 $)) NIL) (((-1174 $) $) NIL)) (-3210 (((-525) $) NIL)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL)) (-3637 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3917 (((-713)) NIL)) (-3094 (((-1174 $) (-856)) NIL) (((-1174 $)) NIL)) (-3325 (((-108) $ $) NIL)) (-2081 (((-108) $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-3127 (($ $ (-713)) NIL (|has| $ (-346))) (($ $) NIL (|has| $ (-346)))) (-2022 (($ $ (-713)) NIL) (($ $) NIL)) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3214 (((-108) $) NIL)) (-2132 (((-713)) NIL)) (-2924 (($ $ (-856)) NIL (|has| $ (-346))) (($ $) NIL)) (-3395 (((-1102 (-856) (-713)) (-525)) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-1507 (((-108) $ $) NIL)) (-1613 (((-713)) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 $ "failed") $) NIL)) (-4105 (($ $) NIL)) (-2580 (($ (-1174 $)) NIL)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($) NIL)) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-3932 (($) NIL)) (-3920 (((-108) $) NIL)) (-1339 (($ $) NIL) (($ $ (-713)) NIL)) (-1798 (((-108) $) NIL)) (-4000 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-2278 (((-108) $) NIL)) (-3957 (($) NIL (|has| $ (-346)))) (-1890 (((-108) $) NIL (|has| $ (-346)))) (-2704 (($ $ (-856)) NIL (|has| $ (-346))) (($ $) NIL)) (-2878 (((-3 $ "failed") $) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2021 (((-1088 $) $ (-856)) NIL (|has| $ (-346))) (((-1088 $) $) NIL)) (-3685 (((-856) $) NIL)) (-4162 (((-1088 $) $) NIL (|has| $ (-346)))) (-3955 (((-3 (-1088 $) "failed") $ $) NIL (|has| $ (-346))) (((-1088 $) $) NIL (|has| $ (-346)))) (-3323 (($ $ (-1088 $)) NIL (|has| $ (-346)))) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-2948 (($) NIL T CONST)) (-1722 (($ (-856)) NIL)) (-2700 (((-108) $) NIL)) (-3993 (((-1039) $) NIL)) (-3817 (($) NIL (|has| $ (-346)))) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) NIL)) (-4201 (((-396 $) $) NIL)) (-1690 (((-856)) NIL) (((-775 (-856))) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2043 (((-3 (-713) "failed") $ $) NIL) (((-713) $) NIL)) (-3933 (((-128)) NIL)) (-2702 (($ $ (-713)) NIL) (($ $) NIL)) (-3529 (((-856) $) NIL) (((-775 (-856)) $) NIL)) (-2013 (((-1088 $)) NIL)) (-3823 (($) NIL)) (-3911 (($) NIL (|has| $ (-346)))) (-2754 (((-632 $) (-1174 $)) NIL) (((-1174 $) $) NIL)) (-2069 (((-525) $) NIL)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL)) (-1463 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2448 (((-713)) NIL)) (-2103 (((-1174 $) (-856)) NIL) (((-1174 $)) NIL)) (-1571 (((-108) $ $) NIL)) (-2738 (((-108) $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2363 (($ $ (-713)) NIL (|has| $ (-346))) (($ $) NIL (|has| $ (-346)))) (-2401 (($ $ (-713)) NIL) (($ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
(((-845 |#1|) (-13 (-327) (-307 $) (-567 (-525))) (-856)) (T -845))
NIL
(-13 (-327) (-307 $) (-567 (-525)))
-((-3066 (((-3 (-2 (|:| -2581 (-713)) (|:| -2459 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|)) 79)) (-3056 (((-108) (-314 |#2| |#3| |#4| |#5|)) 17)) (-2581 (((-3 (-713) "failed") (-314 |#2| |#3| |#4| |#5|)) 15)))
-(((-846 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2581 ((-3 (-713) "failed") (-314 |#2| |#3| |#4| |#5|))) (-15 -3056 ((-108) (-314 |#2| |#3| |#4| |#5|))) (-15 -3066 ((-3 (-2 (|:| -2581 (-713)) (|:| -2459 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|)))) (-13 (-789) (-517) (-968 (-525))) (-408 |#1|) (-1150 |#2|) (-1150 (-385 |#3|)) (-320 |#2| |#3| |#4|)) (T -846))
-((-3066 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-2 (|:| -2581 (-713)) (|:| -2459 *8))) (-5 *1 (-846 *4 *5 *6 *7 *8)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-108)) (-5 *1 (-846 *4 *5 *6 *7 *8)))) (-2581 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-713)) (-5 *1 (-846 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2581 ((-3 (-713) "failed") (-314 |#2| |#3| |#4| |#5|))) (-15 -3056 ((-108) (-314 |#2| |#3| |#4| |#5|))) (-15 -3066 ((-3 (-2 (|:| -2581 (-713)) (|:| -2459 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|))))
-((-3066 (((-3 (-2 (|:| -2581 (-713)) (|:| -2459 |#3|)) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)) 56)) (-3056 (((-108) (-314 (-385 (-525)) |#1| |#2| |#3|)) 16)) (-2581 (((-3 (-713) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)) 14)))
-(((-847 |#1| |#2| |#3|) (-10 -7 (-15 -2581 ((-3 (-713) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -3056 ((-108) (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -3066 ((-3 (-2 (|:| -2581 (-713)) (|:| -2459 |#3|)) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)))) (-1150 (-385 (-525))) (-1150 (-385 |#1|)) (-320 (-385 (-525)) |#1| |#2|)) (T -847))
-((-3066 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) (-4 *4 (-1150 (-385 (-525)))) (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-2 (|:| -2581 (-713)) (|:| -2459 *6))) (-5 *1 (-847 *4 *5 *6)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) (-4 *4 (-1150 (-385 (-525)))) (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-108)) (-5 *1 (-847 *4 *5 *6)))) (-2581 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) (-4 *4 (-1150 (-385 (-525)))) (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-713)) (-5 *1 (-847 *4 *5 *6)))))
-(-10 -7 (-15 -2581 ((-3 (-713) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -3056 ((-108) (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -3066 ((-3 (-2 (|:| -2581 (-713)) (|:| -2459 |#3|)) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|))))
-((-4032 ((|#2| |#2|) 26)) (-4169 (((-525) (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))))) 15)) (-3875 (((-856) (-525)) 35)) (-2160 (((-525) |#2|) 42)) (-2891 (((-525) |#2|) 21) (((-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))) |#1|) 20)))
-(((-848 |#1| |#2|) (-10 -7 (-15 -3875 ((-856) (-525))) (-15 -2891 ((-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))) |#1|)) (-15 -2891 ((-525) |#2|)) (-15 -4169 ((-525) (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))))) (-15 -2160 ((-525) |#2|)) (-15 -4032 (|#2| |#2|))) (-1150 (-385 (-525))) (-1150 (-385 |#1|))) (T -848))
-((-4032 (*1 *2 *2) (-12 (-4 *3 (-1150 (-385 (-525)))) (-5 *1 (-848 *3 *2)) (-4 *2 (-1150 (-385 *3))))) (-2160 (*1 *2 *3) (-12 (-4 *4 (-1150 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-848 *4 *3)) (-4 *3 (-1150 (-385 *4))))) (-4169 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))))) (-4 *4 (-1150 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-848 *4 *5)) (-4 *5 (-1150 (-385 *4))))) (-2891 (*1 *2 *3) (-12 (-4 *4 (-1150 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-848 *4 *3)) (-4 *3 (-1150 (-385 *4))))) (-2891 (*1 *2 *3) (-12 (-4 *3 (-1150 (-385 (-525)))) (-5 *2 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))) (-5 *1 (-848 *3 *4)) (-4 *4 (-1150 (-385 *3))))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-1150 (-385 *3))) (-5 *2 (-856)) (-5 *1 (-848 *4 *5)) (-4 *5 (-1150 (-385 *4))))))
-(-10 -7 (-15 -3875 ((-856) (-525))) (-15 -2891 ((-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))) |#1|)) (-15 -2891 ((-525) |#2|)) (-15 -4169 ((-525) (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))))) (-15 -2160 ((-525) |#2|)) (-15 -4032 (|#2| |#2|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1548 ((|#1| $) 81)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2193 (((-108) $ $) NIL)) (-2169 (($) NIL T CONST)) (-1747 (($ $ $) NIL)) (-3457 (((-3 $ "failed") $) 75)) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-2164 (($ |#1| (-396 |#1|)) 73)) (-3307 (((-1088 |#1|) |#1| |#1|) 41)) (-3670 (($ $) 49)) (-1396 (((-108) $) NIL)) (-4074 (((-525) $) 78)) (-2864 (($ $ (-525)) 80)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1712 ((|#1| $) 77)) (-2852 (((-396 |#1|) $) 76)) (-2770 (((-396 $) $) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) 74)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-1832 (($ $) 39)) (-1217 (((-798) $) 99) (($ (-525)) 54) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 31) (((-385 |#1|) $) 59) (($ (-385 (-396 |#1|))) 67)) (-3917 (((-713)) 52)) (-3325 (((-108) $ $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) 23 T CONST)) (-3359 (($) 12 T CONST)) (-3955 (((-108) $ $) 68)) (-4075 (($ $ $) NIL)) (-4061 (($ $) 88) (($ $ $) NIL)) (-4047 (($ $ $) 38)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 90) (($ $ $) 37) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-849 |#1|) (-13 (-341) (-37 |#1|) (-10 -8 (-15 -1217 ((-385 |#1|) $)) (-15 -1217 ($ (-385 (-396 |#1|)))) (-15 -1832 ($ $)) (-15 -2852 ((-396 |#1|) $)) (-15 -1712 (|#1| $)) (-15 -2864 ($ $ (-525))) (-15 -4074 ((-525) $)) (-15 -3307 ((-1088 |#1|) |#1| |#1|)) (-15 -3670 ($ $)) (-15 -2164 ($ |#1| (-396 |#1|))) (-15 -1548 (|#1| $)))) (-286)) (T -849))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-385 *3)) (-5 *1 (-849 *3)) (-4 *3 (-286)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-385 (-396 *3))) (-4 *3 (-286)) (-5 *1 (-849 *3)))) (-1832 (*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-396 *3)) (-5 *1 (-849 *3)) (-4 *3 (-286)))) (-1712 (*1 *2 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))) (-2864 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-849 *3)) (-4 *3 (-286)))) (-4074 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-849 *3)) (-4 *3 (-286)))) (-3307 (*1 *2 *3 *3) (-12 (-5 *2 (-1088 *3)) (-5 *1 (-849 *3)) (-4 *3 (-286)))) (-3670 (*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))) (-2164 (*1 *1 *2 *3) (-12 (-5 *3 (-396 *2)) (-4 *2 (-286)) (-5 *1 (-849 *2)))) (-1548 (*1 *2 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))))
-(-13 (-341) (-37 |#1|) (-10 -8 (-15 -1217 ((-385 |#1|) $)) (-15 -1217 ($ (-385 (-396 |#1|)))) (-15 -1832 ($ $)) (-15 -2852 ((-396 |#1|) $)) (-15 -1712 (|#1| $)) (-15 -2864 ($ $ (-525))) (-15 -4074 ((-525) $)) (-15 -3307 ((-1088 |#1|) |#1| |#1|)) (-15 -3670 ($ $)) (-15 -2164 ($ |#1| (-396 |#1|))) (-15 -1548 (|#1| $))))
-((-2164 (((-51) (-887 |#1|) (-396 (-887 |#1|)) (-1092)) 17) (((-51) (-385 (-887 |#1|)) (-1092)) 18)))
-(((-850 |#1|) (-10 -7 (-15 -2164 ((-51) (-385 (-887 |#1|)) (-1092))) (-15 -2164 ((-51) (-887 |#1|) (-396 (-887 |#1|)) (-1092)))) (-13 (-286) (-138))) (T -850))
-((-2164 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-396 (-887 *6))) (-5 *5 (-1092)) (-5 *3 (-887 *6)) (-4 *6 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-850 *6)))) (-2164 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-850 *5)))))
-(-10 -7 (-15 -2164 ((-51) (-385 (-887 |#1|)) (-1092))) (-15 -2164 ((-51) (-887 |#1|) (-396 (-887 |#1|)) (-1092))))
-((-1246 ((|#4| (-592 |#4|)) 121) (((-1088 |#4|) (-1088 |#4|) (-1088 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-2589 (((-1088 |#4|) (-592 (-1088 |#4|))) 114) (((-1088 |#4|) (-1088 |#4|) (-1088 |#4|)) 50) ((|#4| (-592 |#4|)) 55) ((|#4| |#4| |#4|) 84)))
-(((-851 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2589 (|#4| |#4| |#4|)) (-15 -2589 (|#4| (-592 |#4|))) (-15 -2589 ((-1088 |#4|) (-1088 |#4|) (-1088 |#4|))) (-15 -2589 ((-1088 |#4|) (-592 (-1088 |#4|)))) (-15 -1246 (|#4| |#4| |#4|)) (-15 -1246 ((-1088 |#4|) (-1088 |#4|) (-1088 |#4|))) (-15 -1246 (|#4| (-592 |#4|)))) (-735) (-789) (-286) (-884 |#3| |#1| |#2|)) (T -851))
-((-1246 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *6 *4 *5)) (-5 *1 (-851 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)))) (-1246 (*1 *2 *2 *2) (-12 (-5 *2 (-1088 *6)) (-4 *6 (-884 *5 *3 *4)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-851 *3 *4 *5 *6)))) (-1246 (*1 *2 *2 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-851 *3 *4 *5 *2)) (-4 *2 (-884 *5 *3 *4)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-592 (-1088 *7))) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-1088 *7)) (-5 *1 (-851 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))) (-2589 (*1 *2 *2 *2) (-12 (-5 *2 (-1088 *6)) (-4 *6 (-884 *5 *3 *4)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-851 *3 *4 *5 *6)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *6 *4 *5)) (-5 *1 (-851 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)))) (-2589 (*1 *2 *2 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-851 *3 *4 *5 *2)) (-4 *2 (-884 *5 *3 *4)))))
-(-10 -7 (-15 -2589 (|#4| |#4| |#4|)) (-15 -2589 (|#4| (-592 |#4|))) (-15 -2589 ((-1088 |#4|) (-1088 |#4|) (-1088 |#4|))) (-15 -2589 ((-1088 |#4|) (-592 (-1088 |#4|)))) (-15 -1246 (|#4| |#4| |#4|)) (-15 -1246 ((-1088 |#4|) (-1088 |#4|) (-1088 |#4|))) (-15 -1246 (|#4| (-592 |#4|))))
-((-3152 (((-839 (-525)) (-904)) 23) (((-839 (-525)) (-592 (-525))) 20)) (-3514 (((-839 (-525)) (-592 (-525))) 48) (((-839 (-525)) (-856)) 49)) (-4054 (((-839 (-525))) 24)) (-4220 (((-839 (-525))) 38) (((-839 (-525)) (-592 (-525))) 37)) (-2029 (((-839 (-525))) 36) (((-839 (-525)) (-592 (-525))) 35)) (-2136 (((-839 (-525))) 34) (((-839 (-525)) (-592 (-525))) 33)) (-3621 (((-839 (-525))) 32) (((-839 (-525)) (-592 (-525))) 31)) (-2783 (((-839 (-525))) 30) (((-839 (-525)) (-592 (-525))) 29)) (-2518 (((-839 (-525))) 40) (((-839 (-525)) (-592 (-525))) 39)) (-1250 (((-839 (-525)) (-592 (-525))) 52) (((-839 (-525)) (-856)) 53)) (-2791 (((-839 (-525)) (-592 (-525))) 50) (((-839 (-525)) (-856)) 51)) (-2540 (((-839 (-525)) (-592 (-525))) 46) (((-839 (-525)) (-856)) 47)) (-3255 (((-839 (-525)) (-592 (-856))) 43)))
-(((-852) (-10 -7 (-15 -3514 ((-839 (-525)) (-856))) (-15 -3514 ((-839 (-525)) (-592 (-525)))) (-15 -2540 ((-839 (-525)) (-856))) (-15 -2540 ((-839 (-525)) (-592 (-525)))) (-15 -3255 ((-839 (-525)) (-592 (-856)))) (-15 -2791 ((-839 (-525)) (-856))) (-15 -2791 ((-839 (-525)) (-592 (-525)))) (-15 -1250 ((-839 (-525)) (-856))) (-15 -1250 ((-839 (-525)) (-592 (-525)))) (-15 -2783 ((-839 (-525)) (-592 (-525)))) (-15 -2783 ((-839 (-525)))) (-15 -3621 ((-839 (-525)) (-592 (-525)))) (-15 -3621 ((-839 (-525)))) (-15 -2136 ((-839 (-525)) (-592 (-525)))) (-15 -2136 ((-839 (-525)))) (-15 -2029 ((-839 (-525)) (-592 (-525)))) (-15 -2029 ((-839 (-525)))) (-15 -4220 ((-839 (-525)) (-592 (-525)))) (-15 -4220 ((-839 (-525)))) (-15 -2518 ((-839 (-525)) (-592 (-525)))) (-15 -2518 ((-839 (-525)))) (-15 -4054 ((-839 (-525)))) (-15 -3152 ((-839 (-525)) (-592 (-525)))) (-15 -3152 ((-839 (-525)) (-904))))) (T -852))
-((-3152 (*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-3152 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-4054 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2518 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2518 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-4220 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-4220 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2029 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2136 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-3621 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-3621 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2783 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-1250 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-1250 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-592 (-856))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2540 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2540 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-3514 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-3514 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
-(-10 -7 (-15 -3514 ((-839 (-525)) (-856))) (-15 -3514 ((-839 (-525)) (-592 (-525)))) (-15 -2540 ((-839 (-525)) (-856))) (-15 -2540 ((-839 (-525)) (-592 (-525)))) (-15 -3255 ((-839 (-525)) (-592 (-856)))) (-15 -2791 ((-839 (-525)) (-856))) (-15 -2791 ((-839 (-525)) (-592 (-525)))) (-15 -1250 ((-839 (-525)) (-856))) (-15 -1250 ((-839 (-525)) (-592 (-525)))) (-15 -2783 ((-839 (-525)) (-592 (-525)))) (-15 -2783 ((-839 (-525)))) (-15 -3621 ((-839 (-525)) (-592 (-525)))) (-15 -3621 ((-839 (-525)))) (-15 -2136 ((-839 (-525)) (-592 (-525)))) (-15 -2136 ((-839 (-525)))) (-15 -2029 ((-839 (-525)) (-592 (-525)))) (-15 -2029 ((-839 (-525)))) (-15 -4220 ((-839 (-525)) (-592 (-525)))) (-15 -4220 ((-839 (-525)))) (-15 -2518 ((-839 (-525)) (-592 (-525)))) (-15 -2518 ((-839 (-525)))) (-15 -4054 ((-839 (-525)))) (-15 -3152 ((-839 (-525)) (-592 (-525)))) (-15 -3152 ((-839 (-525)) (-904))))
-((-3681 (((-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1092))) 12)) (-1710 (((-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1092))) 11)))
-(((-853 |#1|) (-10 -7 (-15 -1710 ((-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1092)))) (-15 -3681 ((-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1092))))) (-429)) (T -853))
-((-3681 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-887 *4))) (-5 *3 (-592 (-1092))) (-4 *4 (-429)) (-5 *1 (-853 *4)))) (-1710 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-887 *4))) (-5 *3 (-592 (-1092))) (-4 *4 (-429)) (-5 *1 (-853 *4)))))
-(-10 -7 (-15 -1710 ((-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1092)))) (-15 -3681 ((-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1092)))))
-((-1217 (((-294 |#1|) (-454)) 16)))
-(((-854 |#1|) (-10 -7 (-15 -1217 ((-294 |#1|) (-454)))) (-13 (-789) (-517))) (T -854))
-((-1217 (*1 *2 *3) (-12 (-5 *3 (-454)) (-5 *2 (-294 *4)) (-5 *1 (-854 *4)) (-4 *4 (-13 (-789) (-517))))))
-(-10 -7 (-15 -1217 ((-294 |#1|) (-454))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3457 (((-3 $ "failed") $) 34)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 51)) (-1396 (((-108) $) 31)) (-2556 (($ $ $) 46) (($ (-592 $)) 45)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2589 (($ $ $) 48) (($ (-592 $)) 47)) (-1715 (((-3 $ "failed") $ $) 42)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-3917 (((-713)) 29)) (-3325 (((-108) $ $) 39)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-2995 (((-3 (-2 (|:| -4000 (-713)) (|:| -2626 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|)) 79)) (-2920 (((-108) (-314 |#2| |#3| |#4| |#5|)) 17)) (-4000 (((-3 (-713) "failed") (-314 |#2| |#3| |#4| |#5|)) 15)))
+(((-846 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4000 ((-3 (-713) "failed") (-314 |#2| |#3| |#4| |#5|))) (-15 -2920 ((-108) (-314 |#2| |#3| |#4| |#5|))) (-15 -2995 ((-3 (-2 (|:| -4000 (-713)) (|:| -2626 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|)))) (-13 (-789) (-517) (-968 (-525))) (-408 |#1|) (-1150 |#2|) (-1150 (-385 |#3|)) (-320 |#2| |#3| |#4|)) (T -846))
+((-2995 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-2 (|:| -4000 (-713)) (|:| -2626 *8))) (-5 *1 (-846 *4 *5 *6 *7 *8)))) (-2920 (*1 *2 *3) (-12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-108)) (-5 *1 (-846 *4 *5 *6 *7 *8)))) (-4000 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-713)) (-5 *1 (-846 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -4000 ((-3 (-713) "failed") (-314 |#2| |#3| |#4| |#5|))) (-15 -2920 ((-108) (-314 |#2| |#3| |#4| |#5|))) (-15 -2995 ((-3 (-2 (|:| -4000 (-713)) (|:| -2626 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|))))
+((-2995 (((-3 (-2 (|:| -4000 (-713)) (|:| -2626 |#3|)) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)) 56)) (-2920 (((-108) (-314 (-385 (-525)) |#1| |#2| |#3|)) 16)) (-4000 (((-3 (-713) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)) 14)))
+(((-847 |#1| |#2| |#3|) (-10 -7 (-15 -4000 ((-3 (-713) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -2920 ((-108) (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -2995 ((-3 (-2 (|:| -4000 (-713)) (|:| -2626 |#3|)) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)))) (-1150 (-385 (-525))) (-1150 (-385 |#1|)) (-320 (-385 (-525)) |#1| |#2|)) (T -847))
+((-2995 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) (-4 *4 (-1150 (-385 (-525)))) (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-2 (|:| -4000 (-713)) (|:| -2626 *6))) (-5 *1 (-847 *4 *5 *6)))) (-2920 (*1 *2 *3) (-12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) (-4 *4 (-1150 (-385 (-525)))) (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-108)) (-5 *1 (-847 *4 *5 *6)))) (-4000 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) (-4 *4 (-1150 (-385 (-525)))) (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-713)) (-5 *1 (-847 *4 *5 *6)))))
+(-10 -7 (-15 -4000 ((-3 (-713) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -2920 ((-108) (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -2995 ((-3 (-2 (|:| -4000 (-713)) (|:| -2626 |#3|)) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|))))
+((-4221 ((|#2| |#2|) 26)) (-3097 (((-525) (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))))) 15)) (-2022 (((-856) (-525)) 35)) (-2378 (((-525) |#2|) 42)) (-3812 (((-525) |#2|) 21) (((-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))) |#1|) 20)))
+(((-848 |#1| |#2|) (-10 -7 (-15 -2022 ((-856) (-525))) (-15 -3812 ((-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))) |#1|)) (-15 -3812 ((-525) |#2|)) (-15 -3097 ((-525) (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))))) (-15 -2378 ((-525) |#2|)) (-15 -4221 (|#2| |#2|))) (-1150 (-385 (-525))) (-1150 (-385 |#1|))) (T -848))
+((-4221 (*1 *2 *2) (-12 (-4 *3 (-1150 (-385 (-525)))) (-5 *1 (-848 *3 *2)) (-4 *2 (-1150 (-385 *3))))) (-2378 (*1 *2 *3) (-12 (-4 *4 (-1150 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-848 *4 *3)) (-4 *3 (-1150 (-385 *4))))) (-3097 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))))) (-4 *4 (-1150 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-848 *4 *5)) (-4 *5 (-1150 (-385 *4))))) (-3812 (*1 *2 *3) (-12 (-4 *4 (-1150 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-848 *4 *3)) (-4 *3 (-1150 (-385 *4))))) (-3812 (*1 *2 *3) (-12 (-4 *3 (-1150 (-385 (-525)))) (-5 *2 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))) (-5 *1 (-848 *3 *4)) (-4 *4 (-1150 (-385 *3))))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-1150 (-385 *3))) (-5 *2 (-856)) (-5 *1 (-848 *4 *5)) (-4 *5 (-1150 (-385 *4))))))
+(-10 -7 (-15 -2022 ((-856) (-525))) (-15 -3812 ((-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))) |#1|)) (-15 -3812 ((-525) |#2|)) (-15 -3097 ((-525) (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))))) (-15 -2378 ((-525) |#2|)) (-15 -4221 (|#2| |#2|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1653 ((|#1| $) 81)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-1507 (((-108) $ $) NIL)) (-2475 (($) NIL T CONST)) (-1356 (($ $ $) NIL)) (-3300 (((-3 $ "failed") $) 75)) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-2427 (($ |#1| (-396 |#1|)) 73)) (-1395 (((-1088 |#1|) |#1| |#1|) 41)) (-1764 (($ $) 49)) (-2278 (((-108) $) NIL)) (-3396 (((-525) $) 78)) (-1750 (($ $ (-525)) 80)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3437 ((|#1| $) 77)) (-1634 (((-396 |#1|) $) 76)) (-4201 (((-396 $) $) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) 74)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2100 (($ $) 39)) (-4100 (((-798) $) 99) (($ (-525)) 54) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 31) (((-385 |#1|) $) 59) (($ (-385 (-396 |#1|))) 67)) (-2448 (((-713)) 52)) (-1571 (((-108) $ $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) 23 T CONST)) (-3375 (($) 12 T CONST)) (-2775 (((-108) $ $) 68)) (-2880 (($ $ $) NIL)) (-2871 (($ $) 88) (($ $ $) NIL)) (-2860 (($ $ $) 38)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 90) (($ $ $) 37) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-849 |#1|) (-13 (-341) (-37 |#1|) (-10 -8 (-15 -4100 ((-385 |#1|) $)) (-15 -4100 ($ (-385 (-396 |#1|)))) (-15 -2100 ($ $)) (-15 -1634 ((-396 |#1|) $)) (-15 -3437 (|#1| $)) (-15 -1750 ($ $ (-525))) (-15 -3396 ((-525) $)) (-15 -1395 ((-1088 |#1|) |#1| |#1|)) (-15 -1764 ($ $)) (-15 -2427 ($ |#1| (-396 |#1|))) (-15 -1653 (|#1| $)))) (-286)) (T -849))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-385 *3)) (-5 *1 (-849 *3)) (-4 *3 (-286)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-385 (-396 *3))) (-4 *3 (-286)) (-5 *1 (-849 *3)))) (-2100 (*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-396 *3)) (-5 *1 (-849 *3)) (-4 *3 (-286)))) (-3437 (*1 *2 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))) (-1750 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-849 *3)) (-4 *3 (-286)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-849 *3)) (-4 *3 (-286)))) (-1395 (*1 *2 *3 *3) (-12 (-5 *2 (-1088 *3)) (-5 *1 (-849 *3)) (-4 *3 (-286)))) (-1764 (*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))) (-2427 (*1 *1 *2 *3) (-12 (-5 *3 (-396 *2)) (-4 *2 (-286)) (-5 *1 (-849 *2)))) (-1653 (*1 *2 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))))
+(-13 (-341) (-37 |#1|) (-10 -8 (-15 -4100 ((-385 |#1|) $)) (-15 -4100 ($ (-385 (-396 |#1|)))) (-15 -2100 ($ $)) (-15 -1634 ((-396 |#1|) $)) (-15 -3437 (|#1| $)) (-15 -1750 ($ $ (-525))) (-15 -3396 ((-525) $)) (-15 -1395 ((-1088 |#1|) |#1| |#1|)) (-15 -1764 ($ $)) (-15 -2427 ($ |#1| (-396 |#1|))) (-15 -1653 (|#1| $))))
+((-2427 (((-51) (-887 |#1|) (-396 (-887 |#1|)) (-1092)) 17) (((-51) (-385 (-887 |#1|)) (-1092)) 18)))
+(((-850 |#1|) (-10 -7 (-15 -2427 ((-51) (-385 (-887 |#1|)) (-1092))) (-15 -2427 ((-51) (-887 |#1|) (-396 (-887 |#1|)) (-1092)))) (-13 (-286) (-138))) (T -850))
+((-2427 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-396 (-887 *6))) (-5 *5 (-1092)) (-5 *3 (-887 *6)) (-4 *6 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-850 *6)))) (-2427 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-850 *5)))))
+(-10 -7 (-15 -2427 ((-51) (-385 (-887 |#1|)) (-1092))) (-15 -2427 ((-51) (-887 |#1|) (-396 (-887 |#1|)) (-1092))))
+((-1602 ((|#4| (-592 |#4|)) 121) (((-1088 |#4|) (-1088 |#4|) (-1088 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-2772 (((-1088 |#4|) (-592 (-1088 |#4|))) 114) (((-1088 |#4|) (-1088 |#4|) (-1088 |#4|)) 50) ((|#4| (-592 |#4|)) 55) ((|#4| |#4| |#4|) 84)))
+(((-851 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2772 (|#4| |#4| |#4|)) (-15 -2772 (|#4| (-592 |#4|))) (-15 -2772 ((-1088 |#4|) (-1088 |#4|) (-1088 |#4|))) (-15 -2772 ((-1088 |#4|) (-592 (-1088 |#4|)))) (-15 -1602 (|#4| |#4| |#4|)) (-15 -1602 ((-1088 |#4|) (-1088 |#4|) (-1088 |#4|))) (-15 -1602 (|#4| (-592 |#4|)))) (-735) (-789) (-286) (-884 |#3| |#1| |#2|)) (T -851))
+((-1602 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *6 *4 *5)) (-5 *1 (-851 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)))) (-1602 (*1 *2 *2 *2) (-12 (-5 *2 (-1088 *6)) (-4 *6 (-884 *5 *3 *4)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-851 *3 *4 *5 *6)))) (-1602 (*1 *2 *2 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-851 *3 *4 *5 *2)) (-4 *2 (-884 *5 *3 *4)))) (-2772 (*1 *2 *3) (-12 (-5 *3 (-592 (-1088 *7))) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-1088 *7)) (-5 *1 (-851 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))) (-2772 (*1 *2 *2 *2) (-12 (-5 *2 (-1088 *6)) (-4 *6 (-884 *5 *3 *4)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-851 *3 *4 *5 *6)))) (-2772 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *6 *4 *5)) (-5 *1 (-851 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)))) (-2772 (*1 *2 *2 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-851 *3 *4 *5 *2)) (-4 *2 (-884 *5 *3 *4)))))
+(-10 -7 (-15 -2772 (|#4| |#4| |#4|)) (-15 -2772 (|#4| (-592 |#4|))) (-15 -2772 ((-1088 |#4|) (-1088 |#4|) (-1088 |#4|))) (-15 -2772 ((-1088 |#4|) (-592 (-1088 |#4|)))) (-15 -1602 (|#4| |#4| |#4|)) (-15 -1602 ((-1088 |#4|) (-1088 |#4|) (-1088 |#4|))) (-15 -1602 (|#4| (-592 |#4|))))
+((-2567 (((-839 (-525)) (-904)) 23) (((-839 (-525)) (-592 (-525))) 20)) (-2648 (((-839 (-525)) (-592 (-525))) 48) (((-839 (-525)) (-856)) 49)) (-3195 (((-839 (-525))) 24)) (-2454 (((-839 (-525))) 38) (((-839 (-525)) (-592 (-525))) 37)) (-3420 (((-839 (-525))) 36) (((-839 (-525)) (-592 (-525))) 35)) (-2125 (((-839 (-525))) 34) (((-839 (-525)) (-592 (-525))) 33)) (-2499 (((-839 (-525))) 32) (((-839 (-525)) (-592 (-525))) 31)) (-2221 (((-839 (-525))) 30) (((-839 (-525)) (-592 (-525))) 29)) (-1616 (((-839 (-525))) 40) (((-839 (-525)) (-592 (-525))) 39)) (-1660 (((-839 (-525)) (-592 (-525))) 52) (((-839 (-525)) (-856)) 53)) (-2309 (((-839 (-525)) (-592 (-525))) 50) (((-839 (-525)) (-856)) 51)) (-1797 (((-839 (-525)) (-592 (-525))) 46) (((-839 (-525)) (-856)) 47)) (-4063 (((-839 (-525)) (-592 (-856))) 43)))
+(((-852) (-10 -7 (-15 -2648 ((-839 (-525)) (-856))) (-15 -2648 ((-839 (-525)) (-592 (-525)))) (-15 -1797 ((-839 (-525)) (-856))) (-15 -1797 ((-839 (-525)) (-592 (-525)))) (-15 -4063 ((-839 (-525)) (-592 (-856)))) (-15 -2309 ((-839 (-525)) (-856))) (-15 -2309 ((-839 (-525)) (-592 (-525)))) (-15 -1660 ((-839 (-525)) (-856))) (-15 -1660 ((-839 (-525)) (-592 (-525)))) (-15 -2221 ((-839 (-525)) (-592 (-525)))) (-15 -2221 ((-839 (-525)))) (-15 -2499 ((-839 (-525)) (-592 (-525)))) (-15 -2499 ((-839 (-525)))) (-15 -2125 ((-839 (-525)) (-592 (-525)))) (-15 -2125 ((-839 (-525)))) (-15 -3420 ((-839 (-525)) (-592 (-525)))) (-15 -3420 ((-839 (-525)))) (-15 -2454 ((-839 (-525)) (-592 (-525)))) (-15 -2454 ((-839 (-525)))) (-15 -1616 ((-839 (-525)) (-592 (-525)))) (-15 -1616 ((-839 (-525)))) (-15 -3195 ((-839 (-525)))) (-15 -2567 ((-839 (-525)) (-592 (-525)))) (-15 -2567 ((-839 (-525)) (-904))))) (T -852))
+((-2567 (*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2567 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-3195 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-1616 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2454 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2454 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-3420 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-3420 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2125 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2125 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2499 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2499 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2221 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2221 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-592 (-856))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(-10 -7 (-15 -2648 ((-839 (-525)) (-856))) (-15 -2648 ((-839 (-525)) (-592 (-525)))) (-15 -1797 ((-839 (-525)) (-856))) (-15 -1797 ((-839 (-525)) (-592 (-525)))) (-15 -4063 ((-839 (-525)) (-592 (-856)))) (-15 -2309 ((-839 (-525)) (-856))) (-15 -2309 ((-839 (-525)) (-592 (-525)))) (-15 -1660 ((-839 (-525)) (-856))) (-15 -1660 ((-839 (-525)) (-592 (-525)))) (-15 -2221 ((-839 (-525)) (-592 (-525)))) (-15 -2221 ((-839 (-525)))) (-15 -2499 ((-839 (-525)) (-592 (-525)))) (-15 -2499 ((-839 (-525)))) (-15 -2125 ((-839 (-525)) (-592 (-525)))) (-15 -2125 ((-839 (-525)))) (-15 -3420 ((-839 (-525)) (-592 (-525)))) (-15 -3420 ((-839 (-525)))) (-15 -2454 ((-839 (-525)) (-592 (-525)))) (-15 -2454 ((-839 (-525)))) (-15 -1616 ((-839 (-525)) (-592 (-525)))) (-15 -1616 ((-839 (-525)))) (-15 -3195 ((-839 (-525)))) (-15 -2567 ((-839 (-525)) (-592 (-525)))) (-15 -2567 ((-839 (-525)) (-904))))
+((-1897 (((-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1092))) 12)) (-3414 (((-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1092))) 11)))
+(((-853 |#1|) (-10 -7 (-15 -3414 ((-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1092)))) (-15 -1897 ((-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1092))))) (-429)) (T -853))
+((-1897 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-887 *4))) (-5 *3 (-592 (-1092))) (-4 *4 (-429)) (-5 *1 (-853 *4)))) (-3414 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-887 *4))) (-5 *3 (-592 (-1092))) (-4 *4 (-429)) (-5 *1 (-853 *4)))))
+(-10 -7 (-15 -3414 ((-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1092)))) (-15 -1897 ((-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1092)))))
+((-4100 (((-294 |#1|) (-454)) 16)))
+(((-854 |#1|) (-10 -7 (-15 -4100 ((-294 |#1|) (-454)))) (-13 (-789) (-517))) (T -854))
+((-4100 (*1 *2 *3) (-12 (-5 *3 (-454)) (-5 *2 (-294 *4)) (-5 *1 (-854 *4)) (-4 *4 (-13 (-789) (-517))))))
+(-10 -7 (-15 -4100 ((-294 |#1|) (-454))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3300 (((-3 $ "failed") $) 34)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 51)) (-2278 (((-108) $) 31)) (-2739 (($ $ $) 46) (($ (-592 $)) 45)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2772 (($ $ $) 48) (($ (-592 $)) 47)) (-1311 (((-3 $ "failed") $ $) 42)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-2448 (((-713)) 29)) (-1571 (((-108) $ $) 39)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-855) (-131)) (T -855))
-((-2168 (*1 *2 *3) (-12 (-4 *1 (-855)) (-5 *2 (-2 (|:| -3244 (-592 *1)) (|:| -3409 *1))) (-5 *3 (-592 *1)))) (-1842 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-855)))))
-(-13 (-429) (-10 -8 (-15 -2168 ((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $))) (-15 -1842 ((-3 (-592 $) "failed") (-592 $) $))))
+((-2466 (*1 *2 *3) (-12 (-4 *1 (-855)) (-5 *2 (-2 (|:| -2681 (-592 *1)) (|:| -3817 *1))) (-5 *3 (-592 *1)))) (-2183 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-855)))))
+(-13 (-429) (-10 -8 (-15 -2466 ((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $))) (-15 -2183 ((-3 (-592 $) "failed") (-592 $) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-2169 (($) NIL T CONST)) (-3457 (((-3 $ "failed") $) NIL)) (-1396 (((-108) $) NIL)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-2589 (($ $ $) NIL)) (-1217 (((-798) $) NIL)) (-1619 (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3359 (($) NIL T CONST)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (* (($ (-856) $) NIL) (($ $ $) NIL)))
-(((-856) (-13 (-736) (-669) (-10 -8 (-15 -2589 ($ $ $)) (-6 (-4260 "*"))))) (T -856))
-((-2589 (*1 *1 *1 *1) (-5 *1 (-856))))
-(-13 (-736) (-669) (-10 -8 (-15 -2589 ($ $ $)) (-6 (-4260 "*"))))
-((-1612 ((|#2| (-592 |#1|) (-592 |#1|)) 24)))
-(((-857 |#1| |#2|) (-10 -7 (-15 -1612 (|#2| (-592 |#1|) (-592 |#1|)))) (-341) (-1150 |#1|)) (T -857))
-((-1612 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-4 *2 (-1150 *4)) (-5 *1 (-857 *4 *2)))))
-(-10 -7 (-15 -1612 (|#2| (-592 |#1|) (-592 |#1|))))
-((-1650 (((-1088 |#2|) (-592 |#2|) (-592 |#2|)) 17) (((-1147 |#1| |#2|) (-1147 |#1| |#2|) (-592 |#2|) (-592 |#2|)) 13)))
-(((-858 |#1| |#2|) (-10 -7 (-15 -1650 ((-1147 |#1| |#2|) (-1147 |#1| |#2|) (-592 |#2|) (-592 |#2|))) (-15 -1650 ((-1088 |#2|) (-592 |#2|) (-592 |#2|)))) (-1092) (-341)) (T -858))
-((-1650 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-341)) (-5 *2 (-1088 *5)) (-5 *1 (-858 *4 *5)) (-14 *4 (-1092)))) (-1650 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1147 *4 *5)) (-5 *3 (-592 *5)) (-14 *4 (-1092)) (-4 *5 (-341)) (-5 *1 (-858 *4 *5)))))
-(-10 -7 (-15 -1650 ((-1147 |#1| |#2|) (-1147 |#1| |#2|) (-592 |#2|) (-592 |#2|))) (-15 -1650 ((-1088 |#2|) (-592 |#2|) (-592 |#2|))))
-((-2913 (((-525) (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-1075)) 139)) (-1490 ((|#4| |#4|) 155)) (-2409 (((-592 (-385 (-887 |#1|))) (-592 (-1092))) 119)) (-2498 (((-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))) (-632 |#4|) (-592 (-385 (-887 |#1|))) (-592 (-592 |#4|)) (-713) (-713) (-525)) 75)) (-1740 (((-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|)))))) (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|)))))) (-592 |#4|)) 59)) (-2307 (((-632 |#4|) (-632 |#4|) (-592 |#4|)) 55)) (-3959 (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-1075)) 151)) (-1915 (((-525) (-632 |#4|) (-856) (-1075)) 133) (((-525) (-632 |#4|) (-592 (-1092)) (-856) (-1075)) 132) (((-525) (-632 |#4|) (-592 |#4|) (-856) (-1075)) 131) (((-525) (-632 |#4|) (-1075)) 128) (((-525) (-632 |#4|) (-592 (-1092)) (-1075)) 127) (((-525) (-632 |#4|) (-592 |#4|) (-1075)) 126) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-856)) 125) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 (-1092)) (-856)) 124) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 |#4|) (-856)) 123) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|)) 121) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 (-1092))) 120) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 |#4|)) 116)) (-3679 ((|#4| (-887 |#1|)) 68)) (-4084 (((-108) (-592 |#4|) (-592 (-592 |#4|))) 152)) (-3550 (((-592 (-592 (-525))) (-525) (-525)) 130)) (-3801 (((-592 (-592 |#4|)) (-592 (-592 |#4|))) 88)) (-2252 (((-713) (-592 (-2 (|:| -3622 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|))))) 86)) (-2536 (((-713) (-592 (-2 (|:| -3622 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|))))) 85)) (-4093 (((-108) (-592 (-887 |#1|))) 17) (((-108) (-592 |#4|)) 13)) (-2086 (((-2 (|:| |sysok| (-108)) (|:| |z0| (-592 |#4|)) (|:| |n0| (-592 |#4|))) (-592 |#4|) (-592 |#4|)) 71)) (-1410 (((-592 |#4|) |#4|) 49)) (-2728 (((-592 (-385 (-887 |#1|))) (-592 |#4|)) 115) (((-632 (-385 (-887 |#1|))) (-632 |#4|)) 56) (((-385 (-887 |#1|)) |#4|) 112)) (-2447 (((-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|)))))))))) (|:| |rgsz| (-525))) (-632 |#4|) (-592 (-385 (-887 |#1|))) (-713) (-1075) (-525)) 93)) (-3460 (((-592 (-2 (|:| -3622 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))) (-632 |#4|) (-713)) 84)) (-1948 (((-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-632 |#4|) (-713)) 101)) (-1878 (((-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|)))))) (-2 (|:| -3407 (-632 (-385 (-887 |#1|)))) (|:| |vec| (-592 (-385 (-887 |#1|)))) (|:| -3622 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) 48)))
-(((-859 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1915 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 |#4|))) (-15 -1915 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 (-1092)))) (-15 -1915 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|))) (-15 -1915 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 |#4|) (-856))) (-15 -1915 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 (-1092)) (-856))) (-15 -1915 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-856))) (-15 -1915 ((-525) (-632 |#4|) (-592 |#4|) (-1075))) (-15 -1915 ((-525) (-632 |#4|) (-592 (-1092)) (-1075))) (-15 -1915 ((-525) (-632 |#4|) (-1075))) (-15 -1915 ((-525) (-632 |#4|) (-592 |#4|) (-856) (-1075))) (-15 -1915 ((-525) (-632 |#4|) (-592 (-1092)) (-856) (-1075))) (-15 -1915 ((-525) (-632 |#4|) (-856) (-1075))) (-15 -2913 ((-525) (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-1075))) (-15 -3959 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-1075))) (-15 -2447 ((-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|)))))))))) (|:| |rgsz| (-525))) (-632 |#4|) (-592 (-385 (-887 |#1|))) (-713) (-1075) (-525))) (-15 -2728 ((-385 (-887 |#1|)) |#4|)) (-15 -2728 ((-632 (-385 (-887 |#1|))) (-632 |#4|))) (-15 -2728 ((-592 (-385 (-887 |#1|))) (-592 |#4|))) (-15 -2409 ((-592 (-385 (-887 |#1|))) (-592 (-1092)))) (-15 -3679 (|#4| (-887 |#1|))) (-15 -2086 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-592 |#4|)) (|:| |n0| (-592 |#4|))) (-592 |#4|) (-592 |#4|))) (-15 -3460 ((-592 (-2 (|:| -3622 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))) (-632 |#4|) (-713))) (-15 -1740 ((-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|)))))) (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|)))))) (-592 |#4|))) (-15 -1878 ((-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|)))))) (-2 (|:| -3407 (-632 (-385 (-887 |#1|)))) (|:| |vec| (-592 (-385 (-887 |#1|)))) (|:| -3622 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (-15 -1410 ((-592 |#4|) |#4|)) (-15 -2536 ((-713) (-592 (-2 (|:| -3622 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -2252 ((-713) (-592 (-2 (|:| -3622 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -3801 ((-592 (-592 |#4|)) (-592 (-592 |#4|)))) (-15 -3550 ((-592 (-592 (-525))) (-525) (-525))) (-15 -4084 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -1948 ((-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-632 |#4|) (-713))) (-15 -2307 ((-632 |#4|) (-632 |#4|) (-592 |#4|))) (-15 -2498 ((-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))) (-632 |#4|) (-592 (-385 (-887 |#1|))) (-592 (-592 |#4|)) (-713) (-713) (-525))) (-15 -1490 (|#4| |#4|)) (-15 -4093 ((-108) (-592 |#4|))) (-15 -4093 ((-108) (-592 (-887 |#1|))))) (-13 (-286) (-138)) (-13 (-789) (-567 (-1092))) (-735) (-884 |#1| |#3| |#2|)) (T -859))
-((-4093 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-108)) (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-108)) (-5 *1 (-859 *4 *5 *6 *7)))) (-1490 (*1 *2 *2) (-12 (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1092)))) (-4 *5 (-735)) (-5 *1 (-859 *3 *4 *5 *2)) (-4 *2 (-884 *3 *5 *4)))) (-2498 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-5 *4 (-632 *12)) (-5 *5 (-592 (-385 (-887 *9)))) (-5 *6 (-592 (-592 *12))) (-5 *7 (-713)) (-5 *8 (-525)) (-4 *9 (-13 (-286) (-138))) (-4 *12 (-884 *9 *11 *10)) (-4 *10 (-13 (-789) (-567 (-1092)))) (-4 *11 (-735)) (-5 *2 (-2 (|:| |eqzro| (-592 *12)) (|:| |neqzro| (-592 *12)) (|:| |wcond| (-592 (-887 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *9)))) (|:| -3094 (-592 (-1174 (-385 (-887 *9))))))))) (-5 *1 (-859 *9 *10 *11 *12)))) (-2307 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *7)) (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *1 (-859 *4 *5 *6 *7)))) (-1948 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-713)) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |det| *8) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (-5 *1 (-859 *5 *6 *7 *8)))) (-4084 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-592 *8))) (-5 *3 (-592 *8)) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-108)) (-5 *1 (-859 *5 *6 *7 *8)))) (-3550 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-592 (-592 (-525)))) (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-525)) (-4 *7 (-884 *4 *6 *5)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-592 (-592 *6))) (-4 *6 (-884 *3 *5 *4)) (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1092)))) (-4 *5 (-735)) (-5 *1 (-859 *3 *4 *5 *6)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3622 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| *7) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 *7))))) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-713)) (-5 *1 (-859 *4 *5 *6 *7)))) (-2536 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3622 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| *7) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 *7))))) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-713)) (-5 *1 (-859 *4 *5 *6 *7)))) (-1410 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-592 *3)) (-5 *1 (-859 *4 *5 *6 *3)) (-4 *3 (-884 *4 *6 *5)))) (-1878 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3407 (-632 (-385 (-887 *4)))) (|:| |vec| (-592 (-385 (-887 *4)))) (|:| -3622 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-2 (|:| |partsol| (-1174 (-385 (-887 *4)))) (|:| -3094 (-592 (-1174 (-385 (-887 *4))))))) (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))) (-1740 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1174 (-385 (-887 *4)))) (|:| -3094 (-592 (-1174 (-385 (-887 *4))))))) (-5 *3 (-592 *7)) (-4 *4 (-13 (-286) (-138))) (-4 *7 (-884 *4 *6 *5)) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *1 (-859 *4 *5 *6 *7)))) (-3460 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| -3622 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| *8) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 *8))))) (-5 *1 (-859 *5 *6 *7 *8)) (-5 *4 (-713)))) (-2086 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-4 *7 (-884 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-108)) (|:| |z0| (-592 *7)) (|:| |n0| (-592 *7)))) (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-13 (-286) (-138))) (-4 *2 (-884 *4 *6 *5)) (-5 *1 (-859 *4 *5 *6 *2)) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-592 (-1092))) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-592 (-385 (-887 *4)))) (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-592 (-385 (-887 *4)))) (-5 *1 (-859 *4 *5 *6 *7)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-632 *7)) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-632 (-385 (-887 *4)))) (-5 *1 (-859 *4 *5 *6 *7)))) (-2728 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-385 (-887 *4))) (-5 *1 (-859 *4 *5 *6 *3)) (-4 *3 (-884 *4 *6 *5)))) (-2447 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-632 *11)) (-5 *4 (-592 (-385 (-887 *8)))) (-5 *5 (-713)) (-5 *6 (-1075)) (-4 *8 (-13 (-286) (-138))) (-4 *11 (-884 *8 *10 *9)) (-4 *9 (-13 (-789) (-567 (-1092)))) (-4 *10 (-735)) (-5 *2 (-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 *11)) (|:| |neqzro| (-592 *11)) (|:| |wcond| (-592 (-887 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *8)))) (|:| -3094 (-592 (-1174 (-385 (-887 *8)))))))))) (|:| |rgsz| (-525)))) (-5 *1 (-859 *8 *9 *10 *11)) (-5 *7 (-525)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *7)) (|:| |neqzro| (-592 *7)) (|:| |wcond| (-592 (-887 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *4)))) (|:| -3094 (-592 (-1174 (-385 (-887 *4)))))))))) (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))) (-2913 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-887 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *5)))) (|:| -3094 (-592 (-1174 (-385 (-887 *5)))))))))) (-5 *4 (-1075)) (-4 *5 (-13 (-286) (-138))) (-4 *8 (-884 *5 *7 *6)) (-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *5 *6 *7 *8)))) (-1915 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-856)) (-5 *5 (-1075)) (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1092)))) (-4 *8 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *6 *7 *8 *9)))) (-1915 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-632 *10)) (-5 *4 (-592 (-1092))) (-5 *5 (-856)) (-5 *6 (-1075)) (-4 *10 (-884 *7 *9 *8)) (-4 *7 (-13 (-286) (-138))) (-4 *8 (-13 (-789) (-567 (-1092)))) (-4 *9 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *7 *8 *9 *10)))) (-1915 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-632 *10)) (-5 *4 (-592 *10)) (-5 *5 (-856)) (-5 *6 (-1075)) (-4 *10 (-884 *7 *9 *8)) (-4 *7 (-13 (-286) (-138))) (-4 *8 (-13 (-789) (-567 (-1092)))) (-4 *9 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *7 *8 *9 *10)))) (-1915 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-1075)) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *5 *6 *7 *8)))) (-1915 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 (-1092))) (-5 *5 (-1075)) (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1092)))) (-4 *8 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *6 *7 *8 *9)))) (-1915 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 *9)) (-5 *5 (-1075)) (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1092)))) (-4 *8 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *6 *7 *8 *9)))) (-1915 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-856)) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-887 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *5)))) (|:| -3094 (-592 (-1174 (-385 (-887 *5)))))))))) (-5 *1 (-859 *5 *6 *7 *8)))) (-1915 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 (-1092))) (-5 *5 (-856)) (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1092)))) (-4 *8 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *9)) (|:| |neqzro| (-592 *9)) (|:| |wcond| (-592 (-887 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *6)))) (|:| -3094 (-592 (-1174 (-385 (-887 *6)))))))))) (-5 *1 (-859 *6 *7 *8 *9)))) (-1915 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *5 (-856)) (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1092)))) (-4 *8 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *9)) (|:| |neqzro| (-592 *9)) (|:| |wcond| (-592 (-887 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *6)))) (|:| -3094 (-592 (-1174 (-385 (-887 *6)))))))))) (-5 *1 (-859 *6 *7 *8 *9)) (-5 *4 (-592 *9)))) (-1915 (*1 *2 *3) (-12 (-5 *3 (-632 *7)) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *7)) (|:| |neqzro| (-592 *7)) (|:| |wcond| (-592 (-887 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *4)))) (|:| -3094 (-592 (-1174 (-385 (-887 *4)))))))))) (-5 *1 (-859 *4 *5 *6 *7)))) (-1915 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-592 (-1092))) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-887 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *5)))) (|:| -3094 (-592 (-1174 (-385 (-887 *5)))))))))) (-5 *1 (-859 *5 *6 *7 *8)))) (-1915 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-887 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *5)))) (|:| -3094 (-592 (-1174 (-385 (-887 *5)))))))))) (-5 *1 (-859 *5 *6 *7 *8)) (-5 *4 (-592 *8)))))
-(-10 -7 (-15 -1915 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 |#4|))) (-15 -1915 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 (-1092)))) (-15 -1915 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|))) (-15 -1915 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 |#4|) (-856))) (-15 -1915 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 (-1092)) (-856))) (-15 -1915 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-856))) (-15 -1915 ((-525) (-632 |#4|) (-592 |#4|) (-1075))) (-15 -1915 ((-525) (-632 |#4|) (-592 (-1092)) (-1075))) (-15 -1915 ((-525) (-632 |#4|) (-1075))) (-15 -1915 ((-525) (-632 |#4|) (-592 |#4|) (-856) (-1075))) (-15 -1915 ((-525) (-632 |#4|) (-592 (-1092)) (-856) (-1075))) (-15 -1915 ((-525) (-632 |#4|) (-856) (-1075))) (-15 -2913 ((-525) (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-1075))) (-15 -3959 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|))))))))) (-1075))) (-15 -2447 ((-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|)))))))))) (|:| |rgsz| (-525))) (-632 |#4|) (-592 (-385 (-887 |#1|))) (-713) (-1075) (-525))) (-15 -2728 ((-385 (-887 |#1|)) |#4|)) (-15 -2728 ((-632 (-385 (-887 |#1|))) (-632 |#4|))) (-15 -2728 ((-592 (-385 (-887 |#1|))) (-592 |#4|))) (-15 -2409 ((-592 (-385 (-887 |#1|))) (-592 (-1092)))) (-15 -3679 (|#4| (-887 |#1|))) (-15 -2086 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-592 |#4|)) (|:| |n0| (-592 |#4|))) (-592 |#4|) (-592 |#4|))) (-15 -3460 ((-592 (-2 (|:| -3622 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))) (-632 |#4|) (-713))) (-15 -1740 ((-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|)))))) (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|)))))) (-592 |#4|))) (-15 -1878 ((-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|)))))) (-2 (|:| -3407 (-632 (-385 (-887 |#1|)))) (|:| |vec| (-592 (-385 (-887 |#1|)))) (|:| -3622 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (-15 -1410 ((-592 |#4|) |#4|)) (-15 -2536 ((-713) (-592 (-2 (|:| -3622 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -2252 ((-713) (-592 (-2 (|:| -3622 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -3801 ((-592 (-592 |#4|)) (-592 (-592 |#4|)))) (-15 -3550 ((-592 (-592 (-525))) (-525) (-525))) (-15 -4084 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -1948 ((-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-632 |#4|) (-713))) (-15 -2307 ((-632 |#4|) (-632 |#4|) (-592 |#4|))) (-15 -2498 ((-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -3094 (-592 (-1174 (-385 (-887 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))) (-632 |#4|) (-592 (-385 (-887 |#1|))) (-592 (-592 |#4|)) (-713) (-713) (-525))) (-15 -1490 (|#4| |#4|)) (-15 -4093 ((-108) (-592 |#4|))) (-15 -4093 ((-108) (-592 (-887 |#1|)))))
-((-2572 (((-862) |#1| (-1092)) 17) (((-862) |#1| (-1092) (-1015 (-205))) 21)) (-1844 (((-862) |#1| |#1| (-1092) (-1015 (-205))) 19) (((-862) |#1| (-1092) (-1015 (-205))) 15)))
-(((-860 |#1|) (-10 -7 (-15 -1844 ((-862) |#1| (-1092) (-1015 (-205)))) (-15 -1844 ((-862) |#1| |#1| (-1092) (-1015 (-205)))) (-15 -2572 ((-862) |#1| (-1092) (-1015 (-205)))) (-15 -2572 ((-862) |#1| (-1092)))) (-567 (-501))) (T -860))
-((-2572 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-862)) (-5 *1 (-860 *3)) (-4 *3 (-567 (-501))))) (-2572 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-1015 (-205))) (-5 *2 (-862)) (-5 *1 (-860 *3)) (-4 *3 (-567 (-501))))) (-1844 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-1015 (-205))) (-5 *2 (-862)) (-5 *1 (-860 *3)) (-4 *3 (-567 (-501))))) (-1844 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-1015 (-205))) (-5 *2 (-862)) (-5 *1 (-860 *3)) (-4 *3 (-567 (-501))))))
-(-10 -7 (-15 -1844 ((-862) |#1| (-1092) (-1015 (-205)))) (-15 -1844 ((-862) |#1| |#1| (-1092) (-1015 (-205)))) (-15 -2572 ((-862) |#1| (-1092) (-1015 (-205)))) (-15 -2572 ((-862) |#1| (-1092))))
-((-2247 (($ $ (-1015 (-205)) (-1015 (-205)) (-1015 (-205))) 70)) (-2271 (((-1015 (-205)) $) 40)) (-2258 (((-1015 (-205)) $) 39)) (-2245 (((-1015 (-205)) $) 38)) (-3491 (((-592 (-592 (-205))) $) 43)) (-4040 (((-1015 (-205)) $) 41)) (-4096 (((-525) (-525)) 32)) (-2668 (((-525) (-525)) 28)) (-2419 (((-525) (-525)) 30)) (-3278 (((-108) (-108)) 35)) (-2124 (((-525)) 31)) (-1833 (($ $ (-1015 (-205))) 73) (($ $) 74)) (-3557 (($ (-1 (-878 (-205)) (-205)) (-1015 (-205))) 78) (($ (-1 (-878 (-205)) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205))) 79)) (-1844 (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205))) 81) (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205))) 82) (($ $ (-1015 (-205))) 76)) (-2367 (((-525)) 36)) (-3155 (((-525)) 27)) (-2442 (((-525)) 29)) (-2078 (((-592 (-592 (-878 (-205)))) $) 94)) (-1321 (((-108) (-108)) 37)) (-1217 (((-798) $) 93)) (-1402 (((-108)) 34)))
-(((-861) (-13 (-907) (-10 -8 (-15 -3557 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)))) (-15 -3557 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -1844 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)))) (-15 -1844 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -1844 ($ $ (-1015 (-205)))) (-15 -2247 ($ $ (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -1833 ($ $ (-1015 (-205)))) (-15 -1833 ($ $)) (-15 -4040 ((-1015 (-205)) $)) (-15 -3491 ((-592 (-592 (-205))) $)) (-15 -3155 ((-525))) (-15 -2668 ((-525) (-525))) (-15 -2442 ((-525))) (-15 -2419 ((-525) (-525))) (-15 -2124 ((-525))) (-15 -4096 ((-525) (-525))) (-15 -1402 ((-108))) (-15 -3278 ((-108) (-108))) (-15 -2367 ((-525))) (-15 -1321 ((-108) (-108)))))) (T -861))
-((-3557 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-861)))) (-3557 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-861)))) (-1844 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-861)))) (-1844 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-861)))) (-1844 (*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861)))) (-2247 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861)))) (-1833 (*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861)))) (-1833 (*1 *1 *1) (-5 *1 (-861))) (-4040 (*1 *2 *1) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-861)))) (-3155 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-2668 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-2442 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-2419 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-2124 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-4096 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-1402 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))) (-3278 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))) (-2367 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-1321 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))))
-(-13 (-907) (-10 -8 (-15 -3557 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)))) (-15 -3557 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -1844 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)))) (-15 -1844 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -1844 ($ $ (-1015 (-205)))) (-15 -2247 ($ $ (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -1833 ($ $ (-1015 (-205)))) (-15 -1833 ($ $)) (-15 -4040 ((-1015 (-205)) $)) (-15 -3491 ((-592 (-592 (-205))) $)) (-15 -3155 ((-525))) (-15 -2668 ((-525) (-525))) (-15 -2442 ((-525))) (-15 -2419 ((-525) (-525))) (-15 -2124 ((-525))) (-15 -4096 ((-525) (-525))) (-15 -1402 ((-108))) (-15 -3278 ((-108) (-108))) (-15 -2367 ((-525))) (-15 -1321 ((-108) (-108)))))
-((-2247 (($ $ (-1015 (-205))) 70) (($ $ (-1015 (-205)) (-1015 (-205))) 71)) (-2258 (((-1015 (-205)) $) 44)) (-2245 (((-1015 (-205)) $) 43)) (-4040 (((-1015 (-205)) $) 45)) (-3463 (((-525) (-525)) 37)) (-1484 (((-525) (-525)) 33)) (-2856 (((-525) (-525)) 35)) (-2461 (((-108) (-108)) 39)) (-3605 (((-525)) 36)) (-1833 (($ $ (-1015 (-205))) 74) (($ $) 75)) (-3557 (($ (-1 (-878 (-205)) (-205)) (-1015 (-205))) 84) (($ (-1 (-878 (-205)) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205))) 85)) (-2572 (($ (-1 (-205) (-205)) (-1015 (-205))) 92) (($ (-1 (-205) (-205))) 95)) (-1844 (($ (-1 (-205) (-205)) (-1015 (-205))) 79) (($ (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205))) 80) (($ (-592 (-1 (-205) (-205))) (-1015 (-205))) 87) (($ (-592 (-1 (-205) (-205))) (-1015 (-205)) (-1015 (-205))) 88) (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205))) 81) (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205))) 82) (($ $ (-1015 (-205))) 76)) (-1862 (((-108) $) 40)) (-2820 (((-525)) 41)) (-1493 (((-525)) 32)) (-1550 (((-525)) 34)) (-2078 (((-592 (-592 (-878 (-205)))) $) 23)) (-3002 (((-108) (-108)) 42)) (-1217 (((-798) $) 106)) (-3700 (((-108)) 38)))
-(((-862) (-13 (-889) (-10 -8 (-15 -1844 ($ (-1 (-205) (-205)) (-1015 (-205)))) (-15 -1844 ($ (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -1844 ($ (-592 (-1 (-205) (-205))) (-1015 (-205)))) (-15 -1844 ($ (-592 (-1 (-205) (-205))) (-1015 (-205)) (-1015 (-205)))) (-15 -1844 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)))) (-15 -1844 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -3557 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)))) (-15 -3557 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -2572 ($ (-1 (-205) (-205)) (-1015 (-205)))) (-15 -2572 ($ (-1 (-205) (-205)))) (-15 -1844 ($ $ (-1015 (-205)))) (-15 -1862 ((-108) $)) (-15 -2247 ($ $ (-1015 (-205)))) (-15 -2247 ($ $ (-1015 (-205)) (-1015 (-205)))) (-15 -1833 ($ $ (-1015 (-205)))) (-15 -1833 ($ $)) (-15 -4040 ((-1015 (-205)) $)) (-15 -1493 ((-525))) (-15 -1484 ((-525) (-525))) (-15 -1550 ((-525))) (-15 -2856 ((-525) (-525))) (-15 -3605 ((-525))) (-15 -3463 ((-525) (-525))) (-15 -3700 ((-108))) (-15 -2461 ((-108) (-108))) (-15 -2820 ((-525))) (-15 -3002 ((-108) (-108)))))) (T -862))
-((-1844 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-1844 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-1844 (*1 *1 *2 *3) (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-1844 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-1844 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-1844 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-3557 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-3557 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-2572 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-862)))) (-1844 (*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862)))) (-1862 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-862)))) (-2247 (*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862)))) (-2247 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862)))) (-1833 (*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862)))) (-1833 (*1 *1 *1) (-5 *1 (-862))) (-4040 (*1 *2 *1) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862)))) (-1493 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-1484 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-1550 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-2856 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-3605 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-3463 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-3700 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-862)))) (-2461 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-862)))) (-2820 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-3002 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-862)))))
-(-13 (-889) (-10 -8 (-15 -1844 ($ (-1 (-205) (-205)) (-1015 (-205)))) (-15 -1844 ($ (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -1844 ($ (-592 (-1 (-205) (-205))) (-1015 (-205)))) (-15 -1844 ($ (-592 (-1 (-205) (-205))) (-1015 (-205)) (-1015 (-205)))) (-15 -1844 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)))) (-15 -1844 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -3557 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)))) (-15 -3557 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -2572 ($ (-1 (-205) (-205)) (-1015 (-205)))) (-15 -2572 ($ (-1 (-205) (-205)))) (-15 -1844 ($ $ (-1015 (-205)))) (-15 -1862 ((-108) $)) (-15 -2247 ($ $ (-1015 (-205)))) (-15 -2247 ($ $ (-1015 (-205)) (-1015 (-205)))) (-15 -1833 ($ $ (-1015 (-205)))) (-15 -1833 ($ $)) (-15 -4040 ((-1015 (-205)) $)) (-15 -1493 ((-525))) (-15 -1484 ((-525) (-525))) (-15 -1550 ((-525))) (-15 -2856 ((-525) (-525))) (-15 -3605 ((-525))) (-15 -3463 ((-525) (-525))) (-15 -3700 ((-108))) (-15 -2461 ((-108) (-108))) (-15 -2820 ((-525))) (-15 -3002 ((-108) (-108)))))
-((-3308 (((-592 (-1015 (-205))) (-592 (-592 (-878 (-205))))) 24)))
-(((-863) (-10 -7 (-15 -3308 ((-592 (-1015 (-205))) (-592 (-592 (-878 (-205)))))))) (T -863))
-((-3308 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *2 (-592 (-1015 (-205)))) (-5 *1 (-863)))))
-(-10 -7 (-15 -3308 ((-592 (-1015 (-205))) (-592 (-592 (-878 (-205)))))))
-((-1368 ((|#2| |#2|) 26)) (-2183 ((|#2| |#2|) 27)) (-2709 ((|#2| |#2|) 25)) (-1225 ((|#2| |#2| (-1075)) 24)))
-(((-864 |#1| |#2|) (-10 -7 (-15 -1225 (|#2| |#2| (-1075))) (-15 -2709 (|#2| |#2|)) (-15 -1368 (|#2| |#2|)) (-15 -2183 (|#2| |#2|))) (-789) (-408 |#1|)) (T -864))
-((-2183 (*1 *2 *2) (-12 (-4 *3 (-789)) (-5 *1 (-864 *3 *2)) (-4 *2 (-408 *3)))) (-1368 (*1 *2 *2) (-12 (-4 *3 (-789)) (-5 *1 (-864 *3 *2)) (-4 *2 (-408 *3)))) (-2709 (*1 *2 *2) (-12 (-4 *3 (-789)) (-5 *1 (-864 *3 *2)) (-4 *2 (-408 *3)))) (-1225 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-789)) (-5 *1 (-864 *4 *2)) (-4 *2 (-408 *4)))))
-(-10 -7 (-15 -1225 (|#2| |#2| (-1075))) (-15 -2709 (|#2| |#2|)) (-15 -1368 (|#2| |#2|)) (-15 -2183 (|#2| |#2|)))
-((-1368 (((-294 (-525)) (-1092)) 16)) (-2183 (((-294 (-525)) (-1092)) 14)) (-2709 (((-294 (-525)) (-1092)) 12)) (-1225 (((-294 (-525)) (-1092) (-1075)) 19)))
-(((-865) (-10 -7 (-15 -1225 ((-294 (-525)) (-1092) (-1075))) (-15 -2709 ((-294 (-525)) (-1092))) (-15 -1368 ((-294 (-525)) (-1092))) (-15 -2183 ((-294 (-525)) (-1092))))) (T -865))
-((-2183 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-294 (-525))) (-5 *1 (-865)))) (-1368 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-294 (-525))) (-5 *1 (-865)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-294 (-525))) (-5 *1 (-865)))) (-1225 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-1075)) (-5 *2 (-294 (-525))) (-5 *1 (-865)))))
-(-10 -7 (-15 -1225 ((-294 (-525)) (-1092) (-1075))) (-15 -2709 ((-294 (-525)) (-1092))) (-15 -1368 ((-294 (-525)) (-1092))) (-15 -2183 ((-294 (-525)) (-1092))))
-((-2989 (((-824 |#1| |#3|) |#2| (-827 |#1|) (-824 |#1| |#3|)) 25)) (-4149 (((-1 (-108) |#2|) (-1 (-108) |#3|)) 13)))
-(((-866 |#1| |#2| |#3|) (-10 -7 (-15 -4149 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -2989 ((-824 |#1| |#3|) |#2| (-827 |#1|) (-824 |#1| |#3|)))) (-1020) (-821 |#1|) (-13 (-1020) (-968 |#2|))) (T -866))
-((-2989 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *6)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *6 (-13 (-1020) (-968 *3))) (-4 *3 (-821 *5)) (-5 *1 (-866 *5 *3 *6)))) (-4149 (*1 *2 *3) (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1020) (-968 *5))) (-4 *5 (-821 *4)) (-4 *4 (-1020)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-866 *4 *5 *6)))))
-(-10 -7 (-15 -4149 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -2989 ((-824 |#1| |#3|) |#2| (-827 |#1|) (-824 |#1| |#3|))))
-((-2989 (((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)) 30)))
-(((-867 |#1| |#2| |#3|) (-10 -7 (-15 -2989 ((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)))) (-1020) (-13 (-517) (-789) (-821 |#1|)) (-13 (-408 |#2|) (-567 (-827 |#1|)) (-821 |#1|) (-968 (-565 $)))) (T -867))
-((-2989 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *3)) (-4 *5 (-1020)) (-4 *3 (-13 (-408 *6) (-567 *4) (-821 *5) (-968 (-565 $)))) (-5 *4 (-827 *5)) (-4 *6 (-13 (-517) (-789) (-821 *5))) (-5 *1 (-867 *5 *6 *3)))))
-(-10 -7 (-15 -2989 ((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))))
-((-2989 (((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|)) 13)))
-(((-868 |#1|) (-10 -7 (-15 -2989 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|)))) (-510)) (T -868))
-((-2989 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 (-525) *3)) (-5 *4 (-827 (-525))) (-4 *3 (-510)) (-5 *1 (-868 *3)))))
-(-10 -7 (-15 -2989 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))))
-((-2989 (((-824 |#1| |#2|) (-565 |#2|) (-827 |#1|) (-824 |#1| |#2|)) 54)))
-(((-869 |#1| |#2|) (-10 -7 (-15 -2989 ((-824 |#1| |#2|) (-565 |#2|) (-827 |#1|) (-824 |#1| |#2|)))) (-1020) (-13 (-789) (-968 (-565 $)) (-567 (-827 |#1|)) (-821 |#1|))) (T -869))
-((-2989 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *6)) (-5 *3 (-565 *6)) (-4 *5 (-1020)) (-4 *6 (-13 (-789) (-968 (-565 $)) (-567 *4) (-821 *5))) (-5 *4 (-827 *5)) (-5 *1 (-869 *5 *6)))))
-(-10 -7 (-15 -2989 ((-824 |#1| |#2|) (-565 |#2|) (-827 |#1|) (-824 |#1| |#2|))))
-((-2989 (((-820 |#1| |#2| |#3|) |#3| (-827 |#1|) (-820 |#1| |#2| |#3|)) 15)))
-(((-870 |#1| |#2| |#3|) (-10 -7 (-15 -2989 ((-820 |#1| |#2| |#3|) |#3| (-827 |#1|) (-820 |#1| |#2| |#3|)))) (-1020) (-821 |#1|) (-612 |#2|)) (T -870))
-((-2989 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *6 *3)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *6 (-821 *5)) (-4 *3 (-612 *6)) (-5 *1 (-870 *5 *6 *3)))))
-(-10 -7 (-15 -2989 ((-820 |#1| |#2| |#3|) |#3| (-827 |#1|) (-820 |#1| |#2| |#3|))))
-((-2989 (((-824 |#1| |#5|) |#5| (-827 |#1|) (-824 |#1| |#5|)) 17 (|has| |#3| (-821 |#1|))) (((-824 |#1| |#5|) |#5| (-827 |#1|) (-824 |#1| |#5|) (-1 (-824 |#1| |#5|) |#3| (-827 |#1|) (-824 |#1| |#5|))) 16)))
-(((-871 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2989 ((-824 |#1| |#5|) |#5| (-827 |#1|) (-824 |#1| |#5|) (-1 (-824 |#1| |#5|) |#3| (-827 |#1|) (-824 |#1| |#5|)))) (IF (|has| |#3| (-821 |#1|)) (-15 -2989 ((-824 |#1| |#5|) |#5| (-827 |#1|) (-824 |#1| |#5|))) |%noBranch|)) (-1020) (-735) (-789) (-13 (-977) (-789) (-821 |#1|)) (-13 (-884 |#4| |#2| |#3|) (-567 (-827 |#1|)))) (T -871))
-((-2989 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *3)) (-4 *5 (-1020)) (-4 *3 (-13 (-884 *8 *6 *7) (-567 *4))) (-5 *4 (-827 *5)) (-4 *7 (-821 *5)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-13 (-977) (-789) (-821 *5))) (-5 *1 (-871 *5 *6 *7 *8 *3)))) (-2989 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-824 *6 *3) *8 (-827 *6) (-824 *6 *3))) (-4 *8 (-789)) (-5 *2 (-824 *6 *3)) (-5 *4 (-827 *6)) (-4 *6 (-1020)) (-4 *3 (-13 (-884 *9 *7 *8) (-567 *4))) (-4 *7 (-735)) (-4 *9 (-13 (-977) (-789) (-821 *6))) (-5 *1 (-871 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -2989 ((-824 |#1| |#5|) |#5| (-827 |#1|) (-824 |#1| |#5|) (-1 (-824 |#1| |#5|) |#3| (-827 |#1|) (-824 |#1| |#5|)))) (IF (|has| |#3| (-821 |#1|)) (-15 -2989 ((-824 |#1| |#5|) |#5| (-827 |#1|) (-824 |#1| |#5|))) |%noBranch|))
-((-2263 ((|#2| |#2| (-592 (-1 (-108) |#3|))) 12) ((|#2| |#2| (-1 (-108) |#3|)) 13)))
-(((-872 |#1| |#2| |#3|) (-10 -7 (-15 -2263 (|#2| |#2| (-1 (-108) |#3|))) (-15 -2263 (|#2| |#2| (-592 (-1 (-108) |#3|))))) (-789) (-408 |#1|) (-1128)) (T -872))
-((-2263 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-1 (-108) *5))) (-4 *5 (-1128)) (-4 *4 (-789)) (-5 *1 (-872 *4 *2 *5)) (-4 *2 (-408 *4)))) (-2263 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1128)) (-4 *4 (-789)) (-5 *1 (-872 *4 *2 *5)) (-4 *2 (-408 *4)))))
-(-10 -7 (-15 -2263 (|#2| |#2| (-1 (-108) |#3|))) (-15 -2263 (|#2| |#2| (-592 (-1 (-108) |#3|)))))
-((-2263 (((-294 (-525)) (-1092) (-592 (-1 (-108) |#1|))) 18) (((-294 (-525)) (-1092) (-1 (-108) |#1|)) 15)))
-(((-873 |#1|) (-10 -7 (-15 -2263 ((-294 (-525)) (-1092) (-1 (-108) |#1|))) (-15 -2263 ((-294 (-525)) (-1092) (-592 (-1 (-108) |#1|))))) (-1128)) (T -873))
-((-2263 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-592 (-1 (-108) *5))) (-4 *5 (-1128)) (-5 *2 (-294 (-525))) (-5 *1 (-873 *5)))) (-2263 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1128)) (-5 *2 (-294 (-525))) (-5 *1 (-873 *5)))))
-(-10 -7 (-15 -2263 ((-294 (-525)) (-1092) (-1 (-108) |#1|))) (-15 -2263 ((-294 (-525)) (-1092) (-592 (-1 (-108) |#1|)))))
-((-2989 (((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)) 25)))
-(((-874 |#1| |#2| |#3|) (-10 -7 (-15 -2989 ((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)))) (-1020) (-13 (-517) (-821 |#1|) (-567 (-827 |#1|))) (-925 |#2|)) (T -874))
-((-2989 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *3)) (-4 *5 (-1020)) (-4 *3 (-925 *6)) (-4 *6 (-13 (-517) (-821 *5) (-567 *4))) (-5 *4 (-827 *5)) (-5 *1 (-874 *5 *6 *3)))))
-(-10 -7 (-15 -2989 ((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))))
-((-2989 (((-824 |#1| (-1092)) (-1092) (-827 |#1|) (-824 |#1| (-1092))) 17)))
-(((-875 |#1|) (-10 -7 (-15 -2989 ((-824 |#1| (-1092)) (-1092) (-827 |#1|) (-824 |#1| (-1092))))) (-1020)) (T -875))
-((-2989 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 (-1092))) (-5 *3 (-1092)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-5 *1 (-875 *5)))))
-(-10 -7 (-15 -2989 ((-824 |#1| (-1092)) (-1092) (-827 |#1|) (-824 |#1| (-1092)))))
-((-3227 (((-824 |#1| |#3|) (-592 |#3|) (-592 (-827 |#1|)) (-824 |#1| |#3|) (-1 (-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))) 33)) (-2989 (((-824 |#1| |#3|) (-592 |#3|) (-592 (-827 |#1|)) (-1 |#3| (-592 |#3|)) (-824 |#1| |#3|) (-1 (-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))) 32)))
-(((-876 |#1| |#2| |#3|) (-10 -7 (-15 -2989 ((-824 |#1| |#3|) (-592 |#3|) (-592 (-827 |#1|)) (-1 |#3| (-592 |#3|)) (-824 |#1| |#3|) (-1 (-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)))) (-15 -3227 ((-824 |#1| |#3|) (-592 |#3|) (-592 (-827 |#1|)) (-824 |#1| |#3|) (-1 (-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))))) (-1020) (-13 (-977) (-789)) (-13 (-977) (-567 (-827 |#1|)) (-968 |#2|))) (T -876))
-((-3227 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-827 *6))) (-5 *5 (-1 (-824 *6 *8) *8 (-827 *6) (-824 *6 *8))) (-4 *6 (-1020)) (-4 *8 (-13 (-977) (-567 (-827 *6)) (-968 *7))) (-5 *2 (-824 *6 *8)) (-4 *7 (-13 (-977) (-789))) (-5 *1 (-876 *6 *7 *8)))) (-2989 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-592 (-827 *7))) (-5 *5 (-1 *9 (-592 *9))) (-5 *6 (-1 (-824 *7 *9) *9 (-827 *7) (-824 *7 *9))) (-4 *7 (-1020)) (-4 *9 (-13 (-977) (-567 (-827 *7)) (-968 *8))) (-5 *2 (-824 *7 *9)) (-5 *3 (-592 *9)) (-4 *8 (-13 (-977) (-789))) (-5 *1 (-876 *7 *8 *9)))))
-(-10 -7 (-15 -2989 ((-824 |#1| |#3|) (-592 |#3|) (-592 (-827 |#1|)) (-1 |#3| (-592 |#3|)) (-824 |#1| |#3|) (-1 (-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)))) (-15 -3227 ((-824 |#1| |#3|) (-592 |#3|) (-592 (-827 |#1|)) (-824 |#1| |#3|) (-1 (-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)))))
-((-4088 (((-1088 (-385 (-525))) (-525)) 63)) (-3676 (((-1088 (-525)) (-525)) 66)) (-1928 (((-1088 (-525)) (-525)) 60)) (-3823 (((-525) (-1088 (-525))) 55)) (-4230 (((-1088 (-385 (-525))) (-525)) 49)) (-1300 (((-1088 (-525)) (-525)) 38)) (-2517 (((-1088 (-525)) (-525)) 68)) (-2588 (((-1088 (-525)) (-525)) 67)) (-2144 (((-1088 (-385 (-525))) (-525)) 51)))
-(((-877) (-10 -7 (-15 -2144 ((-1088 (-385 (-525))) (-525))) (-15 -2588 ((-1088 (-525)) (-525))) (-15 -2517 ((-1088 (-525)) (-525))) (-15 -1300 ((-1088 (-525)) (-525))) (-15 -4230 ((-1088 (-385 (-525))) (-525))) (-15 -3823 ((-525) (-1088 (-525)))) (-15 -1928 ((-1088 (-525)) (-525))) (-15 -3676 ((-1088 (-525)) (-525))) (-15 -4088 ((-1088 (-385 (-525))) (-525))))) (T -877))
-((-4088 (*1 *2 *3) (-12 (-5 *2 (-1088 (-385 (-525)))) (-5 *1 (-877)) (-5 *3 (-525)))) (-3676 (*1 *2 *3) (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))) (-1928 (*1 *2 *3) (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))) (-3823 (*1 *2 *3) (-12 (-5 *3 (-1088 (-525))) (-5 *2 (-525)) (-5 *1 (-877)))) (-4230 (*1 *2 *3) (-12 (-5 *2 (-1088 (-385 (-525)))) (-5 *1 (-877)) (-5 *3 (-525)))) (-1300 (*1 *2 *3) (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))) (-2517 (*1 *2 *3) (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))) (-2588 (*1 *2 *3) (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))) (-2144 (*1 *2 *3) (-12 (-5 *2 (-1088 (-385 (-525)))) (-5 *1 (-877)) (-5 *3 (-525)))))
-(-10 -7 (-15 -2144 ((-1088 (-385 (-525))) (-525))) (-15 -2588 ((-1088 (-525)) (-525))) (-15 -2517 ((-1088 (-525)) (-525))) (-15 -1300 ((-1088 (-525)) (-525))) (-15 -4230 ((-1088 (-385 (-525))) (-525))) (-15 -3823 ((-525) (-1088 (-525)))) (-15 -1928 ((-1088 (-525)) (-525))) (-15 -3676 ((-1088 (-525)) (-525))) (-15 -4088 ((-1088 (-385 (-525))) (-525))))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2609 (($ (-713)) NIL (|has| |#1| (-23)))) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-2470 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2165 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4259))) (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-789))))) (-2458 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 ((|#1| $ (-525) |#1|) 11 (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2169 (($) NIL T CONST)) (-2700 (($ $) NIL (|has| $ (-6 -4259)))) (-3431 (($ $) NIL)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1703 (($ |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4258)))) (-2301 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) NIL)) (-1932 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-2568 (($ (-592 |#1|)) 13)) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-1544 (((-632 |#1|) $ $) NIL (|has| |#1| (-977)))) (-3416 (($ (-713) |#1|) 8)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) 10 (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-1577 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3139 ((|#1| $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-977))))) (-2912 (((-108) $ (-713)) NIL)) (-4178 ((|#1| $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-977))))) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2531 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1872 ((|#1| $) NIL (|has| (-525) (-789)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1420 (($ $ |#1|) NIL (|has| $ (-6 -4259)))) (-3931 (($ $ (-592 |#1|)) 26)) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 20) (($ $ (-1141 (-525))) NIL)) (-2047 ((|#1| $ $) NIL (|has| |#1| (-977)))) (-3705 (((-856) $) 16)) (-3038 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2364 (($ $ $) 24)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-4098 (($ $ $ (-525)) NIL (|has| $ (-6 -4259)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| |#1| (-567 (-501)))) (($ (-592 |#1|)) 17)) (-1230 (($ (-592 |#1|)) NIL)) (-2038 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-592 $)) NIL)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4061 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4047 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-525) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-669))) (($ $ |#1|) NIL (|has| |#1| (-669)))) (-3522 (((-713) $) 14 (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL)) (-2475 (($) NIL T CONST)) (-3300 (((-3 $ "failed") $) NIL)) (-2278 (((-108) $) NIL)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2772 (($ $ $) NIL)) (-4100 (((-798) $) NIL)) (-3706 (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3375 (($) NIL T CONST)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (* (($ (-856) $) NIL) (($ $ $) NIL)))
+(((-856) (-13 (-736) (-669) (-10 -8 (-15 -2772 ($ $ $)) (-6 (-4261 "*"))))) (T -856))
+((-2772 (*1 *1 *1 *1) (-5 *1 (-856))))
+(-13 (-736) (-669) (-10 -8 (-15 -2772 ($ $ $)) (-6 (-4261 "*"))))
+((-3717 ((|#2| (-592 |#1|) (-592 |#1|)) 24)))
+(((-857 |#1| |#2|) (-10 -7 (-15 -3717 (|#2| (-592 |#1|) (-592 |#1|)))) (-341) (-1150 |#1|)) (T -857))
+((-3717 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-4 *2 (-1150 *4)) (-5 *1 (-857 *4 *2)))))
+(-10 -7 (-15 -3717 (|#2| (-592 |#1|) (-592 |#1|))))
+((-4055 (((-1088 |#2|) (-592 |#2|) (-592 |#2|)) 17) (((-1147 |#1| |#2|) (-1147 |#1| |#2|) (-592 |#2|) (-592 |#2|)) 13)))
+(((-858 |#1| |#2|) (-10 -7 (-15 -4055 ((-1147 |#1| |#2|) (-1147 |#1| |#2|) (-592 |#2|) (-592 |#2|))) (-15 -4055 ((-1088 |#2|) (-592 |#2|) (-592 |#2|)))) (-1092) (-341)) (T -858))
+((-4055 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-341)) (-5 *2 (-1088 *5)) (-5 *1 (-858 *4 *5)) (-14 *4 (-1092)))) (-4055 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1147 *4 *5)) (-5 *3 (-592 *5)) (-14 *4 (-1092)) (-4 *5 (-341)) (-5 *1 (-858 *4 *5)))))
+(-10 -7 (-15 -4055 ((-1147 |#1| |#2|) (-1147 |#1| |#2|) (-592 |#2|) (-592 |#2|))) (-15 -4055 ((-1088 |#2|) (-592 |#2|) (-592 |#2|))))
+((-4039 (((-525) (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-1075)) 139)) (-3939 ((|#4| |#4|) 155)) (-2956 (((-592 (-385 (-887 |#1|))) (-592 (-1092))) 119)) (-1434 (((-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))) (-632 |#4|) (-592 (-385 (-887 |#1|))) (-592 (-592 |#4|)) (-713) (-713) (-525)) 75)) (-2478 (((-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|)))))) (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|)))))) (-592 |#4|)) 59)) (-3139 (((-632 |#4|) (-632 |#4|) (-592 |#4|)) 55)) (-1667 (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-1075)) 151)) (-1671 (((-525) (-632 |#4|) (-856) (-1075)) 133) (((-525) (-632 |#4|) (-592 (-1092)) (-856) (-1075)) 132) (((-525) (-632 |#4|) (-592 |#4|) (-856) (-1075)) 131) (((-525) (-632 |#4|) (-1075)) 128) (((-525) (-632 |#4|) (-592 (-1092)) (-1075)) 127) (((-525) (-632 |#4|) (-592 |#4|) (-1075)) 126) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-856)) 125) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 (-1092)) (-856)) 124) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 |#4|) (-856)) 123) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|)) 121) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 (-1092))) 120) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 |#4|)) 116)) (-1870 ((|#4| (-887 |#1|)) 68)) (-3486 (((-108) (-592 |#4|) (-592 (-592 |#4|))) 152)) (-2982 (((-592 (-592 (-525))) (-525) (-525)) 130)) (-3657 (((-592 (-592 |#4|)) (-592 (-592 |#4|))) 88)) (-3902 (((-713) (-592 (-2 (|:| -3085 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|))))) 86)) (-1765 (((-713) (-592 (-2 (|:| -3085 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|))))) 85)) (-3582 (((-108) (-592 (-887 |#1|))) 17) (((-108) (-592 |#4|)) 13)) (-2791 (((-2 (|:| |sysok| (-108)) (|:| |z0| (-592 |#4|)) (|:| |n0| (-592 |#4|))) (-592 |#4|) (-592 |#4|)) 71)) (-2007 (((-592 |#4|) |#4|) 49)) (-2914 (((-592 (-385 (-887 |#1|))) (-592 |#4|)) 115) (((-632 (-385 (-887 |#1|))) (-632 |#4|)) 56) (((-385 (-887 |#1|)) |#4|) 112)) (-2166 (((-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|)))))))))) (|:| |rgsz| (-525))) (-632 |#4|) (-592 (-385 (-887 |#1|))) (-713) (-1075) (-525)) 93)) (-3328 (((-592 (-2 (|:| -3085 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))) (-632 |#4|) (-713)) 84)) (-3814 (((-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-632 |#4|) (-713)) 101)) (-1338 (((-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|)))))) (-2 (|:| -4108 (-632 (-385 (-887 |#1|)))) (|:| |vec| (-592 (-385 (-887 |#1|)))) (|:| -3085 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) 48)))
+(((-859 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1671 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 |#4|))) (-15 -1671 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 (-1092)))) (-15 -1671 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|))) (-15 -1671 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 |#4|) (-856))) (-15 -1671 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 (-1092)) (-856))) (-15 -1671 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-856))) (-15 -1671 ((-525) (-632 |#4|) (-592 |#4|) (-1075))) (-15 -1671 ((-525) (-632 |#4|) (-592 (-1092)) (-1075))) (-15 -1671 ((-525) (-632 |#4|) (-1075))) (-15 -1671 ((-525) (-632 |#4|) (-592 |#4|) (-856) (-1075))) (-15 -1671 ((-525) (-632 |#4|) (-592 (-1092)) (-856) (-1075))) (-15 -1671 ((-525) (-632 |#4|) (-856) (-1075))) (-15 -4039 ((-525) (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-1075))) (-15 -1667 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-1075))) (-15 -2166 ((-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|)))))))))) (|:| |rgsz| (-525))) (-632 |#4|) (-592 (-385 (-887 |#1|))) (-713) (-1075) (-525))) (-15 -2914 ((-385 (-887 |#1|)) |#4|)) (-15 -2914 ((-632 (-385 (-887 |#1|))) (-632 |#4|))) (-15 -2914 ((-592 (-385 (-887 |#1|))) (-592 |#4|))) (-15 -2956 ((-592 (-385 (-887 |#1|))) (-592 (-1092)))) (-15 -1870 (|#4| (-887 |#1|))) (-15 -2791 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-592 |#4|)) (|:| |n0| (-592 |#4|))) (-592 |#4|) (-592 |#4|))) (-15 -3328 ((-592 (-2 (|:| -3085 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))) (-632 |#4|) (-713))) (-15 -2478 ((-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|)))))) (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|)))))) (-592 |#4|))) (-15 -1338 ((-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|)))))) (-2 (|:| -4108 (-632 (-385 (-887 |#1|)))) (|:| |vec| (-592 (-385 (-887 |#1|)))) (|:| -3085 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (-15 -2007 ((-592 |#4|) |#4|)) (-15 -1765 ((-713) (-592 (-2 (|:| -3085 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -3902 ((-713) (-592 (-2 (|:| -3085 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -3657 ((-592 (-592 |#4|)) (-592 (-592 |#4|)))) (-15 -2982 ((-592 (-592 (-525))) (-525) (-525))) (-15 -3486 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -3814 ((-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-632 |#4|) (-713))) (-15 -3139 ((-632 |#4|) (-632 |#4|) (-592 |#4|))) (-15 -1434 ((-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))) (-632 |#4|) (-592 (-385 (-887 |#1|))) (-592 (-592 |#4|)) (-713) (-713) (-525))) (-15 -3939 (|#4| |#4|)) (-15 -3582 ((-108) (-592 |#4|))) (-15 -3582 ((-108) (-592 (-887 |#1|))))) (-13 (-286) (-138)) (-13 (-789) (-567 (-1092))) (-735) (-884 |#1| |#3| |#2|)) (T -859))
+((-3582 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-108)) (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-108)) (-5 *1 (-859 *4 *5 *6 *7)))) (-3939 (*1 *2 *2) (-12 (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1092)))) (-4 *5 (-735)) (-5 *1 (-859 *3 *4 *5 *2)) (-4 *2 (-884 *3 *5 *4)))) (-1434 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-5 *4 (-632 *12)) (-5 *5 (-592 (-385 (-887 *9)))) (-5 *6 (-592 (-592 *12))) (-5 *7 (-713)) (-5 *8 (-525)) (-4 *9 (-13 (-286) (-138))) (-4 *12 (-884 *9 *11 *10)) (-4 *10 (-13 (-789) (-567 (-1092)))) (-4 *11 (-735)) (-5 *2 (-2 (|:| |eqzro| (-592 *12)) (|:| |neqzro| (-592 *12)) (|:| |wcond| (-592 (-887 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *9)))) (|:| -2103 (-592 (-1174 (-385 (-887 *9))))))))) (-5 *1 (-859 *9 *10 *11 *12)))) (-3139 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *7)) (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *1 (-859 *4 *5 *6 *7)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-713)) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |det| *8) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (-5 *1 (-859 *5 *6 *7 *8)))) (-3486 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-592 *8))) (-5 *3 (-592 *8)) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-108)) (-5 *1 (-859 *5 *6 *7 *8)))) (-2982 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-592 (-592 (-525)))) (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-525)) (-4 *7 (-884 *4 *6 *5)))) (-3657 (*1 *2 *2) (-12 (-5 *2 (-592 (-592 *6))) (-4 *6 (-884 *3 *5 *4)) (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1092)))) (-4 *5 (-735)) (-5 *1 (-859 *3 *4 *5 *6)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3085 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| *7) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 *7))))) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-713)) (-5 *1 (-859 *4 *5 *6 *7)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3085 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| *7) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 *7))))) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-713)) (-5 *1 (-859 *4 *5 *6 *7)))) (-2007 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-592 *3)) (-5 *1 (-859 *4 *5 *6 *3)) (-4 *3 (-884 *4 *6 *5)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4108 (-632 (-385 (-887 *4)))) (|:| |vec| (-592 (-385 (-887 *4)))) (|:| -3085 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-2 (|:| |partsol| (-1174 (-385 (-887 *4)))) (|:| -2103 (-592 (-1174 (-385 (-887 *4))))))) (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))) (-2478 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1174 (-385 (-887 *4)))) (|:| -2103 (-592 (-1174 (-385 (-887 *4))))))) (-5 *3 (-592 *7)) (-4 *4 (-13 (-286) (-138))) (-4 *7 (-884 *4 *6 *5)) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *1 (-859 *4 *5 *6 *7)))) (-3328 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| -3085 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| *8) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 *8))))) (-5 *1 (-859 *5 *6 *7 *8)) (-5 *4 (-713)))) (-2791 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-4 *7 (-884 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-108)) (|:| |z0| (-592 *7)) (|:| |n0| (-592 *7)))) (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-13 (-286) (-138))) (-4 *2 (-884 *4 *6 *5)) (-5 *1 (-859 *4 *5 *6 *2)) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-592 (-1092))) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-592 (-385 (-887 *4)))) (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))) (-2914 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-592 (-385 (-887 *4)))) (-5 *1 (-859 *4 *5 *6 *7)))) (-2914 (*1 *2 *3) (-12 (-5 *3 (-632 *7)) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-632 (-385 (-887 *4)))) (-5 *1 (-859 *4 *5 *6 *7)))) (-2914 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-385 (-887 *4))) (-5 *1 (-859 *4 *5 *6 *3)) (-4 *3 (-884 *4 *6 *5)))) (-2166 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-632 *11)) (-5 *4 (-592 (-385 (-887 *8)))) (-5 *5 (-713)) (-5 *6 (-1075)) (-4 *8 (-13 (-286) (-138))) (-4 *11 (-884 *8 *10 *9)) (-4 *9 (-13 (-789) (-567 (-1092)))) (-4 *10 (-735)) (-5 *2 (-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 *11)) (|:| |neqzro| (-592 *11)) (|:| |wcond| (-592 (-887 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *8)))) (|:| -2103 (-592 (-1174 (-385 (-887 *8)))))))))) (|:| |rgsz| (-525)))) (-5 *1 (-859 *8 *9 *10 *11)) (-5 *7 (-525)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *7)) (|:| |neqzro| (-592 *7)) (|:| |wcond| (-592 (-887 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *4)))) (|:| -2103 (-592 (-1174 (-385 (-887 *4)))))))))) (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))) (-4039 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-887 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *5)))) (|:| -2103 (-592 (-1174 (-385 (-887 *5)))))))))) (-5 *4 (-1075)) (-4 *5 (-13 (-286) (-138))) (-4 *8 (-884 *5 *7 *6)) (-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *5 *6 *7 *8)))) (-1671 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-856)) (-5 *5 (-1075)) (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1092)))) (-4 *8 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *6 *7 *8 *9)))) (-1671 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-632 *10)) (-5 *4 (-592 (-1092))) (-5 *5 (-856)) (-5 *6 (-1075)) (-4 *10 (-884 *7 *9 *8)) (-4 *7 (-13 (-286) (-138))) (-4 *8 (-13 (-789) (-567 (-1092)))) (-4 *9 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *7 *8 *9 *10)))) (-1671 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-632 *10)) (-5 *4 (-592 *10)) (-5 *5 (-856)) (-5 *6 (-1075)) (-4 *10 (-884 *7 *9 *8)) (-4 *7 (-13 (-286) (-138))) (-4 *8 (-13 (-789) (-567 (-1092)))) (-4 *9 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *7 *8 *9 *10)))) (-1671 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-1075)) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *5 *6 *7 *8)))) (-1671 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 (-1092))) (-5 *5 (-1075)) (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1092)))) (-4 *8 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *6 *7 *8 *9)))) (-1671 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 *9)) (-5 *5 (-1075)) (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1092)))) (-4 *8 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *6 *7 *8 *9)))) (-1671 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-856)) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-887 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *5)))) (|:| -2103 (-592 (-1174 (-385 (-887 *5)))))))))) (-5 *1 (-859 *5 *6 *7 *8)))) (-1671 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 (-1092))) (-5 *5 (-856)) (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1092)))) (-4 *8 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *9)) (|:| |neqzro| (-592 *9)) (|:| |wcond| (-592 (-887 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *6)))) (|:| -2103 (-592 (-1174 (-385 (-887 *6)))))))))) (-5 *1 (-859 *6 *7 *8 *9)))) (-1671 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *5 (-856)) (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1092)))) (-4 *8 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *9)) (|:| |neqzro| (-592 *9)) (|:| |wcond| (-592 (-887 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *6)))) (|:| -2103 (-592 (-1174 (-385 (-887 *6)))))))))) (-5 *1 (-859 *6 *7 *8 *9)) (-5 *4 (-592 *9)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-632 *7)) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *7)) (|:| |neqzro| (-592 *7)) (|:| |wcond| (-592 (-887 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *4)))) (|:| -2103 (-592 (-1174 (-385 (-887 *4)))))))))) (-5 *1 (-859 *4 *5 *6 *7)))) (-1671 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-592 (-1092))) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-887 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *5)))) (|:| -2103 (-592 (-1174 (-385 (-887 *5)))))))))) (-5 *1 (-859 *5 *6 *7 *8)))) (-1671 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-887 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 *5)))) (|:| -2103 (-592 (-1174 (-385 (-887 *5)))))))))) (-5 *1 (-859 *5 *6 *7 *8)) (-5 *4 (-592 *8)))))
+(-10 -7 (-15 -1671 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 |#4|))) (-15 -1671 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 (-1092)))) (-15 -1671 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|))) (-15 -1671 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 |#4|) (-856))) (-15 -1671 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 (-1092)) (-856))) (-15 -1671 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-632 |#4|) (-856))) (-15 -1671 ((-525) (-632 |#4|) (-592 |#4|) (-1075))) (-15 -1671 ((-525) (-632 |#4|) (-592 (-1092)) (-1075))) (-15 -1671 ((-525) (-632 |#4|) (-1075))) (-15 -1671 ((-525) (-632 |#4|) (-592 |#4|) (-856) (-1075))) (-15 -1671 ((-525) (-632 |#4|) (-592 (-1092)) (-856) (-1075))) (-15 -1671 ((-525) (-632 |#4|) (-856) (-1075))) (-15 -4039 ((-525) (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-1075))) (-15 -1667 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|))))))))) (-1075))) (-15 -2166 ((-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|)))))))))) (|:| |rgsz| (-525))) (-632 |#4|) (-592 (-385 (-887 |#1|))) (-713) (-1075) (-525))) (-15 -2914 ((-385 (-887 |#1|)) |#4|)) (-15 -2914 ((-632 (-385 (-887 |#1|))) (-632 |#4|))) (-15 -2914 ((-592 (-385 (-887 |#1|))) (-592 |#4|))) (-15 -2956 ((-592 (-385 (-887 |#1|))) (-592 (-1092)))) (-15 -1870 (|#4| (-887 |#1|))) (-15 -2791 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-592 |#4|)) (|:| |n0| (-592 |#4|))) (-592 |#4|) (-592 |#4|))) (-15 -3328 ((-592 (-2 (|:| -3085 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))) (-632 |#4|) (-713))) (-15 -2478 ((-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|)))))) (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|)))))) (-592 |#4|))) (-15 -1338 ((-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|)))))) (-2 (|:| -4108 (-632 (-385 (-887 |#1|)))) (|:| |vec| (-592 (-385 (-887 |#1|)))) (|:| -3085 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (-15 -2007 ((-592 |#4|) |#4|)) (-15 -1765 ((-713) (-592 (-2 (|:| -3085 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -3902 ((-713) (-592 (-2 (|:| -3085 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -3657 ((-592 (-592 |#4|)) (-592 (-592 |#4|)))) (-15 -2982 ((-592 (-592 (-525))) (-525) (-525))) (-15 -3486 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -3814 ((-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-632 |#4|) (-713))) (-15 -3139 ((-632 |#4|) (-632 |#4|) (-592 |#4|))) (-15 -1434 ((-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1174 (-385 (-887 |#1|)))) (|:| -2103 (-592 (-1174 (-385 (-887 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))) (-632 |#4|) (-592 (-385 (-887 |#1|))) (-592 (-592 |#4|)) (-713) (-713) (-525))) (-15 -3939 (|#4| |#4|)) (-15 -3582 ((-108) (-592 |#4|))) (-15 -3582 ((-108) (-592 (-887 |#1|)))))
+((-3906 (((-862) |#1| (-1092)) 17) (((-862) |#1| (-1092) (-1015 (-205))) 21)) (-2203 (((-862) |#1| |#1| (-1092) (-1015 (-205))) 19) (((-862) |#1| (-1092) (-1015 (-205))) 15)))
+(((-860 |#1|) (-10 -7 (-15 -2203 ((-862) |#1| (-1092) (-1015 (-205)))) (-15 -2203 ((-862) |#1| |#1| (-1092) (-1015 (-205)))) (-15 -3906 ((-862) |#1| (-1092) (-1015 (-205)))) (-15 -3906 ((-862) |#1| (-1092)))) (-567 (-501))) (T -860))
+((-3906 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-5 *2 (-862)) (-5 *1 (-860 *3)) (-4 *3 (-567 (-501))))) (-3906 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-1015 (-205))) (-5 *2 (-862)) (-5 *1 (-860 *3)) (-4 *3 (-567 (-501))))) (-2203 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-1015 (-205))) (-5 *2 (-862)) (-5 *1 (-860 *3)) (-4 *3 (-567 (-501))))) (-2203 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092)) (-5 *5 (-1015 (-205))) (-5 *2 (-862)) (-5 *1 (-860 *3)) (-4 *3 (-567 (-501))))))
+(-10 -7 (-15 -2203 ((-862) |#1| (-1092) (-1015 (-205)))) (-15 -2203 ((-862) |#1| |#1| (-1092) (-1015 (-205)))) (-15 -3906 ((-862) |#1| (-1092) (-1015 (-205)))) (-15 -3906 ((-862) |#1| (-1092))))
+((-3845 (($ $ (-1015 (-205)) (-1015 (-205)) (-1015 (-205))) 70)) (-3060 (((-1015 (-205)) $) 40)) (-3048 (((-1015 (-205)) $) 39)) (-3039 (((-1015 (-205)) $) 38)) (-3630 (((-592 (-592 (-205))) $) 43)) (-1271 (((-1015 (-205)) $) 41)) (-3611 (((-525) (-525)) 32)) (-3575 (((-525) (-525)) 28)) (-3030 (((-525) (-525)) 30)) (-1236 (((-108) (-108)) 35)) (-2003 (((-525)) 31)) (-2109 (($ $ (-1015 (-205))) 73) (($ $) 74)) (-3042 (($ (-1 (-878 (-205)) (-205)) (-1015 (-205))) 78) (($ (-1 (-878 (-205)) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205))) 79)) (-2203 (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205))) 81) (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205))) 82) (($ $ (-1015 (-205))) 76)) (-2575 (((-525)) 36)) (-1412 (((-525)) 27)) (-2120 (((-525)) 29)) (-2708 (((-592 (-592 (-878 (-205)))) $) 94)) (-1422 (((-108) (-108)) 37)) (-4100 (((-798) $) 93)) (-2355 (((-108)) 34)))
+(((-861) (-13 (-907) (-10 -8 (-15 -3042 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)))) (-15 -3042 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -2203 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)))) (-15 -2203 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -2203 ($ $ (-1015 (-205)))) (-15 -3845 ($ $ (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -2109 ($ $ (-1015 (-205)))) (-15 -2109 ($ $)) (-15 -1271 ((-1015 (-205)) $)) (-15 -3630 ((-592 (-592 (-205))) $)) (-15 -1412 ((-525))) (-15 -3575 ((-525) (-525))) (-15 -2120 ((-525))) (-15 -3030 ((-525) (-525))) (-15 -2003 ((-525))) (-15 -3611 ((-525) (-525))) (-15 -2355 ((-108))) (-15 -1236 ((-108) (-108))) (-15 -2575 ((-525))) (-15 -1422 ((-108) (-108)))))) (T -861))
+((-3042 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-861)))) (-3042 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-861)))) (-2203 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-861)))) (-2203 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-861)))) (-2203 (*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861)))) (-3845 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861)))) (-2109 (*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861)))) (-2109 (*1 *1 *1) (-5 *1 (-861))) (-1271 (*1 *2 *1) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-861)))) (-1412 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-3575 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-2120 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-3030 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-2003 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-3611 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-2355 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))) (-1236 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))) (-2575 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-1422 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))))
+(-13 (-907) (-10 -8 (-15 -3042 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)))) (-15 -3042 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -2203 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)))) (-15 -2203 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -2203 ($ $ (-1015 (-205)))) (-15 -3845 ($ $ (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -2109 ($ $ (-1015 (-205)))) (-15 -2109 ($ $)) (-15 -1271 ((-1015 (-205)) $)) (-15 -3630 ((-592 (-592 (-205))) $)) (-15 -1412 ((-525))) (-15 -3575 ((-525) (-525))) (-15 -2120 ((-525))) (-15 -3030 ((-525) (-525))) (-15 -2003 ((-525))) (-15 -3611 ((-525) (-525))) (-15 -2355 ((-108))) (-15 -1236 ((-108) (-108))) (-15 -2575 ((-525))) (-15 -1422 ((-108) (-108)))))
+((-3845 (($ $ (-1015 (-205))) 70) (($ $ (-1015 (-205)) (-1015 (-205))) 71)) (-3048 (((-1015 (-205)) $) 44)) (-3039 (((-1015 (-205)) $) 43)) (-1271 (((-1015 (-205)) $) 45)) (-3361 (((-525) (-525)) 37)) (-2213 (((-525) (-525)) 33)) (-1668 (((-525) (-525)) 35)) (-2281 (((-108) (-108)) 39)) (-2336 (((-525)) 36)) (-2109 (($ $ (-1015 (-205))) 74) (($ $) 75)) (-3042 (($ (-1 (-878 (-205)) (-205)) (-1015 (-205))) 84) (($ (-1 (-878 (-205)) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205))) 85)) (-3906 (($ (-1 (-205) (-205)) (-1015 (-205))) 92) (($ (-1 (-205) (-205))) 95)) (-2203 (($ (-1 (-205) (-205)) (-1015 (-205))) 79) (($ (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205))) 80) (($ (-592 (-1 (-205) (-205))) (-1015 (-205))) 87) (($ (-592 (-1 (-205) (-205))) (-1015 (-205)) (-1015 (-205))) 88) (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205))) 81) (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205))) 82) (($ $ (-1015 (-205))) 76)) (-2383 (((-108) $) 40)) (-2515 (((-525)) 41)) (-3951 (((-525)) 32)) (-1664 (((-525)) 34)) (-2708 (((-592 (-592 (-878 (-205)))) $) 23)) (-2388 (((-108) (-108)) 42)) (-4100 (((-798) $) 106)) (-3874 (((-108)) 38)))
+(((-862) (-13 (-889) (-10 -8 (-15 -2203 ($ (-1 (-205) (-205)) (-1015 (-205)))) (-15 -2203 ($ (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -2203 ($ (-592 (-1 (-205) (-205))) (-1015 (-205)))) (-15 -2203 ($ (-592 (-1 (-205) (-205))) (-1015 (-205)) (-1015 (-205)))) (-15 -2203 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)))) (-15 -2203 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -3042 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)))) (-15 -3042 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -3906 ($ (-1 (-205) (-205)) (-1015 (-205)))) (-15 -3906 ($ (-1 (-205) (-205)))) (-15 -2203 ($ $ (-1015 (-205)))) (-15 -2383 ((-108) $)) (-15 -3845 ($ $ (-1015 (-205)))) (-15 -3845 ($ $ (-1015 (-205)) (-1015 (-205)))) (-15 -2109 ($ $ (-1015 (-205)))) (-15 -2109 ($ $)) (-15 -1271 ((-1015 (-205)) $)) (-15 -3951 ((-525))) (-15 -2213 ((-525) (-525))) (-15 -1664 ((-525))) (-15 -1668 ((-525) (-525))) (-15 -2336 ((-525))) (-15 -3361 ((-525) (-525))) (-15 -3874 ((-108))) (-15 -2281 ((-108) (-108))) (-15 -2515 ((-525))) (-15 -2388 ((-108) (-108)))))) (T -862))
+((-2203 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-2203 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-2203 (*1 *1 *2 *3) (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-2203 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-2203 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-2203 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-3042 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-3042 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-3906 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-3906 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-862)))) (-2203 (*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862)))) (-2383 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-862)))) (-3845 (*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862)))) (-3845 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862)))) (-2109 (*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862)))) (-2109 (*1 *1 *1) (-5 *1 (-862))) (-1271 (*1 *2 *1) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862)))) (-3951 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-2213 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-1664 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-1668 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-2336 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-3361 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-3874 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-862)))) (-2281 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-862)))) (-2515 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-2388 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-862)))))
+(-13 (-889) (-10 -8 (-15 -2203 ($ (-1 (-205) (-205)) (-1015 (-205)))) (-15 -2203 ($ (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -2203 ($ (-592 (-1 (-205) (-205))) (-1015 (-205)))) (-15 -2203 ($ (-592 (-1 (-205) (-205))) (-1015 (-205)) (-1015 (-205)))) (-15 -2203 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)))) (-15 -2203 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -3042 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)))) (-15 -3042 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -3906 ($ (-1 (-205) (-205)) (-1015 (-205)))) (-15 -3906 ($ (-1 (-205) (-205)))) (-15 -2203 ($ $ (-1015 (-205)))) (-15 -2383 ((-108) $)) (-15 -3845 ($ $ (-1015 (-205)))) (-15 -3845 ($ $ (-1015 (-205)) (-1015 (-205)))) (-15 -2109 ($ $ (-1015 (-205)))) (-15 -2109 ($ $)) (-15 -1271 ((-1015 (-205)) $)) (-15 -3951 ((-525))) (-15 -2213 ((-525) (-525))) (-15 -1664 ((-525))) (-15 -1668 ((-525) (-525))) (-15 -2336 ((-525))) (-15 -3361 ((-525) (-525))) (-15 -3874 ((-108))) (-15 -2281 ((-108) (-108))) (-15 -2515 ((-525))) (-15 -2388 ((-108) (-108)))))
+((-1403 (((-592 (-1015 (-205))) (-592 (-592 (-878 (-205))))) 24)))
+(((-863) (-10 -7 (-15 -1403 ((-592 (-1015 (-205))) (-592 (-592 (-878 (-205)))))))) (T -863))
+((-1403 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *2 (-592 (-1015 (-205)))) (-5 *1 (-863)))))
+(-10 -7 (-15 -1403 ((-592 (-1015 (-205))) (-592 (-592 (-878 (-205)))))))
+((-3394 ((|#2| |#2|) 26)) (-4031 ((|#2| |#2|) 27)) (-2247 ((|#2| |#2|) 25)) (-2199 ((|#2| |#2| (-1075)) 24)))
+(((-864 |#1| |#2|) (-10 -7 (-15 -2199 (|#2| |#2| (-1075))) (-15 -2247 (|#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -4031 (|#2| |#2|))) (-789) (-408 |#1|)) (T -864))
+((-4031 (*1 *2 *2) (-12 (-4 *3 (-789)) (-5 *1 (-864 *3 *2)) (-4 *2 (-408 *3)))) (-3394 (*1 *2 *2) (-12 (-4 *3 (-789)) (-5 *1 (-864 *3 *2)) (-4 *2 (-408 *3)))) (-2247 (*1 *2 *2) (-12 (-4 *3 (-789)) (-5 *1 (-864 *3 *2)) (-4 *2 (-408 *3)))) (-2199 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-789)) (-5 *1 (-864 *4 *2)) (-4 *2 (-408 *4)))))
+(-10 -7 (-15 -2199 (|#2| |#2| (-1075))) (-15 -2247 (|#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -4031 (|#2| |#2|)))
+((-3394 (((-294 (-525)) (-1092)) 16)) (-4031 (((-294 (-525)) (-1092)) 14)) (-2247 (((-294 (-525)) (-1092)) 12)) (-2199 (((-294 (-525)) (-1092) (-1075)) 19)))
+(((-865) (-10 -7 (-15 -2199 ((-294 (-525)) (-1092) (-1075))) (-15 -2247 ((-294 (-525)) (-1092))) (-15 -3394 ((-294 (-525)) (-1092))) (-15 -4031 ((-294 (-525)) (-1092))))) (T -865))
+((-4031 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-294 (-525))) (-5 *1 (-865)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-294 (-525))) (-5 *1 (-865)))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-294 (-525))) (-5 *1 (-865)))) (-2199 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-1075)) (-5 *2 (-294 (-525))) (-5 *1 (-865)))))
+(-10 -7 (-15 -2199 ((-294 (-525)) (-1092) (-1075))) (-15 -2247 ((-294 (-525)) (-1092))) (-15 -3394 ((-294 (-525)) (-1092))) (-15 -4031 ((-294 (-525)) (-1092))))
+((-3552 (((-824 |#1| |#3|) |#2| (-827 |#1|) (-824 |#1| |#3|)) 25)) (-2929 (((-1 (-108) |#2|) (-1 (-108) |#3|)) 13)))
+(((-866 |#1| |#2| |#3|) (-10 -7 (-15 -2929 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -3552 ((-824 |#1| |#3|) |#2| (-827 |#1|) (-824 |#1| |#3|)))) (-1020) (-821 |#1|) (-13 (-1020) (-968 |#2|))) (T -866))
+((-3552 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *6)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *6 (-13 (-1020) (-968 *3))) (-4 *3 (-821 *5)) (-5 *1 (-866 *5 *3 *6)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1020) (-968 *5))) (-4 *5 (-821 *4)) (-4 *4 (-1020)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-866 *4 *5 *6)))))
+(-10 -7 (-15 -2929 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -3552 ((-824 |#1| |#3|) |#2| (-827 |#1|) (-824 |#1| |#3|))))
+((-3552 (((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)) 30)))
+(((-867 |#1| |#2| |#3|) (-10 -7 (-15 -3552 ((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)))) (-1020) (-13 (-517) (-789) (-821 |#1|)) (-13 (-408 |#2|) (-567 (-827 |#1|)) (-821 |#1|) (-968 (-565 $)))) (T -867))
+((-3552 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *3)) (-4 *5 (-1020)) (-4 *3 (-13 (-408 *6) (-567 *4) (-821 *5) (-968 (-565 $)))) (-5 *4 (-827 *5)) (-4 *6 (-13 (-517) (-789) (-821 *5))) (-5 *1 (-867 *5 *6 *3)))))
+(-10 -7 (-15 -3552 ((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))))
+((-3552 (((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|)) 13)))
+(((-868 |#1|) (-10 -7 (-15 -3552 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|)))) (-510)) (T -868))
+((-3552 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 (-525) *3)) (-5 *4 (-827 (-525))) (-4 *3 (-510)) (-5 *1 (-868 *3)))))
+(-10 -7 (-15 -3552 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))))
+((-3552 (((-824 |#1| |#2|) (-565 |#2|) (-827 |#1|) (-824 |#1| |#2|)) 54)))
+(((-869 |#1| |#2|) (-10 -7 (-15 -3552 ((-824 |#1| |#2|) (-565 |#2|) (-827 |#1|) (-824 |#1| |#2|)))) (-1020) (-13 (-789) (-968 (-565 $)) (-567 (-827 |#1|)) (-821 |#1|))) (T -869))
+((-3552 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *6)) (-5 *3 (-565 *6)) (-4 *5 (-1020)) (-4 *6 (-13 (-789) (-968 (-565 $)) (-567 *4) (-821 *5))) (-5 *4 (-827 *5)) (-5 *1 (-869 *5 *6)))))
+(-10 -7 (-15 -3552 ((-824 |#1| |#2|) (-565 |#2|) (-827 |#1|) (-824 |#1| |#2|))))
+((-3552 (((-820 |#1| |#2| |#3|) |#3| (-827 |#1|) (-820 |#1| |#2| |#3|)) 15)))
+(((-870 |#1| |#2| |#3|) (-10 -7 (-15 -3552 ((-820 |#1| |#2| |#3|) |#3| (-827 |#1|) (-820 |#1| |#2| |#3|)))) (-1020) (-821 |#1|) (-612 |#2|)) (T -870))
+((-3552 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *6 *3)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *6 (-821 *5)) (-4 *3 (-612 *6)) (-5 *1 (-870 *5 *6 *3)))))
+(-10 -7 (-15 -3552 ((-820 |#1| |#2| |#3|) |#3| (-827 |#1|) (-820 |#1| |#2| |#3|))))
+((-3552 (((-824 |#1| |#5|) |#5| (-827 |#1|) (-824 |#1| |#5|)) 17 (|has| |#3| (-821 |#1|))) (((-824 |#1| |#5|) |#5| (-827 |#1|) (-824 |#1| |#5|) (-1 (-824 |#1| |#5|) |#3| (-827 |#1|) (-824 |#1| |#5|))) 16)))
+(((-871 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3552 ((-824 |#1| |#5|) |#5| (-827 |#1|) (-824 |#1| |#5|) (-1 (-824 |#1| |#5|) |#3| (-827 |#1|) (-824 |#1| |#5|)))) (IF (|has| |#3| (-821 |#1|)) (-15 -3552 ((-824 |#1| |#5|) |#5| (-827 |#1|) (-824 |#1| |#5|))) |%noBranch|)) (-1020) (-735) (-789) (-13 (-977) (-789) (-821 |#1|)) (-13 (-884 |#4| |#2| |#3|) (-567 (-827 |#1|)))) (T -871))
+((-3552 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *3)) (-4 *5 (-1020)) (-4 *3 (-13 (-884 *8 *6 *7) (-567 *4))) (-5 *4 (-827 *5)) (-4 *7 (-821 *5)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-13 (-977) (-789) (-821 *5))) (-5 *1 (-871 *5 *6 *7 *8 *3)))) (-3552 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-824 *6 *3) *8 (-827 *6) (-824 *6 *3))) (-4 *8 (-789)) (-5 *2 (-824 *6 *3)) (-5 *4 (-827 *6)) (-4 *6 (-1020)) (-4 *3 (-13 (-884 *9 *7 *8) (-567 *4))) (-4 *7 (-735)) (-4 *9 (-13 (-977) (-789) (-821 *6))) (-5 *1 (-871 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -3552 ((-824 |#1| |#5|) |#5| (-827 |#1|) (-824 |#1| |#5|) (-1 (-824 |#1| |#5|) |#3| (-827 |#1|) (-824 |#1| |#5|)))) (IF (|has| |#3| (-821 |#1|)) (-15 -3552 ((-824 |#1| |#5|) |#5| (-827 |#1|) (-824 |#1| |#5|))) |%noBranch|))
+((-4113 ((|#2| |#2| (-592 (-1 (-108) |#3|))) 12) ((|#2| |#2| (-1 (-108) |#3|)) 13)))
+(((-872 |#1| |#2| |#3|) (-10 -7 (-15 -4113 (|#2| |#2| (-1 (-108) |#3|))) (-15 -4113 (|#2| |#2| (-592 (-1 (-108) |#3|))))) (-789) (-408 |#1|) (-1128)) (T -872))
+((-4113 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-1 (-108) *5))) (-4 *5 (-1128)) (-4 *4 (-789)) (-5 *1 (-872 *4 *2 *5)) (-4 *2 (-408 *4)))) (-4113 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1128)) (-4 *4 (-789)) (-5 *1 (-872 *4 *2 *5)) (-4 *2 (-408 *4)))))
+(-10 -7 (-15 -4113 (|#2| |#2| (-1 (-108) |#3|))) (-15 -4113 (|#2| |#2| (-592 (-1 (-108) |#3|)))))
+((-4113 (((-294 (-525)) (-1092) (-592 (-1 (-108) |#1|))) 18) (((-294 (-525)) (-1092) (-1 (-108) |#1|)) 15)))
+(((-873 |#1|) (-10 -7 (-15 -4113 ((-294 (-525)) (-1092) (-1 (-108) |#1|))) (-15 -4113 ((-294 (-525)) (-1092) (-592 (-1 (-108) |#1|))))) (-1128)) (T -873))
+((-4113 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-592 (-1 (-108) *5))) (-4 *5 (-1128)) (-5 *2 (-294 (-525))) (-5 *1 (-873 *5)))) (-4113 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1128)) (-5 *2 (-294 (-525))) (-5 *1 (-873 *5)))))
+(-10 -7 (-15 -4113 ((-294 (-525)) (-1092) (-1 (-108) |#1|))) (-15 -4113 ((-294 (-525)) (-1092) (-592 (-1 (-108) |#1|)))))
+((-3552 (((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)) 25)))
+(((-874 |#1| |#2| |#3|) (-10 -7 (-15 -3552 ((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)))) (-1020) (-13 (-517) (-821 |#1|) (-567 (-827 |#1|))) (-925 |#2|)) (T -874))
+((-3552 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *3)) (-4 *5 (-1020)) (-4 *3 (-925 *6)) (-4 *6 (-13 (-517) (-821 *5) (-567 *4))) (-5 *4 (-827 *5)) (-5 *1 (-874 *5 *6 *3)))))
+(-10 -7 (-15 -3552 ((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))))
+((-3552 (((-824 |#1| (-1092)) (-1092) (-827 |#1|) (-824 |#1| (-1092))) 17)))
+(((-875 |#1|) (-10 -7 (-15 -3552 ((-824 |#1| (-1092)) (-1092) (-827 |#1|) (-824 |#1| (-1092))))) (-1020)) (T -875))
+((-3552 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 (-1092))) (-5 *3 (-1092)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-5 *1 (-875 *5)))))
+(-10 -7 (-15 -3552 ((-824 |#1| (-1092)) (-1092) (-827 |#1|) (-824 |#1| (-1092)))))
+((-3866 (((-824 |#1| |#3|) (-592 |#3|) (-592 (-827 |#1|)) (-824 |#1| |#3|) (-1 (-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))) 33)) (-3552 (((-824 |#1| |#3|) (-592 |#3|) (-592 (-827 |#1|)) (-1 |#3| (-592 |#3|)) (-824 |#1| |#3|) (-1 (-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))) 32)))
+(((-876 |#1| |#2| |#3|) (-10 -7 (-15 -3552 ((-824 |#1| |#3|) (-592 |#3|) (-592 (-827 |#1|)) (-1 |#3| (-592 |#3|)) (-824 |#1| |#3|) (-1 (-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)))) (-15 -3866 ((-824 |#1| |#3|) (-592 |#3|) (-592 (-827 |#1|)) (-824 |#1| |#3|) (-1 (-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))))) (-1020) (-13 (-977) (-789)) (-13 (-977) (-567 (-827 |#1|)) (-968 |#2|))) (T -876))
+((-3866 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-827 *6))) (-5 *5 (-1 (-824 *6 *8) *8 (-827 *6) (-824 *6 *8))) (-4 *6 (-1020)) (-4 *8 (-13 (-977) (-567 (-827 *6)) (-968 *7))) (-5 *2 (-824 *6 *8)) (-4 *7 (-13 (-977) (-789))) (-5 *1 (-876 *6 *7 *8)))) (-3552 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-592 (-827 *7))) (-5 *5 (-1 *9 (-592 *9))) (-5 *6 (-1 (-824 *7 *9) *9 (-827 *7) (-824 *7 *9))) (-4 *7 (-1020)) (-4 *9 (-13 (-977) (-567 (-827 *7)) (-968 *8))) (-5 *2 (-824 *7 *9)) (-5 *3 (-592 *9)) (-4 *8 (-13 (-977) (-789))) (-5 *1 (-876 *7 *8 *9)))))
+(-10 -7 (-15 -3552 ((-824 |#1| |#3|) (-592 |#3|) (-592 (-827 |#1|)) (-1 |#3| (-592 |#3|)) (-824 |#1| |#3|) (-1 (-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)))) (-15 -3866 ((-824 |#1| |#3|) (-592 |#3|) (-592 (-827 |#1|)) (-824 |#1| |#3|) (-1 (-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)))))
+((-3530 (((-1088 (-385 (-525))) (-525)) 63)) (-1836 (((-1088 (-525)) (-525)) 66)) (-1809 (((-1088 (-525)) (-525)) 60)) (-2680 (((-525) (-1088 (-525))) 55)) (-2550 (((-1088 (-385 (-525))) (-525)) 49)) (-3099 (((-1088 (-525)) (-525)) 38)) (-1604 (((-1088 (-525)) (-525)) 68)) (-4062 (((-1088 (-525)) (-525)) 67)) (-2198 (((-1088 (-385 (-525))) (-525)) 51)))
+(((-877) (-10 -7 (-15 -2198 ((-1088 (-385 (-525))) (-525))) (-15 -4062 ((-1088 (-525)) (-525))) (-15 -1604 ((-1088 (-525)) (-525))) (-15 -3099 ((-1088 (-525)) (-525))) (-15 -2550 ((-1088 (-385 (-525))) (-525))) (-15 -2680 ((-525) (-1088 (-525)))) (-15 -1809 ((-1088 (-525)) (-525))) (-15 -1836 ((-1088 (-525)) (-525))) (-15 -3530 ((-1088 (-385 (-525))) (-525))))) (T -877))
+((-3530 (*1 *2 *3) (-12 (-5 *2 (-1088 (-385 (-525)))) (-5 *1 (-877)) (-5 *3 (-525)))) (-1836 (*1 *2 *3) (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))) (-1809 (*1 *2 *3) (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))) (-2680 (*1 *2 *3) (-12 (-5 *3 (-1088 (-525))) (-5 *2 (-525)) (-5 *1 (-877)))) (-2550 (*1 *2 *3) (-12 (-5 *2 (-1088 (-385 (-525)))) (-5 *1 (-877)) (-5 *3 (-525)))) (-3099 (*1 *2 *3) (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))) (-1604 (*1 *2 *3) (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))) (-4062 (*1 *2 *3) (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))) (-2198 (*1 *2 *3) (-12 (-5 *2 (-1088 (-385 (-525)))) (-5 *1 (-877)) (-5 *3 (-525)))))
+(-10 -7 (-15 -2198 ((-1088 (-385 (-525))) (-525))) (-15 -4062 ((-1088 (-525)) (-525))) (-15 -1604 ((-1088 (-525)) (-525))) (-15 -3099 ((-1088 (-525)) (-525))) (-15 -2550 ((-1088 (-385 (-525))) (-525))) (-15 -2680 ((-525) (-1088 (-525)))) (-15 -1809 ((-1088 (-525)) (-525))) (-15 -1836 ((-1088 (-525)) (-525))) (-15 -3530 ((-1088 (-385 (-525))) (-525))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1221 (($ (-713)) NIL (|has| |#1| (-23)))) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-2358 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2436 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4260))) (($ $) NIL (-12 (|has| $ (-6 -4260)) (|has| |#1| (-789))))) (-1842 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 ((|#1| $ (-525) |#1|) 11 (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2475 (($) NIL T CONST)) (-2670 (($ $) NIL (|has| $ (-6 -4260)))) (-1652 (($ $) NIL)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3081 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) NIL)) (-3856 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-4112 (($ (-592 |#1|)) 13)) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-1825 (((-632 |#1|) $ $) NIL (|has| |#1| (-977)))) (-3324 (($ (-713) |#1|) 8)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) 10 (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-3212 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2482 ((|#1| $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-977))))) (-4028 (((-108) $ (-713)) NIL)) (-4128 ((|#1| $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-977))))) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2594 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1647 ((|#1| $) NIL (|has| (-525) (-789)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3453 (($ $ |#1|) NIL (|has| $ (-6 -4260)))) (-1397 (($ $ (-592 |#1|)) 26)) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 20) (($ $ (-1141 (-525))) NIL)) (-3584 ((|#1| $ $) NIL (|has| |#1| (-977)))) (-3933 (((-856) $) 16)) (-2139 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2548 (($ $ $) 24)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3632 (($ $ $ (-525)) NIL (|has| $ (-6 -4260)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| |#1| (-567 (-501)))) (($ (-592 |#1|)) 17)) (-4114 (($ (-592 |#1|)) NIL)) (-2035 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-592 $)) NIL)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2871 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2860 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-525) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-669))) (($ $ |#1|) NIL (|has| |#1| (-669)))) (-2827 (((-713) $) 14 (|has| $ (-6 -4259)))))
(((-878 |#1|) (-913 |#1|) (-977)) (T -878))
NIL
(-913 |#1|)
-((-3526 (((-457 |#1| |#2|) (-887 |#2|)) 20)) (-3168 (((-227 |#1| |#2|) (-887 |#2|)) 33)) (-1485 (((-887 |#2|) (-457 |#1| |#2|)) 25)) (-2953 (((-227 |#1| |#2|) (-457 |#1| |#2|)) 55)) (-3268 (((-887 |#2|) (-227 |#1| |#2|)) 30)) (-2471 (((-457 |#1| |#2|) (-227 |#1| |#2|)) 46)))
-(((-879 |#1| |#2|) (-10 -7 (-15 -2471 ((-457 |#1| |#2|) (-227 |#1| |#2|))) (-15 -2953 ((-227 |#1| |#2|) (-457 |#1| |#2|))) (-15 -3526 ((-457 |#1| |#2|) (-887 |#2|))) (-15 -1485 ((-887 |#2|) (-457 |#1| |#2|))) (-15 -3268 ((-887 |#2|) (-227 |#1| |#2|))) (-15 -3168 ((-227 |#1| |#2|) (-887 |#2|)))) (-592 (-1092)) (-977)) (T -879))
-((-3168 (*1 *2 *3) (-12 (-5 *3 (-887 *5)) (-4 *5 (-977)) (-5 *2 (-227 *4 *5)) (-5 *1 (-879 *4 *5)) (-14 *4 (-592 (-1092))))) (-3268 (*1 *2 *3) (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-977)) (-5 *2 (-887 *5)) (-5 *1 (-879 *4 *5)))) (-1485 (*1 *2 *3) (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-977)) (-5 *2 (-887 *5)) (-5 *1 (-879 *4 *5)))) (-3526 (*1 *2 *3) (-12 (-5 *3 (-887 *5)) (-4 *5 (-977)) (-5 *2 (-457 *4 *5)) (-5 *1 (-879 *4 *5)) (-14 *4 (-592 (-1092))))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-977)) (-5 *2 (-227 *4 *5)) (-5 *1 (-879 *4 *5)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-977)) (-5 *2 (-457 *4 *5)) (-5 *1 (-879 *4 *5)))))
-(-10 -7 (-15 -2471 ((-457 |#1| |#2|) (-227 |#1| |#2|))) (-15 -2953 ((-227 |#1| |#2|) (-457 |#1| |#2|))) (-15 -3526 ((-457 |#1| |#2|) (-887 |#2|))) (-15 -1485 ((-887 |#2|) (-457 |#1| |#2|))) (-15 -3268 ((-887 |#2|) (-227 |#1| |#2|))) (-15 -3168 ((-227 |#1| |#2|) (-887 |#2|))))
-((-2464 (((-592 |#2|) |#2| |#2|) 10)) (-1678 (((-713) (-592 |#1|)) 37 (|has| |#1| (-787)))) (-1579 (((-592 |#2|) |#2|) 11)) (-3572 (((-713) (-592 |#1|) (-525) (-525)) 39 (|has| |#1| (-787)))) (-3485 ((|#1| |#2|) 32 (|has| |#1| (-787)))))
-(((-880 |#1| |#2|) (-10 -7 (-15 -2464 ((-592 |#2|) |#2| |#2|)) (-15 -1579 ((-592 |#2|) |#2|)) (IF (|has| |#1| (-787)) (PROGN (-15 -3485 (|#1| |#2|)) (-15 -1678 ((-713) (-592 |#1|))) (-15 -3572 ((-713) (-592 |#1|) (-525) (-525)))) |%noBranch|)) (-341) (-1150 |#1|)) (T -880))
-((-3572 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-525)) (-4 *5 (-787)) (-4 *5 (-341)) (-5 *2 (-713)) (-5 *1 (-880 *5 *6)) (-4 *6 (-1150 *5)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-787)) (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-880 *4 *5)) (-4 *5 (-1150 *4)))) (-3485 (*1 *2 *3) (-12 (-4 *2 (-341)) (-4 *2 (-787)) (-5 *1 (-880 *2 *3)) (-4 *3 (-1150 *2)))) (-1579 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-880 *4 *3)) (-4 *3 (-1150 *4)))) (-2464 (*1 *2 *3 *3) (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-880 *4 *3)) (-4 *3 (-1150 *4)))))
-(-10 -7 (-15 -2464 ((-592 |#2|) |#2| |#2|)) (-15 -1579 ((-592 |#2|) |#2|)) (IF (|has| |#1| (-787)) (PROGN (-15 -3485 (|#1| |#2|)) (-15 -1678 ((-713) (-592 |#1|))) (-15 -3572 ((-713) (-592 |#1|) (-525) (-525)))) |%noBranch|))
-((-3165 (((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)) 19)))
-(((-881 |#1| |#2|) (-10 -7 (-15 -3165 ((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)))) (-977) (-977)) (T -881))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-887 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-5 *2 (-887 *6)) (-5 *1 (-881 *5 *6)))))
-(-10 -7 (-15 -3165 ((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|))))
-((-2744 (((-1147 |#1| (-887 |#2|)) (-887 |#2|) (-1170 |#1|)) 18)))
-(((-882 |#1| |#2|) (-10 -7 (-15 -2744 ((-1147 |#1| (-887 |#2|)) (-887 |#2|) (-1170 |#1|)))) (-1092) (-977)) (T -882))
-((-2744 (*1 *2 *3 *4) (-12 (-5 *4 (-1170 *5)) (-14 *5 (-1092)) (-4 *6 (-977)) (-5 *2 (-1147 *5 (-887 *6))) (-5 *1 (-882 *5 *6)) (-5 *3 (-887 *6)))))
-(-10 -7 (-15 -2744 ((-1147 |#1| (-887 |#2|)) (-887 |#2|) (-1170 |#1|))))
-((-3212 (((-713) $) 71) (((-713) $ (-592 |#4|)) 74)) (-1286 (($ $) 173)) (-2669 (((-396 $) $) 165)) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 116)) (-3077 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-1572 ((|#2| $) NIL) (((-385 (-525)) $) NIL) (((-525) $) NIL) ((|#4| $) 59)) (-3377 (($ $ $ |#4|) 76)) (-1994 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) 106) (((-632 |#2|) (-632 $)) 99)) (-1576 (($ $) 180) (($ $ |#4|) 183)) (-3052 (((-592 $) $) 63)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 199) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 192)) (-4144 (((-592 $) $) 28)) (-2876 (($ |#2| |#3|) NIL) (($ $ |#4| (-713)) NIL) (($ $ (-592 |#4|) (-592 (-713))) 57)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ |#4|) 162)) (-1334 (((-3 (-592 $) "failed") $) 42)) (-2001 (((-3 (-592 $) "failed") $) 31)) (-2121 (((-3 (-2 (|:| |var| |#4|) (|:| -4193 (-713))) "failed") $) 47)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 109)) (-3076 (((-396 (-1088 $)) (-1088 $)) 122)) (-4099 (((-396 (-1088 $)) (-1088 $)) 120)) (-2770 (((-396 $) $) 140)) (-2457 (($ $ (-592 (-273 $))) 21) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-592 |#4|) (-592 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-592 |#4|) (-592 $)) NIL)) (-1975 (($ $ |#4|) 78)) (-3210 (((-827 (-357)) $) 213) (((-827 (-525)) $) 206) (((-501) $) 221)) (-3658 ((|#2| $) NIL) (($ $ |#4|) 175)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) 154)) (-1568 ((|#2| $ |#3|) NIL) (($ $ |#4| (-713)) 52) (($ $ (-592 |#4|) (-592 (-713))) 55)) (-3637 (((-3 $ "failed") $) 156)) (-3978 (((-108) $ $) 186)))
-(((-883 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1883 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|))) (-15 -2669 ((-396 |#1|) |#1|)) (-15 -1286 (|#1| |#1|)) (-15 -3637 ((-3 |#1| "failed") |#1|)) (-15 -3978 ((-108) |#1| |#1|)) (-15 -3210 ((-501) |#1|)) (-15 -3210 ((-827 (-525)) |#1|)) (-15 -3210 ((-827 (-357)) |#1|)) (-15 -2989 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -2989 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -2770 ((-396 |#1|) |#1|)) (-15 -4099 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3076 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -2969 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|))) (-15 -1940 ((-3 (-1174 |#1|) "failed") (-632 |#1|))) (-15 -1576 (|#1| |#1| |#4|)) (-15 -3658 (|#1| |#1| |#4|)) (-15 -1975 (|#1| |#1| |#4|)) (-15 -3377 (|#1| |#1| |#1| |#4|)) (-15 -3052 ((-592 |#1|) |#1|)) (-15 -3212 ((-713) |#1| (-592 |#4|))) (-15 -3212 ((-713) |#1|)) (-15 -2121 ((-3 (-2 (|:| |var| |#4|) (|:| -4193 (-713))) "failed") |#1|)) (-15 -1334 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -2001 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -2876 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -2876 (|#1| |#1| |#4| (-713))) (-15 -2418 ((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1| |#4|)) (-15 -4144 ((-592 |#1|) |#1|)) (-15 -1568 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -1568 (|#1| |#1| |#4| (-713))) (-15 -1994 ((-632 |#2|) (-632 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-632 (-525)) (-632 |#1|))) (-15 -1572 (|#4| |#1|)) (-15 -3077 ((-3 |#4| "failed") |#1|)) (-15 -2457 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -2457 (|#1| |#1| |#4| |#1|)) (-15 -2457 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -2457 (|#1| |#1| |#4| |#2|)) (-15 -2457 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2457 (|#1| |#1| |#1| |#1|)) (-15 -2457 (|#1| |#1| (-273 |#1|))) (-15 -2457 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2876 (|#1| |#2| |#3|)) (-15 -1568 (|#2| |#1| |#3|)) (-15 -1572 ((-525) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -3658 (|#2| |#1|)) (-15 -1576 (|#1| |#1|))) (-884 |#2| |#3| |#4|) (-977) (-735) (-789)) (T -883))
-NIL
-(-10 -8 (-15 -1883 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|))) (-15 -2669 ((-396 |#1|) |#1|)) (-15 -1286 (|#1| |#1|)) (-15 -3637 ((-3 |#1| "failed") |#1|)) (-15 -3978 ((-108) |#1| |#1|)) (-15 -3210 ((-501) |#1|)) (-15 -3210 ((-827 (-525)) |#1|)) (-15 -3210 ((-827 (-357)) |#1|)) (-15 -2989 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -2989 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -2770 ((-396 |#1|) |#1|)) (-15 -4099 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3076 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -2969 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|))) (-15 -1940 ((-3 (-1174 |#1|) "failed") (-632 |#1|))) (-15 -1576 (|#1| |#1| |#4|)) (-15 -3658 (|#1| |#1| |#4|)) (-15 -1975 (|#1| |#1| |#4|)) (-15 -3377 (|#1| |#1| |#1| |#4|)) (-15 -3052 ((-592 |#1|) |#1|)) (-15 -3212 ((-713) |#1| (-592 |#4|))) (-15 -3212 ((-713) |#1|)) (-15 -2121 ((-3 (-2 (|:| |var| |#4|) (|:| -4193 (-713))) "failed") |#1|)) (-15 -1334 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -2001 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -2876 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -2876 (|#1| |#1| |#4| (-713))) (-15 -2418 ((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1| |#4|)) (-15 -4144 ((-592 |#1|) |#1|)) (-15 -1568 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -1568 (|#1| |#1| |#4| (-713))) (-15 -1994 ((-632 |#2|) (-632 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-632 (-525)) (-632 |#1|))) (-15 -1572 (|#4| |#1|)) (-15 -3077 ((-3 |#4| "failed") |#1|)) (-15 -2457 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -2457 (|#1| |#1| |#4| |#1|)) (-15 -2457 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -2457 (|#1| |#1| |#4| |#2|)) (-15 -2457 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2457 (|#1| |#1| |#1| |#1|)) (-15 -2457 (|#1| |#1| (-273 |#1|))) (-15 -2457 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2876 (|#1| |#2| |#3|)) (-15 -1568 (|#2| |#1| |#3|)) (-15 -1572 ((-525) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -3658 (|#2| |#1|)) (-15 -1576 (|#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2897 (((-592 |#3|) $) 110)) (-2744 (((-1088 $) $ |#3|) 125) (((-1088 |#1|) $) 124)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-4218 (($ $) 88 (|has| |#1| (-517)))) (-3171 (((-108) $) 90 (|has| |#1| (-517)))) (-3212 (((-713) $) 112) (((-713) $ (-592 |#3|)) 111)) (-1578 (((-3 $ "failed") $ $) 19)) (-1448 (((-396 (-1088 $)) (-1088 $)) 100 (|has| |#1| (-844)))) (-1286 (($ $) 98 (|has| |#1| (-429)))) (-2669 (((-396 $) $) 97 (|has| |#1| (-429)))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 103 (|has| |#1| (-844)))) (-2169 (($) 17 T CONST)) (-3077 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-968 (-525)))) (((-3 |#3| "failed") $) 136)) (-1572 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-968 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-968 (-525)))) ((|#3| $) 135)) (-3377 (($ $ $ |#3|) 108 (|has| |#1| (-160)))) (-3063 (($ $) 154)) (-1994 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-3457 (((-3 $ "failed") $) 34)) (-1576 (($ $) 176 (|has| |#1| (-429))) (($ $ |#3|) 105 (|has| |#1| (-429)))) (-3052 (((-592 $) $) 109)) (-3673 (((-108) $) 96 (|has| |#1| (-844)))) (-2188 (($ $ |#1| |#2| $) 172)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 84 (-12 (|has| |#3| (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 83 (-12 (|has| |#3| (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-1396 (((-108) $) 31)) (-3399 (((-713) $) 169)) (-2887 (($ (-1088 |#1|) |#3|) 117) (($ (-1088 $) |#3|) 116)) (-4144 (((-592 $) $) 126)) (-1212 (((-108) $) 152)) (-2876 (($ |#1| |#2|) 153) (($ $ |#3| (-713)) 119) (($ $ (-592 |#3|) (-592 (-713))) 118)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ |#3|) 120)) (-2870 ((|#2| $) 170) (((-713) $ |#3|) 122) (((-592 (-713)) $ (-592 |#3|)) 121)) (-2638 (($ $ $) 79 (|has| |#1| (-789)))) (-3662 (($ $ $) 78 (|has| |#1| (-789)))) (-2172 (($ (-1 |#2| |#2|) $) 171)) (-3165 (($ (-1 |#1| |#1|) $) 151)) (-2431 (((-3 |#3| "failed") $) 123)) (-3031 (($ $) 149)) (-3043 ((|#1| $) 148)) (-2556 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-2619 (((-1075) $) 9)) (-1334 (((-3 (-592 $) "failed") $) 114)) (-2001 (((-3 (-592 $) "failed") $) 115)) (-2121 (((-3 (-2 (|:| |var| |#3|) (|:| -4193 (-713))) "failed") $) 113)) (-2093 (((-1039) $) 10)) (-3007 (((-108) $) 166)) (-3019 ((|#1| $) 167)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 95 (|has| |#1| (-429)))) (-2589 (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-3076 (((-396 (-1088 $)) (-1088 $)) 102 (|has| |#1| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) 101 (|has| |#1| (-844)))) (-2770 (((-396 $) $) 99 (|has| |#1| (-844)))) (-1715 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-2457 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-592 |#3|) (-592 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-592 |#3|) (-592 $)) 138)) (-1975 (($ $ |#3|) 107 (|has| |#1| (-160)))) (-3376 (($ $ |#3|) 42) (($ $ (-592 |#3|)) 41) (($ $ |#3| (-713)) 40) (($ $ (-592 |#3|) (-592 (-713))) 39)) (-2343 ((|#2| $) 150) (((-713) $ |#3|) 130) (((-592 (-713)) $ (-592 |#3|)) 129)) (-3210 (((-827 (-357)) $) 82 (-12 (|has| |#3| (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) 81 (-12 (|has| |#3| (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) 80 (-12 (|has| |#3| (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-3658 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ |#3|) 106 (|has| |#1| (-429)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) 104 (-3762 (|has| $ (-136)) (|has| |#1| (-844))))) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-517))) (($ (-385 (-525))) 72 (-3254 (|has| |#1| (-968 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525))))))) (-1684 (((-592 |#1|) $) 168)) (-1568 ((|#1| $ |#2|) 155) (($ $ |#3| (-713)) 128) (($ $ (-592 |#3|) (-592 (-713))) 127)) (-3637 (((-3 $ "failed") $) 73 (-3254 (-3762 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-3917 (((-713)) 29)) (-3716 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-3325 (((-108) $ $) 89 (|has| |#1| (-517)))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $ |#3|) 38) (($ $ (-592 |#3|)) 37) (($ $ |#3| (-713)) 36) (($ $ (-592 |#3|) (-592 (-713))) 35)) (-4011 (((-108) $ $) 76 (|has| |#1| (-789)))) (-3987 (((-108) $ $) 75 (|has| |#1| (-789)))) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 77 (|has| |#1| (-789)))) (-3978 (((-108) $ $) 74 (|has| |#1| (-789)))) (-4075 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+((-2742 (((-457 |#1| |#2|) (-887 |#2|)) 20)) (-1536 (((-227 |#1| |#2|) (-887 |#2|)) 33)) (-2223 (((-887 |#2|) (-457 |#1| |#2|)) 25)) (-3206 (((-227 |#1| |#2|) (-457 |#1| |#2|)) 55)) (-4176 (((-887 |#2|) (-227 |#1| |#2|)) 30)) (-2373 (((-457 |#1| |#2|) (-227 |#1| |#2|)) 46)))
+(((-879 |#1| |#2|) (-10 -7 (-15 -2373 ((-457 |#1| |#2|) (-227 |#1| |#2|))) (-15 -3206 ((-227 |#1| |#2|) (-457 |#1| |#2|))) (-15 -2742 ((-457 |#1| |#2|) (-887 |#2|))) (-15 -2223 ((-887 |#2|) (-457 |#1| |#2|))) (-15 -4176 ((-887 |#2|) (-227 |#1| |#2|))) (-15 -1536 ((-227 |#1| |#2|) (-887 |#2|)))) (-592 (-1092)) (-977)) (T -879))
+((-1536 (*1 *2 *3) (-12 (-5 *3 (-887 *5)) (-4 *5 (-977)) (-5 *2 (-227 *4 *5)) (-5 *1 (-879 *4 *5)) (-14 *4 (-592 (-1092))))) (-4176 (*1 *2 *3) (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-977)) (-5 *2 (-887 *5)) (-5 *1 (-879 *4 *5)))) (-2223 (*1 *2 *3) (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-977)) (-5 *2 (-887 *5)) (-5 *1 (-879 *4 *5)))) (-2742 (*1 *2 *3) (-12 (-5 *3 (-887 *5)) (-4 *5 (-977)) (-5 *2 (-457 *4 *5)) (-5 *1 (-879 *4 *5)) (-14 *4 (-592 (-1092))))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-977)) (-5 *2 (-227 *4 *5)) (-5 *1 (-879 *4 *5)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-977)) (-5 *2 (-457 *4 *5)) (-5 *1 (-879 *4 *5)))))
+(-10 -7 (-15 -2373 ((-457 |#1| |#2|) (-227 |#1| |#2|))) (-15 -3206 ((-227 |#1| |#2|) (-457 |#1| |#2|))) (-15 -2742 ((-457 |#1| |#2|) (-887 |#2|))) (-15 -2223 ((-887 |#2|) (-457 |#1| |#2|))) (-15 -4176 ((-887 |#2|) (-227 |#1| |#2|))) (-15 -1536 ((-227 |#1| |#2|) (-887 |#2|))))
+((-2313 (((-592 |#2|) |#2| |#2|) 10)) (-3072 (((-713) (-592 |#1|)) 37 (|has| |#1| (-787)))) (-3232 (((-592 |#2|) |#2|) 11)) (-2037 (((-713) (-592 |#1|) (-525) (-525)) 39 (|has| |#1| (-787)))) (-3571 ((|#1| |#2|) 32 (|has| |#1| (-787)))))
+(((-880 |#1| |#2|) (-10 -7 (-15 -2313 ((-592 |#2|) |#2| |#2|)) (-15 -3232 ((-592 |#2|) |#2|)) (IF (|has| |#1| (-787)) (PROGN (-15 -3571 (|#1| |#2|)) (-15 -3072 ((-713) (-592 |#1|))) (-15 -2037 ((-713) (-592 |#1|) (-525) (-525)))) |%noBranch|)) (-341) (-1150 |#1|)) (T -880))
+((-2037 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-525)) (-4 *5 (-787)) (-4 *5 (-341)) (-5 *2 (-713)) (-5 *1 (-880 *5 *6)) (-4 *6 (-1150 *5)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-787)) (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-880 *4 *5)) (-4 *5 (-1150 *4)))) (-3571 (*1 *2 *3) (-12 (-4 *2 (-341)) (-4 *2 (-787)) (-5 *1 (-880 *2 *3)) (-4 *3 (-1150 *2)))) (-3232 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-880 *4 *3)) (-4 *3 (-1150 *4)))) (-2313 (*1 *2 *3 *3) (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-880 *4 *3)) (-4 *3 (-1150 *4)))))
+(-10 -7 (-15 -2313 ((-592 |#2|) |#2| |#2|)) (-15 -3232 ((-592 |#2|) |#2|)) (IF (|has| |#1| (-787)) (PROGN (-15 -3571 (|#1| |#2|)) (-15 -3072 ((-713) (-592 |#1|))) (-15 -2037 ((-713) (-592 |#1|) (-525) (-525)))) |%noBranch|))
+((-2016 (((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)) 19)))
+(((-881 |#1| |#2|) (-10 -7 (-15 -2016 ((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)))) (-977) (-977)) (T -881))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-887 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-5 *2 (-887 *6)) (-5 *1 (-881 *5 *6)))))
+(-10 -7 (-15 -2016 ((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|))))
+((-4169 (((-1147 |#1| (-887 |#2|)) (-887 |#2|) (-1170 |#1|)) 18)))
+(((-882 |#1| |#2|) (-10 -7 (-15 -4169 ((-1147 |#1| (-887 |#2|)) (-887 |#2|) (-1170 |#1|)))) (-1092) (-977)) (T -882))
+((-4169 (*1 *2 *3 *4) (-12 (-5 *4 (-1170 *5)) (-14 *5 (-1092)) (-4 *6 (-977)) (-5 *2 (-1147 *5 (-887 *6))) (-5 *1 (-882 *5 *6)) (-5 *3 (-887 *6)))))
+(-10 -7 (-15 -4169 ((-1147 |#1| (-887 |#2|)) (-887 |#2|) (-1170 |#1|))))
+((-1928 (((-713) $) 71) (((-713) $ (-592 |#4|)) 74)) (-4195 (($ $) 173)) (-3586 (((-396 $) $) 165)) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 116)) (-1934 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-4105 ((|#2| $) NIL) (((-385 (-525)) $) NIL) (((-525) $) NIL) ((|#4| $) 59)) (-3801 (($ $ $ |#4|) 76)) (-3090 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) 106) (((-632 |#2|) (-632 $)) 99)) (-3201 (($ $) 180) (($ $ |#4|) 183)) (-1441 (((-592 $) $) 63)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 199) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 192)) (-2884 (((-592 $) $) 28)) (-1272 (($ |#2| |#3|) NIL) (($ $ |#4| (-713)) NIL) (($ $ (-592 |#4|) (-592 (-713))) 57)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ |#4|) 162)) (-2977 (((-3 (-592 $) "failed") $) 42)) (-3165 (((-3 (-592 $) "failed") $) 31)) (-1986 (((-3 (-2 (|:| |var| |#4|) (|:| -2168 (-713))) "failed") $) 47)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 109)) (-3089 (((-396 (-1088 $)) (-1088 $)) 122)) (-3644 (((-396 (-1088 $)) (-1088 $)) 120)) (-4201 (((-396 $) $) 140)) (-2825 (($ $ (-592 (-273 $))) 21) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-592 |#4|) (-592 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-592 |#4|) (-592 $)) NIL)) (-4115 (($ $ |#4|) 78)) (-2069 (((-827 (-357)) $) 213) (((-827 (-525)) $) 206) (((-501) $) 221)) (-1661 ((|#2| $) NIL) (($ $ |#4|) 175)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) 154)) (-3136 ((|#2| $ |#3|) NIL) (($ $ |#4| (-713)) 52) (($ $ (-592 |#4|) (-592 (-713))) 55)) (-1463 (((-3 $ "failed") $) 156)) (-2795 (((-108) $ $) 186)))
+(((-883 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1379 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|))) (-15 -3586 ((-396 |#1|) |#1|)) (-15 -4195 (|#1| |#1|)) (-15 -1463 ((-3 |#1| "failed") |#1|)) (-15 -2795 ((-108) |#1| |#1|)) (-15 -2069 ((-501) |#1|)) (-15 -2069 ((-827 (-525)) |#1|)) (-15 -2069 ((-827 (-357)) |#1|)) (-15 -3552 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -3552 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -4201 ((-396 |#1|) |#1|)) (-15 -3644 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3089 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3373 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|))) (-15 -3739 ((-3 (-1174 |#1|) "failed") (-632 |#1|))) (-15 -3201 (|#1| |#1| |#4|)) (-15 -1661 (|#1| |#1| |#4|)) (-15 -4115 (|#1| |#1| |#4|)) (-15 -3801 (|#1| |#1| |#1| |#4|)) (-15 -1441 ((-592 |#1|) |#1|)) (-15 -1928 ((-713) |#1| (-592 |#4|))) (-15 -1928 ((-713) |#1|)) (-15 -1986 ((-3 (-2 (|:| |var| |#4|) (|:| -2168 (-713))) "failed") |#1|)) (-15 -2977 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3165 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -1272 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -1272 (|#1| |#1| |#4| (-713))) (-15 -3021 ((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1| |#4|)) (-15 -2884 ((-592 |#1|) |#1|)) (-15 -3136 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -3136 (|#1| |#1| |#4| (-713))) (-15 -3090 ((-632 |#2|) (-632 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-632 (-525)) (-632 |#1|))) (-15 -4105 (|#4| |#1|)) (-15 -1934 ((-3 |#4| "failed") |#1|)) (-15 -2825 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -2825 (|#1| |#1| |#4| |#1|)) (-15 -2825 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -2825 (|#1| |#1| |#4| |#2|)) (-15 -2825 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2825 (|#1| |#1| |#1| |#1|)) (-15 -2825 (|#1| |#1| (-273 |#1|))) (-15 -2825 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -1272 (|#1| |#2| |#3|)) (-15 -3136 (|#2| |#1| |#3|)) (-15 -4105 ((-525) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -4105 (|#2| |#1|)) (-15 -1661 (|#2| |#1|)) (-15 -3201 (|#1| |#1|))) (-884 |#2| |#3| |#4|) (-977) (-735) (-789)) (T -883))
+NIL
+(-10 -8 (-15 -1379 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|))) (-15 -3586 ((-396 |#1|) |#1|)) (-15 -4195 (|#1| |#1|)) (-15 -1463 ((-3 |#1| "failed") |#1|)) (-15 -2795 ((-108) |#1| |#1|)) (-15 -2069 ((-501) |#1|)) (-15 -2069 ((-827 (-525)) |#1|)) (-15 -2069 ((-827 (-357)) |#1|)) (-15 -3552 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -3552 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -4201 ((-396 |#1|) |#1|)) (-15 -3644 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3089 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3373 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|))) (-15 -3739 ((-3 (-1174 |#1|) "failed") (-632 |#1|))) (-15 -3201 (|#1| |#1| |#4|)) (-15 -1661 (|#1| |#1| |#4|)) (-15 -4115 (|#1| |#1| |#4|)) (-15 -3801 (|#1| |#1| |#1| |#4|)) (-15 -1441 ((-592 |#1|) |#1|)) (-15 -1928 ((-713) |#1| (-592 |#4|))) (-15 -1928 ((-713) |#1|)) (-15 -1986 ((-3 (-2 (|:| |var| |#4|) (|:| -2168 (-713))) "failed") |#1|)) (-15 -2977 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3165 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -1272 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -1272 (|#1| |#1| |#4| (-713))) (-15 -3021 ((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1| |#4|)) (-15 -2884 ((-592 |#1|) |#1|)) (-15 -3136 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -3136 (|#1| |#1| |#4| (-713))) (-15 -3090 ((-632 |#2|) (-632 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-632 (-525)) (-632 |#1|))) (-15 -4105 (|#4| |#1|)) (-15 -1934 ((-3 |#4| "failed") |#1|)) (-15 -2825 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -2825 (|#1| |#1| |#4| |#1|)) (-15 -2825 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -2825 (|#1| |#1| |#4| |#2|)) (-15 -2825 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2825 (|#1| |#1| |#1| |#1|)) (-15 -2825 (|#1| |#1| (-273 |#1|))) (-15 -2825 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -1272 (|#1| |#2| |#3|)) (-15 -3136 (|#2| |#1| |#3|)) (-15 -4105 ((-525) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -4105 (|#2| |#1|)) (-15 -1661 (|#2| |#1|)) (-15 -3201 (|#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-1296 (((-592 |#3|) $) 110)) (-4169 (((-1088 $) $ |#3|) 125) (((-1088 |#1|) $) 124)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-2433 (($ $) 88 (|has| |#1| (-517)))) (-1568 (((-108) $) 90 (|has| |#1| (-517)))) (-1928 (((-713) $) 112) (((-713) $ (-592 |#3|)) 111)) (-3222 (((-3 $ "failed") $ $) 19)) (-2426 (((-396 (-1088 $)) (-1088 $)) 100 (|has| |#1| (-844)))) (-4195 (($ $) 98 (|has| |#1| (-429)))) (-3586 (((-396 $) $) 97 (|has| |#1| (-429)))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 103 (|has| |#1| (-844)))) (-2475 (($) 17 T CONST)) (-1934 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-968 (-525)))) (((-3 |#3| "failed") $) 136)) (-4105 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-968 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-968 (-525)))) ((|#3| $) 135)) (-3801 (($ $ $ |#3|) 108 (|has| |#1| (-160)))) (-1451 (($ $) 154)) (-3090 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-3300 (((-3 $ "failed") $) 34)) (-3201 (($ $) 176 (|has| |#1| (-429))) (($ $ |#3|) 105 (|has| |#1| (-429)))) (-1441 (((-592 $) $) 109)) (-1798 (((-108) $) 96 (|has| |#1| (-844)))) (-1457 (($ $ |#1| |#2| $) 172)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 84 (-12 (|has| |#3| (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 83 (-12 (|has| |#3| (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-2278 (((-108) $) 31)) (-4025 (((-713) $) 169)) (-1284 (($ (-1088 |#1|) |#3|) 117) (($ (-1088 $) |#3|) 116)) (-2884 (((-592 $) $) 126)) (-2457 (((-108) $) 152)) (-1272 (($ |#1| |#2|) 153) (($ $ |#3| (-713)) 119) (($ $ (-592 |#3|) (-592 (-713))) 118)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ |#3|) 120)) (-1819 ((|#2| $) 170) (((-713) $ |#3|) 122) (((-592 (-713)) $ (-592 |#3|)) 121)) (-3033 (($ $ $) 79 (|has| |#1| (-789)))) (-1609 (($ $ $) 78 (|has| |#1| (-789)))) (-1314 (($ (-1 |#2| |#2|) $) 171)) (-2016 (($ (-1 |#1| |#1|) $) 151)) (-2018 (((-3 |#3| "failed") $) 123)) (-1418 (($ $) 149)) (-1430 ((|#1| $) 148)) (-2739 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-1289 (((-1075) $) 9)) (-2977 (((-3 (-592 $) "failed") $) 114)) (-3165 (((-3 (-592 $) "failed") $) 115)) (-1986 (((-3 (-2 (|:| |var| |#3|) (|:| -2168 (-713))) "failed") $) 113)) (-3993 (((-1039) $) 10)) (-1399 (((-108) $) 166)) (-1407 ((|#1| $) 167)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 95 (|has| |#1| (-429)))) (-2772 (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-3089 (((-396 (-1088 $)) (-1088 $)) 102 (|has| |#1| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) 101 (|has| |#1| (-844)))) (-4201 (((-396 $) $) 99 (|has| |#1| (-844)))) (-1311 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-2825 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-592 |#3|) (-592 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-592 |#3|) (-592 $)) 138)) (-4115 (($ $ |#3|) 107 (|has| |#1| (-160)))) (-2702 (($ $ |#3|) 42) (($ $ (-592 |#3|)) 41) (($ $ |#3| (-713)) 40) (($ $ (-592 |#3|) (-592 (-713))) 39)) (-3529 ((|#2| $) 150) (((-713) $ |#3|) 130) (((-592 (-713)) $ (-592 |#3|)) 129)) (-2069 (((-827 (-357)) $) 82 (-12 (|has| |#3| (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) 81 (-12 (|has| |#3| (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) 80 (-12 (|has| |#3| (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-1661 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ |#3|) 106 (|has| |#1| (-429)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) 104 (-3944 (|has| $ (-136)) (|has| |#1| (-844))))) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-517))) (($ (-385 (-525))) 72 (-2067 (|has| |#1| (-968 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525))))))) (-3137 (((-592 |#1|) $) 168)) (-3136 ((|#1| $ |#2|) 155) (($ $ |#3| (-713)) 128) (($ $ (-592 |#3|) (-592 (-713))) 127)) (-1463 (((-3 $ "failed") $) 73 (-2067 (-3944 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2448 (((-713)) 29)) (-4042 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-1571 (((-108) $ $) 89 (|has| |#1| (-517)))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $ |#3|) 38) (($ $ (-592 |#3|)) 37) (($ $ |#3| (-713)) 36) (($ $ (-592 |#3|) (-592 (-713))) 35)) (-2830 (((-108) $ $) 76 (|has| |#1| (-789)))) (-2807 (((-108) $ $) 75 (|has| |#1| (-789)))) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 77 (|has| |#1| (-789)))) (-2795 (((-108) $ $) 74 (|has| |#1| (-789)))) (-2880 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
(((-884 |#1| |#2| |#3|) (-131) (-977) (-735) (-789)) (T -884))
-((-1576 (*1 *1 *1) (-12 (-4 *1 (-884 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-2343 (*1 *2 *1 *3) (-12 (-4 *1 (-884 *4 *5 *3)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-713)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713))))) (-1568 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-884 *4 *5 *2)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *2 (-789)))) (-1568 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)))) (-4144 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-884 *3 *4 *5)))) (-2744 (*1 *2 *1 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-1088 *1)) (-4 *1 (-884 *4 *5 *3)))) (-2744 (*1 *2 *1) (-12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-1088 *3)))) (-2431 (*1 *2 *1) (|partial| -12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-2870 (*1 *2 *1 *3) (-12 (-4 *1 (-884 *4 *5 *3)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-713)))) (-2870 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713))))) (-2418 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-884 *4 *5 *3)))) (-2876 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-884 *4 *5 *2)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *2 (-789)))) (-2876 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)))) (-2887 (*1 *1 *2 *3) (-12 (-5 *2 (-1088 *4)) (-4 *4 (-977)) (-4 *1 (-884 *4 *5 *3)) (-4 *5 (-735)) (-4 *3 (-789)))) (-2887 (*1 *1 *2 *3) (-12 (-5 *2 (-1088 *1)) (-4 *1 (-884 *4 *5 *3)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)))) (-2001 (*1 *2 *1) (|partial| -12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-884 *3 *4 *5)))) (-1334 (*1 *2 *1) (|partial| -12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-884 *3 *4 *5)))) (-2121 (*1 *2 *1) (|partial| -12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| |var| *5) (|:| -4193 (-713)))))) (-3212 (*1 *2 *1) (-12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-713)))) (-3212 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713)))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *5)))) (-3052 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-884 *3 *4 *5)))) (-3377 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-160)))) (-1975 (*1 *1 *1 *2) (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-160)))) (-3658 (*1 *1 *1 *2) (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-429)))) (-1576 (*1 *1 *1 *2) (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-429)))) (-1286 (*1 *1 *1) (-12 (-4 *1 (-884 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-2669 (*1 *2 *1) (-12 (-4 *3 (-429)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-396 *1)) (-4 *1 (-884 *3 *4 *5)))))
-(-13 (-835 |t#3|) (-304 |t#1| |t#2|) (-288 $) (-486 |t#3| |t#1|) (-486 |t#3| $) (-968 |t#3|) (-355 |t#1|) (-10 -8 (-15 -2343 ((-713) $ |t#3|)) (-15 -2343 ((-592 (-713)) $ (-592 |t#3|))) (-15 -1568 ($ $ |t#3| (-713))) (-15 -1568 ($ $ (-592 |t#3|) (-592 (-713)))) (-15 -4144 ((-592 $) $)) (-15 -2744 ((-1088 $) $ |t#3|)) (-15 -2744 ((-1088 |t#1|) $)) (-15 -2431 ((-3 |t#3| "failed") $)) (-15 -2870 ((-713) $ |t#3|)) (-15 -2870 ((-592 (-713)) $ (-592 |t#3|))) (-15 -2418 ((-2 (|:| -2829 $) (|:| -1607 $)) $ $ |t#3|)) (-15 -2876 ($ $ |t#3| (-713))) (-15 -2876 ($ $ (-592 |t#3|) (-592 (-713)))) (-15 -2887 ($ (-1088 |t#1|) |t#3|)) (-15 -2887 ($ (-1088 $) |t#3|)) (-15 -2001 ((-3 (-592 $) "failed") $)) (-15 -1334 ((-3 (-592 $) "failed") $)) (-15 -2121 ((-3 (-2 (|:| |var| |t#3|) (|:| -4193 (-713))) "failed") $)) (-15 -3212 ((-713) $)) (-15 -3212 ((-713) $ (-592 |t#3|))) (-15 -2897 ((-592 |t#3|) $)) (-15 -3052 ((-592 $) $)) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (IF (|has| |t#3| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-567 (-827 (-525)))) (IF (|has| |t#3| (-567 (-827 (-525)))) (-6 (-567 (-827 (-525)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-567 (-827 (-357)))) (IF (|has| |t#3| (-567 (-827 (-357)))) (-6 (-567 (-827 (-357)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-821 (-525))) (IF (|has| |t#3| (-821 (-525))) (-6 (-821 (-525))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-821 (-357))) (IF (|has| |t#3| (-821 (-357))) (-6 (-821 (-357))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-160)) (PROGN (-15 -3377 ($ $ $ |t#3|)) (-15 -1975 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-6 (-429)) (-15 -3658 ($ $ |t#3|)) (-15 -1576 ($ $)) (-15 -1576 ($ $ |t#3|)) (-15 -2669 ((-396 $) $)) (-15 -1286 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4256)) (-6 -4256) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))) ((-567 (-827 (-357))) -12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#3| (-567 (-827 (-357))))) ((-567 (-827 (-525))) -12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#3| (-567 (-827 (-525))))) ((-269) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-288 $) . T) ((-304 |#1| |#2|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3254 (|has| |#1| (-844)) (|has| |#1| (-429))) ((-486 |#3| |#1|) . T) ((-486 |#3| $) . T) ((-486 $ $) . T) ((-517) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-835 |#3|) . T) ((-821 (-357)) -12 (|has| |#1| (-821 (-357))) (|has| |#3| (-821 (-357)))) ((-821 (-525)) -12 (|has| |#1| (-821 (-525))) (|has| |#3| (-821 (-525)))) ((-844) |has| |#1| (-844)) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-968 |#3|) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1132) |has| |#1| (-844)))
-((-2897 (((-592 |#2|) |#5|) 36)) (-2744 (((-1088 |#5|) |#5| |#2| (-1088 |#5|)) 23) (((-385 (-1088 |#5|)) |#5| |#2|) 16)) (-2887 ((|#5| (-385 (-1088 |#5|)) |#2|) 30)) (-2431 (((-3 |#2| "failed") |#5|) 65)) (-1334 (((-3 (-592 |#5|) "failed") |#5|) 59)) (-1687 (((-3 (-2 (|:| |val| |#5|) (|:| -4193 (-525))) "failed") |#5|) 47)) (-2001 (((-3 (-592 |#5|) "failed") |#5|) 61)) (-2121 (((-3 (-2 (|:| |var| |#2|) (|:| -4193 (-525))) "failed") |#5|) 51)))
-(((-885 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2897 ((-592 |#2|) |#5|)) (-15 -2431 ((-3 |#2| "failed") |#5|)) (-15 -2744 ((-385 (-1088 |#5|)) |#5| |#2|)) (-15 -2887 (|#5| (-385 (-1088 |#5|)) |#2|)) (-15 -2744 ((-1088 |#5|) |#5| |#2| (-1088 |#5|))) (-15 -2001 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -1334 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -2121 ((-3 (-2 (|:| |var| |#2|) (|:| -4193 (-525))) "failed") |#5|)) (-15 -1687 ((-3 (-2 (|:| |val| |#5|) (|:| -4193 (-525))) "failed") |#5|))) (-735) (-789) (-977) (-884 |#3| |#1| |#2|) (-13 (-341) (-10 -8 (-15 -1217 ($ |#4|)) (-15 -3114 (|#4| $)) (-15 -3123 (|#4| $))))) (T -885))
-((-1687 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -4193 (-525)))) (-5 *1 (-885 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1217 ($ *7)) (-15 -3114 (*7 $)) (-15 -3123 (*7 $))))))) (-2121 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -4193 (-525)))) (-5 *1 (-885 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1217 ($ *7)) (-15 -3114 (*7 $)) (-15 -3123 (*7 $))))))) (-1334 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-592 *3)) (-5 *1 (-885 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1217 ($ *7)) (-15 -3114 (*7 $)) (-15 -3123 (*7 $))))))) (-2001 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-592 *3)) (-5 *1 (-885 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1217 ($ *7)) (-15 -3114 (*7 $)) (-15 -3123 (*7 $))))))) (-2744 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1088 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1217 ($ *7)) (-15 -3114 (*7 $)) (-15 -3123 (*7 $))))) (-4 *7 (-884 *6 *5 *4)) (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-977)) (-5 *1 (-885 *5 *4 *6 *7 *3)))) (-2887 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-1088 *2))) (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-977)) (-4 *2 (-13 (-341) (-10 -8 (-15 -1217 ($ *7)) (-15 -3114 (*7 $)) (-15 -3123 (*7 $))))) (-5 *1 (-885 *5 *4 *6 *7 *2)) (-4 *7 (-884 *6 *5 *4)))) (-2744 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-977)) (-4 *7 (-884 *6 *5 *4)) (-5 *2 (-385 (-1088 *3))) (-5 *1 (-885 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1217 ($ *7)) (-15 -3114 (*7 $)) (-15 -3123 (*7 $))))))) (-2431 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-977)) (-4 *6 (-884 *5 *4 *2)) (-4 *2 (-789)) (-5 *1 (-885 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1217 ($ *6)) (-15 -3114 (*6 $)) (-15 -3123 (*6 $))))))) (-2897 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-592 *5)) (-5 *1 (-885 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1217 ($ *7)) (-15 -3114 (*7 $)) (-15 -3123 (*7 $))))))))
-(-10 -7 (-15 -2897 ((-592 |#2|) |#5|)) (-15 -2431 ((-3 |#2| "failed") |#5|)) (-15 -2744 ((-385 (-1088 |#5|)) |#5| |#2|)) (-15 -2887 (|#5| (-385 (-1088 |#5|)) |#2|)) (-15 -2744 ((-1088 |#5|) |#5| |#2| (-1088 |#5|))) (-15 -2001 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -1334 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -2121 ((-3 (-2 (|:| |var| |#2|) (|:| -4193 (-525))) "failed") |#5|)) (-15 -1687 ((-3 (-2 (|:| |val| |#5|) (|:| -4193 (-525))) "failed") |#5|)))
-((-3165 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-886 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3165 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-735) (-789) (-977) (-884 |#3| |#1| |#2|) (-13 (-1020) (-10 -8 (-15 -4047 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713)))))) (T -886))
-((-3165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-789)) (-4 *8 (-977)) (-4 *6 (-735)) (-4 *2 (-13 (-1020) (-10 -8 (-15 -4047 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713)))))) (-5 *1 (-886 *6 *7 *8 *5 *2)) (-4 *5 (-884 *8 *6 *7)))))
-(-10 -7 (-15 -3165 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2897 (((-592 (-1092)) $) 16)) (-2744 (((-1088 $) $ (-1092)) 21) (((-1088 |#1|) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-3212 (((-713) $) NIL) (((-713) $ (-592 (-1092))) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-1286 (($ $) NIL (|has| |#1| (-429)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) 8) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-1092) "failed") $) NIL)) (-1572 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-1092) $) NIL)) (-3377 (($ $ $ (-1092)) NIL (|has| |#1| (-160)))) (-3063 (($ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1576 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1092)) NIL (|has| |#1| (-429)))) (-3052 (((-592 $) $) NIL)) (-3673 (((-108) $) NIL (|has| |#1| (-844)))) (-2188 (($ $ |#1| (-497 (-1092)) $) NIL)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1092) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1092) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) NIL)) (-2887 (($ (-1088 |#1|) (-1092)) NIL) (($ (-1088 $) (-1092)) NIL)) (-4144 (((-592 $) $) NIL)) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-497 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ (-1092)) NIL)) (-2870 (((-497 (-1092)) $) NIL) (((-713) $ (-1092)) NIL) (((-592 (-713)) $ (-592 (-1092))) NIL)) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2172 (($ (-1 (-497 (-1092)) (-497 (-1092))) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2431 (((-3 (-1092) "failed") $) 19)) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2619 (((-1075) $) NIL)) (-1334 (((-3 (-592 $) "failed") $) NIL)) (-2001 (((-3 (-592 $) "failed") $) NIL)) (-2121 (((-3 (-2 (|:| |var| (-1092)) (|:| -4193 (-713))) "failed") $) NIL)) (-1206 (($ $ (-1092)) 29 (|has| |#1| (-37 (-385 (-525)))))) (-2093 (((-1039) $) NIL)) (-3007 (((-108) $) NIL)) (-3019 ((|#1| $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-429)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2770 (((-396 $) $) NIL (|has| |#1| (-844)))) (-1715 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2457 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1092) |#1|) NIL) (($ $ (-592 (-1092)) (-592 |#1|)) NIL) (($ $ (-1092) $) NIL) (($ $ (-592 (-1092)) (-592 $)) NIL)) (-1975 (($ $ (-1092)) NIL (|has| |#1| (-160)))) (-3376 (($ $ (-1092)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL)) (-2343 (((-497 (-1092)) $) NIL) (((-713) $ (-1092)) NIL) (((-592 (-713)) $ (-592 (-1092))) NIL)) (-3210 (((-827 (-357)) $) NIL (-12 (|has| (-1092) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-1092) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-1092) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-3658 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1092)) NIL (|has| |#1| (-429)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1217 (((-798) $) 25) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-1092)) 27) (($ (-385 (-525))) NIL (-3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-1684 (((-592 |#1|) $) NIL)) (-1568 ((|#1| $ (-497 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-3917 (((-713)) NIL)) (-3716 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $ (-1092)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL)) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-887 |#1|) (-13 (-884 |#1| (-497 (-1092)) (-1092)) (-10 -8 (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1206 ($ $ (-1092))) |%noBranch|))) (-977)) (T -887))
-((-1206 (*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-887 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)))))
-(-13 (-884 |#1| (-497 (-1092)) (-1092)) (-10 -8 (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1206 ($ $ (-1092))) |%noBranch|)))
-((-4221 (((-2 (|:| -4193 (-713)) (|:| -3244 |#5|) (|:| |radicand| |#5|)) |#3| (-713)) 38)) (-1679 (((-2 (|:| -4193 (-713)) (|:| -3244 |#5|) (|:| |radicand| |#5|)) (-385 (-525)) (-713)) 34)) (-2777 (((-2 (|:| -4193 (-713)) (|:| -3244 |#4|) (|:| |radicand| (-592 |#4|))) |#4| (-713)) 54)) (-1787 (((-2 (|:| -4193 (-713)) (|:| -3244 |#5|) (|:| |radicand| |#5|)) |#5| (-713)) 64 (|has| |#3| (-429)))))
-(((-888 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4221 ((-2 (|:| -4193 (-713)) (|:| -3244 |#5|) (|:| |radicand| |#5|)) |#3| (-713))) (-15 -1679 ((-2 (|:| -4193 (-713)) (|:| -3244 |#5|) (|:| |radicand| |#5|)) (-385 (-525)) (-713))) (IF (|has| |#3| (-429)) (-15 -1787 ((-2 (|:| -4193 (-713)) (|:| -3244 |#5|) (|:| |radicand| |#5|)) |#5| (-713))) |%noBranch|) (-15 -2777 ((-2 (|:| -4193 (-713)) (|:| -3244 |#4|) (|:| |radicand| (-592 |#4|))) |#4| (-713)))) (-735) (-789) (-517) (-884 |#3| |#1| |#2|) (-13 (-341) (-10 -8 (-15 -3114 (|#4| $)) (-15 -3123 (|#4| $)) (-15 -1217 ($ |#4|))))) (T -888))
-((-2777 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517)) (-4 *3 (-884 *7 *5 *6)) (-5 *2 (-2 (|:| -4193 (-713)) (|:| -3244 *3) (|:| |radicand| (-592 *3)))) (-5 *1 (-888 *5 *6 *7 *3 *8)) (-5 *4 (-713)) (-4 *8 (-13 (-341) (-10 -8 (-15 -3114 (*3 $)) (-15 -3123 (*3 $)) (-15 -1217 ($ *3))))))) (-1787 (*1 *2 *3 *4) (-12 (-4 *7 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517)) (-4 *8 (-884 *7 *5 *6)) (-5 *2 (-2 (|:| -4193 (-713)) (|:| -3244 *3) (|:| |radicand| *3))) (-5 *1 (-888 *5 *6 *7 *8 *3)) (-5 *4 (-713)) (-4 *3 (-13 (-341) (-10 -8 (-15 -3114 (*8 $)) (-15 -3123 (*8 $)) (-15 -1217 ($ *8))))))) (-1679 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-525))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517)) (-4 *8 (-884 *7 *5 *6)) (-5 *2 (-2 (|:| -4193 (-713)) (|:| -3244 *9) (|:| |radicand| *9))) (-5 *1 (-888 *5 *6 *7 *8 *9)) (-5 *4 (-713)) (-4 *9 (-13 (-341) (-10 -8 (-15 -3114 (*8 $)) (-15 -3123 (*8 $)) (-15 -1217 ($ *8))))))) (-4221 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-517)) (-4 *7 (-884 *3 *5 *6)) (-5 *2 (-2 (|:| -4193 (-713)) (|:| -3244 *8) (|:| |radicand| *8))) (-5 *1 (-888 *5 *6 *3 *7 *8)) (-5 *4 (-713)) (-4 *8 (-13 (-341) (-10 -8 (-15 -3114 (*7 $)) (-15 -3123 (*7 $)) (-15 -1217 ($ *7))))))))
-(-10 -7 (-15 -4221 ((-2 (|:| -4193 (-713)) (|:| -3244 |#5|) (|:| |radicand| |#5|)) |#3| (-713))) (-15 -1679 ((-2 (|:| -4193 (-713)) (|:| -3244 |#5|) (|:| |radicand| |#5|)) (-385 (-525)) (-713))) (IF (|has| |#3| (-429)) (-15 -1787 ((-2 (|:| -4193 (-713)) (|:| -3244 |#5|) (|:| |radicand| |#5|)) |#5| (-713))) |%noBranch|) (-15 -2777 ((-2 (|:| -4193 (-713)) (|:| -3244 |#4|) (|:| |radicand| (-592 |#4|))) |#4| (-713))))
-((-2258 (((-1015 (-205)) $) 8)) (-2245 (((-1015 (-205)) $) 9)) (-2078 (((-592 (-592 (-878 (-205)))) $) 10)) (-1217 (((-798) $) 6)))
+((-3201 (*1 *1 *1) (-12 (-4 *1 (-884 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-3529 (*1 *2 *1 *3) (-12 (-4 *1 (-884 *4 *5 *3)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-713)))) (-3529 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713))))) (-3136 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-884 *4 *5 *2)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *2 (-789)))) (-3136 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)))) (-2884 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-884 *3 *4 *5)))) (-4169 (*1 *2 *1 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-1088 *1)) (-4 *1 (-884 *4 *5 *3)))) (-4169 (*1 *2 *1) (-12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-1088 *3)))) (-2018 (*1 *2 *1) (|partial| -12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-1819 (*1 *2 *1 *3) (-12 (-4 *1 (-884 *4 *5 *3)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-713)))) (-1819 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713))))) (-3021 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-884 *4 *5 *3)))) (-1272 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-884 *4 *5 *2)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *2 (-789)))) (-1272 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)))) (-1284 (*1 *1 *2 *3) (-12 (-5 *2 (-1088 *4)) (-4 *4 (-977)) (-4 *1 (-884 *4 *5 *3)) (-4 *5 (-735)) (-4 *3 (-789)))) (-1284 (*1 *1 *2 *3) (-12 (-5 *2 (-1088 *1)) (-4 *1 (-884 *4 *5 *3)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)))) (-3165 (*1 *2 *1) (|partial| -12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-884 *3 *4 *5)))) (-2977 (*1 *2 *1) (|partial| -12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-884 *3 *4 *5)))) (-1986 (*1 *2 *1) (|partial| -12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| |var| *5) (|:| -2168 (-713)))))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-713)))) (-1928 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713)))) (-1296 (*1 *2 *1) (-12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *5)))) (-1441 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-884 *3 *4 *5)))) (-3801 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-160)))) (-4115 (*1 *1 *1 *2) (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-160)))) (-1661 (*1 *1 *1 *2) (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-429)))) (-3201 (*1 *1 *1 *2) (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-429)))) (-4195 (*1 *1 *1) (-12 (-4 *1 (-884 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-3586 (*1 *2 *1) (-12 (-4 *3 (-429)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-396 *1)) (-4 *1 (-884 *3 *4 *5)))))
+(-13 (-835 |t#3|) (-304 |t#1| |t#2|) (-288 $) (-486 |t#3| |t#1|) (-486 |t#3| $) (-968 |t#3|) (-355 |t#1|) (-10 -8 (-15 -3529 ((-713) $ |t#3|)) (-15 -3529 ((-592 (-713)) $ (-592 |t#3|))) (-15 -3136 ($ $ |t#3| (-713))) (-15 -3136 ($ $ (-592 |t#3|) (-592 (-713)))) (-15 -2884 ((-592 $) $)) (-15 -4169 ((-1088 $) $ |t#3|)) (-15 -4169 ((-1088 |t#1|) $)) (-15 -2018 ((-3 |t#3| "failed") $)) (-15 -1819 ((-713) $ |t#3|)) (-15 -1819 ((-592 (-713)) $ (-592 |t#3|))) (-15 -3021 ((-2 (|:| -1416 $) (|:| -3681 $)) $ $ |t#3|)) (-15 -1272 ($ $ |t#3| (-713))) (-15 -1272 ($ $ (-592 |t#3|) (-592 (-713)))) (-15 -1284 ($ (-1088 |t#1|) |t#3|)) (-15 -1284 ($ (-1088 $) |t#3|)) (-15 -3165 ((-3 (-592 $) "failed") $)) (-15 -2977 ((-3 (-592 $) "failed") $)) (-15 -1986 ((-3 (-2 (|:| |var| |t#3|) (|:| -2168 (-713))) "failed") $)) (-15 -1928 ((-713) $)) (-15 -1928 ((-713) $ (-592 |t#3|))) (-15 -1296 ((-592 |t#3|) $)) (-15 -1441 ((-592 $) $)) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (IF (|has| |t#3| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-567 (-827 (-525)))) (IF (|has| |t#3| (-567 (-827 (-525)))) (-6 (-567 (-827 (-525)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-567 (-827 (-357)))) (IF (|has| |t#3| (-567 (-827 (-357)))) (-6 (-567 (-827 (-357)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-821 (-525))) (IF (|has| |t#3| (-821 (-525))) (-6 (-821 (-525))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-821 (-357))) (IF (|has| |t#3| (-821 (-357))) (-6 (-821 (-357))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-160)) (PROGN (-15 -3801 ($ $ $ |t#3|)) (-15 -4115 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-6 (-429)) (-15 -1661 ($ $ |t#3|)) (-15 -3201 ($ $)) (-15 -3201 ($ $ |t#3|)) (-15 -3586 ((-396 $) $)) (-15 -4195 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4257)) (-6 -4257) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))) ((-567 (-827 (-357))) -12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#3| (-567 (-827 (-357))))) ((-567 (-827 (-525))) -12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#3| (-567 (-827 (-525))))) ((-269) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-288 $) . T) ((-304 |#1| |#2|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -2067 (|has| |#1| (-844)) (|has| |#1| (-429))) ((-486 |#3| |#1|) . T) ((-486 |#3| $) . T) ((-486 $ $) . T) ((-517) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-835 |#3|) . T) ((-821 (-357)) -12 (|has| |#1| (-821 (-357))) (|has| |#3| (-821 (-357)))) ((-821 (-525)) -12 (|has| |#1| (-821 (-525))) (|has| |#3| (-821 (-525)))) ((-844) |has| |#1| (-844)) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-968 |#3|) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1132) |has| |#1| (-844)))
+((-1296 (((-592 |#2|) |#5|) 36)) (-4169 (((-1088 |#5|) |#5| |#2| (-1088 |#5|)) 23) (((-385 (-1088 |#5|)) |#5| |#2|) 16)) (-1284 ((|#5| (-385 (-1088 |#5|)) |#2|) 30)) (-2018 (((-3 |#2| "failed") |#5|) 65)) (-2977 (((-3 (-592 |#5|) "failed") |#5|) 59)) (-3159 (((-3 (-2 (|:| |val| |#5|) (|:| -2168 (-525))) "failed") |#5|) 47)) (-3165 (((-3 (-592 |#5|) "failed") |#5|) 61)) (-1986 (((-3 (-2 (|:| |var| |#2|) (|:| -2168 (-525))) "failed") |#5|) 51)))
+(((-885 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1296 ((-592 |#2|) |#5|)) (-15 -2018 ((-3 |#2| "failed") |#5|)) (-15 -4169 ((-385 (-1088 |#5|)) |#5| |#2|)) (-15 -1284 (|#5| (-385 (-1088 |#5|)) |#2|)) (-15 -4169 ((-1088 |#5|) |#5| |#2| (-1088 |#5|))) (-15 -3165 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -2977 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -1986 ((-3 (-2 (|:| |var| |#2|) (|:| -2168 (-525))) "failed") |#5|)) (-15 -3159 ((-3 (-2 (|:| |val| |#5|) (|:| -2168 (-525))) "failed") |#5|))) (-735) (-789) (-977) (-884 |#3| |#1| |#2|) (-13 (-341) (-10 -8 (-15 -4100 ($ |#4|)) (-15 -4066 (|#4| $)) (-15 -4080 (|#4| $))))) (T -885))
+((-3159 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2168 (-525)))) (-5 *1 (-885 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -4100 ($ *7)) (-15 -4066 (*7 $)) (-15 -4080 (*7 $))))))) (-1986 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2168 (-525)))) (-5 *1 (-885 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -4100 ($ *7)) (-15 -4066 (*7 $)) (-15 -4080 (*7 $))))))) (-2977 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-592 *3)) (-5 *1 (-885 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -4100 ($ *7)) (-15 -4066 (*7 $)) (-15 -4080 (*7 $))))))) (-3165 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-592 *3)) (-5 *1 (-885 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -4100 ($ *7)) (-15 -4066 (*7 $)) (-15 -4080 (*7 $))))))) (-4169 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1088 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -4100 ($ *7)) (-15 -4066 (*7 $)) (-15 -4080 (*7 $))))) (-4 *7 (-884 *6 *5 *4)) (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-977)) (-5 *1 (-885 *5 *4 *6 *7 *3)))) (-1284 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-1088 *2))) (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-977)) (-4 *2 (-13 (-341) (-10 -8 (-15 -4100 ($ *7)) (-15 -4066 (*7 $)) (-15 -4080 (*7 $))))) (-5 *1 (-885 *5 *4 *6 *7 *2)) (-4 *7 (-884 *6 *5 *4)))) (-4169 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-977)) (-4 *7 (-884 *6 *5 *4)) (-5 *2 (-385 (-1088 *3))) (-5 *1 (-885 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -4100 ($ *7)) (-15 -4066 (*7 $)) (-15 -4080 (*7 $))))))) (-2018 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-977)) (-4 *6 (-884 *5 *4 *2)) (-4 *2 (-789)) (-5 *1 (-885 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -4100 ($ *6)) (-15 -4066 (*6 $)) (-15 -4080 (*6 $))))))) (-1296 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-592 *5)) (-5 *1 (-885 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -4100 ($ *7)) (-15 -4066 (*7 $)) (-15 -4080 (*7 $))))))))
+(-10 -7 (-15 -1296 ((-592 |#2|) |#5|)) (-15 -2018 ((-3 |#2| "failed") |#5|)) (-15 -4169 ((-385 (-1088 |#5|)) |#5| |#2|)) (-15 -1284 (|#5| (-385 (-1088 |#5|)) |#2|)) (-15 -4169 ((-1088 |#5|) |#5| |#2| (-1088 |#5|))) (-15 -3165 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -2977 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -1986 ((-3 (-2 (|:| |var| |#2|) (|:| -2168 (-525))) "failed") |#5|)) (-15 -3159 ((-3 (-2 (|:| |val| |#5|) (|:| -2168 (-525))) "failed") |#5|)))
+((-2016 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-886 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2016 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-735) (-789) (-977) (-884 |#3| |#1| |#2|) (-13 (-1020) (-10 -8 (-15 -2860 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713)))))) (T -886))
+((-2016 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-789)) (-4 *8 (-977)) (-4 *6 (-735)) (-4 *2 (-13 (-1020) (-10 -8 (-15 -2860 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713)))))) (-5 *1 (-886 *6 *7 *8 *5 *2)) (-4 *5 (-884 *8 *6 *7)))))
+(-10 -7 (-15 -2016 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1296 (((-592 (-1092)) $) 16)) (-4169 (((-1088 $) $ (-1092)) 21) (((-1088 |#1|) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-1928 (((-713) $) NIL) (((-713) $ (-592 (-1092))) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4195 (($ $) NIL (|has| |#1| (-429)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) 8) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-1092) "failed") $) NIL)) (-4105 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-1092) $) NIL)) (-3801 (($ $ $ (-1092)) NIL (|has| |#1| (-160)))) (-1451 (($ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3201 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1092)) NIL (|has| |#1| (-429)))) (-1441 (((-592 $) $) NIL)) (-1798 (((-108) $) NIL (|has| |#1| (-844)))) (-1457 (($ $ |#1| (-497 (-1092)) $) NIL)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1092) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1092) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) NIL)) (-1284 (($ (-1088 |#1|) (-1092)) NIL) (($ (-1088 $) (-1092)) NIL)) (-2884 (((-592 $) $) NIL)) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-497 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ (-1092)) NIL)) (-1819 (((-497 (-1092)) $) NIL) (((-713) $ (-1092)) NIL) (((-592 (-713)) $ (-592 (-1092))) NIL)) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-1314 (($ (-1 (-497 (-1092)) (-497 (-1092))) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2018 (((-3 (-1092) "failed") $) 19)) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1289 (((-1075) $) NIL)) (-2977 (((-3 (-592 $) "failed") $) NIL)) (-3165 (((-3 (-592 $) "failed") $) NIL)) (-1986 (((-3 (-2 (|:| |var| (-1092)) (|:| -2168 (-713))) "failed") $) NIL)) (-2367 (($ $ (-1092)) 29 (|has| |#1| (-37 (-385 (-525)))))) (-3993 (((-1039) $) NIL)) (-1399 (((-108) $) NIL)) (-1407 ((|#1| $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-429)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4201 (((-396 $) $) NIL (|has| |#1| (-844)))) (-1311 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2825 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1092) |#1|) NIL) (($ $ (-592 (-1092)) (-592 |#1|)) NIL) (($ $ (-1092) $) NIL) (($ $ (-592 (-1092)) (-592 $)) NIL)) (-4115 (($ $ (-1092)) NIL (|has| |#1| (-160)))) (-2702 (($ $ (-1092)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL)) (-3529 (((-497 (-1092)) $) NIL) (((-713) $ (-1092)) NIL) (((-592 (-713)) $ (-592 (-1092))) NIL)) (-2069 (((-827 (-357)) $) NIL (-12 (|has| (-1092) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-1092) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-1092) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-1661 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1092)) NIL (|has| |#1| (-429)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-4100 (((-798) $) 25) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-1092)) 27) (($ (-385 (-525))) NIL (-2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3137 (((-592 |#1|) $) NIL)) (-3136 ((|#1| $ (-497 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2448 (((-713)) NIL)) (-4042 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $ (-1092)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL)) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-887 |#1|) (-13 (-884 |#1| (-497 (-1092)) (-1092)) (-10 -8 (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2367 ($ $ (-1092))) |%noBranch|))) (-977)) (T -887))
+((-2367 (*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-887 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)))))
+(-13 (-884 |#1| (-497 (-1092)) (-1092)) (-10 -8 (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2367 ($ $ (-1092))) |%noBranch|)))
+((-2463 (((-2 (|:| -2168 (-713)) (|:| -2681 |#5|) (|:| |radicand| |#5|)) |#3| (-713)) 38)) (-3086 (((-2 (|:| -2168 (-713)) (|:| -2681 |#5|) (|:| |radicand| |#5|)) (-385 (-525)) (-713)) 34)) (-2191 (((-2 (|:| -2168 (-713)) (|:| -2681 |#4|) (|:| |radicand| (-592 |#4|))) |#4| (-713)) 54)) (-2851 (((-2 (|:| -2168 (-713)) (|:| -2681 |#5|) (|:| |radicand| |#5|)) |#5| (-713)) 64 (|has| |#3| (-429)))))
+(((-888 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2463 ((-2 (|:| -2168 (-713)) (|:| -2681 |#5|) (|:| |radicand| |#5|)) |#3| (-713))) (-15 -3086 ((-2 (|:| -2168 (-713)) (|:| -2681 |#5|) (|:| |radicand| |#5|)) (-385 (-525)) (-713))) (IF (|has| |#3| (-429)) (-15 -2851 ((-2 (|:| -2168 (-713)) (|:| -2681 |#5|) (|:| |radicand| |#5|)) |#5| (-713))) |%noBranch|) (-15 -2191 ((-2 (|:| -2168 (-713)) (|:| -2681 |#4|) (|:| |radicand| (-592 |#4|))) |#4| (-713)))) (-735) (-789) (-517) (-884 |#3| |#1| |#2|) (-13 (-341) (-10 -8 (-15 -4066 (|#4| $)) (-15 -4080 (|#4| $)) (-15 -4100 ($ |#4|))))) (T -888))
+((-2191 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517)) (-4 *3 (-884 *7 *5 *6)) (-5 *2 (-2 (|:| -2168 (-713)) (|:| -2681 *3) (|:| |radicand| (-592 *3)))) (-5 *1 (-888 *5 *6 *7 *3 *8)) (-5 *4 (-713)) (-4 *8 (-13 (-341) (-10 -8 (-15 -4066 (*3 $)) (-15 -4080 (*3 $)) (-15 -4100 ($ *3))))))) (-2851 (*1 *2 *3 *4) (-12 (-4 *7 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517)) (-4 *8 (-884 *7 *5 *6)) (-5 *2 (-2 (|:| -2168 (-713)) (|:| -2681 *3) (|:| |radicand| *3))) (-5 *1 (-888 *5 *6 *7 *8 *3)) (-5 *4 (-713)) (-4 *3 (-13 (-341) (-10 -8 (-15 -4066 (*8 $)) (-15 -4080 (*8 $)) (-15 -4100 ($ *8))))))) (-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-525))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517)) (-4 *8 (-884 *7 *5 *6)) (-5 *2 (-2 (|:| -2168 (-713)) (|:| -2681 *9) (|:| |radicand| *9))) (-5 *1 (-888 *5 *6 *7 *8 *9)) (-5 *4 (-713)) (-4 *9 (-13 (-341) (-10 -8 (-15 -4066 (*8 $)) (-15 -4080 (*8 $)) (-15 -4100 ($ *8))))))) (-2463 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-517)) (-4 *7 (-884 *3 *5 *6)) (-5 *2 (-2 (|:| -2168 (-713)) (|:| -2681 *8) (|:| |radicand| *8))) (-5 *1 (-888 *5 *6 *3 *7 *8)) (-5 *4 (-713)) (-4 *8 (-13 (-341) (-10 -8 (-15 -4066 (*7 $)) (-15 -4080 (*7 $)) (-15 -4100 ($ *7))))))))
+(-10 -7 (-15 -2463 ((-2 (|:| -2168 (-713)) (|:| -2681 |#5|) (|:| |radicand| |#5|)) |#3| (-713))) (-15 -3086 ((-2 (|:| -2168 (-713)) (|:| -2681 |#5|) (|:| |radicand| |#5|)) (-385 (-525)) (-713))) (IF (|has| |#3| (-429)) (-15 -2851 ((-2 (|:| -2168 (-713)) (|:| -2681 |#5|) (|:| |radicand| |#5|)) |#5| (-713))) |%noBranch|) (-15 -2191 ((-2 (|:| -2168 (-713)) (|:| -2681 |#4|) (|:| |radicand| (-592 |#4|))) |#4| (-713))))
+((-3048 (((-1015 (-205)) $) 8)) (-3039 (((-1015 (-205)) $) 9)) (-2708 (((-592 (-592 (-878 (-205)))) $) 10)) (-4100 (((-798) $) 6)))
(((-889) (-131)) (T -889))
-((-2078 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-592 (-592 (-878 (-205))))))) (-2245 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1015 (-205))))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1015 (-205))))))
-(-13 (-566 (-798)) (-10 -8 (-15 -2078 ((-592 (-592 (-878 (-205)))) $)) (-15 -2245 ((-1015 (-205)) $)) (-15 -2258 ((-1015 (-205)) $))))
+((-2708 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-592 (-592 (-878 (-205))))))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1015 (-205))))) (-3048 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1015 (-205))))))
+(-13 (-566 (-798)) (-10 -8 (-15 -2708 ((-592 (-592 (-878 (-205)))) $)) (-15 -3039 ((-1015 (-205)) $)) (-15 -3048 ((-1015 (-205)) $))))
(((-566 (-798)) . T))
-((-2918 (((-3 (-632 |#1|) "failed") |#2| (-856)) 15)))
-(((-890 |#1| |#2|) (-10 -7 (-15 -2918 ((-3 (-632 |#1|) "failed") |#2| (-856)))) (-517) (-602 |#1|)) (T -890))
-((-2918 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-856)) (-4 *5 (-517)) (-5 *2 (-632 *5)) (-5 *1 (-890 *5 *3)) (-4 *3 (-602 *5)))))
-(-10 -7 (-15 -2918 ((-3 (-632 |#1|) "failed") |#2| (-856))))
-((-4192 (((-892 |#2|) (-1 |#2| |#1| |#2|) (-892 |#1|) |#2|) 16)) (-1284 ((|#2| (-1 |#2| |#1| |#2|) (-892 |#1|) |#2|) 18)) (-3165 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 13)))
-(((-891 |#1| |#2|) (-10 -7 (-15 -4192 ((-892 |#2|) (-1 |#2| |#1| |#2|) (-892 |#1|) |#2|)) (-15 -1284 (|#2| (-1 |#2| |#1| |#2|) (-892 |#1|) |#2|)) (-15 -3165 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1128) (-1128)) (T -891))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6)))) (-1284 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-892 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-891 *5 *2)))) (-4192 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-892 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-892 *5)) (-5 *1 (-891 *6 *5)))))
-(-10 -7 (-15 -4192 ((-892 |#2|) (-1 |#2| |#1| |#2|) (-892 |#1|) |#2|)) (-15 -1284 (|#2| (-1 |#2| |#1| |#2|) (-892 |#1|) |#2|)) (-15 -3165 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|))))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-2470 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2165 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4259))) (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-789))))) (-2458 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 ((|#1| $ (-525) |#1|) 16 (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2169 (($) NIL T CONST)) (-2700 (($ $) NIL (|has| $ (-6 -4259)))) (-3431 (($ $) NIL)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1703 (($ |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4258)))) (-2301 ((|#1| $ (-525) |#1|) 15 (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) 13)) (-1932 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-3416 (($ (-713) |#1|) 12)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) 10 (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-1577 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2531 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1872 ((|#1| $) NIL (|has| (-525) (-789)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1420 (($ $ |#1|) 17 (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) 11)) (-3406 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 14) (($ $ (-1141 (-525))) NIL)) (-3038 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-4098 (($ $ $ (-525)) NIL (|has| $ (-6 -4259)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) NIL)) (-2038 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3522 (((-713) $) 8 (|has| $ (-6 -4258)))))
+((-4098 (((-3 (-632 |#1|) "failed") |#2| (-856)) 15)))
+(((-890 |#1| |#2|) (-10 -7 (-15 -4098 ((-3 (-632 |#1|) "failed") |#2| (-856)))) (-517) (-602 |#1|)) (T -890))
+((-4098 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-856)) (-4 *5 (-517)) (-5 *2 (-632 *5)) (-5 *1 (-890 *5 *3)) (-4 *3 (-602 *5)))))
+(-10 -7 (-15 -4098 ((-3 (-632 |#1|) "failed") |#2| (-856))))
+((-2159 (((-892 |#2|) (-1 |#2| |#1| |#2|) (-892 |#1|) |#2|) 16)) (-3504 ((|#2| (-1 |#2| |#1| |#2|) (-892 |#1|) |#2|) 18)) (-2016 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 13)))
+(((-891 |#1| |#2|) (-10 -7 (-15 -2159 ((-892 |#2|) (-1 |#2| |#1| |#2|) (-892 |#1|) |#2|)) (-15 -3504 (|#2| (-1 |#2| |#1| |#2|) (-892 |#1|) |#2|)) (-15 -2016 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1128) (-1128)) (T -891))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6)))) (-3504 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-892 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-891 *5 *2)))) (-2159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-892 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-892 *5)) (-5 *1 (-891 *6 *5)))))
+(-10 -7 (-15 -2159 ((-892 |#2|) (-1 |#2| |#1| |#2|) (-892 |#1|) |#2|)) (-15 -3504 (|#2| (-1 |#2| |#1| |#2|) (-892 |#1|) |#2|)) (-15 -2016 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-2358 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2436 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4260))) (($ $) NIL (-12 (|has| $ (-6 -4260)) (|has| |#1| (-789))))) (-1842 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 ((|#1| $ (-525) |#1|) 16 (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2475 (($) NIL T CONST)) (-2670 (($ $) NIL (|has| $ (-6 -4260)))) (-1652 (($ $) NIL)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3081 ((|#1| $ (-525) |#1|) 15 (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) 13)) (-3856 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3324 (($ (-713) |#1|) 12)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) 10 (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-3212 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2594 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1647 ((|#1| $) NIL (|has| (-525) (-789)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3453 (($ $ |#1|) 17 (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) 11)) (-3431 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 14) (($ $ (-1141 (-525))) NIL)) (-2139 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3632 (($ $ $ (-525)) NIL (|has| $ (-6 -4260)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) NIL)) (-2035 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2827 (((-713) $) 8 (|has| $ (-6 -4259)))))
(((-892 |#1|) (-19 |#1|) (-1128)) (T -892))
NIL
(-19 |#1|)
-((-3205 (($ $ (-1013 $)) 7) (($ $ (-1092)) 6)))
+((-1872 (($ $ (-1013 $)) 7) (($ $ (-1092)) 6)))
(((-893) (-131)) (T -893))
-((-3205 (*1 *1 *1 *2) (-12 (-5 *2 (-1013 *1)) (-4 *1 (-893)))) (-3205 (*1 *1 *1 *2) (-12 (-4 *1 (-893)) (-5 *2 (-1092)))))
-(-13 (-10 -8 (-15 -3205 ($ $ (-1092))) (-15 -3205 ($ $ (-1013 $)))))
-((-2574 (((-2 (|:| -3244 (-592 (-525))) (|:| |poly| (-592 (-1088 |#1|))) (|:| |prim| (-1088 |#1|))) (-592 (-887 |#1|)) (-592 (-1092)) (-1092)) 25) (((-2 (|:| -3244 (-592 (-525))) (|:| |poly| (-592 (-1088 |#1|))) (|:| |prim| (-1088 |#1|))) (-592 (-887 |#1|)) (-592 (-1092))) 26) (((-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1088 |#1|))) (-887 |#1|) (-1092) (-887 |#1|) (-1092)) 43)))
-(((-894 |#1|) (-10 -7 (-15 -2574 ((-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1088 |#1|))) (-887 |#1|) (-1092) (-887 |#1|) (-1092))) (-15 -2574 ((-2 (|:| -3244 (-592 (-525))) (|:| |poly| (-592 (-1088 |#1|))) (|:| |prim| (-1088 |#1|))) (-592 (-887 |#1|)) (-592 (-1092)))) (-15 -2574 ((-2 (|:| -3244 (-592 (-525))) (|:| |poly| (-592 (-1088 |#1|))) (|:| |prim| (-1088 |#1|))) (-592 (-887 |#1|)) (-592 (-1092)) (-1092)))) (-13 (-341) (-138))) (T -894))
-((-2574 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-887 *6))) (-5 *4 (-592 (-1092))) (-5 *5 (-1092)) (-4 *6 (-13 (-341) (-138))) (-5 *2 (-2 (|:| -3244 (-592 (-525))) (|:| |poly| (-592 (-1088 *6))) (|:| |prim| (-1088 *6)))) (-5 *1 (-894 *6)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-592 (-1092))) (-4 *5 (-13 (-341) (-138))) (-5 *2 (-2 (|:| -3244 (-592 (-525))) (|:| |poly| (-592 (-1088 *5))) (|:| |prim| (-1088 *5)))) (-5 *1 (-894 *5)))) (-2574 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-887 *5)) (-5 *4 (-1092)) (-4 *5 (-13 (-341) (-138))) (-5 *2 (-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1088 *5)))) (-5 *1 (-894 *5)))))
-(-10 -7 (-15 -2574 ((-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1088 |#1|))) (-887 |#1|) (-1092) (-887 |#1|) (-1092))) (-15 -2574 ((-2 (|:| -3244 (-592 (-525))) (|:| |poly| (-592 (-1088 |#1|))) (|:| |prim| (-1088 |#1|))) (-592 (-887 |#1|)) (-592 (-1092)))) (-15 -2574 ((-2 (|:| -3244 (-592 (-525))) (|:| |poly| (-592 (-1088 |#1|))) (|:| |prim| (-1088 |#1|))) (-592 (-887 |#1|)) (-592 (-1092)) (-1092))))
-((-1560 (((-592 |#1|) |#1| |#1|) 42)) (-3673 (((-108) |#1|) 39)) (-4012 ((|#1| |#1|) 65)) (-1863 ((|#1| |#1|) 64)))
-(((-895 |#1|) (-10 -7 (-15 -3673 ((-108) |#1|)) (-15 -1863 (|#1| |#1|)) (-15 -4012 (|#1| |#1|)) (-15 -1560 ((-592 |#1|) |#1| |#1|))) (-510)) (T -895))
-((-1560 (*1 *2 *3 *3) (-12 (-5 *2 (-592 *3)) (-5 *1 (-895 *3)) (-4 *3 (-510)))) (-4012 (*1 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-510)))) (-1863 (*1 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-510)))) (-3673 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-895 *3)) (-4 *3 (-510)))))
-(-10 -7 (-15 -3673 ((-108) |#1|)) (-15 -1863 (|#1| |#1|)) (-15 -4012 (|#1| |#1|)) (-15 -1560 ((-592 |#1|) |#1| |#1|)))
-((-3108 (((-1179) (-798)) 9)))
-(((-896) (-10 -7 (-15 -3108 ((-1179) (-798))))) (T -896))
-((-3108 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-896)))))
-(-10 -7 (-15 -3108 ((-1179) (-798))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 63 (|has| |#1| (-517)))) (-4218 (($ $) 64 (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 28)) (-1572 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-3063 (($ $) 24)) (-3457 (((-3 $ "failed") $) 35)) (-1576 (($ $) NIL (|has| |#1| (-429)))) (-2188 (($ $ |#1| |#2| $) 48)) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) 16)) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| |#2|) NIL)) (-2870 ((|#2| $) 19)) (-2172 (($ (-1 |#2| |#2|) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-3031 (($ $) 23)) (-3043 ((|#1| $) 21)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3007 (((-108) $) 40)) (-3019 ((|#1| $) NIL)) (-3493 (($ $ |#2| |#1| $) 75 (-12 (|has| |#2| (-126)) (|has| |#1| (-517))))) (-1715 (((-3 $ "failed") $ $) 76 (|has| |#1| (-517))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-517)))) (-2343 ((|#2| $) 17)) (-3658 ((|#1| $) NIL (|has| |#1| (-429)))) (-1217 (((-798) $) NIL) (($ (-525)) 39) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 34) (($ (-385 (-525))) NIL (-3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-1684 (((-592 |#1|) $) NIL)) (-1568 ((|#1| $ |#2|) 31)) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) 15)) (-3716 (($ $ $ (-713)) 59 (|has| |#1| (-160)))) (-3325 (((-108) $ $) 69 (|has| |#1| (-517)))) (-1619 (($ $ (-856)) 55) (($ $ (-713)) 56)) (-3349 (($) 22 T CONST)) (-3359 (($) 12 T CONST)) (-3955 (((-108) $ $) 68)) (-4075 (($ $ |#1|) 77 (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) 54) (($ $ (-713)) 52)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-897 |#1| |#2|) (-13 (-304 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| |#2| (-126)) (-15 -3493 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4256)) (-6 -4256) |%noBranch|))) (-977) (-734)) (T -897))
-((-3493 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-897 *3 *2)) (-4 *2 (-126)) (-4 *3 (-517)) (-4 *3 (-977)) (-4 *2 (-734)))))
-(-13 (-304 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| |#2| (-126)) (-15 -3493 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4256)) (-6 -4256) |%noBranch|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL (-3254 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (-3167 (($ $ $) 63 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))) (-1578 (((-3 $ "failed") $ $) 50 (-3254 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (-1834 (((-713)) 34 (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-2578 ((|#2| $) 21)) (-3088 ((|#1| $) 20)) (-2169 (($) NIL (-3254 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) CONST)) (-3457 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (-2502 (($) NIL (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-1396 (((-108) $) NIL (-3254 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (-2638 (($ $ $) NIL (-3254 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3662 (($ $ $) NIL (-3254 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-1674 (($ |#1| |#2|) 19)) (-3005 (((-856) $) NIL (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-2619 (((-1075) $) NIL)) (-2997 (($ $) 37 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-3555 (($ (-856)) NIL (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-2093 (((-1039) $) NIL)) (-1499 (($ $ $) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-1990 (($ $ $) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-1217 (((-798) $) 14)) (-1619 (($ $ (-525)) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450)))) (($ $ (-713)) NIL (-3254 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))) (($ $ (-856)) NIL (-3254 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (-3349 (($) 40 (-3254 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) CONST)) (-3359 (($) 24 (-3254 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))) CONST)) (-4011 (((-108) $ $) NIL (-3254 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3987 (((-108) $ $) NIL (-3254 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3955 (((-108) $ $) 18)) (-3999 (((-108) $ $) NIL (-3254 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3978 (((-108) $ $) 66 (-3254 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-4075 (($ $ $) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-4061 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4047 (($ $ $) 43 (-3254 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (** (($ $ (-525)) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450)))) (($ $ (-713)) 31 (-3254 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))) (($ $ (-856)) NIL (-3254 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (* (($ (-525) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-713) $) 46 (-3254 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))) (($ (-856) $) NIL (-3254 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))) (($ $ $) 27 (-3254 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))))
-(((-898 |#1| |#2|) (-13 (-1020) (-10 -8 (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-669)) (IF (|has| |#2| (-669)) (-6 (-669)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-126)) (IF (|has| |#2| (-126)) (-6 (-126)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-450)) (-6 (-450)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-735)) (IF (|has| |#2| (-735)) (-6 (-735)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (-15 -1674 ($ |#1| |#2|)) (-15 -3088 (|#1| $)) (-15 -2578 (|#2| $)))) (-1020) (-1020)) (T -898))
-((-1674 (*1 *1 *2 *3) (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-3088 (*1 *2 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-898 *2 *3)) (-4 *3 (-1020)))) (-2578 (*1 *2 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-898 *3 *2)) (-4 *3 (-1020)))))
-(-13 (-1020) (-10 -8 (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-669)) (IF (|has| |#2| (-669)) (-6 (-669)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-126)) (IF (|has| |#2| (-126)) (-6 (-126)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-450)) (-6 (-450)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-735)) (IF (|has| |#2| (-735)) (-6 (-735)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (-15 -1674 ($ |#1| |#2|)) (-15 -3088 (|#1| $)) (-15 -2578 (|#2| $))))
-((-3284 (((-1024) $) 12)) (-3280 (($ (-1092) (-1024)) 13)) (-3257 (((-1092) $) 10)) (-1217 (((-798) $) 22)))
-(((-899) (-13 (-566 (-798)) (-10 -8 (-15 -3257 ((-1092) $)) (-15 -3284 ((-1024) $)) (-15 -3280 ($ (-1092) (-1024)))))) (T -899))
-((-3257 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-899)))) (-3284 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-899)))) (-3280 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1024)) (-5 *1 (-899)))))
-(-13 (-566 (-798)) (-10 -8 (-15 -3257 ((-1092) $)) (-15 -3284 ((-1024) $)) (-15 -3280 ($ (-1092) (-1024)))))
-((-2897 (((-1022 (-1092)) $) 19)) (-1347 (((-108) $) 26)) (-2499 (((-1092) $) 27)) (-3261 (((-108) $) 24)) (-2133 ((|#1| $) 25)) (-4057 (((-808 $ $) $) 34)) (-3218 (((-108) $) 33)) (-3749 (($ $ $) 12)) (-1788 (($ $) 29)) (-3414 (((-108) $) 28)) (-1850 (($ $) 10)) (-3824 (((-808 $ $) $) 36)) (-2482 (((-108) $) 35)) (-3450 (($ $ $) 13)) (-2623 (((-808 $ $) $) 38)) (-2092 (((-108) $) 37)) (-4094 (($ $ $) 14)) (-1217 (($ |#1|) 7) (($ (-1092)) 9) (((-798) $) 40 (|has| |#1| (-566 (-798))))) (-3272 (((-808 $ $) $) 32)) (-2949 (((-108) $) 30)) (-3762 (($ $ $) 11)))
-(((-900 |#1|) (-13 (-901) (-10 -8 (IF (|has| |#1| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) (-15 -1217 ($ |#1|)) (-15 -1217 ($ (-1092))) (-15 -2897 ((-1022 (-1092)) $)) (-15 -3261 ((-108) $)) (-15 -2133 (|#1| $)) (-15 -1347 ((-108) $)) (-15 -2499 ((-1092) $)) (-15 -3414 ((-108) $)) (-15 -1788 ($ $)) (-15 -2949 ((-108) $)) (-15 -3272 ((-808 $ $) $)) (-15 -3218 ((-108) $)) (-15 -4057 ((-808 $ $) $)) (-15 -2482 ((-108) $)) (-15 -3824 ((-808 $ $) $)) (-15 -2092 ((-108) $)) (-15 -2623 ((-808 $ $) $)))) (-901)) (T -900))
-((-1217 (*1 *1 *2) (-12 (-5 *1 (-900 *2)) (-4 *2 (-901)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-2897 (*1 *2 *1) (-12 (-5 *2 (-1022 (-1092))) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-2133 (*1 *2 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-901)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-2499 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-3414 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-1788 (*1 *1 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-901)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-3272 (*1 *2 *1) (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-4057 (*1 *2 *1) (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-3824 (*1 *2 *1) (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-2092 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-2623 (*1 *2 *1) (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
-(-13 (-901) (-10 -8 (IF (|has| |#1| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) (-15 -1217 ($ |#1|)) (-15 -1217 ($ (-1092))) (-15 -2897 ((-1022 (-1092)) $)) (-15 -3261 ((-108) $)) (-15 -2133 (|#1| $)) (-15 -1347 ((-108) $)) (-15 -2499 ((-1092) $)) (-15 -3414 ((-108) $)) (-15 -1788 ($ $)) (-15 -2949 ((-108) $)) (-15 -3272 ((-808 $ $) $)) (-15 -3218 ((-108) $)) (-15 -4057 ((-808 $ $) $)) (-15 -2482 ((-108) $)) (-15 -3824 ((-808 $ $) $)) (-15 -2092 ((-108) $)) (-15 -2623 ((-808 $ $) $))))
-((-3749 (($ $ $) 8)) (-1850 (($ $) 6)) (-3450 (($ $ $) 9)) (-4094 (($ $ $) 10)) (-3762 (($ $ $) 7)))
+((-1872 (*1 *1 *1 *2) (-12 (-5 *2 (-1013 *1)) (-4 *1 (-893)))) (-1872 (*1 *1 *1 *2) (-12 (-4 *1 (-893)) (-5 *2 (-1092)))))
+(-13 (-10 -8 (-15 -1872 ($ $ (-1092))) (-15 -1872 ($ $ (-1013 $)))))
+((-3932 (((-2 (|:| -2681 (-592 (-525))) (|:| |poly| (-592 (-1088 |#1|))) (|:| |prim| (-1088 |#1|))) (-592 (-887 |#1|)) (-592 (-1092)) (-1092)) 25) (((-2 (|:| -2681 (-592 (-525))) (|:| |poly| (-592 (-1088 |#1|))) (|:| |prim| (-1088 |#1|))) (-592 (-887 |#1|)) (-592 (-1092))) 26) (((-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1088 |#1|))) (-887 |#1|) (-1092) (-887 |#1|) (-1092)) 43)))
+(((-894 |#1|) (-10 -7 (-15 -3932 ((-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1088 |#1|))) (-887 |#1|) (-1092) (-887 |#1|) (-1092))) (-15 -3932 ((-2 (|:| -2681 (-592 (-525))) (|:| |poly| (-592 (-1088 |#1|))) (|:| |prim| (-1088 |#1|))) (-592 (-887 |#1|)) (-592 (-1092)))) (-15 -3932 ((-2 (|:| -2681 (-592 (-525))) (|:| |poly| (-592 (-1088 |#1|))) (|:| |prim| (-1088 |#1|))) (-592 (-887 |#1|)) (-592 (-1092)) (-1092)))) (-13 (-341) (-138))) (T -894))
+((-3932 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-887 *6))) (-5 *4 (-592 (-1092))) (-5 *5 (-1092)) (-4 *6 (-13 (-341) (-138))) (-5 *2 (-2 (|:| -2681 (-592 (-525))) (|:| |poly| (-592 (-1088 *6))) (|:| |prim| (-1088 *6)))) (-5 *1 (-894 *6)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-592 (-1092))) (-4 *5 (-13 (-341) (-138))) (-5 *2 (-2 (|:| -2681 (-592 (-525))) (|:| |poly| (-592 (-1088 *5))) (|:| |prim| (-1088 *5)))) (-5 *1 (-894 *5)))) (-3932 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-887 *5)) (-5 *4 (-1092)) (-4 *5 (-13 (-341) (-138))) (-5 *2 (-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1088 *5)))) (-5 *1 (-894 *5)))))
+(-10 -7 (-15 -3932 ((-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1088 |#1|))) (-887 |#1|) (-1092) (-887 |#1|) (-1092))) (-15 -3932 ((-2 (|:| -2681 (-592 (-525))) (|:| |poly| (-592 (-1088 |#1|))) (|:| |prim| (-1088 |#1|))) (-592 (-887 |#1|)) (-592 (-1092)))) (-15 -3932 ((-2 (|:| -2681 (-592 (-525))) (|:| |poly| (-592 (-1088 |#1|))) (|:| |prim| (-1088 |#1|))) (-592 (-887 |#1|)) (-592 (-1092)) (-1092))))
+((-3059 (((-592 |#1|) |#1| |#1|) 42)) (-1798 (((-108) |#1|) 39)) (-3996 ((|#1| |#1|) 65)) (-2396 ((|#1| |#1|) 64)))
+(((-895 |#1|) (-10 -7 (-15 -1798 ((-108) |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3059 ((-592 |#1|) |#1| |#1|))) (-510)) (T -895))
+((-3059 (*1 *2 *3 *3) (-12 (-5 *2 (-592 *3)) (-5 *1 (-895 *3)) (-4 *3 (-510)))) (-3996 (*1 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-510)))) (-2396 (*1 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-510)))) (-1798 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-895 *3)) (-4 *3 (-510)))))
+(-10 -7 (-15 -1798 ((-108) |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3059 ((-592 |#1|) |#1| |#1|)))
+((-2492 (((-1179) (-798)) 9)))
+(((-896) (-10 -7 (-15 -2492 ((-1179) (-798))))) (T -896))
+((-2492 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-896)))))
+(-10 -7 (-15 -2492 ((-1179) (-798))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 63 (|has| |#1| (-517)))) (-2433 (($ $) 64 (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 28)) (-4105 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-1451 (($ $) 24)) (-3300 (((-3 $ "failed") $) 35)) (-3201 (($ $) NIL (|has| |#1| (-429)))) (-1457 (($ $ |#1| |#2| $) 48)) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) 16)) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| |#2|) NIL)) (-1819 ((|#2| $) 19)) (-1314 (($ (-1 |#2| |#2|) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-1418 (($ $) 23)) (-1430 ((|#1| $) 21)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1399 (((-108) $) 40)) (-1407 ((|#1| $) NIL)) (-3653 (($ $ |#2| |#1| $) 75 (-12 (|has| |#2| (-126)) (|has| |#1| (-517))))) (-1311 (((-3 $ "failed") $ $) 76 (|has| |#1| (-517))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-517)))) (-3529 ((|#2| $) 17)) (-1661 ((|#1| $) NIL (|has| |#1| (-429)))) (-4100 (((-798) $) NIL) (($ (-525)) 39) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 34) (($ (-385 (-525))) NIL (-2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-3137 (((-592 |#1|) $) NIL)) (-3136 ((|#1| $ |#2|) 31)) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) 15)) (-4042 (($ $ $ (-713)) 59 (|has| |#1| (-160)))) (-1571 (((-108) $ $) 69 (|has| |#1| (-517)))) (-3706 (($ $ (-856)) 55) (($ $ (-713)) 56)) (-3364 (($) 22 T CONST)) (-3375 (($) 12 T CONST)) (-2775 (((-108) $ $) 68)) (-2880 (($ $ |#1|) 77 (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) 54) (($ $ (-713)) 52)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-897 |#1| |#2|) (-13 (-304 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| |#2| (-126)) (-15 -3653 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4257)) (-6 -4257) |%noBranch|))) (-977) (-734)) (T -897))
+((-3653 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-897 *3 *2)) (-4 *2 (-126)) (-4 *3 (-517)) (-4 *3 (-977)) (-4 *2 (-734)))))
+(-13 (-304 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| |#2| (-126)) (-15 -3653 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4257)) (-6 -4257) |%noBranch|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL (-2067 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (-1525 (($ $ $) 63 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))) (-3222 (((-3 $ "failed") $ $) 50 (-2067 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (-1613 (((-713)) 34 (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-3966 ((|#2| $) 21)) (-2061 ((|#1| $) 20)) (-2475 (($) NIL (-2067 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) CONST)) (-3300 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (-1903 (($) NIL (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-2278 (((-108) $) NIL (-2067 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (-3033 (($ $ $) NIL (-2067 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-1609 (($ $ $) NIL (-2067 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3040 (($ |#1| |#2|) 19)) (-3685 (((-856) $) NIL (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-1289 (((-1075) $) NIL)) (-1387 (($ $) 37 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-1722 (($ (-856)) NIL (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-3993 (((-1039) $) NIL)) (-3055 (($ $ $) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-1242 (($ $ $) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-4100 (((-798) $) 14)) (-3706 (($ $ (-525)) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450)))) (($ $ (-713)) NIL (-2067 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))) (($ $ (-856)) NIL (-2067 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (-3364 (($) 40 (-2067 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) CONST)) (-3375 (($) 24 (-2067 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))) CONST)) (-2830 (((-108) $ $) NIL (-2067 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-2807 (((-108) $ $) NIL (-2067 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-2775 (((-108) $ $) 18)) (-2817 (((-108) $ $) NIL (-2067 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-2795 (((-108) $ $) 66 (-2067 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-2880 (($ $ $) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-2871 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2860 (($ $ $) 43 (-2067 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (** (($ $ (-525)) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450)))) (($ $ (-713)) 31 (-2067 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))) (($ $ (-856)) NIL (-2067 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (* (($ (-525) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-713) $) 46 (-2067 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))) (($ (-856) $) NIL (-2067 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))) (($ $ $) 27 (-2067 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))))
+(((-898 |#1| |#2|) (-13 (-1020) (-10 -8 (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-669)) (IF (|has| |#2| (-669)) (-6 (-669)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-126)) (IF (|has| |#2| (-126)) (-6 (-126)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-450)) (-6 (-450)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-735)) (IF (|has| |#2| (-735)) (-6 (-735)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (-15 -3040 ($ |#1| |#2|)) (-15 -2061 (|#1| $)) (-15 -3966 (|#2| $)))) (-1020) (-1020)) (T -898))
+((-3040 (*1 *1 *2 *3) (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-2061 (*1 *2 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-898 *2 *3)) (-4 *3 (-1020)))) (-3966 (*1 *2 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-898 *3 *2)) (-4 *3 (-1020)))))
+(-13 (-1020) (-10 -8 (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-669)) (IF (|has| |#2| (-669)) (-6 (-669)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-126)) (IF (|has| |#2| (-126)) (-6 (-126)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-450)) (-6 (-450)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-735)) (IF (|has| |#2| (-735)) (-6 (-735)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (-15 -3040 ($ |#1| |#2|)) (-15 -2061 (|#1| $)) (-15 -3966 (|#2| $))))
+((-2219 (((-1024) $) 12)) (-1495 (($ (-1092) (-1024)) 13)) (-2411 (((-1092) $) 10)) (-4100 (((-798) $) 22)))
+(((-899) (-13 (-566 (-798)) (-10 -8 (-15 -2411 ((-1092) $)) (-15 -2219 ((-1024) $)) (-15 -1495 ($ (-1092) (-1024)))))) (T -899))
+((-2411 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-899)))) (-2219 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-899)))) (-1495 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1024)) (-5 *1 (-899)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -2411 ((-1092) $)) (-15 -2219 ((-1024) $)) (-15 -1495 ($ (-1092) (-1024)))))
+((-1296 (((-1022 (-1092)) $) 19)) (-3543 (((-108) $) 26)) (-3469 (((-1092) $) 27)) (-4118 (((-108) $) 24)) (-2096 ((|#1| $) 25)) (-3228 (((-808 $ $) $) 34)) (-1985 (((-108) $) 33)) (-3307 (($ $ $) 12)) (-2859 (($ $) 29)) (-1591 (((-108) $) 28)) (-3272 (($ $) 10)) (-2690 (((-808 $ $) $) 36)) (-2479 (((-108) $) 35)) (-2513 (($ $ $) 13)) (-3134 (((-808 $ $) $) 38)) (-2856 (((-108) $) 37)) (-3592 (($ $ $) 14)) (-4100 (($ |#1|) 7) (($ (-1092)) 9) (((-798) $) 40 (|has| |#1| (-566 (-798))))) (-4216 (((-808 $ $) $) 32)) (-3185 (((-108) $) 30)) (-3944 (($ $ $) 11)))
+(((-900 |#1|) (-13 (-901) (-10 -8 (IF (|has| |#1| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) (-15 -4100 ($ |#1|)) (-15 -4100 ($ (-1092))) (-15 -1296 ((-1022 (-1092)) $)) (-15 -4118 ((-108) $)) (-15 -2096 (|#1| $)) (-15 -3543 ((-108) $)) (-15 -3469 ((-1092) $)) (-15 -1591 ((-108) $)) (-15 -2859 ($ $)) (-15 -3185 ((-108) $)) (-15 -4216 ((-808 $ $) $)) (-15 -1985 ((-108) $)) (-15 -3228 ((-808 $ $) $)) (-15 -2479 ((-108) $)) (-15 -2690 ((-808 $ $) $)) (-15 -2856 ((-108) $)) (-15 -3134 ((-808 $ $) $)))) (-901)) (T -900))
+((-4100 (*1 *1 *2) (-12 (-5 *1 (-900 *2)) (-4 *2 (-901)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-1296 (*1 *2 *1) (-12 (-5 *2 (-1022 (-1092))) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-2096 (*1 *2 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-901)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-2859 (*1 *1 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-901)))) (-3185 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-4216 (*1 *2 *1) (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-1985 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-2690 (*1 *2 *1) (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-3134 (*1 *2 *1) (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
+(-13 (-901) (-10 -8 (IF (|has| |#1| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) (-15 -4100 ($ |#1|)) (-15 -4100 ($ (-1092))) (-15 -1296 ((-1022 (-1092)) $)) (-15 -4118 ((-108) $)) (-15 -2096 (|#1| $)) (-15 -3543 ((-108) $)) (-15 -3469 ((-1092) $)) (-15 -1591 ((-108) $)) (-15 -2859 ($ $)) (-15 -3185 ((-108) $)) (-15 -4216 ((-808 $ $) $)) (-15 -1985 ((-108) $)) (-15 -3228 ((-808 $ $) $)) (-15 -2479 ((-108) $)) (-15 -2690 ((-808 $ $) $)) (-15 -2856 ((-108) $)) (-15 -3134 ((-808 $ $) $))))
+((-3307 (($ $ $) 8)) (-3272 (($ $) 6)) (-2513 (($ $ $) 9)) (-3592 (($ $ $) 10)) (-3944 (($ $ $) 7)))
(((-901) (-131)) (T -901))
-((-4094 (*1 *1 *1 *1) (-4 *1 (-901))) (-3450 (*1 *1 *1 *1) (-4 *1 (-901))) (-3749 (*1 *1 *1 *1) (-4 *1 (-901))) (-3762 (*1 *1 *1 *1) (-4 *1 (-901))) (-1850 (*1 *1 *1) (-4 *1 (-901))))
-(-13 (-10 -8 (-15 -1850 ($ $)) (-15 -3762 ($ $ $)) (-15 -3749 ($ $ $)) (-15 -3450 ($ $ $)) (-15 -4094 ($ $ $))))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3991 (((-108) $ (-713)) 8)) (-2169 (($) 7 T CONST)) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) 9)) (-2639 (($ $ $) 43)) (-1577 (($ $ $) 44)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-3662 ((|#1| $) 45)) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2992 ((|#1| $) 39)) (-1262 (($ |#1| $) 40)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-4127 ((|#1| $) 41)) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-1956 (($ (-592 |#1|)) 42)) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-3592 (*1 *1 *1 *1) (-4 *1 (-901))) (-2513 (*1 *1 *1 *1) (-4 *1 (-901))) (-3307 (*1 *1 *1 *1) (-4 *1 (-901))) (-3944 (*1 *1 *1 *1) (-4 *1 (-901))) (-3272 (*1 *1 *1) (-4 *1 (-901))))
+(-13 (-10 -8 (-15 -3272 ($ $)) (-15 -3944 ($ $ $)) (-15 -3307 ($ $ $)) (-15 -2513 ($ $ $)) (-15 -3592 ($ $ $))))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3779 (((-108) $ (-713)) 8)) (-2475 (($) 7 T CONST)) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) 9)) (-3269 (($ $ $) 43)) (-3212 (($ $ $) 44)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-1609 ((|#1| $) 45)) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-3577 ((|#1| $) 39)) (-3246 (($ |#1| $) 40)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-2724 ((|#1| $) 41)) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3905 (($ (-592 |#1|)) 42)) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-902 |#1|) (-131) (-789)) (T -902))
-((-3662 (*1 *2 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-789)))) (-1577 (*1 *1 *1 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-789)))) (-2639 (*1 *1 *1 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-789)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4258) (-15 -3662 (|t#1| $)) (-15 -1577 ($ $ $)) (-15 -2639 ($ $ $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
-((-1551 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2589 |#2|)) |#2| |#2|) 85)) (-4001 ((|#2| |#2| |#2|) 83)) (-4222 (((-2 (|:| |coef2| |#2|) (|:| -2589 |#2|)) |#2| |#2|) 87)) (-3283 (((-2 (|:| |coef1| |#2|) (|:| -2589 |#2|)) |#2| |#2|) 89)) (-3246 (((-2 (|:| |coef2| |#2|) (|:| -2569 |#1|)) |#2| |#2|) 107 (|has| |#1| (-429)))) (-2018 (((-2 (|:| |coef2| |#2|) (|:| -3377 |#1|)) |#2| |#2|) 46)) (-3722 (((-2 (|:| |coef2| |#2|) (|:| -3377 |#1|)) |#2| |#2|) 64)) (-2287 (((-2 (|:| |coef1| |#2|) (|:| -3377 |#1|)) |#2| |#2|) 66)) (-3497 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2096 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 71)) (-2544 (((-2 (|:| |coef2| |#2|) (|:| -1975 |#1|)) |#2|) 97)) (-3857 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 74)) (-2158 (((-592 (-713)) |#2| |#2|) 82)) (-4051 ((|#1| |#2| |#2|) 42)) (-2847 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2569 |#1|)) |#2| |#2|) 105 (|has| |#1| (-429)))) (-2569 ((|#1| |#2| |#2|) 103 (|has| |#1| (-429)))) (-3179 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3377 |#1|)) |#2| |#2|) 44)) (-4211 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3377 |#1|)) |#2| |#2|) 63)) (-3377 ((|#1| |#2| |#2|) 61)) (-3696 (((-2 (|:| -3244 |#1|) (|:| -2829 |#2|) (|:| -1607 |#2|)) |#2| |#2|) 35)) (-4227 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3936 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-2370 ((|#2| |#2| |#2|) 75)) (-1349 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 69)) (-3827 ((|#2| |#2| |#2| (-713)) 67)) (-2589 ((|#2| |#2| |#2|) 111 (|has| |#1| (-429)))) (-1715 (((-1174 |#2|) (-1174 |#2|) |#1|) 21)) (-2818 (((-2 (|:| -2829 |#2|) (|:| -1607 |#2|)) |#2| |#2|) 39)) (-3761 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1975 |#1|)) |#2|) 95)) (-1975 ((|#1| |#2|) 92)) (-3973 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 73)) (-1542 ((|#2| |#2| |#2| (-713)) 72)) (-3595 (((-592 |#2|) |#2| |#2|) 80)) (-2236 ((|#2| |#2| |#1| |#1| (-713)) 50)) (-2440 ((|#1| |#1| |#1| (-713)) 49)) (* (((-1174 |#2|) |#1| (-1174 |#2|)) 16)))
-(((-903 |#1| |#2|) (-10 -7 (-15 -3377 (|#1| |#2| |#2|)) (-15 -4211 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3377 |#1|)) |#2| |#2|)) (-15 -3722 ((-2 (|:| |coef2| |#2|) (|:| -3377 |#1|)) |#2| |#2|)) (-15 -2287 ((-2 (|:| |coef1| |#2|) (|:| -3377 |#1|)) |#2| |#2|)) (-15 -3827 (|#2| |#2| |#2| (-713))) (-15 -1349 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -2096 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -1542 (|#2| |#2| |#2| (-713))) (-15 -3973 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -3857 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -2370 (|#2| |#2| |#2|)) (-15 -3936 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3497 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4001 (|#2| |#2| |#2|)) (-15 -1551 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2589 |#2|)) |#2| |#2|)) (-15 -4222 ((-2 (|:| |coef2| |#2|) (|:| -2589 |#2|)) |#2| |#2|)) (-15 -3283 ((-2 (|:| |coef1| |#2|) (|:| -2589 |#2|)) |#2| |#2|)) (-15 -1975 (|#1| |#2|)) (-15 -3761 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1975 |#1|)) |#2|)) (-15 -2544 ((-2 (|:| |coef2| |#2|) (|:| -1975 |#1|)) |#2|)) (-15 -3595 ((-592 |#2|) |#2| |#2|)) (-15 -2158 ((-592 (-713)) |#2| |#2|)) (IF (|has| |#1| (-429)) (PROGN (-15 -2569 (|#1| |#2| |#2|)) (-15 -2847 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2569 |#1|)) |#2| |#2|)) (-15 -3246 ((-2 (|:| |coef2| |#2|) (|:| -2569 |#1|)) |#2| |#2|)) (-15 -2589 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1174 |#2|) |#1| (-1174 |#2|))) (-15 -1715 ((-1174 |#2|) (-1174 |#2|) |#1|)) (-15 -3696 ((-2 (|:| -3244 |#1|) (|:| -2829 |#2|) (|:| -1607 |#2|)) |#2| |#2|)) (-15 -2818 ((-2 (|:| -2829 |#2|) (|:| -1607 |#2|)) |#2| |#2|)) (-15 -2440 (|#1| |#1| |#1| (-713))) (-15 -2236 (|#2| |#2| |#1| |#1| (-713))) (-15 -4227 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4051 (|#1| |#2| |#2|)) (-15 -3179 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3377 |#1|)) |#2| |#2|)) (-15 -2018 ((-2 (|:| |coef2| |#2|) (|:| -3377 |#1|)) |#2| |#2|))) (-517) (-1150 |#1|)) (T -903))
-((-2018 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3377 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-3179 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3377 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-4051 (*1 *2 *3 *3) (-12 (-4 *2 (-517)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1150 *2)))) (-4227 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1150 *3)))) (-2236 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1150 *3)))) (-2440 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *2 (-517)) (-5 *1 (-903 *2 *4)) (-4 *4 (-1150 *2)))) (-2818 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1607 *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-3696 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -3244 *4) (|:| -2829 *3) (|:| -1607 *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-1715 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *4)) (-4 *4 (-1150 *3)) (-4 *3 (-517)) (-5 *1 (-903 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1174 *4)) (-4 *4 (-1150 *3)) (-4 *3 (-517)) (-5 *1 (-903 *3 *4)))) (-2589 (*1 *2 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1150 *3)))) (-3246 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2569 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-2847 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2569 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-2569 (*1 *2 *3 *3) (-12 (-4 *2 (-517)) (-4 *2 (-429)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1150 *2)))) (-2158 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-713))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-3595 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-2544 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1975 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-3761 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1975 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-1975 (*1 *2 *3) (-12 (-4 *2 (-517)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1150 *2)))) (-3283 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2589 *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-4222 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2589 *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-1551 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2589 *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-4001 (*1 *2 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1150 *3)))) (-3497 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-3936 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-2370 (*1 *2 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1150 *3)))) (-3857 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-903 *5 *3)) (-4 *3 (-1150 *5)))) (-3973 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-903 *5 *3)) (-4 *3 (-1150 *5)))) (-1542 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-903 *4 *2)) (-4 *2 (-1150 *4)))) (-2096 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-903 *5 *3)) (-4 *3 (-1150 *5)))) (-1349 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-903 *5 *3)) (-4 *3 (-1150 *5)))) (-3827 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-903 *4 *2)) (-4 *2 (-1150 *4)))) (-2287 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3377 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-3722 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3377 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-4211 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3377 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-3377 (*1 *2 *3 *3) (-12 (-4 *2 (-517)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1150 *2)))))
-(-10 -7 (-15 -3377 (|#1| |#2| |#2|)) (-15 -4211 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3377 |#1|)) |#2| |#2|)) (-15 -3722 ((-2 (|:| |coef2| |#2|) (|:| -3377 |#1|)) |#2| |#2|)) (-15 -2287 ((-2 (|:| |coef1| |#2|) (|:| -3377 |#1|)) |#2| |#2|)) (-15 -3827 (|#2| |#2| |#2| (-713))) (-15 -1349 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -2096 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -1542 (|#2| |#2| |#2| (-713))) (-15 -3973 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -3857 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -2370 (|#2| |#2| |#2|)) (-15 -3936 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3497 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4001 (|#2| |#2| |#2|)) (-15 -1551 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2589 |#2|)) |#2| |#2|)) (-15 -4222 ((-2 (|:| |coef2| |#2|) (|:| -2589 |#2|)) |#2| |#2|)) (-15 -3283 ((-2 (|:| |coef1| |#2|) (|:| -2589 |#2|)) |#2| |#2|)) (-15 -1975 (|#1| |#2|)) (-15 -3761 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1975 |#1|)) |#2|)) (-15 -2544 ((-2 (|:| |coef2| |#2|) (|:| -1975 |#1|)) |#2|)) (-15 -3595 ((-592 |#2|) |#2| |#2|)) (-15 -2158 ((-592 (-713)) |#2| |#2|)) (IF (|has| |#1| (-429)) (PROGN (-15 -2569 (|#1| |#2| |#2|)) (-15 -2847 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2569 |#1|)) |#2| |#2|)) (-15 -3246 ((-2 (|:| |coef2| |#2|) (|:| -2569 |#1|)) |#2| |#2|)) (-15 -2589 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1174 |#2|) |#1| (-1174 |#2|))) (-15 -1715 ((-1174 |#2|) (-1174 |#2|) |#1|)) (-15 -3696 ((-2 (|:| -3244 |#1|) (|:| -2829 |#2|) (|:| -1607 |#2|)) |#2| |#2|)) (-15 -2818 ((-2 (|:| -2829 |#2|) (|:| -1607 |#2|)) |#2| |#2|)) (-15 -2440 (|#1| |#1| |#1| (-713))) (-15 -2236 (|#2| |#2| |#1| |#1| (-713))) (-15 -4227 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4051 (|#1| |#2| |#2|)) (-15 -3179 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3377 |#1|)) |#2| |#2|)) (-15 -2018 ((-2 (|:| |coef2| |#2|) (|:| -3377 |#1|)) |#2| |#2|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) 27)) (-2169 (($) NIL T CONST)) (-2259 (((-592 (-592 (-525))) (-592 (-525))) 29)) (-2987 (((-525) $) 45)) (-3816 (($ (-592 (-525))) 17)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3210 (((-592 (-525)) $) 12)) (-1499 (($ $) 32)) (-1217 (((-798) $) 43) (((-592 (-525)) $) 10)) (-3349 (($) 7 T CONST)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 20)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 19)) (-4047 (($ $ $) 21)) (* (($ (-856) $) NIL) (($ (-713) $) 25)))
-(((-904) (-13 (-737) (-567 (-592 (-525))) (-10 -8 (-15 -3816 ($ (-592 (-525)))) (-15 -2259 ((-592 (-592 (-525))) (-592 (-525)))) (-15 -2987 ((-525) $)) (-15 -1499 ($ $)) (-15 -1217 ((-592 (-525)) $))))) (T -904))
-((-3816 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-904)))) (-2259 (*1 *2 *3) (-12 (-5 *2 (-592 (-592 (-525)))) (-5 *1 (-904)) (-5 *3 (-592 (-525))))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-904)))) (-1499 (*1 *1 *1) (-5 *1 (-904))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-904)))))
-(-13 (-737) (-567 (-592 (-525))) (-10 -8 (-15 -3816 ($ (-592 (-525)))) (-15 -2259 ((-592 (-592 (-525))) (-592 (-525)))) (-15 -2987 ((-525) $)) (-15 -1499 ($ $)) (-15 -1217 ((-592 (-525)) $))))
-((-4075 (($ $ |#2|) 30)) (-4061 (($ $) 22) (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-385 (-525)) $) 26) (($ $ (-385 (-525))) 28)))
-(((-905 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -4075 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4061 (|#1| |#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|))) (-906 |#2| |#3| |#4|) (-977) (-734) (-789)) (T -905))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -4075 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4061 (|#1| |#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2897 (((-592 |#3|) $) 74)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-4218 (($ $) 52 (|has| |#1| (-517)))) (-3171 (((-108) $) 54 (|has| |#1| (-517)))) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3063 (($ $) 60)) (-3457 (((-3 $ "failed") $) 34)) (-2398 (((-108) $) 73)) (-1396 (((-108) $) 31)) (-1212 (((-108) $) 62)) (-2876 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-592 |#3|) (-592 |#2|)) 75)) (-3165 (($ (-1 |#1| |#1|) $) 63)) (-3031 (($ $) 65)) (-3043 ((|#1| $) 66)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1715 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2343 ((|#2| $) 64)) (-1489 (($ $) 72)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-1568 ((|#1| $ |#2|) 59)) (-3637 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-3917 (((-713)) 29)) (-3325 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4075 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
+((-1609 (*1 *2 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-789)))) (-3212 (*1 *1 *1 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-789)))) (-3269 (*1 *1 *1 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-789)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4259) (-15 -1609 (|t#1| $)) (-15 -3212 ($ $ $)) (-15 -3269 ($ $ $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
+((-1676 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2772 |#2|)) |#2| |#2|) 85)) (-3882 ((|#2| |#2| |#2|) 83)) (-2472 (((-2 (|:| |coef2| |#2|) (|:| -2772 |#2|)) |#2| |#2|) 87)) (-1276 (((-2 (|:| |coef1| |#2|) (|:| -2772 |#2|)) |#2| |#2|) 89)) (-3988 (((-2 (|:| |coef2| |#2|) (|:| -3875 |#1|)) |#2| |#2|) 107 (|has| |#1| (-429)))) (-3318 (((-2 (|:| |coef2| |#2|) (|:| -3801 |#1|)) |#2| |#2|) 46)) (-4117 (((-2 (|:| |coef2| |#2|) (|:| -3801 |#1|)) |#2| |#2|) 64)) (-4199 (((-2 (|:| |coef1| |#2|) (|:| -3801 |#1|)) |#2| |#2|) 66)) (-3691 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2886 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 71)) (-1846 (((-2 (|:| |coef2| |#2|) (|:| -4115 |#1|)) |#2|) 97)) (-2989 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 74)) (-2353 (((-592 (-713)) |#2| |#2|) 82)) (-1360 ((|#1| |#2| |#2|) 42)) (-1573 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3875 |#1|)) |#2| |#2|) 105 (|has| |#1| (-429)))) (-3875 ((|#1| |#2| |#2|) 103 (|has| |#1| (-429)))) (-1639 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3801 |#1|)) |#2| |#2|) 44)) (-2349 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3801 |#1|)) |#2| |#2|) 63)) (-3801 ((|#1| |#2| |#2|) 61)) (-3830 (((-2 (|:| -2681 |#1|) (|:| -1416 |#2|) (|:| -3681 |#2|)) |#2| |#2|) 35)) (-2521 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-1450 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-2602 ((|#2| |#2| |#2|) 75)) (-3564 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 69)) (-2719 ((|#2| |#2| |#2| (-713)) 67)) (-2772 ((|#2| |#2| |#2|) 111 (|has| |#1| (-429)))) (-1311 (((-1174 |#2|) (-1174 |#2|) |#1|) 21)) (-2494 (((-2 (|:| -1416 |#2|) (|:| -3681 |#2|)) |#2| |#2|) 39)) (-3255 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4115 |#1|)) |#2|) 95)) (-4115 ((|#1| |#2|) 92)) (-1807 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 73)) (-1583 ((|#2| |#2| |#2| (-713)) 72)) (-2225 (((-592 |#2|) |#2| |#2|) 80)) (-3742 ((|#2| |#2| |#1| |#1| (-713)) 50)) (-2102 ((|#1| |#1| |#1| (-713)) 49)) (* (((-1174 |#2|) |#1| (-1174 |#2|)) 16)))
+(((-903 |#1| |#2|) (-10 -7 (-15 -3801 (|#1| |#2| |#2|)) (-15 -2349 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3801 |#1|)) |#2| |#2|)) (-15 -4117 ((-2 (|:| |coef2| |#2|) (|:| -3801 |#1|)) |#2| |#2|)) (-15 -4199 ((-2 (|:| |coef1| |#2|) (|:| -3801 |#1|)) |#2| |#2|)) (-15 -2719 (|#2| |#2| |#2| (-713))) (-15 -3564 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -2886 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -1583 (|#2| |#2| |#2| (-713))) (-15 -1807 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -2989 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -2602 (|#2| |#2| |#2|)) (-15 -1450 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3691 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3882 (|#2| |#2| |#2|)) (-15 -1676 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2772 |#2|)) |#2| |#2|)) (-15 -2472 ((-2 (|:| |coef2| |#2|) (|:| -2772 |#2|)) |#2| |#2|)) (-15 -1276 ((-2 (|:| |coef1| |#2|) (|:| -2772 |#2|)) |#2| |#2|)) (-15 -4115 (|#1| |#2|)) (-15 -3255 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4115 |#1|)) |#2|)) (-15 -1846 ((-2 (|:| |coef2| |#2|) (|:| -4115 |#1|)) |#2|)) (-15 -2225 ((-592 |#2|) |#2| |#2|)) (-15 -2353 ((-592 (-713)) |#2| |#2|)) (IF (|has| |#1| (-429)) (PROGN (-15 -3875 (|#1| |#2| |#2|)) (-15 -1573 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3875 |#1|)) |#2| |#2|)) (-15 -3988 ((-2 (|:| |coef2| |#2|) (|:| -3875 |#1|)) |#2| |#2|)) (-15 -2772 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1174 |#2|) |#1| (-1174 |#2|))) (-15 -1311 ((-1174 |#2|) (-1174 |#2|) |#1|)) (-15 -3830 ((-2 (|:| -2681 |#1|) (|:| -1416 |#2|) (|:| -3681 |#2|)) |#2| |#2|)) (-15 -2494 ((-2 (|:| -1416 |#2|) (|:| -3681 |#2|)) |#2| |#2|)) (-15 -2102 (|#1| |#1| |#1| (-713))) (-15 -3742 (|#2| |#2| |#1| |#1| (-713))) (-15 -2521 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1360 (|#1| |#2| |#2|)) (-15 -1639 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3801 |#1|)) |#2| |#2|)) (-15 -3318 ((-2 (|:| |coef2| |#2|) (|:| -3801 |#1|)) |#2| |#2|))) (-517) (-1150 |#1|)) (T -903))
+((-3318 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3801 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-1639 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3801 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-1360 (*1 *2 *3 *3) (-12 (-4 *2 (-517)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1150 *2)))) (-2521 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1150 *3)))) (-3742 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1150 *3)))) (-2102 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *2 (-517)) (-5 *1 (-903 *2 *4)) (-4 *4 (-1150 *2)))) (-2494 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -1416 *3) (|:| -3681 *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-3830 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -2681 *4) (|:| -1416 *3) (|:| -3681 *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-1311 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *4)) (-4 *4 (-1150 *3)) (-4 *3 (-517)) (-5 *1 (-903 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1174 *4)) (-4 *4 (-1150 *3)) (-4 *3 (-517)) (-5 *1 (-903 *3 *4)))) (-2772 (*1 *2 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1150 *3)))) (-3988 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3875 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-1573 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3875 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-3875 (*1 *2 *3 *3) (-12 (-4 *2 (-517)) (-4 *2 (-429)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1150 *2)))) (-2353 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-713))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-2225 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4115 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-3255 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4115 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-4115 (*1 *2 *3) (-12 (-4 *2 (-517)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1150 *2)))) (-1276 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2772 *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-2472 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2772 *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-1676 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2772 *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-3882 (*1 *2 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1150 *3)))) (-3691 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-1450 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-2602 (*1 *2 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1150 *3)))) (-2989 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-903 *5 *3)) (-4 *3 (-1150 *5)))) (-1807 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-903 *5 *3)) (-4 *3 (-1150 *5)))) (-1583 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-903 *4 *2)) (-4 *2 (-1150 *4)))) (-2886 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-903 *5 *3)) (-4 *3 (-1150 *5)))) (-3564 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-903 *5 *3)) (-4 *3 (-1150 *5)))) (-2719 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-903 *4 *2)) (-4 *2 (-1150 *4)))) (-4199 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3801 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-4117 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3801 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-2349 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3801 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))) (-3801 (*1 *2 *3 *3) (-12 (-4 *2 (-517)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1150 *2)))))
+(-10 -7 (-15 -3801 (|#1| |#2| |#2|)) (-15 -2349 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3801 |#1|)) |#2| |#2|)) (-15 -4117 ((-2 (|:| |coef2| |#2|) (|:| -3801 |#1|)) |#2| |#2|)) (-15 -4199 ((-2 (|:| |coef1| |#2|) (|:| -3801 |#1|)) |#2| |#2|)) (-15 -2719 (|#2| |#2| |#2| (-713))) (-15 -3564 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -2886 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -1583 (|#2| |#2| |#2| (-713))) (-15 -1807 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -2989 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -2602 (|#2| |#2| |#2|)) (-15 -1450 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3691 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3882 (|#2| |#2| |#2|)) (-15 -1676 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2772 |#2|)) |#2| |#2|)) (-15 -2472 ((-2 (|:| |coef2| |#2|) (|:| -2772 |#2|)) |#2| |#2|)) (-15 -1276 ((-2 (|:| |coef1| |#2|) (|:| -2772 |#2|)) |#2| |#2|)) (-15 -4115 (|#1| |#2|)) (-15 -3255 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4115 |#1|)) |#2|)) (-15 -1846 ((-2 (|:| |coef2| |#2|) (|:| -4115 |#1|)) |#2|)) (-15 -2225 ((-592 |#2|) |#2| |#2|)) (-15 -2353 ((-592 (-713)) |#2| |#2|)) (IF (|has| |#1| (-429)) (PROGN (-15 -3875 (|#1| |#2| |#2|)) (-15 -1573 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3875 |#1|)) |#2| |#2|)) (-15 -3988 ((-2 (|:| |coef2| |#2|) (|:| -3875 |#1|)) |#2| |#2|)) (-15 -2772 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1174 |#2|) |#1| (-1174 |#2|))) (-15 -1311 ((-1174 |#2|) (-1174 |#2|) |#1|)) (-15 -3830 ((-2 (|:| -2681 |#1|) (|:| -1416 |#2|) (|:| -3681 |#2|)) |#2| |#2|)) (-15 -2494 ((-2 (|:| -1416 |#2|) (|:| -3681 |#2|)) |#2| |#2|)) (-15 -2102 (|#1| |#1| |#1| (-713))) (-15 -3742 (|#2| |#2| |#1| |#1| (-713))) (-15 -2521 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1360 (|#1| |#2| |#2|)) (-15 -1639 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3801 |#1|)) |#2| |#2|)) (-15 -3318 ((-2 (|:| |coef2| |#2|) (|:| -3801 |#1|)) |#2| |#2|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) 27)) (-2475 (($) NIL T CONST)) (-3949 (((-592 (-592 (-525))) (-592 (-525))) 29)) (-3531 (((-525) $) 45)) (-2627 (($ (-592 (-525))) 17)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2069 (((-592 (-525)) $) 12)) (-3055 (($ $) 32)) (-4100 (((-798) $) 43) (((-592 (-525)) $) 10)) (-3364 (($) 7 T CONST)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 20)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 19)) (-2860 (($ $ $) 21)) (* (($ (-856) $) NIL) (($ (-713) $) 25)))
+(((-904) (-13 (-737) (-567 (-592 (-525))) (-10 -8 (-15 -2627 ($ (-592 (-525)))) (-15 -3949 ((-592 (-592 (-525))) (-592 (-525)))) (-15 -3531 ((-525) $)) (-15 -3055 ($ $)) (-15 -4100 ((-592 (-525)) $))))) (T -904))
+((-2627 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-904)))) (-3949 (*1 *2 *3) (-12 (-5 *2 (-592 (-592 (-525)))) (-5 *1 (-904)) (-5 *3 (-592 (-525))))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-904)))) (-3055 (*1 *1 *1) (-5 *1 (-904))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-904)))))
+(-13 (-737) (-567 (-592 (-525))) (-10 -8 (-15 -2627 ($ (-592 (-525)))) (-15 -3949 ((-592 (-592 (-525))) (-592 (-525)))) (-15 -3531 ((-525) $)) (-15 -3055 ($ $)) (-15 -4100 ((-592 (-525)) $))))
+((-2880 (($ $ |#2|) 30)) (-2871 (($ $) 22) (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-385 (-525)) $) 26) (($ $ (-385 (-525))) 28)))
+(((-905 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -2880 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|))) (-906 |#2| |#3| |#4|) (-977) (-734) (-789)) (T -905))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -2880 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-1296 (((-592 |#3|) $) 74)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-2433 (($ $) 52 (|has| |#1| (-517)))) (-1568 (((-108) $) 54 (|has| |#1| (-517)))) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1451 (($ $) 60)) (-3300 (((-3 $ "failed") $) 34)) (-2853 (((-108) $) 73)) (-2278 (((-108) $) 31)) (-2457 (((-108) $) 62)) (-1272 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-592 |#3|) (-592 |#2|)) 75)) (-2016 (($ (-1 |#1| |#1|) $) 63)) (-1418 (($ $) 65)) (-1430 ((|#1| $) 66)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1311 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-3529 ((|#2| $) 64)) (-3926 (($ $) 72)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-3136 ((|#1| $ |#2|) 59)) (-1463 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2448 (((-713)) 29)) (-1571 (((-108) $ $) 53 (|has| |#1| (-517)))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2880 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
(((-906 |#1| |#2| |#3|) (-131) (-977) (-734) (-789)) (T -906))
-((-3043 (*1 *2 *1) (-12 (-4 *1 (-906 *2 *3 *4)) (-4 *3 (-734)) (-4 *4 (-789)) (-4 *2 (-977)))) (-3031 (*1 *1 *1) (-12 (-4 *1 (-906 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-734)) (-4 *4 (-789)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-906 *3 *2 *4)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *2 (-734)))) (-2876 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-906 *4 *3 *2)) (-4 *4 (-977)) (-4 *3 (-734)) (-4 *2 (-789)))) (-2876 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 *5)) (-4 *1 (-906 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-734)) (-4 *6 (-789)))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-906 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-734)) (-4 *5 (-789)) (-5 *2 (-592 *5)))) (-2398 (*1 *2 *1) (-12 (-4 *1 (-906 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-734)) (-4 *5 (-789)) (-5 *2 (-108)))) (-1489 (*1 *1 *1) (-12 (-4 *1 (-906 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-734)) (-4 *4 (-789)))))
-(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -2876 ($ $ |t#3| |t#2|)) (-15 -2876 ($ $ (-592 |t#3|) (-592 |t#2|))) (-15 -3031 ($ $)) (-15 -3043 (|t#1| $)) (-15 -2343 (|t#2| $)) (-15 -2897 ((-592 |t#3|) $)) (-15 -2398 ((-108) $)) (-15 -1489 ($ $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3254 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3254 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-269) |has| |#1| (-517)) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-2271 (((-1015 (-205)) $) 8)) (-2258 (((-1015 (-205)) $) 9)) (-2245 (((-1015 (-205)) $) 10)) (-2078 (((-592 (-592 (-878 (-205)))) $) 11)) (-1217 (((-798) $) 6)))
+((-1430 (*1 *2 *1) (-12 (-4 *1 (-906 *2 *3 *4)) (-4 *3 (-734)) (-4 *4 (-789)) (-4 *2 (-977)))) (-1418 (*1 *1 *1) (-12 (-4 *1 (-906 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-734)) (-4 *4 (-789)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-906 *3 *2 *4)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *2 (-734)))) (-1272 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-906 *4 *3 *2)) (-4 *4 (-977)) (-4 *3 (-734)) (-4 *2 (-789)))) (-1272 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 *5)) (-4 *1 (-906 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-734)) (-4 *6 (-789)))) (-1296 (*1 *2 *1) (-12 (-4 *1 (-906 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-734)) (-4 *5 (-789)) (-5 *2 (-592 *5)))) (-2853 (*1 *2 *1) (-12 (-4 *1 (-906 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-734)) (-4 *5 (-789)) (-5 *2 (-108)))) (-3926 (*1 *1 *1) (-12 (-4 *1 (-906 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-734)) (-4 *4 (-789)))))
+(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -1272 ($ $ |t#3| |t#2|)) (-15 -1272 ($ $ (-592 |t#3|) (-592 |t#2|))) (-15 -1418 ($ $)) (-15 -1430 (|t#1| $)) (-15 -3529 (|t#2| $)) (-15 -1296 ((-592 |t#3|) $)) (-15 -2853 ((-108) $)) (-15 -3926 ($ $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -2067 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -2067 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-269) |has| |#1| (-517)) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-3060 (((-1015 (-205)) $) 8)) (-3048 (((-1015 (-205)) $) 9)) (-3039 (((-1015 (-205)) $) 10)) (-2708 (((-592 (-592 (-878 (-205)))) $) 11)) (-4100 (((-798) $) 6)))
(((-907) (-131)) (T -907))
-((-2078 (*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-592 (-592 (-878 (-205))))))) (-2245 (*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-1015 (-205))))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-1015 (-205))))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-1015 (-205))))))
-(-13 (-566 (-798)) (-10 -8 (-15 -2078 ((-592 (-592 (-878 (-205)))) $)) (-15 -2245 ((-1015 (-205)) $)) (-15 -2258 ((-1015 (-205)) $)) (-15 -2271 ((-1015 (-205)) $))))
+((-2708 (*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-592 (-592 (-878 (-205))))))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-1015 (-205))))) (-3048 (*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-1015 (-205))))) (-3060 (*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-1015 (-205))))))
+(-13 (-566 (-798)) (-10 -8 (-15 -2708 ((-592 (-592 (-878 (-205)))) $)) (-15 -3039 ((-1015 (-205)) $)) (-15 -3048 ((-1015 (-205)) $)) (-15 -3060 ((-1015 (-205)) $))))
(((-566 (-798)) . T))
-((-2897 (((-592 |#4|) $) 23)) (-2437 (((-108) $) 48)) (-2750 (((-108) $) 47)) (-2458 (((-2 (|:| |under| $) (|:| -2487 $) (|:| |upper| $)) $ |#4|) 36)) (-4089 (((-108) $) 49)) (-2480 (((-108) $ $) 55)) (-1207 (((-108) $ $) 58)) (-3339 (((-108) $) 53)) (-3767 (((-592 |#5|) (-592 |#5|) $) 90)) (-3333 (((-592 |#5|) (-592 |#5|) $) 87)) (-1607 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-1598 (((-592 |#4|) $) 27)) (-3919 (((-108) |#4| $) 30)) (-1806 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3264 (($ $ |#4|) 33)) (-1425 (($ $ |#4|) 32)) (-4008 (($ $ |#4|) 34)) (-3955 (((-108) $ $) 40)))
-(((-908 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2750 ((-108) |#1|)) (-15 -3767 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -3333 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -1607 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1806 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4089 ((-108) |#1|)) (-15 -1207 ((-108) |#1| |#1|)) (-15 -2480 ((-108) |#1| |#1|)) (-15 -3339 ((-108) |#1|)) (-15 -2437 ((-108) |#1|)) (-15 -2458 ((-2 (|:| |under| |#1|) (|:| -2487 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3264 (|#1| |#1| |#4|)) (-15 -4008 (|#1| |#1| |#4|)) (-15 -1425 (|#1| |#1| |#4|)) (-15 -3919 ((-108) |#4| |#1|)) (-15 -1598 ((-592 |#4|) |#1|)) (-15 -2897 ((-592 |#4|) |#1|)) (-15 -3955 ((-108) |#1| |#1|))) (-909 |#2| |#3| |#4| |#5|) (-977) (-735) (-789) (-991 |#2| |#3| |#4|)) (T -908))
+((-1296 (((-592 |#4|) $) 23)) (-2071 (((-108) $) 48)) (-3093 (((-108) $) 47)) (-1842 (((-2 (|:| |under| $) (|:| -1340 $) (|:| |upper| $)) $ |#4|) 36)) (-3542 (((-108) $) 49)) (-2462 (((-108) $ $) 55)) (-2390 (((-108) $ $) 58)) (-1698 (((-108) $) 53)) (-3308 (((-592 |#5|) (-592 |#5|) $) 90)) (-1655 (((-592 |#5|) (-592 |#5|) $) 87)) (-3681 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3435 (((-592 |#4|) $) 27)) (-2468 (((-108) |#4| $) 30)) (-2991 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-4151 (($ $ |#4|) 33)) (-3522 (($ $ |#4|) 32)) (-3963 (($ $ |#4|) 34)) (-2775 (((-108) $ $) 40)))
+(((-908 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3093 ((-108) |#1|)) (-15 -3308 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -1655 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -3681 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2991 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3542 ((-108) |#1|)) (-15 -2390 ((-108) |#1| |#1|)) (-15 -2462 ((-108) |#1| |#1|)) (-15 -1698 ((-108) |#1|)) (-15 -2071 ((-108) |#1|)) (-15 -1842 ((-2 (|:| |under| |#1|) (|:| -1340 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4151 (|#1| |#1| |#4|)) (-15 -3963 (|#1| |#1| |#4|)) (-15 -3522 (|#1| |#1| |#4|)) (-15 -2468 ((-108) |#4| |#1|)) (-15 -3435 ((-592 |#4|) |#1|)) (-15 -1296 ((-592 |#4|) |#1|)) (-15 -2775 ((-108) |#1| |#1|))) (-909 |#2| |#3| |#4| |#5|) (-977) (-735) (-789) (-991 |#2| |#3| |#4|)) (T -908))
NIL
-(-10 -8 (-15 -2750 ((-108) |#1|)) (-15 -3767 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -3333 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -1607 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1806 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4089 ((-108) |#1|)) (-15 -1207 ((-108) |#1| |#1|)) (-15 -2480 ((-108) |#1| |#1|)) (-15 -3339 ((-108) |#1|)) (-15 -2437 ((-108) |#1|)) (-15 -2458 ((-2 (|:| |under| |#1|) (|:| -2487 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3264 (|#1| |#1| |#4|)) (-15 -4008 (|#1| |#1| |#4|)) (-15 -1425 (|#1| |#1| |#4|)) (-15 -3919 ((-108) |#4| |#1|)) (-15 -1598 ((-592 |#4|) |#1|)) (-15 -2897 ((-592 |#4|) |#1|)) (-15 -3955 ((-108) |#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-2897 (((-592 |#3|) $) 33)) (-2437 (((-108) $) 26)) (-2750 (((-108) $) 17 (|has| |#1| (-517)))) (-2458 (((-2 (|:| |under| $) (|:| -2487 $) (|:| |upper| $)) $ |#3|) 27)) (-3991 (((-108) $ (-713)) 44)) (-3785 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4258)))) (-2169 (($) 45 T CONST)) (-4089 (((-108) $) 22 (|has| |#1| (-517)))) (-2480 (((-108) $ $) 24 (|has| |#1| (-517)))) (-1207 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3339 (((-108) $) 25 (|has| |#1| (-517)))) (-3767 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-3333 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-3077 (((-3 $ "failed") (-592 |#4|)) 36)) (-1572 (($ (-592 |#4|)) 35)) (-1910 (($ $) 68 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258))))) (-1703 (($ |#4| $) 67 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4258)))) (-1607 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-1284 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4258))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4258)))) (-3440 (((-592 |#4|) $) 52 (|has| $ (-6 -4258)))) (-3153 ((|#3| $) 34)) (-3924 (((-108) $ (-713)) 43)) (-2694 (((-592 |#4|) $) 53 (|has| $ (-6 -4258)))) (-2004 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#4| |#4|) $) 47)) (-1598 (((-592 |#3|) $) 32)) (-3919 (((-108) |#3| $) 31)) (-2912 (((-108) $ (-713)) 42)) (-2619 (((-1075) $) 9)) (-1806 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2093 (((-1039) $) 10)) (-1983 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3944 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-2614 (((-108) $ $) 38)) (-2659 (((-108) $) 41)) (-2512 (($) 40)) (-2110 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4258)))) (-1462 (($ $) 39)) (-3210 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-1230 (($ (-592 |#4|)) 60)) (-3264 (($ $ |#3|) 28)) (-1425 (($ $ |#3|) 30)) (-4008 (($ $ |#3|) 29)) (-1217 (((-798) $) 11) (((-592 |#4|) $) 37)) (-3029 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 6)) (-3522 (((-713) $) 46 (|has| $ (-6 -4258)))))
+(-10 -8 (-15 -3093 ((-108) |#1|)) (-15 -3308 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -1655 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -3681 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2991 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3542 ((-108) |#1|)) (-15 -2390 ((-108) |#1| |#1|)) (-15 -2462 ((-108) |#1| |#1|)) (-15 -1698 ((-108) |#1|)) (-15 -2071 ((-108) |#1|)) (-15 -1842 ((-2 (|:| |under| |#1|) (|:| -1340 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4151 (|#1| |#1| |#4|)) (-15 -3963 (|#1| |#1| |#4|)) (-15 -3522 (|#1| |#1| |#4|)) (-15 -2468 ((-108) |#4| |#1|)) (-15 -3435 ((-592 |#4|) |#1|)) (-15 -1296 ((-592 |#4|) |#1|)) (-15 -2775 ((-108) |#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-1296 (((-592 |#3|) $) 33)) (-2071 (((-108) $) 26)) (-3093 (((-108) $) 17 (|has| |#1| (-517)))) (-1842 (((-2 (|:| |under| $) (|:| -1340 $) (|:| |upper| $)) $ |#3|) 27)) (-3779 (((-108) $ (-713)) 44)) (-2399 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4259)))) (-2475 (($) 45 T CONST)) (-3542 (((-108) $) 22 (|has| |#1| (-517)))) (-2462 (((-108) $ $) 24 (|has| |#1| (-517)))) (-2390 (((-108) $ $) 23 (|has| |#1| (-517)))) (-1698 (((-108) $) 25 (|has| |#1| (-517)))) (-3308 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-1655 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-1934 (((-3 $ "failed") (-592 |#4|)) 36)) (-4105 (($ (-592 |#4|)) 35)) (-1681 (($ $) 68 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259))))) (-2698 (($ |#4| $) 67 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4259)))) (-3681 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-3504 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4259))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4259)))) (-2175 (((-592 |#4|) $) 52 (|has| $ (-6 -4259)))) (-2577 ((|#3| $) 34)) (-2516 (((-108) $ (-713)) 43)) (-2617 (((-592 |#4|) $) 53 (|has| $ (-6 -4259)))) (-3198 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#4| |#4|) $) 47)) (-3435 (((-592 |#3|) $) 32)) (-2468 (((-108) |#3| $) 31)) (-4028 (((-108) $ (-713)) 42)) (-1289 (((-1075) $) 9)) (-2991 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-3993 (((-1039) $) 10)) (-4202 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-1518 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-1231 (((-108) $ $) 38)) (-3479 (((-108) $) 41)) (-1558 (($) 40)) (-4002 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4259)))) (-2503 (($ $) 39)) (-2069 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-4114 (($ (-592 |#4|)) 60)) (-4151 (($ $ |#3|) 28)) (-3522 (($ $ |#3|) 30)) (-3963 (($ $ |#3|) 29)) (-4100 (((-798) $) 11) (((-592 |#4|) $) 37)) (-2706 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 6)) (-2827 (((-713) $) 46 (|has| $ (-6 -4259)))))
(((-909 |#1| |#2| |#3| |#4|) (-131) (-977) (-735) (-789) (-991 |t#1| |t#2| |t#3|)) (T -909))
-((-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *1 (-909 *3 *4 *5 *6)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *1 (-909 *3 *4 *5 *6)))) (-3153 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-991 *3 *4 *2)) (-4 *2 (-789)))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *5)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *5)))) (-3919 (*1 *2 *3 *1) (-12 (-4 *1 (-909 *4 *5 *3 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *6 (-991 *4 *5 *3)) (-5 *2 (-108)))) (-1425 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *5 (-991 *3 *4 *2)))) (-4008 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *5 (-991 *3 *4 *2)))) (-3264 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *5 (-991 *3 *4 *2)))) (-2458 (*1 *2 *1 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *6 (-991 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2487 *1) (|:| |upper| *1))) (-4 *1 (-909 *4 *5 *3 *6)))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-2480 (*1 *2 *1 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-1207 (*1 *2 *1 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-4089 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-1806 (*1 *2 *3 *1) (-12 (-4 *1 (-909 *4 *5 *6 *3)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1607 (*1 *2 *3 *1) (-12 (-4 *1 (-909 *4 *5 *6 *3)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3333 (*1 *2 *2 *1) (-12 (-5 *2 (-592 *6)) (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)))) (-3767 (*1 *2 *2 *1) (-12 (-5 *2 (-592 *6)) (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)))) (-2750 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))))
-(-13 (-1020) (-142 |t#4|) (-566 (-592 |t#4|)) (-10 -8 (-6 -4258) (-15 -3077 ((-3 $ "failed") (-592 |t#4|))) (-15 -1572 ($ (-592 |t#4|))) (-15 -3153 (|t#3| $)) (-15 -2897 ((-592 |t#3|) $)) (-15 -1598 ((-592 |t#3|) $)) (-15 -3919 ((-108) |t#3| $)) (-15 -1425 ($ $ |t#3|)) (-15 -4008 ($ $ |t#3|)) (-15 -3264 ($ $ |t#3|)) (-15 -2458 ((-2 (|:| |under| $) (|:| -2487 $) (|:| |upper| $)) $ |t#3|)) (-15 -2437 ((-108) $)) (IF (|has| |t#1| (-517)) (PROGN (-15 -3339 ((-108) $)) (-15 -2480 ((-108) $ $)) (-15 -1207 ((-108) $ $)) (-15 -4089 ((-108) $)) (-15 -1806 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1607 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3333 ((-592 |t#4|) (-592 |t#4|) $)) (-15 -3767 ((-592 |t#4|) (-592 |t#4|) $)) (-15 -2750 ((-108) $))) |%noBranch|)))
+((-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *1 (-909 *3 *4 *5 *6)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *1 (-909 *3 *4 *5 *6)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-991 *3 *4 *2)) (-4 *2 (-789)))) (-1296 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *5)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *5)))) (-2468 (*1 *2 *3 *1) (-12 (-4 *1 (-909 *4 *5 *3 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *6 (-991 *4 *5 *3)) (-5 *2 (-108)))) (-3522 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *5 (-991 *3 *4 *2)))) (-3963 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *5 (-991 *3 *4 *2)))) (-4151 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *5 (-991 *3 *4 *2)))) (-1842 (*1 *2 *1 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *6 (-991 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1340 *1) (|:| |upper| *1))) (-4 *1 (-909 *4 *5 *3 *6)))) (-2071 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-1698 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-2462 (*1 *2 *1 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-2390 (*1 *2 *1 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-2991 (*1 *2 *3 *1) (-12 (-4 *1 (-909 *4 *5 *6 *3)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3681 (*1 *2 *3 *1) (-12 (-4 *1 (-909 *4 *5 *6 *3)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1655 (*1 *2 *2 *1) (-12 (-5 *2 (-592 *6)) (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)))) (-3308 (*1 *2 *2 *1) (-12 (-5 *2 (-592 *6)) (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))))
+(-13 (-1020) (-142 |t#4|) (-566 (-592 |t#4|)) (-10 -8 (-6 -4259) (-15 -1934 ((-3 $ "failed") (-592 |t#4|))) (-15 -4105 ($ (-592 |t#4|))) (-15 -2577 (|t#3| $)) (-15 -1296 ((-592 |t#3|) $)) (-15 -3435 ((-592 |t#3|) $)) (-15 -2468 ((-108) |t#3| $)) (-15 -3522 ($ $ |t#3|)) (-15 -3963 ($ $ |t#3|)) (-15 -4151 ($ $ |t#3|)) (-15 -1842 ((-2 (|:| |under| $) (|:| -1340 $) (|:| |upper| $)) $ |t#3|)) (-15 -2071 ((-108) $)) (IF (|has| |t#1| (-517)) (PROGN (-15 -1698 ((-108) $)) (-15 -2462 ((-108) $ $)) (-15 -2390 ((-108) $ $)) (-15 -3542 ((-108) $)) (-15 -2991 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3681 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1655 ((-592 |t#4|) (-592 |t#4|) $)) (-15 -3308 ((-592 |t#4|) (-592 |t#4|) $)) (-15 -3093 ((-108) $))) |%noBranch|)))
(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-798)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-1020) . T) ((-1128) . T))
-((-1894 (((-592 |#4|) |#4| |#4|) 118)) (-1567 (((-592 |#4|) (-592 |#4|) (-108)) 107 (|has| |#1| (-429))) (((-592 |#4|) (-592 |#4|)) 108 (|has| |#1| (-429)))) (-1495 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 35)) (-4055 (((-108) |#4|) 34)) (-3640 (((-592 |#4|) |#4|) 103 (|has| |#1| (-429)))) (-2135 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-1 (-108) |#4|) (-592 |#4|)) 20)) (-1682 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|)) 22)) (-4067 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|)) 23)) (-3527 (((-3 (-2 (|:| |bas| (-453 |#1| |#2| |#3| |#4|)) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|)) 73)) (-1905 (((-592 |#4|) (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-1350 (((-592 |#4|) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-1251 (((-592 |#4|) (-592 |#4|)) 110)) (-2546 (((-592 |#4|) (-592 |#4|) (-592 |#4|) (-108)) 48) (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 50)) (-1835 ((|#4| |#4| (-592 |#4|)) 49)) (-3994 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 114 (|has| |#1| (-429)))) (-1825 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 117 (|has| |#1| (-429)))) (-3302 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 116 (|has| |#1| (-429)))) (-3237 (((-592 |#4|) (-592 |#4|) (-592 |#4|) (-1 (-592 |#4|) (-592 |#4|))) 87) (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 89) (((-592 |#4|) (-592 |#4|) |#4|) 121) (((-592 |#4|) |#4| |#4|) 119) (((-592 |#4|) (-592 |#4|)) 88)) (-2721 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 100 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-3476 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 41)) (-1353 (((-108) (-592 |#4|)) 62)) (-3592 (((-108) (-592 |#4|) (-592 (-592 |#4|))) 53)) (-1242 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 29)) (-2415 (((-108) |#4|) 28)) (-1791 (((-592 |#4|) (-592 |#4|)) 98 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-3427 (((-592 |#4|) (-592 |#4|)) 99 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-1727 (((-592 |#4|) (-592 |#4|)) 66)) (-1827 (((-592 |#4|) (-592 |#4|)) 79)) (-3424 (((-108) (-592 |#4|) (-592 |#4|)) 51)) (-1688 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 39)) (-2426 (((-108) |#4|) 36)))
-(((-910 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3237 ((-592 |#4|) (-592 |#4|))) (-15 -3237 ((-592 |#4|) |#4| |#4|)) (-15 -1251 ((-592 |#4|) (-592 |#4|))) (-15 -1894 ((-592 |#4|) |#4| |#4|)) (-15 -3237 ((-592 |#4|) (-592 |#4|) |#4|)) (-15 -3237 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -3237 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-1 (-592 |#4|) (-592 |#4|)))) (-15 -3424 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3592 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -1353 ((-108) (-592 |#4|))) (-15 -2135 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-1 (-108) |#4|) (-592 |#4|))) (-15 -1682 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -4067 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -3476 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -4055 ((-108) |#4|)) (-15 -1495 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -2415 ((-108) |#4|)) (-15 -1242 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -2426 ((-108) |#4|)) (-15 -1688 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -2546 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -2546 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-108))) (-15 -1835 (|#4| |#4| (-592 |#4|))) (-15 -1727 ((-592 |#4|) (-592 |#4|))) (-15 -3527 ((-3 (-2 (|:| |bas| (-453 |#1| |#2| |#3| |#4|)) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|))) (-15 -1827 ((-592 |#4|) (-592 |#4|))) (-15 -1905 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1350 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-429)) (PROGN (-15 -3640 ((-592 |#4|) |#4|)) (-15 -1567 ((-592 |#4|) (-592 |#4|))) (-15 -1567 ((-592 |#4|) (-592 |#4|) (-108))) (-15 -3994 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -3302 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -1825 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (PROGN (-15 -3427 ((-592 |#4|) (-592 |#4|))) (-15 -1791 ((-592 |#4|) (-592 |#4|))) (-15 -2721 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) |%noBranch|)) (-517) (-735) (-789) (-991 |#1| |#2| |#3|)) (T -910))
-((-2721 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-138)) (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-1791 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-138)) (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-3427 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-138)) (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-1825 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-3302 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-3994 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-1567 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *7)))) (-1567 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-3640 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))) (-1350 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-910 *5 *6 *7 *8)))) (-1905 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-592 *9)) (-5 *3 (-1 (-108) *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-991 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *1 (-910 *6 *7 *8 *9)))) (-1827 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-3527 (*1 *2 *3) (|partial| -12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-453 *4 *5 *6 *7)) (|:| -3412 (-592 *7)))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-1727 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-1835 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *2)))) (-2546 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *7)))) (-2546 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-1688 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-2426 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))) (-1242 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-2415 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))) (-1495 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-4055 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))) (-3476 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-4067 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8)))) (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-592 *8)))) (-1682 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8)))) (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-592 *8)))) (-2135 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8)))) (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-592 *8)))) (-1353 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-910 *4 *5 *6 *7)))) (-3592 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-592 *8))) (-5 *3 (-592 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-108)) (-5 *1 (-910 *5 *6 *7 *8)))) (-3424 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-910 *4 *5 *6 *7)))) (-3237 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-592 *7) (-592 *7))) (-5 *2 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *7)))) (-3237 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-3237 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *3)) (-4 *3 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *3)))) (-1894 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))) (-1251 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-3237 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))) (-3237 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3237 ((-592 |#4|) (-592 |#4|))) (-15 -3237 ((-592 |#4|) |#4| |#4|)) (-15 -1251 ((-592 |#4|) (-592 |#4|))) (-15 -1894 ((-592 |#4|) |#4| |#4|)) (-15 -3237 ((-592 |#4|) (-592 |#4|) |#4|)) (-15 -3237 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -3237 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-1 (-592 |#4|) (-592 |#4|)))) (-15 -3424 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3592 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -1353 ((-108) (-592 |#4|))) (-15 -2135 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-1 (-108) |#4|) (-592 |#4|))) (-15 -1682 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -4067 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -3476 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -4055 ((-108) |#4|)) (-15 -1495 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -2415 ((-108) |#4|)) (-15 -1242 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -2426 ((-108) |#4|)) (-15 -1688 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -2546 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -2546 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-108))) (-15 -1835 (|#4| |#4| (-592 |#4|))) (-15 -1727 ((-592 |#4|) (-592 |#4|))) (-15 -3527 ((-3 (-2 (|:| |bas| (-453 |#1| |#2| |#3| |#4|)) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|))) (-15 -1827 ((-592 |#4|) (-592 |#4|))) (-15 -1905 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1350 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-429)) (PROGN (-15 -3640 ((-592 |#4|) |#4|)) (-15 -1567 ((-592 |#4|) (-592 |#4|))) (-15 -1567 ((-592 |#4|) (-592 |#4|) (-108))) (-15 -3994 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -3302 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -1825 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (PROGN (-15 -3427 ((-592 |#4|) (-592 |#4|))) (-15 -1791 ((-592 |#4|) (-592 |#4|))) (-15 -2721 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) |%noBranch|))
-((-3540 (((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-3276 (((-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1174 |#1|)))) (-632 |#1|) (-1174 |#1|)) 36)) (-2797 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16)))
-(((-911 |#1|) (-10 -7 (-15 -3540 ((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2797 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3276 ((-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1174 |#1|)))) (-632 |#1|) (-1174 |#1|)))) (-341)) (T -911))
-((-3276 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-5 *2 (-592 (-2 (|:| C (-632 *5)) (|:| |g| (-1174 *5))))) (-5 *1 (-911 *5)) (-5 *3 (-632 *5)) (-5 *4 (-1174 *5)))) (-2797 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-632 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) (-5 *1 (-911 *5)))) (-3540 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-341)) (-5 *2 (-2 (|:| R (-632 *6)) (|:| A (-632 *6)) (|:| |Ainv| (-632 *6)))) (-5 *1 (-911 *6)) (-5 *3 (-632 *6)))))
-(-10 -7 (-15 -3540 ((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2797 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3276 ((-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1174 |#1|)))) (-632 |#1|) (-1174 |#1|))))
-((-2669 (((-396 |#4|) |#4|) 48)))
-(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2669 ((-396 |#4|) |#4|))) (-789) (-735) (-429) (-884 |#3| |#2| |#1|)) (T -912))
-((-2669 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-429)) (-5 *2 (-396 *3)) (-5 *1 (-912 *4 *5 *6 *3)) (-4 *3 (-884 *6 *5 *4)))))
-(-10 -7 (-15 -2669 ((-396 |#4|) |#4|)))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2609 (($ (-713)) 112 (|has| |#1| (-23)))) (-3456 (((-1179) $ (-525) (-525)) 40 (|has| $ (-6 -4259)))) (-2470 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-2165 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4259))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4259))))) (-2458 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-3991 (((-108) $ (-713)) 8)) (-1430 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) 58 (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4258)))) (-2169 (($) 7 T CONST)) (-2700 (($ $) 90 (|has| $ (-6 -4259)))) (-3431 (($ $) 100)) (-1910 (($ $) 78 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1703 (($ |#1| $) 77 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4258)))) (-2301 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) 51)) (-1932 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1020)))) (-2568 (($ (-592 |#1|)) 118)) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-1544 (((-632 |#1|) $ $) 105 (|has| |#1| (-977)))) (-3416 (($ (-713) |#1|) 69)) (-3924 (((-108) $ (-713)) 9)) (-3666 (((-525) $) 43 (|has| (-525) (-789)))) (-2638 (($ $ $) 87 (|has| |#1| (-789)))) (-1577 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1847 (((-525) $) 44 (|has| (-525) (-789)))) (-3662 (($ $ $) 86 (|has| |#1| (-789)))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3139 ((|#1| $) 102 (-12 (|has| |#1| (-977)) (|has| |#1| (-934))))) (-2912 (((-108) $ (-713)) 10)) (-4178 ((|#1| $) 103 (-12 (|has| |#1| (-977)) (|has| |#1| (-934))))) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2531 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-2628 (((-592 (-525)) $) 46)) (-2978 (((-108) (-525) $) 47)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1872 ((|#1| $) 42 (|has| (-525) (-789)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1420 (($ $ |#1|) 41 (|has| $ (-6 -4259)))) (-3931 (($ $ (-592 |#1|)) 115)) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2167 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) 48)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1141 (-525))) 63)) (-2047 ((|#1| $ $) 106 (|has| |#1| (-977)))) (-3705 (((-856) $) 117)) (-3038 (($ $ (-525)) 62) (($ $ (-1141 (-525))) 61)) (-2364 (($ $ $) 104)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-4098 (($ $ $ (-525)) 91 (|has| $ (-6 -4259)))) (-1462 (($ $) 13)) (-3210 (((-501) $) 79 (|has| |#1| (-567 (-501)))) (($ (-592 |#1|)) 116)) (-1230 (($ (-592 |#1|)) 70)) (-2038 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) 84 (|has| |#1| (-789)))) (-3987 (((-108) $ $) 83 (|has| |#1| (-789)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3999 (((-108) $ $) 85 (|has| |#1| (-789)))) (-3978 (((-108) $ $) 82 (|has| |#1| (-789)))) (-4061 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4047 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-525) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-669))) (($ $ |#1|) 107 (|has| |#1| (-669)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-1481 (((-592 |#4|) |#4| |#4|) 118)) (-3124 (((-592 |#4|) (-592 |#4|) (-108)) 107 (|has| |#1| (-429))) (((-592 |#4|) (-592 |#4|)) 108 (|has| |#1| (-429)))) (-3992 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 35)) (-3207 (((-108) |#4|) 34)) (-1483 (((-592 |#4|) |#4|) 103 (|has| |#1| (-429)))) (-2115 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-1 (-108) |#4|) (-592 |#4|)) 20)) (-3117 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|)) 22)) (-3330 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|)) 23)) (-2753 (((-3 (-2 (|:| |bas| (-453 |#1| |#2| |#3| |#4|)) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|)) 73)) (-1578 (((-592 |#4|) (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-3583 (((-592 |#4|) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-1672 (((-592 |#4|) (-592 |#4|)) 110)) (-1871 (((-592 |#4|) (-592 |#4|) (-592 |#4|) (-108)) 48) (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 50)) (-2118 ((|#4| |#4| (-592 |#4|)) 49)) (-3813 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 114 (|has| |#1| (-429)))) (-2025 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 117 (|has| |#1| (-429)))) (-1358 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 116 (|has| |#1| (-429)))) (-3947 (((-592 |#4|) (-592 |#4|) (-592 |#4|) (-1 (-592 |#4|) (-592 |#4|))) 87) (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 89) (((-592 |#4|) (-592 |#4|) |#4|) 121) (((-592 |#4|) |#4| |#4|) 119) (((-592 |#4|) (-592 |#4|)) 88)) (-2857 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 100 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-3483 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 41)) (-2778 (((-108) (-592 |#4|)) 62)) (-2195 (((-108) (-592 |#4|) (-592 (-592 |#4|))) 53)) (-2377 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 29)) (-3002 (((-108) |#4|) 28)) (-2879 (((-592 |#4|) (-592 |#4|)) 98 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-1206 (((-592 |#4|) (-592 |#4|)) 99 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-3549 (((-592 |#4|) (-592 |#4|)) 66)) (-2047 (((-592 |#4|) (-592 |#4|)) 79)) (-4218 (((-108) (-592 |#4|) (-592 |#4|)) 51)) (-3169 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 39)) (-1976 (((-108) |#4|) 36)))
+(((-910 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3947 ((-592 |#4|) (-592 |#4|))) (-15 -3947 ((-592 |#4|) |#4| |#4|)) (-15 -1672 ((-592 |#4|) (-592 |#4|))) (-15 -1481 ((-592 |#4|) |#4| |#4|)) (-15 -3947 ((-592 |#4|) (-592 |#4|) |#4|)) (-15 -3947 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -3947 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-1 (-592 |#4|) (-592 |#4|)))) (-15 -4218 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2195 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -2778 ((-108) (-592 |#4|))) (-15 -2115 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-1 (-108) |#4|) (-592 |#4|))) (-15 -3117 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -3330 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -3483 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -3207 ((-108) |#4|)) (-15 -3992 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -3002 ((-108) |#4|)) (-15 -2377 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -1976 ((-108) |#4|)) (-15 -3169 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -1871 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -1871 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-108))) (-15 -2118 (|#4| |#4| (-592 |#4|))) (-15 -3549 ((-592 |#4|) (-592 |#4|))) (-15 -2753 ((-3 (-2 (|:| |bas| (-453 |#1| |#2| |#3| |#4|)) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|))) (-15 -2047 ((-592 |#4|) (-592 |#4|))) (-15 -1578 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3583 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-429)) (PROGN (-15 -1483 ((-592 |#4|) |#4|)) (-15 -3124 ((-592 |#4|) (-592 |#4|))) (-15 -3124 ((-592 |#4|) (-592 |#4|) (-108))) (-15 -3813 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -1358 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -2025 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (PROGN (-15 -1206 ((-592 |#4|) (-592 |#4|))) (-15 -2879 ((-592 |#4|) (-592 |#4|))) (-15 -2857 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) |%noBranch|)) (-517) (-735) (-789) (-991 |#1| |#2| |#3|)) (T -910))
+((-2857 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-138)) (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-2879 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-138)) (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-1206 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-138)) (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-2025 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-1358 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-3813 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-3124 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *7)))) (-3124 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-1483 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))) (-3583 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-910 *5 *6 *7 *8)))) (-1578 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-592 *9)) (-5 *3 (-1 (-108) *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-991 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *1 (-910 *6 *7 *8 *9)))) (-2047 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-2753 (*1 *2 *3) (|partial| -12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-453 *4 *5 *6 *7)) (|:| -3490 (-592 *7)))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-3549 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-2118 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *2)))) (-1871 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *7)))) (-1871 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-3169 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-1976 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))) (-2377 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-3002 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))) (-3992 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-3207 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))) (-3483 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-3330 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8)))) (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-592 *8)))) (-3117 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8)))) (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-592 *8)))) (-2115 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8)))) (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-592 *8)))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-910 *4 *5 *6 *7)))) (-2195 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-592 *8))) (-5 *3 (-592 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-108)) (-5 *1 (-910 *5 *6 *7 *8)))) (-4218 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-910 *4 *5 *6 *7)))) (-3947 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-592 *7) (-592 *7))) (-5 *2 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *7)))) (-3947 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-3947 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *3)) (-4 *3 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *3)))) (-1481 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))) (-1672 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-3947 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))) (-3947 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3947 ((-592 |#4|) (-592 |#4|))) (-15 -3947 ((-592 |#4|) |#4| |#4|)) (-15 -1672 ((-592 |#4|) (-592 |#4|))) (-15 -1481 ((-592 |#4|) |#4| |#4|)) (-15 -3947 ((-592 |#4|) (-592 |#4|) |#4|)) (-15 -3947 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -3947 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-1 (-592 |#4|) (-592 |#4|)))) (-15 -4218 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2195 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -2778 ((-108) (-592 |#4|))) (-15 -2115 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-1 (-108) |#4|) (-592 |#4|))) (-15 -3117 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -3330 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -3483 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -3207 ((-108) |#4|)) (-15 -3992 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -3002 ((-108) |#4|)) (-15 -2377 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -1976 ((-108) |#4|)) (-15 -3169 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -1871 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -1871 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-108))) (-15 -2118 (|#4| |#4| (-592 |#4|))) (-15 -3549 ((-592 |#4|) (-592 |#4|))) (-15 -2753 ((-3 (-2 (|:| |bas| (-453 |#1| |#2| |#3| |#4|)) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|))) (-15 -2047 ((-592 |#4|) (-592 |#4|))) (-15 -1578 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3583 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-429)) (PROGN (-15 -1483 ((-592 |#4|) |#4|)) (-15 -3124 ((-592 |#4|) (-592 |#4|))) (-15 -3124 ((-592 |#4|) (-592 |#4|) (-108))) (-15 -3813 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -1358 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -2025 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (PROGN (-15 -1206 ((-592 |#4|) (-592 |#4|))) (-15 -2879 ((-592 |#4|) (-592 |#4|))) (-15 -2857 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) |%noBranch|))
+((-2891 (((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-1213 (((-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1174 |#1|)))) (-632 |#1|) (-1174 |#1|)) 36)) (-2330 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16)))
+(((-911 |#1|) (-10 -7 (-15 -2891 ((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2330 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1213 ((-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1174 |#1|)))) (-632 |#1|) (-1174 |#1|)))) (-341)) (T -911))
+((-1213 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-5 *2 (-592 (-2 (|:| C (-632 *5)) (|:| |g| (-1174 *5))))) (-5 *1 (-911 *5)) (-5 *3 (-632 *5)) (-5 *4 (-1174 *5)))) (-2330 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-632 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) (-5 *1 (-911 *5)))) (-2891 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-341)) (-5 *2 (-2 (|:| R (-632 *6)) (|:| A (-632 *6)) (|:| |Ainv| (-632 *6)))) (-5 *1 (-911 *6)) (-5 *3 (-632 *6)))))
+(-10 -7 (-15 -2891 ((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2330 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1213 ((-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1174 |#1|)))) (-632 |#1|) (-1174 |#1|))))
+((-3586 (((-396 |#4|) |#4|) 48)))
+(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3586 ((-396 |#4|) |#4|))) (-789) (-735) (-429) (-884 |#3| |#2| |#1|)) (T -912))
+((-3586 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-429)) (-5 *2 (-396 *3)) (-5 *1 (-912 *4 *5 *6 *3)) (-4 *3 (-884 *6 *5 *4)))))
+(-10 -7 (-15 -3586 ((-396 |#4|) |#4|)))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-1221 (($ (-713)) 112 (|has| |#1| (-23)))) (-3289 (((-1179) $ (-525) (-525)) 40 (|has| $ (-6 -4260)))) (-2358 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-2436 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4260))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4260))))) (-1842 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-3779 (((-108) $ (-713)) 8)) (-1233 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) 58 (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4259)))) (-2475 (($) 7 T CONST)) (-2670 (($ $) 90 (|has| $ (-6 -4260)))) (-1652 (($ $) 100)) (-1681 (($ $) 78 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2698 (($ |#1| $) 77 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4259)))) (-3081 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) 51)) (-3856 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1020)))) (-4112 (($ (-592 |#1|)) 118)) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-1825 (((-632 |#1|) $ $) 105 (|has| |#1| (-977)))) (-3324 (($ (-713) |#1|) 69)) (-2516 (((-108) $ (-713)) 9)) (-1732 (((-525) $) 43 (|has| (-525) (-789)))) (-3033 (($ $ $) 87 (|has| |#1| (-789)))) (-3212 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2231 (((-525) $) 44 (|has| (-525) (-789)))) (-1609 (($ $ $) 86 (|has| |#1| (-789)))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2482 ((|#1| $) 102 (-12 (|has| |#1| (-977)) (|has| |#1| (-934))))) (-4028 (((-108) $ (-713)) 10)) (-4128 ((|#1| $) 103 (-12 (|has| |#1| (-977)) (|has| |#1| (-934))))) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2594 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-3177 (((-592 (-525)) $) 46)) (-3461 (((-108) (-525) $) 47)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1647 ((|#1| $) 42 (|has| (-525) (-789)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-3453 (($ $ |#1|) 41 (|has| $ (-6 -4260)))) (-1397 (($ $ (-592 |#1|)) 115)) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-2456 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) 48)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1141 (-525))) 63)) (-3584 ((|#1| $ $) 106 (|has| |#1| (-977)))) (-3933 (((-856) $) 117)) (-2139 (($ $ (-525)) 62) (($ $ (-1141 (-525))) 61)) (-2548 (($ $ $) 104)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3632 (($ $ $ (-525)) 91 (|has| $ (-6 -4260)))) (-2503 (($ $) 13)) (-2069 (((-501) $) 79 (|has| |#1| (-567 (-501)))) (($ (-592 |#1|)) 116)) (-4114 (($ (-592 |#1|)) 70)) (-2035 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) 84 (|has| |#1| (-789)))) (-2807 (((-108) $ $) 83 (|has| |#1| (-789)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2817 (((-108) $ $) 85 (|has| |#1| (-789)))) (-2795 (((-108) $ $) 82 (|has| |#1| (-789)))) (-2871 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2860 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-525) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-669))) (($ $ |#1|) 107 (|has| |#1| (-669)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-913 |#1|) (-131) (-977)) (T -913))
-((-2568 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-977)) (-4 *1 (-913 *3)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-977)) (-5 *2 (-856)))) (-3210 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-977)) (-4 *1 (-913 *3)))) (-2364 (*1 *1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-977)))) (-3931 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-913 *3)) (-4 *3 (-977)))))
-(-13 (-1172 |t#1|) (-10 -8 (-15 -2568 ($ (-592 |t#1|))) (-15 -3705 ((-856) $)) (-15 -3210 ($ (-592 |t#1|))) (-15 -2364 ($ $ $)) (-15 -3931 ($ $ (-592 |t#1|)))))
-(((-33) . T) ((-97) -3254 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-789)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-19 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1020) -3254 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-1128) . T) ((-1172 |#1|) . T))
-((-3165 (((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)) 17)))
-(((-914 |#1| |#2|) (-10 -7 (-15 -3165 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)))) (-977) (-977)) (T -914))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-5 *2 (-878 *6)) (-5 *1 (-914 *5 *6)))))
-(-10 -7 (-15 -3165 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|))))
-((-3783 ((|#1| (-878 |#1|)) 13)) (-3093 ((|#1| (-878 |#1|)) 12)) (-2766 ((|#1| (-878 |#1|)) 11)) (-2772 ((|#1| (-878 |#1|)) 15)) (-2233 ((|#1| (-878 |#1|)) 21)) (-3883 ((|#1| (-878 |#1|)) 14)) (-2432 ((|#1| (-878 |#1|)) 16)) (-2412 ((|#1| (-878 |#1|)) 20)) (-2558 ((|#1| (-878 |#1|)) 19)))
-(((-915 |#1|) (-10 -7 (-15 -2766 (|#1| (-878 |#1|))) (-15 -3093 (|#1| (-878 |#1|))) (-15 -3783 (|#1| (-878 |#1|))) (-15 -3883 (|#1| (-878 |#1|))) (-15 -2772 (|#1| (-878 |#1|))) (-15 -2432 (|#1| (-878 |#1|))) (-15 -2558 (|#1| (-878 |#1|))) (-15 -2412 (|#1| (-878 |#1|))) (-15 -2233 (|#1| (-878 |#1|)))) (-977)) (T -915))
-((-2233 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-2412 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-2558 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-2432 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-2772 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-3883 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
-(-10 -7 (-15 -2766 (|#1| (-878 |#1|))) (-15 -3093 (|#1| (-878 |#1|))) (-15 -3783 (|#1| (-878 |#1|))) (-15 -3883 (|#1| (-878 |#1|))) (-15 -2772 (|#1| (-878 |#1|))) (-15 -2432 (|#1| (-878 |#1|))) (-15 -2558 (|#1| (-878 |#1|))) (-15 -2412 (|#1| (-878 |#1|))) (-15 -2233 (|#1| (-878 |#1|))))
-((-2205 (((-3 |#1| "failed") |#1|) 18)) (-1943 (((-3 |#1| "failed") |#1|) 6)) (-2009 (((-3 |#1| "failed") |#1|) 16)) (-2430 (((-3 |#1| "failed") |#1|) 4)) (-3902 (((-3 |#1| "failed") |#1|) 20)) (-3363 (((-3 |#1| "failed") |#1|) 8)) (-2902 (((-3 |#1| "failed") |#1| (-713)) 1)) (-3253 (((-3 |#1| "failed") |#1|) 3)) (-1941 (((-3 |#1| "failed") |#1|) 2)) (-3238 (((-3 |#1| "failed") |#1|) 21)) (-4076 (((-3 |#1| "failed") |#1|) 9)) (-1236 (((-3 |#1| "failed") |#1|) 19)) (-1279 (((-3 |#1| "failed") |#1|) 7)) (-1498 (((-3 |#1| "failed") |#1|) 17)) (-1555 (((-3 |#1| "failed") |#1|) 5)) (-2654 (((-3 |#1| "failed") |#1|) 24)) (-2339 (((-3 |#1| "failed") |#1|) 12)) (-3947 (((-3 |#1| "failed") |#1|) 22)) (-3209 (((-3 |#1| "failed") |#1|) 10)) (-3499 (((-3 |#1| "failed") |#1|) 26)) (-1901 (((-3 |#1| "failed") |#1|) 14)) (-3300 (((-3 |#1| "failed") |#1|) 27)) (-2067 (((-3 |#1| "failed") |#1|) 15)) (-4086 (((-3 |#1| "failed") |#1|) 25)) (-3895 (((-3 |#1| "failed") |#1|) 13)) (-1507 (((-3 |#1| "failed") |#1|) 23)) (-2731 (((-3 |#1| "failed") |#1|) 11)))
+((-4112 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-977)) (-4 *1 (-913 *3)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-977)) (-5 *2 (-856)))) (-2069 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-977)) (-4 *1 (-913 *3)))) (-2548 (*1 *1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-977)))) (-1397 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-913 *3)) (-4 *3 (-977)))))
+(-13 (-1172 |t#1|) (-10 -8 (-15 -4112 ($ (-592 |t#1|))) (-15 -3933 ((-856) $)) (-15 -2069 ($ (-592 |t#1|))) (-15 -2548 ($ $ $)) (-15 -1397 ($ $ (-592 |t#1|)))))
+(((-33) . T) ((-97) -2067 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-789)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-19 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1020) -2067 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-1128) . T) ((-1172 |#1|) . T))
+((-2016 (((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)) 17)))
+(((-914 |#1| |#2|) (-10 -7 (-15 -2016 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)))) (-977) (-977)) (T -914))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-5 *2 (-878 *6)) (-5 *1 (-914 *5 *6)))))
+(-10 -7 (-15 -2016 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|))))
+((-3478 ((|#1| (-878 |#1|)) 13)) (-2095 ((|#1| (-878 |#1|)) 12)) (-2117 ((|#1| (-878 |#1|)) 11)) (-2146 ((|#1| (-878 |#1|)) 15)) (-3718 ((|#1| (-878 |#1|)) 21)) (-2098 ((|#1| (-878 |#1|)) 14)) (-2028 ((|#1| (-878 |#1|)) 16)) (-2974 ((|#1| (-878 |#1|)) 20)) (-3785 ((|#1| (-878 |#1|)) 19)))
+(((-915 |#1|) (-10 -7 (-15 -2117 (|#1| (-878 |#1|))) (-15 -2095 (|#1| (-878 |#1|))) (-15 -3478 (|#1| (-878 |#1|))) (-15 -2098 (|#1| (-878 |#1|))) (-15 -2146 (|#1| (-878 |#1|))) (-15 -2028 (|#1| (-878 |#1|))) (-15 -3785 (|#1| (-878 |#1|))) (-15 -2974 (|#1| (-878 |#1|))) (-15 -3718 (|#1| (-878 |#1|)))) (-977)) (T -915))
+((-3718 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-2974 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-2146 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-2098 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-2117 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
+(-10 -7 (-15 -2117 (|#1| (-878 |#1|))) (-15 -2095 (|#1| (-878 |#1|))) (-15 -3478 (|#1| (-878 |#1|))) (-15 -2098 (|#1| (-878 |#1|))) (-15 -2146 (|#1| (-878 |#1|))) (-15 -2028 (|#1| (-878 |#1|))) (-15 -3785 (|#1| (-878 |#1|))) (-15 -2974 (|#1| (-878 |#1|))) (-15 -3718 (|#1| (-878 |#1|))))
+((-1621 (((-3 |#1| "failed") |#1|) 18)) (-3765 (((-3 |#1| "failed") |#1|) 6)) (-3240 (((-3 |#1| "failed") |#1|) 16)) (-2008 (((-3 |#1| "failed") |#1|) 4)) (-2279 (((-3 |#1| "failed") |#1|) 20)) (-3719 (((-3 |#1| "failed") |#1|) 8)) (-3915 (((-3 |#1| "failed") |#1| (-713)) 1)) (-4053 (((-3 |#1| "failed") |#1|) 3)) (-3747 (((-3 |#1| "failed") |#1|) 2)) (-3958 (((-3 |#1| "failed") |#1|) 21)) (-3407 (((-3 |#1| "failed") |#1|) 9)) (-2296 (((-3 |#1| "failed") |#1|) 19)) (-4103 (((-3 |#1| "failed") |#1|) 7)) (-3046 (((-3 |#1| "failed") |#1|) 17)) (-2143 (((-3 |#1| "failed") |#1|) 5)) (-3434 (((-3 |#1| "failed") |#1|) 24)) (-3484 (((-3 |#1| "failed") |#1|) 12)) (-1552 (((-3 |#1| "failed") |#1|) 22)) (-1912 (((-3 |#1| "failed") |#1|) 10)) (-2538 (((-3 |#1| "failed") |#1|) 26)) (-1543 (((-3 |#1| "failed") |#1|) 14)) (-1335 (((-3 |#1| "failed") |#1|) 27)) (-2607 (((-3 |#1| "failed") |#1|) 15)) (-3511 (((-3 |#1| "failed") |#1|) 25)) (-2200 (((-3 |#1| "failed") |#1|) 13)) (-3143 (((-3 |#1| "failed") |#1|) 23)) (-2943 (((-3 |#1| "failed") |#1|) 11)))
(((-916 |#1|) (-131) (-1114)) (T -916))
-((-3300 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3499 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-4086 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-2654 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-1507 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3947 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3238 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3902 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-1236 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-2205 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-1498 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-2009 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-2067 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-1901 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3895 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-2339 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-2731 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3209 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-4076 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3363 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-1279 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-1943 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-1555 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-2430 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3253 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-1941 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-2902 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-713)) (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(-13 (-10 -7 (-15 -2902 ((-3 |t#1| "failed") |t#1| (-713))) (-15 -1941 ((-3 |t#1| "failed") |t#1|)) (-15 -3253 ((-3 |t#1| "failed") |t#1|)) (-15 -2430 ((-3 |t#1| "failed") |t#1|)) (-15 -1555 ((-3 |t#1| "failed") |t#1|)) (-15 -1943 ((-3 |t#1| "failed") |t#1|)) (-15 -1279 ((-3 |t#1| "failed") |t#1|)) (-15 -3363 ((-3 |t#1| "failed") |t#1|)) (-15 -4076 ((-3 |t#1| "failed") |t#1|)) (-15 -3209 ((-3 |t#1| "failed") |t#1|)) (-15 -2731 ((-3 |t#1| "failed") |t#1|)) (-15 -2339 ((-3 |t#1| "failed") |t#1|)) (-15 -3895 ((-3 |t#1| "failed") |t#1|)) (-15 -1901 ((-3 |t#1| "failed") |t#1|)) (-15 -2067 ((-3 |t#1| "failed") |t#1|)) (-15 -2009 ((-3 |t#1| "failed") |t#1|)) (-15 -1498 ((-3 |t#1| "failed") |t#1|)) (-15 -2205 ((-3 |t#1| "failed") |t#1|)) (-15 -1236 ((-3 |t#1| "failed") |t#1|)) (-15 -3902 ((-3 |t#1| "failed") |t#1|)) (-15 -3238 ((-3 |t#1| "failed") |t#1|)) (-15 -3947 ((-3 |t#1| "failed") |t#1|)) (-15 -1507 ((-3 |t#1| "failed") |t#1|)) (-15 -2654 ((-3 |t#1| "failed") |t#1|)) (-15 -4086 ((-3 |t#1| "failed") |t#1|)) (-15 -3499 ((-3 |t#1| "failed") |t#1|)) (-15 -3300 ((-3 |t#1| "failed") |t#1|))))
-((-3660 ((|#4| |#4| (-592 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-1702 ((|#4| |#4| (-592 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3165 ((|#4| (-1 |#4| (-887 |#1|)) |#4|) 30)))
-(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1702 (|#4| |#4| |#3|)) (-15 -1702 (|#4| |#4| (-592 |#3|))) (-15 -3660 (|#4| |#4| |#3|)) (-15 -3660 (|#4| |#4| (-592 |#3|))) (-15 -3165 (|#4| (-1 |#4| (-887 |#1|)) |#4|))) (-977) (-735) (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $)) (-15 -2499 ((-3 $ "failed") (-1092))))) (-884 (-887 |#1|) |#2| |#3|)) (T -917))
-((-3165 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-887 *4))) (-4 *4 (-977)) (-4 *2 (-884 (-887 *4) *5 *6)) (-4 *5 (-735)) (-4 *6 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $)) (-15 -2499 ((-3 $ "failed") (-1092)))))) (-5 *1 (-917 *4 *5 *6 *2)))) (-3660 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $)) (-15 -2499 ((-3 $ "failed") (-1092)))))) (-4 *4 (-977)) (-4 *5 (-735)) (-5 *1 (-917 *4 *5 *6 *2)) (-4 *2 (-884 (-887 *4) *5 *6)))) (-3660 (*1 *2 *2 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $)) (-15 -2499 ((-3 $ "failed") (-1092)))))) (-5 *1 (-917 *4 *5 *3 *2)) (-4 *2 (-884 (-887 *4) *5 *3)))) (-1702 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $)) (-15 -2499 ((-3 $ "failed") (-1092)))))) (-4 *4 (-977)) (-4 *5 (-735)) (-5 *1 (-917 *4 *5 *6 *2)) (-4 *2 (-884 (-887 *4) *5 *6)))) (-1702 (*1 *2 *2 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $)) (-15 -2499 ((-3 $ "failed") (-1092)))))) (-5 *1 (-917 *4 *5 *3 *2)) (-4 *2 (-884 (-887 *4) *5 *3)))))
-(-10 -7 (-15 -1702 (|#4| |#4| |#3|)) (-15 -1702 (|#4| |#4| (-592 |#3|))) (-15 -3660 (|#4| |#4| |#3|)) (-15 -3660 (|#4| |#4| (-592 |#3|))) (-15 -3165 (|#4| (-1 |#4| (-887 |#1|)) |#4|)))
-((-1452 ((|#2| |#3|) 35)) (-2868 (((-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|) 73)) (-2641 (((-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) 89)))
-(((-918 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2641 ((-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -2868 ((-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|)) (-15 -1452 (|#2| |#3|))) (-327) (-1150 |#1|) (-1150 |#2|) (-667 |#2| |#3|)) (T -918))
-((-1452 (*1 *2 *3) (-12 (-4 *3 (-1150 *2)) (-4 *2 (-1150 *4)) (-5 *1 (-918 *4 *2 *3 *5)) (-4 *4 (-327)) (-4 *5 (-667 *2 *3)))) (-2868 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 *3)) (-5 *2 (-2 (|:| -3094 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-918 *4 *3 *5 *6)) (-4 *6 (-667 *3 *5)))) (-2641 (*1 *2) (-12 (-4 *3 (-327)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 *4)) (-5 *2 (-2 (|:| -3094 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) (-5 *1 (-918 *3 *4 *5 *6)) (-4 *6 (-667 *4 *5)))))
-(-10 -7 (-15 -2641 ((-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -2868 ((-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|)) (-15 -1452 (|#2| |#3|)))
-((-2528 (((-920 (-385 (-525)) (-800 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))) (-920 (-385 (-525)) (-800 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525))))) 69)))
-(((-919 |#1| |#2|) (-10 -7 (-15 -2528 ((-920 (-385 (-525)) (-800 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))) (-920 (-385 (-525)) (-800 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525))))))) (-592 (-1092)) (-713)) (T -919))
-((-2528 (*1 *2 *2) (-12 (-5 *2 (-920 (-385 (-525)) (-800 *3) (-220 *4 (-713)) (-227 *3 (-385 (-525))))) (-14 *3 (-592 (-1092))) (-14 *4 (-713)) (-5 *1 (-919 *3 *4)))))
-(-10 -7 (-15 -2528 ((-920 (-385 (-525)) (-800 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))) (-920 (-385 (-525)) (-800 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))))))
-((-4236 (((-108) $ $) NIL)) (-3242 (((-3 (-108) "failed") $) 69)) (-2242 (($ $) 36 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-2739 (($ $ (-3 (-108) "failed")) 70)) (-1955 (($ (-592 |#4|) |#4|) 25)) (-2619 (((-1075) $) NIL)) (-1720 (($ $) 67)) (-2093 (((-1039) $) NIL)) (-2659 (((-108) $) 68)) (-2512 (($) 30)) (-3645 ((|#4| $) 72)) (-3530 (((-592 |#4|) $) 71)) (-1217 (((-798) $) 66)) (-3955 (((-108) $ $) NIL)))
-(((-920 |#1| |#2| |#3| |#4|) (-13 (-1020) (-566 (-798)) (-10 -8 (-15 -2512 ($)) (-15 -1955 ($ (-592 |#4|) |#4|)) (-15 -3242 ((-3 (-108) "failed") $)) (-15 -2739 ($ $ (-3 (-108) "failed"))) (-15 -2659 ((-108) $)) (-15 -3530 ((-592 |#4|) $)) (-15 -3645 (|#4| $)) (-15 -1720 ($ $)) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (-15 -2242 ($ $)) |%noBranch|) |%noBranch|))) (-429) (-789) (-735) (-884 |#1| |#3| |#2|)) (T -920))
-((-2512 (*1 *1) (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735)) (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-884 *2 *4 *3)))) (-1955 (*1 *1 *2 *3) (-12 (-5 *2 (-592 *3)) (-4 *3 (-884 *4 *6 *5)) (-4 *4 (-429)) (-4 *5 (-789)) (-4 *6 (-735)) (-5 *1 (-920 *4 *5 *6 *3)))) (-3242 (*1 *2 *1) (|partial| -12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-108)) (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4)))) (-2739 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4)))) (-2659 (*1 *2 *1) (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-108)) (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4)))) (-3530 (*1 *2 *1) (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-592 *6)) (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4)))) (-3645 (*1 *2 *1) (-12 (-4 *2 (-884 *3 *5 *4)) (-5 *1 (-920 *3 *4 *5 *2)) (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)))) (-1720 (*1 *1 *1) (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735)) (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-884 *2 *4 *3)))) (-2242 (*1 *1 *1) (-12 (-4 *2 (-138)) (-4 *2 (-286)) (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735)) (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-884 *2 *4 *3)))))
-(-13 (-1020) (-566 (-798)) (-10 -8 (-15 -2512 ($)) (-15 -1955 ($ (-592 |#4|) |#4|)) (-15 -3242 ((-3 (-108) "failed") $)) (-15 -2739 ($ $ (-3 (-108) "failed"))) (-15 -2659 ((-108) $)) (-15 -3530 ((-592 |#4|) $)) (-15 -3645 (|#4| $)) (-15 -1720 ($ $)) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (-15 -2242 ($ $)) |%noBranch|) |%noBranch|)))
-((-2492 (((-108) |#5| |#5|) 38)) (-3838 (((-108) |#5| |#5|) 52)) (-2658 (((-108) |#5| (-592 |#5|)) 74) (((-108) |#5| |#5|) 61)) (-1840 (((-108) (-592 |#4|) (-592 |#4|)) 58)) (-2666 (((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) 63)) (-4132 (((-1179)) 33)) (-1263 (((-1179) (-1075) (-1075) (-1075)) 29)) (-3842 (((-592 |#5|) (-592 |#5|)) 81)) (-3229 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|)))) 79)) (-1319 (((-592 (-2 (|:| -3025 (-592 |#4|)) (|:| -2563 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108)) 101)) (-3508 (((-108) |#5| |#5|) 47)) (-2469 (((-3 (-108) "failed") |#5| |#5|) 71)) (-2206 (((-108) (-592 |#4|) (-592 |#4|)) 57)) (-1288 (((-108) (-592 |#4|) (-592 |#4|)) 59)) (-2338 (((-108) (-592 |#4|) (-592 |#4|)) 60)) (-1417 (((-3 (-2 (|:| -3025 (-592 |#4|)) (|:| -2563 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)) 97)) (-2695 (((-592 |#5|) (-592 |#5|)) 43)))
-(((-921 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1263 ((-1179) (-1075) (-1075) (-1075))) (-15 -4132 ((-1179))) (-15 -2492 ((-108) |#5| |#5|)) (-15 -2695 ((-592 |#5|) (-592 |#5|))) (-15 -3508 ((-108) |#5| |#5|)) (-15 -3838 ((-108) |#5| |#5|)) (-15 -1840 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2206 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1288 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2338 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2469 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2658 ((-108) |#5| |#5|)) (-15 -2658 ((-108) |#5| (-592 |#5|))) (-15 -3842 ((-592 |#5|) (-592 |#5|))) (-15 -2666 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|)))) (-15 -3229 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) (-15 -1319 ((-592 (-2 (|:| -3025 (-592 |#4|)) (|:| -2563 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -1417 ((-3 (-2 (|:| -3025 (-592 |#4|)) (|:| -2563 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|)) (T -921))
-((-1417 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| -3025 (-592 *9)) (|:| -2563 *4) (|:| |ineq| (-592 *9)))) (-5 *1 (-921 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9)) (-4 *4 (-996 *6 *7 *8 *9)))) (-1319 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-996 *6 *7 *8 *9)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| -3025 (-592 *9)) (|:| -2563 *10) (|:| |ineq| (-592 *9))))) (-5 *1 (-921 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9)))) (-3229 (*1 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -2563 *7)))) (-4 *6 (-991 *3 *4 *5)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-921 *3 *4 *5 *6 *7)))) (-2666 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -2563 *8))) (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-996 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *8)))) (-3842 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *1 (-921 *3 *4 *5 *6 *7)))) (-2658 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-921 *5 *6 *7 *8 *3)))) (-2658 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-2469 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-2338 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-1288 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-2206 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-1840 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-3838 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-3508 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-2695 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *1 (-921 *3 *4 *5 *6 *7)))) (-2492 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-4132 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179)) (-5 *1 (-921 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))) (-1263 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179)) (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1263 ((-1179) (-1075) (-1075) (-1075))) (-15 -4132 ((-1179))) (-15 -2492 ((-108) |#5| |#5|)) (-15 -2695 ((-592 |#5|) (-592 |#5|))) (-15 -3508 ((-108) |#5| |#5|)) (-15 -3838 ((-108) |#5| |#5|)) (-15 -1840 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2206 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1288 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2338 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2469 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2658 ((-108) |#5| |#5|)) (-15 -2658 ((-108) |#5| (-592 |#5|))) (-15 -3842 ((-592 |#5|) (-592 |#5|))) (-15 -2666 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|)))) (-15 -3229 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) (-15 -1319 ((-592 (-2 (|:| -3025 (-592 |#4|)) (|:| -2563 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -1417 ((-3 (-2 (|:| -3025 (-592 |#4|)) (|:| -2563 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108))))
-((-2499 (((-1092) $) 15)) (-3284 (((-1075) $) 16)) (-2011 (($ (-1092) (-1075)) 14)) (-1217 (((-798) $) 13)))
-(((-922) (-13 (-566 (-798)) (-10 -8 (-15 -2011 ($ (-1092) (-1075))) (-15 -2499 ((-1092) $)) (-15 -3284 ((-1075) $))))) (T -922))
-((-2011 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1075)) (-5 *1 (-922)))) (-2499 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-922)))) (-3284 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-922)))))
-(-13 (-566 (-798)) (-10 -8 (-15 -2011 ($ (-1092) (-1075))) (-15 -2499 ((-1092) $)) (-15 -3284 ((-1075) $))))
-((-3165 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-923 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3165 (|#4| (-1 |#2| |#1|) |#3|))) (-517) (-517) (-925 |#1|) (-925 |#2|)) (T -923))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-517)) (-4 *6 (-517)) (-4 *2 (-925 *6)) (-5 *1 (-923 *5 *6 *4 *2)) (-4 *4 (-925 *5)))))
-(-10 -7 (-15 -3165 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3077 (((-3 |#2| "failed") $) NIL) (((-3 (-1092) "failed") $) 65) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) 95)) (-1572 ((|#2| $) NIL) (((-1092) $) 60) (((-385 (-525)) $) NIL) (((-525) $) 92)) (-1994 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) 112) (((-632 |#2|) (-632 $)) 28)) (-2502 (($) 98)) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 75) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 84)) (-3858 (($ $) 10)) (-3844 (((-3 $ "failed") $) 20)) (-3165 (($ (-1 |#2| |#2|) $) 22)) (-2295 (($) 16)) (-3628 (($ $) 54)) (-3376 (($ $) NIL) (($ $ (-713)) NIL) (($ $ (-1092)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-4143 (($ $) 12)) (-3210 (((-827 (-525)) $) 70) (((-827 (-357)) $) 79) (((-501) $) 40) (((-357) $) 44) (((-205) $) 47)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 90) (($ |#2|) NIL) (($ (-1092)) 57)) (-3917 (((-713)) 31)) (-3978 (((-108) $ $) 50)))
-(((-924 |#1| |#2|) (-10 -8 (-15 -3978 ((-108) |#1| |#1|)) (-15 -2295 (|#1|)) (-15 -3844 ((-3 |#1| "failed") |#1|)) (-15 -1572 ((-525) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3210 ((-205) |#1|)) (-15 -3210 ((-357) |#1|)) (-15 -3210 ((-501) |#1|)) (-15 -1572 ((-1092) |#1|)) (-15 -3077 ((-3 (-1092) "failed") |#1|)) (-15 -1217 (|#1| (-1092))) (-15 -2502 (|#1|)) (-15 -3628 (|#1| |#1|)) (-15 -4143 (|#1| |#1|)) (-15 -3858 (|#1| |#1|)) (-15 -2989 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -2989 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -3210 ((-827 (-357)) |#1|)) (-15 -3210 ((-827 (-525)) |#1|)) (-15 -1994 ((-632 |#2|) (-632 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-632 (-525)) (-632 |#1|))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1|)) (-15 -3165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -1217 (|#1| |#2|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -1217 (|#1| |#1|)) (-15 -1217 (|#1| (-525))) (-15 -3917 ((-713))) (-15 -1217 ((-798) |#1|))) (-925 |#2|) (-517)) (T -924))
-((-3917 (*1 *2) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-924 *3 *4)) (-4 *3 (-925 *4)))))
-(-10 -8 (-15 -3978 ((-108) |#1| |#1|)) (-15 -2295 (|#1|)) (-15 -3844 ((-3 |#1| "failed") |#1|)) (-15 -1572 ((-525) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3210 ((-205) |#1|)) (-15 -3210 ((-357) |#1|)) (-15 -3210 ((-501) |#1|)) (-15 -1572 ((-1092) |#1|)) (-15 -3077 ((-3 (-1092) "failed") |#1|)) (-15 -1217 (|#1| (-1092))) (-15 -2502 (|#1|)) (-15 -3628 (|#1| |#1|)) (-15 -4143 (|#1| |#1|)) (-15 -3858 (|#1| |#1|)) (-15 -2989 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -2989 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -3210 ((-827 (-357)) |#1|)) (-15 -3210 ((-827 (-525)) |#1|)) (-15 -1994 ((-632 |#2|) (-632 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-632 (-525)) (-632 |#1|))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1|)) (-15 -3165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -1217 (|#1| |#2|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -1217 (|#1| |#1|)) (-15 -1217 (|#1| (-525))) (-15 -3917 ((-713))) (-15 -1217 ((-798) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1548 ((|#1| $) 139 (|has| |#1| (-286)))) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-1578 (((-3 $ "failed") $ $) 19)) (-1448 (((-396 (-1088 $)) (-1088 $)) 130 (|has| |#1| (-844)))) (-1286 (($ $) 73)) (-2669 (((-396 $) $) 72)) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 133 (|has| |#1| (-844)))) (-2193 (((-108) $ $) 59)) (-3855 (((-525) $) 120 (|has| |#1| (-762)))) (-2169 (($) 17 T CONST)) (-3077 (((-3 |#1| "failed") $) 178) (((-3 (-1092) "failed") $) 128 (|has| |#1| (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) 112 (|has| |#1| (-968 (-525)))) (((-3 (-525) "failed") $) 110 (|has| |#1| (-968 (-525))))) (-1572 ((|#1| $) 177) (((-1092) $) 127 (|has| |#1| (-968 (-1092)))) (((-385 (-525)) $) 111 (|has| |#1| (-968 (-525)))) (((-525) $) 109 (|has| |#1| (-968 (-525))))) (-1747 (($ $ $) 55)) (-1994 (((-632 (-525)) (-632 $)) 152 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 151 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 150) (((-632 |#1|) (-632 $)) 149)) (-3457 (((-3 $ "failed") $) 34)) (-2502 (($) 137 (|has| |#1| (-510)))) (-1733 (($ $ $) 56)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 51)) (-3673 (((-108) $) 71)) (-1222 (((-108) $) 122 (|has| |#1| (-762)))) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 146 (|has| |#1| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 145 (|has| |#1| (-821 (-357))))) (-1396 (((-108) $) 31)) (-3858 (($ $) 141)) (-3114 ((|#1| $) 143)) (-3844 (((-3 $ "failed") $) 108 (|has| |#1| (-1068)))) (-3256 (((-108) $) 121 (|has| |#1| (-762)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2638 (($ $ $) 118 (|has| |#1| (-789)))) (-3662 (($ $ $) 117 (|has| |#1| (-789)))) (-3165 (($ (-1 |#1| |#1|) $) 169)) (-2556 (($ $ $) 46) (($ (-592 $)) 45)) (-2619 (((-1075) $) 9)) (-2997 (($ $) 70)) (-2295 (($) 107 (|has| |#1| (-1068)) CONST)) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2589 (($ $ $) 48) (($ (-592 $)) 47)) (-3628 (($ $) 138 (|has| |#1| (-286)))) (-2487 ((|#1| $) 135 (|has| |#1| (-510)))) (-3076 (((-396 (-1088 $)) (-1088 $)) 132 (|has| |#1| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) 131 (|has| |#1| (-844)))) (-2770 (((-396 $) $) 74)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1715 (((-3 $ "failed") $ $) 42)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2457 (($ $ (-592 |#1|) (-592 |#1|)) 175 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 173 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 172 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) 171 (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) |#1|) 170 (|has| |#1| (-486 (-1092) |#1|)))) (-3684 (((-713) $) 58)) (-3406 (($ $ |#1|) 176 (|has| |#1| (-265 |#1| |#1|)))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 57)) (-3376 (($ $) 168 (|has| |#1| (-213))) (($ $ (-713)) 166 (|has| |#1| (-213))) (($ $ (-1092)) 164 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 163 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 162 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) 161 (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-4143 (($ $) 140)) (-3123 ((|#1| $) 142)) (-3210 (((-827 (-525)) $) 148 (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) 147 (|has| |#1| (-567 (-827 (-357))))) (((-501) $) 125 (|has| |#1| (-567 (-501)))) (((-357) $) 124 (|has| |#1| (-953))) (((-205) $) 123 (|has| |#1| (-953)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) 134 (-3762 (|has| $ (-136)) (|has| |#1| (-844))))) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ |#1|) 181) (($ (-1092)) 129 (|has| |#1| (-968 (-1092))))) (-3637 (((-3 $ "failed") $) 126 (-3254 (|has| |#1| (-136)) (-3762 (|has| $ (-136)) (|has| |#1| (-844)))))) (-3917 (((-713)) 29)) (-3074 ((|#1| $) 136 (|has| |#1| (-510)))) (-3325 (((-108) $ $) 39)) (-2802 (($ $) 119 (|has| |#1| (-762)))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $) 167 (|has| |#1| (-213))) (($ $ (-713)) 165 (|has| |#1| (-213))) (($ $ (-1092)) 160 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 159 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 158 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) 157 (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-4011 (((-108) $ $) 115 (|has| |#1| (-789)))) (-3987 (((-108) $ $) 114 (|has| |#1| (-789)))) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 116 (|has| |#1| (-789)))) (-3978 (((-108) $ $) 113 (|has| |#1| (-789)))) (-4075 (($ $ $) 64) (($ |#1| |#1|) 144)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
+((-1335 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-2538 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3511 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3434 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3143 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-1552 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3958 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-2279 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-2296 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-1621 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3046 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3240 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-2607 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-1543 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-2200 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3484 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-2943 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-1912 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3407 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3719 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-4103 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3765 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-2143 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-2008 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-4053 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3747 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3915 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-713)) (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(-13 (-10 -7 (-15 -3915 ((-3 |t#1| "failed") |t#1| (-713))) (-15 -3747 ((-3 |t#1| "failed") |t#1|)) (-15 -4053 ((-3 |t#1| "failed") |t#1|)) (-15 -2008 ((-3 |t#1| "failed") |t#1|)) (-15 -2143 ((-3 |t#1| "failed") |t#1|)) (-15 -3765 ((-3 |t#1| "failed") |t#1|)) (-15 -4103 ((-3 |t#1| "failed") |t#1|)) (-15 -3719 ((-3 |t#1| "failed") |t#1|)) (-15 -3407 ((-3 |t#1| "failed") |t#1|)) (-15 -1912 ((-3 |t#1| "failed") |t#1|)) (-15 -2943 ((-3 |t#1| "failed") |t#1|)) (-15 -3484 ((-3 |t#1| "failed") |t#1|)) (-15 -2200 ((-3 |t#1| "failed") |t#1|)) (-15 -1543 ((-3 |t#1| "failed") |t#1|)) (-15 -2607 ((-3 |t#1| "failed") |t#1|)) (-15 -3240 ((-3 |t#1| "failed") |t#1|)) (-15 -3046 ((-3 |t#1| "failed") |t#1|)) (-15 -1621 ((-3 |t#1| "failed") |t#1|)) (-15 -2296 ((-3 |t#1| "failed") |t#1|)) (-15 -2279 ((-3 |t#1| "failed") |t#1|)) (-15 -3958 ((-3 |t#1| "failed") |t#1|)) (-15 -1552 ((-3 |t#1| "failed") |t#1|)) (-15 -3143 ((-3 |t#1| "failed") |t#1|)) (-15 -3434 ((-3 |t#1| "failed") |t#1|)) (-15 -3511 ((-3 |t#1| "failed") |t#1|)) (-15 -2538 ((-3 |t#1| "failed") |t#1|)) (-15 -1335 ((-3 |t#1| "failed") |t#1|))))
+((-1684 ((|#4| |#4| (-592 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3336 ((|#4| |#4| (-592 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-2016 ((|#4| (-1 |#4| (-887 |#1|)) |#4|) 30)))
+(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3336 (|#4| |#4| |#3|)) (-15 -3336 (|#4| |#4| (-592 |#3|))) (-15 -1684 (|#4| |#4| |#3|)) (-15 -1684 (|#4| |#4| (-592 |#3|))) (-15 -2016 (|#4| (-1 |#4| (-887 |#1|)) |#4|))) (-977) (-735) (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $)) (-15 -3469 ((-3 $ "failed") (-1092))))) (-884 (-887 |#1|) |#2| |#3|)) (T -917))
+((-2016 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-887 *4))) (-4 *4 (-977)) (-4 *2 (-884 (-887 *4) *5 *6)) (-4 *5 (-735)) (-4 *6 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $)) (-15 -3469 ((-3 $ "failed") (-1092)))))) (-5 *1 (-917 *4 *5 *6 *2)))) (-1684 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $)) (-15 -3469 ((-3 $ "failed") (-1092)))))) (-4 *4 (-977)) (-4 *5 (-735)) (-5 *1 (-917 *4 *5 *6 *2)) (-4 *2 (-884 (-887 *4) *5 *6)))) (-1684 (*1 *2 *2 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $)) (-15 -3469 ((-3 $ "failed") (-1092)))))) (-5 *1 (-917 *4 *5 *3 *2)) (-4 *2 (-884 (-887 *4) *5 *3)))) (-3336 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $)) (-15 -3469 ((-3 $ "failed") (-1092)))))) (-4 *4 (-977)) (-4 *5 (-735)) (-5 *1 (-917 *4 *5 *6 *2)) (-4 *2 (-884 (-887 *4) *5 *6)))) (-3336 (*1 *2 *2 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $)) (-15 -3469 ((-3 $ "failed") (-1092)))))) (-5 *1 (-917 *4 *5 *3 *2)) (-4 *2 (-884 (-887 *4) *5 *3)))))
+(-10 -7 (-15 -3336 (|#4| |#4| |#3|)) (-15 -3336 (|#4| |#4| (-592 |#3|))) (-15 -1684 (|#4| |#4| |#3|)) (-15 -1684 (|#4| |#4| (-592 |#3|))) (-15 -2016 (|#4| (-1 |#4| (-887 |#1|)) |#4|)))
+((-2465 ((|#2| |#3|) 35)) (-1794 (((-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|) 73)) (-3295 (((-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) 89)))
+(((-918 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3295 ((-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -1794 ((-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|)) (-15 -2465 (|#2| |#3|))) (-327) (-1150 |#1|) (-1150 |#2|) (-667 |#2| |#3|)) (T -918))
+((-2465 (*1 *2 *3) (-12 (-4 *3 (-1150 *2)) (-4 *2 (-1150 *4)) (-5 *1 (-918 *4 *2 *3 *5)) (-4 *4 (-327)) (-4 *5 (-667 *2 *3)))) (-1794 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 *3)) (-5 *2 (-2 (|:| -2103 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-918 *4 *3 *5 *6)) (-4 *6 (-667 *3 *5)))) (-3295 (*1 *2) (-12 (-4 *3 (-327)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 *4)) (-5 *2 (-2 (|:| -2103 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) (-5 *1 (-918 *3 *4 *5 *6)) (-4 *6 (-667 *4 *5)))))
+(-10 -7 (-15 -3295 ((-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -1794 ((-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|)) (-15 -2465 (|#2| |#3|)))
+((-1704 (((-920 (-385 (-525)) (-800 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))) (-920 (-385 (-525)) (-800 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525))))) 69)))
+(((-919 |#1| |#2|) (-10 -7 (-15 -1704 ((-920 (-385 (-525)) (-800 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))) (-920 (-385 (-525)) (-800 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525))))))) (-592 (-1092)) (-713)) (T -919))
+((-1704 (*1 *2 *2) (-12 (-5 *2 (-920 (-385 (-525)) (-800 *3) (-220 *4 (-713)) (-227 *3 (-385 (-525))))) (-14 *3 (-592 (-1092))) (-14 *4 (-713)) (-5 *1 (-919 *3 *4)))))
+(-10 -7 (-15 -1704 ((-920 (-385 (-525)) (-800 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))) (-920 (-385 (-525)) (-800 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))))))
+((-4087 (((-108) $ $) NIL)) (-2077 (((-3 (-108) "failed") $) 69)) (-3800 (($ $) 36 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-2990 (($ $ (-3 (-108) "failed")) 70)) (-3895 (($ (-592 |#4|) |#4|) 25)) (-1289 (((-1075) $) NIL)) (-3495 (($ $) 67)) (-3993 (((-1039) $) NIL)) (-3479 (((-108) $) 68)) (-1558 (($) 30)) (-1523 ((|#4| $) 72)) (-2787 (((-592 |#4|) $) 71)) (-4100 (((-798) $) 66)) (-2775 (((-108) $ $) NIL)))
+(((-920 |#1| |#2| |#3| |#4|) (-13 (-1020) (-566 (-798)) (-10 -8 (-15 -1558 ($)) (-15 -3895 ($ (-592 |#4|) |#4|)) (-15 -2077 ((-3 (-108) "failed") $)) (-15 -2990 ($ $ (-3 (-108) "failed"))) (-15 -3479 ((-108) $)) (-15 -2787 ((-592 |#4|) $)) (-15 -1523 (|#4| $)) (-15 -3495 ($ $)) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (-15 -3800 ($ $)) |%noBranch|) |%noBranch|))) (-429) (-789) (-735) (-884 |#1| |#3| |#2|)) (T -920))
+((-1558 (*1 *1) (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735)) (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-884 *2 *4 *3)))) (-3895 (*1 *1 *2 *3) (-12 (-5 *2 (-592 *3)) (-4 *3 (-884 *4 *6 *5)) (-4 *4 (-429)) (-4 *5 (-789)) (-4 *6 (-735)) (-5 *1 (-920 *4 *5 *6 *3)))) (-2077 (*1 *2 *1) (|partial| -12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-108)) (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4)))) (-2990 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4)))) (-3479 (*1 *2 *1) (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-108)) (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4)))) (-2787 (*1 *2 *1) (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-592 *6)) (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4)))) (-1523 (*1 *2 *1) (-12 (-4 *2 (-884 *3 *5 *4)) (-5 *1 (-920 *3 *4 *5 *2)) (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)))) (-3495 (*1 *1 *1) (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735)) (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-884 *2 *4 *3)))) (-3800 (*1 *1 *1) (-12 (-4 *2 (-138)) (-4 *2 (-286)) (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735)) (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-884 *2 *4 *3)))))
+(-13 (-1020) (-566 (-798)) (-10 -8 (-15 -1558 ($)) (-15 -3895 ($ (-592 |#4|) |#4|)) (-15 -2077 ((-3 (-108) "failed") $)) (-15 -2990 ($ $ (-3 (-108) "failed"))) (-15 -3479 ((-108) $)) (-15 -2787 ((-592 |#4|) $)) (-15 -1523 (|#4| $)) (-15 -3495 ($ $)) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (-15 -3800 ($ $)) |%noBranch|) |%noBranch|)))
+((-1380 (((-108) |#5| |#5|) 38)) (-2826 (((-108) |#5| |#5|) 52)) (-3467 (((-108) |#5| (-592 |#5|)) 74) (((-108) |#5| |#5|) 61)) (-2164 (((-108) (-592 |#4|) (-592 |#4|)) 58)) (-3557 (((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) 63)) (-2767 (((-1179)) 33)) (-3260 (((-1179) (-1075) (-1075) (-1075)) 29)) (-2858 (((-592 |#5|) (-592 |#5|)) 81)) (-3877 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|)))) 79)) (-3402 (((-592 (-2 (|:| -1537 (-592 |#4|)) (|:| -1285 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108)) 101)) (-2603 (((-108) |#5| |#5|) 47)) (-2347 (((-3 (-108) "failed") |#5| |#5|) 71)) (-1632 (((-108) (-592 |#4|) (-592 |#4|)) 57)) (-1266 (((-108) (-592 |#4|) (-592 |#4|)) 59)) (-3472 (((-108) (-592 |#4|) (-592 |#4|)) 60)) (-3409 (((-3 (-2 (|:| -1537 (-592 |#4|)) (|:| -1285 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)) 97)) (-2628 (((-592 |#5|) (-592 |#5|)) 43)))
+(((-921 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3260 ((-1179) (-1075) (-1075) (-1075))) (-15 -2767 ((-1179))) (-15 -1380 ((-108) |#5| |#5|)) (-15 -2628 ((-592 |#5|) (-592 |#5|))) (-15 -2603 ((-108) |#5| |#5|)) (-15 -2826 ((-108) |#5| |#5|)) (-15 -2164 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1632 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1266 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3472 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2347 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3467 ((-108) |#5| |#5|)) (-15 -3467 ((-108) |#5| (-592 |#5|))) (-15 -2858 ((-592 |#5|) (-592 |#5|))) (-15 -3557 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|)))) (-15 -3877 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) (-15 -3402 ((-592 (-2 (|:| -1537 (-592 |#4|)) (|:| -1285 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3409 ((-3 (-2 (|:| -1537 (-592 |#4|)) (|:| -1285 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|)) (T -921))
+((-3409 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| -1537 (-592 *9)) (|:| -1285 *4) (|:| |ineq| (-592 *9)))) (-5 *1 (-921 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9)) (-4 *4 (-996 *6 *7 *8 *9)))) (-3402 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-996 *6 *7 *8 *9)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| -1537 (-592 *9)) (|:| -1285 *10) (|:| |ineq| (-592 *9))))) (-5 *1 (-921 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -1285 *7)))) (-4 *6 (-991 *3 *4 *5)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-921 *3 *4 *5 *6 *7)))) (-3557 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -1285 *8))) (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-996 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *8)))) (-2858 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *1 (-921 *3 *4 *5 *6 *7)))) (-3467 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-921 *5 *6 *7 *8 *3)))) (-3467 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-2347 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-3472 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-1266 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-1632 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-2164 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-2826 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-2603 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-2628 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *1 (-921 *3 *4 *5 *6 *7)))) (-1380 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-2767 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179)) (-5 *1 (-921 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))) (-3260 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179)) (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3260 ((-1179) (-1075) (-1075) (-1075))) (-15 -2767 ((-1179))) (-15 -1380 ((-108) |#5| |#5|)) (-15 -2628 ((-592 |#5|) (-592 |#5|))) (-15 -2603 ((-108) |#5| |#5|)) (-15 -2826 ((-108) |#5| |#5|)) (-15 -2164 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1632 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1266 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3472 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2347 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3467 ((-108) |#5| |#5|)) (-15 -3467 ((-108) |#5| (-592 |#5|))) (-15 -2858 ((-592 |#5|) (-592 |#5|))) (-15 -3557 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|)))) (-15 -3877 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) (-15 -3402 ((-592 (-2 (|:| -1537 (-592 |#4|)) (|:| -1285 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3409 ((-3 (-2 (|:| -1537 (-592 |#4|)) (|:| -1285 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108))))
+((-3469 (((-1092) $) 15)) (-2219 (((-1075) $) 16)) (-3237 (($ (-1092) (-1075)) 14)) (-4100 (((-798) $) 13)))
+(((-922) (-13 (-566 (-798)) (-10 -8 (-15 -3237 ($ (-1092) (-1075))) (-15 -3469 ((-1092) $)) (-15 -2219 ((-1075) $))))) (T -922))
+((-3237 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1075)) (-5 *1 (-922)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-922)))) (-2219 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-922)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -3237 ($ (-1092) (-1075))) (-15 -3469 ((-1092) $)) (-15 -2219 ((-1075) $))))
+((-2016 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-923 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2016 (|#4| (-1 |#2| |#1|) |#3|))) (-517) (-517) (-925 |#1|) (-925 |#2|)) (T -923))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-517)) (-4 *6 (-517)) (-4 *2 (-925 *6)) (-5 *1 (-923 *5 *6 *4 *2)) (-4 *4 (-925 *5)))))
+(-10 -7 (-15 -2016 (|#4| (-1 |#2| |#1|) |#3|)))
+((-1934 (((-3 |#2| "failed") $) NIL) (((-3 (-1092) "failed") $) 65) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) 95)) (-4105 ((|#2| $) NIL) (((-1092) $) 60) (((-385 (-525)) $) NIL) (((-525) $) 92)) (-3090 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) 112) (((-632 |#2|) (-632 $)) 28)) (-1903 (($) 98)) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 75) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 84)) (-2999 (($ $) 10)) (-2878 (((-3 $ "failed") $) 20)) (-2016 (($ (-1 |#2| |#2|) $) 22)) (-2948 (($) 16)) (-1372 (($ $) 54)) (-2702 (($ $) NIL) (($ $ (-713)) NIL) (($ $ (-1092)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2874 (($ $) 12)) (-2069 (((-827 (-525)) $) 70) (((-827 (-357)) $) 79) (((-501) $) 40) (((-357) $) 44) (((-205) $) 47)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 90) (($ |#2|) NIL) (($ (-1092)) 57)) (-2448 (((-713)) 31)) (-2795 (((-108) $ $) 50)))
+(((-924 |#1| |#2|) (-10 -8 (-15 -2795 ((-108) |#1| |#1|)) (-15 -2948 (|#1|)) (-15 -2878 ((-3 |#1| "failed") |#1|)) (-15 -4105 ((-525) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2069 ((-205) |#1|)) (-15 -2069 ((-357) |#1|)) (-15 -2069 ((-501) |#1|)) (-15 -4105 ((-1092) |#1|)) (-15 -1934 ((-3 (-1092) "failed") |#1|)) (-15 -4100 (|#1| (-1092))) (-15 -1903 (|#1|)) (-15 -1372 (|#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -2999 (|#1| |#1|)) (-15 -3552 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -3552 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -2069 ((-827 (-357)) |#1|)) (-15 -2069 ((-827 (-525)) |#1|)) (-15 -3090 ((-632 |#2|) (-632 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-632 (-525)) (-632 |#1|))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1|)) (-15 -2016 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4105 (|#2| |#1|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -4100 (|#1| |#2|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -4100 (|#1| |#1|)) (-15 -4100 (|#1| (-525))) (-15 -2448 ((-713))) (-15 -4100 ((-798) |#1|))) (-925 |#2|) (-517)) (T -924))
+((-2448 (*1 *2) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-924 *3 *4)) (-4 *3 (-925 *4)))))
+(-10 -8 (-15 -2795 ((-108) |#1| |#1|)) (-15 -2948 (|#1|)) (-15 -2878 ((-3 |#1| "failed") |#1|)) (-15 -4105 ((-525) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2069 ((-205) |#1|)) (-15 -2069 ((-357) |#1|)) (-15 -2069 ((-501) |#1|)) (-15 -4105 ((-1092) |#1|)) (-15 -1934 ((-3 (-1092) "failed") |#1|)) (-15 -4100 (|#1| (-1092))) (-15 -1903 (|#1|)) (-15 -1372 (|#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -2999 (|#1| |#1|)) (-15 -3552 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -3552 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -2069 ((-827 (-357)) |#1|)) (-15 -2069 ((-827 (-525)) |#1|)) (-15 -3090 ((-632 |#2|) (-632 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-632 (-525)) (-632 |#1|))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1|)) (-15 -2016 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4105 (|#2| |#1|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -4100 (|#1| |#2|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -4100 (|#1| |#1|)) (-15 -4100 (|#1| (-525))) (-15 -2448 ((-713))) (-15 -4100 ((-798) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-1653 ((|#1| $) 139 (|has| |#1| (-286)))) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-3222 (((-3 $ "failed") $ $) 19)) (-2426 (((-396 (-1088 $)) (-1088 $)) 130 (|has| |#1| (-844)))) (-4195 (($ $) 73)) (-3586 (((-396 $) $) 72)) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 133 (|has| |#1| (-844)))) (-1507 (((-108) $ $) 59)) (-2971 (((-525) $) 120 (|has| |#1| (-762)))) (-2475 (($) 17 T CONST)) (-1934 (((-3 |#1| "failed") $) 178) (((-3 (-1092) "failed") $) 128 (|has| |#1| (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) 112 (|has| |#1| (-968 (-525)))) (((-3 (-525) "failed") $) 110 (|has| |#1| (-968 (-525))))) (-4105 ((|#1| $) 177) (((-1092) $) 127 (|has| |#1| (-968 (-1092)))) (((-385 (-525)) $) 111 (|has| |#1| (-968 (-525)))) (((-525) $) 109 (|has| |#1| (-968 (-525))))) (-1356 (($ $ $) 55)) (-3090 (((-632 (-525)) (-632 $)) 152 (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 151 (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 150) (((-632 |#1|) (-632 $)) 149)) (-3300 (((-3 $ "failed") $) 34)) (-1903 (($) 137 (|has| |#1| (-510)))) (-1332 (($ $ $) 56)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 51)) (-1798 (((-108) $) 71)) (-1889 (((-108) $) 122 (|has| |#1| (-762)))) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 146 (|has| |#1| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 145 (|has| |#1| (-821 (-357))))) (-2278 (((-108) $) 31)) (-2999 (($ $) 141)) (-4066 ((|#1| $) 143)) (-2878 (((-3 $ "failed") $) 108 (|has| |#1| (-1068)))) (-4079 (((-108) $) 121 (|has| |#1| (-762)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-3033 (($ $ $) 118 (|has| |#1| (-789)))) (-1609 (($ $ $) 117 (|has| |#1| (-789)))) (-2016 (($ (-1 |#1| |#1|) $) 169)) (-2739 (($ $ $) 46) (($ (-592 $)) 45)) (-1289 (((-1075) $) 9)) (-1387 (($ $) 70)) (-2948 (($) 107 (|has| |#1| (-1068)) CONST)) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2772 (($ $ $) 48) (($ (-592 $)) 47)) (-1372 (($ $) 138 (|has| |#1| (-286)))) (-1340 ((|#1| $) 135 (|has| |#1| (-510)))) (-3089 (((-396 (-1088 $)) (-1088 $)) 132 (|has| |#1| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) 131 (|has| |#1| (-844)))) (-4201 (((-396 $) $) 74)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1311 (((-3 $ "failed") $ $) 42)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2825 (($ $ (-592 |#1|) (-592 |#1|)) 175 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 173 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 172 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) 171 (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) |#1|) 170 (|has| |#1| (-486 (-1092) |#1|)))) (-1927 (((-713) $) 58)) (-3431 (($ $ |#1|) 176 (|has| |#1| (-265 |#1| |#1|)))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 57)) (-2702 (($ $) 168 (|has| |#1| (-213))) (($ $ (-713)) 166 (|has| |#1| (-213))) (($ $ (-1092)) 164 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 163 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 162 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) 161 (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-2874 (($ $) 140)) (-4080 ((|#1| $) 142)) (-2069 (((-827 (-525)) $) 148 (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) 147 (|has| |#1| (-567 (-827 (-357))))) (((-501) $) 125 (|has| |#1| (-567 (-501)))) (((-357) $) 124 (|has| |#1| (-953))) (((-205) $) 123 (|has| |#1| (-953)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) 134 (-3944 (|has| $ (-136)) (|has| |#1| (-844))))) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ |#1|) 181) (($ (-1092)) 129 (|has| |#1| (-968 (-1092))))) (-1463 (((-3 $ "failed") $) 126 (-2067 (|has| |#1| (-136)) (-3944 (|has| $ (-136)) (|has| |#1| (-844)))))) (-2448 (((-713)) 29)) (-3064 ((|#1| $) 136 (|has| |#1| (-510)))) (-1571 (((-108) $ $) 39)) (-2380 (($ $) 119 (|has| |#1| (-762)))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $) 167 (|has| |#1| (-213))) (($ $ (-713)) 165 (|has| |#1| (-213))) (($ $ (-1092)) 160 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 159 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 158 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) 157 (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-2830 (((-108) $ $) 115 (|has| |#1| (-789)))) (-2807 (((-108) $ $) 114 (|has| |#1| (-789)))) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 116 (|has| |#1| (-789)))) (-2795 (((-108) $ $) 113 (|has| |#1| (-789)))) (-2880 (($ $ $) 64) (($ |#1| |#1|) 144)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
(((-925 |#1|) (-131) (-517)) (T -925))
-((-4075 (*1 *1 *2 *2) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))) (-3858 (*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))) (-4143 (*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-286)))) (-3628 (*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-286)))) (-2502 (*1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-510)) (-4 *2 (-517)))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-510)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-510)))))
-(-13 (-341) (-37 |t#1|) (-968 |t#1|) (-316 |t#1|) (-211 |t#1|) (-355 |t#1|) (-819 |t#1|) (-378 |t#1|) (-10 -8 (-15 -4075 ($ |t#1| |t#1|)) (-15 -3114 (|t#1| $)) (-15 -3123 (|t#1| $)) (-15 -3858 ($ $)) (-15 -4143 ($ $)) (IF (|has| |t#1| (-1068)) (-6 (-1068)) |%noBranch|) (IF (|has| |t#1| (-968 (-525))) (PROGN (-6 (-968 (-525))) (-6 (-968 (-385 (-525))))) |%noBranch|) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-762)) (-6 (-762)) |%noBranch|) (IF (|has| |t#1| (-953)) (-6 (-953)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-968 (-1092))) (-6 (-968 (-1092))) |%noBranch|) (IF (|has| |t#1| (-286)) (PROGN (-15 -1548 (|t#1| $)) (-15 -3628 ($ $))) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -2502 ($)) (-15 -3074 (|t#1| $)) (-15 -2487 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) . T) ((-567 (-205)) |has| |#1| (-953)) ((-567 (-357)) |has| |#1| (-953)) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-827 (-357))) |has| |#1| (-567 (-827 (-357)))) ((-567 (-827 (-525))) |has| |#1| (-567 (-827 (-525)))) ((-211 |#1|) . T) ((-213) |has| |#1| (-213)) ((-223) . T) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-269) . T) ((-286) . T) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-341) . T) ((-316 |#1|) . T) ((-355 |#1|) . T) ((-378 |#1|) . T) ((-429) . T) ((-486 (-1092) |#1|) |has| |#1| (-486 (-1092) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-669) . T) ((-733) |has| |#1| (-762)) ((-734) |has| |#1| (-762)) ((-736) |has| |#1| (-762)) ((-737) |has| |#1| (-762)) ((-762) |has| |#1| (-762)) ((-787) |has| |#1| (-762)) ((-789) -3254 (|has| |#1| (-789)) (|has| |#1| (-762))) ((-835 (-1092)) |has| |#1| (-835 (-1092))) ((-821 (-357)) |has| |#1| (-821 (-357))) ((-821 (-525)) |has| |#1| (-821 (-525))) ((-819 |#1|) . T) ((-844) |has| |#1| (-844)) ((-855) . T) ((-953) |has| |#1| (-953)) ((-968 (-385 (-525))) |has| |#1| (-968 (-525))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 (-1092)) |has| |#1| (-968 (-1092))) ((-968 |#1|) . T) ((-983 #0#) . T) ((-983 |#1|) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1068) |has| |#1| (-1068)) ((-1128) . T) ((-1132) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-2862 (($ (-1059 |#1| |#2|)) 11)) (-1716 (((-1059 |#1| |#2|) $) 12)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3406 ((|#2| $ (-220 |#1| |#2|)) 16)) (-1217 (((-798) $) NIL)) (-3349 (($) NIL T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL)))
-(((-926 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2862 ($ (-1059 |#1| |#2|))) (-15 -1716 ((-1059 |#1| |#2|) $)) (-15 -3406 (|#2| $ (-220 |#1| |#2|))))) (-856) (-341)) (T -926))
-((-2862 (*1 *1 *2) (-12 (-5 *2 (-1059 *3 *4)) (-14 *3 (-856)) (-4 *4 (-341)) (-5 *1 (-926 *3 *4)))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-1059 *3 *4)) (-5 *1 (-926 *3 *4)) (-14 *3 (-856)) (-4 *4 (-341)))) (-3406 (*1 *2 *1 *3) (-12 (-5 *3 (-220 *4 *2)) (-14 *4 (-856)) (-4 *2 (-341)) (-5 *1 (-926 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -2862 ($ (-1059 |#1| |#2|))) (-15 -1716 ((-1059 |#1| |#2|) $)) (-15 -3406 (|#2| $ (-220 |#1| |#2|)))))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3991 (((-108) $ (-713)) 8)) (-2169 (($) 7 T CONST)) (-3680 (($ $) 46)) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) 9)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-4178 (((-713) $) 45)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2992 ((|#1| $) 39)) (-1262 (($ |#1| $) 40)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-2417 ((|#1| $) 44)) (-4127 ((|#1| $) 41)) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2859 ((|#1| |#1| $) 48)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-1892 ((|#1| $) 47)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-1956 (($ (-592 |#1|)) 42)) (-1407 ((|#1| $) 43)) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-2880 (*1 *1 *2 *2) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))) (-4066 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))) (-4080 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))) (-2999 (*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))) (-2874 (*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-286)))) (-1372 (*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-286)))) (-1903 (*1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-510)) (-4 *2 (-517)))) (-3064 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-510)))) (-1340 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-510)))))
+(-13 (-341) (-37 |t#1|) (-968 |t#1|) (-316 |t#1|) (-211 |t#1|) (-355 |t#1|) (-819 |t#1|) (-378 |t#1|) (-10 -8 (-15 -2880 ($ |t#1| |t#1|)) (-15 -4066 (|t#1| $)) (-15 -4080 (|t#1| $)) (-15 -2999 ($ $)) (-15 -2874 ($ $)) (IF (|has| |t#1| (-1068)) (-6 (-1068)) |%noBranch|) (IF (|has| |t#1| (-968 (-525))) (PROGN (-6 (-968 (-525))) (-6 (-968 (-385 (-525))))) |%noBranch|) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-762)) (-6 (-762)) |%noBranch|) (IF (|has| |t#1| (-953)) (-6 (-953)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-968 (-1092))) (-6 (-968 (-1092))) |%noBranch|) (IF (|has| |t#1| (-286)) (PROGN (-15 -1653 (|t#1| $)) (-15 -1372 ($ $))) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -1903 ($)) (-15 -3064 (|t#1| $)) (-15 -1340 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) . T) ((-567 (-205)) |has| |#1| (-953)) ((-567 (-357)) |has| |#1| (-953)) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-827 (-357))) |has| |#1| (-567 (-827 (-357)))) ((-567 (-827 (-525))) |has| |#1| (-567 (-827 (-525)))) ((-211 |#1|) . T) ((-213) |has| |#1| (-213)) ((-223) . T) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-269) . T) ((-286) . T) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-341) . T) ((-316 |#1|) . T) ((-355 |#1|) . T) ((-378 |#1|) . T) ((-429) . T) ((-486 (-1092) |#1|) |has| |#1| (-486 (-1092) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-669) . T) ((-733) |has| |#1| (-762)) ((-734) |has| |#1| (-762)) ((-736) |has| |#1| (-762)) ((-737) |has| |#1| (-762)) ((-762) |has| |#1| (-762)) ((-787) |has| |#1| (-762)) ((-789) -2067 (|has| |#1| (-789)) (|has| |#1| (-762))) ((-835 (-1092)) |has| |#1| (-835 (-1092))) ((-821 (-357)) |has| |#1| (-821 (-357))) ((-821 (-525)) |has| |#1| (-821 (-525))) ((-819 |#1|) . T) ((-844) |has| |#1| (-844)) ((-855) . T) ((-953) |has| |#1| (-953)) ((-968 (-385 (-525))) |has| |#1| (-968 (-525))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 (-1092)) |has| |#1| (-968 (-1092))) ((-968 |#1|) . T) ((-983 #0#) . T) ((-983 |#1|) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1068) |has| |#1| (-1068)) ((-1128) . T) ((-1132) . T))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-1729 (($ (-1059 |#1| |#2|)) 11)) (-4054 (((-1059 |#1| |#2|) $) 12)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-3431 ((|#2| $ (-220 |#1| |#2|)) 16)) (-4100 (((-798) $) NIL)) (-3364 (($) NIL T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL)))
+(((-926 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1729 ($ (-1059 |#1| |#2|))) (-15 -4054 ((-1059 |#1| |#2|) $)) (-15 -3431 (|#2| $ (-220 |#1| |#2|))))) (-856) (-341)) (T -926))
+((-1729 (*1 *1 *2) (-12 (-5 *2 (-1059 *3 *4)) (-14 *3 (-856)) (-4 *4 (-341)) (-5 *1 (-926 *3 *4)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-1059 *3 *4)) (-5 *1 (-926 *3 *4)) (-14 *3 (-856)) (-4 *4 (-341)))) (-3431 (*1 *2 *1 *3) (-12 (-5 *3 (-220 *4 *2)) (-14 *4 (-856)) (-4 *2 (-341)) (-5 *1 (-926 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -1729 ($ (-1059 |#1| |#2|))) (-15 -4054 ((-1059 |#1| |#2|) $)) (-15 -3431 (|#2| $ (-220 |#1| |#2|)))))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3779 (((-108) $ (-713)) 8)) (-2475 (($) 7 T CONST)) (-1883 (($ $) 46)) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) 9)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-4128 (((-713) $) 45)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-3577 ((|#1| $) 39)) (-3246 (($ |#1| $) 40)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-3010 ((|#1| $) 44)) (-2724 ((|#1| $) 41)) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-1699 ((|#1| |#1| $) 48)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-1462 ((|#1| $) 47)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3905 (($ (-592 |#1|)) 42)) (-1977 ((|#1| $) 43)) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-927 |#1|) (-131) (-1128)) (T -927))
-((-2859 (*1 *2 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))) (-1892 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))) (-3680 (*1 *1 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1128)) (-5 *2 (-713)))) (-2417 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))) (-1407 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4258) (-15 -2859 (|t#1| |t#1| $)) (-15 -1892 (|t#1| $)) (-15 -3680 ($ $)) (-15 -4178 ((-713) $)) (-15 -2417 (|t#1| $)) (-15 -1407 (|t#1| $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
-((-1209 (((-108) $) 42)) (-3077 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1572 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 43)) (-1514 (((-3 (-385 (-525)) "failed") $) 78)) (-3933 (((-108) $) 72)) (-3303 (((-385 (-525)) $) 76)) (-1396 (((-108) $) 41)) (-2382 ((|#2| $) 22)) (-3165 (($ (-1 |#2| |#2|) $) 19)) (-2997 (($ $) 61)) (-3376 (($ $) NIL) (($ $ (-713)) NIL) (($ $ (-1092)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3210 (((-501) $) 67)) (-1499 (($ $) 17)) (-1217 (((-798) $) 56) (($ (-525)) 38) (($ |#2|) 36) (($ (-385 (-525))) NIL)) (-3917 (((-713)) 10)) (-2802 ((|#2| $) 71)) (-3955 (((-108) $ $) 25)) (-3978 (((-108) $ $) 69)) (-4061 (($ $) 29) (($ $ $) 28)) (-4047 (($ $ $) 26)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
-(((-928 |#1| |#2|) (-10 -8 (-15 -1217 (|#1| (-385 (-525)))) (-15 -3978 ((-108) |#1| |#1|)) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 -2997 (|#1| |#1|)) (-15 -3210 ((-501) |#1|)) (-15 -1514 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3303 ((-385 (-525)) |#1|)) (-15 -3933 ((-108) |#1|)) (-15 -2802 (|#2| |#1|)) (-15 -2382 (|#2| |#1|)) (-15 -1499 (|#1| |#1|)) (-15 -3165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-525) |#1|)) (-15 -1217 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1217 (|#1| (-525))) (-15 -3917 ((-713))) (-15 -1396 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4061 (|#1| |#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -1209 ((-108) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -1217 ((-798) |#1|)) (-15 -3955 ((-108) |#1| |#1|))) (-929 |#2|) (-160)) (T -928))
-((-3917 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-928 *3 *4)) (-4 *3 (-929 *4)))))
-(-10 -8 (-15 -1217 (|#1| (-385 (-525)))) (-15 -3978 ((-108) |#1| |#1|)) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 -2997 (|#1| |#1|)) (-15 -3210 ((-501) |#1|)) (-15 -1514 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3303 ((-385 (-525)) |#1|)) (-15 -3933 ((-108) |#1|)) (-15 -2802 (|#2| |#1|)) (-15 -2382 (|#2| |#1|)) (-15 -1499 (|#1| |#1|)) (-15 -3165 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-525) |#1|)) (-15 -1217 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1217 (|#1| (-525))) (-15 -3917 ((-713))) (-15 -1396 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4061 (|#1| |#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -1209 ((-108) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -1217 ((-798) |#1|)) (-15 -3955 ((-108) |#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3077 (((-3 (-525) "failed") $) 119 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 117 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 116)) (-1572 (((-525) $) 120 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 118 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 115)) (-1994 (((-632 (-525)) (-632 $)) 90 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 89 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 88) (((-632 |#1|) (-632 $)) 87)) (-3457 (((-3 $ "failed") $) 34)) (-2796 ((|#1| $) 80)) (-1514 (((-3 (-385 (-525)) "failed") $) 76 (|has| |#1| (-510)))) (-3933 (((-108) $) 78 (|has| |#1| (-510)))) (-3303 (((-385 (-525)) $) 77 (|has| |#1| (-510)))) (-1942 (($ |#1| |#1| |#1| |#1|) 81)) (-1396 (((-108) $) 31)) (-2382 ((|#1| $) 82)) (-2638 (($ $ $) 68 (|has| |#1| (-789)))) (-3662 (($ $ $) 67 (|has| |#1| (-789)))) (-3165 (($ (-1 |#1| |#1|) $) 91)) (-2619 (((-1075) $) 9)) (-2997 (($ $) 73 (|has| |#1| (-341)))) (-4237 ((|#1| $) 83)) (-1839 ((|#1| $) 84)) (-2035 ((|#1| $) 85)) (-2093 (((-1039) $) 10)) (-2457 (($ $ (-592 |#1|) (-592 |#1|)) 97 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 95 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 94 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) 93 (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) |#1|) 92 (|has| |#1| (-486 (-1092) |#1|)))) (-3406 (($ $ |#1|) 98 (|has| |#1| (-265 |#1| |#1|)))) (-3376 (($ $) 114 (|has| |#1| (-213))) (($ $ (-713)) 112 (|has| |#1| (-213))) (($ $ (-1092)) 110 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 109 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 108 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) 107 (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-3210 (((-501) $) 74 (|has| |#1| (-567 (-501))))) (-1499 (($ $) 86)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ (-385 (-525))) 62 (-3254 (|has| |#1| (-341)) (|has| |#1| (-968 (-385 (-525))))))) (-3637 (((-3 $ "failed") $) 75 (|has| |#1| (-136)))) (-3917 (((-713)) 29)) (-2802 ((|#1| $) 79 (|has| |#1| (-986)))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 72 (|has| |#1| (-341)))) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $) 113 (|has| |#1| (-213))) (($ $ (-713)) 111 (|has| |#1| (-213))) (($ $ (-1092)) 106 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 105 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 104 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) 103 (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-4011 (((-108) $ $) 65 (|has| |#1| (-789)))) (-3987 (((-108) $ $) 64 (|has| |#1| (-789)))) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 66 (|has| |#1| (-789)))) (-3978 (((-108) $ $) 63 (|has| |#1| (-789)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 71 (|has| |#1| (-341)))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-385 (-525))) 70 (|has| |#1| (-341))) (($ (-385 (-525)) $) 69 (|has| |#1| (-341)))))
+((-1699 (*1 *2 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))) (-1883 (*1 *1 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))) (-4128 (*1 *2 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1128)) (-5 *2 (-713)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4259) (-15 -1699 (|t#1| |t#1| $)) (-15 -1462 (|t#1| $)) (-15 -1883 ($ $)) (-15 -4128 ((-713) $)) (-15 -3010 (|t#1| $)) (-15 -1977 (|t#1| $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
+((-2414 (((-108) $) 42)) (-1934 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-4105 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 43)) (-3306 (((-3 (-385 (-525)) "failed") $) 78)) (-1417 (((-108) $) 72)) (-1367 (((-385 (-525)) $) 76)) (-2278 (((-108) $) 41)) (-2704 ((|#2| $) 22)) (-2016 (($ (-1 |#2| |#2|) $) 19)) (-1387 (($ $) 61)) (-2702 (($ $) NIL) (($ $ (-713)) NIL) (($ $ (-1092)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-2069 (((-501) $) 67)) (-3055 (($ $) 17)) (-4100 (((-798) $) 56) (($ (-525)) 38) (($ |#2|) 36) (($ (-385 (-525))) NIL)) (-2448 (((-713)) 10)) (-2380 ((|#2| $) 71)) (-2775 (((-108) $ $) 25)) (-2795 (((-108) $ $) 69)) (-2871 (($ $) 29) (($ $ $) 28)) (-2860 (($ $ $) 26)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
+(((-928 |#1| |#2|) (-10 -8 (-15 -4100 (|#1| (-385 (-525)))) (-15 -2795 ((-108) |#1| |#1|)) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 -1387 (|#1| |#1|)) (-15 -2069 ((-501) |#1|)) (-15 -3306 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1367 ((-385 (-525)) |#1|)) (-15 -1417 ((-108) |#1|)) (-15 -2380 (|#2| |#1|)) (-15 -2704 (|#2| |#1|)) (-15 -3055 (|#1| |#1|)) (-15 -2016 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1|)) (-15 -4105 (|#2| |#1|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-525) |#1|)) (-15 -4100 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4100 (|#1| (-525))) (-15 -2448 ((-713))) (-15 -2278 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -2414 ((-108) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -4100 ((-798) |#1|)) (-15 -2775 ((-108) |#1| |#1|))) (-929 |#2|) (-160)) (T -928))
+((-2448 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-928 *3 *4)) (-4 *3 (-929 *4)))))
+(-10 -8 (-15 -4100 (|#1| (-385 (-525)))) (-15 -2795 ((-108) |#1| |#1|)) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 -1387 (|#1| |#1|)) (-15 -2069 ((-501) |#1|)) (-15 -3306 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1367 ((-385 (-525)) |#1|)) (-15 -1417 ((-108) |#1|)) (-15 -2380 (|#2| |#1|)) (-15 -2704 (|#2| |#1|)) (-15 -3055 (|#1| |#1|)) (-15 -2016 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1|)) (-15 -4105 (|#2| |#1|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-525) |#1|)) (-15 -4100 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4100 (|#1| (-525))) (-15 -2448 ((-713))) (-15 -2278 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -2414 ((-108) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -4100 ((-798) |#1|)) (-15 -2775 ((-108) |#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1934 (((-3 (-525) "failed") $) 119 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 117 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 116)) (-4105 (((-525) $) 120 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 118 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 115)) (-3090 (((-632 (-525)) (-632 $)) 90 (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 89 (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 88) (((-632 |#1|) (-632 $)) 87)) (-3300 (((-3 $ "failed") $) 34)) (-4220 ((|#1| $) 80)) (-3306 (((-3 (-385 (-525)) "failed") $) 76 (|has| |#1| (-510)))) (-1417 (((-108) $) 78 (|has| |#1| (-510)))) (-1367 (((-385 (-525)) $) 77 (|has| |#1| (-510)))) (-3755 (($ |#1| |#1| |#1| |#1|) 81)) (-2278 (((-108) $) 31)) (-2704 ((|#1| $) 82)) (-3033 (($ $ $) 68 (|has| |#1| (-789)))) (-1609 (($ $ $) 67 (|has| |#1| (-789)))) (-2016 (($ (-1 |#1| |#1|) $) 91)) (-1289 (((-1075) $) 9)) (-1387 (($ $) 73 (|has| |#1| (-341)))) (-1413 ((|#1| $) 83)) (-2155 ((|#1| $) 84)) (-3465 ((|#1| $) 85)) (-3993 (((-1039) $) 10)) (-2825 (($ $ (-592 |#1|) (-592 |#1|)) 97 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 95 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 94 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) 93 (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) |#1|) 92 (|has| |#1| (-486 (-1092) |#1|)))) (-3431 (($ $ |#1|) 98 (|has| |#1| (-265 |#1| |#1|)))) (-2702 (($ $) 114 (|has| |#1| (-213))) (($ $ (-713)) 112 (|has| |#1| (-213))) (($ $ (-1092)) 110 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 109 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 108 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) 107 (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-2069 (((-501) $) 74 (|has| |#1| (-567 (-501))))) (-3055 (($ $) 86)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ (-385 (-525))) 62 (-2067 (|has| |#1| (-341)) (|has| |#1| (-968 (-385 (-525))))))) (-1463 (((-3 $ "failed") $) 75 (|has| |#1| (-136)))) (-2448 (((-713)) 29)) (-2380 ((|#1| $) 79 (|has| |#1| (-986)))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 72 (|has| |#1| (-341)))) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $) 113 (|has| |#1| (-213))) (($ $ (-713)) 111 (|has| |#1| (-213))) (($ $ (-1092)) 106 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 105 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 104 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) 103 (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-2830 (((-108) $ $) 65 (|has| |#1| (-789)))) (-2807 (((-108) $ $) 64 (|has| |#1| (-789)))) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 66 (|has| |#1| (-789)))) (-2795 (((-108) $ $) 63 (|has| |#1| (-789)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 71 (|has| |#1| (-341)))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-385 (-525))) 70 (|has| |#1| (-341))) (($ (-385 (-525)) $) 69 (|has| |#1| (-341)))))
(((-929 |#1|) (-131) (-160)) (T -929))
-((-1499 (*1 *1 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-4237 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-2382 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-1942 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-2796 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-2802 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)) (-4 *2 (-986)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) (-3303 (*1 *2 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-1514 (*1 *2 *1) (|partial| -12 (-4 *1 (-929 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))))
-(-13 (-37 |t#1|) (-389 |t#1|) (-211 |t#1|) (-316 |t#1|) (-355 |t#1|) (-10 -8 (-15 -1499 ($ $)) (-15 -2035 (|t#1| $)) (-15 -1839 (|t#1| $)) (-15 -4237 (|t#1| $)) (-15 -2382 (|t#1| $)) (-15 -1942 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2796 (|t#1| $)) (IF (|has| |t#1| (-269)) (-6 (-269)) |%noBranch|) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-223)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-986)) (-15 -2802 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -3933 ((-108) $)) (-15 -3303 ((-385 (-525)) $)) (-15 -1514 ((-3 (-385 (-525)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-341)) ((-37 |#1|) . T) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-341)) ((-107 |#1| |#1|) . T) ((-107 $ $) -3254 (|has| |#1| (-341)) (|has| |#1| (-269))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-211 |#1|) . T) ((-213) |has| |#1| (-213)) ((-223) |has| |#1| (-341)) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-269) -3254 (|has| |#1| (-341)) (|has| |#1| (-269))) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-316 |#1|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-486 (-1092) |#1|) |has| |#1| (-486 (-1092) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-594 #0#) |has| |#1| (-341)) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-341)) ((-660 |#1|) . T) ((-669) . T) ((-789) |has| |#1| (-789)) ((-835 (-1092)) |has| |#1| (-835 (-1092))) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-983 #0#) |has| |#1| (-341)) ((-983 |#1|) . T) ((-983 $) -3254 (|has| |#1| (-341)) (|has| |#1| (-269))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-3165 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-930 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3165 (|#3| (-1 |#4| |#2|) |#1|))) (-929 |#2|) (-160) (-929 |#4|) (-160)) (T -930))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-4 *2 (-929 *6)) (-5 *1 (-930 *4 *5 *2 *6)) (-4 *4 (-929 *5)))))
-(-10 -7 (-15 -3165 (|#3| (-1 |#4| |#2|) |#1|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-1572 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2796 ((|#1| $) 12)) (-1514 (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-510)))) (-3933 (((-108) $) NIL (|has| |#1| (-510)))) (-3303 (((-385 (-525)) $) NIL (|has| |#1| (-510)))) (-1942 (($ |#1| |#1| |#1| |#1|) 16)) (-1396 (((-108) $) NIL)) (-2382 ((|#1| $) NIL)) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL (|has| |#1| (-341)))) (-4237 ((|#1| $) 15)) (-1839 ((|#1| $) 14)) (-2035 ((|#1| $) 13)) (-2093 (((-1039) $) NIL)) (-2457 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) |#1|) NIL (|has| |#1| (-486 (-1092) |#1|)))) (-3406 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-3376 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3210 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1499 (($ $) NIL)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-385 (-525))) NIL (-3254 (|has| |#1| (-341)) (|has| |#1| (-968 (-385 (-525))))))) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) NIL)) (-2802 ((|#1| $) NIL (|has| |#1| (-986)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3349 (($) 8 T CONST)) (-3359 (($) 10 T CONST)) (-2022 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-341)))))
+((-3055 (*1 *1 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-1413 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-2704 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-3755 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-4220 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-2380 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)) (-4 *2 (-986)))) (-1417 (*1 *2 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) (-1367 (*1 *2 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-3306 (*1 *2 *1) (|partial| -12 (-4 *1 (-929 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))))
+(-13 (-37 |t#1|) (-389 |t#1|) (-211 |t#1|) (-316 |t#1|) (-355 |t#1|) (-10 -8 (-15 -3055 ($ $)) (-15 -3465 (|t#1| $)) (-15 -2155 (|t#1| $)) (-15 -1413 (|t#1| $)) (-15 -2704 (|t#1| $)) (-15 -3755 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4220 (|t#1| $)) (IF (|has| |t#1| (-269)) (-6 (-269)) |%noBranch|) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-223)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-986)) (-15 -2380 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -1417 ((-108) $)) (-15 -1367 ((-385 (-525)) $)) (-15 -3306 ((-3 (-385 (-525)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-341)) ((-37 |#1|) . T) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-341)) ((-107 |#1| |#1|) . T) ((-107 $ $) -2067 (|has| |#1| (-341)) (|has| |#1| (-269))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-211 |#1|) . T) ((-213) |has| |#1| (-213)) ((-223) |has| |#1| (-341)) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-269) -2067 (|has| |#1| (-341)) (|has| |#1| (-269))) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-316 |#1|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-486 (-1092) |#1|) |has| |#1| (-486 (-1092) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-594 #0#) |has| |#1| (-341)) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-341)) ((-660 |#1|) . T) ((-669) . T) ((-789) |has| |#1| (-789)) ((-835 (-1092)) |has| |#1| (-835 (-1092))) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-983 #0#) |has| |#1| (-341)) ((-983 |#1|) . T) ((-983 $) -2067 (|has| |#1| (-341)) (|has| |#1| (-269))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-2016 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-930 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2016 (|#3| (-1 |#4| |#2|) |#1|))) (-929 |#2|) (-160) (-929 |#4|) (-160)) (T -930))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-4 *2 (-929 *6)) (-5 *1 (-930 *4 *5 *2 *6)) (-4 *4 (-929 *5)))))
+(-10 -7 (-15 -2016 (|#3| (-1 |#4| |#2|) |#1|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-4105 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-4220 ((|#1| $) 12)) (-3306 (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-510)))) (-1417 (((-108) $) NIL (|has| |#1| (-510)))) (-1367 (((-385 (-525)) $) NIL (|has| |#1| (-510)))) (-3755 (($ |#1| |#1| |#1| |#1|) 16)) (-2278 (((-108) $) NIL)) (-2704 ((|#1| $) NIL)) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL (|has| |#1| (-341)))) (-1413 ((|#1| $) 15)) (-2155 ((|#1| $) 14)) (-3465 ((|#1| $) 13)) (-3993 (((-1039) $) NIL)) (-2825 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1092)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1092) |#1|))) (($ $ (-1092) |#1|) NIL (|has| |#1| (-486 (-1092) |#1|)))) (-3431 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-2702 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2069 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-3055 (($ $) NIL)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-385 (-525))) NIL (-2067 (|has| |#1| (-341)) (|has| |#1| (-968 (-385 (-525))))))) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) NIL)) (-2380 ((|#1| $) NIL (|has| |#1| (-986)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3364 (($) 8 T CONST)) (-3375 (($) 10 T CONST)) (-2401 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-341)))))
(((-931 |#1|) (-929 |#1|) (-160)) (T -931))
NIL
(-929 |#1|)
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3991 (((-108) $ (-713)) NIL)) (-2169 (($) NIL T CONST)) (-3680 (($ $) 20)) (-3689 (($ (-592 |#1|)) 29)) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-4178 (((-713) $) 22)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2992 ((|#1| $) 24)) (-1262 (($ |#1| $) 15)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-2417 ((|#1| $) 23)) (-4127 ((|#1| $) 19)) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2859 ((|#1| |#1| $) 14)) (-2659 (((-108) $) 17)) (-2512 (($) NIL)) (-1892 ((|#1| $) 18)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) NIL)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-1956 (($ (-592 |#1|)) NIL)) (-1407 ((|#1| $) 26)) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-932 |#1|) (-13 (-927 |#1|) (-10 -8 (-15 -3689 ($ (-592 |#1|))))) (-1020)) (T -932))
-((-3689 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-932 *3)))))
-(-13 (-927 |#1|) (-10 -8 (-15 -3689 ($ (-592 |#1|)))))
-((-2782 (($ $) 12)) (-2171 (($ $ (-525)) 13)))
-(((-933 |#1|) (-10 -8 (-15 -2782 (|#1| |#1|)) (-15 -2171 (|#1| |#1| (-525)))) (-934)) (T -933))
-NIL
-(-10 -8 (-15 -2782 (|#1| |#1|)) (-15 -2171 (|#1| |#1| (-525))))
-((-2782 (($ $) 6)) (-2171 (($ $ (-525)) 7)) (** (($ $ (-385 (-525))) 8)))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3779 (((-108) $ (-713)) NIL)) (-2475 (($) NIL T CONST)) (-1883 (($ $) 20)) (-3766 (($ (-592 |#1|)) 29)) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-4128 (((-713) $) 22)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3577 ((|#1| $) 24)) (-3246 (($ |#1| $) 15)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3010 ((|#1| $) 23)) (-2724 ((|#1| $) 19)) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-1699 ((|#1| |#1| $) 14)) (-3479 (((-108) $) 17)) (-1558 (($) NIL)) (-1462 ((|#1| $) 18)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) NIL)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3905 (($ (-592 |#1|)) NIL)) (-1977 ((|#1| $) 26)) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-932 |#1|) (-13 (-927 |#1|) (-10 -8 (-15 -3766 ($ (-592 |#1|))))) (-1020)) (T -932))
+((-3766 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-932 *3)))))
+(-13 (-927 |#1|) (-10 -8 (-15 -3766 ($ (-592 |#1|)))))
+((-4211 (($ $) 12)) (-1303 (($ $ (-525)) 13)))
+(((-933 |#1|) (-10 -8 (-15 -4211 (|#1| |#1|)) (-15 -1303 (|#1| |#1| (-525)))) (-934)) (T -933))
+NIL
+(-10 -8 (-15 -4211 (|#1| |#1|)) (-15 -1303 (|#1| |#1| (-525))))
+((-4211 (($ $) 6)) (-1303 (($ $ (-525)) 7)) (** (($ $ (-385 (-525))) 8)))
(((-934) (-131)) (T -934))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-934)) (-5 *2 (-385 (-525))))) (-2171 (*1 *1 *1 *2) (-12 (-4 *1 (-934)) (-5 *2 (-525)))) (-2782 (*1 *1 *1) (-4 *1 (-934))))
-(-13 (-10 -8 (-15 -2782 ($ $)) (-15 -2171 ($ $ (-525))) (-15 ** ($ $ (-385 (-525))))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2089 (((-2 (|:| |num| (-1174 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| (-385 |#2|) (-341)))) (-4218 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3171 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-1627 (((-632 (-385 |#2|)) (-1174 $)) NIL) (((-632 (-385 |#2|))) NIL)) (-2952 (((-385 |#2|) $) NIL)) (-2971 (((-1102 (-856) (-713)) (-525)) NIL (|has| (-385 |#2|) (-327)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-2669 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2193 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1834 (((-713)) NIL (|has| (-385 |#2|) (-346)))) (-2549 (((-108)) NIL)) (-3934 (((-108) |#1|) 148) (((-108) |#2|) 153)) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL (|has| (-385 |#2|) (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-385 |#2|) (-968 (-385 (-525))))) (((-3 (-385 |#2|) "failed") $) NIL)) (-1572 (((-525) $) NIL (|has| (-385 |#2|) (-968 (-525)))) (((-385 (-525)) $) NIL (|has| (-385 |#2|) (-968 (-385 (-525))))) (((-385 |#2|) $) NIL)) (-2064 (($ (-1174 (-385 |#2|)) (-1174 $)) NIL) (($ (-1174 (-385 |#2|))) 70) (($ (-1174 |#2|) |#2|) NIL)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-385 |#2|) (-327)))) (-1747 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-1906 (((-632 (-385 |#2|)) $ (-1174 $)) NIL) (((-632 (-385 |#2|)) $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-385 |#2|))) (|:| |vec| (-1174 (-385 |#2|)))) (-632 $) (-1174 $)) NIL) (((-632 (-385 |#2|)) (-632 $)) NIL)) (-1546 (((-1174 $) (-1174 $)) NIL)) (-1284 (($ |#3|) 65) (((-3 $ "failed") (-385 |#3|)) NIL (|has| (-385 |#2|) (-341)))) (-3457 (((-3 $ "failed") $) NIL)) (-4146 (((-592 (-592 |#1|))) NIL (|has| |#1| (-346)))) (-3647 (((-108) |#1| |#1|) NIL)) (-3622 (((-856)) NIL)) (-2502 (($) NIL (|has| (-385 |#2|) (-346)))) (-3345 (((-108)) NIL)) (-1254 (((-108) |#1|) 56) (((-108) |#2|) 150)) (-1733 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| (-385 |#2|) (-341)))) (-1576 (($ $) NIL)) (-2574 (($) NIL (|has| (-385 |#2|) (-327)))) (-3704 (((-108) $) NIL (|has| (-385 |#2|) (-327)))) (-3625 (($ $ (-713)) NIL (|has| (-385 |#2|) (-327))) (($ $) NIL (|has| (-385 |#2|) (-327)))) (-3673 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-2581 (((-856) $) NIL (|has| (-385 |#2|) (-327))) (((-775 (-856)) $) NIL (|has| (-385 |#2|) (-327)))) (-1396 (((-108) $) NIL)) (-3954 (((-713)) NIL)) (-1272 (((-1174 $) (-1174 $)) NIL)) (-2382 (((-385 |#2|) $) NIL)) (-2112 (((-592 (-887 |#1|)) (-1092)) NIL (|has| |#1| (-341)))) (-3844 (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-327)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2126 ((|#3| $) NIL (|has| (-385 |#2|) (-341)))) (-3005 (((-856) $) NIL (|has| (-385 |#2|) (-346)))) (-1269 ((|#3| $) NIL)) (-2556 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2619 (((-1075) $) NIL)) (-2548 (((-632 (-385 |#2|))) 52)) (-3350 (((-632 (-385 |#2|))) 51)) (-2997 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-1414 (($ (-1174 |#2|) |#2|) 71)) (-2497 (((-632 (-385 |#2|))) 50)) (-4179 (((-632 (-385 |#2|))) 49)) (-2496 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-2355 (((-2 (|:| |num| (-1174 |#2|)) (|:| |den| |#2|)) $) 77)) (-2933 (((-1174 $)) 46)) (-2641 (((-1174 $)) 45)) (-1464 (((-108) $) NIL)) (-1409 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-2295 (($) NIL (|has| (-385 |#2|) (-327)) CONST)) (-3555 (($ (-856)) NIL (|has| (-385 |#2|) (-346)))) (-2421 (((-3 |#2| "failed")) 63)) (-2093 (((-1039) $) NIL)) (-3590 (((-713)) NIL)) (-3409 (($) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| (-385 |#2|) (-341)))) (-2589 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) NIL (|has| (-385 |#2|) (-327)))) (-2770 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-385 |#2|) (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1715 (((-3 $ "failed") $ $) NIL (|has| (-385 |#2|) (-341)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-3684 (((-713) $) NIL (|has| (-385 |#2|) (-341)))) (-3406 ((|#1| $ |#1| |#1|) NIL)) (-1805 (((-3 |#2| "failed")) 62)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1975 (((-385 |#2|) (-1174 $)) NIL) (((-385 |#2|)) 42)) (-3877 (((-713) $) NIL (|has| (-385 |#2|) (-327))) (((-3 (-713) "failed") $ $) NIL (|has| (-385 |#2|) (-327)))) (-3376 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-713)) NIL (-3254 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3254 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-2725 (((-632 (-385 |#2|)) (-1174 $) (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341)))) (-2756 ((|#3|) 53)) (-2244 (($) NIL (|has| (-385 |#2|) (-327)))) (-2387 (((-1174 (-385 |#2|)) $ (-1174 $)) NIL) (((-632 (-385 |#2|)) (-1174 $) (-1174 $)) NIL) (((-1174 (-385 |#2|)) $) 72) (((-632 (-385 |#2|)) (-1174 $)) NIL)) (-3210 (((-1174 (-385 |#2|)) $) NIL) (($ (-1174 (-385 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| (-385 |#2|) (-327)))) (-2255 (((-1174 $) (-1174 $)) NIL)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 |#2|)) NIL) (($ (-385 (-525))) NIL (-3254 (|has| (-385 |#2|) (-968 (-385 (-525)))) (|has| (-385 |#2|) (-341)))) (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3637 (($ $) NIL (|has| (-385 |#2|) (-327))) (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-136)))) (-1304 ((|#3| $) NIL)) (-3917 (((-713)) NIL)) (-3539 (((-108)) 60)) (-2503 (((-108) |#1|) 154) (((-108) |#2|) 155)) (-3094 (((-1174 $)) 125)) (-3325 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-2103 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1227 (((-108)) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (-3349 (($) 94 T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-713)) NIL (-3254 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3254 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 |#2|)) NIL) (($ (-385 |#2|) $) NIL) (($ (-385 (-525)) $) NIL (|has| (-385 |#2|) (-341))) (($ $ (-385 (-525))) NIL (|has| (-385 |#2|) (-341)))))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-934)) (-5 *2 (-385 (-525))))) (-1303 (*1 *1 *1 *2) (-12 (-4 *1 (-934)) (-5 *2 (-525)))) (-4211 (*1 *1 *1) (-4 *1 (-934))))
+(-13 (-10 -8 (-15 -4211 ($ $)) (-15 -1303 ($ $ (-525))) (-15 ** ($ $ (-385 (-525))))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-2823 (((-2 (|:| |num| (-1174 |#2|)) (|:| |den| |#2|)) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| (-385 |#2|) (-341)))) (-2433 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-1568 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-3855 (((-632 (-385 |#2|)) (-1174 $)) NIL) (((-632 (-385 |#2|))) NIL)) (-2924 (((-385 |#2|) $) NIL)) (-3395 (((-1102 (-856) (-713)) (-525)) NIL (|has| (-385 |#2|) (-327)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3586 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-1507 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1613 (((-713)) NIL (|has| (-385 |#2|) (-346)))) (-1910 (((-108)) NIL)) (-1428 (((-108) |#1|) 148) (((-108) |#2|) 153)) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL (|has| (-385 |#2|) (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-385 |#2|) (-968 (-385 (-525))))) (((-3 (-385 |#2|) "failed") $) NIL)) (-4105 (((-525) $) NIL (|has| (-385 |#2|) (-968 (-525)))) (((-385 (-525)) $) NIL (|has| (-385 |#2|) (-968 (-385 (-525))))) (((-385 |#2|) $) NIL)) (-2580 (($ (-1174 (-385 |#2|)) (-1174 $)) NIL) (($ (-1174 (-385 |#2|))) 70) (($ (-1174 |#2|) |#2|) NIL)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-385 |#2|) (-327)))) (-1356 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-1588 (((-632 (-385 |#2|)) $ (-1174 $)) NIL) (((-632 (-385 |#2|)) $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-385 |#2|))) (|:| |vec| (-1174 (-385 |#2|)))) (-632 $) (-1174 $)) NIL) (((-632 (-385 |#2|)) (-632 $)) NIL)) (-1630 (((-1174 $) (-1174 $)) NIL)) (-3504 (($ |#3|) 65) (((-3 $ "failed") (-385 |#3|)) NIL (|has| (-385 |#2|) (-341)))) (-3300 (((-3 $ "failed") $) NIL)) (-2902 (((-592 (-592 |#1|))) NIL (|has| |#1| (-346)))) (-1531 (((-108) |#1| |#1|) NIL)) (-3085 (((-856)) NIL)) (-1903 (($) NIL (|has| (-385 |#2|) (-346)))) (-1746 (((-108)) NIL)) (-1712 (((-108) |#1|) 56) (((-108) |#2|) 150)) (-1332 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| (-385 |#2|) (-341)))) (-3201 (($ $) NIL)) (-3932 (($) NIL (|has| (-385 |#2|) (-327)))) (-3920 (((-108) $) NIL (|has| (-385 |#2|) (-327)))) (-1339 (($ $ (-713)) NIL (|has| (-385 |#2|) (-327))) (($ $) NIL (|has| (-385 |#2|) (-327)))) (-1798 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-4000 (((-856) $) NIL (|has| (-385 |#2|) (-327))) (((-775 (-856)) $) NIL (|has| (-385 |#2|) (-327)))) (-2278 (((-108) $) NIL)) (-1635 (((-713)) NIL)) (-3946 (((-1174 $) (-1174 $)) NIL)) (-2704 (((-385 |#2|) $) NIL)) (-3024 (((-592 (-887 |#1|)) (-1092)) NIL (|has| |#1| (-341)))) (-2878 (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-327)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2021 ((|#3| $) NIL (|has| (-385 |#2|) (-341)))) (-3685 (((-856) $) NIL (|has| (-385 |#2|) (-346)))) (-3492 ((|#3| $) NIL)) (-2739 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-1289 (((-1075) $) NIL)) (-1896 (((-632 (-385 |#2|))) 52)) (-1779 (((-632 (-385 |#2|))) 51)) (-1387 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-2045 (($ (-1174 |#2|) |#2|) 71)) (-1419 (((-632 (-385 |#2|))) 50)) (-2050 (((-632 (-385 |#2|))) 49)) (-1410 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-3652 (((-2 (|:| |num| (-1174 |#2|)) (|:| |den| |#2|)) $) 77)) (-1218 (((-1174 $)) 46)) (-3295 (((-1174 $)) 45)) (-2570 (((-108) $) NIL)) (-1991 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-2948 (($) NIL (|has| (-385 |#2|) (-327)) CONST)) (-1722 (($ (-856)) NIL (|has| (-385 |#2|) (-346)))) (-3051 (((-3 |#2| "failed")) 63)) (-3993 (((-1039) $) NIL)) (-2173 (((-713)) NIL)) (-3817 (($) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| (-385 |#2|) (-341)))) (-2772 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) NIL (|has| (-385 |#2|) (-327)))) (-4201 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-385 |#2|) (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1311 (((-3 $ "failed") $ $) NIL (|has| (-385 |#2|) (-341)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-1927 (((-713) $) NIL (|has| (-385 |#2|) (-341)))) (-3431 ((|#1| $ |#1| |#1|) NIL)) (-2981 (((-3 |#2| "failed")) 62)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-4115 (((-385 |#2|) (-1174 $)) NIL) (((-385 |#2|)) 42)) (-2043 (((-713) $) NIL (|has| (-385 |#2|) (-327))) (((-3 (-713) "failed") $ $) NIL (|has| (-385 |#2|) (-327)))) (-2702 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-713)) NIL (-2067 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-2067 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-2897 (((-632 (-385 |#2|)) (-1174 $) (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341)))) (-2013 ((|#3|) 53)) (-3823 (($) NIL (|has| (-385 |#2|) (-327)))) (-2754 (((-1174 (-385 |#2|)) $ (-1174 $)) NIL) (((-632 (-385 |#2|)) (-1174 $) (-1174 $)) NIL) (((-1174 (-385 |#2|)) $) 72) (((-632 (-385 |#2|)) (-1174 $)) NIL)) (-2069 (((-1174 (-385 |#2|)) $) NIL) (($ (-1174 (-385 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| (-385 |#2|) (-327)))) (-3924 (((-1174 $) (-1174 $)) NIL)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 |#2|)) NIL) (($ (-385 (-525))) NIL (-2067 (|has| (-385 |#2|) (-968 (-385 (-525)))) (|has| (-385 |#2|) (-341)))) (($ $) NIL (|has| (-385 |#2|) (-341)))) (-1463 (($ $) NIL (|has| (-385 |#2|) (-327))) (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-136)))) (-3153 ((|#3| $) NIL)) (-2448 (((-713)) NIL)) (-2881 (((-108)) 60)) (-1461 (((-108) |#1|) 154) (((-108) |#2|) 155)) (-2103 (((-1174 $)) 125)) (-1571 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-2951 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1940 (((-108)) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (-3364 (($) 94 T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1092))))) (($ $ (-713)) NIL (-2067 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-2067 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 |#2|)) NIL) (($ (-385 |#2|) $) NIL) (($ (-385 (-525)) $) NIL (|has| (-385 |#2|) (-341))) (($ $ (-385 (-525))) NIL (|has| (-385 |#2|) (-341)))))
(((-935 |#1| |#2| |#3| |#4| |#5|) (-320 |#1| |#2| |#3|) (-1132) (-1150 |#1|) (-1150 (-385 |#2|)) (-385 |#2|) (-713)) (T -935))
NIL
(-320 |#1| |#2| |#3|)
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-3832 (((-592 (-525)) $) 54)) (-3837 (($ (-592 (-525))) 62)) (-1548 (((-525) $) 40 (|has| (-525) (-286)))) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-2193 (((-108) $ $) NIL)) (-3855 (((-525) $) NIL (|has| (-525) (-762)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) 49) (((-3 (-1092) "failed") $) NIL (|has| (-525) (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) 47 (|has| (-525) (-968 (-525)))) (((-3 (-525) "failed") $) 49 (|has| (-525) (-968 (-525))))) (-1572 (((-525) $) NIL) (((-1092) $) NIL (|has| (-525) (-968 (-1092)))) (((-385 (-525)) $) NIL (|has| (-525) (-968 (-525)))) (((-525) $) NIL (|has| (-525) (-968 (-525))))) (-1747 (($ $ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2502 (($) NIL (|has| (-525) (-510)))) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-2968 (((-592 (-525)) $) 60)) (-1222 (((-108) $) NIL (|has| (-525) (-762)))) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-525) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-525) (-821 (-357))))) (-1396 (((-108) $) NIL)) (-3858 (($ $) NIL)) (-3114 (((-525) $) 37)) (-3844 (((-3 $ "failed") $) NIL (|has| (-525) (-1068)))) (-3256 (((-108) $) NIL (|has| (-525) (-762)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2638 (($ $ $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| (-525) (-789)))) (-3165 (($ (-1 (-525) (-525)) $) NIL)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL)) (-2295 (($) NIL (|has| (-525) (-1068)) CONST)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3628 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) 42)) (-3577 (((-1073 (-525)) $) 59)) (-2454 (($ (-592 (-525)) (-592 (-525))) 63)) (-2487 (((-525) $) 53 (|has| (-525) (-510)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-2770 (((-396 $) $) NIL)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2457 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1092)) (-592 (-525))) NIL (|has| (-525) (-486 (-1092) (-525)))) (($ $ (-1092) (-525)) NIL (|has| (-525) (-486 (-1092) (-525))))) (-3684 (((-713) $) NIL)) (-3406 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3376 (($ $) 11 (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1092)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4143 (($ $) NIL)) (-3123 (((-525) $) 39)) (-4071 (((-592 (-525)) $) 61)) (-3210 (((-827 (-525)) $) NIL (|has| (-525) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-525) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-953))) (((-205) $) NIL (|has| (-525) (-953)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-844))))) (-1217 (((-798) $) 77) (($ (-525)) 43) (($ $) NIL) (($ (-385 (-525))) 20) (($ (-525)) 43) (($ (-1092)) NIL (|has| (-525) (-968 (-1092)))) (((-385 (-525)) $) 18)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| (-525) (-844))) (|has| (-525) (-136))))) (-3917 (((-713)) 9)) (-3074 (((-525) $) 51 (|has| (-525) (-510)))) (-3325 (((-108) $ $) NIL)) (-2802 (($ $) NIL (|has| (-525) (-762)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) 10 T CONST)) (-3359 (($) 12 T CONST)) (-2022 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1092)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4011 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3987 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3955 (((-108) $ $) 14)) (-3999 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3978 (((-108) $ $) 33 (|has| (-525) (-789)))) (-4075 (($ $ $) 29) (($ (-525) (-525)) 31)) (-4061 (($ $) 15) (($ $ $) 23)) (-4047 (($ $ $) 21)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 25) (($ $ $) 27) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) 25) (($ $ (-525)) NIL)))
-(((-936 |#1|) (-13 (-925 (-525)) (-10 -8 (-15 -1217 ((-385 (-525)) $)) (-15 -3628 ((-385 (-525)) $)) (-15 -3832 ((-592 (-525)) $)) (-15 -3577 ((-1073 (-525)) $)) (-15 -2968 ((-592 (-525)) $)) (-15 -4071 ((-592 (-525)) $)) (-15 -3837 ($ (-592 (-525)))) (-15 -2454 ($ (-592 (-525)) (-592 (-525)))))) (-525)) (T -936))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-3628 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-1073 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-4071 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-3837 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-2454 (*1 *1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
-(-13 (-925 (-525)) (-10 -8 (-15 -1217 ((-385 (-525)) $)) (-15 -3628 ((-385 (-525)) $)) (-15 -3832 ((-592 (-525)) $)) (-15 -3577 ((-1073 (-525)) $)) (-15 -2968 ((-592 (-525)) $)) (-15 -4071 ((-592 (-525)) $)) (-15 -3837 ($ (-592 (-525)))) (-15 -2454 ($ (-592 (-525)) (-592 (-525))))))
-((-1972 (((-51) (-385 (-525)) (-525)) 9)))
-(((-937) (-10 -7 (-15 -1972 ((-51) (-385 (-525)) (-525))))) (T -937))
-((-1972 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-525))) (-5 *4 (-525)) (-5 *2 (-51)) (-5 *1 (-937)))))
-(-10 -7 (-15 -1972 ((-51) (-385 (-525)) (-525))))
-((-1834 (((-525)) 13)) (-2230 (((-525)) 16)) (-1803 (((-1179) (-525)) 15)) (-4232 (((-525) (-525)) 17) (((-525)) 12)))
-(((-938) (-10 -7 (-15 -4232 ((-525))) (-15 -1834 ((-525))) (-15 -4232 ((-525) (-525))) (-15 -1803 ((-1179) (-525))) (-15 -2230 ((-525))))) (T -938))
-((-2230 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-938)))) (-4232 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938)))) (-1834 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938)))) (-4232 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938)))))
-(-10 -7 (-15 -4232 ((-525))) (-15 -1834 ((-525))) (-15 -4232 ((-525) (-525))) (-15 -1803 ((-1179) (-525))) (-15 -2230 ((-525))))
-((-2635 (((-396 |#1|) |#1|) 41)) (-2770 (((-396 |#1|) |#1|) 40)))
-(((-939 |#1|) (-10 -7 (-15 -2770 ((-396 |#1|) |#1|)) (-15 -2635 ((-396 |#1|) |#1|))) (-1150 (-385 (-525)))) (T -939))
-((-2635 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-939 *3)) (-4 *3 (-1150 (-385 (-525)))))) (-2770 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-939 *3)) (-4 *3 (-1150 (-385 (-525)))))))
-(-10 -7 (-15 -2770 ((-396 |#1|) |#1|)) (-15 -2635 ((-396 |#1|) |#1|)))
-((-1514 (((-3 (-385 (-525)) "failed") |#1|) 15)) (-3933 (((-108) |#1|) 14)) (-3303 (((-385 (-525)) |#1|) 10)))
-(((-940 |#1|) (-10 -7 (-15 -3303 ((-385 (-525)) |#1|)) (-15 -3933 ((-108) |#1|)) (-15 -1514 ((-3 (-385 (-525)) "failed") |#1|))) (-968 (-385 (-525)))) (T -940))
-((-1514 (*1 *2 *3) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-940 *3)) (-4 *3 (-968 *2)))) (-3933 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-940 *3)) (-4 *3 (-968 (-385 (-525)))))) (-3303 (*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-940 *3)) (-4 *3 (-968 *2)))))
-(-10 -7 (-15 -3303 ((-385 (-525)) |#1|)) (-15 -3933 ((-108) |#1|)) (-15 -1514 ((-3 (-385 (-525)) "failed") |#1|)))
-((-1430 ((|#2| $ "value" |#2|) 12)) (-3406 ((|#2| $ "value") 10)) (-3351 (((-108) $ $) 18)))
-(((-941 |#1| |#2|) (-10 -8 (-15 -1430 (|#2| |#1| "value" |#2|)) (-15 -3351 ((-108) |#1| |#1|)) (-15 -3406 (|#2| |#1| "value"))) (-942 |#2|) (-1128)) (T -941))
-NIL
-(-10 -8 (-15 -1430 (|#2| |#1| "value" |#2|)) (-15 -3351 ((-108) |#1| |#1|)) (-15 -3406 (|#2| |#1| "value")))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3284 ((|#1| $) 48)) (-3991 (((-108) $ (-713)) 8)) (-3214 ((|#1| $ |#1|) 39 (|has| $ (-6 -4259)))) (-1430 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) 41 (|has| $ (-6 -4259)))) (-2169 (($) 7 T CONST)) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3396 (((-592 $) $) 50)) (-1729 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-3924 (((-108) $ (-713)) 9)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-2803 (((-592 |#1|) $) 45)) (-3786 (((-108) $) 49)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#1| $ "value") 47)) (-3340 (((-525) $ $) 44)) (-2905 (((-108) $) 46)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3793 (((-592 $) $) 51)) (-3351 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-2771 (((-592 (-525)) $) 54)) (-2814 (($ (-592 (-525))) 62)) (-1653 (((-525) $) 40 (|has| (-525) (-286)))) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-1507 (((-108) $ $) NIL)) (-2971 (((-525) $) NIL (|has| (-525) (-762)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) 49) (((-3 (-1092) "failed") $) NIL (|has| (-525) (-968 (-1092)))) (((-3 (-385 (-525)) "failed") $) 47 (|has| (-525) (-968 (-525)))) (((-3 (-525) "failed") $) 49 (|has| (-525) (-968 (-525))))) (-4105 (((-525) $) NIL) (((-1092) $) NIL (|has| (-525) (-968 (-1092)))) (((-385 (-525)) $) NIL (|has| (-525) (-968 (-525)))) (((-525) $) NIL (|has| (-525) (-968 (-525))))) (-1356 (($ $ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1903 (($) NIL (|has| (-525) (-510)))) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-3363 (((-592 (-525)) $) 60)) (-1889 (((-108) $) NIL (|has| (-525) (-762)))) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-525) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-525) (-821 (-357))))) (-2278 (((-108) $) NIL)) (-2999 (($ $) NIL)) (-4066 (((-525) $) 37)) (-2878 (((-3 $ "failed") $) NIL (|has| (-525) (-1068)))) (-4079 (((-108) $) NIL (|has| (-525) (-762)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3033 (($ $ $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| (-525) (-789)))) (-2016 (($ (-1 (-525) (-525)) $) NIL)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL)) (-2948 (($) NIL (|has| (-525) (-1068)) CONST)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1372 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) 42)) (-2081 (((-1073 (-525)) $) 59)) (-2233 (($ (-592 (-525)) (-592 (-525))) 63)) (-1340 (((-525) $) 53 (|has| (-525) (-510)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| (-525) (-844)))) (-4201 (((-396 $) $) NIL)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2825 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1092)) (-592 (-525))) NIL (|has| (-525) (-486 (-1092) (-525)))) (($ $ (-1092) (-525)) NIL (|has| (-525) (-486 (-1092) (-525))))) (-1927 (((-713) $) NIL)) (-3431 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2702 (($ $) 11 (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1092)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-2874 (($ $) NIL)) (-4080 (((-525) $) 39)) (-3362 (((-592 (-525)) $) 61)) (-2069 (((-827 (-525)) $) NIL (|has| (-525) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-525) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-953))) (((-205) $) NIL (|has| (-525) (-953)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-844))))) (-4100 (((-798) $) 77) (($ (-525)) 43) (($ $) NIL) (($ (-385 (-525))) 20) (($ (-525)) 43) (($ (-1092)) NIL (|has| (-525) (-968 (-1092)))) (((-385 (-525)) $) 18)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| (-525) (-844))) (|has| (-525) (-136))))) (-2448 (((-713)) 9)) (-3064 (((-525) $) 51 (|has| (-525) (-510)))) (-1571 (((-108) $ $) NIL)) (-2380 (($ $) NIL (|has| (-525) (-762)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) 10 T CONST)) (-3375 (($) 12 T CONST)) (-2401 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1092)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| (-525) (-835 (-1092)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-2830 (((-108) $ $) NIL (|has| (-525) (-789)))) (-2807 (((-108) $ $) NIL (|has| (-525) (-789)))) (-2775 (((-108) $ $) 14)) (-2817 (((-108) $ $) NIL (|has| (-525) (-789)))) (-2795 (((-108) $ $) 33 (|has| (-525) (-789)))) (-2880 (($ $ $) 29) (($ (-525) (-525)) 31)) (-2871 (($ $) 15) (($ $ $) 23)) (-2860 (($ $ $) 21)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 25) (($ $ $) 27) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) 25) (($ $ (-525)) NIL)))
+(((-936 |#1|) (-13 (-925 (-525)) (-10 -8 (-15 -4100 ((-385 (-525)) $)) (-15 -1372 ((-385 (-525)) $)) (-15 -2771 ((-592 (-525)) $)) (-15 -2081 ((-1073 (-525)) $)) (-15 -3363 ((-592 (-525)) $)) (-15 -3362 ((-592 (-525)) $)) (-15 -2814 ($ (-592 (-525)))) (-15 -2233 ($ (-592 (-525)) (-592 (-525)))))) (-525)) (T -936))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-2081 (*1 *2 *1) (-12 (-5 *2 (-1073 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-2814 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-2233 (*1 *1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
+(-13 (-925 (-525)) (-10 -8 (-15 -4100 ((-385 (-525)) $)) (-15 -1372 ((-385 (-525)) $)) (-15 -2771 ((-592 (-525)) $)) (-15 -2081 ((-1073 (-525)) $)) (-15 -3363 ((-592 (-525)) $)) (-15 -3362 ((-592 (-525)) $)) (-15 -2814 ($ (-592 (-525)))) (-15 -2233 ($ (-592 (-525)) (-592 (-525))))))
+((-4088 (((-51) (-385 (-525)) (-525)) 9)))
+(((-937) (-10 -7 (-15 -4088 ((-51) (-385 (-525)) (-525))))) (T -937))
+((-4088 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-525))) (-5 *4 (-525)) (-5 *2 (-51)) (-5 *1 (-937)))))
+(-10 -7 (-15 -4088 ((-51) (-385 (-525)) (-525))))
+((-1613 (((-525)) 13)) (-1875 (((-525)) 16)) (-2963 (((-1179) (-525)) 15)) (-2568 (((-525) (-525)) 17) (((-525)) 12)))
+(((-938) (-10 -7 (-15 -2568 ((-525))) (-15 -1613 ((-525))) (-15 -2568 ((-525) (-525))) (-15 -2963 ((-1179) (-525))) (-15 -1875 ((-525))))) (T -938))
+((-1875 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938)))) (-2963 (*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-938)))) (-2568 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938)))) (-1613 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938)))) (-2568 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938)))))
+(-10 -7 (-15 -2568 ((-525))) (-15 -1613 ((-525))) (-15 -2568 ((-525) (-525))) (-15 -2963 ((-1179) (-525))) (-15 -1875 ((-525))))
+((-3243 (((-396 |#1|) |#1|) 41)) (-4201 (((-396 |#1|) |#1|) 40)))
+(((-939 |#1|) (-10 -7 (-15 -4201 ((-396 |#1|) |#1|)) (-15 -3243 ((-396 |#1|) |#1|))) (-1150 (-385 (-525)))) (T -939))
+((-3243 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-939 *3)) (-4 *3 (-1150 (-385 (-525)))))) (-4201 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-939 *3)) (-4 *3 (-1150 (-385 (-525)))))))
+(-10 -7 (-15 -4201 ((-396 |#1|) |#1|)) (-15 -3243 ((-396 |#1|) |#1|)))
+((-3306 (((-3 (-385 (-525)) "failed") |#1|) 15)) (-1417 (((-108) |#1|) 14)) (-1367 (((-385 (-525)) |#1|) 10)))
+(((-940 |#1|) (-10 -7 (-15 -1367 ((-385 (-525)) |#1|)) (-15 -1417 ((-108) |#1|)) (-15 -3306 ((-3 (-385 (-525)) "failed") |#1|))) (-968 (-385 (-525)))) (T -940))
+((-3306 (*1 *2 *3) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-940 *3)) (-4 *3 (-968 *2)))) (-1417 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-940 *3)) (-4 *3 (-968 (-385 (-525)))))) (-1367 (*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-940 *3)) (-4 *3 (-968 *2)))))
+(-10 -7 (-15 -1367 ((-385 (-525)) |#1|)) (-15 -1417 ((-108) |#1|)) (-15 -3306 ((-3 (-385 (-525)) "failed") |#1|)))
+((-1233 ((|#2| $ "value" |#2|) 12)) (-3431 ((|#2| $ "value") 10)) (-1791 (((-108) $ $) 18)))
+(((-941 |#1| |#2|) (-10 -8 (-15 -1233 (|#2| |#1| "value" |#2|)) (-15 -1791 ((-108) |#1| |#1|)) (-15 -3431 (|#2| |#1| "value"))) (-942 |#2|) (-1128)) (T -941))
+NIL
+(-10 -8 (-15 -1233 (|#2| |#1| "value" |#2|)) (-15 -1791 ((-108) |#1| |#1|)) (-15 -3431 (|#2| |#1| "value")))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2219 ((|#1| $) 48)) (-3779 (((-108) $ (-713)) 8)) (-1947 ((|#1| $ |#1|) 39 (|has| $ (-6 -4260)))) (-1233 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) 41 (|has| $ (-6 -4260)))) (-2475 (($) 7 T CONST)) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-3994 (((-592 $) $) 50)) (-3569 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-2516 (((-108) $ (-713)) 9)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-2010 (((-592 |#1|) $) 45)) (-3506 (((-108) $) 49)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#1| $ "value") 47)) (-1707 (((-525) $ $) 44)) (-3953 (((-108) $) 46)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3576 (((-592 $) $) 51)) (-1791 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-942 |#1|) (-131) (-1128)) (T -942))
-((-3793 (*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-592 *1)) (-4 *1 (-942 *3)))) (-3396 (*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-592 *1)) (-4 *1 (-942 *3)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))) (-3284 (*1 *2 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-1128)))) (-3406 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-942 *2)) (-4 *2 (-1128)))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-5 *2 (-592 *3)))) (-3340 (*1 *2 *1 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-5 *2 (-525)))) (-3351 (*1 *2 *1 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-4 *3 (-1020)) (-5 *2 (-108)))) (-1729 (*1 *2 *1 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-4 *3 (-1020)) (-5 *2 (-108)))) (-1318 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *1)) (|has| *1 (-6 -4259)) (-4 *1 (-942 *3)) (-4 *3 (-1128)))) (-1430 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4259)) (-4 *1 (-942 *2)) (-4 *2 (-1128)))) (-3214 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-942 *2)) (-4 *2 (-1128)))))
-(-13 (-464 |t#1|) (-10 -8 (-15 -3793 ((-592 $) $)) (-15 -3396 ((-592 $) $)) (-15 -3786 ((-108) $)) (-15 -3284 (|t#1| $)) (-15 -3406 (|t#1| $ "value")) (-15 -2905 ((-108) $)) (-15 -2803 ((-592 |t#1|) $)) (-15 -3340 ((-525) $ $)) (IF (|has| |t#1| (-1020)) (PROGN (-15 -3351 ((-108) $ $)) (-15 -1729 ((-108) $ $))) |%noBranch|) (IF (|has| $ (-6 -4259)) (PROGN (-15 -1318 ($ $ (-592 $))) (-15 -1430 (|t#1| $ "value" |t#1|)) (-15 -3214 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
-((-2782 (($ $) 9) (($ $ (-856)) 43) (($ (-385 (-525))) 13) (($ (-525)) 15)) (-2964 (((-3 $ "failed") (-1088 $) (-856) (-798)) 23) (((-3 $ "failed") (-1088 $) (-856)) 28)) (-2171 (($ $ (-525)) 49)) (-3917 (((-713)) 17)) (-1692 (((-592 $) (-1088 $)) NIL) (((-592 $) (-1088 (-385 (-525)))) 54) (((-592 $) (-1088 (-525))) 59) (((-592 $) (-887 $)) 63) (((-592 $) (-887 (-385 (-525)))) 67) (((-592 $) (-887 (-525))) 71)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ $ (-385 (-525))) 47)))
-(((-943 |#1|) (-10 -8 (-15 -2782 (|#1| (-525))) (-15 -2782 (|#1| (-385 (-525)))) (-15 -2782 (|#1| |#1| (-856))) (-15 -1692 ((-592 |#1|) (-887 (-525)))) (-15 -1692 ((-592 |#1|) (-887 (-385 (-525))))) (-15 -1692 ((-592 |#1|) (-887 |#1|))) (-15 -1692 ((-592 |#1|) (-1088 (-525)))) (-15 -1692 ((-592 |#1|) (-1088 (-385 (-525))))) (-15 -1692 ((-592 |#1|) (-1088 |#1|))) (-15 -2964 ((-3 |#1| "failed") (-1088 |#1|) (-856))) (-15 -2964 ((-3 |#1| "failed") (-1088 |#1|) (-856) (-798))) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -2171 (|#1| |#1| (-525))) (-15 -2782 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -3917 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-856)))) (-944)) (T -943))
-((-3917 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-943 *3)) (-4 *3 (-944)))))
-(-10 -8 (-15 -2782 (|#1| (-525))) (-15 -2782 (|#1| (-385 (-525)))) (-15 -2782 (|#1| |#1| (-856))) (-15 -1692 ((-592 |#1|) (-887 (-525)))) (-15 -1692 ((-592 |#1|) (-887 (-385 (-525))))) (-15 -1692 ((-592 |#1|) (-887 |#1|))) (-15 -1692 ((-592 |#1|) (-1088 (-525)))) (-15 -1692 ((-592 |#1|) (-1088 (-385 (-525))))) (-15 -1692 ((-592 |#1|) (-1088 |#1|))) (-15 -2964 ((-3 |#1| "failed") (-1088 |#1|) (-856))) (-15 -2964 ((-3 |#1| "failed") (-1088 |#1|) (-856) (-798))) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -2171 (|#1| |#1| (-525))) (-15 -2782 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -3917 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-856))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 89)) (-4218 (($ $) 90)) (-3171 (((-108) $) 92)) (-1578 (((-3 $ "failed") $ $) 19)) (-1286 (($ $) 109)) (-2669 (((-396 $) $) 110)) (-2782 (($ $) 73) (($ $ (-856)) 59) (($ (-385 (-525))) 58) (($ (-525)) 57)) (-2193 (((-108) $ $) 100)) (-3855 (((-525) $) 127)) (-2169 (($) 17 T CONST)) (-2964 (((-3 $ "failed") (-1088 $) (-856) (-798)) 67) (((-3 $ "failed") (-1088 $) (-856)) 66)) (-3077 (((-3 (-525) "failed") $) 85 (|has| (-385 (-525)) (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 83 (|has| (-385 (-525)) (-968 (-385 (-525))))) (((-3 (-385 (-525)) "failed") $) 81)) (-1572 (((-525) $) 86 (|has| (-385 (-525)) (-968 (-525)))) (((-385 (-525)) $) 84 (|has| (-385 (-525)) (-968 (-385 (-525))))) (((-385 (-525)) $) 80)) (-2316 (($ $ (-798)) 56)) (-3030 (($ $ (-798)) 55)) (-1747 (($ $ $) 104)) (-3457 (((-3 $ "failed") $) 34)) (-1733 (($ $ $) 103)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 98)) (-3673 (((-108) $) 111)) (-1222 (((-108) $) 125)) (-1396 (((-108) $) 31)) (-2171 (($ $ (-525)) 72)) (-3256 (((-108) $) 126)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 107)) (-2638 (($ $ $) 124)) (-3662 (($ $ $) 123)) (-2084 (((-3 (-1088 $) "failed") $) 68)) (-3157 (((-3 (-798) "failed") $) 70)) (-2737 (((-3 (-1088 $) "failed") $) 69)) (-2556 (($ (-592 $)) 96) (($ $ $) 95)) (-2619 (((-1075) $) 9)) (-2997 (($ $) 112)) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 97)) (-2589 (($ (-592 $)) 94) (($ $ $) 93)) (-2770 (((-396 $) $) 108)) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 105)) (-1715 (((-3 $ "failed") $ $) 88)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 99)) (-3684 (((-713) $) 101)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 102)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 117) (($ $) 87) (($ (-385 (-525))) 82) (($ (-525)) 79) (($ (-385 (-525))) 76)) (-3917 (((-713)) 29)) (-3325 (((-108) $ $) 91)) (-1454 (((-385 (-525)) $ $) 54)) (-1692 (((-592 $) (-1088 $)) 65) (((-592 $) (-1088 (-385 (-525)))) 64) (((-592 $) (-1088 (-525))) 63) (((-592 $) (-887 $)) 62) (((-592 $) (-887 (-385 (-525)))) 61) (((-592 $) (-887 (-525))) 60)) (-2802 (($ $) 128)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 113)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-4011 (((-108) $ $) 121)) (-3987 (((-108) $ $) 120)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 122)) (-3978 (((-108) $ $) 119)) (-4075 (($ $ $) 118)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 114) (($ $ (-385 (-525))) 71)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ (-385 (-525)) $) 116) (($ $ (-385 (-525))) 115) (($ (-525) $) 78) (($ $ (-525)) 77) (($ (-385 (-525)) $) 75) (($ $ (-385 (-525))) 74)))
+((-3576 (*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-592 *1)) (-4 *1 (-942 *3)))) (-3994 (*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-592 *1)) (-4 *1 (-942 *3)))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-1128)))) (-3431 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-942 *2)) (-4 *2 (-1128)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-5 *2 (-592 *3)))) (-1707 (*1 *2 *1 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-5 *2 (-525)))) (-1791 (*1 *2 *1 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-4 *3 (-1020)) (-5 *2 (-108)))) (-3569 (*1 *2 *1 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-4 *3 (-1020)) (-5 *2 (-108)))) (-3379 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *1)) (|has| *1 (-6 -4260)) (-4 *1 (-942 *3)) (-4 *3 (-1128)))) (-1233 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4260)) (-4 *1 (-942 *2)) (-4 *2 (-1128)))) (-1947 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4260)) (-4 *1 (-942 *2)) (-4 *2 (-1128)))))
+(-13 (-464 |t#1|) (-10 -8 (-15 -3576 ((-592 $) $)) (-15 -3994 ((-592 $) $)) (-15 -3506 ((-108) $)) (-15 -2219 (|t#1| $)) (-15 -3431 (|t#1| $ "value")) (-15 -3953 ((-108) $)) (-15 -2010 ((-592 |t#1|) $)) (-15 -1707 ((-525) $ $)) (IF (|has| |t#1| (-1020)) (PROGN (-15 -1791 ((-108) $ $)) (-15 -3569 ((-108) $ $))) |%noBranch|) (IF (|has| $ (-6 -4260)) (PROGN (-15 -3379 ($ $ (-592 $))) (-15 -1233 (|t#1| $ "value" |t#1|)) (-15 -1947 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
+((-4211 (($ $) 9) (($ $ (-856)) 43) (($ (-385 (-525))) 13) (($ (-525)) 15)) (-3317 (((-3 $ "failed") (-1088 $) (-856) (-798)) 23) (((-3 $ "failed") (-1088 $) (-856)) 28)) (-1303 (($ $ (-525)) 49)) (-2448 (((-713)) 17)) (-3213 (((-592 $) (-1088 $)) NIL) (((-592 $) (-1088 (-385 (-525)))) 54) (((-592 $) (-1088 (-525))) 59) (((-592 $) (-887 $)) 63) (((-592 $) (-887 (-385 (-525)))) 67) (((-592 $) (-887 (-525))) 71)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ $ (-385 (-525))) 47)))
+(((-943 |#1|) (-10 -8 (-15 -4211 (|#1| (-525))) (-15 -4211 (|#1| (-385 (-525)))) (-15 -4211 (|#1| |#1| (-856))) (-15 -3213 ((-592 |#1|) (-887 (-525)))) (-15 -3213 ((-592 |#1|) (-887 (-385 (-525))))) (-15 -3213 ((-592 |#1|) (-887 |#1|))) (-15 -3213 ((-592 |#1|) (-1088 (-525)))) (-15 -3213 ((-592 |#1|) (-1088 (-385 (-525))))) (-15 -3213 ((-592 |#1|) (-1088 |#1|))) (-15 -3317 ((-3 |#1| "failed") (-1088 |#1|) (-856))) (-15 -3317 ((-3 |#1| "failed") (-1088 |#1|) (-856) (-798))) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -1303 (|#1| |#1| (-525))) (-15 -4211 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -2448 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-856)))) (-944)) (T -943))
+((-2448 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-943 *3)) (-4 *3 (-944)))))
+(-10 -8 (-15 -4211 (|#1| (-525))) (-15 -4211 (|#1| (-385 (-525)))) (-15 -4211 (|#1| |#1| (-856))) (-15 -3213 ((-592 |#1|) (-887 (-525)))) (-15 -3213 ((-592 |#1|) (-887 (-385 (-525))))) (-15 -3213 ((-592 |#1|) (-887 |#1|))) (-15 -3213 ((-592 |#1|) (-1088 (-525)))) (-15 -3213 ((-592 |#1|) (-1088 (-385 (-525))))) (-15 -3213 ((-592 |#1|) (-1088 |#1|))) (-15 -3317 ((-3 |#1| "failed") (-1088 |#1|) (-856))) (-15 -3317 ((-3 |#1| "failed") (-1088 |#1|) (-856) (-798))) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -1303 (|#1| |#1| (-525))) (-15 -4211 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -2448 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-856))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 89)) (-2433 (($ $) 90)) (-1568 (((-108) $) 92)) (-3222 (((-3 $ "failed") $ $) 19)) (-4195 (($ $) 109)) (-3586 (((-396 $) $) 110)) (-4211 (($ $) 73) (($ $ (-856)) 59) (($ (-385 (-525))) 58) (($ (-525)) 57)) (-1507 (((-108) $ $) 100)) (-2971 (((-525) $) 127)) (-2475 (($) 17 T CONST)) (-3317 (((-3 $ "failed") (-1088 $) (-856) (-798)) 67) (((-3 $ "failed") (-1088 $) (-856)) 66)) (-1934 (((-3 (-525) "failed") $) 85 (|has| (-385 (-525)) (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 83 (|has| (-385 (-525)) (-968 (-385 (-525))))) (((-3 (-385 (-525)) "failed") $) 81)) (-4105 (((-525) $) 86 (|has| (-385 (-525)) (-968 (-525)))) (((-385 (-525)) $) 84 (|has| (-385 (-525)) (-968 (-385 (-525))))) (((-385 (-525)) $) 80)) (-3226 (($ $ (-798)) 56)) (-2714 (($ $ (-798)) 55)) (-1356 (($ $ $) 104)) (-3300 (((-3 $ "failed") $) 34)) (-1332 (($ $ $) 103)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 98)) (-1798 (((-108) $) 111)) (-1889 (((-108) $) 125)) (-2278 (((-108) $) 31)) (-1303 (($ $ (-525)) 72)) (-4079 (((-108) $) 126)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 107)) (-3033 (($ $ $) 124)) (-1609 (($ $ $) 123)) (-2770 (((-3 (-1088 $) "failed") $) 68)) (-1436 (((-3 (-798) "failed") $) 70)) (-2970 (((-3 (-1088 $) "failed") $) 69)) (-2739 (($ (-592 $)) 96) (($ $ $) 95)) (-1289 (((-1075) $) 9)) (-1387 (($ $) 112)) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 97)) (-2772 (($ (-592 $)) 94) (($ $ $) 93)) (-4201 (((-396 $) $) 108)) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 105)) (-1311 (((-3 $ "failed") $ $) 88)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 99)) (-1927 (((-713) $) 101)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 102)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 117) (($ $) 87) (($ (-385 (-525))) 82) (($ (-525)) 79) (($ (-385 (-525))) 76)) (-2448 (((-713)) 29)) (-1571 (((-108) $ $) 91)) (-1485 (((-385 (-525)) $ $) 54)) (-3213 (((-592 $) (-1088 $)) 65) (((-592 $) (-1088 (-385 (-525)))) 64) (((-592 $) (-1088 (-525))) 63) (((-592 $) (-887 $)) 62) (((-592 $) (-887 (-385 (-525)))) 61) (((-592 $) (-887 (-525))) 60)) (-2380 (($ $) 128)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 113)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2830 (((-108) $ $) 121)) (-2807 (((-108) $ $) 120)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 122)) (-2795 (((-108) $ $) 119)) (-2880 (($ $ $) 118)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 114) (($ $ (-385 (-525))) 71)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ (-385 (-525)) $) 116) (($ $ (-385 (-525))) 115) (($ (-525) $) 78) (($ $ (-525)) 77) (($ (-385 (-525)) $) 75) (($ $ (-385 (-525))) 74)))
(((-944) (-131)) (T -944))
-((-2782 (*1 *1 *1) (-4 *1 (-944))) (-3157 (*1 *2 *1) (|partial| -12 (-4 *1 (-944)) (-5 *2 (-798)))) (-2737 (*1 *2 *1) (|partial| -12 (-5 *2 (-1088 *1)) (-4 *1 (-944)))) (-2084 (*1 *2 *1) (|partial| -12 (-5 *2 (-1088 *1)) (-4 *1 (-944)))) (-2964 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1088 *1)) (-5 *3 (-856)) (-5 *4 (-798)) (-4 *1 (-944)))) (-2964 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1088 *1)) (-5 *3 (-856)) (-4 *1 (-944)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-1088 *1)) (-4 *1 (-944)) (-5 *2 (-592 *1)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-1088 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-944)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-1088 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-944)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-944)) (-5 *2 (-592 *1)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-887 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-944)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-887 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-944)))) (-2782 (*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-856)))) (-2782 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-944)))) (-2782 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-944)))) (-2316 (*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-798)))) (-3030 (*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-798)))) (-1454 (*1 *2 *1 *1) (-12 (-4 *1 (-944)) (-5 *2 (-385 (-525))))))
-(-13 (-138) (-787) (-160) (-341) (-389 (-385 (-525))) (-37 (-525)) (-37 (-385 (-525))) (-934) (-10 -8 (-15 -3157 ((-3 (-798) "failed") $)) (-15 -2737 ((-3 (-1088 $) "failed") $)) (-15 -2084 ((-3 (-1088 $) "failed") $)) (-15 -2964 ((-3 $ "failed") (-1088 $) (-856) (-798))) (-15 -2964 ((-3 $ "failed") (-1088 $) (-856))) (-15 -1692 ((-592 $) (-1088 $))) (-15 -1692 ((-592 $) (-1088 (-385 (-525))))) (-15 -1692 ((-592 $) (-1088 (-525)))) (-15 -1692 ((-592 $) (-887 $))) (-15 -1692 ((-592 $) (-887 (-385 (-525))))) (-15 -1692 ((-592 $) (-887 (-525)))) (-15 -2782 ($ $ (-856))) (-15 -2782 ($ $)) (-15 -2782 ($ (-385 (-525)))) (-15 -2782 ($ (-525))) (-15 -2316 ($ $ (-798))) (-15 -3030 ($ $ (-798))) (-15 -1454 ((-385 (-525)) $ $))))
+((-4211 (*1 *1 *1) (-4 *1 (-944))) (-1436 (*1 *2 *1) (|partial| -12 (-4 *1 (-944)) (-5 *2 (-798)))) (-2970 (*1 *2 *1) (|partial| -12 (-5 *2 (-1088 *1)) (-4 *1 (-944)))) (-2770 (*1 *2 *1) (|partial| -12 (-5 *2 (-1088 *1)) (-4 *1 (-944)))) (-3317 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1088 *1)) (-5 *3 (-856)) (-5 *4 (-798)) (-4 *1 (-944)))) (-3317 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1088 *1)) (-5 *3 (-856)) (-4 *1 (-944)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-1088 *1)) (-4 *1 (-944)) (-5 *2 (-592 *1)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-1088 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-944)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-1088 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-944)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-944)) (-5 *2 (-592 *1)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-887 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-944)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-887 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-944)))) (-4211 (*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-856)))) (-4211 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-944)))) (-4211 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-944)))) (-3226 (*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-798)))) (-2714 (*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-798)))) (-1485 (*1 *2 *1 *1) (-12 (-4 *1 (-944)) (-5 *2 (-385 (-525))))))
+(-13 (-138) (-787) (-160) (-341) (-389 (-385 (-525))) (-37 (-525)) (-37 (-385 (-525))) (-934) (-10 -8 (-15 -1436 ((-3 (-798) "failed") $)) (-15 -2970 ((-3 (-1088 $) "failed") $)) (-15 -2770 ((-3 (-1088 $) "failed") $)) (-15 -3317 ((-3 $ "failed") (-1088 $) (-856) (-798))) (-15 -3317 ((-3 $ "failed") (-1088 $) (-856))) (-15 -3213 ((-592 $) (-1088 $))) (-15 -3213 ((-592 $) (-1088 (-385 (-525))))) (-15 -3213 ((-592 $) (-1088 (-525)))) (-15 -3213 ((-592 $) (-887 $))) (-15 -3213 ((-592 $) (-887 (-385 (-525))))) (-15 -3213 ((-592 $) (-887 (-525)))) (-15 -4211 ($ $ (-856))) (-15 -4211 ($ $)) (-15 -4211 ($ (-385 (-525)))) (-15 -4211 ($ (-525))) (-15 -3226 ($ $ (-798))) (-15 -2714 ($ $ (-798))) (-15 -1485 ((-385 (-525)) $ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 #1=(-525)) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-798)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-389 (-385 (-525))) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 #1#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 #1#) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-787) . T) ((-789) . T) ((-855) . T) ((-934) . T) ((-968 (-385 (-525))) . T) ((-968 (-525)) |has| (-385 (-525)) (-968 (-525))) ((-983 #0#) . T) ((-983 #1#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1132) . T))
-((-2743 (((-2 (|:| |ans| |#2|) (|:| -3519 |#2|) (|:| |sol?| (-108))) (-525) |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66)))
-(((-945 |#1| |#2|) (-10 -7 (-15 -2743 ((-2 (|:| |ans| |#2|) (|:| -3519 |#2|) (|:| |sol?| (-108))) (-525) |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1114) (-27) (-408 |#1|))) (T -945))
-((-2743 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1092)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-592 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1642 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1114) (-27) (-408 *8))) (-4 *8 (-13 (-429) (-789) (-138) (-968 *3) (-588 *3))) (-5 *3 (-525)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3519 *4) (|:| |sol?| (-108)))) (-5 *1 (-945 *8 *4)))))
-(-10 -7 (-15 -2743 ((-2 (|:| |ans| |#2|) (|:| -3519 |#2|) (|:| |sol?| (-108))) (-525) |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2377 (((-3 (-592 |#2|) "failed") (-525) |#2| |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
-(((-946 |#1| |#2|) (-10 -7 (-15 -2377 ((-3 (-592 |#2|) "failed") (-525) |#2| |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1114) (-27) (-408 |#1|))) (T -946))
-((-2377 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1092)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-592 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1642 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1114) (-27) (-408 *8))) (-4 *8 (-13 (-429) (-789) (-138) (-968 *3) (-588 *3))) (-5 *3 (-525)) (-5 *2 (-592 *4)) (-5 *1 (-946 *8 *4)))))
-(-10 -7 (-15 -2377 ((-3 (-592 |#2|) "failed") (-525) |#2| |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -1642 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2297 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3025 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-525)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-525) (-1 |#2| |#2|)) 30)) (-1496 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |c| (-385 |#2|)) (|:| -3200 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|)) 58)) (-2860 (((-2 (|:| |ans| (-385 |#2|)) (|:| |nosol| (-108))) (-385 |#2|) (-385 |#2|)) 63)))
-(((-947 |#1| |#2|) (-10 -7 (-15 -1496 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |c| (-385 |#2|)) (|:| -3200 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -2860 ((-2 (|:| |ans| (-385 |#2|)) (|:| |nosol| (-108))) (-385 |#2|) (-385 |#2|))) (-15 -2297 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3025 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-525)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-525) (-1 |#2| |#2|)))) (-13 (-341) (-138) (-968 (-525))) (-1150 |#1|)) (T -947))
-((-2297 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1150 *6)) (-4 *6 (-13 (-341) (-138) (-968 *4))) (-5 *4 (-525)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) (|:| -3025 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-947 *6 *3)))) (-2860 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-341) (-138) (-968 (-525)))) (-4 *5 (-1150 *4)) (-5 *2 (-2 (|:| |ans| (-385 *5)) (|:| |nosol| (-108)))) (-5 *1 (-947 *4 *5)) (-5 *3 (-385 *5)))) (-1496 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |c| (-385 *6)) (|:| -3200 *6))) (-5 *1 (-947 *5 *6)) (-5 *3 (-385 *6)))))
-(-10 -7 (-15 -1496 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |c| (-385 |#2|)) (|:| -3200 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -2860 ((-2 (|:| |ans| (-385 |#2|)) (|:| |nosol| (-108))) (-385 |#2|) (-385 |#2|))) (-15 -2297 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3025 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-525)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-525) (-1 |#2| |#2|))))
-((-2991 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |h| |#2|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| -3200 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|)) 22)) (-2148 (((-3 (-592 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)) 33)))
-(((-948 |#1| |#2|) (-10 -7 (-15 -2991 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |h| |#2|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| -3200 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -2148 ((-3 (-592 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)))) (-13 (-341) (-138) (-968 (-525))) (-1150 |#1|)) (T -948))
-((-2148 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-341) (-138) (-968 (-525)))) (-4 *5 (-1150 *4)) (-5 *2 (-592 (-385 *5))) (-5 *1 (-948 *4 *5)) (-5 *3 (-385 *5)))) (-2991 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |h| *6) (|:| |c1| (-385 *6)) (|:| |c2| (-385 *6)) (|:| -3200 *6))) (-5 *1 (-948 *5 *6)) (-5 *3 (-385 *6)))))
-(-10 -7 (-15 -2991 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |h| |#2|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| -3200 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -2148 ((-3 (-592 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|))))
-((-2526 (((-1 |#1|) (-592 (-2 (|:| -3284 |#1|) (|:| -3398 (-525))))) 37)) (-3566 (((-1 |#1|) (-1022 |#1|)) 45)) (-2342 (((-1 |#1|) (-1174 |#1|) (-1174 (-525)) (-525)) 34)))
-(((-949 |#1|) (-10 -7 (-15 -3566 ((-1 |#1|) (-1022 |#1|))) (-15 -2526 ((-1 |#1|) (-592 (-2 (|:| -3284 |#1|) (|:| -3398 (-525)))))) (-15 -2342 ((-1 |#1|) (-1174 |#1|) (-1174 (-525)) (-525)))) (-1020)) (T -949))
-((-2342 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1174 *6)) (-5 *4 (-1174 (-525))) (-5 *5 (-525)) (-4 *6 (-1020)) (-5 *2 (-1 *6)) (-5 *1 (-949 *6)))) (-2526 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3284 *4) (|:| -3398 (-525))))) (-4 *4 (-1020)) (-5 *2 (-1 *4)) (-5 *1 (-949 *4)))) (-3566 (*1 *2 *3) (-12 (-5 *3 (-1022 *4)) (-4 *4 (-1020)) (-5 *2 (-1 *4)) (-5 *1 (-949 *4)))))
-(-10 -7 (-15 -3566 ((-1 |#1|) (-1022 |#1|))) (-15 -2526 ((-1 |#1|) (-592 (-2 (|:| -3284 |#1|) (|:| -3398 (-525)))))) (-15 -2342 ((-1 |#1|) (-1174 |#1|) (-1174 (-525)) (-525))))
-((-2581 (((-713) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-950 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2581 ((-713) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-341) (-1150 |#1|) (-1150 (-385 |#2|)) (-320 |#1| |#2| |#3|) (-13 (-346) (-341))) (T -950))
-((-2581 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-314 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-341)) (-4 *7 (-1150 *6)) (-4 *4 (-1150 (-385 *7))) (-4 *8 (-320 *6 *7 *4)) (-4 *9 (-13 (-346) (-341))) (-5 *2 (-713)) (-5 *1 (-950 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -2581 ((-713) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-1833 (((-3 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) "failed") |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) 31) (((-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) (-385 (-525))) 28)) (-1403 (((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) (-385 (-525))) 33) (((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1| (-385 (-525))) 29) (((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) 32) (((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1|) 27)) (-3027 (((-592 (-385 (-525))) (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))) 19)) (-3805 (((-385 (-525)) (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) 16)))
-(((-951 |#1|) (-10 -7 (-15 -1403 ((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1|)) (-15 -1403 ((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))) (-15 -1403 ((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -1403 ((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) (-385 (-525)))) (-15 -1833 ((-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) (-385 (-525)))) (-15 -1833 ((-3 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) "failed") |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))) (-15 -3805 ((-385 (-525)) (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))) (-15 -3027 ((-592 (-385 (-525))) (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))))) (-1150 (-525))) (T -951))
-((-3027 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))) (-5 *2 (-592 (-385 (-525)))) (-5 *1 (-951 *4)) (-4 *4 (-1150 (-525))))) (-3805 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) (-5 *2 (-385 (-525))) (-5 *1 (-951 *4)) (-4 *4 (-1150 (-525))))) (-1833 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525))))) (-1833 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) (-5 *4 (-385 (-525))) (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525))))) (-1403 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-385 (-525))) (-5 *2 (-592 (-2 (|:| -3507 *5) (|:| -3519 *5)))) (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525))) (-5 *4 (-2 (|:| -3507 *5) (|:| -3519 *5))))) (-1403 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))) (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525))) (-5 *4 (-385 (-525))))) (-1403 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))) (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525))) (-5 *4 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))) (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525))))))
-(-10 -7 (-15 -1403 ((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1|)) (-15 -1403 ((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))) (-15 -1403 ((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -1403 ((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) (-385 (-525)))) (-15 -1833 ((-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) (-385 (-525)))) (-15 -1833 ((-3 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) "failed") |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))) (-15 -3805 ((-385 (-525)) (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))) (-15 -3027 ((-592 (-385 (-525))) (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))))))
-((-1833 (((-3 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) "failed") |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) 35) (((-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) (-385 (-525))) 32)) (-1403 (((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) (-385 (-525))) 30) (((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1| (-385 (-525))) 26) (((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) 28) (((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1|) 24)))
-(((-952 |#1|) (-10 -7 (-15 -1403 ((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1|)) (-15 -1403 ((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))) (-15 -1403 ((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -1403 ((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) (-385 (-525)))) (-15 -1833 ((-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) (-385 (-525)))) (-15 -1833 ((-3 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) "failed") |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))))) (-1150 (-385 (-525)))) (T -952))
-((-1833 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) (-5 *1 (-952 *3)) (-4 *3 (-1150 (-385 (-525)))))) (-1833 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) (-5 *4 (-385 (-525))) (-5 *1 (-952 *3)) (-4 *3 (-1150 *4)))) (-1403 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-385 (-525))) (-5 *2 (-592 (-2 (|:| -3507 *5) (|:| -3519 *5)))) (-5 *1 (-952 *3)) (-4 *3 (-1150 *5)) (-5 *4 (-2 (|:| -3507 *5) (|:| -3519 *5))))) (-1403 (*1 *2 *3 *4) (-12 (-5 *4 (-385 (-525))) (-5 *2 (-592 (-2 (|:| -3507 *4) (|:| -3519 *4)))) (-5 *1 (-952 *3)) (-4 *3 (-1150 *4)))) (-1403 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))) (-5 *1 (-952 *3)) (-4 *3 (-1150 (-385 (-525)))) (-5 *4 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))) (-5 *1 (-952 *3)) (-4 *3 (-1150 (-385 (-525)))))))
-(-10 -7 (-15 -1403 ((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1|)) (-15 -1403 ((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))) (-15 -1403 ((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -1403 ((-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))) |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) (-385 (-525)))) (-15 -1833 ((-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) (-385 (-525)))) (-15 -1833 ((-3 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) "failed") |#1| (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))) (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))))
-((-3210 (((-205) $) 6) (((-357) $) 9)))
+((-3027 (((-2 (|:| |ans| |#2|) (|:| -3446 |#2|) (|:| |sol?| (-108))) (-525) |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66)))
+(((-945 |#1| |#2|) (-10 -7 (-15 -3027 ((-2 (|:| |ans| |#2|) (|:| -3446 |#2|) (|:| |sol?| (-108))) (-525) |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1114) (-27) (-408 |#1|))) (T -945))
+((-3027 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1092)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-592 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3991 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1114) (-27) (-408 *8))) (-4 *8 (-13 (-429) (-789) (-138) (-968 *3) (-588 *3))) (-5 *3 (-525)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3446 *4) (|:| |sol?| (-108)))) (-5 *1 (-945 *8 *4)))))
+(-10 -7 (-15 -3027 ((-2 (|:| |ans| |#2|) (|:| -3446 |#2|) (|:| |sol?| (-108))) (-525) |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-2656 (((-3 (-592 |#2|) "failed") (-525) |#2| |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
+(((-946 |#1| |#2|) (-10 -7 (-15 -2656 ((-3 (-592 |#2|) "failed") (-525) |#2| |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1114) (-27) (-408 |#1|))) (T -946))
+((-2656 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1092)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-592 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3991 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1114) (-27) (-408 *8))) (-4 *8 (-13 (-429) (-789) (-138) (-968 *3) (-588 *3))) (-5 *3 (-525)) (-5 *2 (-592 *4)) (-5 *1 (-946 *8 *4)))))
+(-10 -7 (-15 -2656 ((-3 (-592 |#2|) "failed") (-525) |#2| |#2| |#2| (-1092) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -3991 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-1248 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -1537 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-525)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-525) (-1 |#2| |#2|)) 30)) (-4003 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |c| (-385 |#2|)) (|:| -3252 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|)) 58)) (-1710 (((-2 (|:| |ans| (-385 |#2|)) (|:| |nosol| (-108))) (-385 |#2|) (-385 |#2|)) 63)))
+(((-947 |#1| |#2|) (-10 -7 (-15 -4003 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |c| (-385 |#2|)) (|:| -3252 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -1710 ((-2 (|:| |ans| (-385 |#2|)) (|:| |nosol| (-108))) (-385 |#2|) (-385 |#2|))) (-15 -1248 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -1537 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-525)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-525) (-1 |#2| |#2|)))) (-13 (-341) (-138) (-968 (-525))) (-1150 |#1|)) (T -947))
+((-1248 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1150 *6)) (-4 *6 (-13 (-341) (-138) (-968 *4))) (-5 *4 (-525)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) (|:| -1537 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-947 *6 *3)))) (-1710 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-341) (-138) (-968 (-525)))) (-4 *5 (-1150 *4)) (-5 *2 (-2 (|:| |ans| (-385 *5)) (|:| |nosol| (-108)))) (-5 *1 (-947 *4 *5)) (-5 *3 (-385 *5)))) (-4003 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |c| (-385 *6)) (|:| -3252 *6))) (-5 *1 (-947 *5 *6)) (-5 *3 (-385 *6)))))
+(-10 -7 (-15 -4003 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |c| (-385 |#2|)) (|:| -3252 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -1710 ((-2 (|:| |ans| (-385 |#2|)) (|:| |nosol| (-108))) (-385 |#2|) (-385 |#2|))) (-15 -1248 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -1537 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-525)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-525) (-1 |#2| |#2|))))
+((-3573 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |h| |#2|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| -3252 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|)) 22)) (-2240 (((-3 (-592 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)) 33)))
+(((-948 |#1| |#2|) (-10 -7 (-15 -3573 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |h| |#2|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| -3252 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -2240 ((-3 (-592 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)))) (-13 (-341) (-138) (-968 (-525))) (-1150 |#1|)) (T -948))
+((-2240 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-341) (-138) (-968 (-525)))) (-4 *5 (-1150 *4)) (-5 *2 (-592 (-385 *5))) (-5 *1 (-948 *4 *5)) (-5 *3 (-385 *5)))) (-3573 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |h| *6) (|:| |c1| (-385 *6)) (|:| |c2| (-385 *6)) (|:| -3252 *6))) (-5 *1 (-948 *5 *6)) (-5 *3 (-385 *6)))))
+(-10 -7 (-15 -3573 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |h| |#2|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| -3252 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -2240 ((-3 (-592 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|))))
+((-1685 (((-1 |#1|) (-592 (-2 (|:| -2219 |#1|) (|:| -4016 (-525))))) 37)) (-1994 (((-1 |#1|) (-1022 |#1|)) 45)) (-3517 (((-1 |#1|) (-1174 |#1|) (-1174 (-525)) (-525)) 34)))
+(((-949 |#1|) (-10 -7 (-15 -1994 ((-1 |#1|) (-1022 |#1|))) (-15 -1685 ((-1 |#1|) (-592 (-2 (|:| -2219 |#1|) (|:| -4016 (-525)))))) (-15 -3517 ((-1 |#1|) (-1174 |#1|) (-1174 (-525)) (-525)))) (-1020)) (T -949))
+((-3517 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1174 *6)) (-5 *4 (-1174 (-525))) (-5 *5 (-525)) (-4 *6 (-1020)) (-5 *2 (-1 *6)) (-5 *1 (-949 *6)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -2219 *4) (|:| -4016 (-525))))) (-4 *4 (-1020)) (-5 *2 (-1 *4)) (-5 *1 (-949 *4)))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-1022 *4)) (-4 *4 (-1020)) (-5 *2 (-1 *4)) (-5 *1 (-949 *4)))))
+(-10 -7 (-15 -1994 ((-1 |#1|) (-1022 |#1|))) (-15 -1685 ((-1 |#1|) (-592 (-2 (|:| -2219 |#1|) (|:| -4016 (-525)))))) (-15 -3517 ((-1 |#1|) (-1174 |#1|) (-1174 (-525)) (-525))))
+((-4000 (((-713) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-950 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4000 ((-713) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-341) (-1150 |#1|) (-1150 (-385 |#2|)) (-320 |#1| |#2| |#3|) (-13 (-346) (-341))) (T -950))
+((-4000 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-314 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-341)) (-4 *7 (-1150 *6)) (-4 *4 (-1150 (-385 *7))) (-4 *8 (-320 *6 *7 *4)) (-4 *9 (-13 (-346) (-341))) (-5 *2 (-713)) (-5 *1 (-950 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -4000 ((-713) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-2109 (((-3 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) "failed") |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) 31) (((-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) (-385 (-525))) 28)) (-2379 (((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) (-385 (-525))) 33) (((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1| (-385 (-525))) 29) (((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) 32) (((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1|) 27)) (-2686 (((-592 (-385 (-525))) (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))) 19)) (-3697 (((-385 (-525)) (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) 16)))
+(((-951 |#1|) (-10 -7 (-15 -2379 ((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1|)) (-15 -2379 ((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))) (-15 -2379 ((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -2379 ((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) (-385 (-525)))) (-15 -2109 ((-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) (-385 (-525)))) (-15 -2109 ((-3 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) "failed") |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))) (-15 -3697 ((-385 (-525)) (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))) (-15 -2686 ((-592 (-385 (-525))) (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))))) (-1150 (-525))) (T -951))
+((-2686 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))) (-5 *2 (-592 (-385 (-525)))) (-5 *1 (-951 *4)) (-4 *4 (-1150 (-525))))) (-3697 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) (-5 *2 (-385 (-525))) (-5 *1 (-951 *4)) (-4 *4 (-1150 (-525))))) (-2109 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525))))) (-2109 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) (-5 *4 (-385 (-525))) (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525))))) (-2379 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-385 (-525))) (-5 *2 (-592 (-2 (|:| -3436 *5) (|:| -3446 *5)))) (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525))) (-5 *4 (-2 (|:| -3436 *5) (|:| -3446 *5))))) (-2379 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))) (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525))) (-5 *4 (-385 (-525))))) (-2379 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))) (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525))) (-5 *4 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))))) (-2379 (*1 *2 *3) (-12 (-5 *2 (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))) (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525))))))
+(-10 -7 (-15 -2379 ((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1|)) (-15 -2379 ((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))) (-15 -2379 ((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -2379 ((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) (-385 (-525)))) (-15 -2109 ((-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) (-385 (-525)))) (-15 -2109 ((-3 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) "failed") |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))) (-15 -3697 ((-385 (-525)) (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))) (-15 -2686 ((-592 (-385 (-525))) (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))))))
+((-2109 (((-3 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) "failed") |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) 35) (((-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) (-385 (-525))) 32)) (-2379 (((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) (-385 (-525))) 30) (((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1| (-385 (-525))) 26) (((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) 28) (((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1|) 24)))
+(((-952 |#1|) (-10 -7 (-15 -2379 ((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1|)) (-15 -2379 ((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))) (-15 -2379 ((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -2379 ((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) (-385 (-525)))) (-15 -2109 ((-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) (-385 (-525)))) (-15 -2109 ((-3 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) "failed") |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))))) (-1150 (-385 (-525)))) (T -952))
+((-2109 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) (-5 *1 (-952 *3)) (-4 *3 (-1150 (-385 (-525)))))) (-2109 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) (-5 *4 (-385 (-525))) (-5 *1 (-952 *3)) (-4 *3 (-1150 *4)))) (-2379 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-385 (-525))) (-5 *2 (-592 (-2 (|:| -3436 *5) (|:| -3446 *5)))) (-5 *1 (-952 *3)) (-4 *3 (-1150 *5)) (-5 *4 (-2 (|:| -3436 *5) (|:| -3446 *5))))) (-2379 (*1 *2 *3 *4) (-12 (-5 *4 (-385 (-525))) (-5 *2 (-592 (-2 (|:| -3436 *4) (|:| -3446 *4)))) (-5 *1 (-952 *3)) (-4 *3 (-1150 *4)))) (-2379 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))) (-5 *1 (-952 *3)) (-4 *3 (-1150 (-385 (-525)))) (-5 *4 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))))) (-2379 (*1 *2 *3) (-12 (-5 *2 (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))) (-5 *1 (-952 *3)) (-4 *3 (-1150 (-385 (-525)))))))
+(-10 -7 (-15 -2379 ((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1|)) (-15 -2379 ((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))) (-15 -2379 ((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -2379 ((-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))) |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) (-385 (-525)))) (-15 -2109 ((-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) (-385 (-525)))) (-15 -2109 ((-3 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) "failed") |#1| (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))) (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))))
+((-2069 (((-205) $) 6) (((-357) $) 9)))
(((-953) (-131)) (T -953))
NIL
(-13 (-567 (-205)) (-567 (-357)))
(((-567 (-205)) . T) ((-567 (-357)) . T))
-((-3922 (((-592 (-357)) (-887 (-525)) (-357)) 28) (((-592 (-357)) (-887 (-385 (-525))) (-357)) 27)) (-1690 (((-592 (-592 (-357))) (-592 (-887 (-525))) (-592 (-1092)) (-357)) 37)))
-(((-954) (-10 -7 (-15 -3922 ((-592 (-357)) (-887 (-385 (-525))) (-357))) (-15 -3922 ((-592 (-357)) (-887 (-525)) (-357))) (-15 -1690 ((-592 (-592 (-357))) (-592 (-887 (-525))) (-592 (-1092)) (-357))))) (T -954))
-((-1690 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-592 (-1092))) (-5 *2 (-592 (-592 (-357)))) (-5 *1 (-954)) (-5 *5 (-357)))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-887 (-525))) (-5 *2 (-592 (-357))) (-5 *1 (-954)) (-5 *4 (-357)))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-887 (-385 (-525)))) (-5 *2 (-592 (-357))) (-5 *1 (-954)) (-5 *4 (-357)))))
-(-10 -7 (-15 -3922 ((-592 (-357)) (-887 (-385 (-525))) (-357))) (-15 -3922 ((-592 (-357)) (-887 (-525)) (-357))) (-15 -1690 ((-592 (-592 (-357))) (-592 (-887 (-525))) (-592 (-1092)) (-357))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 70)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2782 (($ $) NIL) (($ $ (-856)) NIL) (($ (-385 (-525))) NIL) (($ (-525)) NIL)) (-2193 (((-108) $ $) NIL)) (-3855 (((-525) $) 65)) (-2169 (($) NIL T CONST)) (-2964 (((-3 $ "failed") (-1088 $) (-856) (-798)) NIL) (((-3 $ "failed") (-1088 $) (-856)) 50)) (-3077 (((-3 (-385 (-525)) "failed") $) NIL (|has| (-385 (-525)) (-968 (-385 (-525))))) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-525) "failed") $) NIL (-3254 (|has| (-385 (-525)) (-968 (-525))) (|has| |#1| (-968 (-525)))))) (-1572 (((-385 (-525)) $) 15 (|has| (-385 (-525)) (-968 (-385 (-525))))) (((-385 (-525)) $) 15) ((|#1| $) 108) (((-525) $) NIL (-3254 (|has| (-385 (-525)) (-968 (-525))) (|has| |#1| (-968 (-525)))))) (-2316 (($ $ (-798)) 42)) (-3030 (($ $ (-798)) 43)) (-1747 (($ $ $) NIL)) (-3172 (((-385 (-525)) $ $) 19)) (-3457 (((-3 $ "failed") $) 83)) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-1222 (((-108) $) 61)) (-1396 (((-108) $) NIL)) (-2171 (($ $ (-525)) NIL)) (-3256 (((-108) $) 64)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-2084 (((-3 (-1088 $) "failed") $) 78)) (-3157 (((-3 (-798) "failed") $) 77)) (-2737 (((-3 (-1088 $) "failed") $) 75)) (-2966 (((-3 (-987 $ (-1088 $)) "failed") $) 73)) (-2556 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) 84)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2770 (((-396 $) $) NIL)) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-1217 (((-798) $) 82) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ $) 58) (($ (-385 (-525))) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 110)) (-3917 (((-713)) NIL)) (-3325 (((-108) $ $) NIL)) (-1454 (((-385 (-525)) $ $) 25)) (-1692 (((-592 $) (-1088 $)) 56) (((-592 $) (-1088 (-385 (-525)))) NIL) (((-592 $) (-1088 (-525))) NIL) (((-592 $) (-887 $)) NIL) (((-592 $) (-887 (-385 (-525)))) NIL) (((-592 $) (-887 (-525))) NIL)) (-3907 (($ (-987 $ (-1088 $)) (-798)) 41)) (-2802 (($ $) 20)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3349 (($) 29 T CONST)) (-3359 (($) 35 T CONST)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 71)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 22)) (-4075 (($ $ $) 33)) (-4061 (($ $) 34) (($ $ $) 69)) (-4047 (($ $ $) 103)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ $ (-385 (-525))) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 91) (($ $ $) 96) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ (-525) $) 91) (($ $ (-525)) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
-(((-955 |#1|) (-13 (-944) (-389 |#1|) (-37 |#1|) (-10 -8 (-15 -3907 ($ (-987 $ (-1088 $)) (-798))) (-15 -2966 ((-3 (-987 $ (-1088 $)) "failed") $)) (-15 -3172 ((-385 (-525)) $ $)))) (-13 (-787) (-341) (-953))) (T -955))
-((-3907 (*1 *1 *2 *3) (-12 (-5 *2 (-987 (-955 *4) (-1088 (-955 *4)))) (-5 *3 (-798)) (-5 *1 (-955 *4)) (-4 *4 (-13 (-787) (-341) (-953))))) (-2966 (*1 *2 *1) (|partial| -12 (-5 *2 (-987 (-955 *3) (-1088 (-955 *3)))) (-5 *1 (-955 *3)) (-4 *3 (-13 (-787) (-341) (-953))))) (-3172 (*1 *2 *1 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-955 *3)) (-4 *3 (-13 (-787) (-341) (-953))))))
-(-13 (-944) (-389 |#1|) (-37 |#1|) (-10 -8 (-15 -3907 ($ (-987 $ (-1088 $)) (-798))) (-15 -2966 ((-3 (-987 $ (-1088 $)) "failed") $)) (-15 -3172 ((-385 (-525)) $ $))))
-((-1534 (((-2 (|:| -3025 |#2|) (|:| -4188 (-592 |#1|))) |#2| (-592 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
-(((-956 |#1| |#2|) (-10 -7 (-15 -1534 (|#2| |#2| |#1|)) (-15 -1534 ((-2 (|:| -3025 |#2|) (|:| -4188 (-592 |#1|))) |#2| (-592 |#1|)))) (-341) (-602 |#1|)) (T -956))
-((-1534 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-5 *2 (-2 (|:| -3025 *3) (|:| -4188 (-592 *5)))) (-5 *1 (-956 *5 *3)) (-5 *4 (-592 *5)) (-4 *3 (-602 *5)))) (-1534 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-956 *3 *2)) (-4 *2 (-602 *3)))))
-(-10 -7 (-15 -1534 (|#2| |#2| |#1|)) (-15 -1534 ((-2 (|:| -3025 |#2|) (|:| -4188 (-592 |#1|))) |#2| (-592 |#1|))))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3009 ((|#1| $ |#1|) 14)) (-1430 ((|#1| $ |#1|) 12)) (-1352 (($ |#1|) 10)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3406 ((|#1| $) 11)) (-1617 ((|#1| $) 13)) (-1217 (((-798) $) 21 (|has| |#1| (-1020)))) (-3955 (((-108) $ $) 9)))
-(((-957 |#1|) (-13 (-1128) (-10 -8 (-15 -1352 ($ |#1|)) (-15 -3406 (|#1| $)) (-15 -1430 (|#1| $ |#1|)) (-15 -1617 (|#1| $)) (-15 -3009 (|#1| $ |#1|)) (-15 -3955 ((-108) $ $)) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|))) (-1128)) (T -957))
-((-1352 (*1 *1 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128)))) (-3406 (*1 *2 *1) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128)))) (-1430 (*1 *2 *1 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128)))) (-1617 (*1 *2 *1) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128)))) (-3009 (*1 *2 *1 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128)))) (-3955 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-957 *3)) (-4 *3 (-1128)))))
-(-13 (-1128) (-10 -8 (-15 -1352 ($ |#1|)) (-15 -3406 (|#1| $)) (-15 -1430 (|#1| $ |#1|)) (-15 -1617 (|#1| $)) (-15 -3009 (|#1| $ |#1|)) (-15 -3955 ((-108) $ $)) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|)))
-((-4236 (((-108) $ $) NIL)) (-1463 (((-592 (-2 (|:| -2719 $) (|:| -3459 (-592 |#4|)))) (-592 |#4|)) NIL)) (-1589 (((-592 $) (-592 |#4|)) 105) (((-592 $) (-592 |#4|) (-108)) 106) (((-592 $) (-592 |#4|) (-108) (-108)) 104) (((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108)) 107)) (-2897 (((-592 |#3|) $) NIL)) (-2437 (((-108) $) NIL)) (-2750 (((-108) $) NIL (|has| |#1| (-517)))) (-3950 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2495 ((|#4| |#4| $) NIL)) (-1286 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 $))) |#4| $) 99)) (-2458 (((-2 (|:| |under| $) (|:| -2487 $) (|:| |upper| $)) $ |#3|) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-3785 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258))) (((-3 |#4| "failed") $ |#3|) 54)) (-2169 (($) NIL T CONST)) (-4089 (((-108) $) 26 (|has| |#1| (-517)))) (-2480 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1207 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3339 (((-108) $) NIL (|has| |#1| (-517)))) (-2712 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3767 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-3333 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-3077 (((-3 $ "failed") (-592 |#4|)) NIL)) (-1572 (($ (-592 |#4|)) NIL)) (-1886 (((-3 $ "failed") $) 39)) (-3901 ((|#4| |#4| $) 57)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020))))) (-1703 (($ |#4| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-1607 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-517)))) (-1961 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2834 ((|#4| |#4| $) NIL)) (-1284 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4258))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4258))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1877 (((-2 (|:| -2719 (-592 |#4|)) (|:| -3459 (-592 |#4|))) $) NIL)) (-1816 (((-108) |#4| $) NIL)) (-3458 (((-108) |#4| $) NIL)) (-2116 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1229 (((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108)) 119)) (-3440 (((-592 |#4|) $) 16 (|has| $ (-6 -4258)))) (-2633 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3153 ((|#3| $) 33)) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 |#4|) $) 17 (|has| $ (-6 -4258)))) (-2004 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020))))) (-2284 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#4| |#4|) $) 21)) (-1598 (((-592 |#3|) $) NIL)) (-3919 (((-108) |#3| $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL)) (-4028 (((-3 |#4| (-592 $)) |#4| |#4| $) NIL)) (-2370 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 $))) |#4| |#4| $) 97)) (-1717 (((-3 |#4| "failed") $) 37)) (-3606 (((-592 $) |#4| $) 80)) (-3486 (((-3 (-108) (-592 $)) |#4| $) NIL)) (-3070 (((-592 (-2 (|:| |val| (-108)) (|:| -2563 $))) |#4| $) 90) (((-108) |#4| $) 52)) (-2099 (((-592 $) |#4| $) 102) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 103) (((-592 $) |#4| (-592 $)) NIL)) (-1468 (((-592 $) (-592 |#4|) (-108) (-108) (-108)) 114)) (-3644 (($ |#4| $) 70) (($ (-592 |#4|) $) 71) (((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 67)) (-3159 (((-592 |#4|) $) NIL)) (-2686 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2423 ((|#4| |#4| $) NIL)) (-2338 (((-108) $ $) NIL)) (-1806 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2696 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3872 ((|#4| |#4| $) NIL)) (-2093 (((-1039) $) NIL)) (-1872 (((-3 |#4| "failed") $) 35)) (-1983 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3044 (((-3 $ "failed") $ |#4|) 48)) (-3931 (($ $ |#4|) NIL) (((-592 $) |#4| $) 82) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 77)) (-3944 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) 15)) (-2512 (($) 13)) (-2343 (((-713) $) NIL)) (-2110 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) 12)) (-3210 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-1230 (($ (-592 |#4|)) 20)) (-3264 (($ $ |#3|) 42)) (-1425 (($ $ |#3|) 44)) (-1320 (($ $) NIL)) (-4008 (($ $ |#3|) NIL)) (-1217 (((-798) $) 31) (((-592 |#4|) $) 40)) (-3735 (((-713) $) NIL (|has| |#3| (-346)))) (-1622 (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4027 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-1384 (((-592 $) |#4| $) 79) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) NIL)) (-3029 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-1221 (((-592 |#3|) $) NIL)) (-3162 (((-108) |#4| $) NIL)) (-2081 (((-108) |#3| $) 53)) (-3955 (((-108) $ $) NIL)) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-958 |#1| |#2| |#3| |#4|) (-13 (-996 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3644 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -1589 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -1589 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -1468 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -1229 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108))))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|)) (T -958))
-((-3644 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-958 *5 *6 *7 *3))) (-5 *1 (-958 *5 *6 *7 *3)) (-4 *3 (-991 *5 *6 *7)))) (-1589 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-958 *5 *6 *7 *8))) (-5 *1 (-958 *5 *6 *7 *8)))) (-1589 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-958 *5 *6 *7 *8))) (-5 *1 (-958 *5 *6 *7 *8)))) (-1468 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-958 *5 *6 *7 *8))) (-5 *1 (-958 *5 *6 *7 *8)))) (-1229 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-592 *8)) (|:| |towers| (-592 (-958 *5 *6 *7 *8))))) (-5 *1 (-958 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
-(-13 (-996 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3644 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -1589 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -1589 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -1468 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -1229 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108)))))
-((-3787 (((-592 (-632 |#1|)) (-592 (-632 |#1|))) 58) (((-632 |#1|) (-632 |#1|)) 57) (((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-592 (-632 |#1|))) 56) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 53)) (-1408 (((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-856)) 52) (((-632 |#1|) (-632 |#1|) (-856)) 51)) (-1348 (((-592 (-632 (-525))) (-592 (-592 (-525)))) 68) (((-592 (-632 (-525))) (-592 (-840 (-525))) (-525)) 67) (((-632 (-525)) (-592 (-525))) 64) (((-632 (-525)) (-840 (-525)) (-525)) 63)) (-2954 (((-632 (-887 |#1|)) (-713)) 81)) (-3951 (((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-856)) 37 (|has| |#1| (-6 (-4260 "*")))) (((-632 |#1|) (-632 |#1|) (-856)) 35 (|has| |#1| (-6 (-4260 "*"))))))
-(((-959 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4260 "*"))) (-15 -3951 ((-632 |#1|) (-632 |#1|) (-856))) |%noBranch|) (IF (|has| |#1| (-6 (-4260 "*"))) (-15 -3951 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-856))) |%noBranch|) (-15 -2954 ((-632 (-887 |#1|)) (-713))) (-15 -1408 ((-632 |#1|) (-632 |#1|) (-856))) (-15 -1408 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-856))) (-15 -3787 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3787 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3787 ((-632 |#1|) (-632 |#1|))) (-15 -3787 ((-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -1348 ((-632 (-525)) (-840 (-525)) (-525))) (-15 -1348 ((-632 (-525)) (-592 (-525)))) (-15 -1348 ((-592 (-632 (-525))) (-592 (-840 (-525))) (-525))) (-15 -1348 ((-592 (-632 (-525))) (-592 (-592 (-525)))))) (-977)) (T -959))
-((-1348 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-525)))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-959 *4)) (-4 *4 (-977)))) (-1348 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-840 (-525)))) (-5 *4 (-525)) (-5 *2 (-592 (-632 *4))) (-5 *1 (-959 *5)) (-4 *5 (-977)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-959 *4)) (-4 *4 (-977)))) (-1348 (*1 *2 *3 *4) (-12 (-5 *3 (-840 (-525))) (-5 *4 (-525)) (-5 *2 (-632 *4)) (-5 *1 (-959 *5)) (-4 *5 (-977)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-977)) (-5 *1 (-959 *3)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-959 *3)))) (-3787 (*1 *2 *2 *2) (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-977)) (-5 *1 (-959 *3)))) (-3787 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-959 *3)))) (-1408 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-856)) (-4 *4 (-977)) (-5 *1 (-959 *4)))) (-1408 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-856)) (-4 *4 (-977)) (-5 *1 (-959 *4)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-632 (-887 *4))) (-5 *1 (-959 *4)) (-4 *4 (-977)))) (-3951 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-856)) (|has| *4 (-6 (-4260 "*"))) (-4 *4 (-977)) (-5 *1 (-959 *4)))) (-3951 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-856)) (|has| *4 (-6 (-4260 "*"))) (-4 *4 (-977)) (-5 *1 (-959 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4260 "*"))) (-15 -3951 ((-632 |#1|) (-632 |#1|) (-856))) |%noBranch|) (IF (|has| |#1| (-6 (-4260 "*"))) (-15 -3951 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-856))) |%noBranch|) (-15 -2954 ((-632 (-887 |#1|)) (-713))) (-15 -1408 ((-632 |#1|) (-632 |#1|) (-856))) (-15 -1408 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-856))) (-15 -3787 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3787 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3787 ((-632 |#1|) (-632 |#1|))) (-15 -3787 ((-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -1348 ((-632 (-525)) (-840 (-525)) (-525))) (-15 -1348 ((-632 (-525)) (-592 (-525)))) (-15 -1348 ((-592 (-632 (-525))) (-592 (-840 (-525))) (-525))) (-15 -1348 ((-592 (-632 (-525))) (-592 (-592 (-525))))))
-((-3065 (((-632 |#1|) (-592 (-632 |#1|)) (-1174 |#1|)) 51 (|has| |#1| (-286)))) (-1260 (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1174 (-1174 |#1|))) 77 (|has| |#1| (-341))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1174 |#1|)) 80 (|has| |#1| (-341)))) (-1610 (((-1174 |#1|) (-592 (-1174 |#1|)) (-525)) 94 (-12 (|has| |#1| (-341)) (|has| |#1| (-346))))) (-3598 (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-856)) 86 (-12 (|has| |#1| (-341)) (|has| |#1| (-346)))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108)) 84 (-12 (|has| |#1| (-341)) (|has| |#1| (-346)))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|))) 83 (-12 (|has| |#1| (-341)) (|has| |#1| (-346)))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108) (-525) (-525)) 82 (-12 (|has| |#1| (-341)) (|has| |#1| (-346))))) (-4107 (((-108) (-592 (-632 |#1|))) 72 (|has| |#1| (-341))) (((-108) (-592 (-632 |#1|)) (-525)) 74 (|has| |#1| (-341)))) (-1336 (((-1174 (-1174 |#1|)) (-592 (-632 |#1|)) (-1174 |#1|)) 49 (|has| |#1| (-286)))) (-2615 (((-632 |#1|) (-592 (-632 |#1|)) (-632 |#1|)) 34)) (-2963 (((-632 |#1|) (-1174 (-1174 |#1|))) 31)) (-4160 (((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-525)) 66 (|has| |#1| (-341))) (((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|))) 65 (|has| |#1| (-341))) (((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-108) (-525)) 70 (|has| |#1| (-341)))))
-(((-960 |#1|) (-10 -7 (-15 -2963 ((-632 |#1|) (-1174 (-1174 |#1|)))) (-15 -2615 ((-632 |#1|) (-592 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-286)) (PROGN (-15 -1336 ((-1174 (-1174 |#1|)) (-592 (-632 |#1|)) (-1174 |#1|))) (-15 -3065 ((-632 |#1|) (-592 (-632 |#1|)) (-1174 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -4160 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-108) (-525))) (-15 -4160 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -4160 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-525))) (-15 -4107 ((-108) (-592 (-632 |#1|)) (-525))) (-15 -4107 ((-108) (-592 (-632 |#1|)))) (-15 -1260 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1174 |#1|))) (-15 -1260 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1174 (-1174 |#1|))))) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#1| (-341)) (PROGN (-15 -3598 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108) (-525) (-525))) (-15 -3598 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)))) (-15 -3598 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108))) (-15 -3598 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-856))) (-15 -1610 ((-1174 |#1|) (-592 (-1174 |#1|)) (-525)))) |%noBranch|) |%noBranch|)) (-977)) (T -960))
-((-1610 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1174 *5))) (-5 *4 (-525)) (-5 *2 (-1174 *5)) (-5 *1 (-960 *5)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-977)))) (-3598 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-977)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5)) (-5 *3 (-592 (-632 *5))))) (-3598 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-977)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5)) (-5 *3 (-592 (-632 *5))))) (-3598 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *4 (-346)) (-4 *4 (-977)) (-5 *2 (-592 (-592 (-632 *4)))) (-5 *1 (-960 *4)) (-5 *3 (-592 (-632 *4))))) (-3598 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-525)) (-4 *6 (-341)) (-4 *6 (-346)) (-4 *6 (-977)) (-5 *2 (-592 (-592 (-632 *6)))) (-5 *1 (-960 *6)) (-5 *3 (-592 (-632 *6))))) (-1260 (*1 *2 *3 *4) (-12 (-5 *4 (-1174 (-1174 *5))) (-4 *5 (-341)) (-4 *5 (-977)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5)) (-5 *3 (-592 (-632 *5))))) (-1260 (*1 *2 *3 *4) (-12 (-5 *4 (-1174 *5)) (-4 *5 (-341)) (-4 *5 (-977)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5)) (-5 *3 (-592 (-632 *5))))) (-4107 (*1 *2 *3) (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) (-4 *4 (-977)) (-5 *2 (-108)) (-5 *1 (-960 *4)))) (-4107 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-525)) (-4 *5 (-341)) (-4 *5 (-977)) (-5 *2 (-108)) (-5 *1 (-960 *5)))) (-4160 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-525)) (-5 *2 (-632 *5)) (-5 *1 (-960 *5)) (-4 *5 (-341)) (-4 *5 (-977)))) (-4160 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-632 *4))) (-5 *2 (-632 *4)) (-5 *1 (-960 *4)) (-4 *4 (-341)) (-4 *4 (-977)))) (-4160 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-592 (-632 *6))) (-5 *4 (-108)) (-5 *5 (-525)) (-5 *2 (-632 *6)) (-5 *1 (-960 *6)) (-4 *6 (-341)) (-4 *6 (-977)))) (-3065 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-1174 *5)) (-4 *5 (-286)) (-4 *5 (-977)) (-5 *2 (-632 *5)) (-5 *1 (-960 *5)))) (-1336 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-4 *5 (-286)) (-4 *5 (-977)) (-5 *2 (-1174 (-1174 *5))) (-5 *1 (-960 *5)) (-5 *4 (-1174 *5)))) (-2615 (*1 *2 *3 *2) (-12 (-5 *3 (-592 (-632 *4))) (-5 *2 (-632 *4)) (-4 *4 (-977)) (-5 *1 (-960 *4)))) (-2963 (*1 *2 *3) (-12 (-5 *3 (-1174 (-1174 *4))) (-4 *4 (-977)) (-5 *2 (-632 *4)) (-5 *1 (-960 *4)))))
-(-10 -7 (-15 -2963 ((-632 |#1|) (-1174 (-1174 |#1|)))) (-15 -2615 ((-632 |#1|) (-592 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-286)) (PROGN (-15 -1336 ((-1174 (-1174 |#1|)) (-592 (-632 |#1|)) (-1174 |#1|))) (-15 -3065 ((-632 |#1|) (-592 (-632 |#1|)) (-1174 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -4160 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-108) (-525))) (-15 -4160 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -4160 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-525))) (-15 -4107 ((-108) (-592 (-632 |#1|)) (-525))) (-15 -4107 ((-108) (-592 (-632 |#1|)))) (-15 -1260 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1174 |#1|))) (-15 -1260 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1174 (-1174 |#1|))))) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#1| (-341)) (PROGN (-15 -3598 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108) (-525) (-525))) (-15 -3598 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)))) (-15 -3598 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108))) (-15 -3598 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-856))) (-15 -1610 ((-1174 |#1|) (-592 (-1174 |#1|)) (-525)))) |%noBranch|) |%noBranch|))
-((-3274 ((|#1| (-856) |#1|) 9)))
-(((-961 |#1|) (-10 -7 (-15 -3274 (|#1| (-856) |#1|))) (-13 (-1020) (-10 -8 (-15 -4047 ($ $ $))))) (T -961))
-((-3274 (*1 *2 *3 *2) (-12 (-5 *3 (-856)) (-5 *1 (-961 *2)) (-4 *2 (-13 (-1020) (-10 -8 (-15 -4047 ($ $ $))))))))
-(-10 -7 (-15 -3274 (|#1| (-856) |#1|)))
-((-2800 (((-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525))))))) (-632 (-385 (-887 (-525))))) 59)) (-2019 (((-592 (-632 (-294 (-525)))) (-294 (-525)) (-632 (-385 (-887 (-525))))) 48)) (-3943 (((-592 (-294 (-525))) (-632 (-385 (-887 (-525))))) 41)) (-4133 (((-592 (-632 (-294 (-525)))) (-632 (-385 (-887 (-525))))) 69)) (-1836 (((-632 (-294 (-525))) (-632 (-294 (-525)))) 34)) (-3896 (((-592 (-632 (-294 (-525)))) (-592 (-632 (-294 (-525))))) 62)) (-2481 (((-3 (-632 (-294 (-525))) "failed") (-632 (-385 (-887 (-525))))) 66)))
-(((-962) (-10 -7 (-15 -2800 ((-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525))))))) (-632 (-385 (-887 (-525)))))) (-15 -2019 ((-592 (-632 (-294 (-525)))) (-294 (-525)) (-632 (-385 (-887 (-525)))))) (-15 -3943 ((-592 (-294 (-525))) (-632 (-385 (-887 (-525)))))) (-15 -2481 ((-3 (-632 (-294 (-525))) "failed") (-632 (-385 (-887 (-525)))))) (-15 -1836 ((-632 (-294 (-525))) (-632 (-294 (-525))))) (-15 -3896 ((-592 (-632 (-294 (-525)))) (-592 (-632 (-294 (-525)))))) (-15 -4133 ((-592 (-632 (-294 (-525)))) (-632 (-385 (-887 (-525)))))))) (T -962))
-((-4133 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-887 (-525))))) (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-962)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-962)))) (-1836 (*1 *2 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-962)))) (-2481 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 (-385 (-887 (-525))))) (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-962)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-887 (-525))))) (-5 *2 (-592 (-294 (-525)))) (-5 *1 (-962)))) (-2019 (*1 *2 *3 *4) (-12 (-5 *4 (-632 (-385 (-887 (-525))))) (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-962)) (-5 *3 (-294 (-525))))) (-2800 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-887 (-525))))) (-5 *2 (-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525)))))))) (-5 *1 (-962)))))
-(-10 -7 (-15 -2800 ((-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525))))))) (-632 (-385 (-887 (-525)))))) (-15 -2019 ((-592 (-632 (-294 (-525)))) (-294 (-525)) (-632 (-385 (-887 (-525)))))) (-15 -3943 ((-592 (-294 (-525))) (-632 (-385 (-887 (-525)))))) (-15 -2481 ((-3 (-632 (-294 (-525))) "failed") (-632 (-385 (-887 (-525)))))) (-15 -1836 ((-632 (-294 (-525))) (-632 (-294 (-525))))) (-15 -3896 ((-592 (-632 (-294 (-525)))) (-592 (-632 (-294 (-525)))))) (-15 -4133 ((-592 (-632 (-294 (-525)))) (-632 (-385 (-887 (-525)))))))
-((-2087 ((|#1| |#1| (-856)) 9)))
-(((-963 |#1|) (-10 -7 (-15 -2087 (|#1| |#1| (-856)))) (-13 (-1020) (-10 -8 (-15 * ($ $ $))))) (T -963))
-((-2087 (*1 *2 *2 *3) (-12 (-5 *3 (-856)) (-5 *1 (-963 *2)) (-4 *2 (-13 (-1020) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -2087 (|#1| |#1| (-856))))
-((-1217 ((|#1| (-290)) 11) (((-1179) |#1|) 9)))
-(((-964 |#1|) (-10 -7 (-15 -1217 ((-1179) |#1|)) (-15 -1217 (|#1| (-290)))) (-1128)) (T -964))
-((-1217 (*1 *2 *3) (-12 (-5 *3 (-290)) (-5 *1 (-964 *2)) (-4 *2 (-1128)))) (-1217 (*1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *1 (-964 *3)) (-4 *3 (-1128)))))
-(-10 -7 (-15 -1217 ((-1179) |#1|)) (-15 -1217 (|#1| (-290))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-1284 (($ |#4|) 25)) (-3457 (((-3 $ "failed") $) NIL)) (-1396 (((-108) $) NIL)) (-1269 ((|#4| $) 27)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 46) (($ (-525)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3917 (((-713)) 43)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 21 T CONST)) (-3359 (($) 23 T CONST)) (-3955 (((-108) $ $) 40)) (-4061 (($ $) 31) (($ $ $) NIL)) (-4047 (($ $ $) 29)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-965 |#1| |#2| |#3| |#4| |#5|) (-13 (-160) (-37 |#1|) (-10 -8 (-15 -1284 ($ |#4|)) (-15 -1217 ($ |#4|)) (-15 -1269 (|#4| $)))) (-341) (-735) (-789) (-884 |#1| |#2| |#3|) (-592 |#4|)) (T -965))
-((-1284 (*1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-965 *3 *4 *5 *2 *6)) (-4 *2 (-884 *3 *4 *5)) (-14 *6 (-592 *2)))) (-1217 (*1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-965 *3 *4 *5 *2 *6)) (-4 *2 (-884 *3 *4 *5)) (-14 *6 (-592 *2)))) (-1269 (*1 *2 *1) (-12 (-4 *2 (-884 *3 *4 *5)) (-5 *1 (-965 *3 *4 *5 *2 *6)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-14 *6 (-592 *2)))))
-(-13 (-160) (-37 |#1|) (-10 -8 (-15 -1284 ($ |#4|)) (-15 -1217 ($ |#4|)) (-15 -1269 (|#4| $))))
-((-4236 (((-108) $ $) NIL (-3254 (|has| (-51) (-1020)) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020))))) (-1675 (($) NIL) (($ (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) NIL)) (-3456 (((-1179) $ (-1092) (-1092)) NIL (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) NIL)) (-2161 (((-108) (-108)) 39)) (-2760 (((-108) (-108)) 38)) (-1430 (((-51) $ (-1092) (-51)) NIL)) (-1676 (($ (-1 (-108) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258)))) (-2591 (((-3 (-51) "failed") (-1092) $) NIL)) (-2169 (($) NIL T CONST)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020))))) (-3271 (($ (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) $) NIL (|has| $ (-6 -4258))) (($ (-1 (-108) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258))) (((-3 (-51) "failed") (-1092) $) NIL)) (-1703 (($ (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020)))) (($ (-1 (-108) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258)))) (-1284 (((-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $ (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020)))) (((-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $ (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) NIL (|has| $ (-6 -4258))) (((-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258)))) (-2301 (((-51) $ (-1092) (-51)) NIL (|has| $ (-6 -4259)))) (-2222 (((-51) $ (-1092)) NIL)) (-3440 (((-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258))) (((-592 (-51)) $) NIL (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-1092) $) NIL (|has| (-1092) (-789)))) (-2694 (((-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258))) (((-592 (-51)) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-51) (-1020))))) (-1847 (((-1092) $) NIL (|has| (-1092) (-789)))) (-2284 (($ (-1 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4259))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (-3254 (|has| (-51) (-1020)) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020))))) (-2356 (((-592 (-1092)) $) 34)) (-2239 (((-108) (-1092) $) NIL)) (-2992 (((-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) $) NIL)) (-1262 (($ (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) $) NIL)) (-2628 (((-592 (-1092)) $) NIL)) (-2978 (((-108) (-1092) $) NIL)) (-2093 (((-1039) $) NIL (-3254 (|has| (-51) (-1020)) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020))))) (-1872 (((-51) $) NIL (|has| (-1092) (-789)))) (-1983 (((-3 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) "failed") (-1 (-108) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL)) (-1420 (($ $ (-51)) NIL (|has| $ (-6 -4259)))) (-4127 (((-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) $) NIL)) (-3944 (((-108) (-1 (-108) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))))) NIL (-12 (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-288 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020)))) (($ $ (-273 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) NIL (-12 (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-288 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020)))) (($ $ (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) NIL (-12 (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-288 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020)))) (($ $ (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) NIL (-12 (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-288 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020)))) (($ $ (-592 (-51)) (-592 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-273 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-592 (-273 (-51)))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-51) (-1020))))) (-3341 (((-592 (-51)) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 (((-51) $ (-1092)) 35) (((-51) $ (-1092) (-51)) NIL)) (-1760 (($) NIL) (($ (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) NIL)) (-2110 (((-713) (-1 (-108) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258))) (((-713) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020)))) (((-713) (-51) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-51) (-1020)))) (((-713) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-567 (-501))))) (-1230 (($ (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) NIL)) (-1217 (((-798) $) 37 (-3254 (|has| (-51) (-566 (-798))) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-566 (-798)))))) (-1956 (($ (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) NIL)) (-3029 (((-108) (-1 (-108) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (-3254 (|has| (-51) (-1020)) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020))))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-966) (-13 (-1105 (-1092) (-51)) (-10 -7 (-15 -2161 ((-108) (-108))) (-15 -2760 ((-108) (-108))) (-6 -4258)))) (T -966))
-((-2161 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-966)))) (-2760 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-966)))))
-(-13 (-1105 (-1092) (-51)) (-10 -7 (-15 -2161 ((-108) (-108))) (-15 -2760 ((-108) (-108))) (-6 -4258)))
-((-1572 ((|#2| $) 10)))
-(((-967 |#1| |#2|) (-10 -8 (-15 -1572 (|#2| |#1|))) (-968 |#2|) (-1128)) (T -967))
-NIL
-(-10 -8 (-15 -1572 (|#2| |#1|)))
-((-3077 (((-3 |#1| "failed") $) 7)) (-1572 ((|#1| $) 8)) (-1217 (($ |#1|) 6)))
+((-2496 (((-592 (-357)) (-887 (-525)) (-357)) 28) (((-592 (-357)) (-887 (-385 (-525))) (-357)) 27)) (-3192 (((-592 (-592 (-357))) (-592 (-887 (-525))) (-592 (-1092)) (-357)) 37)))
+(((-954) (-10 -7 (-15 -2496 ((-592 (-357)) (-887 (-385 (-525))) (-357))) (-15 -2496 ((-592 (-357)) (-887 (-525)) (-357))) (-15 -3192 ((-592 (-592 (-357))) (-592 (-887 (-525))) (-592 (-1092)) (-357))))) (T -954))
+((-3192 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-592 (-1092))) (-5 *2 (-592 (-592 (-357)))) (-5 *1 (-954)) (-5 *5 (-357)))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-887 (-525))) (-5 *2 (-592 (-357))) (-5 *1 (-954)) (-5 *4 (-357)))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-887 (-385 (-525)))) (-5 *2 (-592 (-357))) (-5 *1 (-954)) (-5 *4 (-357)))))
+(-10 -7 (-15 -2496 ((-592 (-357)) (-887 (-385 (-525))) (-357))) (-15 -2496 ((-592 (-357)) (-887 (-525)) (-357))) (-15 -3192 ((-592 (-592 (-357))) (-592 (-887 (-525))) (-592 (-1092)) (-357))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 70)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-4211 (($ $) NIL) (($ $ (-856)) NIL) (($ (-385 (-525))) NIL) (($ (-525)) NIL)) (-1507 (((-108) $ $) NIL)) (-2971 (((-525) $) 65)) (-2475 (($) NIL T CONST)) (-3317 (((-3 $ "failed") (-1088 $) (-856) (-798)) NIL) (((-3 $ "failed") (-1088 $) (-856)) 50)) (-1934 (((-3 (-385 (-525)) "failed") $) NIL (|has| (-385 (-525)) (-968 (-385 (-525))))) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-525) "failed") $) NIL (-2067 (|has| (-385 (-525)) (-968 (-525))) (|has| |#1| (-968 (-525)))))) (-4105 (((-385 (-525)) $) 15 (|has| (-385 (-525)) (-968 (-385 (-525))))) (((-385 (-525)) $) 15) ((|#1| $) 108) (((-525) $) NIL (-2067 (|has| (-385 (-525)) (-968 (-525))) (|has| |#1| (-968 (-525)))))) (-3226 (($ $ (-798)) 42)) (-2714 (($ $ (-798)) 43)) (-1356 (($ $ $) NIL)) (-1581 (((-385 (-525)) $ $) 19)) (-3300 (((-3 $ "failed") $) 83)) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-1889 (((-108) $) 61)) (-2278 (((-108) $) NIL)) (-1303 (($ $ (-525)) NIL)) (-4079 (((-108) $) 64)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-2770 (((-3 (-1088 $) "failed") $) 78)) (-1436 (((-3 (-798) "failed") $) 77)) (-2970 (((-3 (-1088 $) "failed") $) 75)) (-3339 (((-3 (-987 $ (-1088 $)) "failed") $) 73)) (-2739 (($ (-592 $)) NIL) (($ $ $) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) 84)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ (-592 $)) NIL) (($ $ $) NIL)) (-4201 (((-396 $) $) NIL)) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-4100 (((-798) $) 82) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ $) 58) (($ (-385 (-525))) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 110)) (-2448 (((-713)) NIL)) (-1571 (((-108) $ $) NIL)) (-1485 (((-385 (-525)) $ $) 25)) (-3213 (((-592 $) (-1088 $)) 56) (((-592 $) (-1088 (-385 (-525)))) NIL) (((-592 $) (-1088 (-525))) NIL) (((-592 $) (-887 $)) NIL) (((-592 $) (-887 (-385 (-525)))) NIL) (((-592 $) (-887 (-525))) NIL)) (-2331 (($ (-987 $ (-1088 $)) (-798)) 41)) (-2380 (($ $) 20)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3364 (($) 29 T CONST)) (-3375 (($) 35 T CONST)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 71)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 22)) (-2880 (($ $ $) 33)) (-2871 (($ $) 34) (($ $ $) 69)) (-2860 (($ $ $) 103)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ $ (-385 (-525))) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 91) (($ $ $) 96) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ (-525) $) 91) (($ $ (-525)) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
+(((-955 |#1|) (-13 (-944) (-389 |#1|) (-37 |#1|) (-10 -8 (-15 -2331 ($ (-987 $ (-1088 $)) (-798))) (-15 -3339 ((-3 (-987 $ (-1088 $)) "failed") $)) (-15 -1581 ((-385 (-525)) $ $)))) (-13 (-787) (-341) (-953))) (T -955))
+((-2331 (*1 *1 *2 *3) (-12 (-5 *2 (-987 (-955 *4) (-1088 (-955 *4)))) (-5 *3 (-798)) (-5 *1 (-955 *4)) (-4 *4 (-13 (-787) (-341) (-953))))) (-3339 (*1 *2 *1) (|partial| -12 (-5 *2 (-987 (-955 *3) (-1088 (-955 *3)))) (-5 *1 (-955 *3)) (-4 *3 (-13 (-787) (-341) (-953))))) (-1581 (*1 *2 *1 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-955 *3)) (-4 *3 (-13 (-787) (-341) (-953))))))
+(-13 (-944) (-389 |#1|) (-37 |#1|) (-10 -8 (-15 -2331 ($ (-987 $ (-1088 $)) (-798))) (-15 -3339 ((-3 (-987 $ (-1088 $)) "failed") $)) (-15 -1581 ((-385 (-525)) $ $))))
+((-1278 (((-2 (|:| -1537 |#2|) (|:| -1534 (-592 |#1|))) |#2| (-592 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
+(((-956 |#1| |#2|) (-10 -7 (-15 -1278 (|#2| |#2| |#1|)) (-15 -1278 ((-2 (|:| -1537 |#2|) (|:| -1534 (-592 |#1|))) |#2| (-592 |#1|)))) (-341) (-602 |#1|)) (T -956))
+((-1278 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-5 *2 (-2 (|:| -1537 *3) (|:| -1534 (-592 *5)))) (-5 *1 (-956 *5 *3)) (-5 *4 (-592 *5)) (-4 *3 (-602 *5)))) (-1278 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-956 *3 *2)) (-4 *2 (-602 *3)))))
+(-10 -7 (-15 -1278 (|#2| |#2| |#1|)) (-15 -1278 ((-2 (|:| -1537 |#2|) (|:| -1534 (-592 |#1|))) |#2| (-592 |#1|))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3712 ((|#1| $ |#1|) 14)) (-1233 ((|#1| $ |#1|) 12)) (-2766 (($ |#1|) 10)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3431 ((|#1| $) 11)) (-3759 ((|#1| $) 13)) (-4100 (((-798) $) 21 (|has| |#1| (-1020)))) (-2775 (((-108) $ $) 9)))
+(((-957 |#1|) (-13 (-1128) (-10 -8 (-15 -2766 ($ |#1|)) (-15 -3431 (|#1| $)) (-15 -1233 (|#1| $ |#1|)) (-15 -3759 (|#1| $)) (-15 -3712 (|#1| $ |#1|)) (-15 -2775 ((-108) $ $)) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|))) (-1128)) (T -957))
+((-2766 (*1 *1 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128)))) (-3431 (*1 *2 *1) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128)))) (-1233 (*1 *2 *1 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128)))) (-3759 (*1 *2 *1) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128)))) (-3712 (*1 *2 *1 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128)))) (-2775 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-957 *3)) (-4 *3 (-1128)))))
+(-13 (-1128) (-10 -8 (-15 -2766 ($ |#1|)) (-15 -3431 (|#1| $)) (-15 -1233 (|#1| $ |#1|)) (-15 -3759 (|#1| $)) (-15 -3712 (|#1| $ |#1|)) (-15 -2775 ((-108) $ $)) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|)))
+((-4087 (((-108) $ $) NIL)) (-2562 (((-592 (-2 (|:| -2682 $) (|:| -2046 (-592 |#4|)))) (-592 |#4|)) NIL)) (-3347 (((-592 $) (-592 |#4|)) 105) (((-592 $) (-592 |#4|) (-108)) 106) (((-592 $) (-592 |#4|) (-108) (-108)) 104) (((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108)) 107)) (-1296 (((-592 |#3|) $) NIL)) (-2071 (((-108) $) NIL)) (-3093 (((-108) $) NIL (|has| |#1| (-517)))) (-1587 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1402 ((|#4| |#4| $) NIL)) (-4195 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 $))) |#4| $) 99)) (-1842 (((-2 (|:| |under| $) (|:| -1340 $) (|:| |upper| $)) $ |#3|) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-2399 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259))) (((-3 |#4| "failed") $ |#3|) 54)) (-2475 (($) NIL T CONST)) (-3542 (((-108) $) 26 (|has| |#1| (-517)))) (-2462 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2390 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1698 (((-108) $) NIL (|has| |#1| (-517)))) (-2783 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3308 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1655 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1934 (((-3 $ "failed") (-592 |#4|)) NIL)) (-4105 (($ (-592 |#4|)) NIL)) (-1659 (((-3 $ "failed") $) 39)) (-2268 ((|#4| |#4| $) 57)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020))))) (-2698 (($ |#4| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-3681 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-517)))) (-3964 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-1469 ((|#4| |#4| $) NIL)) (-3504 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4259))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4259))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1329 (((-2 (|:| -2682 (-592 |#4|)) (|:| -2046 (-592 |#4|))) $) NIL)) (-1954 (((-108) |#4| $) NIL)) (-3315 (((-108) |#4| $) NIL)) (-1941 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1959 (((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108)) 119)) (-2175 (((-592 |#4|) $) 16 (|has| $ (-6 -4259)))) (-3221 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2577 ((|#3| $) 33)) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 |#4|) $) 17 (|has| $ (-6 -4259)))) (-3198 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020))))) (-3069 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#4| |#4|) $) 21)) (-3435 (((-592 |#3|) $) NIL)) (-2468 (((-108) |#3| $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL)) (-4180 (((-3 |#4| (-592 $)) |#4| |#4| $) NIL)) (-2602 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 $))) |#4| |#4| $) 97)) (-2718 (((-3 |#4| "failed") $) 37)) (-2346 (((-592 $) |#4| $) 80)) (-3580 (((-3 (-108) (-592 $)) |#4| $) NIL)) (-3022 (((-592 (-2 (|:| |val| (-108)) (|:| -1285 $))) |#4| $) 90) (((-108) |#4| $) 52)) (-2913 (((-592 $) |#4| $) 102) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 103) (((-592 $) |#4| (-592 $)) NIL)) (-2593 (((-592 $) (-592 |#4|) (-108) (-108) (-108)) 114)) (-1513 (($ |#4| $) 70) (($ (-592 |#4|) $) 71) (((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 67)) (-1455 (((-592 |#4|) $) NIL)) (-3732 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3076 ((|#4| |#4| $) NIL)) (-3472 (((-108) $ $) NIL)) (-2991 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2635 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1998 ((|#4| |#4| $) NIL)) (-3993 (((-1039) $) NIL)) (-1647 (((-3 |#4| "failed") $) 35)) (-4202 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2821 (((-3 $ "failed") $ |#4|) 48)) (-1397 (($ $ |#4|) NIL) (((-592 $) |#4| $) 82) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 77)) (-1518 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) 15)) (-1558 (($) 13)) (-3529 (((-713) $) NIL)) (-4002 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) 12)) (-2069 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-4114 (($ (-592 |#4|)) 20)) (-4151 (($ $ |#3|) 42)) (-3522 (($ $ |#3|) 44)) (-1411 (($ $) NIL)) (-3963 (($ $ |#3|) NIL)) (-4100 (((-798) $) 31) (((-592 |#4|) $) 40)) (-1223 (((-713) $) NIL (|has| |#3| (-346)))) (-3799 (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4170 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-3605 (((-592 $) |#4| $) 79) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) NIL)) (-2706 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-1874 (((-592 |#3|) $) NIL)) (-1484 (((-108) |#4| $) NIL)) (-2738 (((-108) |#3| $) 53)) (-2775 (((-108) $ $) NIL)) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-958 |#1| |#2| |#3| |#4|) (-13 (-996 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1513 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3347 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -3347 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -2593 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -1959 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108))))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|)) (T -958))
+((-1513 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-958 *5 *6 *7 *3))) (-5 *1 (-958 *5 *6 *7 *3)) (-4 *3 (-991 *5 *6 *7)))) (-3347 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-958 *5 *6 *7 *8))) (-5 *1 (-958 *5 *6 *7 *8)))) (-3347 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-958 *5 *6 *7 *8))) (-5 *1 (-958 *5 *6 *7 *8)))) (-2593 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-958 *5 *6 *7 *8))) (-5 *1 (-958 *5 *6 *7 *8)))) (-1959 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-592 *8)) (|:| |towers| (-592 (-958 *5 *6 *7 *8))))) (-5 *1 (-958 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
+(-13 (-996 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1513 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3347 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -3347 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -2593 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -1959 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108)))))
+((-3514 (((-592 (-632 |#1|)) (-592 (-632 |#1|))) 58) (((-632 |#1|) (-632 |#1|)) 57) (((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-592 (-632 |#1|))) 56) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 53)) (-1984 (((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-856)) 52) (((-632 |#1|) (-632 |#1|) (-856)) 51)) (-3554 (((-592 (-632 (-525))) (-592 (-592 (-525)))) 68) (((-592 (-632 (-525))) (-592 (-840 (-525))) (-525)) 67) (((-632 (-525)) (-592 (-525))) 64) (((-632 (-525)) (-840 (-525)) (-525)) 63)) (-3218 (((-632 (-887 |#1|)) (-713)) 81)) (-1599 (((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-856)) 37 (|has| |#1| (-6 (-4261 "*")))) (((-632 |#1|) (-632 |#1|) (-856)) 35 (|has| |#1| (-6 (-4261 "*"))))))
+(((-959 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4261 "*"))) (-15 -1599 ((-632 |#1|) (-632 |#1|) (-856))) |%noBranch|) (IF (|has| |#1| (-6 (-4261 "*"))) (-15 -1599 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-856))) |%noBranch|) (-15 -3218 ((-632 (-887 |#1|)) (-713))) (-15 -1984 ((-632 |#1|) (-632 |#1|) (-856))) (-15 -1984 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-856))) (-15 -3514 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3514 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3514 ((-632 |#1|) (-632 |#1|))) (-15 -3514 ((-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3554 ((-632 (-525)) (-840 (-525)) (-525))) (-15 -3554 ((-632 (-525)) (-592 (-525)))) (-15 -3554 ((-592 (-632 (-525))) (-592 (-840 (-525))) (-525))) (-15 -3554 ((-592 (-632 (-525))) (-592 (-592 (-525)))))) (-977)) (T -959))
+((-3554 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-525)))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-959 *4)) (-4 *4 (-977)))) (-3554 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-840 (-525)))) (-5 *4 (-525)) (-5 *2 (-592 (-632 *4))) (-5 *1 (-959 *5)) (-4 *5 (-977)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-959 *4)) (-4 *4 (-977)))) (-3554 (*1 *2 *3 *4) (-12 (-5 *3 (-840 (-525))) (-5 *4 (-525)) (-5 *2 (-632 *4)) (-5 *1 (-959 *5)) (-4 *5 (-977)))) (-3514 (*1 *2 *2) (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-977)) (-5 *1 (-959 *3)))) (-3514 (*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-959 *3)))) (-3514 (*1 *2 *2 *2) (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-977)) (-5 *1 (-959 *3)))) (-3514 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-959 *3)))) (-1984 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-856)) (-4 *4 (-977)) (-5 *1 (-959 *4)))) (-1984 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-856)) (-4 *4 (-977)) (-5 *1 (-959 *4)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-632 (-887 *4))) (-5 *1 (-959 *4)) (-4 *4 (-977)))) (-1599 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-856)) (|has| *4 (-6 (-4261 "*"))) (-4 *4 (-977)) (-5 *1 (-959 *4)))) (-1599 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-856)) (|has| *4 (-6 (-4261 "*"))) (-4 *4 (-977)) (-5 *1 (-959 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4261 "*"))) (-15 -1599 ((-632 |#1|) (-632 |#1|) (-856))) |%noBranch|) (IF (|has| |#1| (-6 (-4261 "*"))) (-15 -1599 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-856))) |%noBranch|) (-15 -3218 ((-632 (-887 |#1|)) (-713))) (-15 -1984 ((-632 |#1|) (-632 |#1|) (-856))) (-15 -1984 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-856))) (-15 -3514 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3514 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3514 ((-632 |#1|) (-632 |#1|))) (-15 -3514 ((-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3554 ((-632 (-525)) (-840 (-525)) (-525))) (-15 -3554 ((-632 (-525)) (-592 (-525)))) (-15 -3554 ((-592 (-632 (-525))) (-592 (-840 (-525))) (-525))) (-15 -3554 ((-592 (-632 (-525))) (-592 (-592 (-525))))))
+((-2985 (((-632 |#1|) (-592 (-632 |#1|)) (-1174 |#1|)) 51 (|has| |#1| (-286)))) (-3224 (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1174 (-1174 |#1|))) 77 (|has| |#1| (-341))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1174 |#1|)) 80 (|has| |#1| (-341)))) (-3700 (((-1174 |#1|) (-592 (-1174 |#1|)) (-525)) 94 (-12 (|has| |#1| (-341)) (|has| |#1| (-346))))) (-2261 (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-856)) 86 (-12 (|has| |#1| (-341)) (|has| |#1| (-346)))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108)) 84 (-12 (|has| |#1| (-341)) (|has| |#1| (-346)))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|))) 83 (-12 (|has| |#1| (-341)) (|has| |#1| (-346)))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108) (-525) (-525)) 82 (-12 (|has| |#1| (-341)) (|has| |#1| (-346))))) (-3720 (((-108) (-592 (-632 |#1|))) 72 (|has| |#1| (-341))) (((-108) (-592 (-632 |#1|)) (-525)) 74 (|has| |#1| (-341)))) (-2997 (((-1174 (-1174 |#1|)) (-592 (-632 |#1|)) (-1174 |#1|)) 49 (|has| |#1| (-286)))) (-1244 (((-632 |#1|) (-592 (-632 |#1|)) (-632 |#1|)) 34)) (-3302 (((-632 |#1|) (-1174 (-1174 |#1|))) 31)) (-3012 (((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-525)) 66 (|has| |#1| (-341))) (((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|))) 65 (|has| |#1| (-341))) (((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-108) (-525)) 70 (|has| |#1| (-341)))))
+(((-960 |#1|) (-10 -7 (-15 -3302 ((-632 |#1|) (-1174 (-1174 |#1|)))) (-15 -1244 ((-632 |#1|) (-592 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-286)) (PROGN (-15 -2997 ((-1174 (-1174 |#1|)) (-592 (-632 |#1|)) (-1174 |#1|))) (-15 -2985 ((-632 |#1|) (-592 (-632 |#1|)) (-1174 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -3012 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-108) (-525))) (-15 -3012 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3012 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-525))) (-15 -3720 ((-108) (-592 (-632 |#1|)) (-525))) (-15 -3720 ((-108) (-592 (-632 |#1|)))) (-15 -3224 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1174 |#1|))) (-15 -3224 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1174 (-1174 |#1|))))) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#1| (-341)) (PROGN (-15 -2261 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108) (-525) (-525))) (-15 -2261 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)))) (-15 -2261 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108))) (-15 -2261 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-856))) (-15 -3700 ((-1174 |#1|) (-592 (-1174 |#1|)) (-525)))) |%noBranch|) |%noBranch|)) (-977)) (T -960))
+((-3700 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1174 *5))) (-5 *4 (-525)) (-5 *2 (-1174 *5)) (-5 *1 (-960 *5)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-977)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-977)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5)) (-5 *3 (-592 (-632 *5))))) (-2261 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-977)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5)) (-5 *3 (-592 (-632 *5))))) (-2261 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *4 (-346)) (-4 *4 (-977)) (-5 *2 (-592 (-592 (-632 *4)))) (-5 *1 (-960 *4)) (-5 *3 (-592 (-632 *4))))) (-2261 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-525)) (-4 *6 (-341)) (-4 *6 (-346)) (-4 *6 (-977)) (-5 *2 (-592 (-592 (-632 *6)))) (-5 *1 (-960 *6)) (-5 *3 (-592 (-632 *6))))) (-3224 (*1 *2 *3 *4) (-12 (-5 *4 (-1174 (-1174 *5))) (-4 *5 (-341)) (-4 *5 (-977)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5)) (-5 *3 (-592 (-632 *5))))) (-3224 (*1 *2 *3 *4) (-12 (-5 *4 (-1174 *5)) (-4 *5 (-341)) (-4 *5 (-977)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5)) (-5 *3 (-592 (-632 *5))))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) (-4 *4 (-977)) (-5 *2 (-108)) (-5 *1 (-960 *4)))) (-3720 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-525)) (-4 *5 (-341)) (-4 *5 (-977)) (-5 *2 (-108)) (-5 *1 (-960 *5)))) (-3012 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-525)) (-5 *2 (-632 *5)) (-5 *1 (-960 *5)) (-4 *5 (-341)) (-4 *5 (-977)))) (-3012 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-632 *4))) (-5 *2 (-632 *4)) (-5 *1 (-960 *4)) (-4 *4 (-341)) (-4 *4 (-977)))) (-3012 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-592 (-632 *6))) (-5 *4 (-108)) (-5 *5 (-525)) (-5 *2 (-632 *6)) (-5 *1 (-960 *6)) (-4 *6 (-341)) (-4 *6 (-977)))) (-2985 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-1174 *5)) (-4 *5 (-286)) (-4 *5 (-977)) (-5 *2 (-632 *5)) (-5 *1 (-960 *5)))) (-2997 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-4 *5 (-286)) (-4 *5 (-977)) (-5 *2 (-1174 (-1174 *5))) (-5 *1 (-960 *5)) (-5 *4 (-1174 *5)))) (-1244 (*1 *2 *3 *2) (-12 (-5 *3 (-592 (-632 *4))) (-5 *2 (-632 *4)) (-4 *4 (-977)) (-5 *1 (-960 *4)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-1174 (-1174 *4))) (-4 *4 (-977)) (-5 *2 (-632 *4)) (-5 *1 (-960 *4)))))
+(-10 -7 (-15 -3302 ((-632 |#1|) (-1174 (-1174 |#1|)))) (-15 -1244 ((-632 |#1|) (-592 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-286)) (PROGN (-15 -2997 ((-1174 (-1174 |#1|)) (-592 (-632 |#1|)) (-1174 |#1|))) (-15 -2985 ((-632 |#1|) (-592 (-632 |#1|)) (-1174 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -3012 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-108) (-525))) (-15 -3012 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3012 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-525))) (-15 -3720 ((-108) (-592 (-632 |#1|)) (-525))) (-15 -3720 ((-108) (-592 (-632 |#1|)))) (-15 -3224 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1174 |#1|))) (-15 -3224 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1174 (-1174 |#1|))))) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#1| (-341)) (PROGN (-15 -2261 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108) (-525) (-525))) (-15 -2261 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)))) (-15 -2261 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108))) (-15 -2261 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-856))) (-15 -3700 ((-1174 |#1|) (-592 (-1174 |#1|)) (-525)))) |%noBranch|) |%noBranch|))
+((-3781 ((|#1| (-856) |#1|) 9)))
+(((-961 |#1|) (-10 -7 (-15 -3781 (|#1| (-856) |#1|))) (-13 (-1020) (-10 -8 (-15 -2860 ($ $ $))))) (T -961))
+((-3781 (*1 *2 *3 *2) (-12 (-5 *3 (-856)) (-5 *1 (-961 *2)) (-4 *2 (-13 (-1020) (-10 -8 (-15 -2860 ($ $ $))))))))
+(-10 -7 (-15 -3781 (|#1| (-856) |#1|)))
+((-2356 (((-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525))))))) (-632 (-385 (-887 (-525))))) 59)) (-3331 (((-592 (-632 (-294 (-525)))) (-294 (-525)) (-632 (-385 (-887 (-525))))) 48)) (-1510 (((-592 (-294 (-525))) (-632 (-385 (-887 (-525))))) 41)) (-2779 (((-592 (-632 (-294 (-525)))) (-632 (-385 (-887 (-525))))) 69)) (-2128 (((-632 (-294 (-525))) (-632 (-294 (-525)))) 34)) (-2210 (((-592 (-632 (-294 (-525)))) (-592 (-632 (-294 (-525))))) 62)) (-2470 (((-3 (-632 (-294 (-525))) "failed") (-632 (-385 (-887 (-525))))) 66)))
+(((-962) (-10 -7 (-15 -2356 ((-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525))))))) (-632 (-385 (-887 (-525)))))) (-15 -3331 ((-592 (-632 (-294 (-525)))) (-294 (-525)) (-632 (-385 (-887 (-525)))))) (-15 -1510 ((-592 (-294 (-525))) (-632 (-385 (-887 (-525)))))) (-15 -2470 ((-3 (-632 (-294 (-525))) "failed") (-632 (-385 (-887 (-525)))))) (-15 -2128 ((-632 (-294 (-525))) (-632 (-294 (-525))))) (-15 -2210 ((-592 (-632 (-294 (-525)))) (-592 (-632 (-294 (-525)))))) (-15 -2779 ((-592 (-632 (-294 (-525)))) (-632 (-385 (-887 (-525)))))))) (T -962))
+((-2779 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-887 (-525))))) (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-962)))) (-2210 (*1 *2 *2) (-12 (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-962)))) (-2128 (*1 *2 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-962)))) (-2470 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 (-385 (-887 (-525))))) (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-962)))) (-1510 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-887 (-525))))) (-5 *2 (-592 (-294 (-525)))) (-5 *1 (-962)))) (-3331 (*1 *2 *3 *4) (-12 (-5 *4 (-632 (-385 (-887 (-525))))) (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-962)) (-5 *3 (-294 (-525))))) (-2356 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-887 (-525))))) (-5 *2 (-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525)))))))) (-5 *1 (-962)))))
+(-10 -7 (-15 -2356 ((-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525))))))) (-632 (-385 (-887 (-525)))))) (-15 -3331 ((-592 (-632 (-294 (-525)))) (-294 (-525)) (-632 (-385 (-887 (-525)))))) (-15 -1510 ((-592 (-294 (-525))) (-632 (-385 (-887 (-525)))))) (-15 -2470 ((-3 (-632 (-294 (-525))) "failed") (-632 (-385 (-887 (-525)))))) (-15 -2128 ((-632 (-294 (-525))) (-632 (-294 (-525))))) (-15 -2210 ((-592 (-632 (-294 (-525)))) (-592 (-632 (-294 (-525)))))) (-15 -2779 ((-592 (-632 (-294 (-525)))) (-632 (-385 (-887 (-525)))))))
+((-2801 ((|#1| |#1| (-856)) 9)))
+(((-963 |#1|) (-10 -7 (-15 -2801 (|#1| |#1| (-856)))) (-13 (-1020) (-10 -8 (-15 * ($ $ $))))) (T -963))
+((-2801 (*1 *2 *2 *3) (-12 (-5 *3 (-856)) (-5 *1 (-963 *2)) (-4 *2 (-13 (-1020) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -2801 (|#1| |#1| (-856))))
+((-4100 ((|#1| (-290)) 11) (((-1179) |#1|) 9)))
+(((-964 |#1|) (-10 -7 (-15 -4100 ((-1179) |#1|)) (-15 -4100 (|#1| (-290)))) (-1128)) (T -964))
+((-4100 (*1 *2 *3) (-12 (-5 *3 (-290)) (-5 *1 (-964 *2)) (-4 *2 (-1128)))) (-4100 (*1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *1 (-964 *3)) (-4 *3 (-1128)))))
+(-10 -7 (-15 -4100 ((-1179) |#1|)) (-15 -4100 (|#1| (-290))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-3504 (($ |#4|) 25)) (-3300 (((-3 $ "failed") $) NIL)) (-2278 (((-108) $) NIL)) (-3492 ((|#4| $) 27)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 46) (($ (-525)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2448 (((-713)) 43)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 21 T CONST)) (-3375 (($) 23 T CONST)) (-2775 (((-108) $ $) 40)) (-2871 (($ $) 31) (($ $ $) NIL)) (-2860 (($ $ $) 29)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-965 |#1| |#2| |#3| |#4| |#5|) (-13 (-160) (-37 |#1|) (-10 -8 (-15 -3504 ($ |#4|)) (-15 -4100 ($ |#4|)) (-15 -3492 (|#4| $)))) (-341) (-735) (-789) (-884 |#1| |#2| |#3|) (-592 |#4|)) (T -965))
+((-3504 (*1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-965 *3 *4 *5 *2 *6)) (-4 *2 (-884 *3 *4 *5)) (-14 *6 (-592 *2)))) (-4100 (*1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-965 *3 *4 *5 *2 *6)) (-4 *2 (-884 *3 *4 *5)) (-14 *6 (-592 *2)))) (-3492 (*1 *2 *1) (-12 (-4 *2 (-884 *3 *4 *5)) (-5 *1 (-965 *3 *4 *5 *2 *6)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-14 *6 (-592 *2)))))
+(-13 (-160) (-37 |#1|) (-10 -8 (-15 -3504 ($ |#4|)) (-15 -4100 ($ |#4|)) (-15 -3492 (|#4| $))))
+((-4087 (((-108) $ $) NIL (-2067 (|has| (-51) (-1020)) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020))))) (-3311 (($) NIL) (($ (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) NIL)) (-3289 (((-1179) $ (-1092) (-1092)) NIL (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) NIL)) (-2391 (((-108) (-108)) 39)) (-2053 (((-108) (-108)) 38)) (-1233 (((-51) $ (-1092) (-51)) NIL)) (-3050 (($ (-1 (-108) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259)))) (-1515 (((-3 (-51) "failed") (-1092) $) NIL)) (-2475 (($) NIL T CONST)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020))))) (-4205 (($ (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) $) NIL (|has| $ (-6 -4259))) (($ (-1 (-108) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259))) (((-3 (-51) "failed") (-1092) $) NIL)) (-2698 (($ (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020)))) (($ (-1 (-108) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259)))) (-3504 (((-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $ (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020)))) (((-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $ (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) NIL (|has| $ (-6 -4259))) (((-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259)))) (-3081 (((-51) $ (-1092) (-51)) NIL (|has| $ (-6 -4260)))) (-3017 (((-51) $ (-1092)) NIL)) (-2175 (((-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259))) (((-592 (-51)) $) NIL (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-1092) $) NIL (|has| (-1092) (-789)))) (-2617 (((-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259))) (((-592 (-51)) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-51) (-1020))))) (-2231 (((-1092) $) NIL (|has| (-1092) (-789)))) (-3069 (($ (-1 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4260))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (-2067 (|has| (-51) (-1020)) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020))))) (-1398 (((-592 (-1092)) $) 34)) (-3770 (((-108) (-1092) $) NIL)) (-3577 (((-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) $) NIL)) (-3246 (($ (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) $) NIL)) (-3177 (((-592 (-1092)) $) NIL)) (-3461 (((-108) (-1092) $) NIL)) (-3993 (((-1039) $) NIL (-2067 (|has| (-51) (-1020)) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020))))) (-1647 (((-51) $) NIL (|has| (-1092) (-789)))) (-4202 (((-3 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) "failed") (-1 (-108) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL)) (-3453 (($ $ (-51)) NIL (|has| $ (-6 -4260)))) (-2724 (((-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) $) NIL)) (-1518 (((-108) (-1 (-108) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))))) NIL (-12 (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-288 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020)))) (($ $ (-273 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) NIL (-12 (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-288 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020)))) (($ $ (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) NIL (-12 (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-288 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020)))) (($ $ (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) NIL (-12 (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-288 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020)))) (($ $ (-592 (-51)) (-592 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-273 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-592 (-273 (-51)))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-51) (-1020))))) (-1717 (((-592 (-51)) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 (((-51) $ (-1092)) 35) (((-51) $ (-1092) (-51)) NIL)) (-2637 (($) NIL) (($ (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) NIL)) (-4002 (((-713) (-1 (-108) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259))) (((-713) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020)))) (((-713) (-51) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-51) (-1020)))) (((-713) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-567 (-501))))) (-4114 (($ (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) NIL)) (-4100 (((-798) $) 37 (-2067 (|has| (-51) (-566 (-798))) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-566 (-798)))))) (-3905 (($ (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) NIL)) (-2706 (((-108) (-1 (-108) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (-2067 (|has| (-51) (-1020)) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020))))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-966) (-13 (-1105 (-1092) (-51)) (-10 -7 (-15 -2391 ((-108) (-108))) (-15 -2053 ((-108) (-108))) (-6 -4259)))) (T -966))
+((-2391 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-966)))) (-2053 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-966)))))
+(-13 (-1105 (-1092) (-51)) (-10 -7 (-15 -2391 ((-108) (-108))) (-15 -2053 ((-108) (-108))) (-6 -4259)))
+((-4105 ((|#2| $) 10)))
+(((-967 |#1| |#2|) (-10 -8 (-15 -4105 (|#2| |#1|))) (-968 |#2|) (-1128)) (T -967))
+NIL
+(-10 -8 (-15 -4105 (|#2| |#1|)))
+((-1934 (((-3 |#1| "failed") $) 7)) (-4105 ((|#1| $) 8)) (-4100 (($ |#1|) 6)))
(((-968 |#1|) (-131) (-1128)) (T -968))
-((-1572 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1128)))) (-3077 (*1 *2 *1) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1128)))) (-1217 (*1 *1 *2) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1128)))))
-(-13 (-10 -8 (-15 -1217 ($ |t#1|)) (-15 -3077 ((-3 |t#1| "failed") $)) (-15 -1572 (|t#1| $))))
-((-3691 (((-592 (-592 (-273 (-385 (-887 |#2|))))) (-592 (-887 |#2|)) (-592 (-1092))) 38)))
-(((-969 |#1| |#2|) (-10 -7 (-15 -3691 ((-592 (-592 (-273 (-385 (-887 |#2|))))) (-592 (-887 |#2|)) (-592 (-1092))))) (-517) (-13 (-517) (-968 |#1|))) (T -969))
-((-3691 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *6))) (-5 *4 (-592 (-1092))) (-4 *6 (-13 (-517) (-968 *5))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *6)))))) (-5 *1 (-969 *5 *6)))))
-(-10 -7 (-15 -3691 ((-592 (-592 (-273 (-385 (-887 |#2|))))) (-592 (-887 |#2|)) (-592 (-1092)))))
-((-2264 (((-357)) 15)) (-3566 (((-1 (-357)) (-357) (-357)) 20)) (-3200 (((-1 (-357)) (-713)) 43)) (-3688 (((-357)) 34)) (-2687 (((-1 (-357)) (-357) (-357)) 35)) (-1455 (((-357)) 26)) (-3620 (((-1 (-357)) (-357)) 27)) (-3559 (((-357) (-713)) 38)) (-3223 (((-1 (-357)) (-713)) 39)) (-3819 (((-1 (-357)) (-713) (-713)) 42)) (-2402 (((-1 (-357)) (-713) (-713)) 40)))
-(((-970) (-10 -7 (-15 -2264 ((-357))) (-15 -3688 ((-357))) (-15 -1455 ((-357))) (-15 -3559 ((-357) (-713))) (-15 -3566 ((-1 (-357)) (-357) (-357))) (-15 -2687 ((-1 (-357)) (-357) (-357))) (-15 -3620 ((-1 (-357)) (-357))) (-15 -3223 ((-1 (-357)) (-713))) (-15 -2402 ((-1 (-357)) (-713) (-713))) (-15 -3819 ((-1 (-357)) (-713) (-713))) (-15 -3200 ((-1 (-357)) (-713))))) (T -970))
-((-3200 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))) (-3819 (*1 *2 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))) (-2402 (*1 *2 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))) (-3620 (*1 *2 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-970)) (-5 *3 (-357)))) (-2687 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-970)) (-5 *3 (-357)))) (-3566 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-970)) (-5 *3 (-357)))) (-3559 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-357)) (-5 *1 (-970)))) (-1455 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-970)))) (-3688 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-970)))) (-2264 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-970)))))
-(-10 -7 (-15 -2264 ((-357))) (-15 -3688 ((-357))) (-15 -1455 ((-357))) (-15 -3559 ((-357) (-713))) (-15 -3566 ((-1 (-357)) (-357) (-357))) (-15 -2687 ((-1 (-357)) (-357) (-357))) (-15 -3620 ((-1 (-357)) (-357))) (-15 -3223 ((-1 (-357)) (-713))) (-15 -2402 ((-1 (-357)) (-713) (-713))) (-15 -3819 ((-1 (-357)) (-713) (-713))) (-15 -3200 ((-1 (-357)) (-713))))
-((-2770 (((-396 |#1|) |#1|) 33)))
-(((-971 |#1|) (-10 -7 (-15 -2770 ((-396 |#1|) |#1|))) (-1150 (-385 (-887 (-525))))) (T -971))
-((-2770 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-971 *3)) (-4 *3 (-1150 (-385 (-887 (-525))))))))
-(-10 -7 (-15 -2770 ((-396 |#1|) |#1|)))
-((-4123 (((-385 (-396 (-887 |#1|))) (-385 (-887 |#1|))) 14)))
-(((-972 |#1|) (-10 -7 (-15 -4123 ((-385 (-396 (-887 |#1|))) (-385 (-887 |#1|))))) (-286)) (T -972))
-((-4123 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-286)) (-5 *2 (-385 (-396 (-887 *4)))) (-5 *1 (-972 *4)))))
-(-10 -7 (-15 -4123 ((-385 (-396 (-887 |#1|))) (-385 (-887 |#1|)))))
-((-2897 (((-592 (-1092)) (-385 (-887 |#1|))) 17)) (-2744 (((-385 (-1088 (-385 (-887 |#1|)))) (-385 (-887 |#1|)) (-1092)) 24)) (-2887 (((-385 (-887 |#1|)) (-385 (-1088 (-385 (-887 |#1|)))) (-1092)) 26)) (-2431 (((-3 (-1092) "failed") (-385 (-887 |#1|))) 20)) (-2457 (((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-592 (-273 (-385 (-887 |#1|))))) 32) (((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|)))) 33) (((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-592 (-1092)) (-592 (-385 (-887 |#1|)))) 28) (((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-1092) (-385 (-887 |#1|))) 29)) (-1217 (((-385 (-887 |#1|)) |#1|) 11)))
-(((-973 |#1|) (-10 -7 (-15 -2897 ((-592 (-1092)) (-385 (-887 |#1|)))) (-15 -2431 ((-3 (-1092) "failed") (-385 (-887 |#1|)))) (-15 -2744 ((-385 (-1088 (-385 (-887 |#1|)))) (-385 (-887 |#1|)) (-1092))) (-15 -2887 ((-385 (-887 |#1|)) (-385 (-1088 (-385 (-887 |#1|)))) (-1092))) (-15 -2457 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-1092) (-385 (-887 |#1|)))) (-15 -2457 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-592 (-1092)) (-592 (-385 (-887 |#1|))))) (-15 -2457 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))))) (-15 -2457 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-592 (-273 (-385 (-887 |#1|)))))) (-15 -1217 ((-385 (-887 |#1|)) |#1|))) (-517)) (T -973))
-((-1217 (*1 *2 *3) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-973 *3)) (-4 *3 (-517)))) (-2457 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-273 (-385 (-887 *4))))) (-5 *2 (-385 (-887 *4))) (-4 *4 (-517)) (-5 *1 (-973 *4)))) (-2457 (*1 *2 *2 *3) (-12 (-5 *3 (-273 (-385 (-887 *4)))) (-5 *2 (-385 (-887 *4))) (-4 *4 (-517)) (-5 *1 (-973 *4)))) (-2457 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-592 (-1092))) (-5 *4 (-592 (-385 (-887 *5)))) (-5 *2 (-385 (-887 *5))) (-4 *5 (-517)) (-5 *1 (-973 *5)))) (-2457 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-385 (-887 *4))) (-5 *3 (-1092)) (-4 *4 (-517)) (-5 *1 (-973 *4)))) (-2887 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-1088 (-385 (-887 *5))))) (-5 *4 (-1092)) (-5 *2 (-385 (-887 *5))) (-5 *1 (-973 *5)) (-4 *5 (-517)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-517)) (-5 *2 (-385 (-1088 (-385 (-887 *5))))) (-5 *1 (-973 *5)) (-5 *3 (-385 (-887 *5))))) (-2431 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-5 *2 (-1092)) (-5 *1 (-973 *4)))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-1092))) (-5 *1 (-973 *4)))))
-(-10 -7 (-15 -2897 ((-592 (-1092)) (-385 (-887 |#1|)))) (-15 -2431 ((-3 (-1092) "failed") (-385 (-887 |#1|)))) (-15 -2744 ((-385 (-1088 (-385 (-887 |#1|)))) (-385 (-887 |#1|)) (-1092))) (-15 -2887 ((-385 (-887 |#1|)) (-385 (-1088 (-385 (-887 |#1|)))) (-1092))) (-15 -2457 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-1092) (-385 (-887 |#1|)))) (-15 -2457 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-592 (-1092)) (-592 (-385 (-887 |#1|))))) (-15 -2457 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))))) (-15 -2457 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-592 (-273 (-385 (-887 |#1|)))))) (-15 -1217 ((-385 (-887 |#1|)) |#1|)))
-((-4236 (((-108) $ $) NIL)) (-1463 (((-592 (-2 (|:| -2719 $) (|:| -3459 (-592 (-722 |#1| (-800 |#2|)))))) (-592 (-722 |#1| (-800 |#2|)))) NIL)) (-1589 (((-592 $) (-592 (-722 |#1| (-800 |#2|)))) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-108)) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-108) (-108)) NIL)) (-2897 (((-592 (-800 |#2|)) $) NIL)) (-2437 (((-108) $) NIL)) (-2750 (((-108) $) NIL (|has| |#1| (-517)))) (-3950 (((-108) (-722 |#1| (-800 |#2|)) $) NIL) (((-108) $) NIL)) (-2495 (((-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-1286 (((-592 (-2 (|:| |val| (-722 |#1| (-800 |#2|))) (|:| -2563 $))) (-722 |#1| (-800 |#2|)) $) NIL)) (-2458 (((-2 (|:| |under| $) (|:| -2487 $) (|:| |upper| $)) $ (-800 |#2|)) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-3785 (($ (-1 (-108) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-3 (-722 |#1| (-800 |#2|)) "failed") $ (-800 |#2|)) NIL)) (-2169 (($) NIL T CONST)) (-4089 (((-108) $) NIL (|has| |#1| (-517)))) (-2480 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1207 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3339 (((-108) $) NIL (|has| |#1| (-517)))) (-2712 (((-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|))) $ (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) (-1 (-108) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)))) NIL)) (-3767 (((-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|))) $) NIL (|has| |#1| (-517)))) (-3333 (((-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|))) $) NIL (|has| |#1| (-517)))) (-3077 (((-3 $ "failed") (-592 (-722 |#1| (-800 |#2|)))) NIL)) (-1572 (($ (-592 (-722 |#1| (-800 |#2|)))) NIL)) (-1886 (((-3 $ "failed") $) NIL)) (-3901 (((-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-722 |#1| (-800 |#2|)) (-1020))))) (-1703 (($ (-722 |#1| (-800 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-722 |#1| (-800 |#2|)) (-1020)))) (($ (-1 (-108) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-1607 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-722 |#1| (-800 |#2|))) (|:| |den| |#1|)) (-722 |#1| (-800 |#2|)) $) NIL (|has| |#1| (-517)))) (-1961 (((-108) (-722 |#1| (-800 |#2|)) $ (-1 (-108) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)))) NIL)) (-2834 (((-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-1284 (((-722 |#1| (-800 |#2|)) (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) $ (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) NIL (-12 (|has| $ (-6 -4258)) (|has| (-722 |#1| (-800 |#2|)) (-1020)))) (((-722 |#1| (-800 |#2|)) (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) $ (-722 |#1| (-800 |#2|))) NIL (|has| $ (-6 -4258))) (((-722 |#1| (-800 |#2|)) (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $ (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) (-1 (-108) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)))) NIL)) (-1877 (((-2 (|:| -2719 (-592 (-722 |#1| (-800 |#2|)))) (|:| -3459 (-592 (-722 |#1| (-800 |#2|))))) $) NIL)) (-1816 (((-108) (-722 |#1| (-800 |#2|)) $) NIL)) (-3458 (((-108) (-722 |#1| (-800 |#2|)) $) NIL)) (-2116 (((-108) (-722 |#1| (-800 |#2|)) $) NIL) (((-108) $) NIL)) (-3440 (((-592 (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-2633 (((-108) (-722 |#1| (-800 |#2|)) $) NIL) (((-108) $) NIL)) (-3153 (((-800 |#2|) $) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) (-722 |#1| (-800 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-722 |#1| (-800 |#2|)) (-1020))))) (-2284 (($ (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) $) NIL)) (-1598 (((-592 (-800 |#2|)) $) NIL)) (-3919 (((-108) (-800 |#2|) $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL)) (-4028 (((-3 (-722 |#1| (-800 |#2|)) (-592 $)) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-2370 (((-592 (-2 (|:| |val| (-722 |#1| (-800 |#2|))) (|:| -2563 $))) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-1717 (((-3 (-722 |#1| (-800 |#2|)) "failed") $) NIL)) (-3606 (((-592 $) (-722 |#1| (-800 |#2|)) $) NIL)) (-3486 (((-3 (-108) (-592 $)) (-722 |#1| (-800 |#2|)) $) NIL)) (-3070 (((-592 (-2 (|:| |val| (-108)) (|:| -2563 $))) (-722 |#1| (-800 |#2|)) $) NIL) (((-108) (-722 |#1| (-800 |#2|)) $) NIL)) (-2099 (((-592 $) (-722 |#1| (-800 |#2|)) $) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) $) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-592 $)) NIL) (((-592 $) (-722 |#1| (-800 |#2|)) (-592 $)) NIL)) (-3644 (($ (-722 |#1| (-800 |#2|)) $) NIL) (($ (-592 (-722 |#1| (-800 |#2|))) $) NIL)) (-3159 (((-592 (-722 |#1| (-800 |#2|))) $) NIL)) (-2686 (((-108) (-722 |#1| (-800 |#2|)) $) NIL) (((-108) $) NIL)) (-2423 (((-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-2338 (((-108) $ $) NIL)) (-1806 (((-2 (|:| |num| (-722 |#1| (-800 |#2|))) (|:| |den| |#1|)) (-722 |#1| (-800 |#2|)) $) NIL (|has| |#1| (-517)))) (-2696 (((-108) (-722 |#1| (-800 |#2|)) $) NIL) (((-108) $) NIL)) (-3872 (((-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-2093 (((-1039) $) NIL)) (-1872 (((-3 (-722 |#1| (-800 |#2|)) "failed") $) NIL)) (-1983 (((-3 (-722 |#1| (-800 |#2|)) "failed") (-1 (-108) (-722 |#1| (-800 |#2|))) $) NIL)) (-3044 (((-3 $ "failed") $ (-722 |#1| (-800 |#2|))) NIL)) (-3931 (($ $ (-722 |#1| (-800 |#2|))) NIL) (((-592 $) (-722 |#1| (-800 |#2|)) $) NIL) (((-592 $) (-722 |#1| (-800 |#2|)) (-592 $)) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) $) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-592 $)) NIL)) (-3944 (((-108) (-1 (-108) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|)))) NIL (-12 (|has| (-722 |#1| (-800 |#2|)) (-288 (-722 |#1| (-800 |#2|)))) (|has| (-722 |#1| (-800 |#2|)) (-1020)))) (($ $ (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) NIL (-12 (|has| (-722 |#1| (-800 |#2|)) (-288 (-722 |#1| (-800 |#2|)))) (|has| (-722 |#1| (-800 |#2|)) (-1020)))) (($ $ (-273 (-722 |#1| (-800 |#2|)))) NIL (-12 (|has| (-722 |#1| (-800 |#2|)) (-288 (-722 |#1| (-800 |#2|)))) (|has| (-722 |#1| (-800 |#2|)) (-1020)))) (($ $ (-592 (-273 (-722 |#1| (-800 |#2|))))) NIL (-12 (|has| (-722 |#1| (-800 |#2|)) (-288 (-722 |#1| (-800 |#2|)))) (|has| (-722 |#1| (-800 |#2|)) (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-2343 (((-713) $) NIL)) (-2110 (((-713) (-722 |#1| (-800 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-722 |#1| (-800 |#2|)) (-1020)))) (((-713) (-1 (-108) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| (-722 |#1| (-800 |#2|)) (-567 (-501))))) (-1230 (($ (-592 (-722 |#1| (-800 |#2|)))) NIL)) (-3264 (($ $ (-800 |#2|)) NIL)) (-1425 (($ $ (-800 |#2|)) NIL)) (-1320 (($ $) NIL)) (-4008 (($ $ (-800 |#2|)) NIL)) (-1217 (((-798) $) NIL) (((-592 (-722 |#1| (-800 |#2|))) $) NIL)) (-3735 (((-713) $) NIL (|has| (-800 |#2|) (-346)))) (-1622 (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 (-722 |#1| (-800 |#2|))))) "failed") (-592 (-722 |#1| (-800 |#2|))) (-1 (-108) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 (-722 |#1| (-800 |#2|))))) "failed") (-592 (-722 |#1| (-800 |#2|))) (-1 (-108) (-722 |#1| (-800 |#2|))) (-1 (-108) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)))) NIL)) (-4027 (((-108) $ (-1 (-108) (-722 |#1| (-800 |#2|)) (-592 (-722 |#1| (-800 |#2|))))) NIL)) (-1384 (((-592 $) (-722 |#1| (-800 |#2|)) $) NIL) (((-592 $) (-722 |#1| (-800 |#2|)) (-592 $)) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) $) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-592 $)) NIL)) (-3029 (((-108) (-1 (-108) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-1221 (((-592 (-800 |#2|)) $) NIL)) (-3162 (((-108) (-722 |#1| (-800 |#2|)) $) NIL)) (-2081 (((-108) (-800 |#2|) $) NIL)) (-3955 (((-108) $ $) NIL)) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-974 |#1| |#2|) (-13 (-996 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|))) (-10 -8 (-15 -1589 ((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-108) (-108))))) (-429) (-592 (-1092))) (T -974))
-((-1589 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1092))) (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-974 *5 *6)))))
-(-13 (-996 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|))) (-10 -8 (-15 -1589 ((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-108) (-108)))))
-((-3566 (((-1 (-525)) (-1015 (-525))) 33)) (-2625 (((-525) (-525) (-525) (-525) (-525)) 30)) (-4196 (((-1 (-525)) |RationalNumber|) NIL)) (-4069 (((-1 (-525)) |RationalNumber|) NIL)) (-3163 (((-1 (-525)) (-525) |RationalNumber|) NIL)))
-(((-975) (-10 -7 (-15 -3566 ((-1 (-525)) (-1015 (-525)))) (-15 -3163 ((-1 (-525)) (-525) |RationalNumber|)) (-15 -4196 ((-1 (-525)) |RationalNumber|)) (-15 -4069 ((-1 (-525)) |RationalNumber|)) (-15 -2625 ((-525) (-525) (-525) (-525) (-525))))) (T -975))
-((-2625 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-975)))) (-4069 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-975)))) (-4196 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-975)))) (-3163 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-975)) (-5 *3 (-525)))) (-3566 (*1 *2 *3) (-12 (-5 *3 (-1015 (-525))) (-5 *2 (-1 (-525))) (-5 *1 (-975)))))
-(-10 -7 (-15 -3566 ((-1 (-525)) (-1015 (-525)))) (-15 -3163 ((-1 (-525)) (-525) |RationalNumber|)) (-15 -4196 ((-1 (-525)) |RationalNumber|)) (-15 -4069 ((-1 (-525)) |RationalNumber|)) (-15 -2625 ((-525) (-525) (-525) (-525) (-525))))
-((-1217 (((-798) $) NIL) (($ (-525)) 10)))
-(((-976 |#1|) (-10 -8 (-15 -1217 (|#1| (-525))) (-15 -1217 ((-798) |#1|))) (-977)) (T -976))
-NIL
-(-10 -8 (-15 -1217 (|#1| (-525))) (-15 -1217 ((-798) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11) (($ (-525)) 28)) (-3917 (((-713)) 29)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-4105 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1128)))) (-1934 (*1 *2 *1) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1128)))) (-4100 (*1 *1 *2) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1128)))))
+(-13 (-10 -8 (-15 -4100 ($ |t#1|)) (-15 -1934 ((-3 |t#1| "failed") $)) (-15 -4105 (|t#1| $))))
+((-3786 (((-592 (-592 (-273 (-385 (-887 |#2|))))) (-592 (-887 |#2|)) (-592 (-1092))) 38)))
+(((-969 |#1| |#2|) (-10 -7 (-15 -3786 ((-592 (-592 (-273 (-385 (-887 |#2|))))) (-592 (-887 |#2|)) (-592 (-1092))))) (-517) (-13 (-517) (-968 |#1|))) (T -969))
+((-3786 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *6))) (-5 *4 (-592 (-1092))) (-4 *6 (-13 (-517) (-968 *5))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *6)))))) (-5 *1 (-969 *5 *6)))))
+(-10 -7 (-15 -3786 ((-592 (-592 (-273 (-385 (-887 |#2|))))) (-592 (-887 |#2|)) (-592 (-1092)))))
+((-3995 (((-357)) 15)) (-1994 (((-1 (-357)) (-357) (-357)) 20)) (-3252 (((-1 (-357)) (-713)) 43)) (-3757 (((-357)) 34)) (-2392 (((-1 (-357)) (-357) (-357)) 35)) (-2484 (((-357)) 26)) (-2489 (((-1 (-357)) (-357)) 27)) (-3063 (((-357) (-713)) 38)) (-3818 (((-1 (-357)) (-713)) 39)) (-1834 (((-1 (-357)) (-713) (-713)) 42)) (-2892 (((-1 (-357)) (-713) (-713)) 40)))
+(((-970) (-10 -7 (-15 -3995 ((-357))) (-15 -3757 ((-357))) (-15 -2484 ((-357))) (-15 -3063 ((-357) (-713))) (-15 -1994 ((-1 (-357)) (-357) (-357))) (-15 -2392 ((-1 (-357)) (-357) (-357))) (-15 -2489 ((-1 (-357)) (-357))) (-15 -3818 ((-1 (-357)) (-713))) (-15 -2892 ((-1 (-357)) (-713) (-713))) (-15 -1834 ((-1 (-357)) (-713) (-713))) (-15 -3252 ((-1 (-357)) (-713))))) (T -970))
+((-3252 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))) (-1834 (*1 *2 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))) (-2892 (*1 *2 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))) (-2489 (*1 *2 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-970)) (-5 *3 (-357)))) (-2392 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-970)) (-5 *3 (-357)))) (-1994 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-970)) (-5 *3 (-357)))) (-3063 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-357)) (-5 *1 (-970)))) (-2484 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-970)))) (-3757 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-970)))) (-3995 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-970)))))
+(-10 -7 (-15 -3995 ((-357))) (-15 -3757 ((-357))) (-15 -2484 ((-357))) (-15 -3063 ((-357) (-713))) (-15 -1994 ((-1 (-357)) (-357) (-357))) (-15 -2392 ((-1 (-357)) (-357) (-357))) (-15 -2489 ((-1 (-357)) (-357))) (-15 -3818 ((-1 (-357)) (-713))) (-15 -2892 ((-1 (-357)) (-713) (-713))) (-15 -1834 ((-1 (-357)) (-713) (-713))) (-15 -3252 ((-1 (-357)) (-713))))
+((-4201 (((-396 |#1|) |#1|) 33)))
+(((-971 |#1|) (-10 -7 (-15 -4201 ((-396 |#1|) |#1|))) (-1150 (-385 (-887 (-525))))) (T -971))
+((-4201 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-971 *3)) (-4 *3 (-1150 (-385 (-887 (-525))))))))
+(-10 -7 (-15 -4201 ((-396 |#1|) |#1|)))
+((-2687 (((-385 (-396 (-887 |#1|))) (-385 (-887 |#1|))) 14)))
+(((-972 |#1|) (-10 -7 (-15 -2687 ((-385 (-396 (-887 |#1|))) (-385 (-887 |#1|))))) (-286)) (T -972))
+((-2687 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-286)) (-5 *2 (-385 (-396 (-887 *4)))) (-5 *1 (-972 *4)))))
+(-10 -7 (-15 -2687 ((-385 (-396 (-887 |#1|))) (-385 (-887 |#1|)))))
+((-1296 (((-592 (-1092)) (-385 (-887 |#1|))) 17)) (-4169 (((-385 (-1088 (-385 (-887 |#1|)))) (-385 (-887 |#1|)) (-1092)) 24)) (-1284 (((-385 (-887 |#1|)) (-385 (-1088 (-385 (-887 |#1|)))) (-1092)) 26)) (-2018 (((-3 (-1092) "failed") (-385 (-887 |#1|))) 20)) (-2825 (((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-592 (-273 (-385 (-887 |#1|))))) 32) (((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|)))) 33) (((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-592 (-1092)) (-592 (-385 (-887 |#1|)))) 28) (((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-1092) (-385 (-887 |#1|))) 29)) (-4100 (((-385 (-887 |#1|)) |#1|) 11)))
+(((-973 |#1|) (-10 -7 (-15 -1296 ((-592 (-1092)) (-385 (-887 |#1|)))) (-15 -2018 ((-3 (-1092) "failed") (-385 (-887 |#1|)))) (-15 -4169 ((-385 (-1088 (-385 (-887 |#1|)))) (-385 (-887 |#1|)) (-1092))) (-15 -1284 ((-385 (-887 |#1|)) (-385 (-1088 (-385 (-887 |#1|)))) (-1092))) (-15 -2825 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-1092) (-385 (-887 |#1|)))) (-15 -2825 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-592 (-1092)) (-592 (-385 (-887 |#1|))))) (-15 -2825 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))))) (-15 -2825 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-592 (-273 (-385 (-887 |#1|)))))) (-15 -4100 ((-385 (-887 |#1|)) |#1|))) (-517)) (T -973))
+((-4100 (*1 *2 *3) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-973 *3)) (-4 *3 (-517)))) (-2825 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-273 (-385 (-887 *4))))) (-5 *2 (-385 (-887 *4))) (-4 *4 (-517)) (-5 *1 (-973 *4)))) (-2825 (*1 *2 *2 *3) (-12 (-5 *3 (-273 (-385 (-887 *4)))) (-5 *2 (-385 (-887 *4))) (-4 *4 (-517)) (-5 *1 (-973 *4)))) (-2825 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-592 (-1092))) (-5 *4 (-592 (-385 (-887 *5)))) (-5 *2 (-385 (-887 *5))) (-4 *5 (-517)) (-5 *1 (-973 *5)))) (-2825 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-385 (-887 *4))) (-5 *3 (-1092)) (-4 *4 (-517)) (-5 *1 (-973 *4)))) (-1284 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-1088 (-385 (-887 *5))))) (-5 *4 (-1092)) (-5 *2 (-385 (-887 *5))) (-5 *1 (-973 *5)) (-4 *5 (-517)))) (-4169 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-517)) (-5 *2 (-385 (-1088 (-385 (-887 *5))))) (-5 *1 (-973 *5)) (-5 *3 (-385 (-887 *5))))) (-2018 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-5 *2 (-1092)) (-5 *1 (-973 *4)))) (-1296 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-1092))) (-5 *1 (-973 *4)))))
+(-10 -7 (-15 -1296 ((-592 (-1092)) (-385 (-887 |#1|)))) (-15 -2018 ((-3 (-1092) "failed") (-385 (-887 |#1|)))) (-15 -4169 ((-385 (-1088 (-385 (-887 |#1|)))) (-385 (-887 |#1|)) (-1092))) (-15 -1284 ((-385 (-887 |#1|)) (-385 (-1088 (-385 (-887 |#1|)))) (-1092))) (-15 -2825 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-1092) (-385 (-887 |#1|)))) (-15 -2825 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-592 (-1092)) (-592 (-385 (-887 |#1|))))) (-15 -2825 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))))) (-15 -2825 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-592 (-273 (-385 (-887 |#1|)))))) (-15 -4100 ((-385 (-887 |#1|)) |#1|)))
+((-4087 (((-108) $ $) NIL)) (-2562 (((-592 (-2 (|:| -2682 $) (|:| -2046 (-592 (-722 |#1| (-800 |#2|)))))) (-592 (-722 |#1| (-800 |#2|)))) NIL)) (-3347 (((-592 $) (-592 (-722 |#1| (-800 |#2|)))) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-108)) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-108) (-108)) NIL)) (-1296 (((-592 (-800 |#2|)) $) NIL)) (-2071 (((-108) $) NIL)) (-3093 (((-108) $) NIL (|has| |#1| (-517)))) (-1587 (((-108) (-722 |#1| (-800 |#2|)) $) NIL) (((-108) $) NIL)) (-1402 (((-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-4195 (((-592 (-2 (|:| |val| (-722 |#1| (-800 |#2|))) (|:| -1285 $))) (-722 |#1| (-800 |#2|)) $) NIL)) (-1842 (((-2 (|:| |under| $) (|:| -1340 $) (|:| |upper| $)) $ (-800 |#2|)) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-2399 (($ (-1 (-108) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-3 (-722 |#1| (-800 |#2|)) "failed") $ (-800 |#2|)) NIL)) (-2475 (($) NIL T CONST)) (-3542 (((-108) $) NIL (|has| |#1| (-517)))) (-2462 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2390 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1698 (((-108) $) NIL (|has| |#1| (-517)))) (-2783 (((-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|))) $ (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) (-1 (-108) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)))) NIL)) (-3308 (((-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|))) $) NIL (|has| |#1| (-517)))) (-1655 (((-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|))) $) NIL (|has| |#1| (-517)))) (-1934 (((-3 $ "failed") (-592 (-722 |#1| (-800 |#2|)))) NIL)) (-4105 (($ (-592 (-722 |#1| (-800 |#2|)))) NIL)) (-1659 (((-3 $ "failed") $) NIL)) (-2268 (((-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-722 |#1| (-800 |#2|)) (-1020))))) (-2698 (($ (-722 |#1| (-800 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-722 |#1| (-800 |#2|)) (-1020)))) (($ (-1 (-108) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3681 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-722 |#1| (-800 |#2|))) (|:| |den| |#1|)) (-722 |#1| (-800 |#2|)) $) NIL (|has| |#1| (-517)))) (-3964 (((-108) (-722 |#1| (-800 |#2|)) $ (-1 (-108) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)))) NIL)) (-1469 (((-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-3504 (((-722 |#1| (-800 |#2|)) (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) $ (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) NIL (-12 (|has| $ (-6 -4259)) (|has| (-722 |#1| (-800 |#2|)) (-1020)))) (((-722 |#1| (-800 |#2|)) (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) $ (-722 |#1| (-800 |#2|))) NIL (|has| $ (-6 -4259))) (((-722 |#1| (-800 |#2|)) (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $ (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) (-1 (-108) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)))) NIL)) (-1329 (((-2 (|:| -2682 (-592 (-722 |#1| (-800 |#2|)))) (|:| -2046 (-592 (-722 |#1| (-800 |#2|))))) $) NIL)) (-1954 (((-108) (-722 |#1| (-800 |#2|)) $) NIL)) (-3315 (((-108) (-722 |#1| (-800 |#2|)) $) NIL)) (-1941 (((-108) (-722 |#1| (-800 |#2|)) $) NIL) (((-108) $) NIL)) (-2175 (((-592 (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3221 (((-108) (-722 |#1| (-800 |#2|)) $) NIL) (((-108) $) NIL)) (-2577 (((-800 |#2|) $) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) (-722 |#1| (-800 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-722 |#1| (-800 |#2|)) (-1020))))) (-3069 (($ (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) $) NIL)) (-3435 (((-592 (-800 |#2|)) $) NIL)) (-2468 (((-108) (-800 |#2|) $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL)) (-4180 (((-3 (-722 |#1| (-800 |#2|)) (-592 $)) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-2602 (((-592 (-2 (|:| |val| (-722 |#1| (-800 |#2|))) (|:| -1285 $))) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-2718 (((-3 (-722 |#1| (-800 |#2|)) "failed") $) NIL)) (-2346 (((-592 $) (-722 |#1| (-800 |#2|)) $) NIL)) (-3580 (((-3 (-108) (-592 $)) (-722 |#1| (-800 |#2|)) $) NIL)) (-3022 (((-592 (-2 (|:| |val| (-108)) (|:| -1285 $))) (-722 |#1| (-800 |#2|)) $) NIL) (((-108) (-722 |#1| (-800 |#2|)) $) NIL)) (-2913 (((-592 $) (-722 |#1| (-800 |#2|)) $) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) $) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-592 $)) NIL) (((-592 $) (-722 |#1| (-800 |#2|)) (-592 $)) NIL)) (-1513 (($ (-722 |#1| (-800 |#2|)) $) NIL) (($ (-592 (-722 |#1| (-800 |#2|))) $) NIL)) (-1455 (((-592 (-722 |#1| (-800 |#2|))) $) NIL)) (-3732 (((-108) (-722 |#1| (-800 |#2|)) $) NIL) (((-108) $) NIL)) (-3076 (((-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-3472 (((-108) $ $) NIL)) (-2991 (((-2 (|:| |num| (-722 |#1| (-800 |#2|))) (|:| |den| |#1|)) (-722 |#1| (-800 |#2|)) $) NIL (|has| |#1| (-517)))) (-2635 (((-108) (-722 |#1| (-800 |#2|)) $) NIL) (((-108) $) NIL)) (-1998 (((-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-3993 (((-1039) $) NIL)) (-1647 (((-3 (-722 |#1| (-800 |#2|)) "failed") $) NIL)) (-4202 (((-3 (-722 |#1| (-800 |#2|)) "failed") (-1 (-108) (-722 |#1| (-800 |#2|))) $) NIL)) (-2821 (((-3 $ "failed") $ (-722 |#1| (-800 |#2|))) NIL)) (-1397 (($ $ (-722 |#1| (-800 |#2|))) NIL) (((-592 $) (-722 |#1| (-800 |#2|)) $) NIL) (((-592 $) (-722 |#1| (-800 |#2|)) (-592 $)) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) $) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-592 $)) NIL)) (-1518 (((-108) (-1 (-108) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|)))) NIL (-12 (|has| (-722 |#1| (-800 |#2|)) (-288 (-722 |#1| (-800 |#2|)))) (|has| (-722 |#1| (-800 |#2|)) (-1020)))) (($ $ (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) NIL (-12 (|has| (-722 |#1| (-800 |#2|)) (-288 (-722 |#1| (-800 |#2|)))) (|has| (-722 |#1| (-800 |#2|)) (-1020)))) (($ $ (-273 (-722 |#1| (-800 |#2|)))) NIL (-12 (|has| (-722 |#1| (-800 |#2|)) (-288 (-722 |#1| (-800 |#2|)))) (|has| (-722 |#1| (-800 |#2|)) (-1020)))) (($ $ (-592 (-273 (-722 |#1| (-800 |#2|))))) NIL (-12 (|has| (-722 |#1| (-800 |#2|)) (-288 (-722 |#1| (-800 |#2|)))) (|has| (-722 |#1| (-800 |#2|)) (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3529 (((-713) $) NIL)) (-4002 (((-713) (-722 |#1| (-800 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-722 |#1| (-800 |#2|)) (-1020)))) (((-713) (-1 (-108) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| (-722 |#1| (-800 |#2|)) (-567 (-501))))) (-4114 (($ (-592 (-722 |#1| (-800 |#2|)))) NIL)) (-4151 (($ $ (-800 |#2|)) NIL)) (-3522 (($ $ (-800 |#2|)) NIL)) (-1411 (($ $) NIL)) (-3963 (($ $ (-800 |#2|)) NIL)) (-4100 (((-798) $) NIL) (((-592 (-722 |#1| (-800 |#2|))) $) NIL)) (-1223 (((-713) $) NIL (|has| (-800 |#2|) (-346)))) (-3799 (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 (-722 |#1| (-800 |#2|))))) "failed") (-592 (-722 |#1| (-800 |#2|))) (-1 (-108) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 (-722 |#1| (-800 |#2|))))) "failed") (-592 (-722 |#1| (-800 |#2|))) (-1 (-108) (-722 |#1| (-800 |#2|))) (-1 (-108) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)))) NIL)) (-4170 (((-108) $ (-1 (-108) (-722 |#1| (-800 |#2|)) (-592 (-722 |#1| (-800 |#2|))))) NIL)) (-3605 (((-592 $) (-722 |#1| (-800 |#2|)) $) NIL) (((-592 $) (-722 |#1| (-800 |#2|)) (-592 $)) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) $) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-592 $)) NIL)) (-2706 (((-108) (-1 (-108) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-1874 (((-592 (-800 |#2|)) $) NIL)) (-1484 (((-108) (-722 |#1| (-800 |#2|)) $) NIL)) (-2738 (((-108) (-800 |#2|) $) NIL)) (-2775 (((-108) $ $) NIL)) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-974 |#1| |#2|) (-13 (-996 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|))) (-10 -8 (-15 -3347 ((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-108) (-108))))) (-429) (-592 (-1092))) (T -974))
+((-3347 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1092))) (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-974 *5 *6)))))
+(-13 (-996 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|))) (-10 -8 (-15 -3347 ((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-108) (-108)))))
+((-1994 (((-1 (-525)) (-1015 (-525))) 33)) (-3157 (((-525) (-525) (-525) (-525) (-525)) 30)) (-2197 (((-1 (-525)) |RationalNumber|) NIL)) (-3352 (((-1 (-525)) |RationalNumber|) NIL)) (-1494 (((-1 (-525)) (-525) |RationalNumber|) NIL)))
+(((-975) (-10 -7 (-15 -1994 ((-1 (-525)) (-1015 (-525)))) (-15 -1494 ((-1 (-525)) (-525) |RationalNumber|)) (-15 -2197 ((-1 (-525)) |RationalNumber|)) (-15 -3352 ((-1 (-525)) |RationalNumber|)) (-15 -3157 ((-525) (-525) (-525) (-525) (-525))))) (T -975))
+((-3157 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-975)))) (-3352 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-975)))) (-2197 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-975)))) (-1494 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-975)) (-5 *3 (-525)))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-1015 (-525))) (-5 *2 (-1 (-525))) (-5 *1 (-975)))))
+(-10 -7 (-15 -1994 ((-1 (-525)) (-1015 (-525)))) (-15 -1494 ((-1 (-525)) (-525) |RationalNumber|)) (-15 -2197 ((-1 (-525)) |RationalNumber|)) (-15 -3352 ((-1 (-525)) |RationalNumber|)) (-15 -3157 ((-525) (-525) (-525) (-525) (-525))))
+((-4100 (((-798) $) NIL) (($ (-525)) 10)))
+(((-976 |#1|) (-10 -8 (-15 -4100 (|#1| (-525))) (-15 -4100 ((-798) |#1|))) (-977)) (T -976))
+NIL
+(-10 -8 (-15 -4100 (|#1| (-525))) (-15 -4100 ((-798) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11) (($ (-525)) 28)) (-2448 (((-713)) 29)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-977) (-131)) (T -977))
-((-3917 (*1 *2) (-12 (-4 *1 (-977)) (-5 *2 (-713)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-977)))))
-(-13 (-984) (-669) (-594 $) (-10 -8 (-15 -3917 ((-713))) (-15 -1217 ($ (-525))) (-6 -4255)))
+((-2448 (*1 *2) (-12 (-4 *1 (-977)) (-5 *2 (-713)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-977)))))
+(-13 (-984) (-669) (-594 $) (-10 -8 (-15 -2448 ((-713))) (-15 -4100 ($ (-525))) (-6 -4256)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-669) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-1650 (((-385 (-887 |#2|)) (-592 |#2|) (-592 |#2|) (-713) (-713)) 45)))
-(((-978 |#1| |#2|) (-10 -7 (-15 -1650 ((-385 (-887 |#2|)) (-592 |#2|) (-592 |#2|) (-713) (-713)))) (-1092) (-341)) (T -978))
-((-1650 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-713)) (-4 *6 (-341)) (-5 *2 (-385 (-887 *6))) (-5 *1 (-978 *5 *6)) (-14 *5 (-1092)))))
-(-10 -7 (-15 -1650 ((-385 (-887 |#2|)) (-592 |#2|) (-592 |#2|) (-713) (-713))))
-((-4197 (((-108) $) 29)) (-1772 (((-108) $) 16)) (-1632 (((-713) $) 13)) (-1644 (((-713) $) 14)) (-2007 (((-108) $) 26)) (-3737 (((-108) $) 31)))
-(((-979 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1644 ((-713) |#1|)) (-15 -1632 ((-713) |#1|)) (-15 -3737 ((-108) |#1|)) (-15 -4197 ((-108) |#1|)) (-15 -2007 ((-108) |#1|)) (-15 -1772 ((-108) |#1|))) (-980 |#2| |#3| |#4| |#5| |#6|) (-713) (-713) (-977) (-218 |#3| |#4|) (-218 |#2| |#4|)) (T -979))
-NIL
-(-10 -8 (-15 -1644 ((-713) |#1|)) (-15 -1632 ((-713) |#1|)) (-15 -3737 ((-108) |#1|)) (-15 -4197 ((-108) |#1|)) (-15 -2007 ((-108) |#1|)) (-15 -1772 ((-108) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-4197 (((-108) $) 51)) (-1578 (((-3 $ "failed") $ $) 19)) (-1772 (((-108) $) 53)) (-3991 (((-108) $ (-713)) 61)) (-2169 (($) 17 T CONST)) (-2361 (($ $) 34 (|has| |#3| (-286)))) (-2631 ((|#4| $ (-525)) 39)) (-3622 (((-713) $) 33 (|has| |#3| (-517)))) (-2222 ((|#3| $ (-525) (-525)) 41)) (-3440 (((-592 |#3|) $) 68 (|has| $ (-6 -4258)))) (-2313 (((-713) $) 32 (|has| |#3| (-517)))) (-2319 (((-592 |#5|) $) 31 (|has| |#3| (-517)))) (-1632 (((-713) $) 45)) (-1644 (((-713) $) 44)) (-3924 (((-108) $ (-713)) 60)) (-2391 (((-525) $) 49)) (-1237 (((-525) $) 47)) (-2694 (((-592 |#3|) $) 69 (|has| $ (-6 -4258)))) (-2004 (((-108) |#3| $) 71 (-12 (|has| |#3| (-1020)) (|has| $ (-6 -4258))))) (-3446 (((-525) $) 48)) (-3757 (((-525) $) 46)) (-1716 (($ (-592 (-592 |#3|))) 54)) (-2284 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-4151 (((-592 (-592 |#3|)) $) 43)) (-2912 (((-108) $ (-713)) 59)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1715 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-517)))) (-3944 (((-108) (-1 (-108) |#3|) $) 66 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 |#3|) (-592 |#3|)) 75 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-273 |#3|)) 73 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-592 (-273 |#3|))) 72 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))) (-2614 (((-108) $ $) 55)) (-2659 (((-108) $) 58)) (-2512 (($) 57)) (-3406 ((|#3| $ (-525) (-525)) 42) ((|#3| $ (-525) (-525) |#3|) 40)) (-2007 (((-108) $) 52)) (-2110 (((-713) |#3| $) 70 (-12 (|has| |#3| (-1020)) (|has| $ (-6 -4258)))) (((-713) (-1 (-108) |#3|) $) 67 (|has| $ (-6 -4258)))) (-1462 (($ $) 56)) (-1808 ((|#5| $ (-525)) 38)) (-1217 (((-798) $) 11)) (-3029 (((-108) (-1 (-108) |#3|) $) 65 (|has| $ (-6 -4258)))) (-3737 (((-108) $) 50)) (-3349 (($) 18 T CONST)) (-3955 (((-108) $ $) 6)) (-4075 (($ $ |#3|) 35 (|has| |#3| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3522 (((-713) $) 62 (|has| $ (-6 -4258)))))
+((-4055 (((-385 (-887 |#2|)) (-592 |#2|) (-592 |#2|) (-713) (-713)) 45)))
+(((-978 |#1| |#2|) (-10 -7 (-15 -4055 ((-385 (-887 |#2|)) (-592 |#2|) (-592 |#2|) (-713) (-713)))) (-1092) (-341)) (T -978))
+((-4055 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-713)) (-4 *6 (-341)) (-5 *2 (-385 (-887 *6))) (-5 *1 (-978 *5 *6)) (-14 *5 (-1092)))))
+(-10 -7 (-15 -4055 ((-385 (-887 |#2|)) (-592 |#2|) (-592 |#2|) (-713) (-713))))
+((-2207 (((-108) $) 29)) (-2721 (((-108) $) 16)) (-2720 (((-713) $) 13)) (-2731 (((-713) $) 14)) (-3219 (((-108) $) 26)) (-1245 (((-108) $) 31)))
+(((-979 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2731 ((-713) |#1|)) (-15 -2720 ((-713) |#1|)) (-15 -1245 ((-108) |#1|)) (-15 -2207 ((-108) |#1|)) (-15 -3219 ((-108) |#1|)) (-15 -2721 ((-108) |#1|))) (-980 |#2| |#3| |#4| |#5| |#6|) (-713) (-713) (-977) (-218 |#3| |#4|) (-218 |#2| |#4|)) (T -979))
+NIL
+(-10 -8 (-15 -2731 ((-713) |#1|)) (-15 -2720 ((-713) |#1|)) (-15 -1245 ((-108) |#1|)) (-15 -2207 ((-108) |#1|)) (-15 -3219 ((-108) |#1|)) (-15 -2721 ((-108) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-2207 (((-108) $) 51)) (-3222 (((-3 $ "failed") $ $) 19)) (-2721 (((-108) $) 53)) (-3779 (((-108) $ (-713)) 61)) (-2475 (($) 17 T CONST)) (-3692 (($ $) 34 (|has| |#3| (-286)))) (-3209 ((|#4| $ (-525)) 39)) (-3085 (((-713) $) 33 (|has| |#3| (-517)))) (-3017 ((|#3| $ (-525) (-525)) 41)) (-2175 (((-592 |#3|) $) 68 (|has| $ (-6 -4259)))) (-3204 (((-713) $) 32 (|has| |#3| (-517)))) (-3261 (((-592 |#5|) $) 31 (|has| |#3| (-517)))) (-2720 (((-713) $) 45)) (-2731 (((-713) $) 44)) (-2516 (((-108) $ (-713)) 60)) (-2797 (((-525) $) 49)) (-2307 (((-525) $) 47)) (-2617 (((-592 |#3|) $) 69 (|has| $ (-6 -4259)))) (-3198 (((-108) |#3| $) 71 (-12 (|has| |#3| (-1020)) (|has| $ (-6 -4259))))) (-3194 (((-525) $) 48)) (-3210 (((-525) $) 46)) (-4054 (($ (-592 (-592 |#3|))) 54)) (-3069 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-2949 (((-592 (-592 |#3|)) $) 43)) (-4028 (((-108) $ (-713)) 59)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1311 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-517)))) (-1518 (((-108) (-1 (-108) |#3|) $) 66 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 |#3|) (-592 |#3|)) 75 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-273 |#3|)) 73 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-592 (-273 |#3|))) 72 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))) (-1231 (((-108) $ $) 55)) (-3479 (((-108) $) 58)) (-1558 (($) 57)) (-3431 ((|#3| $ (-525) (-525)) 42) ((|#3| $ (-525) (-525) |#3|) 40)) (-3219 (((-108) $) 52)) (-4002 (((-713) |#3| $) 70 (-12 (|has| |#3| (-1020)) (|has| $ (-6 -4259)))) (((-713) (-1 (-108) |#3|) $) 67 (|has| $ (-6 -4259)))) (-2503 (($ $) 56)) (-1881 ((|#5| $ (-525)) 38)) (-4100 (((-798) $) 11)) (-2706 (((-108) (-1 (-108) |#3|) $) 65 (|has| $ (-6 -4259)))) (-1245 (((-108) $) 50)) (-3364 (($) 18 T CONST)) (-2775 (((-108) $ $) 6)) (-2880 (($ $ |#3|) 35 (|has| |#3| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2827 (((-713) $) 62 (|has| $ (-6 -4259)))))
(((-980 |#1| |#2| |#3| |#4| |#5|) (-131) (-713) (-713) (-977) (-218 |t#2| |t#3|) (-218 |t#1| |t#3|)) (T -980))
-((-3165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) (-1716 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *5))) (-4 *5 (-977)) (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-2007 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-4197 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-2391 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-3446 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-1237 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-1632 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-713)))) (-1644 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-713)))) (-4151 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-592 (-592 *5))))) (-3406 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *2 *6 *7)) (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-977)))) (-2222 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *2 *6 *7)) (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-977)))) (-3406 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *2 *6 *7)) (-4 *2 (-977)) (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)))) (-2631 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *6 *2 *7)) (-4 *6 (-977)) (-4 *7 (-218 *4 *6)) (-4 *2 (-218 *5 *6)))) (-1808 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *6 *7 *2)) (-4 *6 (-977)) (-4 *7 (-218 *5 *6)) (-4 *2 (-218 *4 *6)))) (-3165 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) (-1715 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-980 *3 *4 *2 *5 *6)) (-4 *2 (-977)) (-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-517)))) (-4075 (*1 *1 *1 *2) (-12 (-4 *1 (-980 *3 *4 *2 *5 *6)) (-4 *2 (-977)) (-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-341)))) (-2361 (*1 *1 *1) (-12 (-4 *1 (-980 *2 *3 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *2 *4)) (-4 *4 (-286)))) (-3622 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) (-5 *2 (-713)))) (-2313 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) (-5 *2 (-713)))) (-2319 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) (-5 *2 (-592 *7)))))
-(-13 (-107 |t#3| |t#3|) (-464 |t#3|) (-10 -8 (-6 -4258) (IF (|has| |t#3| (-160)) (-6 (-660 |t#3|)) |%noBranch|) (-15 -1716 ($ (-592 (-592 |t#3|)))) (-15 -1772 ((-108) $)) (-15 -2007 ((-108) $)) (-15 -4197 ((-108) $)) (-15 -3737 ((-108) $)) (-15 -2391 ((-525) $)) (-15 -3446 ((-525) $)) (-15 -1237 ((-525) $)) (-15 -3757 ((-525) $)) (-15 -1632 ((-713) $)) (-15 -1644 ((-713) $)) (-15 -4151 ((-592 (-592 |t#3|)) $)) (-15 -3406 (|t#3| $ (-525) (-525))) (-15 -2222 (|t#3| $ (-525) (-525))) (-15 -3406 (|t#3| $ (-525) (-525) |t#3|)) (-15 -2631 (|t#4| $ (-525))) (-15 -1808 (|t#5| $ (-525))) (-15 -3165 ($ (-1 |t#3| |t#3|) $)) (-15 -3165 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-517)) (-15 -1715 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-341)) (-15 -4075 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-286)) (-15 -2361 ($ $)) |%noBranch|) (IF (|has| |t#3| (-517)) (PROGN (-15 -3622 ((-713) $)) (-15 -2313 ((-713) $)) (-15 -2319 ((-592 |t#5|) $))) |%noBranch|)))
+((-2016 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *5))) (-4 *5 (-977)) (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) (-2721 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-1245 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-2797 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-3194 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-2307 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-3210 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-2720 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-713)))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-713)))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-592 (-592 *5))))) (-3431 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *2 *6 *7)) (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-977)))) (-3017 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *2 *6 *7)) (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-977)))) (-3431 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *2 *6 *7)) (-4 *2 (-977)) (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)))) (-3209 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *6 *2 *7)) (-4 *6 (-977)) (-4 *7 (-218 *4 *6)) (-4 *2 (-218 *5 *6)))) (-1881 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *6 *7 *2)) (-4 *6 (-977)) (-4 *7 (-218 *5 *6)) (-4 *2 (-218 *4 *6)))) (-2016 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) (-1311 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-980 *3 *4 *2 *5 *6)) (-4 *2 (-977)) (-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-517)))) (-2880 (*1 *1 *1 *2) (-12 (-4 *1 (-980 *3 *4 *2 *5 *6)) (-4 *2 (-977)) (-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-341)))) (-3692 (*1 *1 *1) (-12 (-4 *1 (-980 *2 *3 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *2 *4)) (-4 *4 (-286)))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) (-5 *2 (-713)))) (-3204 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) (-5 *2 (-713)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) (-5 *2 (-592 *7)))))
+(-13 (-107 |t#3| |t#3|) (-464 |t#3|) (-10 -8 (-6 -4259) (IF (|has| |t#3| (-160)) (-6 (-660 |t#3|)) |%noBranch|) (-15 -4054 ($ (-592 (-592 |t#3|)))) (-15 -2721 ((-108) $)) (-15 -3219 ((-108) $)) (-15 -2207 ((-108) $)) (-15 -1245 ((-108) $)) (-15 -2797 ((-525) $)) (-15 -3194 ((-525) $)) (-15 -2307 ((-525) $)) (-15 -3210 ((-525) $)) (-15 -2720 ((-713) $)) (-15 -2731 ((-713) $)) (-15 -2949 ((-592 (-592 |t#3|)) $)) (-15 -3431 (|t#3| $ (-525) (-525))) (-15 -3017 (|t#3| $ (-525) (-525))) (-15 -3431 (|t#3| $ (-525) (-525) |t#3|)) (-15 -3209 (|t#4| $ (-525))) (-15 -1881 (|t#5| $ (-525))) (-15 -2016 ($ (-1 |t#3| |t#3|) $)) (-15 -2016 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-517)) (-15 -1311 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-341)) (-15 -2880 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-286)) (-15 -3692 ($ $)) |%noBranch|) (IF (|has| |t#3| (-517)) (PROGN (-15 -3085 ((-713) $)) (-15 -3204 ((-713) $)) (-15 -3261 ((-592 |t#5|) $))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-107 |#3| |#3|) . T) ((-126) . T) ((-566 (-798)) . T) ((-288 |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))) ((-464 |#3|) . T) ((-486 |#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))) ((-594 |#3|) . T) ((-660 |#3|) |has| |#3| (-160)) ((-983 |#3|) . T) ((-1020) . T) ((-1128) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-4197 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1772 (((-108) $) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-2169 (($) NIL T CONST)) (-2361 (($ $) 43 (|has| |#3| (-286)))) (-2631 (((-220 |#2| |#3|) $ (-525)) 32)) (-3010 (($ (-632 |#3|)) 41)) (-3622 (((-713) $) 45 (|has| |#3| (-517)))) (-2222 ((|#3| $ (-525) (-525)) NIL)) (-3440 (((-592 |#3|) $) NIL (|has| $ (-6 -4258)))) (-2313 (((-713) $) 47 (|has| |#3| (-517)))) (-2319 (((-592 (-220 |#1| |#3|)) $) 51 (|has| |#3| (-517)))) (-1632 (((-713) $) NIL)) (-1644 (((-713) $) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-2391 (((-525) $) NIL)) (-1237 (((-525) $) NIL)) (-2694 (((-592 |#3|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#3| (-1020))))) (-3446 (((-525) $) NIL)) (-3757 (((-525) $) NIL)) (-1716 (($ (-592 (-592 |#3|))) 27)) (-2284 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-4151 (((-592 (-592 |#3|)) $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1715 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-517)))) (-3944 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 |#3|) (-592 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-273 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-592 (-273 |#3|))) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#3| $ (-525) (-525)) NIL) ((|#3| $ (-525) (-525) |#3|) NIL)) (-3705 (((-128)) 54 (|has| |#3| (-341)))) (-2007 (((-108) $) NIL)) (-2110 (((-713) |#3| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#3| (-1020)))) (((-713) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) 63 (|has| |#3| (-567 (-501))))) (-1808 (((-220 |#1| |#3|) $ (-525)) 36)) (-1217 (((-798) $) 16) (((-632 |#3|) $) 38)) (-3029 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4258)))) (-3737 (((-108) $) NIL)) (-3349 (($) 13 T CONST)) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ |#3|) NIL (|has| |#3| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-981 |#1| |#2| |#3|) (-13 (-980 |#1| |#2| |#3| (-220 |#2| |#3|) (-220 |#1| |#3|)) (-566 (-632 |#3|)) (-10 -8 (IF (|has| |#3| (-341)) (-6 (-1181 |#3|)) |%noBranch|) (IF (|has| |#3| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (-15 -3010 ($ (-632 |#3|))) (-15 -1217 ((-632 |#3|) $)))) (-713) (-713) (-977)) (T -981))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-632 *5)) (-5 *1 (-981 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-977)))) (-3010 (*1 *1 *2) (-12 (-5 *2 (-632 *5)) (-4 *5 (-977)) (-5 *1 (-981 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)))))
-(-13 (-980 |#1| |#2| |#3| (-220 |#2| |#3|) (-220 |#1| |#3|)) (-566 (-632 |#3|)) (-10 -8 (IF (|has| |#3| (-341)) (-6 (-1181 |#3|)) |%noBranch|) (IF (|has| |#3| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (-15 -3010 ($ (-632 |#3|))) (-15 -1217 ((-632 |#3|) $))))
-((-1284 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3165 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
-(((-982 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3165 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1284 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-713) (-713) (-977) (-218 |#2| |#3|) (-218 |#1| |#3|) (-980 |#1| |#2| |#3| |#4| |#5|) (-977) (-218 |#2| |#7|) (-218 |#1| |#7|) (-980 |#1| |#2| |#7| |#8| |#9|)) (T -982))
-((-1284 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-977)) (-4 *2 (-977)) (-14 *5 (-713)) (-14 *6 (-713)) (-4 *8 (-218 *6 *7)) (-4 *9 (-218 *5 *7)) (-4 *10 (-218 *6 *2)) (-4 *11 (-218 *5 *2)) (-5 *1 (-982 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-980 *5 *6 *7 *8 *9)) (-4 *12 (-980 *5 *6 *2 *10 *11)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-977)) (-4 *10 (-977)) (-14 *5 (-713)) (-14 *6 (-713)) (-4 *8 (-218 *6 *7)) (-4 *9 (-218 *5 *7)) (-4 *2 (-980 *5 *6 *10 *11 *12)) (-5 *1 (-982 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-980 *5 *6 *7 *8 *9)) (-4 *11 (-218 *6 *10)) (-4 *12 (-218 *5 *10)))))
-(-10 -7 (-15 -3165 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1284 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3349 (($) 18 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ |#1|) 23)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-2207 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2721 (((-108) $) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-2475 (($) NIL T CONST)) (-3692 (($ $) 43 (|has| |#3| (-286)))) (-3209 (((-220 |#2| |#3|) $ (-525)) 32)) (-3721 (($ (-632 |#3|)) 41)) (-3085 (((-713) $) 45 (|has| |#3| (-517)))) (-3017 ((|#3| $ (-525) (-525)) NIL)) (-2175 (((-592 |#3|) $) NIL (|has| $ (-6 -4259)))) (-3204 (((-713) $) 47 (|has| |#3| (-517)))) (-3261 (((-592 (-220 |#1| |#3|)) $) 51 (|has| |#3| (-517)))) (-2720 (((-713) $) NIL)) (-2731 (((-713) $) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-2797 (((-525) $) NIL)) (-2307 (((-525) $) NIL)) (-2617 (((-592 |#3|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#3| (-1020))))) (-3194 (((-525) $) NIL)) (-3210 (((-525) $) NIL)) (-4054 (($ (-592 (-592 |#3|))) 27)) (-3069 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2949 (((-592 (-592 |#3|)) $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1311 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-517)))) (-1518 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 |#3|) (-592 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-273 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-592 (-273 |#3|))) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#3| $ (-525) (-525)) NIL) ((|#3| $ (-525) (-525) |#3|) NIL)) (-3933 (((-128)) 54 (|has| |#3| (-341)))) (-3219 (((-108) $) NIL)) (-4002 (((-713) |#3| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#3| (-1020)))) (((-713) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) 63 (|has| |#3| (-567 (-501))))) (-1881 (((-220 |#1| |#3|) $ (-525)) 36)) (-4100 (((-798) $) 16) (((-632 |#3|) $) 38)) (-2706 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4259)))) (-1245 (((-108) $) NIL)) (-3364 (($) 13 T CONST)) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ |#3|) NIL (|has| |#3| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-981 |#1| |#2| |#3|) (-13 (-980 |#1| |#2| |#3| (-220 |#2| |#3|) (-220 |#1| |#3|)) (-566 (-632 |#3|)) (-10 -8 (IF (|has| |#3| (-341)) (-6 (-1181 |#3|)) |%noBranch|) (IF (|has| |#3| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (-15 -3721 ($ (-632 |#3|))) (-15 -4100 ((-632 |#3|) $)))) (-713) (-713) (-977)) (T -981))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-632 *5)) (-5 *1 (-981 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-977)))) (-3721 (*1 *1 *2) (-12 (-5 *2 (-632 *5)) (-4 *5 (-977)) (-5 *1 (-981 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)))))
+(-13 (-980 |#1| |#2| |#3| (-220 |#2| |#3|) (-220 |#1| |#3|)) (-566 (-632 |#3|)) (-10 -8 (IF (|has| |#3| (-341)) (-6 (-1181 |#3|)) |%noBranch|) (IF (|has| |#3| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (-15 -3721 ($ (-632 |#3|))) (-15 -4100 ((-632 |#3|) $))))
+((-3504 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-2016 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
+(((-982 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2016 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3504 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-713) (-713) (-977) (-218 |#2| |#3|) (-218 |#1| |#3|) (-980 |#1| |#2| |#3| |#4| |#5|) (-977) (-218 |#2| |#7|) (-218 |#1| |#7|) (-980 |#1| |#2| |#7| |#8| |#9|)) (T -982))
+((-3504 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-977)) (-4 *2 (-977)) (-14 *5 (-713)) (-14 *6 (-713)) (-4 *8 (-218 *6 *7)) (-4 *9 (-218 *5 *7)) (-4 *10 (-218 *6 *2)) (-4 *11 (-218 *5 *2)) (-5 *1 (-982 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-980 *5 *6 *7 *8 *9)) (-4 *12 (-980 *5 *6 *2 *10 *11)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-977)) (-4 *10 (-977)) (-14 *5 (-713)) (-14 *6 (-713)) (-4 *8 (-218 *6 *7)) (-4 *9 (-218 *5 *7)) (-4 *2 (-980 *5 *6 *10 *11 *12)) (-5 *1 (-982 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-980 *5 *6 *7 *8 *9)) (-4 *11 (-218 *6 *10)) (-4 *12 (-218 *5 *10)))))
+(-10 -7 (-15 -2016 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3504 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3364 (($) 18 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ |#1|) 23)))
(((-983 |#1|) (-131) (-984)) (T -983))
((* (*1 *1 *1 *2) (-12 (-4 *1 (-983 *2)) (-4 *2 (-984)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-1619 (($ $ (-856)) 26)) (-3349 (($) 18 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3706 (($ $ (-856)) 26)) (-3364 (($) 18 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-984) (-131)) (T -984))
NIL
(-13 (-21) (-1032))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-1032) . T) ((-1020) . T))
-((-3828 (($ $) 16)) (-3384 (($ $) 22)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 49)) (-2382 (($ $) 24)) (-3628 (($ $) 11)) (-2487 (($ $) 38)) (-3210 (((-357) $) NIL) (((-205) $) NIL) (((-827 (-357)) $) 33)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 28) (($ (-525)) NIL) (($ (-385 (-525))) 28)) (-3917 (((-713)) 8)) (-3074 (($ $) 39)))
-(((-985 |#1|) (-10 -8 (-15 -3384 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3628 (|#1| |#1|)) (-15 -2487 (|#1| |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -2989 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -3210 ((-827 (-357)) |#1|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -1217 (|#1| (-525))) (-15 -3210 ((-205) |#1|)) (-15 -3210 ((-357) |#1|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -1217 (|#1| |#1|)) (-15 -1217 (|#1| (-525))) (-15 -3917 ((-713))) (-15 -1217 ((-798) |#1|))) (-986)) (T -985))
-((-3917 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-985 *3)) (-4 *3 (-986)))))
-(-10 -8 (-15 -3384 (|#1| |#1|)) (-15 -3828 (|#1| |#1|)) (-15 -3628 (|#1| |#1|)) (-15 -2487 (|#1| |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -2989 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -3210 ((-827 (-357)) |#1|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -1217 (|#1| (-525))) (-15 -3210 ((-205) |#1|)) (-15 -3210 ((-357) |#1|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -1217 (|#1| |#1|)) (-15 -1217 (|#1| (-525))) (-15 -3917 ((-713))) (-15 -1217 ((-798) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1548 (((-525) $) 89)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-3828 (($ $) 87)) (-1578 (((-3 $ "failed") $ $) 19)) (-1286 (($ $) 73)) (-2669 (((-396 $) $) 72)) (-2782 (($ $) 97)) (-2193 (((-108) $ $) 59)) (-3855 (((-525) $) 114)) (-2169 (($) 17 T CONST)) (-3384 (($ $) 86)) (-3077 (((-3 (-525) "failed") $) 102) (((-3 (-385 (-525)) "failed") $) 99)) (-1572 (((-525) $) 101) (((-385 (-525)) $) 98)) (-1747 (($ $ $) 55)) (-3457 (((-3 $ "failed") $) 34)) (-1733 (($ $ $) 56)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 51)) (-3673 (((-108) $) 71)) (-1222 (((-108) $) 112)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 93)) (-1396 (((-108) $) 31)) (-2171 (($ $ (-525)) 96)) (-2382 (($ $) 92)) (-3256 (((-108) $) 113)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2638 (($ $ $) 111)) (-3662 (($ $ $) 110)) (-2556 (($ $ $) 46) (($ (-592 $)) 45)) (-2619 (((-1075) $) 9)) (-2997 (($ $) 70)) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2589 (($ $ $) 48) (($ (-592 $)) 47)) (-3628 (($ $) 88)) (-2487 (($ $) 90)) (-2770 (((-396 $) $) 74)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1715 (((-3 $ "failed") $ $) 42)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-3684 (((-713) $) 58)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 57)) (-3210 (((-357) $) 105) (((-205) $) 104) (((-827 (-357)) $) 94)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ (-525)) 103) (($ (-385 (-525))) 100)) (-3917 (((-713)) 29)) (-3074 (($ $) 91)) (-3325 (((-108) $ $) 39)) (-2802 (($ $) 115)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-4011 (((-108) $ $) 108)) (-3987 (((-108) $ $) 107)) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 109)) (-3978 (((-108) $ $) 106)) (-4075 (($ $ $) 64)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 95)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
+((-2730 (($ $) 16)) (-3869 (($ $) 22)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 49)) (-2704 (($ $) 24)) (-1372 (($ $) 11)) (-1340 (($ $) 38)) (-2069 (((-357) $) NIL) (((-205) $) NIL) (((-827 (-357)) $) 33)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 28) (($ (-525)) NIL) (($ (-385 (-525))) 28)) (-2448 (((-713)) 8)) (-3064 (($ $) 39)))
+(((-985 |#1|) (-10 -8 (-15 -3869 (|#1| |#1|)) (-15 -2730 (|#1| |#1|)) (-15 -1372 (|#1| |#1|)) (-15 -1340 (|#1| |#1|)) (-15 -3064 (|#1| |#1|)) (-15 -2704 (|#1| |#1|)) (-15 -3552 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -2069 ((-827 (-357)) |#1|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -4100 (|#1| (-525))) (-15 -2069 ((-205) |#1|)) (-15 -2069 ((-357) |#1|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -4100 (|#1| |#1|)) (-15 -4100 (|#1| (-525))) (-15 -2448 ((-713))) (-15 -4100 ((-798) |#1|))) (-986)) (T -985))
+((-2448 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-985 *3)) (-4 *3 (-986)))))
+(-10 -8 (-15 -3869 (|#1| |#1|)) (-15 -2730 (|#1| |#1|)) (-15 -1372 (|#1| |#1|)) (-15 -1340 (|#1| |#1|)) (-15 -3064 (|#1| |#1|)) (-15 -2704 (|#1| |#1|)) (-15 -3552 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -2069 ((-827 (-357)) |#1|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -4100 (|#1| (-525))) (-15 -2069 ((-205) |#1|)) (-15 -2069 ((-357) |#1|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -4100 (|#1| |#1|)) (-15 -4100 (|#1| (-525))) (-15 -2448 ((-713))) (-15 -4100 ((-798) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-1653 (((-525) $) 89)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-2730 (($ $) 87)) (-3222 (((-3 $ "failed") $ $) 19)) (-4195 (($ $) 73)) (-3586 (((-396 $) $) 72)) (-4211 (($ $) 97)) (-1507 (((-108) $ $) 59)) (-2971 (((-525) $) 114)) (-2475 (($) 17 T CONST)) (-3869 (($ $) 86)) (-1934 (((-3 (-525) "failed") $) 102) (((-3 (-385 (-525)) "failed") $) 99)) (-4105 (((-525) $) 101) (((-385 (-525)) $) 98)) (-1356 (($ $ $) 55)) (-3300 (((-3 $ "failed") $) 34)) (-1332 (($ $ $) 56)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 51)) (-1798 (((-108) $) 71)) (-1889 (((-108) $) 112)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 93)) (-2278 (((-108) $) 31)) (-1303 (($ $ (-525)) 96)) (-2704 (($ $) 92)) (-4079 (((-108) $) 113)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-3033 (($ $ $) 111)) (-1609 (($ $ $) 110)) (-2739 (($ $ $) 46) (($ (-592 $)) 45)) (-1289 (((-1075) $) 9)) (-1387 (($ $) 70)) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2772 (($ $ $) 48) (($ (-592 $)) 47)) (-1372 (($ $) 88)) (-1340 (($ $) 90)) (-4201 (((-396 $) $) 74)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1311 (((-3 $ "failed") $ $) 42)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1927 (((-713) $) 58)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 57)) (-2069 (((-357) $) 105) (((-205) $) 104) (((-827 (-357)) $) 94)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ (-525)) 103) (($ (-385 (-525))) 100)) (-2448 (((-713)) 29)) (-3064 (($ $) 91)) (-1571 (((-108) $ $) 39)) (-2380 (($ $) 115)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2830 (((-108) $ $) 108)) (-2807 (((-108) $ $) 107)) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 109)) (-2795 (((-108) $ $) 106)) (-2880 (($ $ $) 64)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 95)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
(((-986) (-131)) (T -986))
-((-2802 (*1 *1 *1) (-4 *1 (-986))) (-2382 (*1 *1 *1) (-4 *1 (-986))) (-3074 (*1 *1 *1) (-4 *1 (-986))) (-2487 (*1 *1 *1) (-4 *1 (-986))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-525)))) (-3628 (*1 *1 *1) (-4 *1 (-986))) (-3828 (*1 *1 *1) (-4 *1 (-986))) (-3384 (*1 *1 *1) (-4 *1 (-986))))
-(-13 (-341) (-787) (-953) (-968 (-525)) (-968 (-385 (-525))) (-934) (-567 (-827 (-357))) (-821 (-357)) (-138) (-10 -8 (-15 -2382 ($ $)) (-15 -3074 ($ $)) (-15 -2487 ($ $)) (-15 -1548 ((-525) $)) (-15 -3628 ($ $)) (-15 -3828 ($ $)) (-15 -3384 ($ $)) (-15 -2802 ($ $))))
+((-2380 (*1 *1 *1) (-4 *1 (-986))) (-2704 (*1 *1 *1) (-4 *1 (-986))) (-3064 (*1 *1 *1) (-4 *1 (-986))) (-1340 (*1 *1 *1) (-4 *1 (-986))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-525)))) (-1372 (*1 *1 *1) (-4 *1 (-986))) (-2730 (*1 *1 *1) (-4 *1 (-986))) (-3869 (*1 *1 *1) (-4 *1 (-986))))
+(-13 (-341) (-787) (-953) (-968 (-525)) (-968 (-385 (-525))) (-934) (-567 (-827 (-357))) (-821 (-357)) (-138) (-10 -8 (-15 -2704 ($ $)) (-15 -3064 ($ $)) (-15 -1340 ($ $)) (-15 -1653 ((-525) $)) (-15 -1372 ($ $)) (-15 -2730 ($ $)) (-15 -3869 ($ $)) (-15 -2380 ($ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-798)) . T) ((-160) . T) ((-567 (-205)) . T) ((-567 (-357)) . T) ((-567 (-827 (-357))) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-787) . T) ((-789) . T) ((-821 (-357)) . T) ((-855) . T) ((-934) . T) ((-953) . T) ((-968 (-385 (-525))) . T) ((-968 (-525)) . T) ((-983 #0#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1132) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) |#2| $) 23)) (-1834 ((|#1| $) 10)) (-3855 (((-525) |#2| $) 88)) (-2964 (((-3 $ "failed") |#2| (-856)) 57)) (-3519 ((|#1| $) 28)) (-3172 ((|#1| |#2| $ |#1|) 37)) (-1833 (($ $) 25)) (-3457 (((-3 |#2| "failed") |#2| $) 87)) (-1222 (((-108) |#2| $) NIL)) (-3256 (((-108) |#2| $) NIL)) (-1671 (((-108) |#2| $) 24)) (-2645 ((|#1| $) 89)) (-3507 ((|#1| $) 27)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-2756 ((|#2| $) 79)) (-1217 (((-798) $) 70)) (-1454 ((|#1| |#2| $ |#1|) 38)) (-1692 (((-592 $) |#2|) 59)) (-3955 (((-108) $ $) 74)))
-(((-987 |#1| |#2|) (-13 (-993 |#1| |#2|) (-10 -8 (-15 -3507 (|#1| $)) (-15 -3519 (|#1| $)) (-15 -1834 (|#1| $)) (-15 -2645 (|#1| $)) (-15 -1833 ($ $)) (-15 -1671 ((-108) |#2| $)) (-15 -3172 (|#1| |#2| $ |#1|)))) (-13 (-787) (-341)) (-1150 |#1|)) (T -987))
-((-3172 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3)) (-4 *3 (-1150 *2)))) (-3507 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3)) (-4 *3 (-1150 *2)))) (-3519 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3)) (-4 *3 (-1150 *2)))) (-1834 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3)) (-4 *3 (-1150 *2)))) (-2645 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3)) (-4 *3 (-1150 *2)))) (-1833 (*1 *1 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3)) (-4 *3 (-1150 *2)))) (-1671 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-787) (-341))) (-5 *2 (-108)) (-5 *1 (-987 *4 *3)) (-4 *3 (-1150 *4)))))
-(-13 (-993 |#1| |#2|) (-10 -8 (-15 -3507 (|#1| $)) (-15 -3519 (|#1| $)) (-15 -1834 (|#1| $)) (-15 -2645 (|#1| $)) (-15 -1833 ($ $)) (-15 -1671 ((-108) |#2| $)) (-15 -3172 (|#1| |#2| $ |#1|))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-2028 (($ $ $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-4158 (($ $ $ $) NIL)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2193 (((-108) $ $) NIL)) (-3855 (((-525) $) NIL)) (-3506 (($ $ $) NIL)) (-2169 (($) NIL T CONST)) (-3494 (($ (-1092)) 10) (($ (-525)) 7)) (-3077 (((-3 (-525) "failed") $) NIL)) (-1572 (((-525) $) NIL)) (-1747 (($ $ $) NIL)) (-1994 (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1514 (((-3 (-385 (-525)) "failed") $) NIL)) (-3933 (((-108) $) NIL)) (-3303 (((-385 (-525)) $) NIL)) (-2502 (($) NIL) (($ $) NIL)) (-1733 (($ $ $) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-2781 (($ $ $ $) NIL)) (-3636 (($ $ $) NIL)) (-1222 (((-108) $) NIL)) (-3984 (($ $ $) NIL)) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL)) (-1396 (((-108) $) NIL)) (-1673 (((-108) $) NIL)) (-3844 (((-3 $ "failed") $) NIL)) (-3256 (((-108) $) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2657 (($ $ $ $) NIL)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-1738 (($ $) NIL)) (-4178 (($ $) NIL)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2476 (($ $ $) NIL)) (-2295 (($) NIL T CONST)) (-4070 (($ $) NIL)) (-2093 (((-1039) $) NIL) (($ $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1545 (($ $) NIL)) (-2770 (((-396 $) $) NIL)) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3699 (((-108) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-3376 (($ $ (-713)) NIL) (($ $) NIL)) (-3068 (($ $) NIL)) (-1462 (($ $) NIL)) (-3210 (((-525) $) 16) (((-501) $) NIL) (((-827 (-525)) $) NIL) (((-357) $) NIL) (((-205) $) NIL) (($ (-1092)) 9)) (-1217 (((-798) $) 20) (($ (-525)) 6) (($ $) NIL) (($ (-525)) 6)) (-3917 (((-713)) NIL)) (-3731 (((-108) $ $) NIL)) (-3163 (($ $ $) NIL)) (-3379 (($) NIL)) (-3325 (((-108) $ $) NIL)) (-1935 (($ $ $ $) NIL)) (-2802 (($ $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $ (-713)) NIL) (($ $) NIL)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) NIL)) (-4061 (($ $) 19) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL)))
-(((-988) (-13 (-510) (-10 -8 (-6 -4245) (-6 -4250) (-6 -4246) (-15 -3210 ($ (-1092))) (-15 -3494 ($ (-1092))) (-15 -3494 ($ (-525)))))) (T -988))
-((-3210 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-988)))) (-3494 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-988)))) (-3494 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-988)))))
-(-13 (-510) (-10 -8 (-6 -4245) (-6 -4250) (-6 -4246) (-15 -3210 ($ (-1092))) (-15 -3494 ($ (-1092))) (-15 -3494 ($ (-525)))))
-((-4236 (((-108) $ $) NIL (-3254 (|has| (-51) (-1020)) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020))))) (-1675 (($) NIL) (($ (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) NIL)) (-3456 (((-1179) $ (-1092) (-1092)) NIL (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) NIL)) (-3914 (($) 9)) (-1430 (((-51) $ (-1092) (-51)) NIL)) (-2448 (($ $) 30)) (-3698 (($ $) 28)) (-1648 (($ $) 27)) (-3164 (($ $) 29)) (-1362 (($ $) 32)) (-3023 (($ $) 33)) (-3069 (($ $) 26)) (-3417 (($ $) 31)) (-1676 (($ (-1 (-108) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) 25 (|has| $ (-6 -4258)))) (-2591 (((-3 (-51) "failed") (-1092) $) 40)) (-2169 (($) NIL T CONST)) (-2652 (($) 7)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020))))) (-3271 (($ (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) $) 50 (|has| $ (-6 -4258))) (($ (-1 (-108) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258))) (((-3 (-51) "failed") (-1092) $) NIL)) (-1703 (($ (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020)))) (($ (-1 (-108) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258)))) (-1284 (((-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $ (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020)))) (((-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $ (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) NIL (|has| $ (-6 -4258))) (((-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258)))) (-3137 (((-3 (-1075) "failed") $ (-1075) (-525)) 59)) (-2301 (((-51) $ (-1092) (-51)) NIL (|has| $ (-6 -4259)))) (-2222 (((-51) $ (-1092)) NIL)) (-3440 (((-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258))) (((-592 (-51)) $) NIL (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-1092) $) NIL (|has| (-1092) (-789)))) (-2694 (((-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) 35 (|has| $ (-6 -4258))) (((-592 (-51)) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-51) (-1020))))) (-1847 (((-1092) $) NIL (|has| (-1092) (-789)))) (-2284 (($ (-1 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4259))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (-3254 (|has| (-51) (-1020)) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020))))) (-2356 (((-592 (-1092)) $) NIL)) (-2239 (((-108) (-1092) $) NIL)) (-2992 (((-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) $) NIL)) (-1262 (($ (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) $) 43)) (-2628 (((-592 (-1092)) $) NIL)) (-2978 (((-108) (-1092) $) NIL)) (-2093 (((-1039) $) NIL (-3254 (|has| (-51) (-1020)) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020))))) (-3181 (((-357) $ (-1092)) 49)) (-3224 (((-592 (-1075)) $ (-1075)) 60)) (-1872 (((-51) $) NIL (|has| (-1092) (-789)))) (-1983 (((-3 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) "failed") (-1 (-108) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL)) (-1420 (($ $ (-51)) NIL (|has| $ (-6 -4259)))) (-4127 (((-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) $) NIL)) (-3944 (((-108) (-1 (-108) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))))) NIL (-12 (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-288 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020)))) (($ $ (-273 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) NIL (-12 (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-288 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020)))) (($ $ (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) NIL (-12 (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-288 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020)))) (($ $ (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) NIL (-12 (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-288 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020)))) (($ $ (-592 (-51)) (-592 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-273 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-592 (-273 (-51)))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-51) (-1020))))) (-3341 (((-592 (-51)) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 (((-51) $ (-1092)) NIL) (((-51) $ (-1092) (-51)) NIL)) (-1760 (($) NIL) (($ (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) NIL)) (-2045 (($ $ (-1092)) 51)) (-2110 (((-713) (-1 (-108) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258))) (((-713) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020)))) (((-713) (-51) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-51) (-1020)))) (((-713) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-567 (-501))))) (-1230 (($ (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) 37)) (-2038 (($ $ $) 38)) (-1217 (((-798) $) NIL (-3254 (|has| (-51) (-566 (-798))) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-566 (-798)))))) (-2801 (($ $ (-1092) (-357)) 47)) (-2857 (($ $ (-1092) (-357)) 48)) (-1956 (($ (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))))) NIL)) (-3029 (((-108) (-1 (-108) (-2 (|:| -3364 (-1092)) (|:| -4201 (-51)))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (-3254 (|has| (-51) (-1020)) (|has| (-2 (|:| -3364 (-1092)) (|:| -4201 (-51))) (-1020))))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-989) (-13 (-1105 (-1092) (-51)) (-10 -8 (-15 -2038 ($ $ $)) (-15 -2652 ($)) (-15 -3069 ($ $)) (-15 -1648 ($ $)) (-15 -3698 ($ $)) (-15 -3164 ($ $)) (-15 -3417 ($ $)) (-15 -2448 ($ $)) (-15 -1362 ($ $)) (-15 -3023 ($ $)) (-15 -2801 ($ $ (-1092) (-357))) (-15 -2857 ($ $ (-1092) (-357))) (-15 -3181 ((-357) $ (-1092))) (-15 -3224 ((-592 (-1075)) $ (-1075))) (-15 -2045 ($ $ (-1092))) (-15 -3914 ($)) (-15 -3137 ((-3 (-1075) "failed") $ (-1075) (-525))) (-6 -4258)))) (T -989))
-((-2038 (*1 *1 *1 *1) (-5 *1 (-989))) (-2652 (*1 *1) (-5 *1 (-989))) (-3069 (*1 *1 *1) (-5 *1 (-989))) (-1648 (*1 *1 *1) (-5 *1 (-989))) (-3698 (*1 *1 *1) (-5 *1 (-989))) (-3164 (*1 *1 *1) (-5 *1 (-989))) (-3417 (*1 *1 *1) (-5 *1 (-989))) (-2448 (*1 *1 *1) (-5 *1 (-989))) (-1362 (*1 *1 *1) (-5 *1 (-989))) (-3023 (*1 *1 *1) (-5 *1 (-989))) (-2801 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-357)) (-5 *1 (-989)))) (-2857 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-357)) (-5 *1 (-989)))) (-3181 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-357)) (-5 *1 (-989)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-989)) (-5 *3 (-1075)))) (-2045 (*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-989)))) (-3914 (*1 *1) (-5 *1 (-989))) (-3137 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1075)) (-5 *3 (-525)) (-5 *1 (-989)))))
-(-13 (-1105 (-1092) (-51)) (-10 -8 (-15 -2038 ($ $ $)) (-15 -2652 ($)) (-15 -3069 ($ $)) (-15 -1648 ($ $)) (-15 -3698 ($ $)) (-15 -3164 ($ $)) (-15 -3417 ($ $)) (-15 -2448 ($ $)) (-15 -1362 ($ $)) (-15 -3023 ($ $)) (-15 -2801 ($ $ (-1092) (-357))) (-15 -2857 ($ $ (-1092) (-357))) (-15 -3181 ((-357) $ (-1092))) (-15 -3224 ((-592 (-1075)) $ (-1075))) (-15 -2045 ($ $ (-1092))) (-15 -3914 ($)) (-15 -3137 ((-3 (-1075) "failed") $ (-1075) (-525))) (-6 -4258)))
-((-2798 (($ $) 45)) (-1289 (((-108) $ $) 74)) (-3077 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-887 (-385 (-525)))) 227) (((-3 $ "failed") (-887 (-525))) 226) (((-3 $ "failed") (-887 |#2|)) 229)) (-1572 ((|#2| $) NIL) (((-385 (-525)) $) NIL) (((-525) $) NIL) ((|#4| $) NIL) (($ (-887 (-385 (-525)))) 215) (($ (-887 (-525))) 211) (($ (-887 |#2|)) 231)) (-3063 (($ $) NIL) (($ $ |#4|) 43)) (-1961 (((-108) $ $) 112) (((-108) $ (-592 $)) 113)) (-3543 (((-108) $) 56)) (-3696 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 107)) (-2046 (($ $) 138)) (-2204 (($ $) 134)) (-1392 (($ $) 133)) (-1995 (($ $ $) 79) (($ $ $ |#4|) 84)) (-1296 (($ $ $) 82) (($ $ $ |#4|) 86)) (-2633 (((-108) $ $) 121) (((-108) $ (-592 $)) 122)) (-3153 ((|#4| $) 33)) (-2413 (($ $ $) 110)) (-3892 (((-108) $) 55)) (-1216 (((-713) $) 35)) (-3870 (($ $) 152)) (-2262 (($ $) 149)) (-2524 (((-592 $) $) 68)) (-1765 (($ $) 57)) (-3962 (($ $) 145)) (-1422 (((-592 $) $) 65)) (-3600 (($ $) 59)) (-3043 ((|#2| $) NIL) (($ $ |#4|) 38)) (-2117 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3047 (-713))) $ $) 111)) (-2420 (((-2 (|:| -3244 $) (|:| |gap| (-713)) (|:| -2829 $) (|:| -1607 $)) $ $) 108) (((-2 (|:| -3244 $) (|:| |gap| (-713)) (|:| -2829 $) (|:| -1607 $)) $ $ |#4|) 109)) (-4171 (((-2 (|:| -3244 $) (|:| |gap| (-713)) (|:| -1607 $)) $ $) 104) (((-2 (|:| -3244 $) (|:| |gap| (-713)) (|:| -1607 $)) $ $ |#4|) 105)) (-3614 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3259 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3001 (((-592 $) $) 51)) (-2686 (((-108) $ $) 118) (((-108) $ (-592 $)) 119)) (-2423 (($ $ $) 103)) (-2295 (($ $) 37)) (-2338 (((-108) $ $) 72)) (-2696 (((-108) $ $) 114) (((-108) $ (-592 $)) 116)) (-3872 (($ $ $) 101)) (-2451 (($ $) 40)) (-2589 ((|#2| |#2| $) 142) (($ (-592 $)) NIL) (($ $ $) NIL)) (-1267 (($ $ |#2|) NIL) (($ $ $) 131)) (-1565 (($ $ |#2|) 126) (($ $ $) 129)) (-2650 (($ $) 48)) (-2537 (($ $) 52)) (-3210 (((-827 (-357)) $) NIL) (((-827 (-525)) $) NIL) (((-501) $) NIL) (($ (-887 (-385 (-525)))) 217) (($ (-887 (-525))) 213) (($ (-887 |#2|)) 228) (((-1075) $) 250) (((-887 |#2|) $) 162)) (-1217 (((-798) $) 30) (($ (-525)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-887 |#2|) $) 163) (($ (-385 (-525))) NIL) (($ $) NIL)) (-3439 (((-3 (-108) "failed") $ $) 71)))
-(((-990 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1217 (|#1| |#1|)) (-15 -2589 (|#1| |#1| |#1|)) (-15 -2589 (|#1| (-592 |#1|))) (-15 -1217 (|#1| (-385 (-525)))) (-15 -1217 ((-887 |#2|) |#1|)) (-15 -3210 ((-887 |#2|) |#1|)) (-15 -3210 ((-1075) |#1|)) (-15 -3870 (|#1| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 -3962 (|#1| |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -2589 (|#2| |#2| |#1|)) (-15 -1267 (|#1| |#1| |#1|)) (-15 -1565 (|#1| |#1| |#1|)) (-15 -1267 (|#1| |#1| |#2|)) (-15 -1565 (|#1| |#1| |#2|)) (-15 -2204 (|#1| |#1|)) (-15 -1392 (|#1| |#1|)) (-15 -3210 (|#1| (-887 |#2|))) (-15 -1572 (|#1| (-887 |#2|))) (-15 -3077 ((-3 |#1| "failed") (-887 |#2|))) (-15 -3210 (|#1| (-887 (-525)))) (-15 -1572 (|#1| (-887 (-525)))) (-15 -3077 ((-3 |#1| "failed") (-887 (-525)))) (-15 -3210 (|#1| (-887 (-385 (-525))))) (-15 -1572 (|#1| (-887 (-385 (-525))))) (-15 -3077 ((-3 |#1| "failed") (-887 (-385 (-525))))) (-15 -2423 (|#1| |#1| |#1|)) (-15 -3872 (|#1| |#1| |#1|)) (-15 -2117 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3047 (-713))) |#1| |#1|)) (-15 -2413 (|#1| |#1| |#1|)) (-15 -3696 ((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|)) (-15 -2420 ((-2 (|:| -3244 |#1|) (|:| |gap| (-713)) (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1| |#4|)) (-15 -2420 ((-2 (|:| -3244 |#1|) (|:| |gap| (-713)) (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|)) (-15 -4171 ((-2 (|:| -3244 |#1|) (|:| |gap| (-713)) (|:| -1607 |#1|)) |#1| |#1| |#4|)) (-15 -4171 ((-2 (|:| -3244 |#1|) (|:| |gap| (-713)) (|:| -1607 |#1|)) |#1| |#1|)) (-15 -3259 (|#1| |#1| |#1| |#4|)) (-15 -3614 (|#1| |#1| |#1| |#4|)) (-15 -3259 (|#1| |#1| |#1|)) (-15 -3614 (|#1| |#1| |#1|)) (-15 -1296 (|#1| |#1| |#1| |#4|)) (-15 -1995 (|#1| |#1| |#1| |#4|)) (-15 -1296 (|#1| |#1| |#1|)) (-15 -1995 (|#1| |#1| |#1|)) (-15 -2633 ((-108) |#1| (-592 |#1|))) (-15 -2633 ((-108) |#1| |#1|)) (-15 -2686 ((-108) |#1| (-592 |#1|))) (-15 -2686 ((-108) |#1| |#1|)) (-15 -2696 ((-108) |#1| (-592 |#1|))) (-15 -2696 ((-108) |#1| |#1|)) (-15 -1961 ((-108) |#1| (-592 |#1|))) (-15 -1961 ((-108) |#1| |#1|)) (-15 -1289 ((-108) |#1| |#1|)) (-15 -2338 ((-108) |#1| |#1|)) (-15 -3439 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2524 ((-592 |#1|) |#1|)) (-15 -1422 ((-592 |#1|) |#1|)) (-15 -3600 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -3543 ((-108) |#1|)) (-15 -3892 ((-108) |#1|)) (-15 -3063 (|#1| |#1| |#4|)) (-15 -3043 (|#1| |#1| |#4|)) (-15 -2537 (|#1| |#1|)) (-15 -3001 ((-592 |#1|) |#1|)) (-15 -2650 (|#1| |#1|)) (-15 -2798 (|#1| |#1|)) (-15 -2451 (|#1| |#1|)) (-15 -2295 (|#1| |#1|)) (-15 -1216 ((-713) |#1|)) (-15 -3153 (|#4| |#1|)) (-15 -3210 ((-501) |#1|)) (-15 -3210 ((-827 (-525)) |#1|)) (-15 -3210 ((-827 (-357)) |#1|)) (-15 -1572 (|#4| |#1|)) (-15 -3077 ((-3 |#4| "failed") |#1|)) (-15 -1217 (|#1| |#4|)) (-15 -3043 (|#2| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -1572 ((-525) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1217 (|#1| |#2|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -1217 (|#1| (-525))) (-15 -1217 ((-798) |#1|))) (-991 |#2| |#3| |#4|) (-977) (-735) (-789)) (T -990))
-NIL
-(-10 -8 (-15 -1217 (|#1| |#1|)) (-15 -2589 (|#1| |#1| |#1|)) (-15 -2589 (|#1| (-592 |#1|))) (-15 -1217 (|#1| (-385 (-525)))) (-15 -1217 ((-887 |#2|) |#1|)) (-15 -3210 ((-887 |#2|) |#1|)) (-15 -3210 ((-1075) |#1|)) (-15 -3870 (|#1| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 -3962 (|#1| |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -2589 (|#2| |#2| |#1|)) (-15 -1267 (|#1| |#1| |#1|)) (-15 -1565 (|#1| |#1| |#1|)) (-15 -1267 (|#1| |#1| |#2|)) (-15 -1565 (|#1| |#1| |#2|)) (-15 -2204 (|#1| |#1|)) (-15 -1392 (|#1| |#1|)) (-15 -3210 (|#1| (-887 |#2|))) (-15 -1572 (|#1| (-887 |#2|))) (-15 -3077 ((-3 |#1| "failed") (-887 |#2|))) (-15 -3210 (|#1| (-887 (-525)))) (-15 -1572 (|#1| (-887 (-525)))) (-15 -3077 ((-3 |#1| "failed") (-887 (-525)))) (-15 -3210 (|#1| (-887 (-385 (-525))))) (-15 -1572 (|#1| (-887 (-385 (-525))))) (-15 -3077 ((-3 |#1| "failed") (-887 (-385 (-525))))) (-15 -2423 (|#1| |#1| |#1|)) (-15 -3872 (|#1| |#1| |#1|)) (-15 -2117 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3047 (-713))) |#1| |#1|)) (-15 -2413 (|#1| |#1| |#1|)) (-15 -3696 ((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|)) (-15 -2420 ((-2 (|:| -3244 |#1|) (|:| |gap| (-713)) (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1| |#4|)) (-15 -2420 ((-2 (|:| -3244 |#1|) (|:| |gap| (-713)) (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|)) (-15 -4171 ((-2 (|:| -3244 |#1|) (|:| |gap| (-713)) (|:| -1607 |#1|)) |#1| |#1| |#4|)) (-15 -4171 ((-2 (|:| -3244 |#1|) (|:| |gap| (-713)) (|:| -1607 |#1|)) |#1| |#1|)) (-15 -3259 (|#1| |#1| |#1| |#4|)) (-15 -3614 (|#1| |#1| |#1| |#4|)) (-15 -3259 (|#1| |#1| |#1|)) (-15 -3614 (|#1| |#1| |#1|)) (-15 -1296 (|#1| |#1| |#1| |#4|)) (-15 -1995 (|#1| |#1| |#1| |#4|)) (-15 -1296 (|#1| |#1| |#1|)) (-15 -1995 (|#1| |#1| |#1|)) (-15 -2633 ((-108) |#1| (-592 |#1|))) (-15 -2633 ((-108) |#1| |#1|)) (-15 -2686 ((-108) |#1| (-592 |#1|))) (-15 -2686 ((-108) |#1| |#1|)) (-15 -2696 ((-108) |#1| (-592 |#1|))) (-15 -2696 ((-108) |#1| |#1|)) (-15 -1961 ((-108) |#1| (-592 |#1|))) (-15 -1961 ((-108) |#1| |#1|)) (-15 -1289 ((-108) |#1| |#1|)) (-15 -2338 ((-108) |#1| |#1|)) (-15 -3439 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2524 ((-592 |#1|) |#1|)) (-15 -1422 ((-592 |#1|) |#1|)) (-15 -3600 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -3543 ((-108) |#1|)) (-15 -3892 ((-108) |#1|)) (-15 -3063 (|#1| |#1| |#4|)) (-15 -3043 (|#1| |#1| |#4|)) (-15 -2537 (|#1| |#1|)) (-15 -3001 ((-592 |#1|) |#1|)) (-15 -2650 (|#1| |#1|)) (-15 -2798 (|#1| |#1|)) (-15 -2451 (|#1| |#1|)) (-15 -2295 (|#1| |#1|)) (-15 -1216 ((-713) |#1|)) (-15 -3153 (|#4| |#1|)) (-15 -3210 ((-501) |#1|)) (-15 -3210 ((-827 (-525)) |#1|)) (-15 -3210 ((-827 (-357)) |#1|)) (-15 -1572 (|#4| |#1|)) (-15 -3077 ((-3 |#4| "failed") |#1|)) (-15 -1217 (|#1| |#4|)) (-15 -3043 (|#2| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -1572 ((-525) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1217 (|#1| |#2|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -1217 (|#1| (-525))) (-15 -1217 ((-798) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2897 (((-592 |#3|) $) 110)) (-2744 (((-1088 $) $ |#3|) 125) (((-1088 |#1|) $) 124)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-4218 (($ $) 88 (|has| |#1| (-517)))) (-3171 (((-108) $) 90 (|has| |#1| (-517)))) (-3212 (((-713) $) 112) (((-713) $ (-592 |#3|)) 111)) (-2798 (($ $) 271)) (-1289 (((-108) $ $) 257)) (-1578 (((-3 $ "failed") $ $) 19)) (-4001 (($ $ $) 216 (|has| |#1| (-517)))) (-3496 (((-592 $) $ $) 211 (|has| |#1| (-517)))) (-1448 (((-396 (-1088 $)) (-1088 $)) 100 (|has| |#1| (-844)))) (-1286 (($ $) 98 (|has| |#1| (-429)))) (-2669 (((-396 $) $) 97 (|has| |#1| (-429)))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 103 (|has| |#1| (-844)))) (-2169 (($) 17 T CONST)) (-3077 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-968 (-525)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-887 (-385 (-525)))) 231 (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1092))))) (((-3 $ "failed") (-887 (-525))) 228 (-3254 (-12 (-1850 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1092)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1092)))))) (((-3 $ "failed") (-887 |#1|)) 225 (-3254 (-12 (-1850 (|has| |#1| (-37 (-385 (-525))))) (-1850 (|has| |#1| (-37 (-525)))) (|has| |#3| (-567 (-1092)))) (-12 (-1850 (|has| |#1| (-510))) (-1850 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1092)))) (-12 (-1850 (|has| |#1| (-925 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1092))))))) (-1572 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-968 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-968 (-525)))) ((|#3| $) 135) (($ (-887 (-385 (-525)))) 230 (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1092))))) (($ (-887 (-525))) 227 (-3254 (-12 (-1850 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1092)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1092)))))) (($ (-887 |#1|)) 224 (-3254 (-12 (-1850 (|has| |#1| (-37 (-385 (-525))))) (-1850 (|has| |#1| (-37 (-525)))) (|has| |#3| (-567 (-1092)))) (-12 (-1850 (|has| |#1| (-510))) (-1850 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1092)))) (-12 (-1850 (|has| |#1| (-925 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1092))))))) (-3377 (($ $ $ |#3|) 108 (|has| |#1| (-160))) (($ $ $) 212 (|has| |#1| (-517)))) (-3063 (($ $) 154) (($ $ |#3|) 266)) (-1994 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-1961 (((-108) $ $) 256) (((-108) $ (-592 $)) 255)) (-3457 (((-3 $ "failed") $) 34)) (-3543 (((-108) $) 264)) (-3696 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 236)) (-2046 (($ $) 205 (|has| |#1| (-429)))) (-1576 (($ $) 176 (|has| |#1| (-429))) (($ $ |#3|) 105 (|has| |#1| (-429)))) (-3052 (((-592 $) $) 109)) (-3673 (((-108) $) 96 (|has| |#1| (-844)))) (-2204 (($ $) 221 (|has| |#1| (-517)))) (-1392 (($ $) 222 (|has| |#1| (-517)))) (-1995 (($ $ $) 248) (($ $ $ |#3|) 246)) (-1296 (($ $ $) 247) (($ $ $ |#3|) 245)) (-2188 (($ $ |#1| |#2| $) 172)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 84 (-12 (|has| |#3| (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 83 (-12 (|has| |#3| (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-1396 (((-108) $) 31)) (-3399 (((-713) $) 169)) (-2633 (((-108) $ $) 250) (((-108) $ (-592 $)) 249)) (-2358 (($ $ $ $ $) 207 (|has| |#1| (-517)))) (-3153 ((|#3| $) 275)) (-2887 (($ (-1088 |#1|) |#3|) 117) (($ (-1088 $) |#3|) 116)) (-4144 (((-592 $) $) 126)) (-1212 (((-108) $) 152)) (-2876 (($ |#1| |#2|) 153) (($ $ |#3| (-713)) 119) (($ $ (-592 |#3|) (-592 (-713))) 118)) (-2413 (($ $ $) 235)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ |#3|) 120)) (-3892 (((-108) $) 265)) (-2870 ((|#2| $) 170) (((-713) $ |#3|) 122) (((-592 (-713)) $ (-592 |#3|)) 121)) (-2638 (($ $ $) 79 (|has| |#1| (-789)))) (-1216 (((-713) $) 274)) (-3662 (($ $ $) 78 (|has| |#1| (-789)))) (-2172 (($ (-1 |#2| |#2|) $) 171)) (-3165 (($ (-1 |#1| |#1|) $) 151)) (-2431 (((-3 |#3| "failed") $) 123)) (-3870 (($ $) 202 (|has| |#1| (-429)))) (-2262 (($ $) 203 (|has| |#1| (-429)))) (-2524 (((-592 $) $) 260)) (-1765 (($ $) 263)) (-3962 (($ $) 204 (|has| |#1| (-429)))) (-1422 (((-592 $) $) 261)) (-3600 (($ $) 262)) (-3031 (($ $) 149)) (-3043 ((|#1| $) 148) (($ $ |#3|) 267)) (-2556 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-2117 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3047 (-713))) $ $) 234)) (-2420 (((-2 (|:| -3244 $) (|:| |gap| (-713)) (|:| -2829 $) (|:| -1607 $)) $ $) 238) (((-2 (|:| -3244 $) (|:| |gap| (-713)) (|:| -2829 $) (|:| -1607 $)) $ $ |#3|) 237)) (-4171 (((-2 (|:| -3244 $) (|:| |gap| (-713)) (|:| -1607 $)) $ $) 240) (((-2 (|:| -3244 $) (|:| |gap| (-713)) (|:| -1607 $)) $ $ |#3|) 239)) (-3614 (($ $ $) 244) (($ $ $ |#3|) 242)) (-3259 (($ $ $) 243) (($ $ $ |#3|) 241)) (-2619 (((-1075) $) 9)) (-2370 (($ $ $) 210 (|has| |#1| (-517)))) (-3001 (((-592 $) $) 269)) (-1334 (((-3 (-592 $) "failed") $) 114)) (-2001 (((-3 (-592 $) "failed") $) 115)) (-2121 (((-3 (-2 (|:| |var| |#3|) (|:| -4193 (-713))) "failed") $) 113)) (-2686 (((-108) $ $) 252) (((-108) $ (-592 $)) 251)) (-2423 (($ $ $) 232)) (-2295 (($ $) 273)) (-2338 (((-108) $ $) 258)) (-2696 (((-108) $ $) 254) (((-108) $ (-592 $)) 253)) (-3872 (($ $ $) 233)) (-2451 (($ $) 272)) (-2093 (((-1039) $) 10)) (-2738 (((-2 (|:| -2589 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-517)))) (-2835 (((-2 (|:| -2589 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-517)))) (-3007 (((-108) $) 166)) (-3019 ((|#1| $) 167)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 95 (|has| |#1| (-429)))) (-2589 ((|#1| |#1| $) 206 (|has| |#1| (-429))) (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-3076 (((-396 (-1088 $)) (-1088 $)) 102 (|has| |#1| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) 101 (|has| |#1| (-844)))) (-2770 (((-396 $) $) 99 (|has| |#1| (-844)))) (-3926 (((-2 (|:| -2589 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-517)))) (-1715 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-1267 (($ $ |#1|) 219 (|has| |#1| (-517))) (($ $ $) 217 (|has| |#1| (-517)))) (-1565 (($ $ |#1|) 220 (|has| |#1| (-517))) (($ $ $) 218 (|has| |#1| (-517)))) (-2457 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-592 |#3|) (-592 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-592 |#3|) (-592 $)) 138)) (-1975 (($ $ |#3|) 107 (|has| |#1| (-160)))) (-3376 (($ $ |#3|) 42) (($ $ (-592 |#3|)) 41) (($ $ |#3| (-713)) 40) (($ $ (-592 |#3|) (-592 (-713))) 39)) (-2343 ((|#2| $) 150) (((-713) $ |#3|) 130) (((-592 (-713)) $ (-592 |#3|)) 129)) (-2650 (($ $) 270)) (-2537 (($ $) 268)) (-3210 (((-827 (-357)) $) 82 (-12 (|has| |#3| (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) 81 (-12 (|has| |#3| (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) 80 (-12 (|has| |#3| (-567 (-501))) (|has| |#1| (-567 (-501))))) (($ (-887 (-385 (-525)))) 229 (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1092))))) (($ (-887 (-525))) 226 (-3254 (-12 (-1850 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1092)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1092)))))) (($ (-887 |#1|)) 223 (|has| |#3| (-567 (-1092)))) (((-1075) $) 201 (-12 (|has| |#1| (-968 (-525))) (|has| |#3| (-567 (-1092))))) (((-887 |#1|) $) 200 (|has| |#3| (-567 (-1092))))) (-3658 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ |#3|) 106 (|has| |#1| (-429)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) 104 (-3762 (|has| $ (-136)) (|has| |#1| (-844))))) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-887 |#1|) $) 199 (|has| |#3| (-567 (-1092)))) (($ (-385 (-525))) 72 (-3254 (|has| |#1| (-968 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))))) (($ $) 85 (|has| |#1| (-517)))) (-1684 (((-592 |#1|) $) 168)) (-1568 ((|#1| $ |#2|) 155) (($ $ |#3| (-713)) 128) (($ $ (-592 |#3|) (-592 (-713))) 127)) (-3637 (((-3 $ "failed") $) 73 (-3254 (-3762 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-3917 (((-713)) 29)) (-3716 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-3325 (((-108) $ $) 89 (|has| |#1| (-517)))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3439 (((-3 (-108) "failed") $ $) 259)) (-3359 (($) 30 T CONST)) (-3373 (($ $ $ $ (-713)) 208 (|has| |#1| (-517)))) (-3134 (($ $ $ (-713)) 209 (|has| |#1| (-517)))) (-2022 (($ $ |#3|) 38) (($ $ (-592 |#3|)) 37) (($ $ |#3| (-713)) 36) (($ $ (-592 |#3|) (-592 (-713))) 35)) (-4011 (((-108) $ $) 76 (|has| |#1| (-789)))) (-3987 (((-108) $ $) 75 (|has| |#1| (-789)))) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 77 (|has| |#1| (-789)))) (-3978 (((-108) $ $) 74 (|has| |#1| (-789)))) (-4075 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) |#2| $) 23)) (-1613 ((|#1| $) 10)) (-2971 (((-525) |#2| $) 88)) (-3317 (((-3 $ "failed") |#2| (-856)) 57)) (-3446 ((|#1| $) 28)) (-1581 ((|#1| |#2| $ |#1|) 37)) (-2109 (($ $) 25)) (-3300 (((-3 |#2| "failed") |#2| $) 87)) (-1889 (((-108) |#2| $) NIL)) (-4079 (((-108) |#2| $) NIL)) (-3019 (((-108) |#2| $) 24)) (-3345 ((|#1| $) 89)) (-3436 ((|#1| $) 27)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2013 ((|#2| $) 79)) (-4100 (((-798) $) 70)) (-1485 ((|#1| |#2| $ |#1|) 38)) (-3213 (((-592 $) |#2|) 59)) (-2775 (((-108) $ $) 74)))
+(((-987 |#1| |#2|) (-13 (-993 |#1| |#2|) (-10 -8 (-15 -3436 (|#1| $)) (-15 -3446 (|#1| $)) (-15 -1613 (|#1| $)) (-15 -3345 (|#1| $)) (-15 -2109 ($ $)) (-15 -3019 ((-108) |#2| $)) (-15 -1581 (|#1| |#2| $ |#1|)))) (-13 (-787) (-341)) (-1150 |#1|)) (T -987))
+((-1581 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3)) (-4 *3 (-1150 *2)))) (-3436 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3)) (-4 *3 (-1150 *2)))) (-3446 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3)) (-4 *3 (-1150 *2)))) (-1613 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3)) (-4 *3 (-1150 *2)))) (-3345 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3)) (-4 *3 (-1150 *2)))) (-2109 (*1 *1 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3)) (-4 *3 (-1150 *2)))) (-3019 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-787) (-341))) (-5 *2 (-108)) (-5 *1 (-987 *4 *3)) (-4 *3 (-1150 *4)))))
+(-13 (-993 |#1| |#2|) (-10 -8 (-15 -3436 (|#1| $)) (-15 -3446 (|#1| $)) (-15 -1613 (|#1| $)) (-15 -3345 (|#1| $)) (-15 -2109 ($ $)) (-15 -3019 ((-108) |#2| $)) (-15 -1581 (|#1| |#2| $ |#1|))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3410 (($ $ $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-3004 (($ $ $ $) NIL)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-1507 (((-108) $ $) NIL)) (-2971 (((-525) $) NIL)) (-3164 (($ $ $) NIL)) (-2475 (($) NIL T CONST)) (-3664 (($ (-1092)) 10) (($ (-525)) 7)) (-1934 (((-3 (-525) "failed") $) NIL)) (-4105 (((-525) $) NIL)) (-1356 (($ $ $) NIL)) (-3090 (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3306 (((-3 (-385 (-525)) "failed") $) NIL)) (-1417 (((-108) $) NIL)) (-1367 (((-385 (-525)) $) NIL)) (-1903 (($) NIL) (($ $) NIL)) (-1332 (($ $ $) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-2209 (($ $ $ $) NIL)) (-1453 (($ $ $) NIL)) (-1889 (((-108) $) NIL)) (-1922 (($ $ $) NIL)) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL)) (-2278 (((-108) $) NIL)) (-3028 (((-108) $) NIL)) (-2878 (((-3 $ "failed") $) NIL)) (-4079 (((-108) $) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3455 (($ $ $ $) NIL)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-2845 (($ $) NIL)) (-4128 (($ $) NIL)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-2432 (($ $ $) NIL)) (-2948 (($) NIL T CONST)) (-3280 (($ $) NIL)) (-3993 (((-1039) $) NIL) (($ $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1606 (($ $) NIL)) (-4201 (((-396 $) $) NIL)) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3864 (((-108) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-2702 (($ $ (-713)) NIL) (($ $) NIL)) (-4223 (($ $) NIL)) (-2503 (($ $) NIL)) (-2069 (((-525) $) 16) (((-501) $) NIL) (((-827 (-525)) $) NIL) (((-357) $) NIL) (((-205) $) NIL) (($ (-1092)) 9)) (-4100 (((-798) $) 20) (($ (-525)) 6) (($ $) NIL) (($ (-525)) 6)) (-2448 (((-713)) NIL)) (-4214 (((-108) $ $) NIL)) (-1494 (($ $ $) NIL)) (-3771 (($) NIL)) (-1571 (((-108) $ $) NIL)) (-3695 (($ $ $ $) NIL)) (-2380 (($ $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $ (-713)) NIL) (($ $) NIL)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) NIL)) (-2871 (($ $) 19) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL)))
+(((-988) (-13 (-510) (-10 -8 (-6 -4246) (-6 -4251) (-6 -4247) (-15 -2069 ($ (-1092))) (-15 -3664 ($ (-1092))) (-15 -3664 ($ (-525)))))) (T -988))
+((-2069 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-988)))) (-3664 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-988)))) (-3664 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-988)))))
+(-13 (-510) (-10 -8 (-6 -4246) (-6 -4251) (-6 -4247) (-15 -2069 ($ (-1092))) (-15 -3664 ($ (-1092))) (-15 -3664 ($ (-525)))))
+((-4087 (((-108) $ $) NIL (-2067 (|has| (-51) (-1020)) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020))))) (-3311 (($) NIL) (($ (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) NIL)) (-3289 (((-1179) $ (-1092) (-1092)) NIL (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) NIL)) (-2417 (($) 9)) (-1233 (((-51) $ (-1092) (-51)) NIL)) (-2176 (($ $) 30)) (-3851 (($ $) 28)) (-4045 (($ $) 27)) (-1506 (($ $) 29)) (-1734 (($ $) 32)) (-2658 (($ $) 33)) (-3013 (($ $) 26)) (-4168 (($ $) 31)) (-3050 (($ (-1 (-108) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) 25 (|has| $ (-6 -4259)))) (-1515 (((-3 (-51) "failed") (-1092) $) 40)) (-2475 (($) NIL T CONST)) (-3412 (($) 7)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020))))) (-4205 (($ (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) $) 50 (|has| $ (-6 -4259))) (($ (-1 (-108) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259))) (((-3 (-51) "failed") (-1092) $) NIL)) (-2698 (($ (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020)))) (($ (-1 (-108) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259)))) (-3504 (((-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $ (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020)))) (((-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $ (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) NIL (|has| $ (-6 -4259))) (((-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259)))) (-2464 (((-3 (-1075) "failed") $ (-1075) (-525)) 59)) (-3081 (((-51) $ (-1092) (-51)) NIL (|has| $ (-6 -4260)))) (-3017 (((-51) $ (-1092)) NIL)) (-2175 (((-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259))) (((-592 (-51)) $) NIL (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-1092) $) NIL (|has| (-1092) (-789)))) (-2617 (((-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) 35 (|has| $ (-6 -4259))) (((-592 (-51)) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-51) (-1020))))) (-2231 (((-1092) $) NIL (|has| (-1092) (-789)))) (-3069 (($ (-1 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4260))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (-2067 (|has| (-51) (-1020)) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020))))) (-1398 (((-592 (-1092)) $) NIL)) (-3770 (((-108) (-1092) $) NIL)) (-3577 (((-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) $) NIL)) (-3246 (($ (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) $) 43)) (-3177 (((-592 (-1092)) $) NIL)) (-3461 (((-108) (-1092) $) NIL)) (-3993 (((-1039) $) NIL (-2067 (|has| (-51) (-1020)) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020))))) (-1663 (((-357) $ (-1092)) 49)) (-3831 (((-592 (-1075)) $ (-1075)) 60)) (-1647 (((-51) $) NIL (|has| (-1092) (-789)))) (-4202 (((-3 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) "failed") (-1 (-108) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL)) (-3453 (($ $ (-51)) NIL (|has| $ (-6 -4260)))) (-2724 (((-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) $) NIL)) (-1518 (((-108) (-1 (-108) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))))) NIL (-12 (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-288 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020)))) (($ $ (-273 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) NIL (-12 (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-288 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020)))) (($ $ (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) NIL (-12 (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-288 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020)))) (($ $ (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) NIL (-12 (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-288 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020)))) (($ $ (-592 (-51)) (-592 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-273 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-592 (-273 (-51)))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-51) (-1020))))) (-1717 (((-592 (-51)) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 (((-51) $ (-1092)) NIL) (((-51) $ (-1092) (-51)) NIL)) (-2637 (($) NIL) (($ (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) NIL)) (-3566 (($ $ (-1092)) 51)) (-4002 (((-713) (-1 (-108) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259))) (((-713) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020)))) (((-713) (-51) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-51) (-1020)))) (((-713) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-567 (-501))))) (-4114 (($ (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) 37)) (-2035 (($ $ $) 38)) (-4100 (((-798) $) NIL (-2067 (|has| (-51) (-566 (-798))) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-566 (-798)))))) (-2369 (($ $ (-1092) (-357)) 47)) (-1680 (($ $ (-1092) (-357)) 48)) (-3905 (($ (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))))) NIL)) (-2706 (((-108) (-1 (-108) (-2 (|:| -1556 (-1092)) (|:| -3448 (-51)))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (-2067 (|has| (-51) (-1020)) (|has| (-2 (|:| -1556 (-1092)) (|:| -3448 (-51))) (-1020))))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-989) (-13 (-1105 (-1092) (-51)) (-10 -8 (-15 -2035 ($ $ $)) (-15 -3412 ($)) (-15 -3013 ($ $)) (-15 -4045 ($ $)) (-15 -3851 ($ $)) (-15 -1506 ($ $)) (-15 -4168 ($ $)) (-15 -2176 ($ $)) (-15 -1734 ($ $)) (-15 -2658 ($ $)) (-15 -2369 ($ $ (-1092) (-357))) (-15 -1680 ($ $ (-1092) (-357))) (-15 -1663 ((-357) $ (-1092))) (-15 -3831 ((-592 (-1075)) $ (-1075))) (-15 -3566 ($ $ (-1092))) (-15 -2417 ($)) (-15 -2464 ((-3 (-1075) "failed") $ (-1075) (-525))) (-6 -4259)))) (T -989))
+((-2035 (*1 *1 *1 *1) (-5 *1 (-989))) (-3412 (*1 *1) (-5 *1 (-989))) (-3013 (*1 *1 *1) (-5 *1 (-989))) (-4045 (*1 *1 *1) (-5 *1 (-989))) (-3851 (*1 *1 *1) (-5 *1 (-989))) (-1506 (*1 *1 *1) (-5 *1 (-989))) (-4168 (*1 *1 *1) (-5 *1 (-989))) (-2176 (*1 *1 *1) (-5 *1 (-989))) (-1734 (*1 *1 *1) (-5 *1 (-989))) (-2658 (*1 *1 *1) (-5 *1 (-989))) (-2369 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-357)) (-5 *1 (-989)))) (-1680 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-357)) (-5 *1 (-989)))) (-1663 (*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-357)) (-5 *1 (-989)))) (-3831 (*1 *2 *1 *3) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-989)) (-5 *3 (-1075)))) (-3566 (*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-989)))) (-2417 (*1 *1) (-5 *1 (-989))) (-2464 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1075)) (-5 *3 (-525)) (-5 *1 (-989)))))
+(-13 (-1105 (-1092) (-51)) (-10 -8 (-15 -2035 ($ $ $)) (-15 -3412 ($)) (-15 -3013 ($ $)) (-15 -4045 ($ $)) (-15 -3851 ($ $)) (-15 -1506 ($ $)) (-15 -4168 ($ $)) (-15 -2176 ($ $)) (-15 -1734 ($ $)) (-15 -2658 ($ $)) (-15 -2369 ($ $ (-1092) (-357))) (-15 -1680 ($ $ (-1092) (-357))) (-15 -1663 ((-357) $ (-1092))) (-15 -3831 ((-592 (-1075)) $ (-1075))) (-15 -3566 ($ $ (-1092))) (-15 -2417 ($)) (-15 -2464 ((-3 (-1075) "failed") $ (-1075) (-525))) (-6 -4259)))
+((-3979 (($ $) 45)) (-1277 (((-108) $ $) 74)) (-1934 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-887 (-385 (-525)))) 227) (((-3 $ "failed") (-887 (-525))) 226) (((-3 $ "failed") (-887 |#2|)) 229)) (-4105 ((|#2| $) NIL) (((-385 (-525)) $) NIL) (((-525) $) NIL) ((|#4| $) NIL) (($ (-887 (-385 (-525)))) 215) (($ (-887 (-525))) 211) (($ (-887 |#2|)) 231)) (-1451 (($ $) NIL) (($ $ |#4|) 43)) (-3964 (((-108) $ $) 112) (((-108) $ (-592 $)) 113)) (-2918 (((-108) $) 56)) (-3830 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 107)) (-3574 (($ $) 138)) (-1608 (($ $) 134)) (-3699 (($ $) 133)) (-3101 (($ $ $) 79) (($ $ $ |#4|) 84)) (-1374 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3221 (((-108) $ $) 121) (((-108) $ (-592 $)) 122)) (-2577 ((|#4| $) 33)) (-2983 (($ $ $) 110)) (-2171 (((-108) $) 55)) (-1827 (((-713) $) 35)) (-3115 (($ $) 152)) (-3982 (($ $) 149)) (-1662 (((-592 $) $) 68)) (-2672 (($ $) 57)) (-1700 (($ $) 145)) (-3476 (((-592 $) $) 65)) (-2282 (($ $) 59)) (-1430 ((|#2| $) NIL) (($ $ |#4|) 38)) (-1949 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2855 (-713))) $ $) 111)) (-3043 (((-2 (|:| -2681 $) (|:| |gap| (-713)) (|:| -1416 $) (|:| -3681 $)) $ $) 108) (((-2 (|:| -2681 $) (|:| |gap| (-713)) (|:| -1416 $) (|:| -3681 $)) $ $ |#4|) 109)) (-3120 (((-2 (|:| -2681 $) (|:| |gap| (-713)) (|:| -3681 $)) $ $) 104) (((-2 (|:| -2681 $) (|:| |gap| (-713)) (|:| -3681 $)) $ $ |#4|) 105)) (-2442 (($ $ $) 89) (($ $ $ |#4|) 95)) (-4104 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3654 (((-592 $) $) 51)) (-3732 (((-108) $ $) 118) (((-108) $ (-592 $)) 119)) (-3076 (($ $ $) 103)) (-2948 (($ $) 37)) (-3472 (((-108) $ $) 72)) (-2635 (((-108) $ $) 114) (((-108) $ (-592 $)) 116)) (-1998 (($ $ $) 101)) (-2205 (($ $) 40)) (-2772 ((|#2| |#2| $) 142) (($ (-592 $)) NIL) (($ $ $) NIL)) (-3887 (($ $ |#2|) NIL) (($ $ $) 131)) (-3104 (($ $ |#2|) 126) (($ $ $) 129)) (-3389 (($ $) 48)) (-1776 (($ $) 52)) (-2069 (((-827 (-357)) $) NIL) (((-827 (-525)) $) NIL) (((-501) $) NIL) (($ (-887 (-385 (-525)))) 217) (($ (-887 (-525))) 213) (($ (-887 |#2|)) 228) (((-1075) $) 250) (((-887 |#2|) $) 162)) (-4100 (((-798) $) 30) (($ (-525)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-887 |#2|) $) 163) (($ (-385 (-525))) NIL) (($ $) NIL)) (-3126 (((-3 (-108) "failed") $ $) 71)))
+(((-990 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4100 (|#1| |#1|)) (-15 -2772 (|#1| |#1| |#1|)) (-15 -2772 (|#1| (-592 |#1|))) (-15 -4100 (|#1| (-385 (-525)))) (-15 -4100 ((-887 |#2|) |#1|)) (-15 -2069 ((-887 |#2|) |#1|)) (-15 -2069 ((-1075) |#1|)) (-15 -3115 (|#1| |#1|)) (-15 -3982 (|#1| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -3574 (|#1| |#1|)) (-15 -2772 (|#2| |#2| |#1|)) (-15 -3887 (|#1| |#1| |#1|)) (-15 -3104 (|#1| |#1| |#1|)) (-15 -3887 (|#1| |#1| |#2|)) (-15 -3104 (|#1| |#1| |#2|)) (-15 -1608 (|#1| |#1|)) (-15 -3699 (|#1| |#1|)) (-15 -2069 (|#1| (-887 |#2|))) (-15 -4105 (|#1| (-887 |#2|))) (-15 -1934 ((-3 |#1| "failed") (-887 |#2|))) (-15 -2069 (|#1| (-887 (-525)))) (-15 -4105 (|#1| (-887 (-525)))) (-15 -1934 ((-3 |#1| "failed") (-887 (-525)))) (-15 -2069 (|#1| (-887 (-385 (-525))))) (-15 -4105 (|#1| (-887 (-385 (-525))))) (-15 -1934 ((-3 |#1| "failed") (-887 (-385 (-525))))) (-15 -3076 (|#1| |#1| |#1|)) (-15 -1998 (|#1| |#1| |#1|)) (-15 -1949 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2855 (-713))) |#1| |#1|)) (-15 -2983 (|#1| |#1| |#1|)) (-15 -3830 ((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|)) (-15 -3043 ((-2 (|:| -2681 |#1|) (|:| |gap| (-713)) (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1| |#4|)) (-15 -3043 ((-2 (|:| -2681 |#1|) (|:| |gap| (-713)) (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|)) (-15 -3120 ((-2 (|:| -2681 |#1|) (|:| |gap| (-713)) (|:| -3681 |#1|)) |#1| |#1| |#4|)) (-15 -3120 ((-2 (|:| -2681 |#1|) (|:| |gap| (-713)) (|:| -3681 |#1|)) |#1| |#1|)) (-15 -4104 (|#1| |#1| |#1| |#4|)) (-15 -2442 (|#1| |#1| |#1| |#4|)) (-15 -4104 (|#1| |#1| |#1|)) (-15 -2442 (|#1| |#1| |#1|)) (-15 -1374 (|#1| |#1| |#1| |#4|)) (-15 -3101 (|#1| |#1| |#1| |#4|)) (-15 -1374 (|#1| |#1| |#1|)) (-15 -3101 (|#1| |#1| |#1|)) (-15 -3221 ((-108) |#1| (-592 |#1|))) (-15 -3221 ((-108) |#1| |#1|)) (-15 -3732 ((-108) |#1| (-592 |#1|))) (-15 -3732 ((-108) |#1| |#1|)) (-15 -2635 ((-108) |#1| (-592 |#1|))) (-15 -2635 ((-108) |#1| |#1|)) (-15 -3964 ((-108) |#1| (-592 |#1|))) (-15 -3964 ((-108) |#1| |#1|)) (-15 -1277 ((-108) |#1| |#1|)) (-15 -3472 ((-108) |#1| |#1|)) (-15 -3126 ((-3 (-108) "failed") |#1| |#1|)) (-15 -1662 ((-592 |#1|) |#1|)) (-15 -3476 ((-592 |#1|) |#1|)) (-15 -2282 (|#1| |#1|)) (-15 -2672 (|#1| |#1|)) (-15 -2918 ((-108) |#1|)) (-15 -2171 ((-108) |#1|)) (-15 -1451 (|#1| |#1| |#4|)) (-15 -1430 (|#1| |#1| |#4|)) (-15 -1776 (|#1| |#1|)) (-15 -3654 ((-592 |#1|) |#1|)) (-15 -3389 (|#1| |#1|)) (-15 -3979 (|#1| |#1|)) (-15 -2205 (|#1| |#1|)) (-15 -2948 (|#1| |#1|)) (-15 -1827 ((-713) |#1|)) (-15 -2577 (|#4| |#1|)) (-15 -2069 ((-501) |#1|)) (-15 -2069 ((-827 (-525)) |#1|)) (-15 -2069 ((-827 (-357)) |#1|)) (-15 -4105 (|#4| |#1|)) (-15 -1934 ((-3 |#4| "failed") |#1|)) (-15 -4100 (|#1| |#4|)) (-15 -1430 (|#2| |#1|)) (-15 -1451 (|#1| |#1|)) (-15 -4105 ((-525) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4100 (|#1| |#2|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -4105 (|#2| |#1|)) (-15 -4100 (|#1| (-525))) (-15 -4100 ((-798) |#1|))) (-991 |#2| |#3| |#4|) (-977) (-735) (-789)) (T -990))
+NIL
+(-10 -8 (-15 -4100 (|#1| |#1|)) (-15 -2772 (|#1| |#1| |#1|)) (-15 -2772 (|#1| (-592 |#1|))) (-15 -4100 (|#1| (-385 (-525)))) (-15 -4100 ((-887 |#2|) |#1|)) (-15 -2069 ((-887 |#2|) |#1|)) (-15 -2069 ((-1075) |#1|)) (-15 -3115 (|#1| |#1|)) (-15 -3982 (|#1| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -3574 (|#1| |#1|)) (-15 -2772 (|#2| |#2| |#1|)) (-15 -3887 (|#1| |#1| |#1|)) (-15 -3104 (|#1| |#1| |#1|)) (-15 -3887 (|#1| |#1| |#2|)) (-15 -3104 (|#1| |#1| |#2|)) (-15 -1608 (|#1| |#1|)) (-15 -3699 (|#1| |#1|)) (-15 -2069 (|#1| (-887 |#2|))) (-15 -4105 (|#1| (-887 |#2|))) (-15 -1934 ((-3 |#1| "failed") (-887 |#2|))) (-15 -2069 (|#1| (-887 (-525)))) (-15 -4105 (|#1| (-887 (-525)))) (-15 -1934 ((-3 |#1| "failed") (-887 (-525)))) (-15 -2069 (|#1| (-887 (-385 (-525))))) (-15 -4105 (|#1| (-887 (-385 (-525))))) (-15 -1934 ((-3 |#1| "failed") (-887 (-385 (-525))))) (-15 -3076 (|#1| |#1| |#1|)) (-15 -1998 (|#1| |#1| |#1|)) (-15 -1949 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2855 (-713))) |#1| |#1|)) (-15 -2983 (|#1| |#1| |#1|)) (-15 -3830 ((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|)) (-15 -3043 ((-2 (|:| -2681 |#1|) (|:| |gap| (-713)) (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1| |#4|)) (-15 -3043 ((-2 (|:| -2681 |#1|) (|:| |gap| (-713)) (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|)) (-15 -3120 ((-2 (|:| -2681 |#1|) (|:| |gap| (-713)) (|:| -3681 |#1|)) |#1| |#1| |#4|)) (-15 -3120 ((-2 (|:| -2681 |#1|) (|:| |gap| (-713)) (|:| -3681 |#1|)) |#1| |#1|)) (-15 -4104 (|#1| |#1| |#1| |#4|)) (-15 -2442 (|#1| |#1| |#1| |#4|)) (-15 -4104 (|#1| |#1| |#1|)) (-15 -2442 (|#1| |#1| |#1|)) (-15 -1374 (|#1| |#1| |#1| |#4|)) (-15 -3101 (|#1| |#1| |#1| |#4|)) (-15 -1374 (|#1| |#1| |#1|)) (-15 -3101 (|#1| |#1| |#1|)) (-15 -3221 ((-108) |#1| (-592 |#1|))) (-15 -3221 ((-108) |#1| |#1|)) (-15 -3732 ((-108) |#1| (-592 |#1|))) (-15 -3732 ((-108) |#1| |#1|)) (-15 -2635 ((-108) |#1| (-592 |#1|))) (-15 -2635 ((-108) |#1| |#1|)) (-15 -3964 ((-108) |#1| (-592 |#1|))) (-15 -3964 ((-108) |#1| |#1|)) (-15 -1277 ((-108) |#1| |#1|)) (-15 -3472 ((-108) |#1| |#1|)) (-15 -3126 ((-3 (-108) "failed") |#1| |#1|)) (-15 -1662 ((-592 |#1|) |#1|)) (-15 -3476 ((-592 |#1|) |#1|)) (-15 -2282 (|#1| |#1|)) (-15 -2672 (|#1| |#1|)) (-15 -2918 ((-108) |#1|)) (-15 -2171 ((-108) |#1|)) (-15 -1451 (|#1| |#1| |#4|)) (-15 -1430 (|#1| |#1| |#4|)) (-15 -1776 (|#1| |#1|)) (-15 -3654 ((-592 |#1|) |#1|)) (-15 -3389 (|#1| |#1|)) (-15 -3979 (|#1| |#1|)) (-15 -2205 (|#1| |#1|)) (-15 -2948 (|#1| |#1|)) (-15 -1827 ((-713) |#1|)) (-15 -2577 (|#4| |#1|)) (-15 -2069 ((-501) |#1|)) (-15 -2069 ((-827 (-525)) |#1|)) (-15 -2069 ((-827 (-357)) |#1|)) (-15 -4105 (|#4| |#1|)) (-15 -1934 ((-3 |#4| "failed") |#1|)) (-15 -4100 (|#1| |#4|)) (-15 -1430 (|#2| |#1|)) (-15 -1451 (|#1| |#1|)) (-15 -4105 ((-525) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4100 (|#1| |#2|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -4105 (|#2| |#1|)) (-15 -4100 (|#1| (-525))) (-15 -4100 ((-798) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-1296 (((-592 |#3|) $) 110)) (-4169 (((-1088 $) $ |#3|) 125) (((-1088 |#1|) $) 124)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-2433 (($ $) 88 (|has| |#1| (-517)))) (-1568 (((-108) $) 90 (|has| |#1| (-517)))) (-1928 (((-713) $) 112) (((-713) $ (-592 |#3|)) 111)) (-3979 (($ $) 271)) (-1277 (((-108) $ $) 257)) (-3222 (((-3 $ "failed") $ $) 19)) (-3882 (($ $ $) 216 (|has| |#1| (-517)))) (-3683 (((-592 $) $ $) 211 (|has| |#1| (-517)))) (-2426 (((-396 (-1088 $)) (-1088 $)) 100 (|has| |#1| (-844)))) (-4195 (($ $) 98 (|has| |#1| (-429)))) (-3586 (((-396 $) $) 97 (|has| |#1| (-429)))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 103 (|has| |#1| (-844)))) (-2475 (($) 17 T CONST)) (-1934 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-968 (-525)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-887 (-385 (-525)))) 231 (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1092))))) (((-3 $ "failed") (-887 (-525))) 228 (-2067 (-12 (-3272 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1092)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1092)))))) (((-3 $ "failed") (-887 |#1|)) 225 (-2067 (-12 (-3272 (|has| |#1| (-37 (-385 (-525))))) (-3272 (|has| |#1| (-37 (-525)))) (|has| |#3| (-567 (-1092)))) (-12 (-3272 (|has| |#1| (-510))) (-3272 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1092)))) (-12 (-3272 (|has| |#1| (-925 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1092))))))) (-4105 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-968 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-968 (-525)))) ((|#3| $) 135) (($ (-887 (-385 (-525)))) 230 (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1092))))) (($ (-887 (-525))) 227 (-2067 (-12 (-3272 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1092)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1092)))))) (($ (-887 |#1|)) 224 (-2067 (-12 (-3272 (|has| |#1| (-37 (-385 (-525))))) (-3272 (|has| |#1| (-37 (-525)))) (|has| |#3| (-567 (-1092)))) (-12 (-3272 (|has| |#1| (-510))) (-3272 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1092)))) (-12 (-3272 (|has| |#1| (-925 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1092))))))) (-3801 (($ $ $ |#3|) 108 (|has| |#1| (-160))) (($ $ $) 212 (|has| |#1| (-517)))) (-1451 (($ $) 154) (($ $ |#3|) 266)) (-3090 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-3964 (((-108) $ $) 256) (((-108) $ (-592 $)) 255)) (-3300 (((-3 $ "failed") $) 34)) (-2918 (((-108) $) 264)) (-3830 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 236)) (-3574 (($ $) 205 (|has| |#1| (-429)))) (-3201 (($ $) 176 (|has| |#1| (-429))) (($ $ |#3|) 105 (|has| |#1| (-429)))) (-1441 (((-592 $) $) 109)) (-1798 (((-108) $) 96 (|has| |#1| (-844)))) (-1608 (($ $) 221 (|has| |#1| (-517)))) (-3699 (($ $) 222 (|has| |#1| (-517)))) (-3101 (($ $ $) 248) (($ $ $ |#3|) 246)) (-1374 (($ $ $) 247) (($ $ $ |#3|) 245)) (-1457 (($ $ |#1| |#2| $) 172)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 84 (-12 (|has| |#3| (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 83 (-12 (|has| |#3| (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-2278 (((-108) $) 31)) (-4025 (((-713) $) 169)) (-3221 (((-108) $ $) 250) (((-108) $ (-592 $)) 249)) (-3673 (($ $ $ $ $) 207 (|has| |#1| (-517)))) (-2577 ((|#3| $) 275)) (-1284 (($ (-1088 |#1|) |#3|) 117) (($ (-1088 $) |#3|) 116)) (-2884 (((-592 $) $) 126)) (-2457 (((-108) $) 152)) (-1272 (($ |#1| |#2|) 153) (($ $ |#3| (-713)) 119) (($ $ (-592 |#3|) (-592 (-713))) 118)) (-2983 (($ $ $) 235)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ |#3|) 120)) (-2171 (((-108) $) 265)) (-1819 ((|#2| $) 170) (((-713) $ |#3|) 122) (((-592 (-713)) $ (-592 |#3|)) 121)) (-3033 (($ $ $) 79 (|has| |#1| (-789)))) (-1827 (((-713) $) 274)) (-1609 (($ $ $) 78 (|has| |#1| (-789)))) (-1314 (($ (-1 |#2| |#2|) $) 171)) (-2016 (($ (-1 |#1| |#1|) $) 151)) (-2018 (((-3 |#3| "failed") $) 123)) (-3115 (($ $) 202 (|has| |#1| (-429)))) (-3982 (($ $) 203 (|has| |#1| (-429)))) (-1662 (((-592 $) $) 260)) (-2672 (($ $) 263)) (-1700 (($ $) 204 (|has| |#1| (-429)))) (-3476 (((-592 $) $) 261)) (-2282 (($ $) 262)) (-1418 (($ $) 149)) (-1430 ((|#1| $) 148) (($ $ |#3|) 267)) (-2739 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-1949 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2855 (-713))) $ $) 234)) (-3043 (((-2 (|:| -2681 $) (|:| |gap| (-713)) (|:| -1416 $) (|:| -3681 $)) $ $) 238) (((-2 (|:| -2681 $) (|:| |gap| (-713)) (|:| -1416 $) (|:| -3681 $)) $ $ |#3|) 237)) (-3120 (((-2 (|:| -2681 $) (|:| |gap| (-713)) (|:| -3681 $)) $ $) 240) (((-2 (|:| -2681 $) (|:| |gap| (-713)) (|:| -3681 $)) $ $ |#3|) 239)) (-2442 (($ $ $) 244) (($ $ $ |#3|) 242)) (-4104 (($ $ $) 243) (($ $ $ |#3|) 241)) (-1289 (((-1075) $) 9)) (-2602 (($ $ $) 210 (|has| |#1| (-517)))) (-3654 (((-592 $) $) 269)) (-2977 (((-3 (-592 $) "failed") $) 114)) (-3165 (((-3 (-592 $) "failed") $) 115)) (-1986 (((-3 (-2 (|:| |var| |#3|) (|:| -2168 (-713))) "failed") $) 113)) (-3732 (((-108) $ $) 252) (((-108) $ (-592 $)) 251)) (-3076 (($ $ $) 232)) (-2948 (($ $) 273)) (-3472 (((-108) $ $) 258)) (-2635 (((-108) $ $) 254) (((-108) $ (-592 $)) 253)) (-1998 (($ $ $) 233)) (-2205 (($ $) 272)) (-3993 (((-1039) $) 10)) (-2980 (((-2 (|:| -2772 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-517)))) (-1479 (((-2 (|:| -2772 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-517)))) (-1399 (((-108) $) 166)) (-1407 ((|#1| $) 167)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 95 (|has| |#1| (-429)))) (-2772 ((|#1| |#1| $) 206 (|has| |#1| (-429))) (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-3089 (((-396 (-1088 $)) (-1088 $)) 102 (|has| |#1| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) 101 (|has| |#1| (-844)))) (-4201 (((-396 $) $) 99 (|has| |#1| (-844)))) (-2536 (((-2 (|:| -2772 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-517)))) (-1311 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-3887 (($ $ |#1|) 219 (|has| |#1| (-517))) (($ $ $) 217 (|has| |#1| (-517)))) (-3104 (($ $ |#1|) 220 (|has| |#1| (-517))) (($ $ $) 218 (|has| |#1| (-517)))) (-2825 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-592 |#3|) (-592 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-592 |#3|) (-592 $)) 138)) (-4115 (($ $ |#3|) 107 (|has| |#1| (-160)))) (-2702 (($ $ |#3|) 42) (($ $ (-592 |#3|)) 41) (($ $ |#3| (-713)) 40) (($ $ (-592 |#3|) (-592 (-713))) 39)) (-3529 ((|#2| $) 150) (((-713) $ |#3|) 130) (((-592 (-713)) $ (-592 |#3|)) 129)) (-3389 (($ $) 270)) (-1776 (($ $) 268)) (-2069 (((-827 (-357)) $) 82 (-12 (|has| |#3| (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) 81 (-12 (|has| |#3| (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) 80 (-12 (|has| |#3| (-567 (-501))) (|has| |#1| (-567 (-501))))) (($ (-887 (-385 (-525)))) 229 (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1092))))) (($ (-887 (-525))) 226 (-2067 (-12 (-3272 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1092)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1092)))))) (($ (-887 |#1|)) 223 (|has| |#3| (-567 (-1092)))) (((-1075) $) 201 (-12 (|has| |#1| (-968 (-525))) (|has| |#3| (-567 (-1092))))) (((-887 |#1|) $) 200 (|has| |#3| (-567 (-1092))))) (-1661 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ |#3|) 106 (|has| |#1| (-429)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) 104 (-3944 (|has| $ (-136)) (|has| |#1| (-844))))) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-887 |#1|) $) 199 (|has| |#3| (-567 (-1092)))) (($ (-385 (-525))) 72 (-2067 (|has| |#1| (-968 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))))) (($ $) 85 (|has| |#1| (-517)))) (-3137 (((-592 |#1|) $) 168)) (-3136 ((|#1| $ |#2|) 155) (($ $ |#3| (-713)) 128) (($ $ (-592 |#3|) (-592 (-713))) 127)) (-1463 (((-3 $ "failed") $) 73 (-2067 (-3944 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2448 (((-713)) 29)) (-4042 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-1571 (((-108) $ $) 89 (|has| |#1| (-517)))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3126 (((-3 (-108) "failed") $ $) 259)) (-3375 (($) 30 T CONST)) (-3778 (($ $ $ $ (-713)) 208 (|has| |#1| (-517)))) (-2434 (($ $ $ (-713)) 209 (|has| |#1| (-517)))) (-2401 (($ $ |#3|) 38) (($ $ (-592 |#3|)) 37) (($ $ |#3| (-713)) 36) (($ $ (-592 |#3|) (-592 (-713))) 35)) (-2830 (((-108) $ $) 76 (|has| |#1| (-789)))) (-2807 (((-108) $ $) 75 (|has| |#1| (-789)))) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 77 (|has| |#1| (-789)))) (-2795 (((-108) $ $) 74 (|has| |#1| (-789)))) (-2880 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
(((-991 |#1| |#2| |#3|) (-131) (-977) (-735) (-789)) (T -991))
-((-3153 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-1216 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-713)))) (-2295 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2451 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2798 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2650 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3001 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-991 *3 *4 *5)))) (-2537 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3043 (*1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-3063 (*1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-1765 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3600 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-1422 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-991 *3 *4 *5)))) (-2524 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-991 *3 *4 *5)))) (-3439 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2338 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-1289 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-1961 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-1961 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-2696 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2696 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-2686 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2686 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-2633 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2633 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-1995 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-1296 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-1995 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-1296 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-3614 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3259 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3614 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-3259 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-4171 (*1 *2 *1 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -3244 *1) (|:| |gap| (-713)) (|:| -1607 *1))) (-4 *1 (-991 *3 *4 *5)))) (-4171 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -3244 *1) (|:| |gap| (-713)) (|:| -1607 *1))) (-4 *1 (-991 *4 *5 *3)))) (-2420 (*1 *2 *1 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -3244 *1) (|:| |gap| (-713)) (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-991 *3 *4 *5)))) (-2420 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -3244 *1) (|:| |gap| (-713)) (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-991 *4 *5 *3)))) (-3696 (*1 *2 *1 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-991 *3 *4 *5)))) (-2413 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2117 (*1 *2 *1 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3047 (-713)))) (-4 *1 (-991 *3 *4 *5)))) (-3872 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2423 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3077 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-385 (-525)))) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-887 (-385 (-525)))) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))) (-3210 (*1 *1 *2) (-12 (-5 *2 (-887 (-385 (-525)))) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))) (-3077 (*1 *1 *2) (|partial| -3254 (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5)) (-12 (-1850 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5)) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))))) (-1572 (*1 *1 *2) (-3254 (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5)) (-12 (-1850 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5)) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))))) (-3210 (*1 *1 *2) (-3254 (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5)) (-12 (-1850 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5)) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))))) (-3077 (*1 *1 *2) (|partial| -3254 (-12 (-5 *2 (-887 *3)) (-12 (-1850 (-4 *3 (-37 (-385 (-525))))) (-1850 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 *3)) (-12 (-1850 (-4 *3 (-510))) (-1850 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 *3)) (-12 (-1850 (-4 *3 (-925 (-525)))) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))))) (-1572 (*1 *1 *2) (-3254 (-12 (-5 *2 (-887 *3)) (-12 (-1850 (-4 *3 (-37 (-385 (-525))))) (-1850 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 *3)) (-12 (-1850 (-4 *3 (-510))) (-1850 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 *3)) (-12 (-1850 (-4 *3 (-925 (-525)))) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))))) (-3210 (*1 *1 *2) (-12 (-5 *2 (-887 *3)) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *5 (-567 (-1092))) (-4 *4 (-735)) (-4 *5 (-789)))) (-1392 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-2204 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-1565 (*1 *1 *1 *2) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-1267 (*1 *1 *1 *2) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-1565 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-1267 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-4001 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3926 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2589 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-991 *3 *4 *5)))) (-2835 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2589 *1) (|:| |coef1| *1))) (-4 *1 (-991 *3 *4 *5)))) (-2738 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2589 *1) (|:| |coef2| *1))) (-4 *1 (-991 *3 *4 *5)))) (-3377 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3496 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-991 *3 *4 *5)))) (-2370 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3134 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517)))) (-3373 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517)))) (-2358 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-2589 (*1 *2 *2 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-2046 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-2262 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-3870 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))))
-(-13 (-884 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3153 (|t#3| $)) (-15 -1216 ((-713) $)) (-15 -2295 ($ $)) (-15 -2451 ($ $)) (-15 -2798 ($ $)) (-15 -2650 ($ $)) (-15 -3001 ((-592 $) $)) (-15 -2537 ($ $)) (-15 -3043 ($ $ |t#3|)) (-15 -3063 ($ $ |t#3|)) (-15 -3892 ((-108) $)) (-15 -3543 ((-108) $)) (-15 -1765 ($ $)) (-15 -3600 ($ $)) (-15 -1422 ((-592 $) $)) (-15 -2524 ((-592 $) $)) (-15 -3439 ((-3 (-108) "failed") $ $)) (-15 -2338 ((-108) $ $)) (-15 -1289 ((-108) $ $)) (-15 -1961 ((-108) $ $)) (-15 -1961 ((-108) $ (-592 $))) (-15 -2696 ((-108) $ $)) (-15 -2696 ((-108) $ (-592 $))) (-15 -2686 ((-108) $ $)) (-15 -2686 ((-108) $ (-592 $))) (-15 -2633 ((-108) $ $)) (-15 -2633 ((-108) $ (-592 $))) (-15 -1995 ($ $ $)) (-15 -1296 ($ $ $)) (-15 -1995 ($ $ $ |t#3|)) (-15 -1296 ($ $ $ |t#3|)) (-15 -3614 ($ $ $)) (-15 -3259 ($ $ $)) (-15 -3614 ($ $ $ |t#3|)) (-15 -3259 ($ $ $ |t#3|)) (-15 -4171 ((-2 (|:| -3244 $) (|:| |gap| (-713)) (|:| -1607 $)) $ $)) (-15 -4171 ((-2 (|:| -3244 $) (|:| |gap| (-713)) (|:| -1607 $)) $ $ |t#3|)) (-15 -2420 ((-2 (|:| -3244 $) (|:| |gap| (-713)) (|:| -2829 $) (|:| -1607 $)) $ $)) (-15 -2420 ((-2 (|:| -3244 $) (|:| |gap| (-713)) (|:| -2829 $) (|:| -1607 $)) $ $ |t#3|)) (-15 -3696 ((-2 (|:| -2829 $) (|:| -1607 $)) $ $)) (-15 -2413 ($ $ $)) (-15 -2117 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3047 (-713))) $ $)) (-15 -3872 ($ $ $)) (-15 -2423 ($ $ $)) (IF (|has| |t#3| (-567 (-1092))) (PROGN (-6 (-566 (-887 |t#1|))) (-6 (-567 (-887 |t#1|))) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -3077 ((-3 $ "failed") (-887 (-385 (-525))))) (-15 -1572 ($ (-887 (-385 (-525))))) (-15 -3210 ($ (-887 (-385 (-525))))) (-15 -3077 ((-3 $ "failed") (-887 (-525)))) (-15 -1572 ($ (-887 (-525)))) (-15 -3210 ($ (-887 (-525)))) (IF (|has| |t#1| (-925 (-525))) |%noBranch| (PROGN (-15 -3077 ((-3 $ "failed") (-887 |t#1|))) (-15 -1572 ($ (-887 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-525))) (IF (|has| |t#1| (-37 (-385 (-525)))) |%noBranch| (PROGN (-15 -3077 ((-3 $ "failed") (-887 (-525)))) (-15 -1572 ($ (-887 (-525)))) (-15 -3210 ($ (-887 (-525)))) (IF (|has| |t#1| (-510)) |%noBranch| (PROGN (-15 -3077 ((-3 $ "failed") (-887 |t#1|))) (-15 -1572 ($ (-887 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-525))) |%noBranch| (IF (|has| |t#1| (-37 (-385 (-525)))) |%noBranch| (PROGN (-15 -3077 ((-3 $ "failed") (-887 |t#1|))) (-15 -1572 ($ (-887 |t#1|)))))) (-15 -3210 ($ (-887 |t#1|))) (IF (|has| |t#1| (-968 (-525))) (-6 (-567 (-1075))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-15 -1392 ($ $)) (-15 -2204 ($ $)) (-15 -1565 ($ $ |t#1|)) (-15 -1267 ($ $ |t#1|)) (-15 -1565 ($ $ $)) (-15 -1267 ($ $ $)) (-15 -4001 ($ $ $)) (-15 -3926 ((-2 (|:| -2589 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2835 ((-2 (|:| -2589 $) (|:| |coef1| $)) $ $)) (-15 -2738 ((-2 (|:| -2589 $) (|:| |coef2| $)) $ $)) (-15 -3377 ($ $ $)) (-15 -3496 ((-592 $) $ $)) (-15 -2370 ($ $ $)) (-15 -3134 ($ $ $ (-713))) (-15 -3373 ($ $ $ $ (-713))) (-15 -2358 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-15 -2589 (|t#1| |t#1| $)) (-15 -2046 ($ $)) (-15 -3962 ($ $)) (-15 -2262 ($ $)) (-15 -3870 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-566 (-887 |#1|)) |has| |#3| (-567 (-1092))) ((-160) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))) ((-567 (-827 (-357))) -12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#3| (-567 (-827 (-357))))) ((-567 (-827 (-525))) -12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#3| (-567 (-827 (-525))))) ((-567 (-887 |#1|)) |has| |#3| (-567 (-1092))) ((-567 (-1075)) -12 (|has| |#1| (-968 (-525))) (|has| |#3| (-567 (-1092)))) ((-269) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-288 $) . T) ((-304 |#1| |#2|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3254 (|has| |#1| (-844)) (|has| |#1| (-429))) ((-486 |#3| |#1|) . T) ((-486 |#3| $) . T) ((-486 $ $) . T) ((-517) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-835 |#3|) . T) ((-821 (-357)) -12 (|has| |#1| (-821 (-357))) (|has| |#3| (-821 (-357)))) ((-821 (-525)) -12 (|has| |#1| (-821 (-525))) (|has| |#3| (-821 (-525)))) ((-884 |#1| |#2| |#3|) . T) ((-844) |has| |#1| (-844)) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-968 |#3|) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1132) |has| |#1| (-844)))
-((-1209 (((-108) |#3| $) 13)) (-2964 (((-3 $ "failed") |#3| (-856)) 23)) (-3457 (((-3 |#3| "failed") |#3| $) 38)) (-1222 (((-108) |#3| $) 16)) (-3256 (((-108) |#3| $) 14)))
-(((-992 |#1| |#2| |#3|) (-10 -8 (-15 -2964 ((-3 |#1| "failed") |#3| (-856))) (-15 -3457 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1222 ((-108) |#3| |#1|)) (-15 -3256 ((-108) |#3| |#1|)) (-15 -1209 ((-108) |#3| |#1|))) (-993 |#2| |#3|) (-13 (-787) (-341)) (-1150 |#2|)) (T -992))
-NIL
-(-10 -8 (-15 -2964 ((-3 |#1| "failed") |#3| (-856))) (-15 -3457 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1222 ((-108) |#3| |#1|)) (-15 -3256 ((-108) |#3| |#1|)) (-15 -1209 ((-108) |#3| |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) |#2| $) 21)) (-3855 (((-525) |#2| $) 22)) (-2964 (((-3 $ "failed") |#2| (-856)) 15)) (-3172 ((|#1| |#2| $ |#1|) 13)) (-3457 (((-3 |#2| "failed") |#2| $) 18)) (-1222 (((-108) |#2| $) 19)) (-3256 (((-108) |#2| $) 20)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-2756 ((|#2| $) 17)) (-1217 (((-798) $) 11)) (-1454 ((|#1| |#2| $ |#1|) 14)) (-1692 (((-592 $) |#2|) 16)) (-3955 (((-108) $ $) 6)))
+((-2577 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-1827 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-713)))) (-2948 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2205 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3979 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3389 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3654 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-991 *3 *4 *5)))) (-1776 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-1430 (*1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-1451 (*1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-2171 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2918 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2672 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2282 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3476 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-991 *3 *4 *5)))) (-1662 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-991 *3 *4 *5)))) (-3126 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-3472 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-1277 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-3964 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-3964 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-2635 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2635 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-3732 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-3732 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-3221 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-3221 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-3101 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-1374 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3101 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-1374 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-2442 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-4104 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2442 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-4104 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-3120 (*1 *2 *1 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2681 *1) (|:| |gap| (-713)) (|:| -3681 *1))) (-4 *1 (-991 *3 *4 *5)))) (-3120 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -2681 *1) (|:| |gap| (-713)) (|:| -3681 *1))) (-4 *1 (-991 *4 *5 *3)))) (-3043 (*1 *2 *1 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2681 *1) (|:| |gap| (-713)) (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-991 *3 *4 *5)))) (-3043 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -2681 *1) (|:| |gap| (-713)) (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-991 *4 *5 *3)))) (-3830 (*1 *2 *1 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-991 *3 *4 *5)))) (-2983 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-1949 (*1 *2 *1 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2855 (-713)))) (-4 *1 (-991 *3 *4 *5)))) (-1998 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3076 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-1934 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-385 (-525)))) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-887 (-385 (-525)))) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))) (-2069 (*1 *1 *2) (-12 (-5 *2 (-887 (-385 (-525)))) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))) (-1934 (*1 *1 *2) (|partial| -2067 (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5)) (-12 (-3272 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5)) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))))) (-4105 (*1 *1 *2) (-2067 (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5)) (-12 (-3272 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5)) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))))) (-2069 (*1 *1 *2) (-2067 (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5)) (-12 (-3272 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5)) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))))) (-1934 (*1 *1 *2) (|partial| -2067 (-12 (-5 *2 (-887 *3)) (-12 (-3272 (-4 *3 (-37 (-385 (-525))))) (-3272 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 *3)) (-12 (-3272 (-4 *3 (-510))) (-3272 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 *3)) (-12 (-3272 (-4 *3 (-925 (-525)))) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))))) (-4105 (*1 *1 *2) (-2067 (-12 (-5 *2 (-887 *3)) (-12 (-3272 (-4 *3 (-37 (-385 (-525))))) (-3272 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 *3)) (-12 (-3272 (-4 *3 (-510))) (-3272 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 *3)) (-12 (-3272 (-4 *3 (-925 (-525)))) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092)))) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))))) (-2069 (*1 *1 *2) (-12 (-5 *2 (-887 *3)) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *5 (-567 (-1092))) (-4 *4 (-735)) (-4 *5 (-789)))) (-3699 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-1608 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3104 (*1 *1 *1 *2) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3887 (*1 *1 *1 *2) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3104 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3887 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3882 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-2536 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2772 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-991 *3 *4 *5)))) (-1479 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2772 *1) (|:| |coef1| *1))) (-4 *1 (-991 *3 *4 *5)))) (-2980 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2772 *1) (|:| |coef2| *1))) (-4 *1 (-991 *3 *4 *5)))) (-3801 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3683 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-991 *3 *4 *5)))) (-2602 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-2434 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517)))) (-3778 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517)))) (-3673 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-2772 (*1 *2 *2 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-3574 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-1700 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-3982 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-3115 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))))
+(-13 (-884 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2577 (|t#3| $)) (-15 -1827 ((-713) $)) (-15 -2948 ($ $)) (-15 -2205 ($ $)) (-15 -3979 ($ $)) (-15 -3389 ($ $)) (-15 -3654 ((-592 $) $)) (-15 -1776 ($ $)) (-15 -1430 ($ $ |t#3|)) (-15 -1451 ($ $ |t#3|)) (-15 -2171 ((-108) $)) (-15 -2918 ((-108) $)) (-15 -2672 ($ $)) (-15 -2282 ($ $)) (-15 -3476 ((-592 $) $)) (-15 -1662 ((-592 $) $)) (-15 -3126 ((-3 (-108) "failed") $ $)) (-15 -3472 ((-108) $ $)) (-15 -1277 ((-108) $ $)) (-15 -3964 ((-108) $ $)) (-15 -3964 ((-108) $ (-592 $))) (-15 -2635 ((-108) $ $)) (-15 -2635 ((-108) $ (-592 $))) (-15 -3732 ((-108) $ $)) (-15 -3732 ((-108) $ (-592 $))) (-15 -3221 ((-108) $ $)) (-15 -3221 ((-108) $ (-592 $))) (-15 -3101 ($ $ $)) (-15 -1374 ($ $ $)) (-15 -3101 ($ $ $ |t#3|)) (-15 -1374 ($ $ $ |t#3|)) (-15 -2442 ($ $ $)) (-15 -4104 ($ $ $)) (-15 -2442 ($ $ $ |t#3|)) (-15 -4104 ($ $ $ |t#3|)) (-15 -3120 ((-2 (|:| -2681 $) (|:| |gap| (-713)) (|:| -3681 $)) $ $)) (-15 -3120 ((-2 (|:| -2681 $) (|:| |gap| (-713)) (|:| -3681 $)) $ $ |t#3|)) (-15 -3043 ((-2 (|:| -2681 $) (|:| |gap| (-713)) (|:| -1416 $) (|:| -3681 $)) $ $)) (-15 -3043 ((-2 (|:| -2681 $) (|:| |gap| (-713)) (|:| -1416 $) (|:| -3681 $)) $ $ |t#3|)) (-15 -3830 ((-2 (|:| -1416 $) (|:| -3681 $)) $ $)) (-15 -2983 ($ $ $)) (-15 -1949 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2855 (-713))) $ $)) (-15 -1998 ($ $ $)) (-15 -3076 ($ $ $)) (IF (|has| |t#3| (-567 (-1092))) (PROGN (-6 (-566 (-887 |t#1|))) (-6 (-567 (-887 |t#1|))) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -1934 ((-3 $ "failed") (-887 (-385 (-525))))) (-15 -4105 ($ (-887 (-385 (-525))))) (-15 -2069 ($ (-887 (-385 (-525))))) (-15 -1934 ((-3 $ "failed") (-887 (-525)))) (-15 -4105 ($ (-887 (-525)))) (-15 -2069 ($ (-887 (-525)))) (IF (|has| |t#1| (-925 (-525))) |%noBranch| (PROGN (-15 -1934 ((-3 $ "failed") (-887 |t#1|))) (-15 -4105 ($ (-887 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-525))) (IF (|has| |t#1| (-37 (-385 (-525)))) |%noBranch| (PROGN (-15 -1934 ((-3 $ "failed") (-887 (-525)))) (-15 -4105 ($ (-887 (-525)))) (-15 -2069 ($ (-887 (-525)))) (IF (|has| |t#1| (-510)) |%noBranch| (PROGN (-15 -1934 ((-3 $ "failed") (-887 |t#1|))) (-15 -4105 ($ (-887 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-525))) |%noBranch| (IF (|has| |t#1| (-37 (-385 (-525)))) |%noBranch| (PROGN (-15 -1934 ((-3 $ "failed") (-887 |t#1|))) (-15 -4105 ($ (-887 |t#1|)))))) (-15 -2069 ($ (-887 |t#1|))) (IF (|has| |t#1| (-968 (-525))) (-6 (-567 (-1075))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-15 -3699 ($ $)) (-15 -1608 ($ $)) (-15 -3104 ($ $ |t#1|)) (-15 -3887 ($ $ |t#1|)) (-15 -3104 ($ $ $)) (-15 -3887 ($ $ $)) (-15 -3882 ($ $ $)) (-15 -2536 ((-2 (|:| -2772 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1479 ((-2 (|:| -2772 $) (|:| |coef1| $)) $ $)) (-15 -2980 ((-2 (|:| -2772 $) (|:| |coef2| $)) $ $)) (-15 -3801 ($ $ $)) (-15 -3683 ((-592 $) $ $)) (-15 -2602 ($ $ $)) (-15 -2434 ($ $ $ (-713))) (-15 -3778 ($ $ $ $ (-713))) (-15 -3673 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-15 -2772 (|t#1| |t#1| $)) (-15 -3574 ($ $)) (-15 -1700 ($ $)) (-15 -3982 ($ $)) (-15 -3115 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-566 (-887 |#1|)) |has| |#3| (-567 (-1092))) ((-160) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))) ((-567 (-827 (-357))) -12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#3| (-567 (-827 (-357))))) ((-567 (-827 (-525))) -12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#3| (-567 (-827 (-525))))) ((-567 (-887 |#1|)) |has| |#3| (-567 (-1092))) ((-567 (-1075)) -12 (|has| |#1| (-968 (-525))) (|has| |#3| (-567 (-1092)))) ((-269) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-288 $) . T) ((-304 |#1| |#2|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -2067 (|has| |#1| (-844)) (|has| |#1| (-429))) ((-486 |#3| |#1|) . T) ((-486 |#3| $) . T) ((-486 $ $) . T) ((-517) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-835 |#3|) . T) ((-821 (-357)) -12 (|has| |#1| (-821 (-357))) (|has| |#3| (-821 (-357)))) ((-821 (-525)) -12 (|has| |#1| (-821 (-525))) (|has| |#3| (-821 (-525)))) ((-884 |#1| |#2| |#3|) . T) ((-844) |has| |#1| (-844)) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-968 |#3|) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1132) |has| |#1| (-844)))
+((-2414 (((-108) |#3| $) 13)) (-3317 (((-3 $ "failed") |#3| (-856)) 23)) (-3300 (((-3 |#3| "failed") |#3| $) 38)) (-1889 (((-108) |#3| $) 16)) (-4079 (((-108) |#3| $) 14)))
+(((-992 |#1| |#2| |#3|) (-10 -8 (-15 -3317 ((-3 |#1| "failed") |#3| (-856))) (-15 -3300 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1889 ((-108) |#3| |#1|)) (-15 -4079 ((-108) |#3| |#1|)) (-15 -2414 ((-108) |#3| |#1|))) (-993 |#2| |#3|) (-13 (-787) (-341)) (-1150 |#2|)) (T -992))
+NIL
+(-10 -8 (-15 -3317 ((-3 |#1| "failed") |#3| (-856))) (-15 -3300 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1889 ((-108) |#3| |#1|)) (-15 -4079 ((-108) |#3| |#1|)) (-15 -2414 ((-108) |#3| |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) |#2| $) 21)) (-2971 (((-525) |#2| $) 22)) (-3317 (((-3 $ "failed") |#2| (-856)) 15)) (-1581 ((|#1| |#2| $ |#1|) 13)) (-3300 (((-3 |#2| "failed") |#2| $) 18)) (-1889 (((-108) |#2| $) 19)) (-4079 (((-108) |#2| $) 20)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-2013 ((|#2| $) 17)) (-4100 (((-798) $) 11)) (-1485 ((|#1| |#2| $ |#1|) 14)) (-3213 (((-592 $) |#2|) 16)) (-2775 (((-108) $ $) 6)))
(((-993 |#1| |#2|) (-131) (-13 (-787) (-341)) (-1150 |t#1|)) (T -993))
-((-3855 (*1 *2 *3 *1) (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1150 *4)) (-5 *2 (-525)))) (-1209 (*1 *2 *3 *1) (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1150 *4)) (-5 *2 (-108)))) (-3256 (*1 *2 *3 *1) (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1150 *4)) (-5 *2 (-108)))) (-1222 (*1 *2 *3 *1) (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1150 *4)) (-5 *2 (-108)))) (-3457 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-993 *3 *2)) (-4 *3 (-13 (-787) (-341))) (-4 *2 (-1150 *3)))) (-2756 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *2)) (-4 *3 (-13 (-787) (-341))) (-4 *2 (-1150 *3)))) (-1692 (*1 *2 *3) (-12 (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1150 *4)) (-5 *2 (-592 *1)) (-4 *1 (-993 *4 *3)))) (-2964 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-856)) (-4 *4 (-13 (-787) (-341))) (-4 *1 (-993 *4 *2)) (-4 *2 (-1150 *4)))) (-1454 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-993 *2 *3)) (-4 *2 (-13 (-787) (-341))) (-4 *3 (-1150 *2)))) (-3172 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-993 *2 *3)) (-4 *2 (-13 (-787) (-341))) (-4 *3 (-1150 *2)))))
-(-13 (-1020) (-10 -8 (-15 -3855 ((-525) |t#2| $)) (-15 -1209 ((-108) |t#2| $)) (-15 -3256 ((-108) |t#2| $)) (-15 -1222 ((-108) |t#2| $)) (-15 -3457 ((-3 |t#2| "failed") |t#2| $)) (-15 -2756 (|t#2| $)) (-15 -1692 ((-592 $) |t#2|)) (-15 -2964 ((-3 $ "failed") |t#2| (-856))) (-15 -1454 (|t#1| |t#2| $ |t#1|)) (-15 -3172 (|t#1| |t#2| $ |t#1|))))
+((-2971 (*1 *2 *3 *1) (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1150 *4)) (-5 *2 (-525)))) (-2414 (*1 *2 *3 *1) (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1150 *4)) (-5 *2 (-108)))) (-4079 (*1 *2 *3 *1) (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1150 *4)) (-5 *2 (-108)))) (-1889 (*1 *2 *3 *1) (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1150 *4)) (-5 *2 (-108)))) (-3300 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-993 *3 *2)) (-4 *3 (-13 (-787) (-341))) (-4 *2 (-1150 *3)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *2)) (-4 *3 (-13 (-787) (-341))) (-4 *2 (-1150 *3)))) (-3213 (*1 *2 *3) (-12 (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1150 *4)) (-5 *2 (-592 *1)) (-4 *1 (-993 *4 *3)))) (-3317 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-856)) (-4 *4 (-13 (-787) (-341))) (-4 *1 (-993 *4 *2)) (-4 *2 (-1150 *4)))) (-1485 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-993 *2 *3)) (-4 *2 (-13 (-787) (-341))) (-4 *3 (-1150 *2)))) (-1581 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-993 *2 *3)) (-4 *2 (-13 (-787) (-341))) (-4 *3 (-1150 *2)))))
+(-13 (-1020) (-10 -8 (-15 -2971 ((-525) |t#2| $)) (-15 -2414 ((-108) |t#2| $)) (-15 -4079 ((-108) |t#2| $)) (-15 -1889 ((-108) |t#2| $)) (-15 -3300 ((-3 |t#2| "failed") |t#2| $)) (-15 -2013 (|t#2| $)) (-15 -3213 ((-592 $) |t#2|)) (-15 -3317 ((-3 $ "failed") |t#2| (-856))) (-15 -1485 (|t#1| |t#2| $ |t#1|)) (-15 -1581 (|t#1| |t#2| $ |t#1|))))
(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-1920 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) (-713)) 96)) (-1732 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-713)) 56)) (-2493 (((-1179) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-713)) 87)) (-3393 (((-713) (-592 |#4|) (-592 |#5|)) 27)) (-1329 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-713)) 58) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-713) (-108)) 60)) (-3262 (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108)) 78) (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108)) 79)) (-3210 (((-1075) (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) 82)) (-4204 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-108)) 55)) (-1933 (((-713) (-592 |#4|) (-592 |#5|)) 19)))
-(((-994 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1933 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -3393 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -4204 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-108))) (-15 -1732 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-713))) (-15 -1732 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5|)) (-15 -1329 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -1329 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-713))) (-15 -1329 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5|)) (-15 -3262 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3262 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1920 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) (-713))) (-15 -3210 ((-1075) (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|)))) (-15 -2493 ((-1179) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-713)))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|)) (T -994))
-((-2493 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -2563 *9)))) (-5 *4 (-713)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1179)) (-5 *1 (-994 *5 *6 *7 *8 *9)))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -2563 *8))) (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-996 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1075)) (-5 *1 (-994 *4 *5 *6 *7 *8)))) (-1920 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-592 *11)) (|:| |todo| (-592 (-2 (|:| |val| *3) (|:| -2563 *11)))))) (-5 *6 (-713)) (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -2563 *11)))) (-5 *3 (-592 *10)) (-5 *4 (-592 *11)) (-4 *10 (-991 *7 *8 *9)) (-4 *11 (-996 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-5 *1 (-994 *7 *8 *9 *10 *11)))) (-3262 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-994 *5 *6 *7 *8 *9)))) (-3262 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-994 *5 *6 *7 *8 *9)))) (-1329 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4)))))) (-5 *1 (-994 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1329 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4)))))) (-5 *1 (-994 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3)))) (-1329 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-4 *3 (-991 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4)))))) (-5 *1 (-994 *7 *8 *9 *3 *4)) (-4 *4 (-996 *7 *8 *9 *3)))) (-1732 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4)))))) (-5 *1 (-994 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1732 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4)))))) (-5 *1 (-994 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3)))) (-4204 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4)))))) (-5 *1 (-994 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3)))) (-3393 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-994 *5 *6 *7 *8 *9)))) (-1933 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-994 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -1933 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -3393 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -4204 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-108))) (-15 -1732 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-713))) (-15 -1732 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5|)) (-15 -1329 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -1329 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-713))) (-15 -1329 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5|)) (-15 -3262 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3262 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1920 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) (-713))) (-15 -3210 ((-1075) (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|)))) (-15 -2493 ((-1179) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-713))))
-((-1816 (((-108) |#5| $) 21)) (-3458 (((-108) |#5| $) 24)) (-2116 (((-108) |#5| $) 16) (((-108) $) 45)) (-2099 (((-592 $) |#5| $) NIL) (((-592 $) (-592 |#5|) $) 77) (((-592 $) (-592 |#5|) (-592 $)) 75) (((-592 $) |#5| (-592 $)) 78)) (-3931 (($ $ |#5|) NIL) (((-592 $) |#5| $) NIL) (((-592 $) |#5| (-592 $)) 60) (((-592 $) (-592 |#5|) $) 62) (((-592 $) (-592 |#5|) (-592 $)) 64)) (-1384 (((-592 $) |#5| $) NIL) (((-592 $) |#5| (-592 $)) 54) (((-592 $) (-592 |#5|) $) 56) (((-592 $) (-592 |#5|) (-592 $)) 58)) (-3162 (((-108) |#5| $) 27)))
-(((-995 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3931 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -3931 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -3931 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -3931 ((-592 |#1|) |#5| |#1|)) (-15 -1384 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -1384 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -1384 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -1384 ((-592 |#1|) |#5| |#1|)) (-15 -2099 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -2099 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -2099 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -2099 ((-592 |#1|) |#5| |#1|)) (-15 -3458 ((-108) |#5| |#1|)) (-15 -2116 ((-108) |#1|)) (-15 -3162 ((-108) |#5| |#1|)) (-15 -1816 ((-108) |#5| |#1|)) (-15 -2116 ((-108) |#5| |#1|)) (-15 -3931 (|#1| |#1| |#5|))) (-996 |#2| |#3| |#4| |#5|) (-429) (-735) (-789) (-991 |#2| |#3| |#4|)) (T -995))
-NIL
-(-10 -8 (-15 -3931 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -3931 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -3931 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -3931 ((-592 |#1|) |#5| |#1|)) (-15 -1384 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -1384 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -1384 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -1384 ((-592 |#1|) |#5| |#1|)) (-15 -2099 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -2099 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -2099 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -2099 ((-592 |#1|) |#5| |#1|)) (-15 -3458 ((-108) |#5| |#1|)) (-15 -2116 ((-108) |#1|)) (-15 -3162 ((-108) |#5| |#1|)) (-15 -1816 ((-108) |#5| |#1|)) (-15 -2116 ((-108) |#5| |#1|)) (-15 -3931 (|#1| |#1| |#5|)))
-((-4236 (((-108) $ $) 7)) (-1463 (((-592 (-2 (|:| -2719 $) (|:| -3459 (-592 |#4|)))) (-592 |#4|)) 85)) (-1589 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-2897 (((-592 |#3|) $) 33)) (-2437 (((-108) $) 26)) (-2750 (((-108) $) 17 (|has| |#1| (-517)))) (-3950 (((-108) |#4| $) 101) (((-108) $) 97)) (-2495 ((|#4| |#4| $) 92)) (-1286 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 $))) |#4| $) 126)) (-2458 (((-2 (|:| |under| $) (|:| -2487 $) (|:| |upper| $)) $ |#3|) 27)) (-3991 (((-108) $ (-713)) 44)) (-3785 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4258))) (((-3 |#4| "failed") $ |#3|) 79)) (-2169 (($) 45 T CONST)) (-4089 (((-108) $) 22 (|has| |#1| (-517)))) (-2480 (((-108) $ $) 24 (|has| |#1| (-517)))) (-1207 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3339 (((-108) $) 25 (|has| |#1| (-517)))) (-2712 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3767 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-3333 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-3077 (((-3 $ "failed") (-592 |#4|)) 36)) (-1572 (($ (-592 |#4|)) 35)) (-1886 (((-3 $ "failed") $) 82)) (-3901 ((|#4| |#4| $) 89)) (-1910 (($ $) 68 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258))))) (-1703 (($ |#4| $) 67 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4258)))) (-1607 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-1961 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2834 ((|#4| |#4| $) 87)) (-1284 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4258))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4258))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1877 (((-2 (|:| -2719 (-592 |#4|)) (|:| -3459 (-592 |#4|))) $) 105)) (-1816 (((-108) |#4| $) 136)) (-3458 (((-108) |#4| $) 133)) (-2116 (((-108) |#4| $) 137) (((-108) $) 134)) (-3440 (((-592 |#4|) $) 52 (|has| $ (-6 -4258)))) (-2633 (((-108) |#4| $) 104) (((-108) $) 103)) (-3153 ((|#3| $) 34)) (-3924 (((-108) $ (-713)) 43)) (-2694 (((-592 |#4|) $) 53 (|has| $ (-6 -4258)))) (-2004 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#4| |#4|) $) 47)) (-1598 (((-592 |#3|) $) 32)) (-3919 (((-108) |#3| $) 31)) (-2912 (((-108) $ (-713)) 42)) (-2619 (((-1075) $) 9)) (-4028 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-2370 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 $))) |#4| |#4| $) 127)) (-1717 (((-3 |#4| "failed") $) 83)) (-3606 (((-592 $) |#4| $) 129)) (-3486 (((-3 (-108) (-592 $)) |#4| $) 132)) (-3070 (((-592 (-2 (|:| |val| (-108)) (|:| -2563 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2099 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-3644 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-3159 (((-592 |#4|) $) 107)) (-2686 (((-108) |#4| $) 99) (((-108) $) 95)) (-2423 ((|#4| |#4| $) 90)) (-2338 (((-108) $ $) 110)) (-1806 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2696 (((-108) |#4| $) 100) (((-108) $) 96)) (-3872 ((|#4| |#4| $) 91)) (-2093 (((-1039) $) 10)) (-1872 (((-3 |#4| "failed") $) 84)) (-1983 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3044 (((-3 $ "failed") $ |#4|) 78)) (-3931 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-3944 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-2614 (((-108) $ $) 38)) (-2659 (((-108) $) 41)) (-2512 (($) 40)) (-2343 (((-713) $) 106)) (-2110 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4258)))) (-1462 (($ $) 39)) (-3210 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-1230 (($ (-592 |#4|)) 60)) (-3264 (($ $ |#3|) 28)) (-1425 (($ $ |#3|) 30)) (-1320 (($ $) 88)) (-4008 (($ $ |#3|) 29)) (-1217 (((-798) $) 11) (((-592 |#4|) $) 37)) (-3735 (((-713) $) 76 (|has| |#3| (-346)))) (-1622 (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4027 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-1384 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-3029 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4258)))) (-1221 (((-592 |#3|) $) 81)) (-3162 (((-108) |#4| $) 135)) (-2081 (((-108) |#3| $) 80)) (-3955 (((-108) $ $) 6)) (-3522 (((-713) $) 46 (|has| $ (-6 -4258)))))
+((-1723 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) (-713)) 96)) (-3588 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-713)) 56)) (-3782 (((-1179) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-713)) 87)) (-3960 (((-713) (-592 |#4|) (-592 |#5|)) 27)) (-1524 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-713)) 58) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-713) (-108)) 60)) (-4129 (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108)) 78) (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108)) 79)) (-2069 (((-1075) (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) 82)) (-2274 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-108)) 55)) (-1857 (((-713) (-592 |#4|) (-592 |#5|)) 19)))
+(((-994 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1857 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -3960 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -2274 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-108))) (-15 -3588 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-713))) (-15 -3588 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5|)) (-15 -1524 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -1524 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-713))) (-15 -1524 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5|)) (-15 -4129 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -4129 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1723 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) (-713))) (-15 -2069 ((-1075) (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|)))) (-15 -3782 ((-1179) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-713)))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|)) (T -994))
+((-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -1285 *9)))) (-5 *4 (-713)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1179)) (-5 *1 (-994 *5 *6 *7 *8 *9)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -1285 *8))) (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-996 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1075)) (-5 *1 (-994 *4 *5 *6 *7 *8)))) (-1723 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-592 *11)) (|:| |todo| (-592 (-2 (|:| |val| *3) (|:| -1285 *11)))))) (-5 *6 (-713)) (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -1285 *11)))) (-5 *3 (-592 *10)) (-5 *4 (-592 *11)) (-4 *10 (-991 *7 *8 *9)) (-4 *11 (-996 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-5 *1 (-994 *7 *8 *9 *10 *11)))) (-4129 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-994 *5 *6 *7 *8 *9)))) (-4129 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-994 *5 *6 *7 *8 *9)))) (-1524 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4)))))) (-5 *1 (-994 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1524 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4)))))) (-5 *1 (-994 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3)))) (-1524 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-4 *3 (-991 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4)))))) (-5 *1 (-994 *7 *8 *9 *3 *4)) (-4 *4 (-996 *7 *8 *9 *3)))) (-3588 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4)))))) (-5 *1 (-994 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3588 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4)))))) (-5 *1 (-994 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3)))) (-2274 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4)))))) (-5 *1 (-994 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-994 *5 *6 *7 *8 *9)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-994 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1857 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -3960 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -2274 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-108))) (-15 -3588 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-713))) (-15 -3588 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5|)) (-15 -1524 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -1524 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-713))) (-15 -1524 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5|)) (-15 -4129 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -4129 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1723 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) (-713))) (-15 -2069 ((-1075) (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|)))) (-15 -3782 ((-1179) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-713))))
+((-1954 (((-108) |#5| $) 21)) (-3315 (((-108) |#5| $) 24)) (-1941 (((-108) |#5| $) 16) (((-108) $) 45)) (-2913 (((-592 $) |#5| $) NIL) (((-592 $) (-592 |#5|) $) 77) (((-592 $) (-592 |#5|) (-592 $)) 75) (((-592 $) |#5| (-592 $)) 78)) (-1397 (($ $ |#5|) NIL) (((-592 $) |#5| $) NIL) (((-592 $) |#5| (-592 $)) 60) (((-592 $) (-592 |#5|) $) 62) (((-592 $) (-592 |#5|) (-592 $)) 64)) (-3605 (((-592 $) |#5| $) NIL) (((-592 $) |#5| (-592 $)) 54) (((-592 $) (-592 |#5|) $) 56) (((-592 $) (-592 |#5|) (-592 $)) 58)) (-1484 (((-108) |#5| $) 27)))
+(((-995 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1397 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -1397 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -1397 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -1397 ((-592 |#1|) |#5| |#1|)) (-15 -3605 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -3605 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -3605 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -3605 ((-592 |#1|) |#5| |#1|)) (-15 -2913 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -2913 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -2913 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -2913 ((-592 |#1|) |#5| |#1|)) (-15 -3315 ((-108) |#5| |#1|)) (-15 -1941 ((-108) |#1|)) (-15 -1484 ((-108) |#5| |#1|)) (-15 -1954 ((-108) |#5| |#1|)) (-15 -1941 ((-108) |#5| |#1|)) (-15 -1397 (|#1| |#1| |#5|))) (-996 |#2| |#3| |#4| |#5|) (-429) (-735) (-789) (-991 |#2| |#3| |#4|)) (T -995))
+NIL
+(-10 -8 (-15 -1397 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -1397 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -1397 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -1397 ((-592 |#1|) |#5| |#1|)) (-15 -3605 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -3605 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -3605 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -3605 ((-592 |#1|) |#5| |#1|)) (-15 -2913 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -2913 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -2913 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -2913 ((-592 |#1|) |#5| |#1|)) (-15 -3315 ((-108) |#5| |#1|)) (-15 -1941 ((-108) |#1|)) (-15 -1484 ((-108) |#5| |#1|)) (-15 -1954 ((-108) |#5| |#1|)) (-15 -1941 ((-108) |#5| |#1|)) (-15 -1397 (|#1| |#1| |#5|)))
+((-4087 (((-108) $ $) 7)) (-2562 (((-592 (-2 (|:| -2682 $) (|:| -2046 (-592 |#4|)))) (-592 |#4|)) 85)) (-3347 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-1296 (((-592 |#3|) $) 33)) (-2071 (((-108) $) 26)) (-3093 (((-108) $) 17 (|has| |#1| (-517)))) (-1587 (((-108) |#4| $) 101) (((-108) $) 97)) (-1402 ((|#4| |#4| $) 92)) (-4195 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 $))) |#4| $) 126)) (-1842 (((-2 (|:| |under| $) (|:| -1340 $) (|:| |upper| $)) $ |#3|) 27)) (-3779 (((-108) $ (-713)) 44)) (-2399 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4259))) (((-3 |#4| "failed") $ |#3|) 79)) (-2475 (($) 45 T CONST)) (-3542 (((-108) $) 22 (|has| |#1| (-517)))) (-2462 (((-108) $ $) 24 (|has| |#1| (-517)))) (-2390 (((-108) $ $) 23 (|has| |#1| (-517)))) (-1698 (((-108) $) 25 (|has| |#1| (-517)))) (-2783 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3308 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-1655 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-1934 (((-3 $ "failed") (-592 |#4|)) 36)) (-4105 (($ (-592 |#4|)) 35)) (-1659 (((-3 $ "failed") $) 82)) (-2268 ((|#4| |#4| $) 89)) (-1681 (($ $) 68 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259))))) (-2698 (($ |#4| $) 67 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4259)))) (-3681 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-3964 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-1469 ((|#4| |#4| $) 87)) (-3504 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4259))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4259))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1329 (((-2 (|:| -2682 (-592 |#4|)) (|:| -2046 (-592 |#4|))) $) 105)) (-1954 (((-108) |#4| $) 136)) (-3315 (((-108) |#4| $) 133)) (-1941 (((-108) |#4| $) 137) (((-108) $) 134)) (-2175 (((-592 |#4|) $) 52 (|has| $ (-6 -4259)))) (-3221 (((-108) |#4| $) 104) (((-108) $) 103)) (-2577 ((|#3| $) 34)) (-2516 (((-108) $ (-713)) 43)) (-2617 (((-592 |#4|) $) 53 (|has| $ (-6 -4259)))) (-3198 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#4| |#4|) $) 47)) (-3435 (((-592 |#3|) $) 32)) (-2468 (((-108) |#3| $) 31)) (-4028 (((-108) $ (-713)) 42)) (-1289 (((-1075) $) 9)) (-4180 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-2602 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 $))) |#4| |#4| $) 127)) (-2718 (((-3 |#4| "failed") $) 83)) (-2346 (((-592 $) |#4| $) 129)) (-3580 (((-3 (-108) (-592 $)) |#4| $) 132)) (-3022 (((-592 (-2 (|:| |val| (-108)) (|:| -1285 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2913 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-1513 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-1455 (((-592 |#4|) $) 107)) (-3732 (((-108) |#4| $) 99) (((-108) $) 95)) (-3076 ((|#4| |#4| $) 90)) (-3472 (((-108) $ $) 110)) (-2991 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2635 (((-108) |#4| $) 100) (((-108) $) 96)) (-1998 ((|#4| |#4| $) 91)) (-3993 (((-1039) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-4202 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2821 (((-3 $ "failed") $ |#4|) 78)) (-1397 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-1518 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-1231 (((-108) $ $) 38)) (-3479 (((-108) $) 41)) (-1558 (($) 40)) (-3529 (((-713) $) 106)) (-4002 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4259)))) (-2503 (($ $) 39)) (-2069 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-4114 (($ (-592 |#4|)) 60)) (-4151 (($ $ |#3|) 28)) (-3522 (($ $ |#3|) 30)) (-1411 (($ $) 88)) (-3963 (($ $ |#3|) 29)) (-4100 (((-798) $) 11) (((-592 |#4|) $) 37)) (-1223 (((-713) $) 76 (|has| |#3| (-346)))) (-3799 (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4170 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-3605 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-2706 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4259)))) (-1874 (((-592 |#3|) $) 81)) (-1484 (((-108) |#4| $) 135)) (-2738 (((-108) |#3| $) 80)) (-2775 (((-108) $ $) 6)) (-2827 (((-713) $) 46 (|has| $ (-6 -4259)))))
(((-996 |#1| |#2| |#3| |#4|) (-131) (-429) (-735) (-789) (-991 |t#1| |t#2| |t#3|)) (T -996))
-((-2116 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-1816 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-3162 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-2116 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-3458 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-3486 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-3 (-108) (-592 *1))) (-4 *1 (-996 *4 *5 *6 *3)))) (-3070 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2563 *1)))) (-4 *1 (-996 *4 *5 *6 *3)))) (-3070 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-3606 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)))) (-4028 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-3 *3 (-592 *1))) (-4 *1 (-996 *4 *5 *6 *3)))) (-2370 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *1)))) (-4 *1 (-996 *4 *5 *6 *3)))) (-1286 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *1)))) (-4 *1 (-996 *4 *5 *6 *3)))) (-2099 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)))) (-2099 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *7)))) (-2099 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-996 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)))) (-2099 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)))) (-1384 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)))) (-1384 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)))) (-1384 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *7)))) (-1384 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-996 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)))) (-3644 (*1 *1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *5 *2)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-3644 (*1 *1 *2 *1) (-12 (-5 *2 (-592 *6)) (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)))) (-3931 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)))) (-3931 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)))) (-3931 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *7)))) (-3931 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-996 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)))) (-1589 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-996 *5 *6 *7 *8)))))
-(-13 (-1122 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2116 ((-108) |t#4| $)) (-15 -1816 ((-108) |t#4| $)) (-15 -3162 ((-108) |t#4| $)) (-15 -2116 ((-108) $)) (-15 -3458 ((-108) |t#4| $)) (-15 -3486 ((-3 (-108) (-592 $)) |t#4| $)) (-15 -3070 ((-592 (-2 (|:| |val| (-108)) (|:| -2563 $))) |t#4| $)) (-15 -3070 ((-108) |t#4| $)) (-15 -3606 ((-592 $) |t#4| $)) (-15 -4028 ((-3 |t#4| (-592 $)) |t#4| |t#4| $)) (-15 -2370 ((-592 (-2 (|:| |val| |t#4|) (|:| -2563 $))) |t#4| |t#4| $)) (-15 -1286 ((-592 (-2 (|:| |val| |t#4|) (|:| -2563 $))) |t#4| $)) (-15 -2099 ((-592 $) |t#4| $)) (-15 -2099 ((-592 $) (-592 |t#4|) $)) (-15 -2099 ((-592 $) (-592 |t#4|) (-592 $))) (-15 -2099 ((-592 $) |t#4| (-592 $))) (-15 -1384 ((-592 $) |t#4| $)) (-15 -1384 ((-592 $) |t#4| (-592 $))) (-15 -1384 ((-592 $) (-592 |t#4|) $)) (-15 -1384 ((-592 $) (-592 |t#4|) (-592 $))) (-15 -3644 ($ |t#4| $)) (-15 -3644 ($ (-592 |t#4|) $)) (-15 -3931 ((-592 $) |t#4| $)) (-15 -3931 ((-592 $) |t#4| (-592 $))) (-15 -3931 ((-592 $) (-592 |t#4|) $)) (-15 -3931 ((-592 $) (-592 |t#4|) (-592 $))) (-15 -1589 ((-592 $) (-592 |t#4|) (-108)))))
+((-1941 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-1954 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-1484 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-1941 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-3315 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-3580 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-3 (-108) (-592 *1))) (-4 *1 (-996 *4 *5 *6 *3)))) (-3022 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1285 *1)))) (-4 *1 (-996 *4 *5 *6 *3)))) (-3022 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-2346 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)))) (-4180 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-3 *3 (-592 *1))) (-4 *1 (-996 *4 *5 *6 *3)))) (-2602 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *1)))) (-4 *1 (-996 *4 *5 *6 *3)))) (-4195 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *1)))) (-4 *1 (-996 *4 *5 *6 *3)))) (-2913 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)))) (-2913 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *7)))) (-2913 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-996 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)))) (-2913 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)))) (-3605 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)))) (-3605 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)))) (-3605 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *7)))) (-3605 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-996 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)))) (-1513 (*1 *1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *5 *2)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-1513 (*1 *1 *2 *1) (-12 (-5 *2 (-592 *6)) (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)))) (-1397 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)))) (-1397 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)))) (-1397 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *7)))) (-1397 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-996 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)))) (-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-996 *5 *6 *7 *8)))))
+(-13 (-1122 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1941 ((-108) |t#4| $)) (-15 -1954 ((-108) |t#4| $)) (-15 -1484 ((-108) |t#4| $)) (-15 -1941 ((-108) $)) (-15 -3315 ((-108) |t#4| $)) (-15 -3580 ((-3 (-108) (-592 $)) |t#4| $)) (-15 -3022 ((-592 (-2 (|:| |val| (-108)) (|:| -1285 $))) |t#4| $)) (-15 -3022 ((-108) |t#4| $)) (-15 -2346 ((-592 $) |t#4| $)) (-15 -4180 ((-3 |t#4| (-592 $)) |t#4| |t#4| $)) (-15 -2602 ((-592 (-2 (|:| |val| |t#4|) (|:| -1285 $))) |t#4| |t#4| $)) (-15 -4195 ((-592 (-2 (|:| |val| |t#4|) (|:| -1285 $))) |t#4| $)) (-15 -2913 ((-592 $) |t#4| $)) (-15 -2913 ((-592 $) (-592 |t#4|) $)) (-15 -2913 ((-592 $) (-592 |t#4|) (-592 $))) (-15 -2913 ((-592 $) |t#4| (-592 $))) (-15 -3605 ((-592 $) |t#4| $)) (-15 -3605 ((-592 $) |t#4| (-592 $))) (-15 -3605 ((-592 $) (-592 |t#4|) $)) (-15 -3605 ((-592 $) (-592 |t#4|) (-592 $))) (-15 -1513 ($ |t#4| $)) (-15 -1513 ($ (-592 |t#4|) $)) (-15 -1397 ((-592 $) |t#4| $)) (-15 -1397 ((-592 $) |t#4| (-592 $))) (-15 -1397 ((-592 $) (-592 |t#4|) $)) (-15 -1397 ((-592 $) (-592 |t#4|) (-592 $))) (-15 -3347 ((-592 $) (-592 |t#4|) (-108)))))
(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-798)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-909 |#1| |#2| |#3| |#4|) . T) ((-1020) . T) ((-1122 |#1| |#2| |#3| |#4|) . T) ((-1128) . T))
-((-3362 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#5|) 81)) (-4166 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#4| |#5|) 113)) (-2114 (((-592 |#5|) |#4| |#5|) 70)) (-3935 (((-592 (-2 (|:| |val| (-108)) (|:| -2563 |#5|))) |#4| |#5|) 46) (((-108) |#4| |#5|) 53)) (-1895 (((-1179)) 37)) (-1515 (((-1179)) 26)) (-2599 (((-1179) (-1075) (-1075) (-1075)) 33)) (-3281 (((-1179) (-1075) (-1075) (-1075)) 22)) (-3778 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) |#4| |#4| |#5|) 96)) (-3032 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) |#3| (-108)) 107) (((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#4| |#5| (-108) (-108)) 50)) (-3975 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#4| |#5|) 102)))
-(((-997 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3281 ((-1179) (-1075) (-1075) (-1075))) (-15 -1515 ((-1179))) (-15 -2599 ((-1179) (-1075) (-1075) (-1075))) (-15 -1895 ((-1179))) (-15 -3778 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) |#4| |#4| |#5|)) (-15 -3032 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3032 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) |#3| (-108))) (-15 -3975 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#4| |#5|)) (-15 -4166 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#4| |#5|)) (-15 -3935 ((-108) |#4| |#5|)) (-15 -3935 ((-592 (-2 (|:| |val| (-108)) (|:| -2563 |#5|))) |#4| |#5|)) (-15 -2114 ((-592 |#5|) |#4| |#5|)) (-15 -3362 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#5|))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|)) (T -997))
-((-3362 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4)))) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-2114 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3935 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2563 *4)))) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3935 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-4166 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4)))) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3975 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4)))) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3032 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -2563 *9)))) (-5 *5 (-108)) (-4 *8 (-991 *6 *7 *4)) (-4 *9 (-996 *6 *7 *4 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789)) (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -2563 *9)))) (-5 *1 (-997 *6 *7 *4 *8 *9)))) (-3032 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4)))) (-5 *1 (-997 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3)))) (-3778 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4)))) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1895 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179)) (-5 *1 (-997 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))) (-2599 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179)) (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-1515 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179)) (-5 *1 (-997 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))) (-3281 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179)) (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3281 ((-1179) (-1075) (-1075) (-1075))) (-15 -1515 ((-1179))) (-15 -2599 ((-1179) (-1075) (-1075) (-1075))) (-15 -1895 ((-1179))) (-15 -3778 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) |#4| |#4| |#5|)) (-15 -3032 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3032 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) |#3| (-108))) (-15 -3975 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#4| |#5|)) (-15 -4166 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#4| |#5|)) (-15 -3935 ((-108) |#4| |#5|)) (-15 -3935 ((-592 (-2 (|:| |val| (-108)) (|:| -2563 |#5|))) |#4| |#5|)) (-15 -2114 ((-592 |#5|) |#4| |#5|)) (-15 -3362 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#5|)))
-((-4236 (((-108) $ $) NIL)) (-3257 (((-1092) $) 8)) (-2619 (((-1075) $) 16)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 11)) (-3955 (((-108) $ $) 13)))
-(((-998 |#1|) (-13 (-1020) (-10 -8 (-15 -3257 ((-1092) $)))) (-1092)) (T -998))
-((-3257 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-998 *3)) (-14 *3 *2))))
-(-13 (-1020) (-10 -8 (-15 -3257 ((-1092) $))))
-((-4236 (((-108) $ $) NIL)) (-2263 (($ $ (-592 (-1092)) (-1 (-108) (-592 |#3|))) 33)) (-2374 (($ |#3| |#3|) 22) (($ |#3| |#3| (-592 (-1092))) 20)) (-2025 ((|#3| $) 13)) (-3077 (((-3 (-273 |#3|) "failed") $) 58)) (-1572 (((-273 |#3|) $) NIL)) (-3273 (((-592 (-1092)) $) 16)) (-2877 (((-827 |#1|) $) 11)) (-2012 ((|#3| $) 12)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3406 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-856)) 39)) (-1217 (((-798) $) 86) (($ (-273 |#3|)) 21)) (-3955 (((-108) $ $) 36)))
-(((-999 |#1| |#2| |#3|) (-13 (-1020) (-265 |#3| |#3|) (-968 (-273 |#3|)) (-10 -8 (-15 -2374 ($ |#3| |#3|)) (-15 -2374 ($ |#3| |#3| (-592 (-1092)))) (-15 -2263 ($ $ (-592 (-1092)) (-1 (-108) (-592 |#3|)))) (-15 -2877 ((-827 |#1|) $)) (-15 -2012 (|#3| $)) (-15 -2025 (|#3| $)) (-15 -3406 (|#3| $ |#3| (-856))) (-15 -3273 ((-592 (-1092)) $)))) (-1020) (-13 (-977) (-821 |#1|) (-789) (-567 (-827 |#1|))) (-13 (-408 |#2|) (-821 |#1|) (-567 (-827 |#1|)))) (T -999))
-((-2374 (*1 *1 *2 *2) (-12 (-4 *3 (-1020)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))) (-5 *1 (-999 *3 *4 *2)) (-4 *2 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))) (-2374 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-592 (-1092))) (-4 *4 (-1020)) (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4)))) (-5 *1 (-999 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))))) (-2263 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-1 (-108) (-592 *6))) (-4 *6 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))) (-4 *4 (-1020)) (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4)))) (-5 *1 (-999 *4 *5 *6)))) (-2877 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 *2))) (-5 *2 (-827 *3)) (-5 *1 (-999 *3 *4 *5)) (-4 *5 (-13 (-408 *4) (-821 *3) (-567 *2))))) (-2012 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *2 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))) (-5 *1 (-999 *3 *4 *2)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))))) (-2025 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *2 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))) (-5 *1 (-999 *3 *4 *2)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))))) (-3406 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-856)) (-4 *4 (-1020)) (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4)))) (-5 *1 (-999 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))))) (-3273 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))) (-5 *2 (-592 (-1092))) (-5 *1 (-999 *3 *4 *5)) (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))))
-(-13 (-1020) (-265 |#3| |#3|) (-968 (-273 |#3|)) (-10 -8 (-15 -2374 ($ |#3| |#3|)) (-15 -2374 ($ |#3| |#3| (-592 (-1092)))) (-15 -2263 ($ $ (-592 (-1092)) (-1 (-108) (-592 |#3|)))) (-15 -2877 ((-827 |#1|) $)) (-15 -2012 (|#3| $)) (-15 -2025 (|#3| $)) (-15 -3406 (|#3| $ |#3| (-856))) (-15 -3273 ((-592 (-1092)) $))))
-((-4236 (((-108) $ $) NIL)) (-2227 (($ (-592 (-999 |#1| |#2| |#3|))) 13)) (-2416 (((-592 (-999 |#1| |#2| |#3|)) $) 20)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3406 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-856)) 26)) (-1217 (((-798) $) 16)) (-3955 (((-108) $ $) 19)))
-(((-1000 |#1| |#2| |#3|) (-13 (-1020) (-265 |#3| |#3|) (-10 -8 (-15 -2227 ($ (-592 (-999 |#1| |#2| |#3|)))) (-15 -2416 ((-592 (-999 |#1| |#2| |#3|)) $)) (-15 -3406 (|#3| $ |#3| (-856))))) (-1020) (-13 (-977) (-821 |#1|) (-789) (-567 (-827 |#1|))) (-13 (-408 |#2|) (-821 |#1|) (-567 (-827 |#1|)))) (T -1000))
-((-2227 (*1 *1 *2) (-12 (-5 *2 (-592 (-999 *3 *4 *5))) (-4 *3 (-1020)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))) (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))) (-5 *1 (-1000 *3 *4 *5)))) (-2416 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))) (-5 *2 (-592 (-999 *3 *4 *5))) (-5 *1 (-1000 *3 *4 *5)) (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))) (-3406 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-856)) (-4 *4 (-1020)) (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4)))) (-5 *1 (-1000 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))))))
-(-13 (-1020) (-265 |#3| |#3|) (-10 -8 (-15 -2227 ($ (-592 (-999 |#1| |#2| |#3|)))) (-15 -2416 ((-592 (-999 |#1| |#2| |#3|)) $)) (-15 -3406 (|#3| $ |#3| (-856)))))
-((-1705 (((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108)) 75) (((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|))) 77) (((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108)) 76)))
-(((-1001 |#1| |#2|) (-10 -7 (-15 -1705 ((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108))) (-15 -1705 ((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)))) (-15 -1705 ((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108)))) (-13 (-286) (-138)) (-592 (-1092))) (T -1001))
-((-1705 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-5 *2 (-592 (-2 (|:| -2706 (-1088 *5)) (|:| -2387 (-592 (-887 *5)))))) (-5 *1 (-1001 *5 *6)) (-5 *3 (-592 (-887 *5))) (-14 *6 (-592 (-1092))))) (-1705 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-5 *2 (-592 (-2 (|:| -2706 (-1088 *4)) (|:| -2387 (-592 (-887 *4)))))) (-5 *1 (-1001 *4 *5)) (-5 *3 (-592 (-887 *4))) (-14 *5 (-592 (-1092))))) (-1705 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-5 *2 (-592 (-2 (|:| -2706 (-1088 *5)) (|:| -2387 (-592 (-887 *5)))))) (-5 *1 (-1001 *5 *6)) (-5 *3 (-592 (-887 *5))) (-14 *6 (-592 (-1092))))))
-(-10 -7 (-15 -1705 ((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108))) (-15 -1705 ((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)))) (-15 -1705 ((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108))))
-((-2770 (((-396 |#3|) |#3|) 18)))
-(((-1002 |#1| |#2| |#3|) (-10 -7 (-15 -2770 ((-396 |#3|) |#3|))) (-1150 (-385 (-525))) (-13 (-341) (-138) (-667 (-385 (-525)) |#1|)) (-1150 |#2|)) (T -1002))
-((-2770 (*1 *2 *3) (-12 (-4 *4 (-1150 (-385 (-525)))) (-4 *5 (-13 (-341) (-138) (-667 (-385 (-525)) *4))) (-5 *2 (-396 *3)) (-5 *1 (-1002 *4 *5 *3)) (-4 *3 (-1150 *5)))))
-(-10 -7 (-15 -2770 ((-396 |#3|) |#3|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 126)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-341)))) (-4218 (($ $) NIL (|has| |#1| (-341)))) (-3171 (((-108) $) NIL (|has| |#1| (-341)))) (-1627 (((-632 |#1|) (-1174 $)) NIL) (((-632 |#1|)) 115)) (-2952 ((|#1| $) 119)) (-2971 (((-1102 (-856) (-713)) (-525)) NIL (|has| |#1| (-327)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL (|has| |#1| (-341)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2193 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1834 (((-713)) 40 (|has| |#1| (-346)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-1572 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-2064 (($ (-1174 |#1|) (-1174 $)) NIL) (($ (-1174 |#1|)) 43)) (-3057 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-327)))) (-1747 (($ $ $) NIL (|has| |#1| (-341)))) (-1906 (((-632 |#1|) $ (-1174 $)) NIL) (((-632 |#1|) $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 106) (((-632 |#1|) (-632 $)) 101)) (-1284 (($ |#2|) 61) (((-3 $ "failed") (-385 |#2|)) NIL (|has| |#1| (-341)))) (-3457 (((-3 $ "failed") $) NIL)) (-3622 (((-856)) 77)) (-2502 (($) 44 (|has| |#1| (-346)))) (-1733 (($ $ $) NIL (|has| |#1| (-341)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2574 (($) NIL (|has| |#1| (-327)))) (-3704 (((-108) $) NIL (|has| |#1| (-327)))) (-3625 (($ $ (-713)) NIL (|has| |#1| (-327))) (($ $) NIL (|has| |#1| (-327)))) (-3673 (((-108) $) NIL (|has| |#1| (-341)))) (-2581 (((-856) $) NIL (|has| |#1| (-327))) (((-775 (-856)) $) NIL (|has| |#1| (-327)))) (-1396 (((-108) $) NIL)) (-2382 ((|#1| $) NIL)) (-3844 (((-3 $ "failed") $) NIL (|has| |#1| (-327)))) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2126 ((|#2| $) 84 (|has| |#1| (-341)))) (-3005 (((-856) $) 131 (|has| |#1| (-346)))) (-1269 ((|#2| $) 58)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL (|has| |#1| (-341)))) (-2295 (($) NIL (|has| |#1| (-327)) CONST)) (-3555 (($ (-856)) 125 (|has| |#1| (-346)))) (-2093 (((-1039) $) NIL)) (-3409 (($) 121)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3387 (((-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))) NIL (|has| |#1| (-327)))) (-2770 (((-396 $) $) NIL (|has| |#1| (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-1715 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-3684 (((-713) $) NIL (|has| |#1| (-341)))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-341)))) (-1975 ((|#1| (-1174 $)) NIL) ((|#1|) 109)) (-3877 (((-713) $) NIL (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) NIL (|has| |#1| (-327)))) (-3376 (($ $) NIL (-3254 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) NIL (-3254 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))))) (($ $ (-1 |#1| |#1|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-2725 (((-632 |#1|) (-1174 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-2756 ((|#2|) 73)) (-2244 (($) NIL (|has| |#1| (-327)))) (-2387 (((-1174 |#1|) $ (-1174 $)) 89) (((-632 |#1|) (-1174 $) (-1174 $)) NIL) (((-1174 |#1|) $) 71) (((-632 |#1|) (-1174 $)) 85)) (-3210 (((-1174 |#1|) $) NIL) (($ (-1174 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| |#1| (-327)))) (-1217 (((-798) $) 57) (($ (-525)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-341))) (($ (-385 (-525))) NIL (-3254 (|has| |#1| (-341)) (|has| |#1| (-968 (-385 (-525))))))) (-3637 (($ $) NIL (|has| |#1| (-327))) (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-1304 ((|#2| $) 82)) (-3917 (((-713)) 75)) (-3094 (((-1174 $)) 81)) (-3325 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3349 (($) 30 T CONST)) (-3359 (($) 19 T CONST)) (-2022 (($ $) NIL (-3254 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) NIL (-3254 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))))) (($ $ (-1 |#1| |#1|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-3955 (((-108) $ $) 63)) (-4075 (($ $ $) NIL (|has| |#1| (-341)))) (-4061 (($ $) 67) (($ $ $) NIL)) (-4047 (($ $ $) 65)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-385 (-525)) $) NIL (|has| |#1| (-341))) (($ $ (-385 (-525))) NIL (|has| |#1| (-341)))))
+((-1901 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#5|) 81)) (-3065 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#4| |#5|) 113)) (-1920 (((-592 |#5|) |#4| |#5|) 70)) (-1439 (((-592 (-2 (|:| |val| (-108)) (|:| -1285 |#5|))) |#4| |#5|) 46) (((-108) |#4| |#5|) 53)) (-1491 (((-1179)) 37)) (-3319 (((-1179)) 26)) (-4160 (((-1179) (-1075) (-1075) (-1075)) 33)) (-1256 (((-1179) (-1075) (-1075) (-1075)) 22)) (-3422 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) |#4| |#4| |#5|) 96)) (-2725 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) |#3| (-108)) 107) (((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#4| |#5| (-108) (-108)) 50)) (-1832 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#4| |#5|) 102)))
+(((-997 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1256 ((-1179) (-1075) (-1075) (-1075))) (-15 -3319 ((-1179))) (-15 -4160 ((-1179) (-1075) (-1075) (-1075))) (-15 -1491 ((-1179))) (-15 -3422 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) |#4| |#4| |#5|)) (-15 -2725 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2725 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) |#3| (-108))) (-15 -1832 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#4| |#5|)) (-15 -3065 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#4| |#5|)) (-15 -1439 ((-108) |#4| |#5|)) (-15 -1439 ((-592 (-2 (|:| |val| (-108)) (|:| -1285 |#5|))) |#4| |#5|)) (-15 -1920 ((-592 |#5|) |#4| |#5|)) (-15 -1901 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#5|))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|)) (T -997))
+((-1901 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4)))) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1920 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1439 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1285 *4)))) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1439 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3065 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4)))) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1832 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4)))) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-2725 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -1285 *9)))) (-5 *5 (-108)) (-4 *8 (-991 *6 *7 *4)) (-4 *9 (-996 *6 *7 *4 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789)) (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -1285 *9)))) (-5 *1 (-997 *6 *7 *4 *8 *9)))) (-2725 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4)))) (-5 *1 (-997 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3)))) (-3422 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4)))) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1491 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179)) (-5 *1 (-997 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))) (-4160 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179)) (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-3319 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179)) (-5 *1 (-997 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))) (-1256 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179)) (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1256 ((-1179) (-1075) (-1075) (-1075))) (-15 -3319 ((-1179))) (-15 -4160 ((-1179) (-1075) (-1075) (-1075))) (-15 -1491 ((-1179))) (-15 -3422 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) |#4| |#4| |#5|)) (-15 -2725 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2725 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) |#3| (-108))) (-15 -1832 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#4| |#5|)) (-15 -3065 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#4| |#5|)) (-15 -1439 ((-108) |#4| |#5|)) (-15 -1439 ((-592 (-2 (|:| |val| (-108)) (|:| -1285 |#5|))) |#4| |#5|)) (-15 -1920 ((-592 |#5|) |#4| |#5|)) (-15 -1901 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#5|)))
+((-4087 (((-108) $ $) NIL)) (-2411 (((-1092) $) 8)) (-1289 (((-1075) $) 16)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 11)) (-2775 (((-108) $ $) 13)))
+(((-998 |#1|) (-13 (-1020) (-10 -8 (-15 -2411 ((-1092) $)))) (-1092)) (T -998))
+((-2411 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-998 *3)) (-14 *3 *2))))
+(-13 (-1020) (-10 -8 (-15 -2411 ((-1092) $))))
+((-4087 (((-108) $ $) NIL)) (-4113 (($ $ (-592 (-1092)) (-1 (-108) (-592 |#3|))) 33)) (-3650 (($ |#3| |#3|) 22) (($ |#3| |#3| (-592 (-1092))) 20)) (-3283 ((|#3| $) 13)) (-1934 (((-3 (-273 |#3|) "failed") $) 58)) (-4105 (((-273 |#3|) $) NIL)) (-4227 (((-592 (-1092)) $) 16)) (-2359 (((-827 |#1|) $) 11)) (-3268 ((|#3| $) 12)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-3431 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-856)) 39)) (-4100 (((-798) $) 86) (($ (-273 |#3|)) 21)) (-2775 (((-108) $ $) 36)))
+(((-999 |#1| |#2| |#3|) (-13 (-1020) (-265 |#3| |#3|) (-968 (-273 |#3|)) (-10 -8 (-15 -3650 ($ |#3| |#3|)) (-15 -3650 ($ |#3| |#3| (-592 (-1092)))) (-15 -4113 ($ $ (-592 (-1092)) (-1 (-108) (-592 |#3|)))) (-15 -2359 ((-827 |#1|) $)) (-15 -3268 (|#3| $)) (-15 -3283 (|#3| $)) (-15 -3431 (|#3| $ |#3| (-856))) (-15 -4227 ((-592 (-1092)) $)))) (-1020) (-13 (-977) (-821 |#1|) (-789) (-567 (-827 |#1|))) (-13 (-408 |#2|) (-821 |#1|) (-567 (-827 |#1|)))) (T -999))
+((-3650 (*1 *1 *2 *2) (-12 (-4 *3 (-1020)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))) (-5 *1 (-999 *3 *4 *2)) (-4 *2 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))) (-3650 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-592 (-1092))) (-4 *4 (-1020)) (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4)))) (-5 *1 (-999 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))))) (-4113 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-1 (-108) (-592 *6))) (-4 *6 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))) (-4 *4 (-1020)) (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4)))) (-5 *1 (-999 *4 *5 *6)))) (-2359 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 *2))) (-5 *2 (-827 *3)) (-5 *1 (-999 *3 *4 *5)) (-4 *5 (-13 (-408 *4) (-821 *3) (-567 *2))))) (-3268 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *2 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))) (-5 *1 (-999 *3 *4 *2)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))))) (-3283 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *2 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))) (-5 *1 (-999 *3 *4 *2)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))))) (-3431 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-856)) (-4 *4 (-1020)) (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4)))) (-5 *1 (-999 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))))) (-4227 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))) (-5 *2 (-592 (-1092))) (-5 *1 (-999 *3 *4 *5)) (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))))
+(-13 (-1020) (-265 |#3| |#3|) (-968 (-273 |#3|)) (-10 -8 (-15 -3650 ($ |#3| |#3|)) (-15 -3650 ($ |#3| |#3| (-592 (-1092)))) (-15 -4113 ($ $ (-592 (-1092)) (-1 (-108) (-592 |#3|)))) (-15 -2359 ((-827 |#1|) $)) (-15 -3268 (|#3| $)) (-15 -3283 (|#3| $)) (-15 -3431 (|#3| $ |#3| (-856))) (-15 -4227 ((-592 (-1092)) $))))
+((-4087 (((-108) $ $) NIL)) (-4075 (($ (-592 (-999 |#1| |#2| |#3|))) 13)) (-2445 (((-592 (-999 |#1| |#2| |#3|)) $) 20)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-3431 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-856)) 26)) (-4100 (((-798) $) 16)) (-2775 (((-108) $ $) 19)))
+(((-1000 |#1| |#2| |#3|) (-13 (-1020) (-265 |#3| |#3|) (-10 -8 (-15 -4075 ($ (-592 (-999 |#1| |#2| |#3|)))) (-15 -2445 ((-592 (-999 |#1| |#2| |#3|)) $)) (-15 -3431 (|#3| $ |#3| (-856))))) (-1020) (-13 (-977) (-821 |#1|) (-789) (-567 (-827 |#1|))) (-13 (-408 |#2|) (-821 |#1|) (-567 (-827 |#1|)))) (T -1000))
+((-4075 (*1 *1 *2) (-12 (-5 *2 (-592 (-999 *3 *4 *5))) (-4 *3 (-1020)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))) (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))) (-5 *1 (-1000 *3 *4 *5)))) (-2445 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))) (-5 *2 (-592 (-999 *3 *4 *5))) (-5 *1 (-1000 *3 *4 *5)) (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))) (-3431 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-856)) (-4 *4 (-1020)) (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4)))) (-5 *1 (-1000 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))))))
+(-13 (-1020) (-265 |#3| |#3|) (-10 -8 (-15 -4075 ($ (-592 (-999 |#1| |#2| |#3|)))) (-15 -2445 ((-592 (-999 |#1| |#2| |#3|)) $)) (-15 -3431 (|#3| $ |#3| (-856)))))
+((-3359 (((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108)) 75) (((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|))) 77) (((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108)) 76)))
+(((-1001 |#1| |#2|) (-10 -7 (-15 -3359 ((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108))) (-15 -3359 ((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)))) (-15 -3359 ((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108)))) (-13 (-286) (-138)) (-592 (-1092))) (T -1001))
+((-3359 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-5 *2 (-592 (-2 (|:| -2729 (-1088 *5)) (|:| -2754 (-592 (-887 *5)))))) (-5 *1 (-1001 *5 *6)) (-5 *3 (-592 (-887 *5))) (-14 *6 (-592 (-1092))))) (-3359 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-5 *2 (-592 (-2 (|:| -2729 (-1088 *4)) (|:| -2754 (-592 (-887 *4)))))) (-5 *1 (-1001 *4 *5)) (-5 *3 (-592 (-887 *4))) (-14 *5 (-592 (-1092))))) (-3359 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-5 *2 (-592 (-2 (|:| -2729 (-1088 *5)) (|:| -2754 (-592 (-887 *5)))))) (-5 *1 (-1001 *5 *6)) (-5 *3 (-592 (-887 *5))) (-14 *6 (-592 (-1092))))))
+(-10 -7 (-15 -3359 ((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108))) (-15 -3359 ((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)))) (-15 -3359 ((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108))))
+((-4201 (((-396 |#3|) |#3|) 18)))
+(((-1002 |#1| |#2| |#3|) (-10 -7 (-15 -4201 ((-396 |#3|) |#3|))) (-1150 (-385 (-525))) (-13 (-341) (-138) (-667 (-385 (-525)) |#1|)) (-1150 |#2|)) (T -1002))
+((-4201 (*1 *2 *3) (-12 (-4 *4 (-1150 (-385 (-525)))) (-4 *5 (-13 (-341) (-138) (-667 (-385 (-525)) *4))) (-5 *2 (-396 *3)) (-5 *1 (-1002 *4 *5 *3)) (-4 *3 (-1150 *5)))))
+(-10 -7 (-15 -4201 ((-396 |#3|) |#3|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 126)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-341)))) (-2433 (($ $) NIL (|has| |#1| (-341)))) (-1568 (((-108) $) NIL (|has| |#1| (-341)))) (-3855 (((-632 |#1|) (-1174 $)) NIL) (((-632 |#1|)) 115)) (-2924 ((|#1| $) 119)) (-3395 (((-1102 (-856) (-713)) (-525)) NIL (|has| |#1| (-327)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL (|has| |#1| (-341)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-341)))) (-1507 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1613 (((-713)) 40 (|has| |#1| (-346)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-4105 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-2580 (($ (-1174 |#1|) (-1174 $)) NIL) (($ (-1174 |#1|)) 43)) (-2928 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-327)))) (-1356 (($ $ $) NIL (|has| |#1| (-341)))) (-1588 (((-632 |#1|) $ (-1174 $)) NIL) (((-632 |#1|) $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 106) (((-632 |#1|) (-632 $)) 101)) (-3504 (($ |#2|) 61) (((-3 $ "failed") (-385 |#2|)) NIL (|has| |#1| (-341)))) (-3300 (((-3 $ "failed") $) NIL)) (-3085 (((-856)) 77)) (-1903 (($) 44 (|has| |#1| (-346)))) (-1332 (($ $ $) NIL (|has| |#1| (-341)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3932 (($) NIL (|has| |#1| (-327)))) (-3920 (((-108) $) NIL (|has| |#1| (-327)))) (-1339 (($ $ (-713)) NIL (|has| |#1| (-327))) (($ $) NIL (|has| |#1| (-327)))) (-1798 (((-108) $) NIL (|has| |#1| (-341)))) (-4000 (((-856) $) NIL (|has| |#1| (-327))) (((-775 (-856)) $) NIL (|has| |#1| (-327)))) (-2278 (((-108) $) NIL)) (-2704 ((|#1| $) NIL)) (-2878 (((-3 $ "failed") $) NIL (|has| |#1| (-327)))) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2021 ((|#2| $) 84 (|has| |#1| (-341)))) (-3685 (((-856) $) 131 (|has| |#1| (-346)))) (-3492 ((|#2| $) 58)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL (|has| |#1| (-341)))) (-2948 (($) NIL (|has| |#1| (-327)) CONST)) (-1722 (($ (-856)) 125 (|has| |#1| (-346)))) (-3993 (((-1039) $) NIL)) (-3817 (($) 121)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3901 (((-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))) NIL (|has| |#1| (-327)))) (-4201 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-1311 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1927 (((-713) $) NIL (|has| |#1| (-341)))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-341)))) (-4115 ((|#1| (-1174 $)) NIL) ((|#1|) 109)) (-2043 (((-713) $) NIL (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) NIL (|has| |#1| (-327)))) (-2702 (($ $) NIL (-2067 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) NIL (-2067 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))))) (($ $ (-1 |#1| |#1|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-2897 (((-632 |#1|) (-1174 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-2013 ((|#2|) 73)) (-3823 (($) NIL (|has| |#1| (-327)))) (-2754 (((-1174 |#1|) $ (-1174 $)) 89) (((-632 |#1|) (-1174 $) (-1174 $)) NIL) (((-1174 |#1|) $) 71) (((-632 |#1|) (-1174 $)) 85)) (-2069 (((-1174 |#1|) $) NIL) (($ (-1174 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (|has| |#1| (-327)))) (-4100 (((-798) $) 57) (($ (-525)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-341))) (($ (-385 (-525))) NIL (-2067 (|has| |#1| (-341)) (|has| |#1| (-968 (-385 (-525))))))) (-1463 (($ $) NIL (|has| |#1| (-327))) (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3153 ((|#2| $) 82)) (-2448 (((-713)) 75)) (-2103 (((-1174 $)) 81)) (-1571 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3364 (($) 30 T CONST)) (-3375 (($) 19 T CONST)) (-2401 (($ $) NIL (-2067 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) NIL (-2067 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1092))))) (($ $ (-1 |#1| |#1|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-2775 (((-108) $ $) 63)) (-2880 (($ $ $) NIL (|has| |#1| (-341)))) (-2871 (($ $) 67) (($ $ $) NIL)) (-2860 (($ $ $) 65)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-385 (-525)) $) NIL (|has| |#1| (-341))) (($ $ (-385 (-525))) NIL (|has| |#1| (-341)))))
(((-1003 |#1| |#2| |#3|) (-667 |#1| |#2|) (-160) (-1150 |#1|) |#2|) (T -1003))
NIL
(-667 |#1| |#2|)
-((-2770 (((-396 |#3|) |#3|) 19)))
-(((-1004 |#1| |#2| |#3|) (-10 -7 (-15 -2770 ((-396 |#3|) |#3|))) (-1150 (-385 (-887 (-525)))) (-13 (-341) (-138) (-667 (-385 (-887 (-525))) |#1|)) (-1150 |#2|)) (T -1004))
-((-2770 (*1 *2 *3) (-12 (-4 *4 (-1150 (-385 (-887 (-525))))) (-4 *5 (-13 (-341) (-138) (-667 (-385 (-887 (-525))) *4))) (-5 *2 (-396 *3)) (-5 *1 (-1004 *4 *5 *3)) (-4 *3 (-1150 *5)))))
-(-10 -7 (-15 -2770 ((-396 |#3|) |#3|)))
-((-4236 (((-108) $ $) NIL)) (-2638 (($ $ $) 14)) (-3662 (($ $ $) 15)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1504 (($) 6)) (-3210 (((-1092) $) 18)) (-1217 (((-798) $) 12)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 13)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 8)))
-(((-1005) (-13 (-789) (-10 -8 (-15 -1504 ($)) (-15 -3210 ((-1092) $))))) (T -1005))
-((-1504 (*1 *1) (-5 *1 (-1005))) (-3210 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1005)))))
-(-13 (-789) (-10 -8 (-15 -1504 ($)) (-15 -3210 ((-1092) $))))
-((-1746 ((|#1| |#1| (-1 (-525) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-108) |#1|)) 20)) (-3639 (((-1179)) 15)) (-2529 (((-592 |#1|)) 9)))
-(((-1006 |#1|) (-10 -7 (-15 -3639 ((-1179))) (-15 -2529 ((-592 |#1|))) (-15 -1746 (|#1| |#1| (-1 (-108) |#1|))) (-15 -1746 (|#1| |#1| (-1 (-525) |#1| |#1|)))) (-127)) (T -1006))
-((-1746 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-525) *2 *2)) (-4 *2 (-127)) (-5 *1 (-1006 *2)))) (-1746 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-127)) (-5 *1 (-1006 *2)))) (-2529 (*1 *2) (-12 (-5 *2 (-592 *3)) (-5 *1 (-1006 *3)) (-4 *3 (-127)))) (-3639 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1006 *3)) (-4 *3 (-127)))))
-(-10 -7 (-15 -3639 ((-1179))) (-15 -2529 ((-592 |#1|))) (-15 -1746 (|#1| |#1| (-1 (-108) |#1|))) (-15 -1746 (|#1| |#1| (-1 (-525) |#1| |#1|))))
-((-3382 (($ (-104) $) 16)) (-2810 (((-3 (-104) "failed") (-1092) $) 15)) (-2512 (($) 7)) (-2919 (($) 17)) (-1681 (($) 18)) (-2691 (((-592 (-162)) $) 10)) (-1217 (((-798) $) 21)))
-(((-1007) (-13 (-566 (-798)) (-10 -8 (-15 -2512 ($)) (-15 -2691 ((-592 (-162)) $)) (-15 -2810 ((-3 (-104) "failed") (-1092) $)) (-15 -3382 ($ (-104) $)) (-15 -2919 ($)) (-15 -1681 ($))))) (T -1007))
-((-2512 (*1 *1) (-5 *1 (-1007))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-592 (-162))) (-5 *1 (-1007)))) (-2810 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1092)) (-5 *2 (-104)) (-5 *1 (-1007)))) (-3382 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1007)))) (-2919 (*1 *1) (-5 *1 (-1007))) (-1681 (*1 *1) (-5 *1 (-1007))))
-(-13 (-566 (-798)) (-10 -8 (-15 -2512 ($)) (-15 -2691 ((-592 (-162)) $)) (-15 -2810 ((-3 (-104) "failed") (-1092) $)) (-15 -3382 ($ (-104) $)) (-15 -2919 ($)) (-15 -1681 ($))))
-((-3482 (((-1174 (-632 |#1|)) (-592 (-632 |#1|))) 42) (((-1174 (-632 (-887 |#1|))) (-592 (-1092)) (-632 (-887 |#1|))) 63) (((-1174 (-632 (-385 (-887 |#1|)))) (-592 (-1092)) (-632 (-385 (-887 |#1|)))) 79)) (-2387 (((-1174 |#1|) (-632 |#1|) (-592 (-632 |#1|))) 36)))
-(((-1008 |#1|) (-10 -7 (-15 -3482 ((-1174 (-632 (-385 (-887 |#1|)))) (-592 (-1092)) (-632 (-385 (-887 |#1|))))) (-15 -3482 ((-1174 (-632 (-887 |#1|))) (-592 (-1092)) (-632 (-887 |#1|)))) (-15 -3482 ((-1174 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -2387 ((-1174 |#1|) (-632 |#1|) (-592 (-632 |#1|))))) (-341)) (T -1008))
-((-2387 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-632 *5))) (-5 *3 (-632 *5)) (-4 *5 (-341)) (-5 *2 (-1174 *5)) (-5 *1 (-1008 *5)))) (-3482 (*1 *2 *3) (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) (-5 *2 (-1174 (-632 *4))) (-5 *1 (-1008 *4)))) (-3482 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1092))) (-4 *5 (-341)) (-5 *2 (-1174 (-632 (-887 *5)))) (-5 *1 (-1008 *5)) (-5 *4 (-632 (-887 *5))))) (-3482 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1092))) (-4 *5 (-341)) (-5 *2 (-1174 (-632 (-385 (-887 *5))))) (-5 *1 (-1008 *5)) (-5 *4 (-632 (-385 (-887 *5)))))))
-(-10 -7 (-15 -3482 ((-1174 (-632 (-385 (-887 |#1|)))) (-592 (-1092)) (-632 (-385 (-887 |#1|))))) (-15 -3482 ((-1174 (-632 (-887 |#1|))) (-592 (-1092)) (-632 (-887 |#1|)))) (-15 -3482 ((-1174 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -2387 ((-1174 |#1|) (-632 |#1|) (-592 (-632 |#1|)))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2865 (((-592 (-713)) $) NIL) (((-592 (-713)) $ (-1092)) NIL)) (-3398 (((-713) $) NIL) (((-713) $ (-1092)) NIL)) (-2897 (((-592 (-1010 (-1092))) $) NIL)) (-2744 (((-1088 $) $ (-1010 (-1092))) NIL) (((-1088 |#1|) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-3212 (((-713) $) NIL) (((-713) $ (-592 (-1010 (-1092)))) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-1286 (($ $) NIL (|has| |#1| (-429)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2970 (($ $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-1010 (-1092)) "failed") $) NIL) (((-3 (-1092) "failed") $) NIL) (((-3 (-1044 |#1| (-1092)) "failed") $) NIL)) (-1572 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-1010 (-1092)) $) NIL) (((-1092) $) NIL) (((-1044 |#1| (-1092)) $) NIL)) (-3377 (($ $ $ (-1010 (-1092))) NIL (|has| |#1| (-160)))) (-3063 (($ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1576 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1010 (-1092))) NIL (|has| |#1| (-429)))) (-3052 (((-592 $) $) NIL)) (-3673 (((-108) $) NIL (|has| |#1| (-844)))) (-2188 (($ $ |#1| (-497 (-1010 (-1092))) $) NIL)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1010 (-1092)) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1010 (-1092)) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-2581 (((-713) $ (-1092)) NIL) (((-713) $) NIL)) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) NIL)) (-2887 (($ (-1088 |#1|) (-1010 (-1092))) NIL) (($ (-1088 $) (-1010 (-1092))) NIL)) (-4144 (((-592 $) $) NIL)) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-497 (-1010 (-1092)))) NIL) (($ $ (-1010 (-1092)) (-713)) NIL) (($ $ (-592 (-1010 (-1092))) (-592 (-713))) NIL)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ (-1010 (-1092))) NIL)) (-2870 (((-497 (-1010 (-1092))) $) NIL) (((-713) $ (-1010 (-1092))) NIL) (((-592 (-713)) $ (-592 (-1010 (-1092)))) NIL)) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2172 (($ (-1 (-497 (-1010 (-1092))) (-497 (-1010 (-1092)))) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2822 (((-1 $ (-713)) (-1092)) NIL) (((-1 $ (-713)) $) NIL (|has| |#1| (-213)))) (-2431 (((-3 (-1010 (-1092)) "failed") $) NIL)) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2564 (((-1010 (-1092)) $) NIL)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2619 (((-1075) $) NIL)) (-3916 (((-108) $) NIL)) (-1334 (((-3 (-592 $) "failed") $) NIL)) (-2001 (((-3 (-592 $) "failed") $) NIL)) (-2121 (((-3 (-2 (|:| |var| (-1010 (-1092))) (|:| -4193 (-713))) "failed") $) NIL)) (-2253 (($ $) NIL)) (-2093 (((-1039) $) NIL)) (-3007 (((-108) $) NIL)) (-3019 ((|#1| $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-429)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2770 (((-396 $) $) NIL (|has| |#1| (-844)))) (-1715 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2457 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1010 (-1092)) |#1|) NIL) (($ $ (-592 (-1010 (-1092))) (-592 |#1|)) NIL) (($ $ (-1010 (-1092)) $) NIL) (($ $ (-592 (-1010 (-1092))) (-592 $)) NIL) (($ $ (-1092) $) NIL (|has| |#1| (-213))) (($ $ (-592 (-1092)) (-592 $)) NIL (|has| |#1| (-213))) (($ $ (-1092) |#1|) NIL (|has| |#1| (-213))) (($ $ (-592 (-1092)) (-592 |#1|)) NIL (|has| |#1| (-213)))) (-1975 (($ $ (-1010 (-1092))) NIL (|has| |#1| (-160)))) (-3376 (($ $ (-1010 (-1092))) NIL) (($ $ (-592 (-1010 (-1092)))) NIL) (($ $ (-1010 (-1092)) (-713)) NIL) (($ $ (-592 (-1010 (-1092))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2866 (((-592 (-1092)) $) NIL)) (-2343 (((-497 (-1010 (-1092))) $) NIL) (((-713) $ (-1010 (-1092))) NIL) (((-592 (-713)) $ (-592 (-1010 (-1092)))) NIL) (((-713) $ (-1092)) NIL)) (-3210 (((-827 (-357)) $) NIL (-12 (|has| (-1010 (-1092)) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-1010 (-1092)) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-1010 (-1092)) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-3658 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1010 (-1092))) NIL (|has| |#1| (-429)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-1010 (-1092))) NIL) (($ (-1092)) NIL) (($ (-1044 |#1| (-1092))) NIL) (($ (-385 (-525))) NIL (-3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-1684 (((-592 |#1|) $) NIL)) (-1568 ((|#1| $ (-497 (-1010 (-1092)))) NIL) (($ $ (-1010 (-1092)) (-713)) NIL) (($ $ (-592 (-1010 (-1092))) (-592 (-713))) NIL)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-3917 (((-713)) NIL)) (-3716 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $ (-1010 (-1092))) NIL) (($ $ (-592 (-1010 (-1092)))) NIL) (($ $ (-1010 (-1092)) (-713)) NIL) (($ $ (-592 (-1010 (-1092))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-4201 (((-396 |#3|) |#3|) 19)))
+(((-1004 |#1| |#2| |#3|) (-10 -7 (-15 -4201 ((-396 |#3|) |#3|))) (-1150 (-385 (-887 (-525)))) (-13 (-341) (-138) (-667 (-385 (-887 (-525))) |#1|)) (-1150 |#2|)) (T -1004))
+((-4201 (*1 *2 *3) (-12 (-4 *4 (-1150 (-385 (-887 (-525))))) (-4 *5 (-13 (-341) (-138) (-667 (-385 (-887 (-525))) *4))) (-5 *2 (-396 *3)) (-5 *1 (-1004 *4 *5 *3)) (-4 *3 (-1150 *5)))))
+(-10 -7 (-15 -4201 ((-396 |#3|) |#3|)))
+((-4087 (((-108) $ $) NIL)) (-3033 (($ $ $) 14)) (-1609 (($ $ $) 15)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-3122 (($) 6)) (-2069 (((-1092) $) 18)) (-4100 (((-798) $) 12)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 13)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 8)))
+(((-1005) (-13 (-789) (-10 -8 (-15 -3122 ($)) (-15 -2069 ((-1092) $))))) (T -1005))
+((-3122 (*1 *1) (-5 *1 (-1005))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1005)))))
+(-13 (-789) (-10 -8 (-15 -3122 ($)) (-15 -2069 ((-1092) $))))
+((-2537 ((|#1| |#1| (-1 (-525) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-108) |#1|)) 20)) (-2551 (((-1179)) 15)) (-2099 (((-592 |#1|)) 9)))
+(((-1006 |#1|) (-10 -7 (-15 -2551 ((-1179))) (-15 -2099 ((-592 |#1|))) (-15 -2537 (|#1| |#1| (-1 (-108) |#1|))) (-15 -2537 (|#1| |#1| (-1 (-525) |#1| |#1|)))) (-127)) (T -1006))
+((-2537 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-525) *2 *2)) (-4 *2 (-127)) (-5 *1 (-1006 *2)))) (-2537 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-127)) (-5 *1 (-1006 *2)))) (-2099 (*1 *2) (-12 (-5 *2 (-592 *3)) (-5 *1 (-1006 *3)) (-4 *3 (-127)))) (-2551 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1006 *3)) (-4 *3 (-127)))))
+(-10 -7 (-15 -2551 ((-1179))) (-15 -2099 ((-592 |#1|))) (-15 -2537 (|#1| |#1| (-1 (-108) |#1|))) (-15 -2537 (|#1| |#1| (-1 (-525) |#1| |#1|))))
+((-3844 (($ (-104) $) 16)) (-2439 (((-3 (-104) "failed") (-1092) $) 15)) (-1558 (($) 7)) (-4111 (($) 17)) (-3105 (($) 18)) (-2592 (((-592 (-162)) $) 10)) (-4100 (((-798) $) 21)))
+(((-1007) (-13 (-566 (-798)) (-10 -8 (-15 -1558 ($)) (-15 -2592 ((-592 (-162)) $)) (-15 -2439 ((-3 (-104) "failed") (-1092) $)) (-15 -3844 ($ (-104) $)) (-15 -4111 ($)) (-15 -3105 ($))))) (T -1007))
+((-1558 (*1 *1) (-5 *1 (-1007))) (-2592 (*1 *2 *1) (-12 (-5 *2 (-592 (-162))) (-5 *1 (-1007)))) (-2439 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1092)) (-5 *2 (-104)) (-5 *1 (-1007)))) (-3844 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1007)))) (-4111 (*1 *1) (-5 *1 (-1007))) (-3105 (*1 *1) (-5 *1 (-1007))))
+(-13 (-566 (-798)) (-10 -8 (-15 -1558 ($)) (-15 -2592 ((-592 (-162)) $)) (-15 -2439 ((-3 (-104) "failed") (-1092) $)) (-15 -3844 ($ (-104) $)) (-15 -4111 ($)) (-15 -3105 ($))))
+((-3551 (((-1174 (-632 |#1|)) (-592 (-632 |#1|))) 42) (((-1174 (-632 (-887 |#1|))) (-592 (-1092)) (-632 (-887 |#1|))) 63) (((-1174 (-632 (-385 (-887 |#1|)))) (-592 (-1092)) (-632 (-385 (-887 |#1|)))) 79)) (-2754 (((-1174 |#1|) (-632 |#1|) (-592 (-632 |#1|))) 36)))
+(((-1008 |#1|) (-10 -7 (-15 -3551 ((-1174 (-632 (-385 (-887 |#1|)))) (-592 (-1092)) (-632 (-385 (-887 |#1|))))) (-15 -3551 ((-1174 (-632 (-887 |#1|))) (-592 (-1092)) (-632 (-887 |#1|)))) (-15 -3551 ((-1174 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -2754 ((-1174 |#1|) (-632 |#1|) (-592 (-632 |#1|))))) (-341)) (T -1008))
+((-2754 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-632 *5))) (-5 *3 (-632 *5)) (-4 *5 (-341)) (-5 *2 (-1174 *5)) (-5 *1 (-1008 *5)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) (-5 *2 (-1174 (-632 *4))) (-5 *1 (-1008 *4)))) (-3551 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1092))) (-4 *5 (-341)) (-5 *2 (-1174 (-632 (-887 *5)))) (-5 *1 (-1008 *5)) (-5 *4 (-632 (-887 *5))))) (-3551 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1092))) (-4 *5 (-341)) (-5 *2 (-1174 (-632 (-385 (-887 *5))))) (-5 *1 (-1008 *5)) (-5 *4 (-632 (-385 (-887 *5)))))))
+(-10 -7 (-15 -3551 ((-1174 (-632 (-385 (-887 |#1|)))) (-592 (-1092)) (-632 (-385 (-887 |#1|))))) (-15 -3551 ((-1174 (-632 (-887 |#1|))) (-592 (-1092)) (-632 (-887 |#1|)))) (-15 -3551 ((-1174 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -2754 ((-1174 |#1|) (-632 |#1|) (-592 (-632 |#1|)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1761 (((-592 (-713)) $) NIL) (((-592 (-713)) $ (-1092)) NIL)) (-4016 (((-713) $) NIL) (((-713) $ (-1092)) NIL)) (-1296 (((-592 (-1010 (-1092))) $) NIL)) (-4169 (((-1088 $) $ (-1010 (-1092))) NIL) (((-1088 |#1|) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-1928 (((-713) $) NIL) (((-713) $ (-592 (-1010 (-1092)))) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4195 (($ $) NIL (|has| |#1| (-429)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-3385 (($ $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-1010 (-1092)) "failed") $) NIL) (((-3 (-1092) "failed") $) NIL) (((-3 (-1044 |#1| (-1092)) "failed") $) NIL)) (-4105 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-1010 (-1092)) $) NIL) (((-1092) $) NIL) (((-1044 |#1| (-1092)) $) NIL)) (-3801 (($ $ $ (-1010 (-1092))) NIL (|has| |#1| (-160)))) (-1451 (($ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3201 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1010 (-1092))) NIL (|has| |#1| (-429)))) (-1441 (((-592 $) $) NIL)) (-1798 (((-108) $) NIL (|has| |#1| (-844)))) (-1457 (($ $ |#1| (-497 (-1010 (-1092))) $) NIL)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1010 (-1092)) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1010 (-1092)) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-4000 (((-713) $ (-1092)) NIL) (((-713) $) NIL)) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) NIL)) (-1284 (($ (-1088 |#1|) (-1010 (-1092))) NIL) (($ (-1088 $) (-1010 (-1092))) NIL)) (-2884 (((-592 $) $) NIL)) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-497 (-1010 (-1092)))) NIL) (($ $ (-1010 (-1092)) (-713)) NIL) (($ $ (-592 (-1010 (-1092))) (-592 (-713))) NIL)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ (-1010 (-1092))) NIL)) (-1819 (((-497 (-1010 (-1092))) $) NIL) (((-713) $ (-1010 (-1092))) NIL) (((-592 (-713)) $ (-592 (-1010 (-1092)))) NIL)) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-1314 (($ (-1 (-497 (-1010 (-1092))) (-497 (-1010 (-1092)))) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2535 (((-1 $ (-713)) (-1092)) NIL) (((-1 $ (-713)) $) NIL (|has| |#1| (-213)))) (-2018 (((-3 (-1010 (-1092)) "failed") $) NIL)) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-3481 (((-1010 (-1092)) $) NIL)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1289 (((-1075) $) NIL)) (-2438 (((-108) $) NIL)) (-2977 (((-3 (-592 $) "failed") $) NIL)) (-3165 (((-3 (-592 $) "failed") $) NIL)) (-1986 (((-3 (-2 (|:| |var| (-1010 (-1092))) (|:| -2168 (-713))) "failed") $) NIL)) (-3343 (($ $) NIL)) (-3993 (((-1039) $) NIL)) (-1399 (((-108) $) NIL)) (-1407 ((|#1| $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-429)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4201 (((-396 $) $) NIL (|has| |#1| (-844)))) (-1311 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2825 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1010 (-1092)) |#1|) NIL) (($ $ (-592 (-1010 (-1092))) (-592 |#1|)) NIL) (($ $ (-1010 (-1092)) $) NIL) (($ $ (-592 (-1010 (-1092))) (-592 $)) NIL) (($ $ (-1092) $) NIL (|has| |#1| (-213))) (($ $ (-592 (-1092)) (-592 $)) NIL (|has| |#1| (-213))) (($ $ (-1092) |#1|) NIL (|has| |#1| (-213))) (($ $ (-592 (-1092)) (-592 |#1|)) NIL (|has| |#1| (-213)))) (-4115 (($ $ (-1010 (-1092))) NIL (|has| |#1| (-160)))) (-2702 (($ $ (-1010 (-1092))) NIL) (($ $ (-592 (-1010 (-1092)))) NIL) (($ $ (-1010 (-1092)) (-713)) NIL) (($ $ (-592 (-1010 (-1092))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1771 (((-592 (-1092)) $) NIL)) (-3529 (((-497 (-1010 (-1092))) $) NIL) (((-713) $ (-1010 (-1092))) NIL) (((-592 (-713)) $ (-592 (-1010 (-1092)))) NIL) (((-713) $ (-1092)) NIL)) (-2069 (((-827 (-357)) $) NIL (-12 (|has| (-1010 (-1092)) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-1010 (-1092)) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-1010 (-1092)) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-1661 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1010 (-1092))) NIL (|has| |#1| (-429)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-1010 (-1092))) NIL) (($ (-1092)) NIL) (($ (-1044 |#1| (-1092))) NIL) (($ (-385 (-525))) NIL (-2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3137 (((-592 |#1|) $) NIL)) (-3136 ((|#1| $ (-497 (-1010 (-1092)))) NIL) (($ $ (-1010 (-1092)) (-713)) NIL) (($ $ (-592 (-1010 (-1092))) (-592 (-713))) NIL)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2448 (((-713)) NIL)) (-4042 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $ (-1010 (-1092))) NIL) (($ $ (-592 (-1010 (-1092)))) NIL) (($ $ (-1010 (-1092)) (-713)) NIL) (($ $ (-592 (-1010 (-1092))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-1009 |#1|) (-13 (-232 |#1| (-1092) (-1010 (-1092)) (-497 (-1010 (-1092)))) (-968 (-1044 |#1| (-1092)))) (-977)) (T -1009))
NIL
(-13 (-232 |#1| (-1092) (-1010 (-1092)) (-497 (-1010 (-1092)))) (-968 (-1044 |#1| (-1092))))
-((-4236 (((-108) $ $) NIL)) (-3398 (((-713) $) NIL)) (-2499 ((|#1| $) 10)) (-3077 (((-3 |#1| "failed") $) NIL)) (-1572 ((|#1| $) NIL)) (-2581 (((-713) $) 11)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-2822 (($ |#1| (-713)) 9)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3376 (($ $) NIL) (($ $ (-713)) NIL)) (-1217 (((-798) $) NIL) (($ |#1|) NIL)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 15)))
+((-4087 (((-108) $ $) NIL)) (-4016 (((-713) $) NIL)) (-3469 ((|#1| $) 10)) (-1934 (((-3 |#1| "failed") $) NIL)) (-4105 ((|#1| $) NIL)) (-4000 (((-713) $) 11)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-2535 (($ |#1| (-713)) 9)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2702 (($ $) NIL) (($ $ (-713)) NIL)) (-4100 (((-798) $) NIL) (($ |#1|) NIL)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 15)))
(((-1010 |#1|) (-245 |#1|) (-789)) (T -1010))
NIL
(-245 |#1|)
-((-3165 (((-592 |#2|) (-1 |#2| |#1|) (-1015 |#1|)) 24 (|has| |#1| (-787))) (((-1015 |#2|) (-1 |#2| |#1|) (-1015 |#1|)) 14)))
-(((-1011 |#1| |#2|) (-10 -7 (-15 -3165 ((-1015 |#2|) (-1 |#2| |#1|) (-1015 |#1|))) (IF (|has| |#1| (-787)) (-15 -3165 ((-592 |#2|) (-1 |#2| |#1|) (-1015 |#1|))) |%noBranch|)) (-1128) (-1128)) (T -1011))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1015 *5)) (-4 *5 (-787)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-592 *6)) (-5 *1 (-1011 *5 *6)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1015 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1015 *6)) (-5 *1 (-1011 *5 *6)))))
-(-10 -7 (-15 -3165 ((-1015 |#2|) (-1 |#2| |#1|) (-1015 |#1|))) (IF (|has| |#1| (-787)) (-15 -3165 ((-592 |#2|) (-1 |#2| |#1|) (-1015 |#1|))) |%noBranch|))
-((-3165 (((-1013 |#2|) (-1 |#2| |#1|) (-1013 |#1|)) 19)))
-(((-1012 |#1| |#2|) (-10 -7 (-15 -3165 ((-1013 |#2|) (-1 |#2| |#1|) (-1013 |#1|)))) (-1128) (-1128)) (T -1012))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1013 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1013 *6)) (-5 *1 (-1012 *5 *6)))))
-(-10 -7 (-15 -3165 ((-1013 |#2|) (-1 |#2| |#1|) (-1013 |#1|))))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2499 (((-1092) $) 11)) (-3467 (((-1015 |#1|) $) 12)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-2011 (($ (-1092) (-1015 |#1|)) 10)) (-1217 (((-798) $) 20 (|has| |#1| (-1020)))) (-3955 (((-108) $ $) 15 (|has| |#1| (-1020)))))
-(((-1013 |#1|) (-13 (-1128) (-10 -8 (-15 -2011 ($ (-1092) (-1015 |#1|))) (-15 -2499 ((-1092) $)) (-15 -3467 ((-1015 |#1|) $)) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|))) (-1128)) (T -1013))
-((-2011 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1015 *4)) (-4 *4 (-1128)) (-5 *1 (-1013 *4)))) (-2499 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1013 *3)) (-4 *3 (-1128)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-1015 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-1128)))))
-(-13 (-1128) (-10 -8 (-15 -2011 ($ (-1092) (-1015 |#1|))) (-15 -2499 ((-1092) $)) (-15 -3467 ((-1015 |#1|) $)) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|)))
-((-3467 (($ |#1| |#1|) 7)) (-2235 ((|#1| $) 10)) (-3564 ((|#1| $) 12)) (-3575 (((-525) $) 8)) (-1519 ((|#1| $) 9)) (-3586 ((|#1| $) 11)) (-3210 (($ |#1|) 6)) (-3195 (($ |#1| |#1|) 14)) (-3752 (($ $ (-525)) 13)))
+((-2016 (((-592 |#2|) (-1 |#2| |#1|) (-1015 |#1|)) 24 (|has| |#1| (-787))) (((-1015 |#2|) (-1 |#2| |#1|) (-1015 |#1|)) 14)))
+(((-1011 |#1| |#2|) (-10 -7 (-15 -2016 ((-1015 |#2|) (-1 |#2| |#1|) (-1015 |#1|))) (IF (|has| |#1| (-787)) (-15 -2016 ((-592 |#2|) (-1 |#2| |#1|) (-1015 |#1|))) |%noBranch|)) (-1128) (-1128)) (T -1011))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1015 *5)) (-4 *5 (-787)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-592 *6)) (-5 *1 (-1011 *5 *6)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1015 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1015 *6)) (-5 *1 (-1011 *5 *6)))))
+(-10 -7 (-15 -2016 ((-1015 |#2|) (-1 |#2| |#1|) (-1015 |#1|))) (IF (|has| |#1| (-787)) (-15 -2016 ((-592 |#2|) (-1 |#2| |#1|) (-1015 |#1|))) |%noBranch|))
+((-2016 (((-1013 |#2|) (-1 |#2| |#1|) (-1013 |#1|)) 19)))
+(((-1012 |#1| |#2|) (-10 -7 (-15 -2016 ((-1013 |#2|) (-1 |#2| |#1|) (-1013 |#1|)))) (-1128) (-1128)) (T -1012))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1013 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1013 *6)) (-5 *1 (-1012 *5 *6)))))
+(-10 -7 (-15 -2016 ((-1013 |#2|) (-1 |#2| |#1|) (-1013 |#1|))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3469 (((-1092) $) 11)) (-4009 (((-1015 |#1|) $) 12)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3237 (($ (-1092) (-1015 |#1|)) 10)) (-4100 (((-798) $) 20 (|has| |#1| (-1020)))) (-2775 (((-108) $ $) 15 (|has| |#1| (-1020)))))
+(((-1013 |#1|) (-13 (-1128) (-10 -8 (-15 -3237 ($ (-1092) (-1015 |#1|))) (-15 -3469 ((-1092) $)) (-15 -4009 ((-1015 |#1|) $)) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|))) (-1128)) (T -1013))
+((-3237 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1015 *4)) (-4 *4 (-1128)) (-5 *1 (-1013 *4)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1013 *3)) (-4 *3 (-1128)))) (-4009 (*1 *2 *1) (-12 (-5 *2 (-1015 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-1128)))))
+(-13 (-1128) (-10 -8 (-15 -3237 ($ (-1092) (-1015 |#1|))) (-15 -3469 ((-1092) $)) (-15 -4009 ((-1015 |#1|) $)) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|)))
+((-4009 (($ |#1| |#1|) 7)) (-3736 ((|#1| $) 10)) (-3909 ((|#1| $) 12)) (-3922 (((-525) $) 8)) (-1805 ((|#1| $) 9)) (-3935 ((|#1| $) 11)) (-2069 (($ |#1|) 6)) (-1393 (($ |#1| |#1|) 14)) (-2578 (($ $ (-525)) 13)))
(((-1014 |#1|) (-131) (-1128)) (T -1014))
-((-3195 (*1 *1 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))) (-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1014 *3)) (-4 *3 (-1128)))) (-3564 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))) (-2235 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1128)) (-5 *2 (-525)))) (-3467 (*1 *1 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))) (-3210 (*1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))))
-(-13 (-1128) (-10 -8 (-15 -3195 ($ |t#1| |t#1|)) (-15 -3752 ($ $ (-525))) (-15 -3564 (|t#1| $)) (-15 -3586 (|t#1| $)) (-15 -2235 (|t#1| $)) (-15 -1519 (|t#1| $)) (-15 -3575 ((-525) $)) (-15 -3467 ($ |t#1| |t#1|)) (-15 -3210 ($ |t#1|))))
+((-1393 (*1 *1 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))) (-2578 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1014 *3)) (-4 *3 (-1128)))) (-3909 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))) (-3736 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))) (-1805 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1128)) (-5 *2 (-525)))) (-4009 (*1 *1 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))) (-2069 (*1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))))
+(-13 (-1128) (-10 -8 (-15 -1393 ($ |t#1| |t#1|)) (-15 -2578 ($ $ (-525))) (-15 -3909 (|t#1| $)) (-15 -3935 (|t#1| $)) (-15 -3736 (|t#1| $)) (-15 -1805 (|t#1| $)) (-15 -3922 ((-525) $)) (-15 -4009 ($ |t#1| |t#1|)) (-15 -2069 ($ |t#1|))))
(((-1128) . T))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3467 (($ |#1| |#1|) 15)) (-3165 (((-592 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-787)))) (-2235 ((|#1| $) 10)) (-3564 ((|#1| $) 9)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3575 (((-525) $) 14)) (-1519 ((|#1| $) 12)) (-3586 ((|#1| $) 11)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3751 (((-592 |#1|) $) 36 (|has| |#1| (-787))) (((-592 |#1|) (-592 $)) 35 (|has| |#1| (-787)))) (-3210 (($ |#1|) 26)) (-1217 (((-798) $) 25 (|has| |#1| (-1020)))) (-3195 (($ |#1| |#1|) 8)) (-3752 (($ $ (-525)) 16)) (-3955 (((-108) $ $) 19 (|has| |#1| (-1020)))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-4009 (($ |#1| |#1|) 15)) (-2016 (((-592 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-787)))) (-3736 ((|#1| $) 10)) (-3909 ((|#1| $) 9)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3922 (((-525) $) 14)) (-1805 ((|#1| $) 12)) (-3935 ((|#1| $) 11)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-2361 (((-592 |#1|) $) 36 (|has| |#1| (-787))) (((-592 |#1|) (-592 $)) 35 (|has| |#1| (-787)))) (-2069 (($ |#1|) 26)) (-4100 (((-798) $) 25 (|has| |#1| (-1020)))) (-1393 (($ |#1| |#1|) 8)) (-2578 (($ $ (-525)) 16)) (-2775 (((-108) $ $) 19 (|has| |#1| (-1020)))))
(((-1015 |#1|) (-13 (-1014 |#1|) (-10 -7 (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-1016 |#1| (-592 |#1|))) |%noBranch|))) (-1128)) (T -1015))
NIL
(-13 (-1014 |#1|) (-10 -7 (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-1016 |#1| (-592 |#1|))) |%noBranch|)))
-((-3467 (($ |#1| |#1|) 7)) (-3165 ((|#2| (-1 |#1| |#1|) $) 16)) (-2235 ((|#1| $) 10)) (-3564 ((|#1| $) 12)) (-3575 (((-525) $) 8)) (-1519 ((|#1| $) 9)) (-3586 ((|#1| $) 11)) (-3751 ((|#2| (-592 $)) 18) ((|#2| $) 17)) (-3210 (($ |#1|) 6)) (-3195 (($ |#1| |#1|) 14)) (-3752 (($ $ (-525)) 13)))
+((-4009 (($ |#1| |#1|) 7)) (-2016 ((|#2| (-1 |#1| |#1|) $) 16)) (-3736 ((|#1| $) 10)) (-3909 ((|#1| $) 12)) (-3922 (((-525) $) 8)) (-1805 ((|#1| $) 9)) (-3935 ((|#1| $) 11)) (-2361 ((|#2| (-592 $)) 18) ((|#2| $) 17)) (-2069 (($ |#1|) 6)) (-1393 (($ |#1| |#1|) 14)) (-2578 (($ $ (-525)) 13)))
(((-1016 |#1| |#2|) (-131) (-787) (-1066 |t#1|)) (T -1016))
-((-3751 (*1 *2 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-1016 *4 *2)) (-4 *4 (-787)) (-4 *2 (-1066 *4)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *2)) (-4 *3 (-787)) (-4 *2 (-1066 *3)))) (-3165 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1016 *4 *2)) (-4 *4 (-787)) (-4 *2 (-1066 *4)))))
-(-13 (-1014 |t#1|) (-10 -8 (-15 -3751 (|t#2| (-592 $))) (-15 -3751 (|t#2| $)) (-15 -3165 (|t#2| (-1 |t#1| |t#1|) $))))
+((-2361 (*1 *2 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-1016 *4 *2)) (-4 *4 (-787)) (-4 *2 (-1066 *4)))) (-2361 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *2)) (-4 *3 (-787)) (-4 *2 (-1066 *3)))) (-2016 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1016 *4 *2)) (-4 *4 (-787)) (-4 *2 (-1066 *4)))))
+(-13 (-1014 |t#1|) (-10 -8 (-15 -2361 (|t#2| (-592 $))) (-15 -2361 (|t#2| $)) (-15 -2016 (|t#2| (-1 |t#1| |t#1|) $))))
(((-1014 |#1|) . T) ((-1128) . T))
-((-2600 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3703 (($ $ $) 10)) (-1535 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1017 |#1| |#2|) (-10 -8 (-15 -2600 (|#1| |#2| |#1|)) (-15 -2600 (|#1| |#1| |#2|)) (-15 -2600 (|#1| |#1| |#1|)) (-15 -3703 (|#1| |#1| |#1|)) (-15 -1535 (|#1| |#1| |#2|)) (-15 -1535 (|#1| |#1| |#1|))) (-1018 |#2|) (-1020)) (T -1017))
+((-1705 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3907 (($ $ $) 10)) (-1292 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1017 |#1| |#2|) (-10 -8 (-15 -1705 (|#1| |#2| |#1|)) (-15 -1705 (|#1| |#1| |#2|)) (-15 -1705 (|#1| |#1| |#1|)) (-15 -3907 (|#1| |#1| |#1|)) (-15 -1292 (|#1| |#1| |#2|)) (-15 -1292 (|#1| |#1| |#1|))) (-1018 |#2|) (-1020)) (T -1017))
NIL
-(-10 -8 (-15 -2600 (|#1| |#2| |#1|)) (-15 -2600 (|#1| |#1| |#2|)) (-15 -2600 (|#1| |#1| |#1|)) (-15 -3703 (|#1| |#1| |#1|)) (-15 -1535 (|#1| |#1| |#2|)) (-15 -1535 (|#1| |#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-2600 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3703 (($ $ $) 20)) (-2267 (((-108) $ $) 19)) (-3991 (((-108) $ (-713)) 35)) (-2839 (($) 25) (($ (-592 |#1|)) 24)) (-3785 (($ (-1 (-108) |#1|) $) 56 (|has| $ (-6 -4258)))) (-2169 (($) 36 T CONST)) (-1910 (($ $) 59 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1703 (($ |#1| $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4258)))) (-3440 (((-592 |#1|) $) 43 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) 34)) (-2694 (((-592 |#1|) $) 44 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 46 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 38)) (-2912 (((-108) $ (-713)) 33)) (-2619 (((-1075) $) 9)) (-2099 (($ $ $) 23)) (-2093 (((-1039) $) 10)) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 52)) (-3944 (((-108) (-1 (-108) |#1|) $) 41 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 |#1|) (-592 |#1|)) 50 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 48 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 (-273 |#1|))) 47 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 29)) (-2659 (((-108) $) 32)) (-2512 (($) 31)) (-1535 (($ $ $) 22) (($ $ |#1|) 21)) (-2110 (((-713) |#1| $) 45 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) (((-713) (-1 (-108) |#1|) $) 42 (|has| $ (-6 -4258)))) (-1462 (($ $) 30)) (-3210 (((-501) $) 60 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 51)) (-1217 (((-798) $) 11)) (-3240 (($) 27) (($ (-592 |#1|)) 26)) (-3029 (((-108) (-1 (-108) |#1|) $) 40 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 6)) (-3978 (((-108) $ $) 28)) (-3522 (((-713) $) 37 (|has| $ (-6 -4258)))))
+(-10 -8 (-15 -1705 (|#1| |#2| |#1|)) (-15 -1705 (|#1| |#1| |#2|)) (-15 -1705 (|#1| |#1| |#1|)) (-15 -3907 (|#1| |#1| |#1|)) (-15 -1292 (|#1| |#1| |#2|)) (-15 -1292 (|#1| |#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-1705 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3907 (($ $ $) 20)) (-4026 (((-108) $ $) 19)) (-3779 (((-108) $ (-713)) 35)) (-2805 (($) 25) (($ (-592 |#1|)) 24)) (-2399 (($ (-1 (-108) |#1|) $) 56 (|has| $ (-6 -4259)))) (-2475 (($) 36 T CONST)) (-1681 (($ $) 59 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2698 (($ |#1| $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4259)))) (-2175 (((-592 |#1|) $) 43 (|has| $ (-6 -4259)))) (-4207 (((-108) $ $) 28)) (-2516 (((-108) $ (-713)) 34)) (-2617 (((-592 |#1|) $) 44 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 46 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 38)) (-4028 (((-108) $ (-713)) 33)) (-1289 (((-1075) $) 9)) (-2913 (($ $ $) 23)) (-3993 (((-1039) $) 10)) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 52)) (-1518 (((-108) (-1 (-108) |#1|) $) 41 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 |#1|) (-592 |#1|)) 50 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 48 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 (-273 |#1|))) 47 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 29)) (-3479 (((-108) $) 32)) (-1558 (($) 31)) (-1292 (($ $ $) 22) (($ $ |#1|) 21)) (-4002 (((-713) |#1| $) 45 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) (((-713) (-1 (-108) |#1|) $) 42 (|has| $ (-6 -4259)))) (-2503 (($ $) 30)) (-2069 (((-501) $) 60 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 51)) (-4100 (((-798) $) 11)) (-2180 (($) 27) (($ (-592 |#1|)) 26)) (-2706 (((-108) (-1 (-108) |#1|) $) 40 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 6)) (-2827 (((-713) $) 37 (|has| $ (-6 -4259)))))
(((-1018 |#1|) (-131) (-1020)) (T -1018))
-((-3978 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1020)) (-5 *2 (-108)))) (-3240 (*1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-3240 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-1018 *3)))) (-2839 (*1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-2839 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-1018 *3)))) (-2099 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-1535 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-1535 (*1 *1 *1 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-3703 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-2267 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1020)) (-5 *2 (-108)))) (-2600 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-2600 (*1 *1 *1 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-2600 (*1 *1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
-(-13 (-1020) (-142 |t#1|) (-10 -8 (-6 -4248) (-15 -3978 ((-108) $ $)) (-15 -3240 ($)) (-15 -3240 ($ (-592 |t#1|))) (-15 -2839 ($)) (-15 -2839 ($ (-592 |t#1|))) (-15 -2099 ($ $ $)) (-15 -1535 ($ $ $)) (-15 -1535 ($ $ |t#1|)) (-15 -3703 ($ $ $)) (-15 -2267 ((-108) $ $)) (-15 -2600 ($ $ $)) (-15 -2600 ($ $ |t#1|)) (-15 -2600 ($ |t#1| $))))
+((-4207 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1020)) (-5 *2 (-108)))) (-2180 (*1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-2180 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-1018 *3)))) (-2805 (*1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-2805 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-1018 *3)))) (-2913 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-1292 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-1292 (*1 *1 *1 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-3907 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-4026 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1020)) (-5 *2 (-108)))) (-1705 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-1705 (*1 *1 *1 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-1705 (*1 *1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
+(-13 (-1020) (-142 |t#1|) (-10 -8 (-6 -4249) (-15 -4207 ((-108) $ $)) (-15 -2180 ($)) (-15 -2180 ($ (-592 |t#1|))) (-15 -2805 ($)) (-15 -2805 ($ (-592 |t#1|))) (-15 -2913 ($ $ $)) (-15 -1292 ($ $ $)) (-15 -1292 ($ $ |t#1|)) (-15 -3907 ($ $ $)) (-15 -4026 ((-108) $ $)) (-15 -1705 ($ $ $)) (-15 -1705 ($ $ |t#1|)) (-15 -1705 ($ |t#1| $))))
(((-33) . T) ((-97) . T) ((-566 (-798)) . T) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) . T) ((-1128) . T))
-((-2619 (((-1075) $) 10)) (-2093 (((-1039) $) 8)))
-(((-1019 |#1|) (-10 -8 (-15 -2619 ((-1075) |#1|)) (-15 -2093 ((-1039) |#1|))) (-1020)) (T -1019))
+((-1289 (((-1075) $) 10)) (-3993 (((-1039) $) 8)))
+(((-1019 |#1|) (-10 -8 (-15 -1289 ((-1075) |#1|)) (-15 -3993 ((-1039) |#1|))) (-1020)) (T -1019))
NIL
-(-10 -8 (-15 -2619 ((-1075) |#1|)) (-15 -2093 ((-1039) |#1|)))
-((-4236 (((-108) $ $) 7)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3955 (((-108) $ $) 6)))
+(-10 -8 (-15 -1289 ((-1075) |#1|)) (-15 -3993 ((-1039) |#1|)))
+((-4087 (((-108) $ $) 7)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-2775 (((-108) $ $) 6)))
(((-1020) (-131)) (T -1020))
-((-2093 (*1 *2 *1) (-12 (-4 *1 (-1020)) (-5 *2 (-1039)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-1020)) (-5 *2 (-1075)))))
-(-13 (-97) (-566 (-798)) (-10 -8 (-15 -2093 ((-1039) $)) (-15 -2619 ((-1075) $))))
+((-3993 (*1 *2 *1) (-12 (-4 *1 (-1020)) (-5 *2 (-1039)))) (-1289 (*1 *2 *1) (-12 (-4 *1 (-1020)) (-5 *2 (-1075)))))
+(-13 (-97) (-566 (-798)) (-10 -8 (-15 -3993 ((-1039) $)) (-15 -1289 ((-1075) $))))
(((-97) . T) ((-566 (-798)) . T))
-((-4236 (((-108) $ $) NIL)) (-1834 (((-713)) 30)) (-3301 (($ (-592 (-856))) 52)) (-3473 (((-3 $ "failed") $ (-856) (-856)) 58)) (-2502 (($) 32)) (-2004 (((-108) (-856) $) 35)) (-3005 (((-856) $) 50)) (-2619 (((-1075) $) NIL)) (-3555 (($ (-856)) 31)) (-1275 (((-3 $ "failed") $ (-856)) 55)) (-2093 (((-1039) $) NIL)) (-2309 (((-1174 $)) 40)) (-4161 (((-592 (-856)) $) 24)) (-2178 (((-713) $ (-856) (-856)) 56)) (-1217 (((-798) $) 29)) (-3955 (((-108) $ $) 21)))
-(((-1021 |#1| |#2|) (-13 (-346) (-10 -8 (-15 -1275 ((-3 $ "failed") $ (-856))) (-15 -3473 ((-3 $ "failed") $ (-856) (-856))) (-15 -4161 ((-592 (-856)) $)) (-15 -3301 ($ (-592 (-856)))) (-15 -2309 ((-1174 $))) (-15 -2004 ((-108) (-856) $)) (-15 -2178 ((-713) $ (-856) (-856))))) (-856) (-856)) (T -1021))
-((-1275 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-856)) (-5 *1 (-1021 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3473 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-856)) (-5 *1 (-1021 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))) (-3301 (*1 *1 *2) (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))) (-2309 (*1 *2) (-12 (-5 *2 (-1174 (-1021 *3 *4))) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))) (-2004 (*1 *2 *3 *1) (-12 (-5 *3 (-856)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2178 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-856)) (-5 *2 (-713)) (-5 *1 (-1021 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-346) (-10 -8 (-15 -1275 ((-3 $ "failed") $ (-856))) (-15 -3473 ((-3 $ "failed") $ (-856) (-856))) (-15 -4161 ((-592 (-856)) $)) (-15 -3301 ($ (-592 (-856)))) (-15 -2309 ((-1174 $))) (-15 -2004 ((-108) (-856) $)) (-15 -2178 ((-713) $ (-856) (-856)))))
-((-4236 (((-108) $ $) NIL)) (-2622 (($) NIL (|has| |#1| (-346)))) (-2600 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3703 (($ $ $) 72)) (-2267 (((-108) $ $) 73)) (-3991 (((-108) $ (-713)) NIL)) (-1834 (((-713)) NIL (|has| |#1| (-346)))) (-2839 (($ (-592 |#1|)) NIL) (($) 13)) (-1676 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2169 (($) NIL T CONST)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3271 (($ |#1| $) 67 (|has| $ (-6 -4258))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-1703 (($ |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4258)))) (-2502 (($) NIL (|has| |#1| (-346)))) (-3440 (((-592 |#1|) $) 19 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) NIL)) (-2638 ((|#1| $) 57 (|has| |#1| (-789)))) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 66 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3662 ((|#1| $) 55 (|has| |#1| (-789)))) (-2284 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 34)) (-3005 (((-856) $) NIL (|has| |#1| (-346)))) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL)) (-2099 (($ $ $) 70)) (-2992 ((|#1| $) 25)) (-1262 (($ |#1| $) 65)) (-3555 (($ (-856)) NIL (|has| |#1| (-346)))) (-2093 (((-1039) $) NIL)) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 31)) (-4127 ((|#1| $) 27)) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) 21)) (-2512 (($) 11)) (-1535 (($ $ |#1|) NIL) (($ $ $) 71)) (-1760 (($) NIL) (($ (-592 |#1|)) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) 16)) (-3210 (((-501) $) 52 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 61)) (-1574 (($ $) NIL (|has| |#1| (-346)))) (-1217 (((-798) $) NIL)) (-3037 (((-713) $) NIL)) (-3240 (($ (-592 |#1|)) NIL) (($) 12)) (-1956 (($ (-592 |#1|)) NIL)) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 54)) (-3978 (((-108) $ $) NIL)) (-3522 (((-713) $) 10 (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL)) (-1613 (((-713)) 30)) (-1347 (($ (-592 (-856))) 52)) (-3449 (((-3 $ "failed") $ (-856) (-856)) 58)) (-1903 (($) 32)) (-3198 (((-108) (-856) $) 35)) (-3685 (((-856) $) 50)) (-1289 (((-1075) $) NIL)) (-1722 (($ (-856)) 31)) (-3989 (((-3 $ "failed") $ (-856)) 55)) (-3993 (((-1039) $) NIL)) (-3161 (((-1174 $)) 40)) (-3023 (((-592 (-856)) $) 24)) (-2495 (((-713) $ (-856) (-856)) 56)) (-4100 (((-798) $) 29)) (-2775 (((-108) $ $) 21)))
+(((-1021 |#1| |#2|) (-13 (-346) (-10 -8 (-15 -3989 ((-3 $ "failed") $ (-856))) (-15 -3449 ((-3 $ "failed") $ (-856) (-856))) (-15 -3023 ((-592 (-856)) $)) (-15 -1347 ($ (-592 (-856)))) (-15 -3161 ((-1174 $))) (-15 -3198 ((-108) (-856) $)) (-15 -2495 ((-713) $ (-856) (-856))))) (-856) (-856)) (T -1021))
+((-3989 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-856)) (-5 *1 (-1021 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3449 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-856)) (-5 *1 (-1021 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))) (-3161 (*1 *2) (-12 (-5 *2 (-1174 (-1021 *3 *4))) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))) (-3198 (*1 *2 *3 *1) (-12 (-5 *3 (-856)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2495 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-856)) (-5 *2 (-713)) (-5 *1 (-1021 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-346) (-10 -8 (-15 -3989 ((-3 $ "failed") $ (-856))) (-15 -3449 ((-3 $ "failed") $ (-856) (-856))) (-15 -3023 ((-592 (-856)) $)) (-15 -1347 ($ (-592 (-856)))) (-15 -3161 ((-1174 $))) (-15 -3198 ((-108) (-856) $)) (-15 -2495 ((-713) $ (-856) (-856)))))
+((-4087 (((-108) $ $) NIL)) (-1320 (($) NIL (|has| |#1| (-346)))) (-1705 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3907 (($ $ $) 72)) (-4026 (((-108) $ $) 73)) (-3779 (((-108) $ (-713)) NIL)) (-1613 (((-713)) NIL (|has| |#1| (-346)))) (-2805 (($ (-592 |#1|)) NIL) (($) 13)) (-3050 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2475 (($) NIL T CONST)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-4205 (($ |#1| $) 67 (|has| $ (-6 -4259))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4259)))) (-1903 (($) NIL (|has| |#1| (-346)))) (-2175 (((-592 |#1|) $) 19 (|has| $ (-6 -4259)))) (-4207 (((-108) $ $) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-3033 ((|#1| $) 57 (|has| |#1| (-789)))) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 66 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1609 ((|#1| $) 55 (|has| |#1| (-789)))) (-3069 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 34)) (-3685 (((-856) $) NIL (|has| |#1| (-346)))) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL)) (-2913 (($ $ $) 70)) (-3577 ((|#1| $) 25)) (-3246 (($ |#1| $) 65)) (-1722 (($ (-856)) NIL (|has| |#1| (-346)))) (-3993 (((-1039) $) NIL)) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 31)) (-2724 ((|#1| $) 27)) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) 21)) (-1558 (($) 11)) (-1292 (($ $ |#1|) NIL) (($ $ $) 71)) (-2637 (($) NIL) (($ (-592 |#1|)) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) 16)) (-2069 (((-501) $) 52 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 61)) (-3189 (($ $) NIL (|has| |#1| (-346)))) (-4100 (((-798) $) NIL)) (-2763 (((-713) $) NIL)) (-2180 (($ (-592 |#1|)) NIL) (($) 12)) (-3905 (($ (-592 |#1|)) NIL)) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 54)) (-2827 (((-713) $) 10 (|has| $ (-6 -4259)))))
(((-1022 |#1|) (-403 |#1|) (-1020)) (T -1022))
NIL
(-403 |#1|)
-((-4236 (((-108) $ $) 7)) (-1305 (((-108) $) 32)) (-2395 ((|#2| $) 27)) (-2303 (((-108) $) 33)) (-2986 ((|#1| $) 28)) (-4162 (((-108) $) 35)) (-1434 (((-108) $) 37)) (-1486 (((-108) $) 34)) (-2619 (((-1075) $) 9)) (-3841 (((-108) $) 31)) (-2411 ((|#3| $) 26)) (-2093 (((-1039) $) 10)) (-2951 (((-108) $) 30)) (-3299 ((|#4| $) 25)) (-2465 ((|#5| $) 24)) (-3025 (((-108) $ $) 38)) (-3406 (($ $ (-525)) 14) (($ $ (-592 (-525))) 13)) (-2838 (((-592 $) $) 29)) (-3210 (($ (-592 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-1217 (((-798) $) 11)) (-1771 (($ $) 16)) (-1762 (($ $) 17)) (-3080 (((-108) $) 36)) (-3955 (((-108) $ $) 6)) (-3522 (((-525) $) 15)))
+((-4087 (((-108) $ $) 7)) (-3162 (((-108) $) 32)) (-3662 ((|#2| $) 27)) (-3107 (((-108) $) 33)) (-3298 ((|#1| $) 28)) (-3032 (((-108) $) 35)) (-3610 (((-108) $) 37)) (-2232 (((-108) $) 34)) (-1289 (((-1075) $) 9)) (-2849 (((-108) $) 31)) (-3680 ((|#3| $) 26)) (-3993 (((-1039) $) 10)) (-3196 (((-108) $) 30)) (-3536 ((|#4| $) 25)) (-3423 ((|#5| $) 24)) (-1537 (((-108) $ $) 38)) (-3431 (($ $ (-525)) 14) (($ $ (-592 (-525))) 13)) (-1230 (((-592 $) $) 29)) (-2069 (($ (-592 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-4100 (((-798) $) 11)) (-1544 (($ $) 16)) (-1533 (($ $) 17)) (-3121 (((-108) $) 36)) (-2775 (((-108) $ $) 6)) (-2827 (((-525) $) 15)))
(((-1023 |#1| |#2| |#3| |#4| |#5|) (-131) (-1020) (-1020) (-1020) (-1020) (-1020)) (T -1023))
-((-3025 (*1 *2 *1 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-1434 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-4162 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-2303 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-1305 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-2951 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-2838 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-592 *1)) (-4 *1 (-1023 *3 *4 *5 *6 *7)))) (-2986 (*1 *2 *1) (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *2 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *2 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))) (-3299 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *2 *6)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))) (-2465 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *2)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))) (-3210 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)))) (-3210 (*1 *1 *2) (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *2 (-1020)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))) (-3210 (*1 *1 *2) (-12 (-4 *1 (-1023 *3 *2 *4 *5 *6)) (-4 *3 (-1020)) (-4 *2 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))) (-3210 (*1 *1 *2) (-12 (-4 *1 (-1023 *3 *4 *2 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *2 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))) (-3210 (*1 *1 *2) (-12 (-4 *1 (-1023 *3 *4 *5 *2 *6)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *2 (-1020)) (-4 *6 (-1020)))) (-3210 (*1 *1 *2) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *2)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))) (-1762 (*1 *1 *1) (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *2 (-1020)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))) (-1771 (*1 *1 *1) (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *2 (-1020)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-525)))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)))))
-(-13 (-1020) (-10 -8 (-15 -3025 ((-108) $ $)) (-15 -1434 ((-108) $)) (-15 -3080 ((-108) $)) (-15 -4162 ((-108) $)) (-15 -1486 ((-108) $)) (-15 -2303 ((-108) $)) (-15 -1305 ((-108) $)) (-15 -3841 ((-108) $)) (-15 -2951 ((-108) $)) (-15 -2838 ((-592 $) $)) (-15 -2986 (|t#1| $)) (-15 -2395 (|t#2| $)) (-15 -2411 (|t#3| $)) (-15 -3299 (|t#4| $)) (-15 -2465 (|t#5| $)) (-15 -3210 ($ (-592 $))) (-15 -3210 ($ |t#1|)) (-15 -3210 ($ |t#2|)) (-15 -3210 ($ |t#3|)) (-15 -3210 ($ |t#4|)) (-15 -3210 ($ |t#5|)) (-15 -1762 ($ $)) (-15 -1771 ($ $)) (-15 -3522 ((-525) $)) (-15 -3406 ($ $ (-525))) (-15 -3406 ($ $ (-592 (-525))))))
+((-1537 (*1 *2 *1 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-2232 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-2849 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-3196 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-1230 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-592 *1)) (-4 *1 (-1023 *3 *4 *5 *6 *7)))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *2 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *2 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *2 *6)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *2)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))) (-2069 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)))) (-2069 (*1 *1 *2) (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *2 (-1020)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))) (-2069 (*1 *1 *2) (-12 (-4 *1 (-1023 *3 *2 *4 *5 *6)) (-4 *3 (-1020)) (-4 *2 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))) (-2069 (*1 *1 *2) (-12 (-4 *1 (-1023 *3 *4 *2 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *2 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))) (-2069 (*1 *1 *2) (-12 (-4 *1 (-1023 *3 *4 *5 *2 *6)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *2 (-1020)) (-4 *6 (-1020)))) (-2069 (*1 *1 *2) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *2)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))) (-1533 (*1 *1 *1) (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *2 (-1020)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))) (-1544 (*1 *1 *1) (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *2 (-1020)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))) (-2827 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-525)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)))))
+(-13 (-1020) (-10 -8 (-15 -1537 ((-108) $ $)) (-15 -3610 ((-108) $)) (-15 -3121 ((-108) $)) (-15 -3032 ((-108) $)) (-15 -2232 ((-108) $)) (-15 -3107 ((-108) $)) (-15 -3162 ((-108) $)) (-15 -2849 ((-108) $)) (-15 -3196 ((-108) $)) (-15 -1230 ((-592 $) $)) (-15 -3298 (|t#1| $)) (-15 -3662 (|t#2| $)) (-15 -3680 (|t#3| $)) (-15 -3536 (|t#4| $)) (-15 -3423 (|t#5| $)) (-15 -2069 ($ (-592 $))) (-15 -2069 ($ |t#1|)) (-15 -2069 ($ |t#2|)) (-15 -2069 ($ |t#3|)) (-15 -2069 ($ |t#4|)) (-15 -2069 ($ |t#5|)) (-15 -1533 ($ $)) (-15 -1544 ($ $)) (-15 -2827 ((-525) $)) (-15 -3431 ($ $ (-525))) (-15 -3431 ($ $ (-592 (-525))))))
(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL)) (-1305 (((-108) $) NIL)) (-2395 (((-1092) $) NIL)) (-2303 (((-108) $) NIL)) (-2986 (((-1075) $) NIL)) (-4162 (((-108) $) NIL)) (-1434 (((-108) $) NIL)) (-1486 (((-108) $) NIL)) (-2619 (((-1075) $) NIL)) (-3841 (((-108) $) NIL)) (-2411 (((-525) $) NIL)) (-2093 (((-1039) $) NIL)) (-2951 (((-108) $) NIL)) (-3299 (((-205) $) NIL)) (-2465 (((-798) $) NIL)) (-3025 (((-108) $ $) NIL)) (-3406 (($ $ (-525)) NIL) (($ $ (-592 (-525))) NIL)) (-2838 (((-592 $) $) NIL)) (-3210 (($ (-592 $)) NIL) (($ (-1075)) NIL) (($ (-1092)) NIL) (($ (-525)) NIL) (($ (-205)) NIL) (($ (-798)) NIL)) (-1217 (((-798) $) NIL)) (-1771 (($ $) NIL)) (-1762 (($ $) NIL)) (-3080 (((-108) $) NIL)) (-3955 (((-108) $ $) NIL)) (-3522 (((-525) $) NIL)))
+((-4087 (((-108) $ $) NIL)) (-3162 (((-108) $) NIL)) (-3662 (((-1092) $) NIL)) (-3107 (((-108) $) NIL)) (-3298 (((-1075) $) NIL)) (-3032 (((-108) $) NIL)) (-3610 (((-108) $) NIL)) (-2232 (((-108) $) NIL)) (-1289 (((-1075) $) NIL)) (-2849 (((-108) $) NIL)) (-3680 (((-525) $) NIL)) (-3993 (((-1039) $) NIL)) (-3196 (((-108) $) NIL)) (-3536 (((-205) $) NIL)) (-3423 (((-798) $) NIL)) (-1537 (((-108) $ $) NIL)) (-3431 (($ $ (-525)) NIL) (($ $ (-592 (-525))) NIL)) (-1230 (((-592 $) $) NIL)) (-2069 (($ (-592 $)) NIL) (($ (-1075)) NIL) (($ (-1092)) NIL) (($ (-525)) NIL) (($ (-205)) NIL) (($ (-798)) NIL)) (-4100 (((-798) $) NIL)) (-1544 (($ $) NIL)) (-1533 (($ $) NIL)) (-3121 (((-108) $) NIL)) (-2775 (((-108) $ $) NIL)) (-2827 (((-525) $) NIL)))
(((-1024) (-1023 (-1075) (-1092) (-525) (-205) (-798))) (T -1024))
NIL
(-1023 (-1075) (-1092) (-525) (-205) (-798))
-((-4236 (((-108) $ $) NIL)) (-1305 (((-108) $) 38)) (-2395 ((|#2| $) 42)) (-2303 (((-108) $) 37)) (-2986 ((|#1| $) 41)) (-4162 (((-108) $) 35)) (-1434 (((-108) $) 14)) (-1486 (((-108) $) 36)) (-2619 (((-1075) $) NIL)) (-3841 (((-108) $) 39)) (-2411 ((|#3| $) 44)) (-2093 (((-1039) $) NIL)) (-2951 (((-108) $) 40)) (-3299 ((|#4| $) 43)) (-2465 ((|#5| $) 45)) (-3025 (((-108) $ $) 34)) (-3406 (($ $ (-525)) 56) (($ $ (-592 (-525))) 58)) (-2838 (((-592 $) $) 22)) (-3210 (($ (-592 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-1217 (((-798) $) 23)) (-1771 (($ $) 21)) (-1762 (($ $) 52)) (-3080 (((-108) $) 18)) (-3955 (((-108) $ $) 33)) (-3522 (((-525) $) 54)))
+((-4087 (((-108) $ $) NIL)) (-3162 (((-108) $) 38)) (-3662 ((|#2| $) 42)) (-3107 (((-108) $) 37)) (-3298 ((|#1| $) 41)) (-3032 (((-108) $) 35)) (-3610 (((-108) $) 14)) (-2232 (((-108) $) 36)) (-1289 (((-1075) $) NIL)) (-2849 (((-108) $) 39)) (-3680 ((|#3| $) 44)) (-3993 (((-1039) $) NIL)) (-3196 (((-108) $) 40)) (-3536 ((|#4| $) 43)) (-3423 ((|#5| $) 45)) (-1537 (((-108) $ $) 34)) (-3431 (($ $ (-525)) 56) (($ $ (-592 (-525))) 58)) (-1230 (((-592 $) $) 22)) (-2069 (($ (-592 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-4100 (((-798) $) 23)) (-1544 (($ $) 21)) (-1533 (($ $) 52)) (-3121 (((-108) $) 18)) (-2775 (((-108) $ $) 33)) (-2827 (((-525) $) 54)))
(((-1025 |#1| |#2| |#3| |#4| |#5|) (-1023 |#1| |#2| |#3| |#4| |#5|) (-1020) (-1020) (-1020) (-1020) (-1020)) (T -1025))
NIL
(-1023 |#1| |#2| |#3| |#4| |#5|)
-((-3252 (((-1179) $) 23)) (-2960 (($ (-1092) (-412) |#2|) 11)) (-1217 (((-798) $) 16)))
-(((-1026 |#1| |#2|) (-13 (-373) (-10 -8 (-15 -2960 ($ (-1092) (-412) |#2|)))) (-789) (-408 |#1|)) (T -1026))
-((-2960 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-412)) (-4 *5 (-789)) (-5 *1 (-1026 *5 *4)) (-4 *4 (-408 *5)))))
-(-13 (-373) (-10 -8 (-15 -2960 ($ (-1092) (-412) |#2|))))
-((-2492 (((-108) |#5| |#5|) 38)) (-3838 (((-108) |#5| |#5|) 52)) (-2658 (((-108) |#5| (-592 |#5|)) 75) (((-108) |#5| |#5|) 61)) (-1840 (((-108) (-592 |#4|) (-592 |#4|)) 58)) (-2666 (((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) 63)) (-4132 (((-1179)) 33)) (-1263 (((-1179) (-1075) (-1075) (-1075)) 29)) (-3842 (((-592 |#5|) (-592 |#5|)) 82)) (-3229 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|)))) 80)) (-1319 (((-592 (-2 (|:| -3025 (-592 |#4|)) (|:| -2563 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108)) 102)) (-3508 (((-108) |#5| |#5|) 47)) (-2469 (((-3 (-108) "failed") |#5| |#5|) 71)) (-2206 (((-108) (-592 |#4|) (-592 |#4|)) 57)) (-1288 (((-108) (-592 |#4|) (-592 |#4|)) 59)) (-2338 (((-108) (-592 |#4|) (-592 |#4|)) 60)) (-1417 (((-3 (-2 (|:| -3025 (-592 |#4|)) (|:| -2563 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)) 98)) (-2695 (((-592 |#5|) (-592 |#5|)) 43)))
-(((-1027 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1263 ((-1179) (-1075) (-1075) (-1075))) (-15 -4132 ((-1179))) (-15 -2492 ((-108) |#5| |#5|)) (-15 -2695 ((-592 |#5|) (-592 |#5|))) (-15 -3508 ((-108) |#5| |#5|)) (-15 -3838 ((-108) |#5| |#5|)) (-15 -1840 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2206 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1288 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2338 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2469 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2658 ((-108) |#5| |#5|)) (-15 -2658 ((-108) |#5| (-592 |#5|))) (-15 -3842 ((-592 |#5|) (-592 |#5|))) (-15 -2666 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|)))) (-15 -3229 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) (-15 -1319 ((-592 (-2 (|:| -3025 (-592 |#4|)) (|:| -2563 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -1417 ((-3 (-2 (|:| -3025 (-592 |#4|)) (|:| -2563 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|)) (T -1027))
-((-1417 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| -3025 (-592 *9)) (|:| -2563 *4) (|:| |ineq| (-592 *9)))) (-5 *1 (-1027 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9)) (-4 *4 (-996 *6 *7 *8 *9)))) (-1319 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-996 *6 *7 *8 *9)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| -3025 (-592 *9)) (|:| -2563 *10) (|:| |ineq| (-592 *9))))) (-5 *1 (-1027 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9)))) (-3229 (*1 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -2563 *7)))) (-4 *6 (-991 *3 *4 *5)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1027 *3 *4 *5 *6 *7)))) (-2666 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -2563 *8))) (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-996 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *8)))) (-3842 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *1 (-1027 *3 *4 *5 *6 *7)))) (-2658 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1027 *5 *6 *7 *8 *3)))) (-2658 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-2469 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-2338 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-1288 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-2206 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-1840 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-3838 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-3508 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-2695 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *1 (-1027 *3 *4 *5 *6 *7)))) (-2492 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-4132 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179)) (-5 *1 (-1027 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))) (-1263 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1263 ((-1179) (-1075) (-1075) (-1075))) (-15 -4132 ((-1179))) (-15 -2492 ((-108) |#5| |#5|)) (-15 -2695 ((-592 |#5|) (-592 |#5|))) (-15 -3508 ((-108) |#5| |#5|)) (-15 -3838 ((-108) |#5| |#5|)) (-15 -1840 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2206 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1288 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2338 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2469 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2658 ((-108) |#5| |#5|)) (-15 -2658 ((-108) |#5| (-592 |#5|))) (-15 -3842 ((-592 |#5|) (-592 |#5|))) (-15 -2666 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|)))) (-15 -3229 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) (-15 -1319 ((-592 (-2 (|:| -3025 (-592 |#4|)) (|:| -2563 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -1417 ((-3 (-2 (|:| -3025 (-592 |#4|)) (|:| -2563 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108))))
-((-1696 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#5|) 96)) (-3781 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) |#4| |#4| |#5|) 72)) (-2140 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#4| |#5|) 90)) (-3392 (((-592 |#5|) |#4| |#5|) 110)) (-3388 (((-592 |#5|) |#4| |#5|) 117)) (-3867 (((-592 |#5|) |#4| |#5|) 118)) (-1737 (((-592 (-2 (|:| |val| (-108)) (|:| -2563 |#5|))) |#4| |#5|) 97)) (-3042 (((-592 (-2 (|:| |val| (-108)) (|:| -2563 |#5|))) |#4| |#5|) 116)) (-2519 (((-592 (-2 (|:| |val| (-108)) (|:| -2563 |#5|))) |#4| |#5|) 46) (((-108) |#4| |#5|) 53)) (-2441 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) |#3| (-108)) 84) (((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#4| |#5| (-108) (-108)) 50)) (-3727 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#4| |#5|) 79)) (-1895 (((-1179)) 37)) (-1515 (((-1179)) 26)) (-2599 (((-1179) (-1075) (-1075) (-1075)) 33)) (-3281 (((-1179) (-1075) (-1075) (-1075)) 22)))
-(((-1028 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3281 ((-1179) (-1075) (-1075) (-1075))) (-15 -1515 ((-1179))) (-15 -2599 ((-1179) (-1075) (-1075) (-1075))) (-15 -1895 ((-1179))) (-15 -3781 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) |#4| |#4| |#5|)) (-15 -2441 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2441 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) |#3| (-108))) (-15 -3727 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#4| |#5|)) (-15 -2140 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#4| |#5|)) (-15 -2519 ((-108) |#4| |#5|)) (-15 -1737 ((-592 (-2 (|:| |val| (-108)) (|:| -2563 |#5|))) |#4| |#5|)) (-15 -3392 ((-592 |#5|) |#4| |#5|)) (-15 -3042 ((-592 (-2 (|:| |val| (-108)) (|:| -2563 |#5|))) |#4| |#5|)) (-15 -3388 ((-592 |#5|) |#4| |#5|)) (-15 -2519 ((-592 (-2 (|:| |val| (-108)) (|:| -2563 |#5|))) |#4| |#5|)) (-15 -3867 ((-592 |#5|) |#4| |#5|)) (-15 -1696 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#5|))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|)) (T -1028))
-((-1696 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3867 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-2519 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2563 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3388 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3042 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2563 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3392 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1737 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2563 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-2519 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-2140 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3727 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-2441 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -2563 *9)))) (-5 *5 (-108)) (-4 *8 (-991 *6 *7 *4)) (-4 *9 (-996 *6 *7 *4 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789)) (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -2563 *9)))) (-5 *1 (-1028 *6 *7 *4 *8 *9)))) (-2441 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4)))) (-5 *1 (-1028 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3)))) (-3781 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1895 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179)) (-5 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))) (-2599 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179)) (-5 *1 (-1028 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-1515 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179)) (-5 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))) (-3281 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179)) (-5 *1 (-1028 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3281 ((-1179) (-1075) (-1075) (-1075))) (-15 -1515 ((-1179))) (-15 -2599 ((-1179) (-1075) (-1075) (-1075))) (-15 -1895 ((-1179))) (-15 -3781 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) |#4| |#4| |#5|)) (-15 -2441 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2441 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) |#3| (-108))) (-15 -3727 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#4| |#5|)) (-15 -2140 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#4| |#5|)) (-15 -2519 ((-108) |#4| |#5|)) (-15 -1737 ((-592 (-2 (|:| |val| (-108)) (|:| -2563 |#5|))) |#4| |#5|)) (-15 -3392 ((-592 |#5|) |#4| |#5|)) (-15 -3042 ((-592 (-2 (|:| |val| (-108)) (|:| -2563 |#5|))) |#4| |#5|)) (-15 -3388 ((-592 |#5|) |#4| |#5|)) (-15 -2519 ((-592 (-2 (|:| |val| (-108)) (|:| -2563 |#5|))) |#4| |#5|)) (-15 -3867 ((-592 |#5|) |#4| |#5|)) (-15 -1696 ((-592 (-2 (|:| |val| |#4|) (|:| -2563 |#5|))) |#4| |#5|)))
-((-4236 (((-108) $ $) 7)) (-1463 (((-592 (-2 (|:| -2719 $) (|:| -3459 (-592 |#4|)))) (-592 |#4|)) 85)) (-1589 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-2897 (((-592 |#3|) $) 33)) (-2437 (((-108) $) 26)) (-2750 (((-108) $) 17 (|has| |#1| (-517)))) (-3950 (((-108) |#4| $) 101) (((-108) $) 97)) (-2495 ((|#4| |#4| $) 92)) (-1286 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 $))) |#4| $) 126)) (-2458 (((-2 (|:| |under| $) (|:| -2487 $) (|:| |upper| $)) $ |#3|) 27)) (-3991 (((-108) $ (-713)) 44)) (-3785 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4258))) (((-3 |#4| "failed") $ |#3|) 79)) (-2169 (($) 45 T CONST)) (-4089 (((-108) $) 22 (|has| |#1| (-517)))) (-2480 (((-108) $ $) 24 (|has| |#1| (-517)))) (-1207 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3339 (((-108) $) 25 (|has| |#1| (-517)))) (-2712 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3767 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-3333 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-3077 (((-3 $ "failed") (-592 |#4|)) 36)) (-1572 (($ (-592 |#4|)) 35)) (-1886 (((-3 $ "failed") $) 82)) (-3901 ((|#4| |#4| $) 89)) (-1910 (($ $) 68 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258))))) (-1703 (($ |#4| $) 67 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4258)))) (-1607 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-1961 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2834 ((|#4| |#4| $) 87)) (-1284 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4258))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4258))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1877 (((-2 (|:| -2719 (-592 |#4|)) (|:| -3459 (-592 |#4|))) $) 105)) (-1816 (((-108) |#4| $) 136)) (-3458 (((-108) |#4| $) 133)) (-2116 (((-108) |#4| $) 137) (((-108) $) 134)) (-3440 (((-592 |#4|) $) 52 (|has| $ (-6 -4258)))) (-2633 (((-108) |#4| $) 104) (((-108) $) 103)) (-3153 ((|#3| $) 34)) (-3924 (((-108) $ (-713)) 43)) (-2694 (((-592 |#4|) $) 53 (|has| $ (-6 -4258)))) (-2004 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#4| |#4|) $) 47)) (-1598 (((-592 |#3|) $) 32)) (-3919 (((-108) |#3| $) 31)) (-2912 (((-108) $ (-713)) 42)) (-2619 (((-1075) $) 9)) (-4028 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-2370 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 $))) |#4| |#4| $) 127)) (-1717 (((-3 |#4| "failed") $) 83)) (-3606 (((-592 $) |#4| $) 129)) (-3486 (((-3 (-108) (-592 $)) |#4| $) 132)) (-3070 (((-592 (-2 (|:| |val| (-108)) (|:| -2563 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2099 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-3644 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-3159 (((-592 |#4|) $) 107)) (-2686 (((-108) |#4| $) 99) (((-108) $) 95)) (-2423 ((|#4| |#4| $) 90)) (-2338 (((-108) $ $) 110)) (-1806 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2696 (((-108) |#4| $) 100) (((-108) $) 96)) (-3872 ((|#4| |#4| $) 91)) (-2093 (((-1039) $) 10)) (-1872 (((-3 |#4| "failed") $) 84)) (-1983 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3044 (((-3 $ "failed") $ |#4|) 78)) (-3931 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-3944 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-2614 (((-108) $ $) 38)) (-2659 (((-108) $) 41)) (-2512 (($) 40)) (-2343 (((-713) $) 106)) (-2110 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4258)))) (-1462 (($ $) 39)) (-3210 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-1230 (($ (-592 |#4|)) 60)) (-3264 (($ $ |#3|) 28)) (-1425 (($ $ |#3|) 30)) (-1320 (($ $) 88)) (-4008 (($ $ |#3|) 29)) (-1217 (((-798) $) 11) (((-592 |#4|) $) 37)) (-3735 (((-713) $) 76 (|has| |#3| (-346)))) (-1622 (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4027 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-1384 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-3029 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4258)))) (-1221 (((-592 |#3|) $) 81)) (-3162 (((-108) |#4| $) 135)) (-2081 (((-108) |#3| $) 80)) (-3955 (((-108) $ $) 6)) (-3522 (((-713) $) 46 (|has| $ (-6 -4258)))))
+((-2584 (((-1179) $) 23)) (-1641 (($ (-1092) (-412) |#2|) 11)) (-4100 (((-798) $) 16)))
+(((-1026 |#1| |#2|) (-13 (-373) (-10 -8 (-15 -1641 ($ (-1092) (-412) |#2|)))) (-789) (-408 |#1|)) (T -1026))
+((-1641 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1092)) (-5 *3 (-412)) (-4 *5 (-789)) (-5 *1 (-1026 *5 *4)) (-4 *4 (-408 *5)))))
+(-13 (-373) (-10 -8 (-15 -1641 ($ (-1092) (-412) |#2|))))
+((-1380 (((-108) |#5| |#5|) 38)) (-2826 (((-108) |#5| |#5|) 52)) (-3467 (((-108) |#5| (-592 |#5|)) 75) (((-108) |#5| |#5|) 61)) (-2164 (((-108) (-592 |#4|) (-592 |#4|)) 58)) (-3557 (((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) 63)) (-2767 (((-1179)) 33)) (-3260 (((-1179) (-1075) (-1075) (-1075)) 29)) (-2858 (((-592 |#5|) (-592 |#5|)) 82)) (-3877 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|)))) 80)) (-3402 (((-592 (-2 (|:| -1537 (-592 |#4|)) (|:| -1285 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108)) 102)) (-2603 (((-108) |#5| |#5|) 47)) (-2347 (((-3 (-108) "failed") |#5| |#5|) 71)) (-1632 (((-108) (-592 |#4|) (-592 |#4|)) 57)) (-1266 (((-108) (-592 |#4|) (-592 |#4|)) 59)) (-3472 (((-108) (-592 |#4|) (-592 |#4|)) 60)) (-3409 (((-3 (-2 (|:| -1537 (-592 |#4|)) (|:| -1285 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)) 98)) (-2628 (((-592 |#5|) (-592 |#5|)) 43)))
+(((-1027 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3260 ((-1179) (-1075) (-1075) (-1075))) (-15 -2767 ((-1179))) (-15 -1380 ((-108) |#5| |#5|)) (-15 -2628 ((-592 |#5|) (-592 |#5|))) (-15 -2603 ((-108) |#5| |#5|)) (-15 -2826 ((-108) |#5| |#5|)) (-15 -2164 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1632 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1266 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3472 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2347 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3467 ((-108) |#5| |#5|)) (-15 -3467 ((-108) |#5| (-592 |#5|))) (-15 -2858 ((-592 |#5|) (-592 |#5|))) (-15 -3557 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|)))) (-15 -3877 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) (-15 -3402 ((-592 (-2 (|:| -1537 (-592 |#4|)) (|:| -1285 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3409 ((-3 (-2 (|:| -1537 (-592 |#4|)) (|:| -1285 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|)) (T -1027))
+((-3409 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| -1537 (-592 *9)) (|:| -1285 *4) (|:| |ineq| (-592 *9)))) (-5 *1 (-1027 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9)) (-4 *4 (-996 *6 *7 *8 *9)))) (-3402 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-996 *6 *7 *8 *9)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| -1537 (-592 *9)) (|:| -1285 *10) (|:| |ineq| (-592 *9))))) (-5 *1 (-1027 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -1285 *7)))) (-4 *6 (-991 *3 *4 *5)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1027 *3 *4 *5 *6 *7)))) (-3557 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -1285 *8))) (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-996 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *8)))) (-2858 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *1 (-1027 *3 *4 *5 *6 *7)))) (-3467 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1027 *5 *6 *7 *8 *3)))) (-3467 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-2347 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-3472 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-1266 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-1632 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-2164 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-2826 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-2603 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-2628 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *1 (-1027 *3 *4 *5 *6 *7)))) (-1380 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-2767 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179)) (-5 *1 (-1027 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))) (-3260 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3260 ((-1179) (-1075) (-1075) (-1075))) (-15 -2767 ((-1179))) (-15 -1380 ((-108) |#5| |#5|)) (-15 -2628 ((-592 |#5|) (-592 |#5|))) (-15 -2603 ((-108) |#5| |#5|)) (-15 -2826 ((-108) |#5| |#5|)) (-15 -2164 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1632 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1266 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3472 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2347 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3467 ((-108) |#5| |#5|)) (-15 -3467 ((-108) |#5| (-592 |#5|))) (-15 -2858 ((-592 |#5|) (-592 |#5|))) (-15 -3557 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|)))) (-15 -3877 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) (-15 -3402 ((-592 (-2 (|:| -1537 (-592 |#4|)) (|:| -1285 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3409 ((-3 (-2 (|:| -1537 (-592 |#4|)) (|:| -1285 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108))))
+((-3257 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#5|) 96)) (-3456 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) |#4| |#4| |#5|) 72)) (-2160 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#4| |#5|) 90)) (-3950 (((-592 |#5|) |#4| |#5|) 110)) (-3913 (((-592 |#5|) |#4| |#5|) 117)) (-3083 (((-592 |#5|) |#4| |#5|) 118)) (-3629 (((-592 (-2 (|:| |val| (-108)) (|:| -1285 |#5|))) |#4| |#5|) 97)) (-2811 (((-592 (-2 (|:| |val| (-108)) (|:| -1285 |#5|))) |#4| |#5|) 116)) (-1627 (((-592 (-2 (|:| |val| (-108)) (|:| -1285 |#5|))) |#4| |#5|) 46) (((-108) |#4| |#5|) 53)) (-2111 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) |#3| (-108)) 84) (((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#4| |#5| (-108) (-108)) 50)) (-4173 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#4| |#5|) 79)) (-1491 (((-1179)) 37)) (-3319 (((-1179)) 26)) (-4160 (((-1179) (-1075) (-1075) (-1075)) 33)) (-1256 (((-1179) (-1075) (-1075) (-1075)) 22)))
+(((-1028 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1256 ((-1179) (-1075) (-1075) (-1075))) (-15 -3319 ((-1179))) (-15 -4160 ((-1179) (-1075) (-1075) (-1075))) (-15 -1491 ((-1179))) (-15 -3456 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) |#4| |#4| |#5|)) (-15 -2111 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2111 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) |#3| (-108))) (-15 -4173 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#4| |#5|)) (-15 -2160 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#4| |#5|)) (-15 -1627 ((-108) |#4| |#5|)) (-15 -3629 ((-592 (-2 (|:| |val| (-108)) (|:| -1285 |#5|))) |#4| |#5|)) (-15 -3950 ((-592 |#5|) |#4| |#5|)) (-15 -2811 ((-592 (-2 (|:| |val| (-108)) (|:| -1285 |#5|))) |#4| |#5|)) (-15 -3913 ((-592 |#5|) |#4| |#5|)) (-15 -1627 ((-592 (-2 (|:| |val| (-108)) (|:| -1285 |#5|))) |#4| |#5|)) (-15 -3083 ((-592 |#5|) |#4| |#5|)) (-15 -3257 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#5|))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|)) (T -1028))
+((-3257 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3083 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1627 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1285 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3913 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-2811 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1285 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3950 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3629 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1285 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1627 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-2160 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-4173 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-2111 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -1285 *9)))) (-5 *5 (-108)) (-4 *8 (-991 *6 *7 *4)) (-4 *9 (-996 *6 *7 *4 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789)) (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -1285 *9)))) (-5 *1 (-1028 *6 *7 *4 *8 *9)))) (-2111 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4)))) (-5 *1 (-1028 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3)))) (-3456 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1491 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179)) (-5 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))) (-4160 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179)) (-5 *1 (-1028 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-3319 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179)) (-5 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))) (-1256 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179)) (-5 *1 (-1028 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1256 ((-1179) (-1075) (-1075) (-1075))) (-15 -3319 ((-1179))) (-15 -4160 ((-1179) (-1075) (-1075) (-1075))) (-15 -1491 ((-1179))) (-15 -3456 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) |#4| |#4| |#5|)) (-15 -2111 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2111 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) |#3| (-108))) (-15 -4173 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#4| |#5|)) (-15 -2160 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#4| |#5|)) (-15 -1627 ((-108) |#4| |#5|)) (-15 -3629 ((-592 (-2 (|:| |val| (-108)) (|:| -1285 |#5|))) |#4| |#5|)) (-15 -3950 ((-592 |#5|) |#4| |#5|)) (-15 -2811 ((-592 (-2 (|:| |val| (-108)) (|:| -1285 |#5|))) |#4| |#5|)) (-15 -3913 ((-592 |#5|) |#4| |#5|)) (-15 -1627 ((-592 (-2 (|:| |val| (-108)) (|:| -1285 |#5|))) |#4| |#5|)) (-15 -3083 ((-592 |#5|) |#4| |#5|)) (-15 -3257 ((-592 (-2 (|:| |val| |#4|) (|:| -1285 |#5|))) |#4| |#5|)))
+((-4087 (((-108) $ $) 7)) (-2562 (((-592 (-2 (|:| -2682 $) (|:| -2046 (-592 |#4|)))) (-592 |#4|)) 85)) (-3347 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-1296 (((-592 |#3|) $) 33)) (-2071 (((-108) $) 26)) (-3093 (((-108) $) 17 (|has| |#1| (-517)))) (-1587 (((-108) |#4| $) 101) (((-108) $) 97)) (-1402 ((|#4| |#4| $) 92)) (-4195 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 $))) |#4| $) 126)) (-1842 (((-2 (|:| |under| $) (|:| -1340 $) (|:| |upper| $)) $ |#3|) 27)) (-3779 (((-108) $ (-713)) 44)) (-2399 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4259))) (((-3 |#4| "failed") $ |#3|) 79)) (-2475 (($) 45 T CONST)) (-3542 (((-108) $) 22 (|has| |#1| (-517)))) (-2462 (((-108) $ $) 24 (|has| |#1| (-517)))) (-2390 (((-108) $ $) 23 (|has| |#1| (-517)))) (-1698 (((-108) $) 25 (|has| |#1| (-517)))) (-2783 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3308 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-1655 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-1934 (((-3 $ "failed") (-592 |#4|)) 36)) (-4105 (($ (-592 |#4|)) 35)) (-1659 (((-3 $ "failed") $) 82)) (-2268 ((|#4| |#4| $) 89)) (-1681 (($ $) 68 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259))))) (-2698 (($ |#4| $) 67 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4259)))) (-3681 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-3964 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-1469 ((|#4| |#4| $) 87)) (-3504 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4259))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4259))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1329 (((-2 (|:| -2682 (-592 |#4|)) (|:| -2046 (-592 |#4|))) $) 105)) (-1954 (((-108) |#4| $) 136)) (-3315 (((-108) |#4| $) 133)) (-1941 (((-108) |#4| $) 137) (((-108) $) 134)) (-2175 (((-592 |#4|) $) 52 (|has| $ (-6 -4259)))) (-3221 (((-108) |#4| $) 104) (((-108) $) 103)) (-2577 ((|#3| $) 34)) (-2516 (((-108) $ (-713)) 43)) (-2617 (((-592 |#4|) $) 53 (|has| $ (-6 -4259)))) (-3198 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#4| |#4|) $) 47)) (-3435 (((-592 |#3|) $) 32)) (-2468 (((-108) |#3| $) 31)) (-4028 (((-108) $ (-713)) 42)) (-1289 (((-1075) $) 9)) (-4180 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-2602 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 $))) |#4| |#4| $) 127)) (-2718 (((-3 |#4| "failed") $) 83)) (-2346 (((-592 $) |#4| $) 129)) (-3580 (((-3 (-108) (-592 $)) |#4| $) 132)) (-3022 (((-592 (-2 (|:| |val| (-108)) (|:| -1285 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2913 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-1513 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-1455 (((-592 |#4|) $) 107)) (-3732 (((-108) |#4| $) 99) (((-108) $) 95)) (-3076 ((|#4| |#4| $) 90)) (-3472 (((-108) $ $) 110)) (-2991 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2635 (((-108) |#4| $) 100) (((-108) $) 96)) (-1998 ((|#4| |#4| $) 91)) (-3993 (((-1039) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-4202 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2821 (((-3 $ "failed") $ |#4|) 78)) (-1397 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-1518 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-1231 (((-108) $ $) 38)) (-3479 (((-108) $) 41)) (-1558 (($) 40)) (-3529 (((-713) $) 106)) (-4002 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4259)))) (-2503 (($ $) 39)) (-2069 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-4114 (($ (-592 |#4|)) 60)) (-4151 (($ $ |#3|) 28)) (-3522 (($ $ |#3|) 30)) (-1411 (($ $) 88)) (-3963 (($ $ |#3|) 29)) (-4100 (((-798) $) 11) (((-592 |#4|) $) 37)) (-1223 (((-713) $) 76 (|has| |#3| (-346)))) (-3799 (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4170 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-3605 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-2706 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4259)))) (-1874 (((-592 |#3|) $) 81)) (-1484 (((-108) |#4| $) 135)) (-2738 (((-108) |#3| $) 80)) (-2775 (((-108) $ $) 6)) (-2827 (((-713) $) 46 (|has| $ (-6 -4259)))))
(((-1029 |#1| |#2| |#3| |#4|) (-131) (-429) (-735) (-789) (-991 |t#1| |t#2| |t#3|)) (T -1029))
NIL
(-13 (-996 |t#1| |t#2| |t#3| |t#4|))
(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-798)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-909 |#1| |#2| |#3| |#4|) . T) ((-996 |#1| |#2| |#3| |#4|) . T) ((-1020) . T) ((-1122 |#1| |#2| |#3| |#4|) . T) ((-1128) . T))
-((-1232 (((-592 (-525)) (-525) (-525) (-525)) 22)) (-3075 (((-592 (-525)) (-525) (-525) (-525)) 12)) (-3500 (((-592 (-525)) (-525) (-525) (-525)) 18)) (-1397 (((-525) (-525) (-525)) 9)) (-1436 (((-1174 (-525)) (-592 (-525)) (-1174 (-525)) (-525)) 46) (((-1174 (-525)) (-1174 (-525)) (-1174 (-525)) (-525)) 41)) (-1317 (((-592 (-525)) (-592 (-525)) (-592 (-525)) (-108)) 28)) (-1477 (((-632 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525))) 45)) (-1735 (((-632 (-525)) (-592 (-525)) (-592 (-525))) 33)) (-2889 (((-592 (-632 (-525))) (-592 (-525))) 35)) (-2811 (((-592 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525))) 49)) (-2433 (((-632 (-525)) (-592 (-525)) (-592 (-525)) (-592 (-525))) 57)))
-(((-1030) (-10 -7 (-15 -2433 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -2811 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -2889 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -1735 ((-632 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -1477 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -1317 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-108))) (-15 -1436 ((-1174 (-525)) (-1174 (-525)) (-1174 (-525)) (-525))) (-15 -1436 ((-1174 (-525)) (-592 (-525)) (-1174 (-525)) (-525))) (-15 -1397 ((-525) (-525) (-525))) (-15 -3500 ((-592 (-525)) (-525) (-525) (-525))) (-15 -3075 ((-592 (-525)) (-525) (-525) (-525))) (-15 -1232 ((-592 (-525)) (-525) (-525) (-525))))) (T -1030))
-((-1232 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1030)) (-5 *3 (-525)))) (-3075 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1030)) (-5 *3 (-525)))) (-3500 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1030)) (-5 *3 (-525)))) (-1397 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1030)))) (-1436 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1174 (-525))) (-5 *3 (-592 (-525))) (-5 *4 (-525)) (-5 *1 (-1030)))) (-1436 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1174 (-525))) (-5 *3 (-525)) (-5 *1 (-1030)))) (-1317 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *3 (-108)) (-5 *1 (-1030)))) (-1477 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-632 (-525))) (-5 *3 (-592 (-525))) (-5 *1 (-1030)))) (-1735 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1030)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-1030)))) (-2811 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *3 (-632 (-525))) (-5 *1 (-1030)))) (-2433 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1030)))))
-(-10 -7 (-15 -2433 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -2811 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -2889 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -1735 ((-632 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -1477 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -1317 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-108))) (-15 -1436 ((-1174 (-525)) (-1174 (-525)) (-1174 (-525)) (-525))) (-15 -1436 ((-1174 (-525)) (-592 (-525)) (-1174 (-525)) (-525))) (-15 -1397 ((-525) (-525) (-525))) (-15 -3500 ((-592 (-525)) (-525) (-525) (-525))) (-15 -3075 ((-592 (-525)) (-525) (-525) (-525))) (-15 -1232 ((-592 (-525)) (-525) (-525) (-525))))
-((-1619 (($ $ (-856)) 12)) (** (($ $ (-856)) 10)))
-(((-1031 |#1|) (-10 -8 (-15 -1619 (|#1| |#1| (-856))) (-15 ** (|#1| |#1| (-856)))) (-1032)) (T -1031))
-NIL
-(-10 -8 (-15 -1619 (|#1| |#1| (-856))) (-15 ** (|#1| |#1| (-856))))
-((-4236 (((-108) $ $) 7)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-1619 (($ $ (-856)) 13)) (-3955 (((-108) $ $) 6)) (** (($ $ (-856)) 14)) (* (($ $ $) 15)))
+((-1987 (((-592 (-525)) (-525) (-525) (-525)) 22)) (-3075 (((-592 (-525)) (-525) (-525) (-525)) 12)) (-2547 (((-592 (-525)) (-525) (-525) (-525)) 18)) (-2288 (((-525) (-525) (-525)) 9)) (-3642 (((-1174 (-525)) (-592 (-525)) (-1174 (-525)) (-525)) 46) (((-1174 (-525)) (-1174 (-525)) (-1174 (-525)) (-525)) 41)) (-3369 (((-592 (-525)) (-592 (-525)) (-592 (-525)) (-108)) 28)) (-1946 (((-632 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525))) 45)) (-3607 (((-632 (-525)) (-592 (-525)) (-592 (-525))) 33)) (-3792 (((-592 (-632 (-525))) (-592 (-525))) 35)) (-2449 (((-592 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525))) 49)) (-2038 (((-632 (-525)) (-592 (-525)) (-592 (-525)) (-592 (-525))) 57)))
+(((-1030) (-10 -7 (-15 -2038 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -2449 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -3792 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -3607 ((-632 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -1946 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -3369 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-108))) (-15 -3642 ((-1174 (-525)) (-1174 (-525)) (-1174 (-525)) (-525))) (-15 -3642 ((-1174 (-525)) (-592 (-525)) (-1174 (-525)) (-525))) (-15 -2288 ((-525) (-525) (-525))) (-15 -2547 ((-592 (-525)) (-525) (-525) (-525))) (-15 -3075 ((-592 (-525)) (-525) (-525) (-525))) (-15 -1987 ((-592 (-525)) (-525) (-525) (-525))))) (T -1030))
+((-1987 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1030)) (-5 *3 (-525)))) (-3075 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1030)) (-5 *3 (-525)))) (-2547 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1030)) (-5 *3 (-525)))) (-2288 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1030)))) (-3642 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1174 (-525))) (-5 *3 (-592 (-525))) (-5 *4 (-525)) (-5 *1 (-1030)))) (-3642 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1174 (-525))) (-5 *3 (-525)) (-5 *1 (-1030)))) (-3369 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *3 (-108)) (-5 *1 (-1030)))) (-1946 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-632 (-525))) (-5 *3 (-592 (-525))) (-5 *1 (-1030)))) (-3607 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1030)))) (-3792 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-1030)))) (-2449 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *3 (-632 (-525))) (-5 *1 (-1030)))) (-2038 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1030)))))
+(-10 -7 (-15 -2038 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -2449 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -3792 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -3607 ((-632 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -1946 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -3369 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-108))) (-15 -3642 ((-1174 (-525)) (-1174 (-525)) (-1174 (-525)) (-525))) (-15 -3642 ((-1174 (-525)) (-592 (-525)) (-1174 (-525)) (-525))) (-15 -2288 ((-525) (-525) (-525))) (-15 -2547 ((-592 (-525)) (-525) (-525) (-525))) (-15 -3075 ((-592 (-525)) (-525) (-525) (-525))) (-15 -1987 ((-592 (-525)) (-525) (-525) (-525))))
+((-3706 (($ $ (-856)) 12)) (** (($ $ (-856)) 10)))
+(((-1031 |#1|) (-10 -8 (-15 -3706 (|#1| |#1| (-856))) (-15 ** (|#1| |#1| (-856)))) (-1032)) (T -1031))
+NIL
+(-10 -8 (-15 -3706 (|#1| |#1| (-856))) (-15 ** (|#1| |#1| (-856))))
+((-4087 (((-108) $ $) 7)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-3706 (($ $ (-856)) 13)) (-2775 (((-108) $ $) 6)) (** (($ $ (-856)) 14)) (* (($ $ $) 15)))
(((-1032) (-131)) (T -1032))
-((* (*1 *1 *1 *1) (-4 *1 (-1032))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-856)))) (-1619 (*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-856)))))
-(-13 (-1020) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-856))) (-15 -1619 ($ $ (-856)))))
+((* (*1 *1 *1 *1) (-4 *1 (-1032))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-856)))) (-3706 (*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-856)))))
+(-13 (-1020) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-856))) (-15 -3706 ($ $ (-856)))))
(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-4236 (((-108) $ $) NIL (|has| |#3| (-1020)))) (-1209 (((-108) $) NIL (|has| |#3| (-126)))) (-4083 (($ (-856)) NIL (|has| |#3| (-977)))) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-3167 (($ $ $) NIL (|has| |#3| (-735)))) (-1578 (((-3 $ "failed") $ $) NIL (|has| |#3| (-126)))) (-3991 (((-108) $ (-713)) NIL)) (-1834 (((-713)) NIL (|has| |#3| (-346)))) (-3855 (((-525) $) NIL (|has| |#3| (-787)))) (-1430 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4259)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL (-12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1020)))) (-1572 (((-525) $) NIL (-12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020)))) (((-385 (-525)) $) NIL (-12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020)))) ((|#3| $) NIL (|has| |#3| (-1020)))) (-1994 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977)))) (((-2 (|:| -3407 (-632 |#3|)) (|:| |vec| (-1174 |#3|))) (-632 $) (-1174 $)) NIL (|has| |#3| (-977))) (((-632 |#3|) (-632 $)) NIL (|has| |#3| (-977)))) (-3457 (((-3 $ "failed") $) NIL (|has| |#3| (-669)))) (-2502 (($) NIL (|has| |#3| (-346)))) (-2301 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#3| $ (-525)) 12)) (-1222 (((-108) $) NIL (|has| |#3| (-787)))) (-3440 (((-592 |#3|) $) NIL (|has| $ (-6 -4258)))) (-1396 (((-108) $) NIL (|has| |#3| (-669)))) (-3256 (((-108) $) NIL (|has| |#3| (-787)))) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) NIL (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (-3254 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2694 (((-592 |#3|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#3| (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (-3254 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2284 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#3| |#3|) $) NIL)) (-3005 (((-856) $) NIL (|has| |#3| (-346)))) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#3| (-1020)))) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-3555 (($ (-856)) NIL (|has| |#3| (-346)))) (-2093 (((-1039) $) NIL (|has| |#3| (-1020)))) (-1872 ((|#3| $) NIL (|has| (-525) (-789)))) (-1420 (($ $ |#3|) NIL (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#3|))) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-273 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-592 |#3|) (-592 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#3| (-1020))))) (-3341 (((-592 |#3|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#3| $ (-525) |#3|) NIL) ((|#3| $ (-525)) NIL)) (-2047 ((|#3| $ $) NIL (|has| |#3| (-977)))) (-2816 (($ (-1174 |#3|)) NIL)) (-3705 (((-128)) NIL (|has| |#3| (-341)))) (-3376 (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-977))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-977)))) (-2110 (((-713) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4258))) (((-713) |#3| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#3| (-1020))))) (-1462 (($ $) NIL)) (-1217 (((-1174 |#3|) $) NIL) (($ (-525)) NIL (-3254 (-12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020))) (|has| |#3| (-977)))) (($ (-385 (-525))) NIL (-12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020)))) (($ |#3|) NIL (|has| |#3| (-1020))) (((-798) $) NIL (|has| |#3| (-566 (-798))))) (-3917 (((-713)) NIL (|has| |#3| (-977)))) (-3029 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4258)))) (-2802 (($ $) NIL (|has| |#3| (-787)))) (-1619 (($ $ (-713)) NIL (|has| |#3| (-669))) (($ $ (-856)) NIL (|has| |#3| (-669)))) (-3349 (($) NIL (|has| |#3| (-126)) CONST)) (-3359 (($) NIL (|has| |#3| (-669)) CONST)) (-2022 (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-977))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-977)))) (-4011 (((-108) $ $) NIL (-3254 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3987 (((-108) $ $) NIL (-3254 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3955 (((-108) $ $) NIL (|has| |#3| (-1020)))) (-3999 (((-108) $ $) NIL (-3254 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3978 (((-108) $ $) 17 (-3254 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-4075 (($ $ |#3|) NIL (|has| |#3| (-341)))) (-4061 (($ $ $) NIL (|has| |#3| (-977))) (($ $) NIL (|has| |#3| (-977)))) (-4047 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-713)) NIL (|has| |#3| (-669))) (($ $ (-856)) NIL (|has| |#3| (-669)))) (* (($ (-525) $) NIL (|has| |#3| (-977))) (($ $ $) NIL (|has| |#3| (-669))) (($ $ |#3|) NIL (|has| |#3| (-669))) (($ |#3| $) NIL (|has| |#3| (-669))) (($ (-713) $) NIL (|has| |#3| (-126))) (($ (-856) $) NIL (|has| |#3| (-25)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL (|has| |#3| (-1020)))) (-2414 (((-108) $) NIL (|has| |#3| (-126)))) (-3473 (($ (-856)) NIL (|has| |#3| (-977)))) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-1525 (($ $ $) NIL (|has| |#3| (-735)))) (-3222 (((-3 $ "failed") $ $) NIL (|has| |#3| (-126)))) (-3779 (((-108) $ (-713)) NIL)) (-1613 (((-713)) NIL (|has| |#3| (-346)))) (-2971 (((-525) $) NIL (|has| |#3| (-787)))) (-1233 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4260)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL (-12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1020)))) (-4105 (((-525) $) NIL (-12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020)))) (((-385 (-525)) $) NIL (-12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020)))) ((|#3| $) NIL (|has| |#3| (-1020)))) (-3090 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977)))) (((-2 (|:| -4108 (-632 |#3|)) (|:| |vec| (-1174 |#3|))) (-632 $) (-1174 $)) NIL (|has| |#3| (-977))) (((-632 |#3|) (-632 $)) NIL (|has| |#3| (-977)))) (-3300 (((-3 $ "failed") $) NIL (|has| |#3| (-669)))) (-1903 (($) NIL (|has| |#3| (-346)))) (-3081 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#3| $ (-525)) 12)) (-1889 (((-108) $) NIL (|has| |#3| (-787)))) (-2175 (((-592 |#3|) $) NIL (|has| $ (-6 -4259)))) (-2278 (((-108) $) NIL (|has| |#3| (-669)))) (-4079 (((-108) $) NIL (|has| |#3| (-787)))) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) NIL (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (-2067 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2617 (((-592 |#3|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#3| (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (-2067 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3069 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#3| |#3|) $) NIL)) (-3685 (((-856) $) NIL (|has| |#3| (-346)))) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#3| (-1020)))) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-1722 (($ (-856)) NIL (|has| |#3| (-346)))) (-3993 (((-1039) $) NIL (|has| |#3| (-1020)))) (-1647 ((|#3| $) NIL (|has| (-525) (-789)))) (-3453 (($ $ |#3|) NIL (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#3|))) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-273 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-592 |#3|) (-592 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#3| (-1020))))) (-1717 (((-592 |#3|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#3| $ (-525) |#3|) NIL) ((|#3| $ (-525)) NIL)) (-3584 ((|#3| $ $) NIL (|has| |#3| (-977)))) (-4238 (($ (-1174 |#3|)) NIL)) (-3933 (((-128)) NIL (|has| |#3| (-341)))) (-2702 (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-977))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-977)))) (-4002 (((-713) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4259))) (((-713) |#3| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#3| (-1020))))) (-2503 (($ $) NIL)) (-4100 (((-1174 |#3|) $) NIL) (($ (-525)) NIL (-2067 (-12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020))) (|has| |#3| (-977)))) (($ (-385 (-525))) NIL (-12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020)))) (($ |#3|) NIL (|has| |#3| (-1020))) (((-798) $) NIL (|has| |#3| (-566 (-798))))) (-2448 (((-713)) NIL (|has| |#3| (-977)))) (-2706 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4259)))) (-2380 (($ $) NIL (|has| |#3| (-787)))) (-3706 (($ $ (-713)) NIL (|has| |#3| (-669))) (($ $ (-856)) NIL (|has| |#3| (-669)))) (-3364 (($) NIL (|has| |#3| (-126)) CONST)) (-3375 (($) NIL (|has| |#3| (-669)) CONST)) (-2401 (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977)))) (($ $ (-1092)) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#3| (-835 (-1092))) (|has| |#3| (-977)))) (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-977))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-977)))) (-2830 (((-108) $ $) NIL (-2067 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2807 (((-108) $ $) NIL (-2067 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2775 (((-108) $ $) NIL (|has| |#3| (-1020)))) (-2817 (((-108) $ $) NIL (-2067 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2795 (((-108) $ $) 17 (-2067 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2880 (($ $ |#3|) NIL (|has| |#3| (-341)))) (-2871 (($ $ $) NIL (|has| |#3| (-977))) (($ $) NIL (|has| |#3| (-977)))) (-2860 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-713)) NIL (|has| |#3| (-669))) (($ $ (-856)) NIL (|has| |#3| (-669)))) (* (($ (-525) $) NIL (|has| |#3| (-977))) (($ $ $) NIL (|has| |#3| (-669))) (($ $ |#3|) NIL (|has| |#3| (-669))) (($ |#3| $) NIL (|has| |#3| (-669))) (($ (-713) $) NIL (|has| |#3| (-126))) (($ (-856) $) NIL (|has| |#3| (-25)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
(((-1033 |#1| |#2| |#3|) (-218 |#1| |#3|) (-713) (-713) (-735)) (T -1033))
NIL
(-218 |#1| |#3|)
-((-2386 (((-592 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 37)) (-2776 (((-525) (-1147 |#2| |#1|)) 69 (|has| |#1| (-429)))) (-1358 (((-525) (-1147 |#2| |#1|)) 54)) (-3400 (((-592 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 45)) (-3814 (((-525) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 68 (|has| |#1| (-429)))) (-3880 (((-592 |#1|) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 48)) (-2934 (((-525) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 53)))
-(((-1034 |#1| |#2|) (-10 -7 (-15 -2386 ((-592 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3400 ((-592 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3880 ((-592 |#1|) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -2934 ((-525) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -1358 ((-525) (-1147 |#2| |#1|))) (IF (|has| |#1| (-429)) (PROGN (-15 -3814 ((-525) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -2776 ((-525) (-1147 |#2| |#1|)))) |%noBranch|)) (-762) (-1092)) (T -1034))
-((-2776 (*1 *2 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762)) (-14 *5 (-1092)) (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))) (-3814 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762)) (-14 *5 (-1092)) (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))) (-1358 (*1 *2 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1092)) (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))) (-2934 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1092)) (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))) (-3880 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1092)) (-5 *2 (-592 *4)) (-5 *1 (-1034 *4 *5)))) (-3400 (*1 *2 *3 *3) (-12 (-4 *4 (-762)) (-14 *5 (-1092)) (-5 *2 (-592 (-1147 *5 *4))) (-5 *1 (-1034 *4 *5)) (-5 *3 (-1147 *5 *4)))) (-2386 (*1 *2 *3 *3) (-12 (-4 *4 (-762)) (-14 *5 (-1092)) (-5 *2 (-592 (-1147 *5 *4))) (-5 *1 (-1034 *4 *5)) (-5 *3 (-1147 *5 *4)))))
-(-10 -7 (-15 -2386 ((-592 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3400 ((-592 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3880 ((-592 |#1|) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -2934 ((-525) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -1358 ((-525) (-1147 |#2| |#1|))) (IF (|has| |#1| (-429)) (PROGN (-15 -3814 ((-525) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -2776 ((-525) (-1147 |#2| |#1|)))) |%noBranch|))
-((-3855 (((-3 (-525) "failed") |#2| (-1092) |#2| (-1075)) 17) (((-3 (-525) "failed") |#2| (-1092) (-782 |#2|)) 15) (((-3 (-525) "failed") |#2|) 54)))
-(((-1035 |#1| |#2|) (-10 -7 (-15 -3855 ((-3 (-525) "failed") |#2|)) (-15 -3855 ((-3 (-525) "failed") |#2| (-1092) (-782 |#2|))) (-15 -3855 ((-3 (-525) "failed") |#2| (-1092) |#2| (-1075)))) (-13 (-517) (-789) (-968 (-525)) (-588 (-525)) (-429)) (-13 (-27) (-1114) (-408 |#1|))) (T -1035))
-((-3855 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-1075)) (-4 *6 (-13 (-517) (-789) (-968 *2) (-588 *2) (-429))) (-5 *2 (-525)) (-5 *1 (-1035 *6 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *6))))) (-3855 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-782 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-968 *2) (-588 *2) (-429))) (-5 *2 (-525)) (-5 *1 (-1035 *6 *3)))) (-3855 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-517) (-789) (-968 *2) (-588 *2) (-429))) (-5 *2 (-525)) (-5 *1 (-1035 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *4))))))
-(-10 -7 (-15 -3855 ((-3 (-525) "failed") |#2|)) (-15 -3855 ((-3 (-525) "failed") |#2| (-1092) (-782 |#2|))) (-15 -3855 ((-3 (-525) "failed") |#2| (-1092) |#2| (-1075))))
-((-3855 (((-3 (-525) "failed") (-385 (-887 |#1|)) (-1092) (-385 (-887 |#1|)) (-1075)) 35) (((-3 (-525) "failed") (-385 (-887 |#1|)) (-1092) (-782 (-385 (-887 |#1|)))) 30) (((-3 (-525) "failed") (-385 (-887 |#1|))) 13)))
-(((-1036 |#1|) (-10 -7 (-15 -3855 ((-3 (-525) "failed") (-385 (-887 |#1|)))) (-15 -3855 ((-3 (-525) "failed") (-385 (-887 |#1|)) (-1092) (-782 (-385 (-887 |#1|))))) (-15 -3855 ((-3 (-525) "failed") (-385 (-887 |#1|)) (-1092) (-385 (-887 |#1|)) (-1075)))) (-429)) (T -1036))
-((-3855 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-385 (-887 *6))) (-5 *4 (-1092)) (-5 *5 (-1075)) (-4 *6 (-429)) (-5 *2 (-525)) (-5 *1 (-1036 *6)))) (-3855 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-782 (-385 (-887 *6)))) (-5 *3 (-385 (-887 *6))) (-4 *6 (-429)) (-5 *2 (-525)) (-5 *1 (-1036 *6)))) (-3855 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-429)) (-5 *2 (-525)) (-5 *1 (-1036 *4)))))
-(-10 -7 (-15 -3855 ((-3 (-525) "failed") (-385 (-887 |#1|)))) (-15 -3855 ((-3 (-525) "failed") (-385 (-887 |#1|)) (-1092) (-782 (-385 (-887 |#1|))))) (-15 -3855 ((-3 (-525) "failed") (-385 (-887 |#1|)) (-1092) (-385 (-887 |#1|)) (-1075))))
-((-4236 (((-108) $ $) NIL)) (-3220 (((-169) $) 8)) (-3174 (((-592 (-169)) $) 10)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 19)) (-3955 (((-108) $ $) 13)))
-(((-1037) (-13 (-1020) (-10 -8 (-15 -3220 ((-169) $)) (-15 -3174 ((-592 (-169)) $))))) (T -1037))
-((-3220 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1037)))) (-3174 (*1 *2 *1) (-12 (-5 *2 (-592 (-169))) (-5 *1 (-1037)))))
-(-13 (-1020) (-10 -8 (-15 -3220 ((-169) $)) (-15 -3174 ((-592 (-169)) $))))
-((-2242 (((-294 (-525)) (-47)) 12)))
-(((-1038) (-10 -7 (-15 -2242 ((-294 (-525)) (-47))))) (T -1038))
-((-2242 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-294 (-525))) (-5 *1 (-1038)))))
-(-10 -7 (-15 -2242 ((-294 (-525)) (-47))))
-((-4236 (((-108) $ $) NIL)) (-3411 (($ $) 41)) (-1209 (((-108) $) 65)) (-3469 (($ $ $) 48)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 85)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-2028 (($ $ $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-4158 (($ $ $ $) 74)) (-1286 (($ $) NIL)) (-2669 (((-396 $) $) NIL)) (-2193 (((-108) $ $) NIL)) (-3855 (((-525) $) NIL)) (-3506 (($ $ $) 71)) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL)) (-1572 (((-525) $) NIL)) (-1747 (($ $ $) 59)) (-1994 (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 79) (((-632 (-525)) (-632 $)) 28)) (-3457 (((-3 $ "failed") $) NIL)) (-1514 (((-3 (-385 (-525)) "failed") $) NIL)) (-3933 (((-108) $) NIL)) (-3303 (((-385 (-525)) $) NIL)) (-2502 (($) 82) (($ $) 83)) (-1733 (($ $ $) 58)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL)) (-3673 (((-108) $) NIL)) (-2781 (($ $ $ $) NIL)) (-3636 (($ $ $) 80)) (-1222 (((-108) $) NIL)) (-3984 (($ $ $) NIL)) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL)) (-1396 (((-108) $) 66)) (-1673 (((-108) $) 64)) (-1850 (($ $) 42)) (-3844 (((-3 $ "failed") $) NIL)) (-3256 (((-108) $) 75)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2657 (($ $ $ $) 72)) (-2638 (($ $ $) 68) (($) 39)) (-3662 (($ $ $) 67) (($) 38)) (-1738 (($ $) NIL)) (-4178 (($ $) 70)) (-2556 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2619 (((-1075) $) NIL)) (-2476 (($ $ $) NIL)) (-2295 (($) NIL T CONST)) (-4070 (($ $) 50)) (-2093 (((-1039) $) NIL) (($ $) 69)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2589 (($ $ $) 62) (($ (-592 $)) NIL)) (-1545 (($ $) NIL)) (-2770 (((-396 $) $) NIL)) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL)) (-1715 (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3699 (((-108) $) NIL)) (-3684 (((-713) $) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 61)) (-3376 (($ $ (-713)) NIL) (($ $) NIL)) (-3068 (($ $) 51)) (-1462 (($ $) NIL)) (-3210 (((-525) $) 32) (((-501) $) NIL) (((-827 (-525)) $) NIL) (((-357) $) NIL) (((-205) $) NIL)) (-1217 (((-798) $) 31) (($ (-525)) 81) (($ $) NIL) (($ (-525)) 81)) (-3917 (((-713)) NIL)) (-3731 (((-108) $ $) NIL)) (-3163 (($ $ $) NIL)) (-3379 (($) 37)) (-3325 (((-108) $ $) NIL)) (-1935 (($ $ $ $) 73)) (-2802 (($ $) 63)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-1525 (($ $ $) 44)) (-3349 (($) 35 T CONST)) (-2637 (($ $ $) 47)) (-3359 (($) 36 T CONST)) (-1388 (((-1075) $) 21) (((-1075) $ (-108)) 23) (((-1179) (-764) $) 24) (((-1179) (-764) $ (-108)) 25)) (-2646 (($ $) 45)) (-2022 (($ $ (-713)) NIL) (($ $) NIL)) (-2627 (($ $ $) 46)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 40)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 49)) (-1509 (($ $ $) 43)) (-4061 (($ $) 52) (($ $ $) 54)) (-4047 (($ $ $) 53)) (** (($ $ (-856)) NIL) (($ $ (-713)) 57)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 34) (($ $ $) 55)))
-(((-1039) (-13 (-510) (-607) (-770) (-10 -8 (-6 -4245) (-6 -4250) (-6 -4246) (-15 -3662 ($)) (-15 -2638 ($)) (-15 -1850 ($ $)) (-15 -3411 ($ $)) (-15 -1509 ($ $ $)) (-15 -1525 ($ $ $)) (-15 -3469 ($ $ $)) (-15 -2646 ($ $)) (-15 -2627 ($ $ $)) (-15 -2637 ($ $ $))))) (T -1039))
-((-1525 (*1 *1 *1 *1) (-5 *1 (-1039))) (-1509 (*1 *1 *1 *1) (-5 *1 (-1039))) (-3411 (*1 *1 *1) (-5 *1 (-1039))) (-3662 (*1 *1) (-5 *1 (-1039))) (-2638 (*1 *1) (-5 *1 (-1039))) (-1850 (*1 *1 *1) (-5 *1 (-1039))) (-3469 (*1 *1 *1 *1) (-5 *1 (-1039))) (-2646 (*1 *1 *1) (-5 *1 (-1039))) (-2627 (*1 *1 *1 *1) (-5 *1 (-1039))) (-2637 (*1 *1 *1 *1) (-5 *1 (-1039))))
-(-13 (-510) (-607) (-770) (-10 -8 (-6 -4245) (-6 -4250) (-6 -4246) (-15 -3662 ($)) (-15 -2638 ($)) (-15 -1850 ($ $)) (-15 -3411 ($ $)) (-15 -1509 ($ $ $)) (-15 -1525 ($ $ $)) (-15 -3469 ($ $ $)) (-15 -2646 ($ $)) (-15 -2627 ($ $ $)) (-15 -2637 ($ $ $))))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3412 ((|#1| $) 44)) (-3991 (((-108) $ (-713)) 8)) (-2169 (($) 7 T CONST)) (-2940 ((|#1| |#1| $) 46)) (-2375 ((|#1| $) 45)) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) 9)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2992 ((|#1| $) 39)) (-1262 (($ |#1| $) 40)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-4127 ((|#1| $) 41)) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-1769 (((-713) $) 43)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-1956 (($ (-592 |#1|)) 42)) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-2743 (((-592 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 37)) (-2182 (((-525) (-1147 |#2| |#1|)) 69 (|has| |#1| (-429)))) (-2843 (((-525) (-1147 |#2| |#1|)) 54)) (-4037 (((-592 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 45)) (-2608 (((-525) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 68 (|has| |#1| (-429)))) (-2076 (((-592 |#1|) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 48)) (-1229 (((-525) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 53)))
+(((-1034 |#1| |#2|) (-10 -7 (-15 -2743 ((-592 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -4037 ((-592 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -2076 ((-592 |#1|) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -1229 ((-525) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -2843 ((-525) (-1147 |#2| |#1|))) (IF (|has| |#1| (-429)) (PROGN (-15 -2608 ((-525) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -2182 ((-525) (-1147 |#2| |#1|)))) |%noBranch|)) (-762) (-1092)) (T -1034))
+((-2182 (*1 *2 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762)) (-14 *5 (-1092)) (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))) (-2608 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762)) (-14 *5 (-1092)) (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))) (-2843 (*1 *2 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1092)) (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))) (-1229 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1092)) (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))) (-2076 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1092)) (-5 *2 (-592 *4)) (-5 *1 (-1034 *4 *5)))) (-4037 (*1 *2 *3 *3) (-12 (-4 *4 (-762)) (-14 *5 (-1092)) (-5 *2 (-592 (-1147 *5 *4))) (-5 *1 (-1034 *4 *5)) (-5 *3 (-1147 *5 *4)))) (-2743 (*1 *2 *3 *3) (-12 (-4 *4 (-762)) (-14 *5 (-1092)) (-5 *2 (-592 (-1147 *5 *4))) (-5 *1 (-1034 *4 *5)) (-5 *3 (-1147 *5 *4)))))
+(-10 -7 (-15 -2743 ((-592 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -4037 ((-592 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -2076 ((-592 |#1|) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -1229 ((-525) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -2843 ((-525) (-1147 |#2| |#1|))) (IF (|has| |#1| (-429)) (PROGN (-15 -2608 ((-525) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -2182 ((-525) (-1147 |#2| |#1|)))) |%noBranch|))
+((-2971 (((-3 (-525) "failed") |#2| (-1092) |#2| (-1075)) 17) (((-3 (-525) "failed") |#2| (-1092) (-782 |#2|)) 15) (((-3 (-525) "failed") |#2|) 54)))
+(((-1035 |#1| |#2|) (-10 -7 (-15 -2971 ((-3 (-525) "failed") |#2|)) (-15 -2971 ((-3 (-525) "failed") |#2| (-1092) (-782 |#2|))) (-15 -2971 ((-3 (-525) "failed") |#2| (-1092) |#2| (-1075)))) (-13 (-517) (-789) (-968 (-525)) (-588 (-525)) (-429)) (-13 (-27) (-1114) (-408 |#1|))) (T -1035))
+((-2971 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-1075)) (-4 *6 (-13 (-517) (-789) (-968 *2) (-588 *2) (-429))) (-5 *2 (-525)) (-5 *1 (-1035 *6 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *6))))) (-2971 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-782 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-968 *2) (-588 *2) (-429))) (-5 *2 (-525)) (-5 *1 (-1035 *6 *3)))) (-2971 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-517) (-789) (-968 *2) (-588 *2) (-429))) (-5 *2 (-525)) (-5 *1 (-1035 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *4))))))
+(-10 -7 (-15 -2971 ((-3 (-525) "failed") |#2|)) (-15 -2971 ((-3 (-525) "failed") |#2| (-1092) (-782 |#2|))) (-15 -2971 ((-3 (-525) "failed") |#2| (-1092) |#2| (-1075))))
+((-2971 (((-3 (-525) "failed") (-385 (-887 |#1|)) (-1092) (-385 (-887 |#1|)) (-1075)) 35) (((-3 (-525) "failed") (-385 (-887 |#1|)) (-1092) (-782 (-385 (-887 |#1|)))) 30) (((-3 (-525) "failed") (-385 (-887 |#1|))) 13)))
+(((-1036 |#1|) (-10 -7 (-15 -2971 ((-3 (-525) "failed") (-385 (-887 |#1|)))) (-15 -2971 ((-3 (-525) "failed") (-385 (-887 |#1|)) (-1092) (-782 (-385 (-887 |#1|))))) (-15 -2971 ((-3 (-525) "failed") (-385 (-887 |#1|)) (-1092) (-385 (-887 |#1|)) (-1075)))) (-429)) (T -1036))
+((-2971 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-385 (-887 *6))) (-5 *4 (-1092)) (-5 *5 (-1075)) (-4 *6 (-429)) (-5 *2 (-525)) (-5 *1 (-1036 *6)))) (-2971 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-782 (-385 (-887 *6)))) (-5 *3 (-385 (-887 *6))) (-4 *6 (-429)) (-5 *2 (-525)) (-5 *1 (-1036 *6)))) (-2971 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-429)) (-5 *2 (-525)) (-5 *1 (-1036 *4)))))
+(-10 -7 (-15 -2971 ((-3 (-525) "failed") (-385 (-887 |#1|)))) (-15 -2971 ((-3 (-525) "failed") (-385 (-887 |#1|)) (-1092) (-782 (-385 (-887 |#1|))))) (-15 -2971 ((-3 (-525) "failed") (-385 (-887 |#1|)) (-1092) (-385 (-887 |#1|)) (-1075))))
+((-4087 (((-108) $ $) NIL)) (-3326 (((-169) $) 8)) (-3258 (((-592 (-169)) $) 10)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 19)) (-2775 (((-108) $ $) 13)))
+(((-1037) (-13 (-1020) (-10 -8 (-15 -3326 ((-169) $)) (-15 -3258 ((-592 (-169)) $))))) (T -1037))
+((-3326 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1037)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-592 (-169))) (-5 *1 (-1037)))))
+(-13 (-1020) (-10 -8 (-15 -3326 ((-169) $)) (-15 -3258 ((-592 (-169)) $))))
+((-3800 (((-294 (-525)) (-47)) 12)))
+(((-1038) (-10 -7 (-15 -3800 ((-294 (-525)) (-47))))) (T -1038))
+((-3800 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-294 (-525))) (-5 *1 (-1038)))))
+(-10 -7 (-15 -3800 ((-294 (-525)) (-47))))
+((-4087 (((-108) $ $) NIL)) (-2026 (($ $) 41)) (-2414 (((-108) $) 65)) (-2532 (($ $ $) 48)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 85)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3410 (($ $ $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-3004 (($ $ $ $) 74)) (-4195 (($ $) NIL)) (-3586 (((-396 $) $) NIL)) (-1507 (((-108) $ $) NIL)) (-2971 (((-525) $) NIL)) (-3164 (($ $ $) 71)) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL)) (-4105 (((-525) $) NIL)) (-1356 (($ $ $) 59)) (-3090 (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 79) (((-632 (-525)) (-632 $)) 28)) (-3300 (((-3 $ "failed") $) NIL)) (-3306 (((-3 (-385 (-525)) "failed") $) NIL)) (-1417 (((-108) $) NIL)) (-1367 (((-385 (-525)) $) NIL)) (-1903 (($) 82) (($ $) 83)) (-1332 (($ $ $) 58)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL)) (-1798 (((-108) $) NIL)) (-2209 (($ $ $ $) NIL)) (-1453 (($ $ $) 80)) (-1889 (((-108) $) NIL)) (-1922 (($ $ $) NIL)) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL)) (-2278 (((-108) $) 66)) (-3028 (((-108) $) 64)) (-3272 (($ $) 42)) (-2878 (((-3 $ "failed") $) NIL)) (-4079 (((-108) $) 75)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3455 (($ $ $ $) 72)) (-3033 (($ $ $) 68) (($) 39)) (-1609 (($ $ $) 67) (($) 38)) (-2845 (($ $) NIL)) (-4128 (($ $) 70)) (-2739 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1289 (((-1075) $) NIL)) (-2432 (($ $ $) NIL)) (-2948 (($) NIL T CONST)) (-3280 (($ $) 50)) (-3993 (((-1039) $) NIL) (($ $) 69)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL)) (-2772 (($ $ $) 62) (($ (-592 $)) NIL)) (-1606 (($ $) NIL)) (-4201 (((-396 $) $) NIL)) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL)) (-1311 (((-3 $ "failed") $ $) NIL)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3864 (((-108) $) NIL)) (-1927 (((-713) $) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 61)) (-2702 (($ $ (-713)) NIL) (($ $) NIL)) (-4223 (($ $) 51)) (-2503 (($ $) NIL)) (-2069 (((-525) $) 32) (((-501) $) NIL) (((-827 (-525)) $) NIL) (((-357) $) NIL) (((-205) $) NIL)) (-4100 (((-798) $) 31) (($ (-525)) 81) (($ $) NIL) (($ (-525)) 81)) (-2448 (((-713)) NIL)) (-4214 (((-108) $ $) NIL)) (-1494 (($ $ $) NIL)) (-3771 (($) 37)) (-1571 (((-108) $ $) NIL)) (-3695 (($ $ $ $) 73)) (-2380 (($ $) 63)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3836 (($ $ $) 44)) (-3364 (($) 35 T CONST)) (-1252 (($ $ $) 47)) (-3375 (($) 36 T CONST)) (-3660 (((-1075) $) 21) (((-1075) $ (-108)) 23) (((-1179) (-764) $) 24) (((-1179) (-764) $ (-108)) 25)) (-1263 (($ $) 45)) (-2401 (($ $ (-713)) NIL) (($ $) NIL)) (-1243 (($ $ $) 46)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 40)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 49)) (-3826 (($ $ $) 43)) (-2871 (($ $) 52) (($ $ $) 54)) (-2860 (($ $ $) 53)) (** (($ $ (-856)) NIL) (($ $ (-713)) 57)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 34) (($ $ $) 55)))
+(((-1039) (-13 (-510) (-607) (-770) (-10 -8 (-6 -4246) (-6 -4251) (-6 -4247) (-15 -1609 ($)) (-15 -3033 ($)) (-15 -3272 ($ $)) (-15 -2026 ($ $)) (-15 -3826 ($ $ $)) (-15 -3836 ($ $ $)) (-15 -2532 ($ $ $)) (-15 -1263 ($ $)) (-15 -1243 ($ $ $)) (-15 -1252 ($ $ $))))) (T -1039))
+((-3836 (*1 *1 *1 *1) (-5 *1 (-1039))) (-3826 (*1 *1 *1 *1) (-5 *1 (-1039))) (-2026 (*1 *1 *1) (-5 *1 (-1039))) (-1609 (*1 *1) (-5 *1 (-1039))) (-3033 (*1 *1) (-5 *1 (-1039))) (-3272 (*1 *1 *1) (-5 *1 (-1039))) (-2532 (*1 *1 *1 *1) (-5 *1 (-1039))) (-1263 (*1 *1 *1) (-5 *1 (-1039))) (-1243 (*1 *1 *1 *1) (-5 *1 (-1039))) (-1252 (*1 *1 *1 *1) (-5 *1 (-1039))))
+(-13 (-510) (-607) (-770) (-10 -8 (-6 -4246) (-6 -4251) (-6 -4247) (-15 -1609 ($)) (-15 -3033 ($)) (-15 -3272 ($ $)) (-15 -2026 ($ $)) (-15 -3826 ($ $ $)) (-15 -3836 ($ $ $)) (-15 -2532 ($ $ $)) (-15 -1263 ($ $)) (-15 -1243 ($ $ $)) (-15 -1252 ($ $ $))))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3490 ((|#1| $) 44)) (-3779 (((-108) $ (-713)) 8)) (-2475 (($) 7 T CONST)) (-1282 ((|#1| |#1| $) 46)) (-2639 ((|#1| $) 45)) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) 9)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-3577 ((|#1| $) 39)) (-3246 (($ |#1| $) 40)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-2724 ((|#1| $) 41)) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-2895 (((-713) $) 43)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3905 (($ (-592 |#1|)) 42)) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-1040 |#1|) (-131) (-1128)) (T -1040))
-((-2940 (*1 *2 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1128)))) (-2375 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1128)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1128)))) (-1769 (*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1128)) (-5 *2 (-713)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4258) (-15 -2940 (|t#1| |t#1| $)) (-15 -2375 (|t#1| $)) (-15 -3412 (|t#1| $)) (-15 -1769 ((-713) $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
-((-2952 ((|#3| $) 76)) (-3077 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-1572 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#3| $) 37)) (-1994 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-2 (|:| -3407 (-632 |#3|)) (|:| |vec| (-1174 |#3|))) (-632 $) (-1174 $)) 73) (((-632 |#3|) (-632 $)) 65)) (-3376 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-2336 ((|#3| $) 78)) (-3186 ((|#4| $) 32)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ |#3|) 16)) (** (($ $ (-856)) NIL) (($ $ (-713)) 15) (($ $ (-525)) 82)))
-(((-1041 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-525))) (-15 -2336 (|#3| |#1|)) (-15 -2952 (|#3| |#1|)) (-15 -3186 (|#4| |#1|)) (-15 -1994 ((-632 |#3|) (-632 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 |#3|)) (|:| |vec| (-1174 |#3|))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-632 (-525)) (-632 |#1|))) (-15 -1572 (|#3| |#1|)) (-15 -3077 ((-3 |#3| "failed") |#1|)) (-15 -1217 (|#1| |#3|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-525) |#1|)) (-15 -3376 (|#1| |#1|)) (-15 -3376 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -3376 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -3376 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1217 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-856))) (-15 -1217 ((-798) |#1|))) (-1042 |#2| |#3| |#4| |#5|) (-713) (-977) (-218 |#2| |#3|) (-218 |#2| |#3|)) (T -1041))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-525))) (-15 -2336 (|#3| |#1|)) (-15 -2952 (|#3| |#1|)) (-15 -3186 (|#4| |#1|)) (-15 -1994 ((-632 |#3|) (-632 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 |#3|)) (|:| |vec| (-1174 |#3|))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -1994 ((-632 (-525)) (-632 |#1|))) (-15 -1572 (|#3| |#1|)) (-15 -3077 ((-3 |#3| "failed") |#1|)) (-15 -1217 (|#1| |#3|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-525) |#1|)) (-15 -3376 (|#1| |#1|)) (-15 -3376 (|#1| |#1| (-713))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -3376 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -3376 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1217 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-856))) (-15 -1217 ((-798) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2952 ((|#2| $) 72)) (-4197 (((-108) $) 112)) (-1578 (((-3 $ "failed") $ $) 19)) (-1772 (((-108) $) 110)) (-3991 (((-108) $ (-713)) 102)) (-1989 (($ |#2|) 75)) (-2169 (($) 17 T CONST)) (-2361 (($ $) 129 (|has| |#2| (-286)))) (-2631 ((|#3| $ (-525)) 124)) (-3077 (((-3 (-525) "failed") $) 86 (|has| |#2| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 84 (|has| |#2| (-968 (-385 (-525))))) (((-3 |#2| "failed") $) 81)) (-1572 (((-525) $) 87 (|has| |#2| (-968 (-525)))) (((-385 (-525)) $) 85 (|has| |#2| (-968 (-385 (-525))))) ((|#2| $) 80)) (-1994 (((-632 (-525)) (-632 $)) 79 (|has| |#2| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 78 (|has| |#2| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) 77) (((-632 |#2|) (-632 $)) 76)) (-3457 (((-3 $ "failed") $) 34)) (-3622 (((-713) $) 130 (|has| |#2| (-517)))) (-2222 ((|#2| $ (-525) (-525)) 122)) (-3440 (((-592 |#2|) $) 95 (|has| $ (-6 -4258)))) (-1396 (((-108) $) 31)) (-2313 (((-713) $) 131 (|has| |#2| (-517)))) (-2319 (((-592 |#4|) $) 132 (|has| |#2| (-517)))) (-1632 (((-713) $) 118)) (-1644 (((-713) $) 119)) (-3924 (((-108) $ (-713)) 103)) (-2956 ((|#2| $) 67 (|has| |#2| (-6 (-4260 "*"))))) (-2391 (((-525) $) 114)) (-1237 (((-525) $) 116)) (-2694 (((-592 |#2|) $) 94 (|has| $ (-6 -4258)))) (-2004 (((-108) |#2| $) 92 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4258))))) (-3446 (((-525) $) 115)) (-3757 (((-525) $) 117)) (-1716 (($ (-592 (-592 |#2|))) 109)) (-2284 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-4151 (((-592 (-592 |#2|)) $) 120)) (-2912 (((-108) $ (-713)) 104)) (-2619 (((-1075) $) 9)) (-1529 (((-3 $ "failed") $) 66 (|has| |#2| (-341)))) (-2093 (((-1039) $) 10)) (-1715 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-517)))) (-3944 (((-108) (-1 (-108) |#2|) $) 97 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#2|))) 91 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) 90 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) 88 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-2614 (((-108) $ $) 108)) (-2659 (((-108) $) 105)) (-2512 (($) 106)) (-3406 ((|#2| $ (-525) (-525) |#2|) 123) ((|#2| $ (-525) (-525)) 121)) (-3376 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-713)) 51) (($ $ (-592 (-1092)) (-592 (-713))) 44 (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) 43 (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) 42 (|has| |#2| (-835 (-1092)))) (($ $ (-1092)) 41 (|has| |#2| (-835 (-1092)))) (($ $ (-713)) 39 (|has| |#2| (-213))) (($ $) 37 (|has| |#2| (-213)))) (-2336 ((|#2| $) 71)) (-2663 (($ (-592 |#2|)) 74)) (-2007 (((-108) $) 111)) (-3186 ((|#3| $) 73)) (-1927 ((|#2| $) 68 (|has| |#2| (-6 (-4260 "*"))))) (-2110 (((-713) (-1 (-108) |#2|) $) 96 (|has| $ (-6 -4258))) (((-713) |#2| $) 93 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 107)) (-1808 ((|#4| $ (-525)) 125)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 83 (|has| |#2| (-968 (-385 (-525))))) (($ |#2|) 82)) (-3917 (((-713)) 29)) (-3029 (((-108) (-1 (-108) |#2|) $) 98 (|has| $ (-6 -4258)))) (-3737 (((-108) $) 113)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-713)) 49) (($ $ (-592 (-1092)) (-592 (-713))) 48 (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) 47 (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) 46 (|has| |#2| (-835 (-1092)))) (($ $ (-1092)) 45 (|has| |#2| (-835 (-1092)))) (($ $ (-713)) 40 (|has| |#2| (-213))) (($ $) 38 (|has| |#2| (-213)))) (-3955 (((-108) $ $) 6)) (-4075 (($ $ |#2|) 128 (|has| |#2| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 65 (|has| |#2| (-341)))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-3522 (((-713) $) 101 (|has| $ (-6 -4258)))))
+((-1282 (*1 *2 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1128)))) (-2639 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1128)))) (-3490 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1128)))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1128)) (-5 *2 (-713)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4259) (-15 -1282 (|t#1| |t#1| $)) (-15 -2639 (|t#1| $)) (-15 -3490 (|t#1| $)) (-15 -2895 ((-713) $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
+((-2924 ((|#3| $) 76)) (-1934 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-4105 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#3| $) 37)) (-3090 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL) (((-2 (|:| -4108 (-632 |#3|)) (|:| |vec| (-1174 |#3|))) (-632 $) (-1174 $)) 73) (((-632 |#3|) (-632 $)) 65)) (-2702 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-3450 ((|#3| $) 78)) (-1695 ((|#4| $) 32)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ |#3|) 16)) (** (($ $ (-856)) NIL) (($ $ (-713)) 15) (($ $ (-525)) 82)))
+(((-1041 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-525))) (-15 -3450 (|#3| |#1|)) (-15 -2924 (|#3| |#1|)) (-15 -1695 (|#4| |#1|)) (-15 -3090 ((-632 |#3|) (-632 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 |#3|)) (|:| |vec| (-1174 |#3|))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-632 (-525)) (-632 |#1|))) (-15 -4105 (|#3| |#1|)) (-15 -1934 ((-3 |#3| "failed") |#1|)) (-15 -4100 (|#1| |#3|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-525) |#1|)) (-15 -2702 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2702 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -2702 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4100 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-856))) (-15 -4100 ((-798) |#1|))) (-1042 |#2| |#3| |#4| |#5|) (-713) (-977) (-218 |#2| |#3|) (-218 |#2| |#3|)) (T -1041))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-525))) (-15 -3450 (|#3| |#1|)) (-15 -2924 (|#3| |#1|)) (-15 -1695 (|#4| |#1|)) (-15 -3090 ((-632 |#3|) (-632 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 |#3|)) (|:| |vec| (-1174 |#3|))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 |#1|) (-1174 |#1|))) (-15 -3090 ((-632 (-525)) (-632 |#1|))) (-15 -4105 (|#3| |#1|)) (-15 -1934 ((-3 |#3| "failed") |#1|)) (-15 -4100 (|#1| |#3|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-525) |#1|)) (-15 -2702 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-713))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2702 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -2702 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4100 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-856))) (-15 -4100 ((-798) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-2924 ((|#2| $) 72)) (-2207 (((-108) $) 112)) (-3222 (((-3 $ "failed") $ $) 19)) (-2721 (((-108) $) 110)) (-3779 (((-108) $ (-713)) 102)) (-1232 (($ |#2|) 75)) (-2475 (($) 17 T CONST)) (-3692 (($ $) 129 (|has| |#2| (-286)))) (-3209 ((|#3| $ (-525)) 124)) (-1934 (((-3 (-525) "failed") $) 86 (|has| |#2| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 84 (|has| |#2| (-968 (-385 (-525))))) (((-3 |#2| "failed") $) 81)) (-4105 (((-525) $) 87 (|has| |#2| (-968 (-525)))) (((-385 (-525)) $) 85 (|has| |#2| (-968 (-385 (-525))))) ((|#2| $) 80)) (-3090 (((-632 (-525)) (-632 $)) 79 (|has| |#2| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 78 (|has| |#2| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) 77) (((-632 |#2|) (-632 $)) 76)) (-3300 (((-3 $ "failed") $) 34)) (-3085 (((-713) $) 130 (|has| |#2| (-517)))) (-3017 ((|#2| $ (-525) (-525)) 122)) (-2175 (((-592 |#2|) $) 95 (|has| $ (-6 -4259)))) (-2278 (((-108) $) 31)) (-3204 (((-713) $) 131 (|has| |#2| (-517)))) (-3261 (((-592 |#4|) $) 132 (|has| |#2| (-517)))) (-2720 (((-713) $) 118)) (-2731 (((-713) $) 119)) (-2516 (((-108) $ (-713)) 103)) (-3239 ((|#2| $) 67 (|has| |#2| (-6 (-4261 "*"))))) (-2797 (((-525) $) 114)) (-2307 (((-525) $) 116)) (-2617 (((-592 |#2|) $) 94 (|has| $ (-6 -4259)))) (-3198 (((-108) |#2| $) 92 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4259))))) (-3194 (((-525) $) 115)) (-3210 (((-525) $) 117)) (-4054 (($ (-592 (-592 |#2|))) 109)) (-3069 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-2949 (((-592 (-592 |#2|)) $) 120)) (-4028 (((-108) $ (-713)) 104)) (-1289 (((-1075) $) 9)) (-1921 (((-3 $ "failed") $) 66 (|has| |#2| (-341)))) (-3993 (((-1039) $) 10)) (-1311 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-517)))) (-1518 (((-108) (-1 (-108) |#2|) $) 97 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#2|))) 91 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) 90 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) 88 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-1231 (((-108) $ $) 108)) (-3479 (((-108) $) 105)) (-1558 (($) 106)) (-3431 ((|#2| $ (-525) (-525) |#2|) 123) ((|#2| $ (-525) (-525)) 121)) (-2702 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-713)) 51) (($ $ (-592 (-1092)) (-592 (-713))) 44 (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) 43 (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) 42 (|has| |#2| (-835 (-1092)))) (($ $ (-1092)) 41 (|has| |#2| (-835 (-1092)))) (($ $ (-713)) 39 (|has| |#2| (-213))) (($ $) 37 (|has| |#2| (-213)))) (-3450 ((|#2| $) 71)) (-3525 (($ (-592 |#2|)) 74)) (-3219 (((-108) $) 111)) (-1695 ((|#3| $) 73)) (-1796 ((|#2| $) 68 (|has| |#2| (-6 (-4261 "*"))))) (-4002 (((-713) (-1 (-108) |#2|) $) 96 (|has| $ (-6 -4259))) (((-713) |#2| $) 93 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 107)) (-1881 ((|#4| $ (-525)) 125)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 83 (|has| |#2| (-968 (-385 (-525))))) (($ |#2|) 82)) (-2448 (((-713)) 29)) (-2706 (((-108) (-1 (-108) |#2|) $) 98 (|has| $ (-6 -4259)))) (-1245 (((-108) $) 113)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-713)) 49) (($ $ (-592 (-1092)) (-592 (-713))) 48 (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) 47 (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) 46 (|has| |#2| (-835 (-1092)))) (($ $ (-1092)) 45 (|has| |#2| (-835 (-1092)))) (($ $ (-713)) 40 (|has| |#2| (-213))) (($ $) 38 (|has| |#2| (-213)))) (-2775 (((-108) $ $) 6)) (-2880 (($ $ |#2|) 128 (|has| |#2| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 65 (|has| |#2| (-341)))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-2827 (((-713) $) 101 (|has| $ (-6 -4259)))))
(((-1042 |#1| |#2| |#3| |#4|) (-131) (-713) (-977) (-218 |t#1| |t#2|) (-218 |t#1| |t#2|)) (T -1042))
-((-1989 (*1 *1 *2) (-12 (-4 *2 (-977)) (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)))) (-2663 (*1 *1 *2) (-12 (-5 *2 (-592 *4)) (-4 *4 (-977)) (-4 *1 (-1042 *3 *4 *5 *6)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *2 *5)) (-4 *4 (-977)) (-4 *5 (-218 *3 *4)) (-4 *2 (-218 *3 *4)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (-4 *2 (-977)))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (-4 *2 (-977)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1042 *3 *4 *5 *2)) (-4 *4 (-977)) (-4 *5 (-218 *3 *4)) (-4 *2 (-218 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *2 *5)) (-4 *4 (-977)) (-4 *2 (-218 *3 *4)) (-4 *5 (-218 *3 *4)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4260 "*"))) (-4 *2 (-977)))) (-2956 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4260 "*"))) (-4 *2 (-977)))) (-1529 (*1 *1 *1) (|partial| -12 (-4 *1 (-1042 *2 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-218 *2 *3)) (-4 *5 (-218 *2 *3)) (-4 *3 (-341)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1042 *3 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)) (-4 *4 (-341)))))
-(-13 (-211 |t#2|) (-107 |t#2| |t#2|) (-980 |t#1| |t#1| |t#2| |t#3| |t#4|) (-389 |t#2|) (-355 |t#2|) (-10 -8 (IF (|has| |t#2| (-160)) (-6 (-660 |t#2|)) |%noBranch|) (-15 -1989 ($ |t#2|)) (-15 -2663 ($ (-592 |t#2|))) (-15 -3186 (|t#3| $)) (-15 -2952 (|t#2| $)) (-15 -2336 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4260 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -1927 (|t#2| $)) (-15 -2956 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-341)) (PROGN (-15 -1529 ((-3 $ "failed") $)) (-15 ** ($ $ (-525)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4260 "*"))) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-566 (-798)) . T) ((-211 |#2|) . T) ((-213) |has| |#2| (-213)) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-355 |#2|) . T) ((-389 |#2|) . T) ((-464 |#2|) . T) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-594 |#2|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#2| (-588 (-525))) ((-588 |#2|) . T) ((-660 |#2|) -3254 (|has| |#2| (-160)) (|has| |#2| (-6 (-4260 "*")))) ((-669) . T) ((-835 (-1092)) |has| |#2| (-835 (-1092))) ((-980 |#1| |#1| |#2| |#3| |#4|) . T) ((-968 (-385 (-525))) |has| |#2| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#2| (-968 (-525))) ((-968 |#2|) . T) ((-983 |#2|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1128) . T))
-((-1440 ((|#4| |#4|) 70)) (-1928 ((|#4| |#4|) 65)) (-2163 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3094 (-592 |#3|))) |#4| |#3|) 78)) (-3292 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-1394 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
-(((-1043 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1928 (|#4| |#4|)) (-15 -1394 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1440 (|#4| |#4|)) (-15 -3292 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2163 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3094 (-592 |#3|))) |#4| |#3|))) (-286) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -1043))
-((-2163 (*1 *2 *3 *4) (-12 (-4 *5 (-286)) (-4 *6 (-351 *5)) (-4 *4 (-351 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3094 (-592 *4)))) (-5 *1 (-1043 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))) (-3292 (*1 *2 *3) (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1043 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-1440 (*1 *2 *2) (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1043 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-1394 (*1 *2 *3) (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1043 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-1928 (*1 *2 *2) (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1043 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
-(-10 -7 (-15 -1928 (|#4| |#4|)) (-15 -1394 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1440 (|#4| |#4|)) (-15 -3292 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2163 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3094 (-592 |#3|))) |#4| |#3|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 17)) (-2897 (((-592 |#2|) $) 161)) (-2744 (((-1088 $) $ |#2|) 54) (((-1088 |#1|) $) 43)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 110 (|has| |#1| (-517)))) (-4218 (($ $) 112 (|has| |#1| (-517)))) (-3171 (((-108) $) 114 (|has| |#1| (-517)))) (-3212 (((-713) $) NIL) (((-713) $ (-592 |#2|)) 194)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-1286 (($ $) NIL (|has| |#1| (-429)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) 158) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 |#2| "failed") $) NIL)) (-1572 ((|#1| $) 156) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) ((|#2| $) NIL)) (-3377 (($ $ $ |#2|) NIL (|has| |#1| (-160)))) (-3063 (($ $) 198)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) 82)) (-1576 (($ $) NIL (|has| |#1| (-429))) (($ $ |#2|) NIL (|has| |#1| (-429)))) (-3052 (((-592 $) $) NIL)) (-3673 (((-108) $) NIL (|has| |#1| (-844)))) (-2188 (($ $ |#1| (-497 |#2|) $) NIL)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| |#1| (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| |#1| (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-1396 (((-108) $) 19)) (-3399 (((-713) $) 26)) (-2887 (($ (-1088 |#1|) |#2|) 48) (($ (-1088 $) |#2|) 64)) (-4144 (((-592 $) $) NIL)) (-1212 (((-108) $) 32)) (-2876 (($ |#1| (-497 |#2|)) 71) (($ $ |#2| (-713)) 52) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ |#2|) NIL)) (-2870 (((-497 |#2|) $) 188) (((-713) $ |#2|) 189) (((-592 (-713)) $ (-592 |#2|)) 190)) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2172 (($ (-1 (-497 |#2|) (-497 |#2|)) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) 122)) (-2431 (((-3 |#2| "failed") $) 163)) (-3031 (($ $) 197)) (-3043 ((|#1| $) 37)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2619 (((-1075) $) NIL)) (-1334 (((-3 (-592 $) "failed") $) NIL)) (-2001 (((-3 (-592 $) "failed") $) NIL)) (-2121 (((-3 (-2 (|:| |var| |#2|) (|:| -4193 (-713))) "failed") $) NIL)) (-2093 (((-1039) $) NIL)) (-3007 (((-108) $) 33)) (-3019 ((|#1| $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 140 (|has| |#1| (-429)))) (-2589 (($ (-592 $)) 145 (|has| |#1| (-429))) (($ $ $) 132 (|has| |#1| (-429)))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2770 (((-396 $) $) NIL (|has| |#1| (-844)))) (-1715 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-517)))) (-2457 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#2| |#1|) 166) (($ $ (-592 |#2|) (-592 |#1|)) 179) (($ $ |#2| $) 165) (($ $ (-592 |#2|) (-592 $)) 178)) (-1975 (($ $ |#2|) NIL (|has| |#1| (-160)))) (-3376 (($ $ |#2|) 196) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-2343 (((-497 |#2|) $) 184) (((-713) $ |#2|) 180) (((-592 (-713)) $ (-592 |#2|)) 182)) (-3210 (((-827 (-357)) $) NIL (-12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| |#1| (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-3658 ((|#1| $) 128 (|has| |#1| (-429))) (($ $ |#2|) 131 (|has| |#1| (-429)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1217 (((-798) $) 151) (($ (-525)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-517))) (($ (-385 (-525))) NIL (-3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-1684 (((-592 |#1|) $) 154)) (-1568 ((|#1| $ (-497 |#2|)) 73) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-3917 (((-713)) 79)) (-3716 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3325 (((-108) $ $) 117 (|has| |#1| (-517)))) (-1619 (($ $ (-856)) 102) (($ $ (-713)) 104)) (-3349 (($) 12 T CONST)) (-3359 (($) 14 T CONST)) (-2022 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) 97)) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4075 (($ $ |#1|) 126 (|has| |#1| (-341)))) (-4061 (($ $) 85) (($ $ $) 95)) (-4047 (($ $ $) 49)) (** (($ $ (-856)) 103) (($ $ (-713)) 100)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 88) (($ $ $) 65) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
+((-1232 (*1 *1 *2) (-12 (-4 *2 (-977)) (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)))) (-3525 (*1 *1 *2) (-12 (-5 *2 (-592 *4)) (-4 *4 (-977)) (-4 *1 (-1042 *3 *4 *5 *6)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)))) (-1695 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *2 *5)) (-4 *4 (-977)) (-4 *5 (-218 *3 *4)) (-4 *2 (-218 *3 *4)))) (-2924 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (-4 *2 (-977)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (-4 *2 (-977)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1042 *3 *4 *5 *2)) (-4 *4 (-977)) (-4 *5 (-218 *3 *4)) (-4 *2 (-218 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *2 *5)) (-4 *4 (-977)) (-4 *2 (-218 *3 *4)) (-4 *5 (-218 *3 *4)))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4261 "*"))) (-4 *2 (-977)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4261 "*"))) (-4 *2 (-977)))) (-1921 (*1 *1 *1) (|partial| -12 (-4 *1 (-1042 *2 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-218 *2 *3)) (-4 *5 (-218 *2 *3)) (-4 *3 (-341)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1042 *3 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)) (-4 *4 (-341)))))
+(-13 (-211 |t#2|) (-107 |t#2| |t#2|) (-980 |t#1| |t#1| |t#2| |t#3| |t#4|) (-389 |t#2|) (-355 |t#2|) (-10 -8 (IF (|has| |t#2| (-160)) (-6 (-660 |t#2|)) |%noBranch|) (-15 -1232 ($ |t#2|)) (-15 -3525 ($ (-592 |t#2|))) (-15 -1695 (|t#3| $)) (-15 -2924 (|t#2| $)) (-15 -3450 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4261 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -1796 (|t#2| $)) (-15 -3239 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-341)) (PROGN (-15 -1921 ((-3 $ "failed") $)) (-15 ** ($ $ (-525)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4261 "*"))) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-566 (-798)) . T) ((-211 |#2|) . T) ((-213) |has| |#2| (-213)) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-355 |#2|) . T) ((-389 |#2|) . T) ((-464 |#2|) . T) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-594 |#2|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#2| (-588 (-525))) ((-588 |#2|) . T) ((-660 |#2|) -2067 (|has| |#2| (-160)) (|has| |#2| (-6 (-4261 "*")))) ((-669) . T) ((-835 (-1092)) |has| |#2| (-835 (-1092))) ((-980 |#1| |#1| |#2| |#3| |#4|) . T) ((-968 (-385 (-525))) |has| |#2| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#2| (-968 (-525))) ((-968 |#2|) . T) ((-983 |#2|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1128) . T))
+((-2276 ((|#4| |#4|) 70)) (-1809 ((|#4| |#4|) 65)) (-2415 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2103 (-592 |#3|))) |#4| |#3|) 78)) (-1365 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-2256 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
+(((-1043 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1809 (|#4| |#4|)) (-15 -2256 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2276 (|#4| |#4|)) (-15 -1365 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2415 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2103 (-592 |#3|))) |#4| |#3|))) (-286) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -1043))
+((-2415 (*1 *2 *3 *4) (-12 (-4 *5 (-286)) (-4 *6 (-351 *5)) (-4 *4 (-351 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2103 (-592 *4)))) (-5 *1 (-1043 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))) (-1365 (*1 *2 *3) (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1043 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-2276 (*1 *2 *2) (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1043 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-2256 (*1 *2 *3) (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1043 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-1809 (*1 *2 *2) (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1043 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
+(-10 -7 (-15 -1809 (|#4| |#4|)) (-15 -2256 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2276 (|#4| |#4|)) (-15 -1365 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2415 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2103 (-592 |#3|))) |#4| |#3|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 17)) (-1296 (((-592 |#2|) $) 161)) (-4169 (((-1088 $) $ |#2|) 54) (((-1088 |#1|) $) 43)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 110 (|has| |#1| (-517)))) (-2433 (($ $) 112 (|has| |#1| (-517)))) (-1568 (((-108) $) 114 (|has| |#1| (-517)))) (-1928 (((-713) $) NIL) (((-713) $ (-592 |#2|)) 194)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4195 (($ $) NIL (|has| |#1| (-429)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) 158) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 |#2| "failed") $) NIL)) (-4105 ((|#1| $) 156) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) ((|#2| $) NIL)) (-3801 (($ $ $ |#2|) NIL (|has| |#1| (-160)))) (-1451 (($ $) 198)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) 82)) (-3201 (($ $) NIL (|has| |#1| (-429))) (($ $ |#2|) NIL (|has| |#1| (-429)))) (-1441 (((-592 $) $) NIL)) (-1798 (((-108) $) NIL (|has| |#1| (-844)))) (-1457 (($ $ |#1| (-497 |#2|) $) NIL)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| |#1| (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| |#1| (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-2278 (((-108) $) 19)) (-4025 (((-713) $) 26)) (-1284 (($ (-1088 |#1|) |#2|) 48) (($ (-1088 $) |#2|) 64)) (-2884 (((-592 $) $) NIL)) (-2457 (((-108) $) 32)) (-1272 (($ |#1| (-497 |#2|)) 71) (($ $ |#2| (-713)) 52) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ |#2|) NIL)) (-1819 (((-497 |#2|) $) 188) (((-713) $ |#2|) 189) (((-592 (-713)) $ (-592 |#2|)) 190)) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-1314 (($ (-1 (-497 |#2|) (-497 |#2|)) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) 122)) (-2018 (((-3 |#2| "failed") $) 163)) (-1418 (($ $) 197)) (-1430 ((|#1| $) 37)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1289 (((-1075) $) NIL)) (-2977 (((-3 (-592 $) "failed") $) NIL)) (-3165 (((-3 (-592 $) "failed") $) NIL)) (-1986 (((-3 (-2 (|:| |var| |#2|) (|:| -2168 (-713))) "failed") $) NIL)) (-3993 (((-1039) $) NIL)) (-1399 (((-108) $) 33)) (-1407 ((|#1| $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 140 (|has| |#1| (-429)))) (-2772 (($ (-592 $)) 145 (|has| |#1| (-429))) (($ $ $) 132 (|has| |#1| (-429)))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#1| (-844)))) (-4201 (((-396 $) $) NIL (|has| |#1| (-844)))) (-1311 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-517)))) (-2825 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#2| |#1|) 166) (($ $ (-592 |#2|) (-592 |#1|)) 179) (($ $ |#2| $) 165) (($ $ (-592 |#2|) (-592 $)) 178)) (-4115 (($ $ |#2|) NIL (|has| |#1| (-160)))) (-2702 (($ $ |#2|) 196) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3529 (((-497 |#2|) $) 184) (((-713) $ |#2|) 180) (((-592 (-713)) $ (-592 |#2|)) 182)) (-2069 (((-827 (-357)) $) NIL (-12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| |#1| (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-1661 ((|#1| $) 128 (|has| |#1| (-429))) (($ $ |#2|) 131 (|has| |#1| (-429)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-4100 (((-798) $) 151) (($ (-525)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-517))) (($ (-385 (-525))) NIL (-2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-3137 (((-592 |#1|) $) 154)) (-3136 ((|#1| $ (-497 |#2|)) 73) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2448 (((-713)) 79)) (-4042 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-1571 (((-108) $ $) 117 (|has| |#1| (-517)))) (-3706 (($ $ (-856)) 102) (($ $ (-713)) 104)) (-3364 (($) 12 T CONST)) (-3375 (($) 14 T CONST)) (-2401 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) 97)) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2880 (($ $ |#1|) 126 (|has| |#1| (-341)))) (-2871 (($ $) 85) (($ $ $) 95)) (-2860 (($ $ $) 49)) (** (($ $ (-856)) 103) (($ $ (-713)) 100)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 88) (($ $ $) 65) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
(((-1044 |#1| |#2|) (-884 |#1| (-497 |#2|) |#2|) (-977) (-789)) (T -1044))
NIL
(-884 |#1| (-497 |#2|) |#2|)
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2897 (((-592 |#2|) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-1575 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2804 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-1578 (((-3 $ "failed") $ $) NIL)) (-2782 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1549 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-2780 (($ $) 115 (|has| |#1| (-37 (-385 (-525)))))) (-1599 (($ $) 147 (|has| |#1| (-37 (-385 (-525)))))) (-2836 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-2169 (($) NIL T CONST)) (-3063 (($ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-3882 (((-887 |#1|) $ (-713)) NIL) (((-887 |#1|) $ (-713) (-713)) NIL)) (-2398 (((-108) $) NIL)) (-3140 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2581 (((-713) $ |#2|) NIL) (((-713) $ |#2| (-713)) NIL)) (-1396 (((-108) $) NIL)) (-2171 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1212 (((-108) $) NIL)) (-2876 (($ $ (-592 |#2|) (-592 (-497 |#2|))) NIL) (($ $ |#2| (-497 |#2|)) NIL) (($ |#1| (-497 |#2|)) NIL) (($ $ |#2| (-713)) 58) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-1517 (($ $) 113 (|has| |#1| (-37 (-385 (-525)))))) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2619 (((-1075) $) NIL)) (-1206 (($ $ |#2|) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ |#2| |#1|) 166 (|has| |#1| (-37 (-385 (-525)))))) (-2093 (((-1039) $) NIL)) (-3741 (($ (-1 $) |#2| |#1|) 165 (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $ (-713)) 15)) (-1715 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3096 (($ $) 111 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $ |#2| $) 97) (($ $ (-592 |#2|) (-592 $)) 90) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL)) (-3376 (($ $ |#2|) 100) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-2343 (((-497 |#2|) $) NIL)) (-2363 (((-1 (-1073 |#3|) |#3|) (-592 |#2|) (-592 (-1073 |#3|))) 79)) (-1609 (($ $) 149 (|has| |#1| (-37 (-385 (-525)))))) (-1447 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-1587 (($ $) 145 (|has| |#1| (-37 (-385 (-525)))))) (-2815 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-1562 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-2794 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-1489 (($ $) 17)) (-1217 (((-798) $) 182) (($ (-525)) NIL) (($ |#1|) 44 (|has| |#1| (-160))) (($ $) NIL (|has| |#1| (-517))) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#2|) 65) (($ |#3|) 63)) (-1568 ((|#1| $ (-497 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL) ((|#3| $ (-713)) 42)) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) NIL)) (-1649 (($ $) 155 (|has| |#1| (-37 (-385 (-525)))))) (-1492 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1630 (($ $) 151 (|has| |#1| (-37 (-385 (-525)))))) (-1465 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-1669 (($ $) 159 (|has| |#1| (-37 (-385 (-525)))))) (-1522 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-2359 (($ $) 161 (|has| |#1| (-37 (-385 (-525)))))) (-1537 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-1659 (($ $) 157 (|has| |#1| (-37 (-385 (-525)))))) (-1506 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-1639 (($ $) 153 (|has| |#1| (-37 (-385 (-525)))))) (-1479 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 18 T CONST)) (-3359 (($) 10 T CONST)) (-2022 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ |#1|) 184 (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) 61)) (** (($ $ (-856)) NIL) (($ $ (-713)) 70) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 103 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 60) (($ $ (-385 (-525))) 108 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 106 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
-(((-1045 |#1| |#2| |#3|) (-13 (-683 |#1| |#2|) (-10 -8 (-15 -1568 (|#3| $ (-713))) (-15 -1217 ($ |#2|)) (-15 -1217 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2363 ((-1 (-1073 |#3|) |#3|) (-592 |#2|) (-592 (-1073 |#3|)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -1206 ($ $ |#2| |#1|)) (-15 -3741 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-977) (-789) (-884 |#1| (-497 |#2|) |#2|)) (T -1045))
-((-1568 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *2 (-884 *4 (-497 *5) *5)) (-5 *1 (-1045 *4 *5 *2)) (-4 *4 (-977)) (-4 *5 (-789)))) (-1217 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *2 (-789)) (-5 *1 (-1045 *3 *2 *4)) (-4 *4 (-884 *3 (-497 *2) *2)))) (-1217 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *4 (-789)) (-5 *1 (-1045 *3 *4 *2)) (-4 *2 (-884 *3 (-497 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-789)) (-5 *1 (-1045 *3 *4 *2)) (-4 *2 (-884 *3 (-497 *4) *4)))) (-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1073 *7))) (-4 *6 (-789)) (-4 *7 (-884 *5 (-497 *6) *6)) (-4 *5 (-977)) (-5 *2 (-1 (-1073 *7) *7)) (-5 *1 (-1045 *5 *6 *7)))) (-1206 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-4 *2 (-789)) (-5 *1 (-1045 *3 *2 *4)) (-4 *4 (-884 *3 (-497 *2) *2)))) (-3741 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1045 *4 *3 *5))) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-977)) (-4 *3 (-789)) (-5 *1 (-1045 *4 *3 *5)) (-4 *5 (-884 *4 (-497 *3) *3)))))
-(-13 (-683 |#1| |#2|) (-10 -8 (-15 -1568 (|#3| $ (-713))) (-15 -1217 ($ |#2|)) (-15 -1217 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2363 ((-1 (-1073 |#3|) |#3|) (-592 |#2|) (-592 (-1073 |#3|)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -1206 ($ $ |#2| |#1|)) (-15 -3741 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-4236 (((-108) $ $) 7)) (-1463 (((-592 (-2 (|:| -2719 $) (|:| -3459 (-592 |#4|)))) (-592 |#4|)) 85)) (-1589 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-2897 (((-592 |#3|) $) 33)) (-2437 (((-108) $) 26)) (-2750 (((-108) $) 17 (|has| |#1| (-517)))) (-3950 (((-108) |#4| $) 101) (((-108) $) 97)) (-2495 ((|#4| |#4| $) 92)) (-1286 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 $))) |#4| $) 126)) (-2458 (((-2 (|:| |under| $) (|:| -2487 $) (|:| |upper| $)) $ |#3|) 27)) (-3991 (((-108) $ (-713)) 44)) (-3785 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4258))) (((-3 |#4| "failed") $ |#3|) 79)) (-2169 (($) 45 T CONST)) (-4089 (((-108) $) 22 (|has| |#1| (-517)))) (-2480 (((-108) $ $) 24 (|has| |#1| (-517)))) (-1207 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3339 (((-108) $) 25 (|has| |#1| (-517)))) (-2712 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3767 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-3333 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-3077 (((-3 $ "failed") (-592 |#4|)) 36)) (-1572 (($ (-592 |#4|)) 35)) (-1886 (((-3 $ "failed") $) 82)) (-3901 ((|#4| |#4| $) 89)) (-1910 (($ $) 68 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258))))) (-1703 (($ |#4| $) 67 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4258)))) (-1607 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-1961 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2834 ((|#4| |#4| $) 87)) (-1284 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4258))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4258))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1877 (((-2 (|:| -2719 (-592 |#4|)) (|:| -3459 (-592 |#4|))) $) 105)) (-1816 (((-108) |#4| $) 136)) (-3458 (((-108) |#4| $) 133)) (-2116 (((-108) |#4| $) 137) (((-108) $) 134)) (-3440 (((-592 |#4|) $) 52 (|has| $ (-6 -4258)))) (-2633 (((-108) |#4| $) 104) (((-108) $) 103)) (-3153 ((|#3| $) 34)) (-3924 (((-108) $ (-713)) 43)) (-2694 (((-592 |#4|) $) 53 (|has| $ (-6 -4258)))) (-2004 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#4| |#4|) $) 47)) (-1598 (((-592 |#3|) $) 32)) (-3919 (((-108) |#3| $) 31)) (-2912 (((-108) $ (-713)) 42)) (-2619 (((-1075) $) 9)) (-4028 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-2370 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 $))) |#4| |#4| $) 127)) (-1717 (((-3 |#4| "failed") $) 83)) (-3606 (((-592 $) |#4| $) 129)) (-3486 (((-3 (-108) (-592 $)) |#4| $) 132)) (-3070 (((-592 (-2 (|:| |val| (-108)) (|:| -2563 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2099 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-3644 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-3159 (((-592 |#4|) $) 107)) (-2686 (((-108) |#4| $) 99) (((-108) $) 95)) (-2423 ((|#4| |#4| $) 90)) (-2338 (((-108) $ $) 110)) (-1806 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2696 (((-108) |#4| $) 100) (((-108) $) 96)) (-3872 ((|#4| |#4| $) 91)) (-2093 (((-1039) $) 10)) (-1872 (((-3 |#4| "failed") $) 84)) (-1983 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3044 (((-3 $ "failed") $ |#4|) 78)) (-3931 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-3944 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-2614 (((-108) $ $) 38)) (-2659 (((-108) $) 41)) (-2512 (($) 40)) (-2343 (((-713) $) 106)) (-2110 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4258)))) (-1462 (($ $) 39)) (-3210 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-1230 (($ (-592 |#4|)) 60)) (-3264 (($ $ |#3|) 28)) (-1425 (($ $ |#3|) 30)) (-1320 (($ $) 88)) (-4008 (($ $ |#3|) 29)) (-1217 (((-798) $) 11) (((-592 |#4|) $) 37)) (-3735 (((-713) $) 76 (|has| |#3| (-346)))) (-1622 (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4027 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-1384 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-3029 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4258)))) (-1221 (((-592 |#3|) $) 81)) (-3162 (((-108) |#4| $) 135)) (-2081 (((-108) |#3| $) 80)) (-3955 (((-108) $ $) 6)) (-3522 (((-713) $) 46 (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1296 (((-592 |#2|) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-1803 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-3659 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1781 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-3638 (($ $) 115 (|has| |#1| (-37 (-385 (-525)))))) (-1828 (($ $) 147 (|has| |#1| (-37 (-385 (-525)))))) (-3698 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-2475 (($) NIL T CONST)) (-1451 (($ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3565 (((-887 |#1|) $ (-713)) NIL) (((-887 |#1|) $ (-713) (-713)) NIL)) (-2853 (((-108) $) NIL)) (-4106 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4000 (((-713) $ |#2|) NIL) (((-713) $ |#2| (-713)) NIL)) (-2278 (((-108) $) NIL)) (-1303 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2457 (((-108) $) NIL)) (-1272 (($ $ (-592 |#2|) (-592 (-497 |#2|))) NIL) (($ $ |#2| (-497 |#2|)) NIL) (($ |#1| (-497 |#2|)) NIL) (($ $ |#2| (-713)) 58) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2533 (($ $) 113 (|has| |#1| (-37 (-385 (-525)))))) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-1289 (((-1075) $) NIL)) (-2367 (($ $ |#2|) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ |#2| |#1|) 166 (|has| |#1| (-37 (-385 (-525)))))) (-3993 (((-1039) $) NIL)) (-1275 (($ (-1 $) |#2| |#1|) 165 (|has| |#1| (-37 (-385 (-525)))))) (-1397 (($ $ (-713)) 15)) (-1311 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1618 (($ $) 111 (|has| |#1| (-37 (-385 (-525)))))) (-2825 (($ $ |#2| $) 97) (($ $ (-592 |#2|) (-592 $)) 90) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL)) (-2702 (($ $ |#2|) 100) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3529 (((-497 |#2|) $) NIL)) (-2539 (((-1 (-1073 |#3|) |#3|) (-592 |#2|) (-592 (-1073 |#3|))) 79)) (-1841 (($ $) 149 (|has| |#1| (-37 (-385 (-525)))))) (-3798 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-1816 (($ $) 145 (|has| |#1| (-37 (-385 (-525)))))) (-3678 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-1792 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3649 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-3926 (($ $) 17)) (-4100 (((-798) $) 182) (($ (-525)) NIL) (($ |#1|) 44 (|has| |#1| (-160))) (($ $) NIL (|has| |#1| (-517))) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#2|) 65) (($ |#3|) 63)) (-3136 ((|#1| $ (-497 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL) ((|#3| $ (-713)) 42)) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) NIL)) (-1876 (($ $) 155 (|has| |#1| (-37 (-385 (-525)))))) (-3853 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1853 (($ $) 151 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-1902 (($ $) 159 (|has| |#1| (-37 (-385 (-525)))))) (-1760 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-3135 (($ $) 161 (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-1891 (($ $) 157 (|has| |#1| (-37 (-385 (-525)))))) (-1748 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-1866 (($ $) 153 (|has| |#1| (-37 (-385 (-525)))))) (-3820 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 18 T CONST)) (-3375 (($) 10 T CONST)) (-2401 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ |#1|) 184 (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) 61)) (** (($ $ (-856)) NIL) (($ $ (-713)) 70) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 103 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 60) (($ $ (-385 (-525))) 108 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 106 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
+(((-1045 |#1| |#2| |#3|) (-13 (-683 |#1| |#2|) (-10 -8 (-15 -3136 (|#3| $ (-713))) (-15 -4100 ($ |#2|)) (-15 -4100 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2539 ((-1 (-1073 |#3|) |#3|) (-592 |#2|) (-592 (-1073 |#3|)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2367 ($ $ |#2| |#1|)) (-15 -1275 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-977) (-789) (-884 |#1| (-497 |#2|) |#2|)) (T -1045))
+((-3136 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *2 (-884 *4 (-497 *5) *5)) (-5 *1 (-1045 *4 *5 *2)) (-4 *4 (-977)) (-4 *5 (-789)))) (-4100 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *2 (-789)) (-5 *1 (-1045 *3 *2 *4)) (-4 *4 (-884 *3 (-497 *2) *2)))) (-4100 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *4 (-789)) (-5 *1 (-1045 *3 *4 *2)) (-4 *2 (-884 *3 (-497 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-789)) (-5 *1 (-1045 *3 *4 *2)) (-4 *2 (-884 *3 (-497 *4) *4)))) (-2539 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1073 *7))) (-4 *6 (-789)) (-4 *7 (-884 *5 (-497 *6) *6)) (-4 *5 (-977)) (-5 *2 (-1 (-1073 *7) *7)) (-5 *1 (-1045 *5 *6 *7)))) (-2367 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-4 *2 (-789)) (-5 *1 (-1045 *3 *2 *4)) (-4 *4 (-884 *3 (-497 *2) *2)))) (-1275 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1045 *4 *3 *5))) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-977)) (-4 *3 (-789)) (-5 *1 (-1045 *4 *3 *5)) (-4 *5 (-884 *4 (-497 *3) *3)))))
+(-13 (-683 |#1| |#2|) (-10 -8 (-15 -3136 (|#3| $ (-713))) (-15 -4100 ($ |#2|)) (-15 -4100 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2539 ((-1 (-1073 |#3|) |#3|) (-592 |#2|) (-592 (-1073 |#3|)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2367 ($ $ |#2| |#1|)) (-15 -1275 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-4087 (((-108) $ $) 7)) (-2562 (((-592 (-2 (|:| -2682 $) (|:| -2046 (-592 |#4|)))) (-592 |#4|)) 85)) (-3347 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-1296 (((-592 |#3|) $) 33)) (-2071 (((-108) $) 26)) (-3093 (((-108) $) 17 (|has| |#1| (-517)))) (-1587 (((-108) |#4| $) 101) (((-108) $) 97)) (-1402 ((|#4| |#4| $) 92)) (-4195 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 $))) |#4| $) 126)) (-1842 (((-2 (|:| |under| $) (|:| -1340 $) (|:| |upper| $)) $ |#3|) 27)) (-3779 (((-108) $ (-713)) 44)) (-2399 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4259))) (((-3 |#4| "failed") $ |#3|) 79)) (-2475 (($) 45 T CONST)) (-3542 (((-108) $) 22 (|has| |#1| (-517)))) (-2462 (((-108) $ $) 24 (|has| |#1| (-517)))) (-2390 (((-108) $ $) 23 (|has| |#1| (-517)))) (-1698 (((-108) $) 25 (|has| |#1| (-517)))) (-2783 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3308 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-1655 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-1934 (((-3 $ "failed") (-592 |#4|)) 36)) (-4105 (($ (-592 |#4|)) 35)) (-1659 (((-3 $ "failed") $) 82)) (-2268 ((|#4| |#4| $) 89)) (-1681 (($ $) 68 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259))))) (-2698 (($ |#4| $) 67 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4259)))) (-3681 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-3964 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-1469 ((|#4| |#4| $) 87)) (-3504 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4259))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4259))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1329 (((-2 (|:| -2682 (-592 |#4|)) (|:| -2046 (-592 |#4|))) $) 105)) (-1954 (((-108) |#4| $) 136)) (-3315 (((-108) |#4| $) 133)) (-1941 (((-108) |#4| $) 137) (((-108) $) 134)) (-2175 (((-592 |#4|) $) 52 (|has| $ (-6 -4259)))) (-3221 (((-108) |#4| $) 104) (((-108) $) 103)) (-2577 ((|#3| $) 34)) (-2516 (((-108) $ (-713)) 43)) (-2617 (((-592 |#4|) $) 53 (|has| $ (-6 -4259)))) (-3198 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#4| |#4|) $) 47)) (-3435 (((-592 |#3|) $) 32)) (-2468 (((-108) |#3| $) 31)) (-4028 (((-108) $ (-713)) 42)) (-1289 (((-1075) $) 9)) (-4180 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-2602 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 $))) |#4| |#4| $) 127)) (-2718 (((-3 |#4| "failed") $) 83)) (-2346 (((-592 $) |#4| $) 129)) (-3580 (((-3 (-108) (-592 $)) |#4| $) 132)) (-3022 (((-592 (-2 (|:| |val| (-108)) (|:| -1285 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2913 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-1513 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-1455 (((-592 |#4|) $) 107)) (-3732 (((-108) |#4| $) 99) (((-108) $) 95)) (-3076 ((|#4| |#4| $) 90)) (-3472 (((-108) $ $) 110)) (-2991 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2635 (((-108) |#4| $) 100) (((-108) $) 96)) (-1998 ((|#4| |#4| $) 91)) (-3993 (((-1039) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-4202 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2821 (((-3 $ "failed") $ |#4|) 78)) (-1397 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-1518 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-1231 (((-108) $ $) 38)) (-3479 (((-108) $) 41)) (-1558 (($) 40)) (-3529 (((-713) $) 106)) (-4002 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4259)))) (-2503 (($ $) 39)) (-2069 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-4114 (($ (-592 |#4|)) 60)) (-4151 (($ $ |#3|) 28)) (-3522 (($ $ |#3|) 30)) (-1411 (($ $) 88)) (-3963 (($ $ |#3|) 29)) (-4100 (((-798) $) 11) (((-592 |#4|) $) 37)) (-1223 (((-713) $) 76 (|has| |#3| (-346)))) (-3799 (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4170 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-3605 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-2706 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4259)))) (-1874 (((-592 |#3|) $) 81)) (-1484 (((-108) |#4| $) 135)) (-2738 (((-108) |#3| $) 80)) (-2775 (((-108) $ $) 6)) (-2827 (((-713) $) 46 (|has| $ (-6 -4259)))))
(((-1046 |#1| |#2| |#3| |#4|) (-131) (-429) (-735) (-789) (-991 |t#1| |t#2| |t#3|)) (T -1046))
NIL
(-13 (-1029 |t#1| |t#2| |t#3| |t#4|) (-726 |t#1| |t#2| |t#3| |t#4|))
(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-798)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-726 |#1| |#2| |#3| |#4|) . T) ((-909 |#1| |#2| |#3| |#4|) . T) ((-996 |#1| |#2| |#3| |#4|) . T) ((-1020) . T) ((-1029 |#1| |#2| |#3| |#4|) . T) ((-1122 |#1| |#2| |#3| |#4|) . T) ((-1128) . T))
-((-3922 (((-592 |#2|) |#1|) 12)) (-3776 (((-592 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-592 |#2|) |#1|) 49)) (-3865 (((-592 |#2|) |#2| |#2| |#2|) 36) (((-592 |#2|) |#1|) 47)) (-3434 ((|#2| |#1|) 43)) (-1810 (((-2 (|:| |solns| (-592 |#2|)) (|:| |maps| (-592 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3866 (((-592 |#2|) |#2| |#2|) 35) (((-592 |#2|) |#1|) 46)) (-1663 (((-592 |#2|) |#2| |#2| |#2| |#2|) 37) (((-592 |#2|) |#1|) 48)) (-1792 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-4216 ((|#2| |#2| |#2| |#2|) 40)) (-2042 ((|#2| |#2| |#2|) 39)) (-2488 ((|#2| |#2| |#2| |#2| |#2|) 41)))
-(((-1047 |#1| |#2|) (-10 -7 (-15 -3922 ((-592 |#2|) |#1|)) (-15 -3434 (|#2| |#1|)) (-15 -1810 ((-2 (|:| |solns| (-592 |#2|)) (|:| |maps| (-592 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3866 ((-592 |#2|) |#1|)) (-15 -3865 ((-592 |#2|) |#1|)) (-15 -1663 ((-592 |#2|) |#1|)) (-15 -3776 ((-592 |#2|) |#1|)) (-15 -3866 ((-592 |#2|) |#2| |#2|)) (-15 -3865 ((-592 |#2|) |#2| |#2| |#2|)) (-15 -1663 ((-592 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3776 ((-592 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2042 (|#2| |#2| |#2|)) (-15 -4216 (|#2| |#2| |#2| |#2|)) (-15 -2488 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1792 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1150 |#2|) (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (T -1047))
-((-1792 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))) (-2488 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))) (-4216 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))) (-2042 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))) (-3776 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1047 *4 *3)) (-4 *4 (-1150 *3)))) (-1663 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1047 *4 *3)) (-4 *4 (-1150 *3)))) (-3865 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1047 *4 *3)) (-4 *4 (-1150 *3)))) (-3866 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1047 *4 *3)) (-4 *4 (-1150 *3)))) (-3776 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-1150 *4)))) (-1663 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-1150 *4)))) (-3865 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-1150 *4)))) (-3866 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-1150 *4)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-2 (|:| |solns| (-592 *5)) (|:| |maps| (-592 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1047 *3 *5)) (-4 *3 (-1150 *5)))) (-3434 (*1 *2 *3) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))) (-3922 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-1150 *4)))))
-(-10 -7 (-15 -3922 ((-592 |#2|) |#1|)) (-15 -3434 (|#2| |#1|)) (-15 -1810 ((-2 (|:| |solns| (-592 |#2|)) (|:| |maps| (-592 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3866 ((-592 |#2|) |#1|)) (-15 -3865 ((-592 |#2|) |#1|)) (-15 -1663 ((-592 |#2|) |#1|)) (-15 -3776 ((-592 |#2|) |#1|)) (-15 -3866 ((-592 |#2|) |#2| |#2|)) (-15 -3865 ((-592 |#2|) |#2| |#2| |#2|)) (-15 -1663 ((-592 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3776 ((-592 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2042 (|#2| |#2| |#2|)) (-15 -4216 (|#2| |#2| |#2| |#2|)) (-15 -2488 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1792 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-2399 (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-887 |#1|))))) 95) (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-887 |#1|)))) (-592 (-1092))) 94) (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-887 |#1|)))) 92) (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-887 |#1|))) (-592 (-1092))) 90) (((-592 (-273 (-294 |#1|))) (-273 (-385 (-887 |#1|)))) 75) (((-592 (-273 (-294 |#1|))) (-273 (-385 (-887 |#1|))) (-1092)) 76) (((-592 (-273 (-294 |#1|))) (-385 (-887 |#1|))) 70) (((-592 (-273 (-294 |#1|))) (-385 (-887 |#1|)) (-1092)) 59)) (-1691 (((-592 (-592 (-294 |#1|))) (-592 (-385 (-887 |#1|))) (-592 (-1092))) 88) (((-592 (-294 |#1|)) (-385 (-887 |#1|)) (-1092)) 43)) (-1442 (((-1082 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-385 (-887 |#1|)) (-1092)) 98) (((-1082 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-273 (-385 (-887 |#1|))) (-1092)) 97)))
-(((-1048 |#1|) (-10 -7 (-15 -2399 ((-592 (-273 (-294 |#1|))) (-385 (-887 |#1|)) (-1092))) (-15 -2399 ((-592 (-273 (-294 |#1|))) (-385 (-887 |#1|)))) (-15 -2399 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-887 |#1|))) (-1092))) (-15 -2399 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-887 |#1|))))) (-15 -2399 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-887 |#1|))) (-592 (-1092)))) (-15 -2399 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-887 |#1|))))) (-15 -2399 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-887 |#1|)))) (-592 (-1092)))) (-15 -2399 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-887 |#1|)))))) (-15 -1691 ((-592 (-294 |#1|)) (-385 (-887 |#1|)) (-1092))) (-15 -1691 ((-592 (-592 (-294 |#1|))) (-592 (-385 (-887 |#1|))) (-592 (-1092)))) (-15 -1442 ((-1082 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-273 (-385 (-887 |#1|))) (-1092))) (-15 -1442 ((-1082 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-385 (-887 |#1|)) (-1092)))) (-13 (-286) (-789) (-138))) (T -1048))
-((-1442 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-1082 (-592 (-294 *5)) (-592 (-273 (-294 *5))))) (-5 *1 (-1048 *5)))) (-1442 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-887 *5)))) (-5 *4 (-1092)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-1082 (-592 (-294 *5)) (-592 (-273 (-294 *5))))) (-5 *1 (-1048 *5)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1092))) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-294 *5)))) (-5 *1 (-1048 *5)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-294 *5))) (-5 *1 (-1048 *5)))) (-2399 (*1 *2 *3) (-12 (-5 *3 (-592 (-273 (-385 (-887 *4))))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1048 *4)))) (-2399 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-273 (-385 (-887 *5))))) (-5 *4 (-592 (-1092))) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1048 *5)))) (-2399 (*1 *2 *3) (-12 (-5 *3 (-592 (-385 (-887 *4)))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1048 *4)))) (-2399 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1092))) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1048 *5)))) (-2399 (*1 *2 *3) (-12 (-5 *3 (-273 (-385 (-887 *4)))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1048 *4)))) (-2399 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-887 *5)))) (-5 *4 (-1092)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1048 *5)))) (-2399 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1048 *4)))) (-2399 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1048 *5)))))
-(-10 -7 (-15 -2399 ((-592 (-273 (-294 |#1|))) (-385 (-887 |#1|)) (-1092))) (-15 -2399 ((-592 (-273 (-294 |#1|))) (-385 (-887 |#1|)))) (-15 -2399 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-887 |#1|))) (-1092))) (-15 -2399 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-887 |#1|))))) (-15 -2399 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-887 |#1|))) (-592 (-1092)))) (-15 -2399 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-887 |#1|))))) (-15 -2399 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-887 |#1|)))) (-592 (-1092)))) (-15 -2399 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-887 |#1|)))))) (-15 -1691 ((-592 (-294 |#1|)) (-385 (-887 |#1|)) (-1092))) (-15 -1691 ((-592 (-592 (-294 |#1|))) (-592 (-385 (-887 |#1|))) (-592 (-1092)))) (-15 -1442 ((-1082 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-273 (-385 (-887 |#1|))) (-1092))) (-15 -1442 ((-1082 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-385 (-887 |#1|)) (-1092))))
-((-1931 (((-385 (-1088 (-294 |#1|))) (-1174 (-294 |#1|)) (-385 (-1088 (-294 |#1|))) (-525)) 29)) (-2507 (((-385 (-1088 (-294 |#1|))) (-385 (-1088 (-294 |#1|))) (-385 (-1088 (-294 |#1|))) (-385 (-1088 (-294 |#1|)))) 40)))
-(((-1049 |#1|) (-10 -7 (-15 -2507 ((-385 (-1088 (-294 |#1|))) (-385 (-1088 (-294 |#1|))) (-385 (-1088 (-294 |#1|))) (-385 (-1088 (-294 |#1|))))) (-15 -1931 ((-385 (-1088 (-294 |#1|))) (-1174 (-294 |#1|)) (-385 (-1088 (-294 |#1|))) (-525)))) (-13 (-517) (-789))) (T -1049))
-((-1931 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-385 (-1088 (-294 *5)))) (-5 *3 (-1174 (-294 *5))) (-5 *4 (-525)) (-4 *5 (-13 (-517) (-789))) (-5 *1 (-1049 *5)))) (-2507 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-385 (-1088 (-294 *3)))) (-4 *3 (-13 (-517) (-789))) (-5 *1 (-1049 *3)))))
-(-10 -7 (-15 -2507 ((-385 (-1088 (-294 |#1|))) (-385 (-1088 (-294 |#1|))) (-385 (-1088 (-294 |#1|))) (-385 (-1088 (-294 |#1|))))) (-15 -1931 ((-385 (-1088 (-294 |#1|))) (-1174 (-294 |#1|)) (-385 (-1088 (-294 |#1|))) (-525))))
-((-3922 (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-294 |#1|))) (-592 (-1092))) 222) (((-592 (-273 (-294 |#1|))) (-294 |#1|) (-1092)) 20) (((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)) (-1092)) 26) (((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|))) 25) (((-592 (-273 (-294 |#1|))) (-294 |#1|)) 21)))
-(((-1050 |#1|) (-10 -7 (-15 -3922 ((-592 (-273 (-294 |#1|))) (-294 |#1|))) (-15 -3922 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)))) (-15 -3922 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)) (-1092))) (-15 -3922 ((-592 (-273 (-294 |#1|))) (-294 |#1|) (-1092))) (-15 -3922 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-294 |#1|))) (-592 (-1092))))) (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (T -1050))
-((-3922 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-1092))) (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1050 *5)) (-5 *3 (-592 (-273 (-294 *5)))))) (-3922 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-294 *5)))) (-3922 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-273 (-294 *5))))) (-3922 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1050 *4)) (-5 *3 (-273 (-294 *4))))) (-3922 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1050 *4)) (-5 *3 (-294 *4)))))
-(-10 -7 (-15 -3922 ((-592 (-273 (-294 |#1|))) (-294 |#1|))) (-15 -3922 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)))) (-15 -3922 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)) (-1092))) (-15 -3922 ((-592 (-273 (-294 |#1|))) (-294 |#1|) (-1092))) (-15 -3922 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-294 |#1|))) (-592 (-1092)))))
-((-2414 ((|#2| |#2|) 20 (|has| |#1| (-789))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 17)) (-3083 ((|#2| |#2|) 19 (|has| |#1| (-789))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 16)))
-(((-1051 |#1| |#2|) (-10 -7 (-15 -3083 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -2414 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-789)) (PROGN (-15 -3083 (|#2| |#2|)) (-15 -2414 (|#2| |#2|))) |%noBranch|)) (-1128) (-13 (-558 (-525) |#1|) (-10 -7 (-6 -4258) (-6 -4259)))) (T -1051))
-((-2414 (*1 *2 *2) (-12 (-4 *3 (-789)) (-4 *3 (-1128)) (-5 *1 (-1051 *3 *2)) (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4258) (-6 -4259)))))) (-3083 (*1 *2 *2) (-12 (-4 *3 (-789)) (-4 *3 (-1128)) (-5 *1 (-1051 *3 *2)) (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4258) (-6 -4259)))))) (-2414 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1051 *4 *2)) (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4258) (-6 -4259)))))) (-3083 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1051 *4 *2)) (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4258) (-6 -4259)))))))
-(-10 -7 (-15 -3083 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -2414 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-789)) (PROGN (-15 -3083 (|#2| |#2|)) (-15 -2414 (|#2| |#2|))) |%noBranch|))
-((-4236 (((-108) $ $) NIL)) (-3320 (((-1081 3 |#1|) $) 108)) (-2490 (((-108) $) 72)) (-3104 (($ $ (-592 (-878 |#1|))) 20) (($ $ (-592 (-592 |#1|))) 75) (($ (-592 (-878 |#1|))) 74) (((-592 (-878 |#1|)) $) 73)) (-2104 (((-108) $) 41)) (-2568 (($ $ (-878 |#1|)) 46) (($ $ (-592 |#1|)) 51) (($ $ (-713)) 53) (($ (-878 |#1|)) 47) (((-878 |#1|) $) 45)) (-3370 (((-2 (|:| -2388 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713))) $) 106)) (-2559 (((-713) $) 26)) (-3954 (((-713) $) 25)) (-2749 (($ $ (-713) (-878 |#1|)) 39)) (-3415 (((-108) $) 82)) (-2320 (($ $ (-592 (-592 (-878 |#1|))) (-592 (-159)) (-159)) 89) (($ $ (-592 (-592 (-592 |#1|))) (-592 (-159)) (-159)) 91) (($ $ (-592 (-592 (-878 |#1|))) (-108) (-108)) 85) (($ $ (-592 (-592 (-592 |#1|))) (-108) (-108)) 93) (($ (-592 (-592 (-878 |#1|)))) 86) (($ (-592 (-592 (-878 |#1|))) (-108) (-108)) 87) (((-592 (-592 (-878 |#1|))) $) 84)) (-1577 (($ (-592 $)) 28) (($ $ $) 29)) (-2508 (((-592 (-159)) $) 103)) (-4078 (((-592 (-878 |#1|)) $) 97)) (-2570 (((-592 (-592 (-159))) $) 102)) (-1573 (((-592 (-592 (-592 (-878 |#1|)))) $) NIL)) (-1982 (((-592 (-592 (-592 (-713)))) $) 100)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1482 (((-713) $ (-592 (-878 |#1|))) 37)) (-1821 (((-108) $) 54)) (-2351 (($ $ (-592 (-878 |#1|))) 56) (($ $ (-592 (-592 |#1|))) 62) (($ (-592 (-878 |#1|))) 57) (((-592 (-878 |#1|)) $) 55)) (-1526 (($) 23) (($ (-1081 3 |#1|)) 24)) (-1462 (($ $) 35)) (-3806 (((-592 $) $) 34)) (-1561 (($ (-592 $)) 31)) (-1907 (((-592 $) $) 33)) (-1217 (((-798) $) 112)) (-1593 (((-108) $) 64)) (-1247 (($ $ (-592 (-878 |#1|))) 66) (($ $ (-592 (-592 |#1|))) 69) (($ (-592 (-878 |#1|))) 67) (((-592 (-878 |#1|)) $) 65)) (-3520 (($ $) 107)) (-3955 (((-108) $ $) NIL)))
+((-2496 (((-592 |#2|) |#1|) 12)) (-3400 (((-592 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-592 |#2|) |#1|) 49)) (-3071 (((-592 |#2|) |#2| |#2| |#2|) 36) (((-592 |#2|) |#1|) 47)) (-1270 ((|#2| |#1|) 43)) (-1908 (((-2 (|:| |solns| (-592 |#2|)) (|:| |maps| (-592 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3544 (((-592 |#2|) |#2| |#2|) 35) (((-592 |#2|) |#1|) 46)) (-4177 (((-592 |#2|) |#2| |#2| |#2| |#2|) 37) (((-592 |#2|) |#1|) 48)) (-2890 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-2413 ((|#2| |#2| |#2| |#2|) 40)) (-3534 ((|#2| |#2| |#2|) 39)) (-1353 ((|#2| |#2| |#2| |#2| |#2|) 41)))
+(((-1047 |#1| |#2|) (-10 -7 (-15 -2496 ((-592 |#2|) |#1|)) (-15 -1270 (|#2| |#1|)) (-15 -1908 ((-2 (|:| |solns| (-592 |#2|)) (|:| |maps| (-592 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3544 ((-592 |#2|) |#1|)) (-15 -3071 ((-592 |#2|) |#1|)) (-15 -4177 ((-592 |#2|) |#1|)) (-15 -3400 ((-592 |#2|) |#1|)) (-15 -3544 ((-592 |#2|) |#2| |#2|)) (-15 -3071 ((-592 |#2|) |#2| |#2| |#2|)) (-15 -4177 ((-592 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3400 ((-592 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3534 (|#2| |#2| |#2|)) (-15 -2413 (|#2| |#2| |#2| |#2|)) (-15 -1353 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2890 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1150 |#2|) (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (T -1047))
+((-2890 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))) (-1353 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))) (-2413 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))) (-3534 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))) (-3400 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1047 *4 *3)) (-4 *4 (-1150 *3)))) (-4177 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1047 *4 *3)) (-4 *4 (-1150 *3)))) (-3071 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1047 *4 *3)) (-4 *4 (-1150 *3)))) (-3544 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1047 *4 *3)) (-4 *4 (-1150 *3)))) (-3400 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-1150 *4)))) (-4177 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-1150 *4)))) (-3071 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-1150 *4)))) (-3544 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-1150 *4)))) (-1908 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-2 (|:| |solns| (-592 *5)) (|:| |maps| (-592 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1047 *3 *5)) (-4 *3 (-1150 *5)))) (-1270 (*1 *2 *3) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-1150 *4)))))
+(-10 -7 (-15 -2496 ((-592 |#2|) |#1|)) (-15 -1270 (|#2| |#1|)) (-15 -1908 ((-2 (|:| |solns| (-592 |#2|)) (|:| |maps| (-592 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3544 ((-592 |#2|) |#1|)) (-15 -3071 ((-592 |#2|) |#1|)) (-15 -4177 ((-592 |#2|) |#1|)) (-15 -3400 ((-592 |#2|) |#1|)) (-15 -3544 ((-592 |#2|) |#2| |#2|)) (-15 -3071 ((-592 |#2|) |#2| |#2| |#2|)) (-15 -4177 ((-592 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3400 ((-592 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3534 (|#2| |#2| |#2|)) (-15 -2413 (|#2| |#2| |#2| |#2|)) (-15 -1353 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2890 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-2861 (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-887 |#1|))))) 95) (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-887 |#1|)))) (-592 (-1092))) 94) (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-887 |#1|)))) 92) (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-887 |#1|))) (-592 (-1092))) 90) (((-592 (-273 (-294 |#1|))) (-273 (-385 (-887 |#1|)))) 75) (((-592 (-273 (-294 |#1|))) (-273 (-385 (-887 |#1|))) (-1092)) 76) (((-592 (-273 (-294 |#1|))) (-385 (-887 |#1|))) 70) (((-592 (-273 (-294 |#1|))) (-385 (-887 |#1|)) (-1092)) 59)) (-3203 (((-592 (-592 (-294 |#1|))) (-592 (-385 (-887 |#1|))) (-592 (-1092))) 88) (((-592 (-294 |#1|)) (-385 (-887 |#1|)) (-1092)) 43)) (-2308 (((-1082 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-385 (-887 |#1|)) (-1092)) 98) (((-1082 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-273 (-385 (-887 |#1|))) (-1092)) 97)))
+(((-1048 |#1|) (-10 -7 (-15 -2861 ((-592 (-273 (-294 |#1|))) (-385 (-887 |#1|)) (-1092))) (-15 -2861 ((-592 (-273 (-294 |#1|))) (-385 (-887 |#1|)))) (-15 -2861 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-887 |#1|))) (-1092))) (-15 -2861 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-887 |#1|))))) (-15 -2861 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-887 |#1|))) (-592 (-1092)))) (-15 -2861 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-887 |#1|))))) (-15 -2861 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-887 |#1|)))) (-592 (-1092)))) (-15 -2861 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-887 |#1|)))))) (-15 -3203 ((-592 (-294 |#1|)) (-385 (-887 |#1|)) (-1092))) (-15 -3203 ((-592 (-592 (-294 |#1|))) (-592 (-385 (-887 |#1|))) (-592 (-1092)))) (-15 -2308 ((-1082 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-273 (-385 (-887 |#1|))) (-1092))) (-15 -2308 ((-1082 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-385 (-887 |#1|)) (-1092)))) (-13 (-286) (-789) (-138))) (T -1048))
+((-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-1082 (-592 (-294 *5)) (-592 (-273 (-294 *5))))) (-5 *1 (-1048 *5)))) (-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-887 *5)))) (-5 *4 (-1092)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-1082 (-592 (-294 *5)) (-592 (-273 (-294 *5))))) (-5 *1 (-1048 *5)))) (-3203 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1092))) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-294 *5)))) (-5 *1 (-1048 *5)))) (-3203 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-294 *5))) (-5 *1 (-1048 *5)))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-592 (-273 (-385 (-887 *4))))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1048 *4)))) (-2861 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-273 (-385 (-887 *5))))) (-5 *4 (-592 (-1092))) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1048 *5)))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-592 (-385 (-887 *4)))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1048 *4)))) (-2861 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1092))) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1048 *5)))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-273 (-385 (-887 *4)))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1048 *4)))) (-2861 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-887 *5)))) (-5 *4 (-1092)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1048 *5)))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1048 *4)))) (-2861 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1048 *5)))))
+(-10 -7 (-15 -2861 ((-592 (-273 (-294 |#1|))) (-385 (-887 |#1|)) (-1092))) (-15 -2861 ((-592 (-273 (-294 |#1|))) (-385 (-887 |#1|)))) (-15 -2861 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-887 |#1|))) (-1092))) (-15 -2861 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-887 |#1|))))) (-15 -2861 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-887 |#1|))) (-592 (-1092)))) (-15 -2861 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-887 |#1|))))) (-15 -2861 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-887 |#1|)))) (-592 (-1092)))) (-15 -2861 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-887 |#1|)))))) (-15 -3203 ((-592 (-294 |#1|)) (-385 (-887 |#1|)) (-1092))) (-15 -3203 ((-592 (-592 (-294 |#1|))) (-592 (-385 (-887 |#1|))) (-592 (-1092)))) (-15 -2308 ((-1082 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-273 (-385 (-887 |#1|))) (-1092))) (-15 -2308 ((-1082 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-385 (-887 |#1|)) (-1092))))
+((-1845 (((-385 (-1088 (-294 |#1|))) (-1174 (-294 |#1|)) (-385 (-1088 (-294 |#1|))) (-525)) 29)) (-1505 (((-385 (-1088 (-294 |#1|))) (-385 (-1088 (-294 |#1|))) (-385 (-1088 (-294 |#1|))) (-385 (-1088 (-294 |#1|)))) 40)))
+(((-1049 |#1|) (-10 -7 (-15 -1505 ((-385 (-1088 (-294 |#1|))) (-385 (-1088 (-294 |#1|))) (-385 (-1088 (-294 |#1|))) (-385 (-1088 (-294 |#1|))))) (-15 -1845 ((-385 (-1088 (-294 |#1|))) (-1174 (-294 |#1|)) (-385 (-1088 (-294 |#1|))) (-525)))) (-13 (-517) (-789))) (T -1049))
+((-1845 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-385 (-1088 (-294 *5)))) (-5 *3 (-1174 (-294 *5))) (-5 *4 (-525)) (-4 *5 (-13 (-517) (-789))) (-5 *1 (-1049 *5)))) (-1505 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-385 (-1088 (-294 *3)))) (-4 *3 (-13 (-517) (-789))) (-5 *1 (-1049 *3)))))
+(-10 -7 (-15 -1505 ((-385 (-1088 (-294 |#1|))) (-385 (-1088 (-294 |#1|))) (-385 (-1088 (-294 |#1|))) (-385 (-1088 (-294 |#1|))))) (-15 -1845 ((-385 (-1088 (-294 |#1|))) (-1174 (-294 |#1|)) (-385 (-1088 (-294 |#1|))) (-525))))
+((-2496 (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-294 |#1|))) (-592 (-1092))) 222) (((-592 (-273 (-294 |#1|))) (-294 |#1|) (-1092)) 20) (((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)) (-1092)) 26) (((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|))) 25) (((-592 (-273 (-294 |#1|))) (-294 |#1|)) 21)))
+(((-1050 |#1|) (-10 -7 (-15 -2496 ((-592 (-273 (-294 |#1|))) (-294 |#1|))) (-15 -2496 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)))) (-15 -2496 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)) (-1092))) (-15 -2496 ((-592 (-273 (-294 |#1|))) (-294 |#1|) (-1092))) (-15 -2496 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-294 |#1|))) (-592 (-1092))))) (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (T -1050))
+((-2496 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-1092))) (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1050 *5)) (-5 *3 (-592 (-273 (-294 *5)))))) (-2496 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-294 *5)))) (-2496 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-273 (-294 *5))))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1050 *4)) (-5 *3 (-273 (-294 *4))))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1050 *4)) (-5 *3 (-294 *4)))))
+(-10 -7 (-15 -2496 ((-592 (-273 (-294 |#1|))) (-294 |#1|))) (-15 -2496 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)))) (-15 -2496 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)) (-1092))) (-15 -2496 ((-592 (-273 (-294 |#1|))) (-294 |#1|) (-1092))) (-15 -2496 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-294 |#1|))) (-592 (-1092)))))
+((-2993 ((|#2| |#2|) 20 (|has| |#1| (-789))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 17)) (-3154 ((|#2| |#2|) 19 (|has| |#1| (-789))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 16)))
+(((-1051 |#1| |#2|) (-10 -7 (-15 -3154 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -2993 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-789)) (PROGN (-15 -3154 (|#2| |#2|)) (-15 -2993 (|#2| |#2|))) |%noBranch|)) (-1128) (-13 (-558 (-525) |#1|) (-10 -7 (-6 -4259) (-6 -4260)))) (T -1051))
+((-2993 (*1 *2 *2) (-12 (-4 *3 (-789)) (-4 *3 (-1128)) (-5 *1 (-1051 *3 *2)) (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4259) (-6 -4260)))))) (-3154 (*1 *2 *2) (-12 (-4 *3 (-789)) (-4 *3 (-1128)) (-5 *1 (-1051 *3 *2)) (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4259) (-6 -4260)))))) (-2993 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1051 *4 *2)) (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4259) (-6 -4260)))))) (-3154 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1051 *4 *2)) (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4259) (-6 -4260)))))))
+(-10 -7 (-15 -3154 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -2993 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-789)) (PROGN (-15 -3154 (|#2| |#2|)) (-15 -2993 (|#2| |#2|))) |%noBranch|))
+((-4087 (((-108) $ $) NIL)) (-1517 (((-1081 3 |#1|) $) 108)) (-1364 (((-108) $) 72)) (-2178 (($ $ (-592 (-878 |#1|))) 20) (($ $ (-592 (-592 |#1|))) 75) (($ (-592 (-878 |#1|))) 74) (((-592 (-878 |#1|)) $) 73)) (-2960 (((-108) $) 41)) (-4112 (($ $ (-878 |#1|)) 46) (($ $ (-592 |#1|)) 51) (($ $ (-713)) 53) (($ (-878 |#1|)) 47) (((-878 |#1|) $) 45)) (-3761 (((-2 (|:| -2764 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713))) $) 106)) (-3796 (((-713) $) 26)) (-1635 (((-713) $) 25)) (-3084 (($ $ (-713) (-878 |#1|)) 39)) (-4156 (((-108) $) 82)) (-3276 (($ $ (-592 (-592 (-878 |#1|))) (-592 (-159)) (-159)) 89) (($ $ (-592 (-592 (-592 |#1|))) (-592 (-159)) (-159)) 91) (($ $ (-592 (-592 (-878 |#1|))) (-108) (-108)) 85) (($ $ (-592 (-592 (-592 |#1|))) (-108) (-108)) 93) (($ (-592 (-592 (-878 |#1|)))) 86) (($ (-592 (-592 (-878 |#1|))) (-108) (-108)) 87) (((-592 (-592 (-878 |#1|))) $) 84)) (-3212 (($ (-592 $)) 28) (($ $ $) 29)) (-1512 (((-592 (-159)) $) 103)) (-3025 (((-592 (-878 |#1|)) $) 97)) (-3885 (((-592 (-592 (-159))) $) 102)) (-3179 (((-592 (-592 (-592 (-878 |#1|)))) $) NIL)) (-4191 (((-592 (-592 (-592 (-713)))) $) 100)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2193 (((-713) $ (-592 (-878 |#1|))) 37)) (-1999 (((-108) $) 54)) (-3609 (($ $ (-592 (-878 |#1|))) 56) (($ $ (-592 (-592 |#1|))) 62) (($ (-592 (-878 |#1|))) 57) (((-592 (-878 |#1|)) $) 55)) (-1877 (($) 23) (($ (-1081 3 |#1|)) 24)) (-2503 (($ $) 35)) (-3709 (((-592 $) $) 34)) (-3070 (($ (-592 $)) 31)) (-1600 (((-592 $) $) 33)) (-4100 (((-798) $) 112)) (-3380 (((-108) $) 64)) (-1614 (($ $ (-592 (-878 |#1|))) 66) (($ $ (-592 (-592 |#1|))) 69) (($ (-592 (-878 |#1|))) 67) (((-592 (-878 |#1|)) $) 65)) (-2694 (($ $) 107)) (-2775 (((-108) $ $) NIL)))
(((-1052 |#1|) (-1053 |#1|) (-977)) (T -1052))
NIL
(-1053 |#1|)
-((-4236 (((-108) $ $) 7)) (-3320 (((-1081 3 |#1|) $) 13)) (-2490 (((-108) $) 29)) (-3104 (($ $ (-592 (-878 |#1|))) 33) (($ $ (-592 (-592 |#1|))) 32) (($ (-592 (-878 |#1|))) 31) (((-592 (-878 |#1|)) $) 30)) (-2104 (((-108) $) 44)) (-2568 (($ $ (-878 |#1|)) 49) (($ $ (-592 |#1|)) 48) (($ $ (-713)) 47) (($ (-878 |#1|)) 46) (((-878 |#1|) $) 45)) (-3370 (((-2 (|:| -2388 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713))) $) 15)) (-2559 (((-713) $) 58)) (-3954 (((-713) $) 59)) (-2749 (($ $ (-713) (-878 |#1|)) 50)) (-3415 (((-108) $) 21)) (-2320 (($ $ (-592 (-592 (-878 |#1|))) (-592 (-159)) (-159)) 28) (($ $ (-592 (-592 (-592 |#1|))) (-592 (-159)) (-159)) 27) (($ $ (-592 (-592 (-878 |#1|))) (-108) (-108)) 26) (($ $ (-592 (-592 (-592 |#1|))) (-108) (-108)) 25) (($ (-592 (-592 (-878 |#1|)))) 24) (($ (-592 (-592 (-878 |#1|))) (-108) (-108)) 23) (((-592 (-592 (-878 |#1|))) $) 22)) (-1577 (($ (-592 $)) 57) (($ $ $) 56)) (-2508 (((-592 (-159)) $) 16)) (-4078 (((-592 (-878 |#1|)) $) 20)) (-2570 (((-592 (-592 (-159))) $) 17)) (-1573 (((-592 (-592 (-592 (-878 |#1|)))) $) 18)) (-1982 (((-592 (-592 (-592 (-713)))) $) 19)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1482 (((-713) $ (-592 (-878 |#1|))) 51)) (-1821 (((-108) $) 39)) (-2351 (($ $ (-592 (-878 |#1|))) 43) (($ $ (-592 (-592 |#1|))) 42) (($ (-592 (-878 |#1|))) 41) (((-592 (-878 |#1|)) $) 40)) (-1526 (($) 61) (($ (-1081 3 |#1|)) 60)) (-1462 (($ $) 52)) (-3806 (((-592 $) $) 53)) (-1561 (($ (-592 $)) 55)) (-1907 (((-592 $) $) 54)) (-1217 (((-798) $) 11)) (-1593 (((-108) $) 34)) (-1247 (($ $ (-592 (-878 |#1|))) 38) (($ $ (-592 (-592 |#1|))) 37) (($ (-592 (-878 |#1|))) 36) (((-592 (-878 |#1|)) $) 35)) (-3520 (($ $) 14)) (-3955 (((-108) $ $) 6)))
+((-4087 (((-108) $ $) 7)) (-1517 (((-1081 3 |#1|) $) 13)) (-1364 (((-108) $) 29)) (-2178 (($ $ (-592 (-878 |#1|))) 33) (($ $ (-592 (-592 |#1|))) 32) (($ (-592 (-878 |#1|))) 31) (((-592 (-878 |#1|)) $) 30)) (-2960 (((-108) $) 44)) (-4112 (($ $ (-878 |#1|)) 49) (($ $ (-592 |#1|)) 48) (($ $ (-713)) 47) (($ (-878 |#1|)) 46) (((-878 |#1|) $) 45)) (-3761 (((-2 (|:| -2764 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713))) $) 15)) (-3796 (((-713) $) 58)) (-1635 (((-713) $) 59)) (-3084 (($ $ (-713) (-878 |#1|)) 50)) (-4156 (((-108) $) 21)) (-3276 (($ $ (-592 (-592 (-878 |#1|))) (-592 (-159)) (-159)) 28) (($ $ (-592 (-592 (-592 |#1|))) (-592 (-159)) (-159)) 27) (($ $ (-592 (-592 (-878 |#1|))) (-108) (-108)) 26) (($ $ (-592 (-592 (-592 |#1|))) (-108) (-108)) 25) (($ (-592 (-592 (-878 |#1|)))) 24) (($ (-592 (-592 (-878 |#1|))) (-108) (-108)) 23) (((-592 (-592 (-878 |#1|))) $) 22)) (-3212 (($ (-592 $)) 57) (($ $ $) 56)) (-1512 (((-592 (-159)) $) 16)) (-3025 (((-592 (-878 |#1|)) $) 20)) (-3885 (((-592 (-592 (-159))) $) 17)) (-3179 (((-592 (-592 (-592 (-878 |#1|)))) $) 18)) (-4191 (((-592 (-592 (-592 (-713)))) $) 19)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-2193 (((-713) $ (-592 (-878 |#1|))) 51)) (-1999 (((-108) $) 39)) (-3609 (($ $ (-592 (-878 |#1|))) 43) (($ $ (-592 (-592 |#1|))) 42) (($ (-592 (-878 |#1|))) 41) (((-592 (-878 |#1|)) $) 40)) (-1877 (($) 61) (($ (-1081 3 |#1|)) 60)) (-2503 (($ $) 52)) (-3709 (((-592 $) $) 53)) (-3070 (($ (-592 $)) 55)) (-1600 (((-592 $) $) 54)) (-4100 (((-798) $) 11)) (-3380 (((-108) $) 34)) (-1614 (($ $ (-592 (-878 |#1|))) 38) (($ $ (-592 (-592 |#1|))) 37) (($ (-592 (-878 |#1|))) 36) (((-592 (-878 |#1|)) $) 35)) (-2694 (($ $) 14)) (-2775 (((-108) $ $) 6)))
(((-1053 |#1|) (-131) (-977)) (T -1053))
-((-1217 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-798)))) (-1526 (*1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-977)))) (-1526 (*1 *1 *2) (-12 (-5 *2 (-1081 3 *3)) (-4 *3 (-977)) (-4 *1 (-1053 *3)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-713)))) (-2559 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-713)))) (-1577 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-1577 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-977)))) (-1561 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-1907 (*1 *2 *1) (-12 (-4 *3 (-977)) (-5 *2 (-592 *1)) (-4 *1 (-1053 *3)))) (-3806 (*1 *2 *1) (-12 (-4 *3 (-977)) (-5 *2 (-592 *1)) (-4 *1 (-1053 *3)))) (-1462 (*1 *1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-977)))) (-1482 (*1 *2 *1 *3) (-12 (-5 *3 (-592 (-878 *4))) (-4 *1 (-1053 *4)) (-4 *4 (-977)) (-5 *2 (-713)))) (-2749 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-878 *4)) (-4 *1 (-1053 *4)) (-4 *4 (-977)))) (-2568 (*1 *1 *1 *2) (-12 (-5 *2 (-878 *3)) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-2568 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-2568 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-2568 (*1 *1 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-977)) (-4 *1 (-1053 *3)))) (-2568 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-878 *3)))) (-2104 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))) (-2351 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-878 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-2351 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-2351 (*1 *1 *2) (-12 (-5 *2 (-592 (-878 *3))) (-4 *3 (-977)) (-4 *1 (-1053 *3)))) (-2351 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3))))) (-1821 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))) (-1247 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-878 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-1247 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-1247 (*1 *1 *2) (-12 (-5 *2 (-592 (-878 *3))) (-4 *3 (-977)) (-4 *1 (-1053 *3)))) (-1247 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3))))) (-1593 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))) (-3104 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-878 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-3104 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-3104 (*1 *1 *2) (-12 (-5 *2 (-592 (-878 *3))) (-4 *3 (-977)) (-4 *1 (-1053 *3)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3))))) (-2490 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))) (-2320 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-592 (-878 *5)))) (-5 *3 (-592 (-159))) (-5 *4 (-159)) (-4 *1 (-1053 *5)) (-4 *5 (-977)))) (-2320 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-592 (-159))) (-5 *4 (-159)) (-4 *1 (-1053 *5)) (-4 *5 (-977)))) (-2320 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-592 (-878 *4)))) (-5 *3 (-108)) (-4 *1 (-1053 *4)) (-4 *4 (-977)))) (-2320 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-108)) (-4 *1 (-1053 *4)) (-4 *4 (-977)))) (-2320 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-878 *3)))) (-4 *3 (-977)) (-4 *1 (-1053 *3)))) (-2320 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-592 (-878 *4)))) (-5 *3 (-108)) (-4 *4 (-977)) (-4 *1 (-1053 *4)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-592 (-878 *3)))))) (-3415 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))) (-4078 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3))))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-592 (-592 (-713))))))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-592 (-592 (-878 *3))))))) (-2570 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-592 (-159)))))) (-2508 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-159))))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-2 (|:| -2388 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713)))))) (-3520 (*1 *1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-977)))) (-3320 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-1081 3 *3)))))
-(-13 (-1020) (-10 -8 (-15 -1526 ($)) (-15 -1526 ($ (-1081 3 |t#1|))) (-15 -3954 ((-713) $)) (-15 -2559 ((-713) $)) (-15 -1577 ($ (-592 $))) (-15 -1577 ($ $ $)) (-15 -1561 ($ (-592 $))) (-15 -1907 ((-592 $) $)) (-15 -3806 ((-592 $) $)) (-15 -1462 ($ $)) (-15 -1482 ((-713) $ (-592 (-878 |t#1|)))) (-15 -2749 ($ $ (-713) (-878 |t#1|))) (-15 -2568 ($ $ (-878 |t#1|))) (-15 -2568 ($ $ (-592 |t#1|))) (-15 -2568 ($ $ (-713))) (-15 -2568 ($ (-878 |t#1|))) (-15 -2568 ((-878 |t#1|) $)) (-15 -2104 ((-108) $)) (-15 -2351 ($ $ (-592 (-878 |t#1|)))) (-15 -2351 ($ $ (-592 (-592 |t#1|)))) (-15 -2351 ($ (-592 (-878 |t#1|)))) (-15 -2351 ((-592 (-878 |t#1|)) $)) (-15 -1821 ((-108) $)) (-15 -1247 ($ $ (-592 (-878 |t#1|)))) (-15 -1247 ($ $ (-592 (-592 |t#1|)))) (-15 -1247 ($ (-592 (-878 |t#1|)))) (-15 -1247 ((-592 (-878 |t#1|)) $)) (-15 -1593 ((-108) $)) (-15 -3104 ($ $ (-592 (-878 |t#1|)))) (-15 -3104 ($ $ (-592 (-592 |t#1|)))) (-15 -3104 ($ (-592 (-878 |t#1|)))) (-15 -3104 ((-592 (-878 |t#1|)) $)) (-15 -2490 ((-108) $)) (-15 -2320 ($ $ (-592 (-592 (-878 |t#1|))) (-592 (-159)) (-159))) (-15 -2320 ($ $ (-592 (-592 (-592 |t#1|))) (-592 (-159)) (-159))) (-15 -2320 ($ $ (-592 (-592 (-878 |t#1|))) (-108) (-108))) (-15 -2320 ($ $ (-592 (-592 (-592 |t#1|))) (-108) (-108))) (-15 -2320 ($ (-592 (-592 (-878 |t#1|))))) (-15 -2320 ($ (-592 (-592 (-878 |t#1|))) (-108) (-108))) (-15 -2320 ((-592 (-592 (-878 |t#1|))) $)) (-15 -3415 ((-108) $)) (-15 -4078 ((-592 (-878 |t#1|)) $)) (-15 -1982 ((-592 (-592 (-592 (-713)))) $)) (-15 -1573 ((-592 (-592 (-592 (-878 |t#1|)))) $)) (-15 -2570 ((-592 (-592 (-159))) $)) (-15 -2508 ((-592 (-159)) $)) (-15 -3370 ((-2 (|:| -2388 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713))) $)) (-15 -3520 ($ $)) (-15 -3320 ((-1081 3 |t#1|) $)) (-15 -1217 ((-798) $))))
+((-4100 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-798)))) (-1877 (*1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-977)))) (-1877 (*1 *1 *2) (-12 (-5 *2 (-1081 3 *3)) (-4 *3 (-977)) (-4 *1 (-1053 *3)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-713)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-713)))) (-3212 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-3212 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-977)))) (-3070 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-1600 (*1 *2 *1) (-12 (-4 *3 (-977)) (-5 *2 (-592 *1)) (-4 *1 (-1053 *3)))) (-3709 (*1 *2 *1) (-12 (-4 *3 (-977)) (-5 *2 (-592 *1)) (-4 *1 (-1053 *3)))) (-2503 (*1 *1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-977)))) (-2193 (*1 *2 *1 *3) (-12 (-5 *3 (-592 (-878 *4))) (-4 *1 (-1053 *4)) (-4 *4 (-977)) (-5 *2 (-713)))) (-3084 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-878 *4)) (-4 *1 (-1053 *4)) (-4 *4 (-977)))) (-4112 (*1 *1 *1 *2) (-12 (-5 *2 (-878 *3)) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-4112 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-4112 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-977)) (-4 *1 (-1053 *3)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-878 *3)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))) (-3609 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-878 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-3609 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-3609 (*1 *1 *2) (-12 (-5 *2 (-592 (-878 *3))) (-4 *3 (-977)) (-4 *1 (-1053 *3)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3))))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))) (-1614 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-878 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-1614 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-1614 (*1 *1 *2) (-12 (-5 *2 (-592 (-878 *3))) (-4 *3 (-977)) (-4 *1 (-1053 *3)))) (-1614 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3))))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))) (-2178 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-878 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-2178 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977)))) (-2178 (*1 *1 *2) (-12 (-5 *2 (-592 (-878 *3))) (-4 *3 (-977)) (-4 *1 (-1053 *3)))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3))))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))) (-3276 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-592 (-878 *5)))) (-5 *3 (-592 (-159))) (-5 *4 (-159)) (-4 *1 (-1053 *5)) (-4 *5 (-977)))) (-3276 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-592 (-159))) (-5 *4 (-159)) (-4 *1 (-1053 *5)) (-4 *5 (-977)))) (-3276 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-592 (-878 *4)))) (-5 *3 (-108)) (-4 *1 (-1053 *4)) (-4 *4 (-977)))) (-3276 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-108)) (-4 *1 (-1053 *4)) (-4 *4 (-977)))) (-3276 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-878 *3)))) (-4 *3 (-977)) (-4 *1 (-1053 *3)))) (-3276 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-592 (-878 *4)))) (-5 *3 (-108)) (-4 *4 (-977)) (-4 *1 (-1053 *4)))) (-3276 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-592 (-878 *3)))))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3))))) (-4191 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-592 (-592 (-713))))))) (-3179 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-592 (-592 (-878 *3))))))) (-3885 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-592 (-159)))))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-159))))) (-3761 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-2 (|:| -2764 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713)))))) (-2694 (*1 *1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-977)))) (-1517 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-1081 3 *3)))))
+(-13 (-1020) (-10 -8 (-15 -1877 ($)) (-15 -1877 ($ (-1081 3 |t#1|))) (-15 -1635 ((-713) $)) (-15 -3796 ((-713) $)) (-15 -3212 ($ (-592 $))) (-15 -3212 ($ $ $)) (-15 -3070 ($ (-592 $))) (-15 -1600 ((-592 $) $)) (-15 -3709 ((-592 $) $)) (-15 -2503 ($ $)) (-15 -2193 ((-713) $ (-592 (-878 |t#1|)))) (-15 -3084 ($ $ (-713) (-878 |t#1|))) (-15 -4112 ($ $ (-878 |t#1|))) (-15 -4112 ($ $ (-592 |t#1|))) (-15 -4112 ($ $ (-713))) (-15 -4112 ($ (-878 |t#1|))) (-15 -4112 ((-878 |t#1|) $)) (-15 -2960 ((-108) $)) (-15 -3609 ($ $ (-592 (-878 |t#1|)))) (-15 -3609 ($ $ (-592 (-592 |t#1|)))) (-15 -3609 ($ (-592 (-878 |t#1|)))) (-15 -3609 ((-592 (-878 |t#1|)) $)) (-15 -1999 ((-108) $)) (-15 -1614 ($ $ (-592 (-878 |t#1|)))) (-15 -1614 ($ $ (-592 (-592 |t#1|)))) (-15 -1614 ($ (-592 (-878 |t#1|)))) (-15 -1614 ((-592 (-878 |t#1|)) $)) (-15 -3380 ((-108) $)) (-15 -2178 ($ $ (-592 (-878 |t#1|)))) (-15 -2178 ($ $ (-592 (-592 |t#1|)))) (-15 -2178 ($ (-592 (-878 |t#1|)))) (-15 -2178 ((-592 (-878 |t#1|)) $)) (-15 -1364 ((-108) $)) (-15 -3276 ($ $ (-592 (-592 (-878 |t#1|))) (-592 (-159)) (-159))) (-15 -3276 ($ $ (-592 (-592 (-592 |t#1|))) (-592 (-159)) (-159))) (-15 -3276 ($ $ (-592 (-592 (-878 |t#1|))) (-108) (-108))) (-15 -3276 ($ $ (-592 (-592 (-592 |t#1|))) (-108) (-108))) (-15 -3276 ($ (-592 (-592 (-878 |t#1|))))) (-15 -3276 ($ (-592 (-592 (-878 |t#1|))) (-108) (-108))) (-15 -3276 ((-592 (-592 (-878 |t#1|))) $)) (-15 -4156 ((-108) $)) (-15 -3025 ((-592 (-878 |t#1|)) $)) (-15 -4191 ((-592 (-592 (-592 (-713)))) $)) (-15 -3179 ((-592 (-592 (-592 (-878 |t#1|)))) $)) (-15 -3885 ((-592 (-592 (-159))) $)) (-15 -1512 ((-592 (-159)) $)) (-15 -3761 ((-2 (|:| -2764 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713))) $)) (-15 -2694 ($ $)) (-15 -1517 ((-1081 3 |t#1|) $)) (-15 -4100 ((-798) $))))
(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-3425 (((-592 (-1097)) (-1075)) 9)))
-(((-1054) (-10 -7 (-15 -3425 ((-592 (-1097)) (-1075))))) (T -1054))
-((-3425 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-592 (-1097))) (-5 *1 (-1054)))))
-(-10 -7 (-15 -3425 ((-592 (-1097)) (-1075))))
-((-2763 (((-1179) (-592 (-798))) 23) (((-1179) (-798)) 22)) (-1363 (((-1179) (-592 (-798))) 21) (((-1179) (-798)) 20)) (-3252 (((-1179) (-592 (-798))) 19) (((-1179) (-798)) 11) (((-1179) (-1075) (-798)) 17)))
-(((-1055) (-10 -7 (-15 -3252 ((-1179) (-1075) (-798))) (-15 -3252 ((-1179) (-798))) (-15 -1363 ((-1179) (-798))) (-15 -2763 ((-1179) (-798))) (-15 -3252 ((-1179) (-592 (-798)))) (-15 -1363 ((-1179) (-592 (-798)))) (-15 -2763 ((-1179) (-592 (-798)))))) (T -1055))
-((-2763 (*1 *2 *3) (-12 (-5 *3 (-592 (-798))) (-5 *2 (-1179)) (-5 *1 (-1055)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-592 (-798))) (-5 *2 (-1179)) (-5 *1 (-1055)))) (-3252 (*1 *2 *3) (-12 (-5 *3 (-592 (-798))) (-5 *2 (-1179)) (-5 *1 (-1055)))) (-2763 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-1055)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-1055)))) (-3252 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-1055)))) (-3252 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-798)) (-5 *2 (-1179)) (-5 *1 (-1055)))))
-(-10 -7 (-15 -3252 ((-1179) (-1075) (-798))) (-15 -3252 ((-1179) (-798))) (-15 -1363 ((-1179) (-798))) (-15 -2763 ((-1179) (-798))) (-15 -3252 ((-1179) (-592 (-798)))) (-15 -1363 ((-1179) (-592 (-798)))) (-15 -2763 ((-1179) (-592 (-798)))))
-((-2821 (($ $ $) 10)) (-2640 (($ $) 9)) (-4090 (($ $ $) 13)) (-3305 (($ $ $) 15)) (-3033 (($ $ $) 12)) (-3116 (($ $ $) 14)) (-1426 (($ $) 17)) (-1873 (($ $) 16)) (-2802 (($ $) 6)) (-3477 (($ $ $) 11) (($ $) 7)) (-2402 (($ $ $) 8)))
+((-1601 (((-592 (-1097)) (-1075)) 9)))
+(((-1054) (-10 -7 (-15 -1601 ((-592 (-1097)) (-1075))))) (T -1054))
+((-1601 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-592 (-1097))) (-5 *1 (-1054)))))
+(-10 -7 (-15 -1601 ((-592 (-1097)) (-1075))))
+((-2088 (((-1179) (-592 (-798))) 23) (((-1179) (-798)) 22)) (-1743 (((-1179) (-592 (-798))) 21) (((-1179) (-798)) 20)) (-2584 (((-1179) (-592 (-798))) 19) (((-1179) (-798)) 11) (((-1179) (-1075) (-798)) 17)))
+(((-1055) (-10 -7 (-15 -2584 ((-1179) (-1075) (-798))) (-15 -2584 ((-1179) (-798))) (-15 -1743 ((-1179) (-798))) (-15 -2088 ((-1179) (-798))) (-15 -2584 ((-1179) (-592 (-798)))) (-15 -1743 ((-1179) (-592 (-798)))) (-15 -2088 ((-1179) (-592 (-798)))))) (T -1055))
+((-2088 (*1 *2 *3) (-12 (-5 *3 (-592 (-798))) (-5 *2 (-1179)) (-5 *1 (-1055)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-592 (-798))) (-5 *2 (-1179)) (-5 *1 (-1055)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-592 (-798))) (-5 *2 (-1179)) (-5 *1 (-1055)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-1055)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-1055)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-1055)))) (-2584 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-798)) (-5 *2 (-1179)) (-5 *1 (-1055)))))
+(-10 -7 (-15 -2584 ((-1179) (-1075) (-798))) (-15 -2584 ((-1179) (-798))) (-15 -1743 ((-1179) (-798))) (-15 -2088 ((-1179) (-798))) (-15 -2584 ((-1179) (-592 (-798)))) (-15 -1743 ((-1179) (-592 (-798)))) (-15 -2088 ((-1179) (-592 (-798)))))
+((-2527 (($ $ $) 10)) (-3284 (($ $) 9)) (-3553 (($ $ $) 13)) (-1384 (($ $ $) 15)) (-2735 (($ $ $) 12)) (-2273 (($ $ $) 14)) (-3541 (($ $) 17)) (-1287 (($ $) 16)) (-2380 (($ $) 6)) (-3496 (($ $ $) 11) (($ $) 7)) (-2892 (($ $ $) 8)))
(((-1056) (-131)) (T -1056))
-((-1426 (*1 *1 *1) (-4 *1 (-1056))) (-1873 (*1 *1 *1) (-4 *1 (-1056))) (-3305 (*1 *1 *1 *1) (-4 *1 (-1056))) (-3116 (*1 *1 *1 *1) (-4 *1 (-1056))) (-4090 (*1 *1 *1 *1) (-4 *1 (-1056))) (-3033 (*1 *1 *1 *1) (-4 *1 (-1056))) (-3477 (*1 *1 *1 *1) (-4 *1 (-1056))) (-2821 (*1 *1 *1 *1) (-4 *1 (-1056))) (-2640 (*1 *1 *1) (-4 *1 (-1056))) (-2402 (*1 *1 *1 *1) (-4 *1 (-1056))) (-3477 (*1 *1 *1) (-4 *1 (-1056))) (-2802 (*1 *1 *1) (-4 *1 (-1056))))
-(-13 (-10 -8 (-15 -2802 ($ $)) (-15 -3477 ($ $)) (-15 -2402 ($ $ $)) (-15 -2640 ($ $)) (-15 -2821 ($ $ $)) (-15 -3477 ($ $ $)) (-15 -3033 ($ $ $)) (-15 -4090 ($ $ $)) (-15 -3116 ($ $ $)) (-15 -3305 ($ $ $)) (-15 -1873 ($ $)) (-15 -1426 ($ $))))
-((-4236 (((-108) $ $) 41)) (-3284 ((|#1| $) 15)) (-3568 (((-108) $ $ (-1 (-108) |#2| |#2|)) 36)) (-3242 (((-108) $) 17)) (-4208 (($ $ |#1|) 28)) (-3432 (($ $ (-108)) 30)) (-3481 (($ $) 31)) (-2775 (($ $ |#2|) 29)) (-2619 (((-1075) $) NIL)) (-1993 (((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|)) 35)) (-2093 (((-1039) $) NIL)) (-2659 (((-108) $) 14)) (-2512 (($) 10)) (-1462 (($ $) 27)) (-1230 (($ |#1| |#2| (-108)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -2563 |#2|))) 21) (((-592 $) (-592 (-2 (|:| |val| |#1|) (|:| -2563 |#2|)))) 24) (((-592 $) |#1| (-592 |#2|)) 26)) (-3048 ((|#2| $) 16)) (-1217 (((-798) $) 50)) (-3955 (((-108) $ $) 39)))
-(((-1057 |#1| |#2|) (-13 (-1020) (-10 -8 (-15 -2512 ($)) (-15 -2659 ((-108) $)) (-15 -3284 (|#1| $)) (-15 -3048 (|#2| $)) (-15 -3242 ((-108) $)) (-15 -1230 ($ |#1| |#2| (-108))) (-15 -1230 ($ |#1| |#2|)) (-15 -1230 ($ (-2 (|:| |val| |#1|) (|:| -2563 |#2|)))) (-15 -1230 ((-592 $) (-592 (-2 (|:| |val| |#1|) (|:| -2563 |#2|))))) (-15 -1230 ((-592 $) |#1| (-592 |#2|))) (-15 -1462 ($ $)) (-15 -4208 ($ $ |#1|)) (-15 -2775 ($ $ |#2|)) (-15 -3432 ($ $ (-108))) (-15 -3481 ($ $)) (-15 -1993 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -3568 ((-108) $ $ (-1 (-108) |#2| |#2|))))) (-13 (-1020) (-33)) (-13 (-1020) (-33))) (T -1057))
-((-2512 (*1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))))) (-3284 (*1 *2 *1) (-12 (-4 *2 (-13 (-1020) (-33))) (-5 *1 (-1057 *2 *3)) (-4 *3 (-13 (-1020) (-33))))) (-3048 (*1 *2 *1) (-12 (-4 *2 (-13 (-1020) (-33))) (-5 *1 (-1057 *3 *2)) (-4 *3 (-13 (-1020) (-33))))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))))) (-1230 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-1230 (*1 *1 *2 *3) (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-1230 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2563 *4))) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1057 *3 *4)))) (-1230 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |val| *4) (|:| -2563 *5)))) (-4 *4 (-13 (-1020) (-33))) (-4 *5 (-13 (-1020) (-33))) (-5 *2 (-592 (-1057 *4 *5))) (-5 *1 (-1057 *4 *5)))) (-1230 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *5)) (-4 *5 (-13 (-1020) (-33))) (-5 *2 (-592 (-1057 *3 *5))) (-5 *1 (-1057 *3 *5)) (-4 *3 (-13 (-1020) (-33))))) (-1462 (*1 *1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-4208 (*1 *1 *1 *2) (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-2775 (*1 *1 *1 *2) (-12 (-5 *1 (-1057 *3 *2)) (-4 *3 (-13 (-1020) (-33))) (-4 *2 (-13 (-1020) (-33))))) (-3432 (*1 *1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))))) (-3481 (*1 *1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-1993 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1020) (-33))) (-4 *6 (-13 (-1020) (-33))) (-5 *2 (-108)) (-5 *1 (-1057 *5 *6)))) (-3568 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1020) (-33))) (-5 *2 (-108)) (-5 *1 (-1057 *4 *5)) (-4 *4 (-13 (-1020) (-33))))))
-(-13 (-1020) (-10 -8 (-15 -2512 ($)) (-15 -2659 ((-108) $)) (-15 -3284 (|#1| $)) (-15 -3048 (|#2| $)) (-15 -3242 ((-108) $)) (-15 -1230 ($ |#1| |#2| (-108))) (-15 -1230 ($ |#1| |#2|)) (-15 -1230 ($ (-2 (|:| |val| |#1|) (|:| -2563 |#2|)))) (-15 -1230 ((-592 $) (-592 (-2 (|:| |val| |#1|) (|:| -2563 |#2|))))) (-15 -1230 ((-592 $) |#1| (-592 |#2|))) (-15 -1462 ($ $)) (-15 -4208 ($ $ |#1|)) (-15 -2775 ($ $ |#2|)) (-15 -3432 ($ $ (-108))) (-15 -3481 ($ $)) (-15 -1993 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -3568 ((-108) $ $ (-1 (-108) |#2| |#2|)))))
-((-4236 (((-108) $ $) NIL (|has| (-1057 |#1| |#2|) (-1020)))) (-3284 (((-1057 |#1| |#2|) $) 25)) (-3558 (($ $) 76)) (-2101 (((-108) (-1057 |#1| |#2|) $ (-1 (-108) |#2| |#2|)) 85)) (-1380 (($ $ $ (-592 (-1057 |#1| |#2|))) 90) (($ $ $ (-592 (-1057 |#1| |#2|)) (-1 (-108) |#2| |#2|)) 91)) (-3991 (((-108) $ (-713)) NIL)) (-3214 (((-1057 |#1| |#2|) $ (-1057 |#1| |#2|)) 43 (|has| $ (-6 -4259)))) (-1430 (((-1057 |#1| |#2|) $ "value" (-1057 |#1| |#2|)) NIL (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) 41 (|has| $ (-6 -4259)))) (-2169 (($) NIL T CONST)) (-3183 (((-592 (-2 (|:| |val| |#1|) (|:| -2563 |#2|))) $) 80)) (-3271 (($ (-1057 |#1| |#2|) $) 39)) (-1703 (($ (-1057 |#1| |#2|) $) 31)) (-3440 (((-592 (-1057 |#1| |#2|)) $) NIL (|has| $ (-6 -4258)))) (-3396 (((-592 $) $) 51)) (-3282 (((-108) (-1057 |#1| |#2|) $) 82)) (-1729 (((-108) $ $) NIL (|has| (-1057 |#1| |#2|) (-1020)))) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 (-1057 |#1| |#2|)) $) 55 (|has| $ (-6 -4258)))) (-2004 (((-108) (-1057 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-1057 |#1| |#2|) (-1020))))) (-2284 (($ (-1 (-1057 |#1| |#2|) (-1057 |#1| |#2|)) $) 47 (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-1057 |#1| |#2|) (-1057 |#1| |#2|)) $) 46)) (-2912 (((-108) $ (-713)) NIL)) (-2803 (((-592 (-1057 |#1| |#2|)) $) 53)) (-3786 (((-108) $) 42)) (-2619 (((-1075) $) NIL (|has| (-1057 |#1| |#2|) (-1020)))) (-2093 (((-1039) $) NIL (|has| (-1057 |#1| |#2|) (-1020)))) (-4231 (((-3 $ "failed") $) 75)) (-3944 (((-108) (-1 (-108) (-1057 |#1| |#2|)) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-1057 |#1| |#2|)))) NIL (-12 (|has| (-1057 |#1| |#2|) (-288 (-1057 |#1| |#2|))) (|has| (-1057 |#1| |#2|) (-1020)))) (($ $ (-273 (-1057 |#1| |#2|))) NIL (-12 (|has| (-1057 |#1| |#2|) (-288 (-1057 |#1| |#2|))) (|has| (-1057 |#1| |#2|) (-1020)))) (($ $ (-1057 |#1| |#2|) (-1057 |#1| |#2|)) NIL (-12 (|has| (-1057 |#1| |#2|) (-288 (-1057 |#1| |#2|))) (|has| (-1057 |#1| |#2|) (-1020)))) (($ $ (-592 (-1057 |#1| |#2|)) (-592 (-1057 |#1| |#2|))) NIL (-12 (|has| (-1057 |#1| |#2|) (-288 (-1057 |#1| |#2|))) (|has| (-1057 |#1| |#2|) (-1020))))) (-2614 (((-108) $ $) 50)) (-2659 (((-108) $) 22)) (-2512 (($) 24)) (-3406 (((-1057 |#1| |#2|) $ "value") NIL)) (-3340 (((-525) $ $) NIL)) (-2905 (((-108) $) 44)) (-2110 (((-713) (-1 (-108) (-1057 |#1| |#2|)) $) NIL (|has| $ (-6 -4258))) (((-713) (-1057 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-1057 |#1| |#2|) (-1020))))) (-1462 (($ $) 49)) (-1230 (($ (-1057 |#1| |#2|)) 9) (($ |#1| |#2| (-592 $)) 12) (($ |#1| |#2| (-592 (-1057 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-592 |#2|)) 17)) (-4155 (((-592 |#2|) $) 81)) (-1217 (((-798) $) 73 (|has| (-1057 |#1| |#2|) (-566 (-798))))) (-3793 (((-592 $) $) 28)) (-3351 (((-108) $ $) NIL (|has| (-1057 |#1| |#2|) (-1020)))) (-3029 (((-108) (-1 (-108) (-1057 |#1| |#2|)) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 64 (|has| (-1057 |#1| |#2|) (-1020)))) (-3522 (((-713) $) 58 (|has| $ (-6 -4258)))))
-(((-1058 |#1| |#2|) (-13 (-942 (-1057 |#1| |#2|)) (-10 -8 (-6 -4259) (-6 -4258) (-15 -4231 ((-3 $ "failed") $)) (-15 -3558 ($ $)) (-15 -1230 ($ (-1057 |#1| |#2|))) (-15 -1230 ($ |#1| |#2| (-592 $))) (-15 -1230 ($ |#1| |#2| (-592 (-1057 |#1| |#2|)))) (-15 -1230 ($ |#1| |#2| |#1| (-592 |#2|))) (-15 -4155 ((-592 |#2|) $)) (-15 -3183 ((-592 (-2 (|:| |val| |#1|) (|:| -2563 |#2|))) $)) (-15 -3282 ((-108) (-1057 |#1| |#2|) $)) (-15 -2101 ((-108) (-1057 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -1703 ($ (-1057 |#1| |#2|) $)) (-15 -3271 ($ (-1057 |#1| |#2|) $)) (-15 -1380 ($ $ $ (-592 (-1057 |#1| |#2|)))) (-15 -1380 ($ $ $ (-592 (-1057 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) (-13 (-1020) (-33)) (-13 (-1020) (-33))) (T -1058))
-((-4231 (*1 *1 *1) (|partial| -12 (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-3558 (*1 *1 *1) (-12 (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-1230 (*1 *1 *2) (-12 (-5 *2 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1058 *3 *4)))) (-1230 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-592 (-1058 *2 *3))) (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-1230 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-592 (-1057 *2 *3))) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))) (-5 *1 (-1058 *2 *3)))) (-1230 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-1020) (-33))) (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1020) (-33))))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-592 *4)) (-5 *1 (-1058 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))))) (-3183 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4)))) (-5 *1 (-1058 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))))) (-3282 (*1 *2 *3 *1) (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-1020) (-33))) (-4 *5 (-13 (-1020) (-33))) (-5 *2 (-108)) (-5 *1 (-1058 *4 *5)))) (-2101 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1057 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1020) (-33))) (-4 *6 (-13 (-1020) (-33))) (-5 *2 (-108)) (-5 *1 (-1058 *5 *6)))) (-1703 (*1 *1 *2 *1) (-12 (-5 *2 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1058 *3 *4)))) (-3271 (*1 *1 *2 *1) (-12 (-5 *2 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1058 *3 *4)))) (-1380 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-592 (-1057 *3 *4))) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1058 *3 *4)))) (-1380 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1057 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) (-4 *4 (-13 (-1020) (-33))) (-4 *5 (-13 (-1020) (-33))) (-5 *1 (-1058 *4 *5)))))
-(-13 (-942 (-1057 |#1| |#2|)) (-10 -8 (-6 -4259) (-6 -4258) (-15 -4231 ((-3 $ "failed") $)) (-15 -3558 ($ $)) (-15 -1230 ($ (-1057 |#1| |#2|))) (-15 -1230 ($ |#1| |#2| (-592 $))) (-15 -1230 ($ |#1| |#2| (-592 (-1057 |#1| |#2|)))) (-15 -1230 ($ |#1| |#2| |#1| (-592 |#2|))) (-15 -4155 ((-592 |#2|) $)) (-15 -3183 ((-592 (-2 (|:| |val| |#1|) (|:| -2563 |#2|))) $)) (-15 -3282 ((-108) (-1057 |#1| |#2|) $)) (-15 -2101 ((-108) (-1057 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -1703 ($ (-1057 |#1| |#2|) $)) (-15 -3271 ($ (-1057 |#1| |#2|) $)) (-15 -1380 ($ $ $ (-592 (-1057 |#1| |#2|)))) (-15 -1380 ($ $ $ (-592 (-1057 |#1| |#2|)) (-1 (-108) |#2| |#2|)))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-3966 (($ $) NIL)) (-2952 ((|#2| $) NIL)) (-4197 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2708 (($ (-632 |#2|)) 47)) (-1772 (((-108) $) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-1989 (($ |#2|) 9)) (-2169 (($) NIL T CONST)) (-2361 (($ $) 60 (|has| |#2| (-286)))) (-2631 (((-220 |#1| |#2|) $ (-525)) 34)) (-3077 (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 |#2| "failed") $) NIL)) (-1572 (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) ((|#2| $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) 74)) (-3622 (((-713) $) 62 (|has| |#2| (-517)))) (-2222 ((|#2| $ (-525) (-525)) NIL)) (-3440 (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-1396 (((-108) $) NIL)) (-2313 (((-713) $) 64 (|has| |#2| (-517)))) (-2319 (((-592 (-220 |#1| |#2|)) $) 68 (|has| |#2| (-517)))) (-1632 (((-713) $) NIL)) (-1644 (((-713) $) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-2956 ((|#2| $) 58 (|has| |#2| (-6 (-4260 "*"))))) (-2391 (((-525) $) NIL)) (-1237 (((-525) $) NIL)) (-2694 (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-3446 (((-525) $) NIL)) (-3757 (((-525) $) NIL)) (-1716 (($ (-592 (-592 |#2|))) 29)) (-2284 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4151 (((-592 (-592 |#2|)) $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL)) (-1529 (((-3 $ "failed") $) 71 (|has| |#2| (-341)))) (-2093 (((-1039) $) NIL)) (-1715 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517)))) (-3944 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#2| $ (-525) (-525) |#2|) NIL) ((|#2| $ (-525) (-525)) NIL)) (-3376 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-2336 ((|#2| $) NIL)) (-2663 (($ (-592 |#2|)) 42)) (-2007 (((-108) $) NIL)) (-3186 (((-220 |#1| |#2|) $) NIL)) (-1927 ((|#2| $) 56 (|has| |#2| (-6 (-4260 "*"))))) (-2110 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-1462 (($ $) NIL)) (-3210 (((-501) $) 83 (|has| |#2| (-567 (-501))))) (-1808 (((-220 |#1| |#2|) $ (-525)) 36)) (-1217 (((-798) $) 39) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#2| (-968 (-385 (-525))))) (($ |#2|) NIL) (((-632 |#2|) $) 44)) (-3917 (((-713)) 17)) (-3029 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-3737 (((-108) $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 11 T CONST)) (-3359 (($) 14 T CONST)) (-2022 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) 54) (($ $ (-525)) 73 (|has| |#2| (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-220 |#1| |#2|) $ (-220 |#1| |#2|)) 50) (((-220 |#1| |#2|) (-220 |#1| |#2|) $) 52)) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-1059 |#1| |#2|) (-13 (-1042 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-566 (-632 |#2|)) (-10 -8 (-15 -3966 ($ $)) (-15 -2708 ($ (-632 |#2|))) (-15 -1217 ((-632 |#2|) $)) (IF (|has| |#2| (-6 (-4260 "*"))) (-6 -4247) |%noBranch|) (IF (|has| |#2| (-6 (-4260 "*"))) (IF (|has| |#2| (-6 -4255)) (-6 -4255) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|))) (-713) (-977)) (T -1059))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-632 *4)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-713)) (-4 *4 (-977)))) (-3966 (*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-713)) (-4 *3 (-977)))) (-2708 (*1 *1 *2) (-12 (-5 *2 (-632 *4)) (-4 *4 (-977)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-713)))))
-(-13 (-1042 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-566 (-632 |#2|)) (-10 -8 (-15 -3966 ($ $)) (-15 -2708 ($ (-632 |#2|))) (-15 -1217 ((-632 |#2|) $)) (IF (|has| |#2| (-6 (-4260 "*"))) (-6 -4247) |%noBranch|) (IF (|has| |#2| (-6 (-4260 "*"))) (IF (|has| |#2| (-6 -4255)) (-6 -4255) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|)))
-((-2723 (($ $) 19)) (-3928 (($ $ (-135)) 10) (($ $ (-132)) 14)) (-1686 (((-108) $ $) 24)) (-1528 (($ $) 17)) (-3406 (((-135) $ (-525) (-135)) NIL) (((-135) $ (-525)) NIL) (($ $ (-1141 (-525))) NIL) (($ $ $) 29)) (-1217 (($ (-135)) 27) (((-798) $) NIL)))
-(((-1060 |#1|) (-10 -8 (-15 -1217 ((-798) |#1|)) (-15 -3406 (|#1| |#1| |#1|)) (-15 -3928 (|#1| |#1| (-132))) (-15 -3928 (|#1| |#1| (-135))) (-15 -1217 (|#1| (-135))) (-15 -1686 ((-108) |#1| |#1|)) (-15 -2723 (|#1| |#1|)) (-15 -1528 (|#1| |#1|)) (-15 -3406 (|#1| |#1| (-1141 (-525)))) (-15 -3406 ((-135) |#1| (-525))) (-15 -3406 ((-135) |#1| (-525) (-135)))) (-1061)) (T -1060))
-NIL
-(-10 -8 (-15 -1217 ((-798) |#1|)) (-15 -3406 (|#1| |#1| |#1|)) (-15 -3928 (|#1| |#1| (-132))) (-15 -3928 (|#1| |#1| (-135))) (-15 -1217 (|#1| (-135))) (-15 -1686 ((-108) |#1| |#1|)) (-15 -2723 (|#1| |#1|)) (-15 -1528 (|#1| |#1|)) (-15 -3406 (|#1| |#1| (-1141 (-525)))) (-15 -3406 ((-135) |#1| (-525))) (-15 -3406 ((-135) |#1| (-525) (-135))))
-((-4236 (((-108) $ $) 19 (|has| (-135) (-1020)))) (-2306 (($ $) 120)) (-2723 (($ $) 121)) (-3928 (($ $ (-135)) 108) (($ $ (-132)) 107)) (-3456 (((-1179) $ (-525) (-525)) 40 (|has| $ (-6 -4259)))) (-1672 (((-108) $ $) 118)) (-1651 (((-108) $ $ (-525)) 117)) (-1260 (((-592 $) $ (-135)) 110) (((-592 $) $ (-132)) 109)) (-2470 (((-108) (-1 (-108) (-135) (-135)) $) 98) (((-108) $) 92 (|has| (-135) (-789)))) (-2165 (($ (-1 (-108) (-135) (-135)) $) 89 (|has| $ (-6 -4259))) (($ $) 88 (-12 (|has| (-135) (-789)) (|has| $ (-6 -4259))))) (-2458 (($ (-1 (-108) (-135) (-135)) $) 99) (($ $) 93 (|has| (-135) (-789)))) (-3991 (((-108) $ (-713)) 8)) (-1430 (((-135) $ (-525) (-135)) 52 (|has| $ (-6 -4259))) (((-135) $ (-1141 (-525)) (-135)) 58 (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) (-135)) $) 75 (|has| $ (-6 -4258)))) (-2169 (($) 7 T CONST)) (-2676 (($ $ (-135)) 104) (($ $ (-132)) 103)) (-2700 (($ $) 90 (|has| $ (-6 -4259)))) (-3431 (($ $) 100)) (-2434 (($ $ (-1141 (-525)) $) 114)) (-1910 (($ $) 78 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4258))))) (-1703 (($ (-135) $) 77 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) (-135)) $) 74 (|has| $ (-6 -4258)))) (-1284 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) 76 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4258)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) 73 (|has| $ (-6 -4258))) (((-135) (-1 (-135) (-135) (-135)) $) 72 (|has| $ (-6 -4258)))) (-2301 (((-135) $ (-525) (-135)) 53 (|has| $ (-6 -4259)))) (-2222 (((-135) $ (-525)) 51)) (-1686 (((-108) $ $) 119)) (-1932 (((-525) (-1 (-108) (-135)) $) 97) (((-525) (-135) $) 96 (|has| (-135) (-1020))) (((-525) (-135) $ (-525)) 95 (|has| (-135) (-1020))) (((-525) $ $ (-525)) 113) (((-525) (-132) $ (-525)) 112)) (-3440 (((-592 (-135)) $) 30 (|has| $ (-6 -4258)))) (-3416 (($ (-713) (-135)) 69)) (-3924 (((-108) $ (-713)) 9)) (-3666 (((-525) $) 43 (|has| (-525) (-789)))) (-2638 (($ $ $) 87 (|has| (-135) (-789)))) (-1577 (($ (-1 (-108) (-135) (-135)) $ $) 101) (($ $ $) 94 (|has| (-135) (-789)))) (-2694 (((-592 (-135)) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) (-135) $) 27 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4258))))) (-1847 (((-525) $) 44 (|has| (-525) (-789)))) (-3662 (($ $ $) 86 (|has| (-135) (-789)))) (-2294 (((-108) $ $ (-135)) 115)) (-4165 (((-713) $ $ (-135)) 116)) (-2284 (($ (-1 (-135) (-135)) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-135) (-135)) $) 35) (($ (-1 (-135) (-135) (-135)) $ $) 64)) (-3511 (($ $) 122)) (-1528 (($ $) 123)) (-2912 (((-108) $ (-713)) 10)) (-2689 (($ $ (-135)) 106) (($ $ (-132)) 105)) (-2619 (((-1075) $) 22 (|has| (-135) (-1020)))) (-2531 (($ (-135) $ (-525)) 60) (($ $ $ (-525)) 59)) (-2628 (((-592 (-525)) $) 46)) (-2978 (((-108) (-525) $) 47)) (-2093 (((-1039) $) 21 (|has| (-135) (-1020)))) (-1872 (((-135) $) 42 (|has| (-525) (-789)))) (-1983 (((-3 (-135) "failed") (-1 (-108) (-135)) $) 71)) (-1420 (($ $ (-135)) 41 (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) (-135)) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-135)))) 26 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-273 (-135))) 25 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-135) (-135)) 24 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-592 (-135)) (-592 (-135))) 23 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))))) (-2614 (((-108) $ $) 14)) (-2167 (((-108) (-135) $) 45 (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020))))) (-3341 (((-592 (-135)) $) 48)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 (((-135) $ (-525) (-135)) 50) (((-135) $ (-525)) 49) (($ $ (-1141 (-525))) 63) (($ $ $) 102)) (-3038 (($ $ (-525)) 62) (($ $ (-1141 (-525))) 61)) (-2110 (((-713) (-1 (-108) (-135)) $) 31 (|has| $ (-6 -4258))) (((-713) (-135) $) 28 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4258))))) (-4098 (($ $ $ (-525)) 91 (|has| $ (-6 -4259)))) (-1462 (($ $) 13)) (-3210 (((-501) $) 79 (|has| (-135) (-567 (-501))))) (-1230 (($ (-592 (-135))) 70)) (-2038 (($ $ (-135)) 68) (($ (-135) $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1217 (($ (-135)) 111) (((-798) $) 18 (|has| (-135) (-566 (-798))))) (-3029 (((-108) (-1 (-108) (-135)) $) 33 (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) 84 (|has| (-135) (-789)))) (-3987 (((-108) $ $) 83 (|has| (-135) (-789)))) (-3955 (((-108) $ $) 20 (|has| (-135) (-1020)))) (-3999 (((-108) $ $) 85 (|has| (-135) (-789)))) (-3978 (((-108) $ $) 82 (|has| (-135) (-789)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-3541 (*1 *1 *1) (-4 *1 (-1056))) (-1287 (*1 *1 *1) (-4 *1 (-1056))) (-1384 (*1 *1 *1 *1) (-4 *1 (-1056))) (-2273 (*1 *1 *1 *1) (-4 *1 (-1056))) (-3553 (*1 *1 *1 *1) (-4 *1 (-1056))) (-2735 (*1 *1 *1 *1) (-4 *1 (-1056))) (-3496 (*1 *1 *1 *1) (-4 *1 (-1056))) (-2527 (*1 *1 *1 *1) (-4 *1 (-1056))) (-3284 (*1 *1 *1) (-4 *1 (-1056))) (-2892 (*1 *1 *1 *1) (-4 *1 (-1056))) (-3496 (*1 *1 *1) (-4 *1 (-1056))) (-2380 (*1 *1 *1) (-4 *1 (-1056))))
+(-13 (-10 -8 (-15 -2380 ($ $)) (-15 -3496 ($ $)) (-15 -2892 ($ $ $)) (-15 -3284 ($ $)) (-15 -2527 ($ $ $)) (-15 -3496 ($ $ $)) (-15 -2735 ($ $ $)) (-15 -3553 ($ $ $)) (-15 -2273 ($ $ $)) (-15 -1384 ($ $ $)) (-15 -1287 ($ $)) (-15 -3541 ($ $))))
+((-4087 (((-108) $ $) 41)) (-2219 ((|#1| $) 15)) (-2009 (((-108) $ $ (-1 (-108) |#2| |#2|)) 36)) (-2077 (((-108) $) 17)) (-2315 (($ $ |#1|) 28)) (-1249 (($ $ (-108)) 30)) (-3540 (($ $) 31)) (-2172 (($ $ |#2|) 29)) (-1289 (((-1075) $) NIL)) (-3080 (((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|)) 35)) (-3993 (((-1039) $) NIL)) (-3479 (((-108) $) 14)) (-1558 (($) 10)) (-2503 (($ $) 27)) (-4114 (($ |#1| |#2| (-108)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1285 |#2|))) 21) (((-592 $) (-592 (-2 (|:| |val| |#1|) (|:| -1285 |#2|)))) 24) (((-592 $) |#1| (-592 |#2|)) 26)) (-3041 ((|#2| $) 16)) (-4100 (((-798) $) 50)) (-2775 (((-108) $ $) 39)))
+(((-1057 |#1| |#2|) (-13 (-1020) (-10 -8 (-15 -1558 ($)) (-15 -3479 ((-108) $)) (-15 -2219 (|#1| $)) (-15 -3041 (|#2| $)) (-15 -2077 ((-108) $)) (-15 -4114 ($ |#1| |#2| (-108))) (-15 -4114 ($ |#1| |#2|)) (-15 -4114 ($ (-2 (|:| |val| |#1|) (|:| -1285 |#2|)))) (-15 -4114 ((-592 $) (-592 (-2 (|:| |val| |#1|) (|:| -1285 |#2|))))) (-15 -4114 ((-592 $) |#1| (-592 |#2|))) (-15 -2503 ($ $)) (-15 -2315 ($ $ |#1|)) (-15 -2172 ($ $ |#2|)) (-15 -1249 ($ $ (-108))) (-15 -3540 ($ $)) (-15 -3080 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -2009 ((-108) $ $ (-1 (-108) |#2| |#2|))))) (-13 (-1020) (-33)) (-13 (-1020) (-33))) (T -1057))
+((-1558 (*1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-3479 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))))) (-2219 (*1 *2 *1) (-12 (-4 *2 (-13 (-1020) (-33))) (-5 *1 (-1057 *2 *3)) (-4 *3 (-13 (-1020) (-33))))) (-3041 (*1 *2 *1) (-12 (-4 *2 (-13 (-1020) (-33))) (-5 *1 (-1057 *3 *2)) (-4 *3 (-13 (-1020) (-33))))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))))) (-4114 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-4114 (*1 *1 *2 *3) (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1285 *4))) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1057 *3 *4)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |val| *4) (|:| -1285 *5)))) (-4 *4 (-13 (-1020) (-33))) (-4 *5 (-13 (-1020) (-33))) (-5 *2 (-592 (-1057 *4 *5))) (-5 *1 (-1057 *4 *5)))) (-4114 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *5)) (-4 *5 (-13 (-1020) (-33))) (-5 *2 (-592 (-1057 *3 *5))) (-5 *1 (-1057 *3 *5)) (-4 *3 (-13 (-1020) (-33))))) (-2503 (*1 *1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-2315 (*1 *1 *1 *2) (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-2172 (*1 *1 *1 *2) (-12 (-5 *1 (-1057 *3 *2)) (-4 *3 (-13 (-1020) (-33))) (-4 *2 (-13 (-1020) (-33))))) (-1249 (*1 *1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))))) (-3540 (*1 *1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-3080 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1020) (-33))) (-4 *6 (-13 (-1020) (-33))) (-5 *2 (-108)) (-5 *1 (-1057 *5 *6)))) (-2009 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1020) (-33))) (-5 *2 (-108)) (-5 *1 (-1057 *4 *5)) (-4 *4 (-13 (-1020) (-33))))))
+(-13 (-1020) (-10 -8 (-15 -1558 ($)) (-15 -3479 ((-108) $)) (-15 -2219 (|#1| $)) (-15 -3041 (|#2| $)) (-15 -2077 ((-108) $)) (-15 -4114 ($ |#1| |#2| (-108))) (-15 -4114 ($ |#1| |#2|)) (-15 -4114 ($ (-2 (|:| |val| |#1|) (|:| -1285 |#2|)))) (-15 -4114 ((-592 $) (-592 (-2 (|:| |val| |#1|) (|:| -1285 |#2|))))) (-15 -4114 ((-592 $) |#1| (-592 |#2|))) (-15 -2503 ($ $)) (-15 -2315 ($ $ |#1|)) (-15 -2172 ($ $ |#2|)) (-15 -1249 ($ $ (-108))) (-15 -3540 ($ $)) (-15 -3080 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -2009 ((-108) $ $ (-1 (-108) |#2| |#2|)))))
+((-4087 (((-108) $ $) NIL (|has| (-1057 |#1| |#2|) (-1020)))) (-2219 (((-1057 |#1| |#2|) $) 25)) (-3052 (($ $) 76)) (-2931 (((-108) (-1057 |#1| |#2|) $ (-1 (-108) |#2| |#2|)) 85)) (-3862 (($ $ $ (-592 (-1057 |#1| |#2|))) 90) (($ $ $ (-592 (-1057 |#1| |#2|)) (-1 (-108) |#2| |#2|)) 91)) (-3779 (((-108) $ (-713)) NIL)) (-1947 (((-1057 |#1| |#2|) $ (-1057 |#1| |#2|)) 43 (|has| $ (-6 -4260)))) (-1233 (((-1057 |#1| |#2|) $ "value" (-1057 |#1| |#2|)) NIL (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) 41 (|has| $ (-6 -4260)))) (-2475 (($) NIL T CONST)) (-1862 (((-592 (-2 (|:| |val| |#1|) (|:| -1285 |#2|))) $) 80)) (-4205 (($ (-1057 |#1| |#2|) $) 39)) (-2698 (($ (-1057 |#1| |#2|) $) 31)) (-2175 (((-592 (-1057 |#1| |#2|)) $) NIL (|has| $ (-6 -4259)))) (-3994 (((-592 $) $) 51)) (-1267 (((-108) (-1057 |#1| |#2|) $) 82)) (-3569 (((-108) $ $) NIL (|has| (-1057 |#1| |#2|) (-1020)))) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 (-1057 |#1| |#2|)) $) 55 (|has| $ (-6 -4259)))) (-3198 (((-108) (-1057 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-1057 |#1| |#2|) (-1020))))) (-3069 (($ (-1 (-1057 |#1| |#2|) (-1057 |#1| |#2|)) $) 47 (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-1057 |#1| |#2|) (-1057 |#1| |#2|)) $) 46)) (-4028 (((-108) $ (-713)) NIL)) (-2010 (((-592 (-1057 |#1| |#2|)) $) 53)) (-3506 (((-108) $) 42)) (-1289 (((-1075) $) NIL (|has| (-1057 |#1| |#2|) (-1020)))) (-3993 (((-1039) $) NIL (|has| (-1057 |#1| |#2|) (-1020)))) (-2560 (((-3 $ "failed") $) 75)) (-1518 (((-108) (-1 (-108) (-1057 |#1| |#2|)) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-1057 |#1| |#2|)))) NIL (-12 (|has| (-1057 |#1| |#2|) (-288 (-1057 |#1| |#2|))) (|has| (-1057 |#1| |#2|) (-1020)))) (($ $ (-273 (-1057 |#1| |#2|))) NIL (-12 (|has| (-1057 |#1| |#2|) (-288 (-1057 |#1| |#2|))) (|has| (-1057 |#1| |#2|) (-1020)))) (($ $ (-1057 |#1| |#2|) (-1057 |#1| |#2|)) NIL (-12 (|has| (-1057 |#1| |#2|) (-288 (-1057 |#1| |#2|))) (|has| (-1057 |#1| |#2|) (-1020)))) (($ $ (-592 (-1057 |#1| |#2|)) (-592 (-1057 |#1| |#2|))) NIL (-12 (|has| (-1057 |#1| |#2|) (-288 (-1057 |#1| |#2|))) (|has| (-1057 |#1| |#2|) (-1020))))) (-1231 (((-108) $ $) 50)) (-3479 (((-108) $) 22)) (-1558 (($) 24)) (-3431 (((-1057 |#1| |#2|) $ "value") NIL)) (-1707 (((-525) $ $) NIL)) (-3953 (((-108) $) 44)) (-4002 (((-713) (-1 (-108) (-1057 |#1| |#2|)) $) NIL (|has| $ (-6 -4259))) (((-713) (-1057 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-1057 |#1| |#2|) (-1020))))) (-2503 (($ $) 49)) (-4114 (($ (-1057 |#1| |#2|)) 9) (($ |#1| |#2| (-592 $)) 12) (($ |#1| |#2| (-592 (-1057 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-592 |#2|)) 17)) (-1576 (((-592 |#2|) $) 81)) (-4100 (((-798) $) 73 (|has| (-1057 |#1| |#2|) (-566 (-798))))) (-3576 (((-592 $) $) 28)) (-1791 (((-108) $ $) NIL (|has| (-1057 |#1| |#2|) (-1020)))) (-2706 (((-108) (-1 (-108) (-1057 |#1| |#2|)) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 64 (|has| (-1057 |#1| |#2|) (-1020)))) (-2827 (((-713) $) 58 (|has| $ (-6 -4259)))))
+(((-1058 |#1| |#2|) (-13 (-942 (-1057 |#1| |#2|)) (-10 -8 (-6 -4260) (-6 -4259) (-15 -2560 ((-3 $ "failed") $)) (-15 -3052 ($ $)) (-15 -4114 ($ (-1057 |#1| |#2|))) (-15 -4114 ($ |#1| |#2| (-592 $))) (-15 -4114 ($ |#1| |#2| (-592 (-1057 |#1| |#2|)))) (-15 -4114 ($ |#1| |#2| |#1| (-592 |#2|))) (-15 -1576 ((-592 |#2|) $)) (-15 -1862 ((-592 (-2 (|:| |val| |#1|) (|:| -1285 |#2|))) $)) (-15 -1267 ((-108) (-1057 |#1| |#2|) $)) (-15 -2931 ((-108) (-1057 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -2698 ($ (-1057 |#1| |#2|) $)) (-15 -4205 ($ (-1057 |#1| |#2|) $)) (-15 -3862 ($ $ $ (-592 (-1057 |#1| |#2|)))) (-15 -3862 ($ $ $ (-592 (-1057 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) (-13 (-1020) (-33)) (-13 (-1020) (-33))) (T -1058))
+((-2560 (*1 *1 *1) (|partial| -12 (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-3052 (*1 *1 *1) (-12 (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1058 *3 *4)))) (-4114 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-592 (-1058 *2 *3))) (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-4114 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-592 (-1057 *2 *3))) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))) (-5 *1 (-1058 *2 *3)))) (-4114 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-1020) (-33))) (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1020) (-33))))) (-1576 (*1 *2 *1) (-12 (-5 *2 (-592 *4)) (-5 *1 (-1058 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))))) (-1862 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4)))) (-5 *1 (-1058 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))))) (-1267 (*1 *2 *3 *1) (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-1020) (-33))) (-4 *5 (-13 (-1020) (-33))) (-5 *2 (-108)) (-5 *1 (-1058 *4 *5)))) (-2931 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1057 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1020) (-33))) (-4 *6 (-13 (-1020) (-33))) (-5 *2 (-108)) (-5 *1 (-1058 *5 *6)))) (-2698 (*1 *1 *2 *1) (-12 (-5 *2 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1058 *3 *4)))) (-4205 (*1 *1 *2 *1) (-12 (-5 *2 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1058 *3 *4)))) (-3862 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-592 (-1057 *3 *4))) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1058 *3 *4)))) (-3862 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1057 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) (-4 *4 (-13 (-1020) (-33))) (-4 *5 (-13 (-1020) (-33))) (-5 *1 (-1058 *4 *5)))))
+(-13 (-942 (-1057 |#1| |#2|)) (-10 -8 (-6 -4260) (-6 -4259) (-15 -2560 ((-3 $ "failed") $)) (-15 -3052 ($ $)) (-15 -4114 ($ (-1057 |#1| |#2|))) (-15 -4114 ($ |#1| |#2| (-592 $))) (-15 -4114 ($ |#1| |#2| (-592 (-1057 |#1| |#2|)))) (-15 -4114 ($ |#1| |#2| |#1| (-592 |#2|))) (-15 -1576 ((-592 |#2|) $)) (-15 -1862 ((-592 (-2 (|:| |val| |#1|) (|:| -1285 |#2|))) $)) (-15 -1267 ((-108) (-1057 |#1| |#2|) $)) (-15 -2931 ((-108) (-1057 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -2698 ($ (-1057 |#1| |#2|) $)) (-15 -4205 ($ (-1057 |#1| |#2|) $)) (-15 -3862 ($ $ $ (-592 (-1057 |#1| |#2|)))) (-15 -3862 ($ $ $ (-592 (-1057 |#1| |#2|)) (-1 (-108) |#2| |#2|)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1730 (($ $) NIL)) (-2924 ((|#2| $) NIL)) (-2207 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2749 (($ (-632 |#2|)) 47)) (-2721 (((-108) $) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-1232 (($ |#2|) 9)) (-2475 (($) NIL T CONST)) (-3692 (($ $) 60 (|has| |#2| (-286)))) (-3209 (((-220 |#1| |#2|) $ (-525)) 34)) (-1934 (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 |#2| "failed") $) NIL)) (-4105 (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) ((|#2| $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) 74)) (-3085 (((-713) $) 62 (|has| |#2| (-517)))) (-3017 ((|#2| $ (-525) (-525)) NIL)) (-2175 (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-2278 (((-108) $) NIL)) (-3204 (((-713) $) 64 (|has| |#2| (-517)))) (-3261 (((-592 (-220 |#1| |#2|)) $) 68 (|has| |#2| (-517)))) (-2720 (((-713) $) NIL)) (-2731 (((-713) $) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-3239 ((|#2| $) 58 (|has| |#2| (-6 (-4261 "*"))))) (-2797 (((-525) $) NIL)) (-2307 (((-525) $) NIL)) (-2617 (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-3194 (((-525) $) NIL)) (-3210 (((-525) $) NIL)) (-4054 (($ (-592 (-592 |#2|))) 29)) (-3069 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2949 (((-592 (-592 |#2|)) $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL)) (-1921 (((-3 $ "failed") $) 71 (|has| |#2| (-341)))) (-3993 (((-1039) $) NIL)) (-1311 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517)))) (-1518 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#2| $ (-525) (-525) |#2|) NIL) ((|#2| $ (-525) (-525)) NIL)) (-2702 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-3450 ((|#2| $) NIL)) (-3525 (($ (-592 |#2|)) 42)) (-3219 (((-108) $) NIL)) (-1695 (((-220 |#1| |#2|) $) NIL)) (-1796 ((|#2| $) 56 (|has| |#2| (-6 (-4261 "*"))))) (-4002 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-2503 (($ $) NIL)) (-2069 (((-501) $) 83 (|has| |#2| (-567 (-501))))) (-1881 (((-220 |#1| |#2|) $ (-525)) 36)) (-4100 (((-798) $) 39) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#2| (-968 (-385 (-525))))) (($ |#2|) NIL) (((-632 |#2|) $) 44)) (-2448 (((-713)) 17)) (-2706 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-1245 (((-108) $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 11 T CONST)) (-3375 (($) 14 T CONST)) (-2401 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) 54) (($ $ (-525)) 73 (|has| |#2| (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-220 |#1| |#2|) $ (-220 |#1| |#2|)) 50) (((-220 |#1| |#2|) (-220 |#1| |#2|) $) 52)) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-1059 |#1| |#2|) (-13 (-1042 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-566 (-632 |#2|)) (-10 -8 (-15 -1730 ($ $)) (-15 -2749 ($ (-632 |#2|))) (-15 -4100 ((-632 |#2|) $)) (IF (|has| |#2| (-6 (-4261 "*"))) (-6 -4248) |%noBranch|) (IF (|has| |#2| (-6 (-4261 "*"))) (IF (|has| |#2| (-6 -4256)) (-6 -4256) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|))) (-713) (-977)) (T -1059))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-632 *4)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-713)) (-4 *4 (-977)))) (-1730 (*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-713)) (-4 *3 (-977)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-632 *4)) (-4 *4 (-977)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-713)))))
+(-13 (-1042 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-566 (-632 |#2|)) (-10 -8 (-15 -1730 ($ $)) (-15 -2749 ($ (-632 |#2|))) (-15 -4100 ((-632 |#2|) $)) (IF (|has| |#2| (-6 (-4261 "*"))) (-6 -4248) |%noBranch|) (IF (|has| |#2| (-6 (-4261 "*"))) (IF (|has| |#2| (-6 -4256)) (-6 -4256) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|)))
+((-2877 (($ $) 19)) (-2555 (($ $ (-135)) 10) (($ $ (-132)) 14)) (-2768 (((-108) $ $) 24)) (-1904 (($ $) 17)) (-3431 (((-135) $ (-525) (-135)) NIL) (((-135) $ (-525)) NIL) (($ $ (-1141 (-525))) NIL) (($ $ $) 29)) (-4100 (($ (-135)) 27) (((-798) $) NIL)))
+(((-1060 |#1|) (-10 -8 (-15 -4100 ((-798) |#1|)) (-15 -3431 (|#1| |#1| |#1|)) (-15 -2555 (|#1| |#1| (-132))) (-15 -2555 (|#1| |#1| (-135))) (-15 -4100 (|#1| (-135))) (-15 -2768 ((-108) |#1| |#1|)) (-15 -2877 (|#1| |#1|)) (-15 -1904 (|#1| |#1|)) (-15 -3431 (|#1| |#1| (-1141 (-525)))) (-15 -3431 ((-135) |#1| (-525))) (-15 -3431 ((-135) |#1| (-525) (-135)))) (-1061)) (T -1060))
+NIL
+(-10 -8 (-15 -4100 ((-798) |#1|)) (-15 -3431 (|#1| |#1| |#1|)) (-15 -2555 (|#1| |#1| (-132))) (-15 -2555 (|#1| |#1| (-135))) (-15 -4100 (|#1| (-135))) (-15 -2768 ((-108) |#1| |#1|)) (-15 -2877 (|#1| |#1|)) (-15 -1904 (|#1| |#1|)) (-15 -3431 (|#1| |#1| (-1141 (-525)))) (-15 -3431 ((-135) |#1| (-525))) (-15 -3431 ((-135) |#1| (-525) (-135))))
+((-4087 (((-108) $ $) 19 (|has| (-135) (-1020)))) (-3127 (($ $) 120)) (-2877 (($ $) 121)) (-2555 (($ $ (-135)) 108) (($ $ (-132)) 107)) (-3289 (((-1179) $ (-525) (-525)) 40 (|has| $ (-6 -4260)))) (-2746 (((-108) $ $) 118)) (-2726 (((-108) $ $ (-525)) 117)) (-3224 (((-592 $) $ (-135)) 110) (((-592 $) $ (-132)) 109)) (-2358 (((-108) (-1 (-108) (-135) (-135)) $) 98) (((-108) $) 92 (|has| (-135) (-789)))) (-2436 (($ (-1 (-108) (-135) (-135)) $) 89 (|has| $ (-6 -4260))) (($ $) 88 (-12 (|has| (-135) (-789)) (|has| $ (-6 -4260))))) (-1842 (($ (-1 (-108) (-135) (-135)) $) 99) (($ $) 93 (|has| (-135) (-789)))) (-3779 (((-108) $ (-713)) 8)) (-1233 (((-135) $ (-525) (-135)) 52 (|has| $ (-6 -4260))) (((-135) $ (-1141 (-525)) (-135)) 58 (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) (-135)) $) 75 (|has| $ (-6 -4259)))) (-2475 (($) 7 T CONST)) (-1622 (($ $ (-135)) 104) (($ $ (-132)) 103)) (-2670 (($ $) 90 (|has| $ (-6 -4260)))) (-1652 (($ $) 100)) (-2058 (($ $ (-1141 (-525)) $) 114)) (-1681 (($ $) 78 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4259))))) (-2698 (($ (-135) $) 77 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) (-135)) $) 74 (|has| $ (-6 -4259)))) (-3504 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) 76 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4259)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) 73 (|has| $ (-6 -4259))) (((-135) (-1 (-135) (-135) (-135)) $) 72 (|has| $ (-6 -4259)))) (-3081 (((-135) $ (-525) (-135)) 53 (|has| $ (-6 -4260)))) (-3017 (((-135) $ (-525)) 51)) (-2768 (((-108) $ $) 119)) (-3856 (((-525) (-1 (-108) (-135)) $) 97) (((-525) (-135) $) 96 (|has| (-135) (-1020))) (((-525) (-135) $ (-525)) 95 (|has| (-135) (-1020))) (((-525) $ $ (-525)) 113) (((-525) (-132) $ (-525)) 112)) (-2175 (((-592 (-135)) $) 30 (|has| $ (-6 -4259)))) (-3324 (($ (-713) (-135)) 69)) (-2516 (((-108) $ (-713)) 9)) (-1732 (((-525) $) 43 (|has| (-525) (-789)))) (-3033 (($ $ $) 87 (|has| (-135) (-789)))) (-3212 (($ (-1 (-108) (-135) (-135)) $ $) 101) (($ $ $) 94 (|has| (-135) (-789)))) (-2617 (((-592 (-135)) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) (-135) $) 27 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4259))))) (-2231 (((-525) $) 44 (|has| (-525) (-789)))) (-1609 (($ $ $) 86 (|has| (-135) (-789)))) (-3516 (((-108) $ $ (-135)) 115)) (-1589 (((-713) $ $ (-135)) 116)) (-3069 (($ (-1 (-135) (-135)) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-135) (-135)) $) 35) (($ (-1 (-135) (-135) (-135)) $ $) 64)) (-2620 (($ $) 122)) (-1904 (($ $) 123)) (-4028 (((-108) $ (-713)) 10)) (-1633 (($ $ (-135)) 106) (($ $ (-132)) 105)) (-1289 (((-1075) $) 22 (|has| (-135) (-1020)))) (-2594 (($ (-135) $ (-525)) 60) (($ $ $ (-525)) 59)) (-3177 (((-592 (-525)) $) 46)) (-3461 (((-108) (-525) $) 47)) (-3993 (((-1039) $) 21 (|has| (-135) (-1020)))) (-1647 (((-135) $) 42 (|has| (-525) (-789)))) (-4202 (((-3 (-135) "failed") (-1 (-108) (-135)) $) 71)) (-3453 (($ $ (-135)) 41 (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) (-135)) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-135)))) 26 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-273 (-135))) 25 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-135) (-135)) 24 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-592 (-135)) (-592 (-135))) 23 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))))) (-1231 (((-108) $ $) 14)) (-2456 (((-108) (-135) $) 45 (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020))))) (-1717 (((-592 (-135)) $) 48)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 (((-135) $ (-525) (-135)) 50) (((-135) $ (-525)) 49) (($ $ (-1141 (-525))) 63) (($ $ $) 102)) (-2139 (($ $ (-525)) 62) (($ $ (-1141 (-525))) 61)) (-4002 (((-713) (-1 (-108) (-135)) $) 31 (|has| $ (-6 -4259))) (((-713) (-135) $) 28 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4259))))) (-3632 (($ $ $ (-525)) 91 (|has| $ (-6 -4260)))) (-2503 (($ $) 13)) (-2069 (((-501) $) 79 (|has| (-135) (-567 (-501))))) (-4114 (($ (-592 (-135))) 70)) (-2035 (($ $ (-135)) 68) (($ (-135) $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-4100 (($ (-135)) 111) (((-798) $) 18 (|has| (-135) (-566 (-798))))) (-2706 (((-108) (-1 (-108) (-135)) $) 33 (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) 84 (|has| (-135) (-789)))) (-2807 (((-108) $ $) 83 (|has| (-135) (-789)))) (-2775 (((-108) $ $) 20 (|has| (-135) (-1020)))) (-2817 (((-108) $ $) 85 (|has| (-135) (-789)))) (-2795 (((-108) $ $) 82 (|has| (-135) (-789)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-1061) (-131)) (T -1061))
-((-1528 (*1 *1 *1) (-4 *1 (-1061))) (-3511 (*1 *1 *1) (-4 *1 (-1061))) (-2723 (*1 *1 *1) (-4 *1 (-1061))) (-2306 (*1 *1 *1) (-4 *1 (-1061))) (-1686 (*1 *2 *1 *1) (-12 (-4 *1 (-1061)) (-5 *2 (-108)))) (-1672 (*1 *2 *1 *1) (-12 (-4 *1 (-1061)) (-5 *2 (-108)))) (-1651 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1061)) (-5 *3 (-525)) (-5 *2 (-108)))) (-4165 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1061)) (-5 *3 (-135)) (-5 *2 (-713)))) (-2294 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1061)) (-5 *3 (-135)) (-5 *2 (-108)))) (-2434 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1061)) (-5 *2 (-1141 (-525))))) (-1932 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-525)))) (-1932 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-525)) (-5 *3 (-132)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-135)) (-4 *1 (-1061)))) (-1260 (*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-592 *1)) (-4 *1 (-1061)))) (-1260 (*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-592 *1)) (-4 *1 (-1061)))) (-3928 (*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-135)))) (-3928 (*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-132)))) (-2689 (*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-135)))) (-2689 (*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-132)))) (-2676 (*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-135)))) (-2676 (*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-132)))) (-3406 (*1 *1 *1 *1) (-4 *1 (-1061))))
-(-13 (-19 (-135)) (-10 -8 (-15 -1528 ($ $)) (-15 -3511 ($ $)) (-15 -2723 ($ $)) (-15 -2306 ($ $)) (-15 -1686 ((-108) $ $)) (-15 -1672 ((-108) $ $)) (-15 -1651 ((-108) $ $ (-525))) (-15 -4165 ((-713) $ $ (-135))) (-15 -2294 ((-108) $ $ (-135))) (-15 -2434 ($ $ (-1141 (-525)) $)) (-15 -1932 ((-525) $ $ (-525))) (-15 -1932 ((-525) (-132) $ (-525))) (-15 -1217 ($ (-135))) (-15 -1260 ((-592 $) $ (-135))) (-15 -1260 ((-592 $) $ (-132))) (-15 -3928 ($ $ (-135))) (-15 -3928 ($ $ (-132))) (-15 -2689 ($ $ (-135))) (-15 -2689 ($ $ (-132))) (-15 -2676 ($ $ (-135))) (-15 -2676 ($ $ (-132))) (-15 -3406 ($ $ $))))
-(((-33) . T) ((-97) -3254 (|has| (-135) (-1020)) (|has| (-135) (-789))) ((-566 (-798)) -3254 (|has| (-135) (-1020)) (|has| (-135) (-789)) (|has| (-135) (-566 (-798)))) ((-142 #0=(-135)) . T) ((-567 (-501)) |has| (-135) (-567 (-501))) ((-265 #1=(-525) #0#) . T) ((-267 #1# #0#) . T) ((-288 #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))) ((-351 #0#) . T) ((-464 #0#) . T) ((-558 #1# #0#) . T) ((-486 #0# #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))) ((-597 #0#) . T) ((-19 #0#) . T) ((-789) |has| (-135) (-789)) ((-1020) -3254 (|has| (-135) (-1020)) (|has| (-135) (-789))) ((-1128) . T))
-((-1920 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) (-713)) 94)) (-1732 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-713)) 54)) (-2493 (((-1179) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-713)) 85)) (-3393 (((-713) (-592 |#4|) (-592 |#5|)) 27)) (-1329 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-713)) 56) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-713) (-108)) 58)) (-3262 (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108)) 76) (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108)) 77)) (-3210 (((-1075) (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) 80)) (-4204 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5|) 53)) (-1933 (((-713) (-592 |#4|) (-592 |#5|)) 19)))
-(((-1062 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1933 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -3393 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -4204 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5|)) (-15 -1732 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-713))) (-15 -1732 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5|)) (-15 -1329 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -1329 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-713))) (-15 -1329 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5|)) (-15 -3262 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3262 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1920 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) (-713))) (-15 -3210 ((-1075) (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|)))) (-15 -2493 ((-1179) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-713)))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-1029 |#1| |#2| |#3| |#4|)) (T -1062))
-((-2493 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -2563 *9)))) (-5 *4 (-713)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1179)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -2563 *8))) (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-1029 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1075)) (-5 *1 (-1062 *4 *5 *6 *7 *8)))) (-1920 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-592 *11)) (|:| |todo| (-592 (-2 (|:| |val| *3) (|:| -2563 *11)))))) (-5 *6 (-713)) (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -2563 *11)))) (-5 *3 (-592 *10)) (-5 *4 (-592 *11)) (-4 *10 (-991 *7 *8 *9)) (-4 *11 (-1029 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-5 *1 (-1062 *7 *8 *9 *10 *11)))) (-3262 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) (-3262 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) (-1329 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4)))))) (-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1029 *5 *6 *7 *3)))) (-1329 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4)))))) (-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1029 *6 *7 *8 *3)))) (-1329 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-4 *3 (-991 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4)))))) (-5 *1 (-1062 *7 *8 *9 *3 *4)) (-4 *4 (-1029 *7 *8 *9 *3)))) (-1732 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4)))))) (-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1029 *5 *6 *7 *3)))) (-1732 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4)))))) (-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1029 *6 *7 *8 *3)))) (-4204 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4)))))) (-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1029 *5 *6 *7 *3)))) (-3393 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) (-1933 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -1933 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -3393 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -4204 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5|)) (-15 -1732 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-713))) (-15 -1732 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5|)) (-15 -1329 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -1329 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5| (-713))) (-15 -1329 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) |#4| |#5|)) (-15 -3262 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3262 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1920 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))))) (-713))) (-15 -3210 ((-1075) (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|)))) (-15 -2493 ((-1179) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2563 |#5|))) (-713))))
-((-4236 (((-108) $ $) NIL)) (-1463 (((-592 (-2 (|:| -2719 $) (|:| -3459 (-592 |#4|)))) (-592 |#4|)) NIL)) (-1589 (((-592 $) (-592 |#4|)) 110) (((-592 $) (-592 |#4|) (-108)) 111) (((-592 $) (-592 |#4|) (-108) (-108)) 109) (((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108)) 112)) (-2897 (((-592 |#3|) $) NIL)) (-2437 (((-108) $) NIL)) (-2750 (((-108) $) NIL (|has| |#1| (-517)))) (-3950 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2495 ((|#4| |#4| $) NIL)) (-1286 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 $))) |#4| $) 84)) (-2458 (((-2 (|:| |under| $) (|:| -2487 $) (|:| |upper| $)) $ |#3|) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-3785 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258))) (((-3 |#4| "failed") $ |#3|) 62)) (-2169 (($) NIL T CONST)) (-4089 (((-108) $) 26 (|has| |#1| (-517)))) (-2480 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1207 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3339 (((-108) $) NIL (|has| |#1| (-517)))) (-2712 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3767 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-3333 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-3077 (((-3 $ "failed") (-592 |#4|)) NIL)) (-1572 (($ (-592 |#4|)) NIL)) (-1886 (((-3 $ "failed") $) 39)) (-3901 ((|#4| |#4| $) 65)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020))))) (-1703 (($ |#4| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-1607 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-517)))) (-1961 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2834 ((|#4| |#4| $) NIL)) (-1284 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4258))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4258))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1877 (((-2 (|:| -2719 (-592 |#4|)) (|:| -3459 (-592 |#4|))) $) NIL)) (-1816 (((-108) |#4| $) NIL)) (-3458 (((-108) |#4| $) NIL)) (-2116 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1229 (((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108)) 124)) (-3440 (((-592 |#4|) $) 16 (|has| $ (-6 -4258)))) (-2633 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3153 ((|#3| $) 33)) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 |#4|) $) 17 (|has| $ (-6 -4258)))) (-2004 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020))))) (-2284 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#4| |#4|) $) 21)) (-1598 (((-592 |#3|) $) NIL)) (-3919 (((-108) |#3| $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL)) (-4028 (((-3 |#4| (-592 $)) |#4| |#4| $) NIL)) (-2370 (((-592 (-2 (|:| |val| |#4|) (|:| -2563 $))) |#4| |#4| $) 103)) (-1717 (((-3 |#4| "failed") $) 37)) (-3606 (((-592 $) |#4| $) 88)) (-3486 (((-3 (-108) (-592 $)) |#4| $) NIL)) (-3070 (((-592 (-2 (|:| |val| (-108)) (|:| -2563 $))) |#4| $) 98) (((-108) |#4| $) 53)) (-2099 (((-592 $) |#4| $) 107) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 108) (((-592 $) |#4| (-592 $)) NIL)) (-1468 (((-592 $) (-592 |#4|) (-108) (-108) (-108)) 119)) (-3644 (($ |#4| $) 75) (($ (-592 |#4|) $) 76) (((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 74)) (-3159 (((-592 |#4|) $) NIL)) (-2686 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2423 ((|#4| |#4| $) NIL)) (-2338 (((-108) $ $) NIL)) (-1806 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2696 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3872 ((|#4| |#4| $) NIL)) (-2093 (((-1039) $) NIL)) (-1872 (((-3 |#4| "failed") $) 35)) (-1983 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3044 (((-3 $ "failed") $ |#4|) 48)) (-3931 (($ $ |#4|) NIL) (((-592 $) |#4| $) 90) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 86)) (-3944 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) 15)) (-2512 (($) 13)) (-2343 (((-713) $) NIL)) (-2110 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) 12)) (-3210 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-1230 (($ (-592 |#4|)) 20)) (-3264 (($ $ |#3|) 42)) (-1425 (($ $ |#3|) 44)) (-1320 (($ $) NIL)) (-4008 (($ $ |#3|) NIL)) (-1217 (((-798) $) 31) (((-592 |#4|) $) 40)) (-3735 (((-713) $) NIL (|has| |#3| (-346)))) (-1622 (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4027 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-1384 (((-592 $) |#4| $) 54) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) NIL)) (-3029 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-1221 (((-592 |#3|) $) NIL)) (-3162 (((-108) |#4| $) NIL)) (-2081 (((-108) |#3| $) 61)) (-3955 (((-108) $ $) NIL)) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-1063 |#1| |#2| |#3| |#4|) (-13 (-1029 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3644 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -1589 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -1589 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -1468 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -1229 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108))))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|)) (T -1063))
-((-3644 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1063 *5 *6 *7 *3))) (-5 *1 (-1063 *5 *6 *7 *3)) (-4 *3 (-991 *5 *6 *7)))) (-1589 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1063 *5 *6 *7 *8))) (-5 *1 (-1063 *5 *6 *7 *8)))) (-1589 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1063 *5 *6 *7 *8))) (-5 *1 (-1063 *5 *6 *7 *8)))) (-1468 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1063 *5 *6 *7 *8))) (-5 *1 (-1063 *5 *6 *7 *8)))) (-1229 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-592 *8)) (|:| |towers| (-592 (-1063 *5 *6 *7 *8))))) (-5 *1 (-1063 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
-(-13 (-1029 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3644 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -1589 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -1589 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -1468 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -1229 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108)))))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3412 ((|#1| $) 34)) (-3886 (($ (-592 |#1|)) 39)) (-3991 (((-108) $ (-713)) NIL)) (-2169 (($) NIL T CONST)) (-2940 ((|#1| |#1| $) 36)) (-2375 ((|#1| $) 32)) (-3440 (((-592 |#1|) $) 18 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-2284 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 22)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2992 ((|#1| $) 35)) (-1262 (($ |#1| $) 37)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-4127 ((|#1| $) 33)) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) 31)) (-2512 (($) 38)) (-1769 (((-713) $) 29)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) 27)) (-1217 (((-798) $) 14 (|has| |#1| (-566 (-798))))) (-1956 (($ (-592 |#1|)) NIL)) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 17 (|has| |#1| (-1020)))) (-3522 (((-713) $) 30 (|has| $ (-6 -4258)))))
-(((-1064 |#1|) (-13 (-1040 |#1|) (-10 -8 (-15 -3886 ($ (-592 |#1|))))) (-1128)) (T -1064))
-((-3886 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-1064 *3)))))
-(-13 (-1040 |#1|) (-10 -8 (-15 -3886 ($ (-592 |#1|)))))
-((-1430 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1141 (-525)) |#2|) 44) ((|#2| $ (-525) |#2|) 41)) (-2353 (((-108) $) 12)) (-2284 (($ (-1 |#2| |#2|) $) 39)) (-1872 ((|#2| $) NIL) (($ $ (-713)) 17)) (-1420 (($ $ |#2|) 40)) (-3920 (((-108) $) 11)) (-3406 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1141 (-525))) 31) ((|#2| $ (-525)) 23) ((|#2| $ (-525) |#2|) NIL)) (-4029 (($ $ $) 47) (($ $ |#2|) NIL)) (-2038 (($ $ $) 33) (($ |#2| $) NIL) (($ (-592 $)) 36) (($ $ |#2|) NIL)))
-(((-1065 |#1| |#2|) (-10 -8 (-15 -2353 ((-108) |#1|)) (-15 -3920 ((-108) |#1|)) (-15 -1430 (|#2| |#1| (-525) |#2|)) (-15 -3406 (|#2| |#1| (-525) |#2|)) (-15 -3406 (|#2| |#1| (-525))) (-15 -1420 (|#1| |#1| |#2|)) (-15 -2038 (|#1| |#1| |#2|)) (-15 -2038 (|#1| (-592 |#1|))) (-15 -3406 (|#1| |#1| (-1141 (-525)))) (-15 -1430 (|#2| |#1| (-1141 (-525)) |#2|)) (-15 -1430 (|#2| |#1| "last" |#2|)) (-15 -1430 (|#1| |#1| "rest" |#1|)) (-15 -1430 (|#2| |#1| "first" |#2|)) (-15 -4029 (|#1| |#1| |#2|)) (-15 -4029 (|#1| |#1| |#1|)) (-15 -3406 (|#2| |#1| "last")) (-15 -3406 (|#1| |#1| "rest")) (-15 -1872 (|#1| |#1| (-713))) (-15 -3406 (|#2| |#1| "first")) (-15 -1872 (|#2| |#1|)) (-15 -2038 (|#1| |#2| |#1|)) (-15 -2038 (|#1| |#1| |#1|)) (-15 -1430 (|#2| |#1| "value" |#2|)) (-15 -3406 (|#2| |#1| "value")) (-15 -2284 (|#1| (-1 |#2| |#2|) |#1|))) (-1066 |#2|) (-1128)) (T -1065))
-NIL
-(-10 -8 (-15 -2353 ((-108) |#1|)) (-15 -3920 ((-108) |#1|)) (-15 -1430 (|#2| |#1| (-525) |#2|)) (-15 -3406 (|#2| |#1| (-525) |#2|)) (-15 -3406 (|#2| |#1| (-525))) (-15 -1420 (|#1| |#1| |#2|)) (-15 -2038 (|#1| |#1| |#2|)) (-15 -2038 (|#1| (-592 |#1|))) (-15 -3406 (|#1| |#1| (-1141 (-525)))) (-15 -1430 (|#2| |#1| (-1141 (-525)) |#2|)) (-15 -1430 (|#2| |#1| "last" |#2|)) (-15 -1430 (|#1| |#1| "rest" |#1|)) (-15 -1430 (|#2| |#1| "first" |#2|)) (-15 -4029 (|#1| |#1| |#2|)) (-15 -4029 (|#1| |#1| |#1|)) (-15 -3406 (|#2| |#1| "last")) (-15 -3406 (|#1| |#1| "rest")) (-15 -1872 (|#1| |#1| (-713))) (-15 -3406 (|#2| |#1| "first")) (-15 -1872 (|#2| |#1|)) (-15 -2038 (|#1| |#2| |#1|)) (-15 -2038 (|#1| |#1| |#1|)) (-15 -1430 (|#2| |#1| "value" |#2|)) (-15 -3406 (|#2| |#1| "value")) (-15 -2284 (|#1| (-1 |#2| |#2|) |#1|)))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3284 ((|#1| $) 48)) (-3581 ((|#1| $) 65)) (-2798 (($ $) 67)) (-3456 (((-1179) $ (-525) (-525)) 97 (|has| $ (-6 -4259)))) (-4238 (($ $ (-525)) 52 (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) 8)) (-3214 ((|#1| $ |#1|) 39 (|has| $ (-6 -4259)))) (-1620 (($ $ $) 56 (|has| $ (-6 -4259)))) (-2603 ((|#1| $ |#1|) 54 (|has| $ (-6 -4259)))) (-4145 ((|#1| $ |#1|) 58 (|has| $ (-6 -4259)))) (-1430 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4259))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4259))) (($ $ "rest" $) 55 (|has| $ (-6 -4259))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) 117 (|has| $ (-6 -4259))) ((|#1| $ (-525) |#1|) 86 (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) 41 (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4258)))) (-3570 ((|#1| $) 66)) (-2169 (($) 7 T CONST)) (-1886 (($ $) 73) (($ $ (-713)) 71)) (-1910 (($ $) 99 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1703 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4258))) (($ |#1| $) 100 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2301 ((|#1| $ (-525) |#1|) 85 (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) 87)) (-2353 (((-108) $) 83)) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3396 (((-592 $) $) 50)) (-1729 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-3416 (($ (-713) |#1|) 108)) (-3924 (((-108) $ (-713)) 9)) (-3666 (((-525) $) 95 (|has| (-525) (-789)))) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1847 (((-525) $) 94 (|has| (-525) (-789)))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2912 (((-108) $ (-713)) 10)) (-2803 (((-592 |#1|) $) 45)) (-3786 (((-108) $) 49)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-1717 ((|#1| $) 70) (($ $ (-713)) 68)) (-2531 (($ $ $ (-525)) 116) (($ |#1| $ (-525)) 115)) (-2628 (((-592 (-525)) $) 92)) (-2978 (((-108) (-525) $) 91)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1872 ((|#1| $) 76) (($ $ (-713)) 74)) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-1420 (($ $ |#1|) 96 (|has| $ (-6 -4259)))) (-3920 (((-108) $) 84)) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2167 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) 90)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1141 (-525))) 112) ((|#1| $ (-525)) 89) ((|#1| $ (-525) |#1|) 88)) (-3340 (((-525) $ $) 44)) (-3038 (($ $ (-1141 (-525))) 114) (($ $ (-525)) 113)) (-2905 (((-108) $) 46)) (-3004 (($ $) 62)) (-1354 (($ $) 59 (|has| $ (-6 -4259)))) (-1654 (((-713) $) 63)) (-4167 (($ $) 64)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-3210 (((-501) $) 98 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 107)) (-4029 (($ $ $) 61 (|has| $ (-6 -4259))) (($ $ |#1|) 60 (|has| $ (-6 -4259)))) (-2038 (($ $ $) 78) (($ |#1| $) 77) (($ (-592 $)) 110) (($ $ |#1|) 109)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3793 (((-592 $) $) 51)) (-3351 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-1904 (*1 *1 *1) (-4 *1 (-1061))) (-2620 (*1 *1 *1) (-4 *1 (-1061))) (-2877 (*1 *1 *1) (-4 *1 (-1061))) (-3127 (*1 *1 *1) (-4 *1 (-1061))) (-2768 (*1 *2 *1 *1) (-12 (-4 *1 (-1061)) (-5 *2 (-108)))) (-2746 (*1 *2 *1 *1) (-12 (-4 *1 (-1061)) (-5 *2 (-108)))) (-2726 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1061)) (-5 *3 (-525)) (-5 *2 (-108)))) (-1589 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1061)) (-5 *3 (-135)) (-5 *2 (-713)))) (-3516 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1061)) (-5 *3 (-135)) (-5 *2 (-108)))) (-2058 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1061)) (-5 *2 (-1141 (-525))))) (-3856 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-525)))) (-3856 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-525)) (-5 *3 (-132)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-135)) (-4 *1 (-1061)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-592 *1)) (-4 *1 (-1061)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-592 *1)) (-4 *1 (-1061)))) (-2555 (*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-135)))) (-2555 (*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-132)))) (-1633 (*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-135)))) (-1633 (*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-132)))) (-1622 (*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-135)))) (-1622 (*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-132)))) (-3431 (*1 *1 *1 *1) (-4 *1 (-1061))))
+(-13 (-19 (-135)) (-10 -8 (-15 -1904 ($ $)) (-15 -2620 ($ $)) (-15 -2877 ($ $)) (-15 -3127 ($ $)) (-15 -2768 ((-108) $ $)) (-15 -2746 ((-108) $ $)) (-15 -2726 ((-108) $ $ (-525))) (-15 -1589 ((-713) $ $ (-135))) (-15 -3516 ((-108) $ $ (-135))) (-15 -2058 ($ $ (-1141 (-525)) $)) (-15 -3856 ((-525) $ $ (-525))) (-15 -3856 ((-525) (-132) $ (-525))) (-15 -4100 ($ (-135))) (-15 -3224 ((-592 $) $ (-135))) (-15 -3224 ((-592 $) $ (-132))) (-15 -2555 ($ $ (-135))) (-15 -2555 ($ $ (-132))) (-15 -1633 ($ $ (-135))) (-15 -1633 ($ $ (-132))) (-15 -1622 ($ $ (-135))) (-15 -1622 ($ $ (-132))) (-15 -3431 ($ $ $))))
+(((-33) . T) ((-97) -2067 (|has| (-135) (-1020)) (|has| (-135) (-789))) ((-566 (-798)) -2067 (|has| (-135) (-1020)) (|has| (-135) (-789)) (|has| (-135) (-566 (-798)))) ((-142 #0=(-135)) . T) ((-567 (-501)) |has| (-135) (-567 (-501))) ((-265 #1=(-525) #0#) . T) ((-267 #1# #0#) . T) ((-288 #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))) ((-351 #0#) . T) ((-464 #0#) . T) ((-558 #1# #0#) . T) ((-486 #0# #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))) ((-597 #0#) . T) ((-19 #0#) . T) ((-789) |has| (-135) (-789)) ((-1020) -2067 (|has| (-135) (-1020)) (|has| (-135) (-789))) ((-1128) . T))
+((-1723 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) (-713)) 94)) (-3588 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-713)) 54)) (-3782 (((-1179) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-713)) 85)) (-3960 (((-713) (-592 |#4|) (-592 |#5|)) 27)) (-1524 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-713)) 56) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-713) (-108)) 58)) (-4129 (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108)) 76) (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108)) 77)) (-2069 (((-1075) (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) 80)) (-2274 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5|) 53)) (-1857 (((-713) (-592 |#4|) (-592 |#5|)) 19)))
+(((-1062 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1857 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -3960 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -2274 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5|)) (-15 -3588 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-713))) (-15 -3588 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5|)) (-15 -1524 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -1524 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-713))) (-15 -1524 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5|)) (-15 -4129 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -4129 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1723 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) (-713))) (-15 -2069 ((-1075) (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|)))) (-15 -3782 ((-1179) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-713)))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-1029 |#1| |#2| |#3| |#4|)) (T -1062))
+((-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -1285 *9)))) (-5 *4 (-713)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1179)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -1285 *8))) (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-1029 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1075)) (-5 *1 (-1062 *4 *5 *6 *7 *8)))) (-1723 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-592 *11)) (|:| |todo| (-592 (-2 (|:| |val| *3) (|:| -1285 *11)))))) (-5 *6 (-713)) (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -1285 *11)))) (-5 *3 (-592 *10)) (-5 *4 (-592 *11)) (-4 *10 (-991 *7 *8 *9)) (-4 *11 (-1029 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-5 *1 (-1062 *7 *8 *9 *10 *11)))) (-4129 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) (-4129 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) (-1524 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4)))))) (-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1029 *5 *6 *7 *3)))) (-1524 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4)))))) (-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1029 *6 *7 *8 *3)))) (-1524 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-4 *3 (-991 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4)))))) (-5 *1 (-1062 *7 *8 *9 *3 *4)) (-4 *4 (-1029 *7 *8 *9 *3)))) (-3588 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4)))))) (-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1029 *5 *6 *7 *3)))) (-3588 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4)))))) (-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1029 *6 *7 *8 *3)))) (-2274 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4)))))) (-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1029 *5 *6 *7 *3)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1857 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -3960 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -2274 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5|)) (-15 -3588 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-713))) (-15 -3588 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5|)) (-15 -1524 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -1524 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5| (-713))) (-15 -1524 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) |#4| |#5|)) (-15 -4129 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -4129 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1723 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))))) (-713))) (-15 -2069 ((-1075) (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|)))) (-15 -3782 ((-1179) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1285 |#5|))) (-713))))
+((-4087 (((-108) $ $) NIL)) (-2562 (((-592 (-2 (|:| -2682 $) (|:| -2046 (-592 |#4|)))) (-592 |#4|)) NIL)) (-3347 (((-592 $) (-592 |#4|)) 110) (((-592 $) (-592 |#4|) (-108)) 111) (((-592 $) (-592 |#4|) (-108) (-108)) 109) (((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108)) 112)) (-1296 (((-592 |#3|) $) NIL)) (-2071 (((-108) $) NIL)) (-3093 (((-108) $) NIL (|has| |#1| (-517)))) (-1587 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1402 ((|#4| |#4| $) NIL)) (-4195 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 $))) |#4| $) 84)) (-1842 (((-2 (|:| |under| $) (|:| -1340 $) (|:| |upper| $)) $ |#3|) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-2399 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259))) (((-3 |#4| "failed") $ |#3|) 62)) (-2475 (($) NIL T CONST)) (-3542 (((-108) $) 26 (|has| |#1| (-517)))) (-2462 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2390 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1698 (((-108) $) NIL (|has| |#1| (-517)))) (-2783 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3308 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1655 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1934 (((-3 $ "failed") (-592 |#4|)) NIL)) (-4105 (($ (-592 |#4|)) NIL)) (-1659 (((-3 $ "failed") $) 39)) (-2268 ((|#4| |#4| $) 65)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020))))) (-2698 (($ |#4| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-3681 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-517)))) (-3964 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-1469 ((|#4| |#4| $) NIL)) (-3504 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4259))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4259))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1329 (((-2 (|:| -2682 (-592 |#4|)) (|:| -2046 (-592 |#4|))) $) NIL)) (-1954 (((-108) |#4| $) NIL)) (-3315 (((-108) |#4| $) NIL)) (-1941 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1959 (((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108)) 124)) (-2175 (((-592 |#4|) $) 16 (|has| $ (-6 -4259)))) (-3221 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2577 ((|#3| $) 33)) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 |#4|) $) 17 (|has| $ (-6 -4259)))) (-3198 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020))))) (-3069 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#4| |#4|) $) 21)) (-3435 (((-592 |#3|) $) NIL)) (-2468 (((-108) |#3| $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL)) (-4180 (((-3 |#4| (-592 $)) |#4| |#4| $) NIL)) (-2602 (((-592 (-2 (|:| |val| |#4|) (|:| -1285 $))) |#4| |#4| $) 103)) (-2718 (((-3 |#4| "failed") $) 37)) (-2346 (((-592 $) |#4| $) 88)) (-3580 (((-3 (-108) (-592 $)) |#4| $) NIL)) (-3022 (((-592 (-2 (|:| |val| (-108)) (|:| -1285 $))) |#4| $) 98) (((-108) |#4| $) 53)) (-2913 (((-592 $) |#4| $) 107) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 108) (((-592 $) |#4| (-592 $)) NIL)) (-2593 (((-592 $) (-592 |#4|) (-108) (-108) (-108)) 119)) (-1513 (($ |#4| $) 75) (($ (-592 |#4|) $) 76) (((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 74)) (-1455 (((-592 |#4|) $) NIL)) (-3732 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3076 ((|#4| |#4| $) NIL)) (-3472 (((-108) $ $) NIL)) (-2991 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2635 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1998 ((|#4| |#4| $) NIL)) (-3993 (((-1039) $) NIL)) (-1647 (((-3 |#4| "failed") $) 35)) (-4202 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2821 (((-3 $ "failed") $ |#4|) 48)) (-1397 (($ $ |#4|) NIL) (((-592 $) |#4| $) 90) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 86)) (-1518 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) 15)) (-1558 (($) 13)) (-3529 (((-713) $) NIL)) (-4002 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) 12)) (-2069 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-4114 (($ (-592 |#4|)) 20)) (-4151 (($ $ |#3|) 42)) (-3522 (($ $ |#3|) 44)) (-1411 (($ $) NIL)) (-3963 (($ $ |#3|) NIL)) (-4100 (((-798) $) 31) (((-592 |#4|) $) 40)) (-1223 (((-713) $) NIL (|has| |#3| (-346)))) (-3799 (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4170 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-3605 (((-592 $) |#4| $) 54) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) NIL)) (-2706 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-1874 (((-592 |#3|) $) NIL)) (-1484 (((-108) |#4| $) NIL)) (-2738 (((-108) |#3| $) 61)) (-2775 (((-108) $ $) NIL)) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-1063 |#1| |#2| |#3| |#4|) (-13 (-1029 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1513 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3347 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -3347 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -2593 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -1959 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108))))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|)) (T -1063))
+((-1513 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1063 *5 *6 *7 *3))) (-5 *1 (-1063 *5 *6 *7 *3)) (-4 *3 (-991 *5 *6 *7)))) (-3347 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1063 *5 *6 *7 *8))) (-5 *1 (-1063 *5 *6 *7 *8)))) (-3347 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1063 *5 *6 *7 *8))) (-5 *1 (-1063 *5 *6 *7 *8)))) (-2593 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1063 *5 *6 *7 *8))) (-5 *1 (-1063 *5 *6 *7 *8)))) (-1959 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-592 *8)) (|:| |towers| (-592 (-1063 *5 *6 *7 *8))))) (-5 *1 (-1063 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
+(-13 (-1029 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1513 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3347 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -3347 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -2593 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -1959 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108)))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3490 ((|#1| $) 34)) (-1880 (($ (-592 |#1|)) 39)) (-3779 (((-108) $ (-713)) NIL)) (-2475 (($) NIL T CONST)) (-1282 ((|#1| |#1| $) 36)) (-2639 ((|#1| $) 32)) (-2175 (((-592 |#1|) $) 18 (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3069 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 22)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3577 ((|#1| $) 35)) (-3246 (($ |#1| $) 37)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-2724 ((|#1| $) 33)) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) 31)) (-1558 (($) 38)) (-2895 (((-713) $) 29)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) 27)) (-4100 (((-798) $) 14 (|has| |#1| (-566 (-798))))) (-3905 (($ (-592 |#1|)) NIL)) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 17 (|has| |#1| (-1020)))) (-2827 (((-713) $) 30 (|has| $ (-6 -4259)))))
+(((-1064 |#1|) (-13 (-1040 |#1|) (-10 -8 (-15 -1880 ($ (-592 |#1|))))) (-1128)) (T -1064))
+((-1880 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-1064 *3)))))
+(-13 (-1040 |#1|) (-10 -8 (-15 -1880 ($ (-592 |#1|)))))
+((-1233 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1141 (-525)) |#2|) 44) ((|#2| $ (-525) |#2|) 41)) (-3631 (((-108) $) 12)) (-3069 (($ (-1 |#2| |#2|) $) 39)) (-1647 ((|#2| $) NIL) (($ $ (-713)) 17)) (-3453 (($ $ |#2|) 40)) (-2476 (((-108) $) 11)) (-3431 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1141 (-525))) 31) ((|#2| $ (-525)) 23) ((|#2| $ (-525) |#2|) NIL)) (-4190 (($ $ $) 47) (($ $ |#2|) NIL)) (-2035 (($ $ $) 33) (($ |#2| $) NIL) (($ (-592 $)) 36) (($ $ |#2|) NIL)))
+(((-1065 |#1| |#2|) (-10 -8 (-15 -3631 ((-108) |#1|)) (-15 -2476 ((-108) |#1|)) (-15 -1233 (|#2| |#1| (-525) |#2|)) (-15 -3431 (|#2| |#1| (-525) |#2|)) (-15 -3431 (|#2| |#1| (-525))) (-15 -3453 (|#1| |#1| |#2|)) (-15 -2035 (|#1| |#1| |#2|)) (-15 -2035 (|#1| (-592 |#1|))) (-15 -3431 (|#1| |#1| (-1141 (-525)))) (-15 -1233 (|#2| |#1| (-1141 (-525)) |#2|)) (-15 -1233 (|#2| |#1| "last" |#2|)) (-15 -1233 (|#1| |#1| "rest" |#1|)) (-15 -1233 (|#2| |#1| "first" |#2|)) (-15 -4190 (|#1| |#1| |#2|)) (-15 -4190 (|#1| |#1| |#1|)) (-15 -3431 (|#2| |#1| "last")) (-15 -3431 (|#1| |#1| "rest")) (-15 -1647 (|#1| |#1| (-713))) (-15 -3431 (|#2| |#1| "first")) (-15 -1647 (|#2| |#1|)) (-15 -2035 (|#1| |#2| |#1|)) (-15 -2035 (|#1| |#1| |#1|)) (-15 -1233 (|#2| |#1| "value" |#2|)) (-15 -3431 (|#2| |#1| "value")) (-15 -3069 (|#1| (-1 |#2| |#2|) |#1|))) (-1066 |#2|) (-1128)) (T -1065))
+NIL
+(-10 -8 (-15 -3631 ((-108) |#1|)) (-15 -2476 ((-108) |#1|)) (-15 -1233 (|#2| |#1| (-525) |#2|)) (-15 -3431 (|#2| |#1| (-525) |#2|)) (-15 -3431 (|#2| |#1| (-525))) (-15 -3453 (|#1| |#1| |#2|)) (-15 -2035 (|#1| |#1| |#2|)) (-15 -2035 (|#1| (-592 |#1|))) (-15 -3431 (|#1| |#1| (-1141 (-525)))) (-15 -1233 (|#2| |#1| (-1141 (-525)) |#2|)) (-15 -1233 (|#2| |#1| "last" |#2|)) (-15 -1233 (|#1| |#1| "rest" |#1|)) (-15 -1233 (|#2| |#1| "first" |#2|)) (-15 -4190 (|#1| |#1| |#2|)) (-15 -4190 (|#1| |#1| |#1|)) (-15 -3431 (|#2| |#1| "last")) (-15 -3431 (|#1| |#1| "rest")) (-15 -1647 (|#1| |#1| (-713))) (-15 -3431 (|#2| |#1| "first")) (-15 -1647 (|#2| |#1|)) (-15 -2035 (|#1| |#2| |#1|)) (-15 -2035 (|#1| |#1| |#1|)) (-15 -1233 (|#2| |#1| "value" |#2|)) (-15 -3431 (|#2| |#1| "value")) (-15 -3069 (|#1| (-1 |#2| |#2|) |#1|)))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2219 ((|#1| $) 48)) (-2250 ((|#1| $) 65)) (-3979 (($ $) 67)) (-3289 (((-1179) $ (-525) (-525)) 97 (|has| $ (-6 -4260)))) (-1425 (($ $ (-525)) 52 (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) 8)) (-1947 ((|#1| $ |#1|) 39 (|has| $ (-6 -4260)))) (-3776 (($ $ $) 56 (|has| $ (-6 -4260)))) (-4193 ((|#1| $ |#1|) 54 (|has| $ (-6 -4260)))) (-2894 ((|#1| $ |#1|) 58 (|has| $ (-6 -4260)))) (-1233 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4260))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4260))) (($ $ "rest" $) 55 (|has| $ (-6 -4260))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) 117 (|has| $ (-6 -4260))) ((|#1| $ (-525) |#1|) 86 (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) 41 (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4259)))) (-2237 ((|#1| $) 66)) (-2475 (($) 7 T CONST)) (-1659 (($ $) 73) (($ $ (-713)) 71)) (-1681 (($ $) 99 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2698 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4259))) (($ |#1| $) 100 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3081 ((|#1| $ (-525) |#1|) 85 (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) 87)) (-3631 (((-108) $) 83)) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-3994 (((-592 $) $) 50)) (-3569 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-3324 (($ (-713) |#1|) 108)) (-2516 (((-108) $ (-713)) 9)) (-1732 (((-525) $) 95 (|has| (-525) (-789)))) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2231 (((-525) $) 94 (|has| (-525) (-789)))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4028 (((-108) $ (-713)) 10)) (-2010 (((-592 |#1|) $) 45)) (-3506 (((-108) $) 49)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2718 ((|#1| $) 70) (($ $ (-713)) 68)) (-2594 (($ $ $ (-525)) 116) (($ |#1| $ (-525)) 115)) (-3177 (((-592 (-525)) $) 92)) (-3461 (((-108) (-525) $) 91)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1647 ((|#1| $) 76) (($ $ (-713)) 74)) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-3453 (($ $ |#1|) 96 (|has| $ (-6 -4260)))) (-2476 (((-108) $) 84)) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-2456 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) 90)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1141 (-525))) 112) ((|#1| $ (-525)) 89) ((|#1| $ (-525) |#1|) 88)) (-1707 (((-525) $ $) 44)) (-2139 (($ $ (-1141 (-525))) 114) (($ $ (-525)) 113)) (-3953 (((-108) $) 46)) (-3675 (($ $) 62)) (-2789 (($ $) 59 (|has| $ (-6 -4260)))) (-4082 (((-713) $) 63)) (-3077 (($ $) 64)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-2069 (((-501) $) 98 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 107)) (-4190 (($ $ $) 61 (|has| $ (-6 -4260))) (($ $ |#1|) 60 (|has| $ (-6 -4260)))) (-2035 (($ $ $) 78) (($ |#1| $) 77) (($ (-592 $)) 110) (($ $ |#1|) 109)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3576 (((-592 $) $) 51)) (-1791 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-1066 |#1|) (-131) (-1128)) (T -1066))
-((-3920 (*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))) (-2353 (*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))))
-(-13 (-1162 |t#1|) (-597 |t#1|) (-10 -8 (-15 -3920 ((-108) $)) (-15 -2353 ((-108) $))))
-(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-942 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1128) . T) ((-1162 |#1|) . T))
-((-4236 (((-108) $ $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1675 (($) NIL) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-3456 (((-1179) $ |#1| |#1|) NIL (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 ((|#2| $ |#1| |#2|) NIL)) (-1676 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-2591 (((-3 |#2| "failed") |#1| $) NIL)) (-2169 (($) NIL T CONST)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-3271 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (|has| $ (-6 -4258))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-3 |#2| "failed") |#1| $) NIL)) (-1703 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-1284 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (|has| $ (-6 -4258))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-2301 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#2| $ |#1|) NIL)) (-3440 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) NIL)) (-3666 ((|#1| $) NIL (|has| |#1| (-789)))) (-2694 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-1847 ((|#1| $) NIL (|has| |#1| (-789)))) (-2284 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4259))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-2356 (((-592 |#1|) $) NIL)) (-2239 (((-108) |#1| $) NIL)) (-2992 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-1262 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-2628 (((-592 |#1|) $) NIL)) (-2978 (((-108) |#1| $) NIL)) (-2093 (((-1039) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1872 ((|#2| $) NIL (|has| |#1| (-789)))) (-1983 (((-3 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) "failed") (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL)) (-1420 (($ $ |#2|) NIL (|has| $ (-6 -4259)))) (-4127 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-3944 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-3341 (((-592 |#2|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1760 (($) NIL) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-2110 (((-713) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-713) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-567 (-501))))) (-1230 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-1217 (((-798) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-1956 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-3029 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
+((-2476 (*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))) (-3631 (*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))))
+(-13 (-1162 |t#1|) (-597 |t#1|) (-10 -8 (-15 -2476 ((-108) $)) (-15 -3631 ((-108) $))))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-942 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1128) . T) ((-1162 |#1|) . T))
+((-4087 (((-108) $ $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3311 (($) NIL) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-3289 (((-1179) $ |#1| |#1|) NIL (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 ((|#2| $ |#1| |#2|) NIL)) (-3050 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-1515 (((-3 |#2| "failed") |#1| $) NIL)) (-2475 (($) NIL T CONST)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-4205 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (|has| $ (-6 -4259))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-3 |#2| "failed") |#1| $) NIL)) (-2698 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3504 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (|has| $ (-6 -4259))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3081 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#2| $ |#1|) NIL)) (-2175 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) NIL)) (-1732 ((|#1| $) NIL (|has| |#1| (-789)))) (-2617 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-2231 ((|#1| $) NIL (|has| |#1| (-789)))) (-3069 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4260))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1398 (((-592 |#1|) $) NIL)) (-3770 (((-108) |#1| $) NIL)) (-3577 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-3246 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-3177 (((-592 |#1|) $) NIL)) (-3461 (((-108) |#1| $) NIL)) (-3993 (((-1039) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1647 ((|#2| $) NIL (|has| |#1| (-789)))) (-4202 (((-3 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) "failed") (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL)) (-3453 (($ $ |#2|) NIL (|has| $ (-6 -4260)))) (-2724 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-1518 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-1717 (((-592 |#2|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2637 (($) NIL) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-4002 (((-713) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-713) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-567 (-501))))) (-4114 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-4100 (((-798) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-3905 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-2706 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
(((-1067 |#1| |#2| |#3|) (-1105 |#1| |#2|) (-1020) (-1020) |#2|) (T -1067))
NIL
(-1105 |#1| |#2|)
-((-4236 (((-108) $ $) 7)) (-3844 (((-3 $ "failed") $) 13)) (-2619 (((-1075) $) 9)) (-2295 (($) 14 T CONST)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11)) (-3955 (((-108) $ $) 6)))
+((-4087 (((-108) $ $) 7)) (-2878 (((-3 $ "failed") $) 13)) (-1289 (((-1075) $) 9)) (-2948 (($) 14 T CONST)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11)) (-2775 (((-108) $ $) 6)))
(((-1068) (-131)) (T -1068))
-((-2295 (*1 *1) (-4 *1 (-1068))) (-3844 (*1 *1 *1) (|partial| -4 *1 (-1068))))
-(-13 (-1020) (-10 -8 (-15 -2295 ($) -2709) (-15 -3844 ((-3 $ "failed") $))))
+((-2948 (*1 *1) (-4 *1 (-1068))) (-2878 (*1 *1 *1) (|partial| -4 *1 (-1068))))
+(-13 (-1020) (-10 -8 (-15 -2948 ($) -2247) (-15 -2878 ((-3 $ "failed") $))))
(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
-((-3381 (((-1073 |#1|) (-1073 |#1|)) 17)) (-1467 (((-1073 |#1|) (-1073 |#1|)) 13)) (-2429 (((-1073 |#1|) (-1073 |#1|) (-525) (-525)) 20)) (-4018 (((-1073 |#1|) (-1073 |#1|)) 15)))
-(((-1069 |#1|) (-10 -7 (-15 -1467 ((-1073 |#1|) (-1073 |#1|))) (-15 -4018 ((-1073 |#1|) (-1073 |#1|))) (-15 -3381 ((-1073 |#1|) (-1073 |#1|))) (-15 -2429 ((-1073 |#1|) (-1073 |#1|) (-525) (-525)))) (-13 (-517) (-138))) (T -1069))
-((-2429 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1073 *4)) (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-1069 *4)))) (-3381 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1069 *3)))) (-4018 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1069 *3)))) (-1467 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1069 *3)))))
-(-10 -7 (-15 -1467 ((-1073 |#1|) (-1073 |#1|))) (-15 -4018 ((-1073 |#1|) (-1073 |#1|))) (-15 -3381 ((-1073 |#1|) (-1073 |#1|))) (-15 -2429 ((-1073 |#1|) (-1073 |#1|) (-525) (-525))))
-((-2038 (((-1073 |#1|) (-1073 (-1073 |#1|))) 15)))
-(((-1070 |#1|) (-10 -7 (-15 -2038 ((-1073 |#1|) (-1073 (-1073 |#1|))))) (-1128)) (T -1070))
-((-2038 (*1 *2 *3) (-12 (-5 *3 (-1073 (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1070 *4)) (-4 *4 (-1128)))))
-(-10 -7 (-15 -2038 ((-1073 |#1|) (-1073 (-1073 |#1|)))))
-((-4192 (((-1073 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1073 |#1|)) 25)) (-1284 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1073 |#1|)) 26)) (-3165 (((-1073 |#2|) (-1 |#2| |#1|) (-1073 |#1|)) 16)))
-(((-1071 |#1| |#2|) (-10 -7 (-15 -3165 ((-1073 |#2|) (-1 |#2| |#1|) (-1073 |#1|))) (-15 -4192 ((-1073 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1073 |#1|))) (-15 -1284 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1073 |#1|)))) (-1128) (-1128)) (T -1071))
-((-1284 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1073 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-1071 *5 *2)))) (-4192 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1073 *6)) (-4 *6 (-1128)) (-4 *3 (-1128)) (-5 *2 (-1073 *3)) (-5 *1 (-1071 *6 *3)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1073 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1073 *6)) (-5 *1 (-1071 *5 *6)))))
-(-10 -7 (-15 -3165 ((-1073 |#2|) (-1 |#2| |#1|) (-1073 |#1|))) (-15 -4192 ((-1073 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1073 |#1|))) (-15 -1284 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1073 |#1|))))
-((-3165 (((-1073 |#3|) (-1 |#3| |#1| |#2|) (-1073 |#1|) (-1073 |#2|)) 21)))
-(((-1072 |#1| |#2| |#3|) (-10 -7 (-15 -3165 ((-1073 |#3|) (-1 |#3| |#1| |#2|) (-1073 |#1|) (-1073 |#2|)))) (-1128) (-1128) (-1128)) (T -1072))
-((-3165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1073 *6)) (-5 *5 (-1073 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1073 *8)) (-5 *1 (-1072 *6 *7 *8)))))
-(-10 -7 (-15 -3165 ((-1073 |#3|) (-1 |#3| |#1| |#2|) (-1073 |#1|) (-1073 |#2|))))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3284 ((|#1| $) NIL)) (-3581 ((|#1| $) NIL)) (-2798 (($ $) 51)) (-3456 (((-1179) $ (-525) (-525)) 76 (|has| $ (-6 -4259)))) (-4238 (($ $ (-525)) 110 (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) NIL)) (-4081 (((-798) $) 41 (|has| |#1| (-1020)))) (-2629 (((-108)) 40 (|has| |#1| (-1020)))) (-3214 ((|#1| $ |#1|) NIL (|has| $ (-6 -4259)))) (-1620 (($ $ $) 98 (|has| $ (-6 -4259))) (($ $ (-525) $) 122)) (-2603 ((|#1| $ |#1|) 107 (|has| $ (-6 -4259)))) (-4145 ((|#1| $ |#1|) 102 (|has| $ (-6 -4259)))) (-1430 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4259))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4259))) (($ $ "rest" $) 106 (|has| $ (-6 -4259))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) 89 (|has| $ (-6 -4259))) ((|#1| $ (-525) |#1|) 55 (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) NIL (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) |#1|) $) 58)) (-3570 ((|#1| $) NIL)) (-2169 (($) NIL T CONST)) (-3250 (($ $) 14)) (-1886 (($ $) 29) (($ $ (-713)) 88)) (-2463 (((-108) (-592 |#1|) $) 116 (|has| |#1| (-1020)))) (-3903 (($ (-592 |#1|)) 112)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1703 (($ |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) 57)) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-2301 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) NIL)) (-2353 (((-108) $) NIL)) (-3440 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2793 (((-1179) (-525) $) 121 (|has| |#1| (-1020)))) (-1478 (((-713) $) 118)) (-3396 (((-592 $) $) NIL)) (-1729 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3416 (($ (-713) |#1|) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) NIL (|has| (-525) (-789)))) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-2284 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-2912 (((-108) $ (-713)) NIL)) (-2803 (((-592 |#1|) $) NIL)) (-3786 (((-108) $) NIL)) (-3835 (($ $) 90)) (-2545 (((-108) $) 13)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-1717 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-2531 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) 74)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3715 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-1898 ((|#1| $) 10)) (-1872 ((|#1| $) 28) (($ $ (-713)) 49)) (-1255 (((-2 (|:| |cycle?| (-108)) (|:| -2033 (-713)) (|:| |period| (-713))) (-713) $) 25)) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3765 (($ (-1 (-108) |#1|) $) 126)) (-3774 (($ (-1 (-108) |#1|) $) 127)) (-1420 (($ $ |#1|) 68 (|has| $ (-6 -4259)))) (-3931 (($ $ (-525)) 32)) (-3920 (((-108) $) 72)) (-3998 (((-108) $) 12)) (-3671 (((-108) $) 117)) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 20)) (-2167 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) NIL)) (-2659 (((-108) $) 15)) (-2512 (($) 43)) (-3406 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1141 (-525))) NIL) ((|#1| $ (-525)) 54) ((|#1| $ (-525) |#1|) NIL)) (-3340 (((-525) $ $) 48)) (-3038 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-2884 (($ (-1 $)) 47)) (-2905 (((-108) $) 69)) (-3004 (($ $) 70)) (-1354 (($ $) 99 (|has| $ (-6 -4259)))) (-1654 (((-713) $) NIL)) (-4167 (($ $) NIL)) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) 44)) (-3210 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 53)) (-3124 (($ |#1| $) 97)) (-4029 (($ $ $) 100 (|has| $ (-6 -4259))) (($ $ |#1|) 101 (|has| $ (-6 -4259)))) (-2038 (($ $ $) 78) (($ |#1| $) 45) (($ (-592 $)) 83) (($ $ |#1|) 77)) (-1489 (($ $) 50)) (-1217 (($ (-592 |#1|)) 111) (((-798) $) 42 (|has| |#1| (-566 (-798))))) (-3793 (((-592 $) $) NIL)) (-3351 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 114 (|has| |#1| (-1020)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-1073 |#1|) (-13 (-619 |#1|) (-10 -8 (-6 -4259) (-15 -1217 ($ (-592 |#1|))) (-15 -3903 ($ (-592 |#1|))) (IF (|has| |#1| (-1020)) (-15 -2463 ((-108) (-592 |#1|) $)) |%noBranch|) (-15 -1255 ((-2 (|:| |cycle?| (-108)) (|:| -2033 (-713)) (|:| |period| (-713))) (-713) $)) (-15 -2884 ($ (-1 $))) (-15 -3124 ($ |#1| $)) (IF (|has| |#1| (-1020)) (PROGN (-15 -2793 ((-1179) (-525) $)) (-15 -4081 ((-798) $)) (-15 -2629 ((-108)))) |%noBranch|) (-15 -1620 ($ $ (-525) $)) (-15 -3715 ($ (-1 |#1|))) (-15 -3715 ($ (-1 |#1| |#1|) |#1|)) (-15 -3765 ($ (-1 (-108) |#1|) $)) (-15 -3774 ($ (-1 (-108) |#1|) $)))) (-1128)) (T -1073))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3)))) (-3903 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3)))) (-2463 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1020)) (-4 *4 (-1128)) (-5 *2 (-108)) (-5 *1 (-1073 *4)))) (-1255 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-108)) (|:| -2033 (-713)) (|:| |period| (-713)))) (-5 *1 (-1073 *4)) (-4 *4 (-1128)) (-5 *3 (-713)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-1 (-1073 *3))) (-5 *1 (-1073 *3)) (-4 *3 (-1128)))) (-3124 (*1 *1 *2 *1) (-12 (-5 *1 (-1073 *2)) (-4 *2 (-1128)))) (-2793 (*1 *2 *3 *1) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-1073 *4)) (-4 *4 (-1020)) (-4 *4 (-1128)))) (-4081 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1073 *3)) (-4 *3 (-1020)) (-4 *3 (-1128)))) (-2629 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3)) (-4 *3 (-1020)) (-4 *3 (-1128)))) (-1620 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1073 *3)) (-4 *3 (-1128)))) (-3715 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3)))) (-3715 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3)))) (-3765 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3)))) (-3774 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3)))))
-(-13 (-619 |#1|) (-10 -8 (-6 -4259) (-15 -1217 ($ (-592 |#1|))) (-15 -3903 ($ (-592 |#1|))) (IF (|has| |#1| (-1020)) (-15 -2463 ((-108) (-592 |#1|) $)) |%noBranch|) (-15 -1255 ((-2 (|:| |cycle?| (-108)) (|:| -2033 (-713)) (|:| |period| (-713))) (-713) $)) (-15 -2884 ($ (-1 $))) (-15 -3124 ($ |#1| $)) (IF (|has| |#1| (-1020)) (PROGN (-15 -2793 ((-1179) (-525) $)) (-15 -4081 ((-798) $)) (-15 -2629 ((-108)))) |%noBranch|) (-15 -1620 ($ $ (-525) $)) (-15 -3715 ($ (-1 |#1|))) (-15 -3715 ($ (-1 |#1| |#1|) |#1|)) (-15 -3765 ($ (-1 (-108) |#1|) $)) (-15 -3774 ($ (-1 (-108) |#1|) $))))
-((-4236 (((-108) $ $) 19)) (-2306 (($ $) 120)) (-2723 (($ $) 121)) (-3928 (($ $ (-135)) 108) (($ $ (-132)) 107)) (-3456 (((-1179) $ (-525) (-525)) 40 (|has| $ (-6 -4259)))) (-1672 (((-108) $ $) 118)) (-1651 (((-108) $ $ (-525)) 117)) (-2986 (($ (-525)) 127)) (-1260 (((-592 $) $ (-135)) 110) (((-592 $) $ (-132)) 109)) (-2470 (((-108) (-1 (-108) (-135) (-135)) $) 98) (((-108) $) 92 (|has| (-135) (-789)))) (-2165 (($ (-1 (-108) (-135) (-135)) $) 89 (|has| $ (-6 -4259))) (($ $) 88 (-12 (|has| (-135) (-789)) (|has| $ (-6 -4259))))) (-2458 (($ (-1 (-108) (-135) (-135)) $) 99) (($ $) 93 (|has| (-135) (-789)))) (-3991 (((-108) $ (-713)) 8)) (-1430 (((-135) $ (-525) (-135)) 52 (|has| $ (-6 -4259))) (((-135) $ (-1141 (-525)) (-135)) 58 (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) (-135)) $) 75 (|has| $ (-6 -4258)))) (-2169 (($) 7 T CONST)) (-2676 (($ $ (-135)) 104) (($ $ (-132)) 103)) (-2700 (($ $) 90 (|has| $ (-6 -4259)))) (-3431 (($ $) 100)) (-2434 (($ $ (-1141 (-525)) $) 114)) (-1910 (($ $) 78 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4258))))) (-1703 (($ (-135) $) 77 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) (-135)) $) 74 (|has| $ (-6 -4258)))) (-1284 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) 76 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4258)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) 73 (|has| $ (-6 -4258))) (((-135) (-1 (-135) (-135) (-135)) $) 72 (|has| $ (-6 -4258)))) (-2301 (((-135) $ (-525) (-135)) 53 (|has| $ (-6 -4259)))) (-2222 (((-135) $ (-525)) 51)) (-1686 (((-108) $ $) 119)) (-1932 (((-525) (-1 (-108) (-135)) $) 97) (((-525) (-135) $) 96 (|has| (-135) (-1020))) (((-525) (-135) $ (-525)) 95 (|has| (-135) (-1020))) (((-525) $ $ (-525)) 113) (((-525) (-132) $ (-525)) 112)) (-3440 (((-592 (-135)) $) 30 (|has| $ (-6 -4258)))) (-3416 (($ (-713) (-135)) 69)) (-3924 (((-108) $ (-713)) 9)) (-3666 (((-525) $) 43 (|has| (-525) (-789)))) (-2638 (($ $ $) 87 (|has| (-135) (-789)))) (-1577 (($ (-1 (-108) (-135) (-135)) $ $) 101) (($ $ $) 94 (|has| (-135) (-789)))) (-2694 (((-592 (-135)) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) (-135) $) 27 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4258))))) (-1847 (((-525) $) 44 (|has| (-525) (-789)))) (-3662 (($ $ $) 86 (|has| (-135) (-789)))) (-2294 (((-108) $ $ (-135)) 115)) (-4165 (((-713) $ $ (-135)) 116)) (-2284 (($ (-1 (-135) (-135)) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-135) (-135)) $) 35) (($ (-1 (-135) (-135) (-135)) $ $) 64)) (-3511 (($ $) 122)) (-1528 (($ $) 123)) (-2912 (((-108) $ (-713)) 10)) (-2689 (($ $ (-135)) 106) (($ $ (-132)) 105)) (-2619 (((-1075) $) 22)) (-2531 (($ (-135) $ (-525)) 60) (($ $ $ (-525)) 59)) (-2628 (((-592 (-525)) $) 46)) (-2978 (((-108) (-525) $) 47)) (-2093 (((-1039) $) 21)) (-1872 (((-135) $) 42 (|has| (-525) (-789)))) (-1983 (((-3 (-135) "failed") (-1 (-108) (-135)) $) 71)) (-1420 (($ $ (-135)) 41 (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) (-135)) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-135)))) 26 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-273 (-135))) 25 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-135) (-135)) 24 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-592 (-135)) (-592 (-135))) 23 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))))) (-2614 (((-108) $ $) 14)) (-2167 (((-108) (-135) $) 45 (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020))))) (-3341 (((-592 (-135)) $) 48)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 (((-135) $ (-525) (-135)) 50) (((-135) $ (-525)) 49) (($ $ (-1141 (-525))) 63) (($ $ $) 102)) (-3038 (($ $ (-525)) 62) (($ $ (-1141 (-525))) 61)) (-2110 (((-713) (-1 (-108) (-135)) $) 31 (|has| $ (-6 -4258))) (((-713) (-135) $) 28 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4258))))) (-4098 (($ $ $ (-525)) 91 (|has| $ (-6 -4259)))) (-1462 (($ $) 13)) (-3210 (((-501) $) 79 (|has| (-135) (-567 (-501))))) (-1230 (($ (-592 (-135))) 70)) (-2038 (($ $ (-135)) 68) (($ (-135) $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1217 (($ (-135)) 111) (((-798) $) 18)) (-3029 (((-108) (-1 (-108) (-135)) $) 33 (|has| $ (-6 -4258)))) (-1388 (((-1075) $) 131) (((-1075) $ (-108)) 130) (((-1179) (-764) $) 129) (((-1179) (-764) $ (-108)) 128)) (-4011 (((-108) $ $) 84 (|has| (-135) (-789)))) (-3987 (((-108) $ $) 83 (|has| (-135) (-789)))) (-3955 (((-108) $ $) 20)) (-3999 (((-108) $ $) 85 (|has| (-135) (-789)))) (-3978 (((-108) $ $) 82 (|has| (-135) (-789)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-3834 (((-1073 |#1|) (-1073 |#1|)) 17)) (-2583 (((-1073 |#1|) (-1073 |#1|)) 13)) (-2001 (((-1073 |#1|) (-1073 |#1|) (-525) (-525)) 20)) (-4059 (((-1073 |#1|) (-1073 |#1|)) 15)))
+(((-1069 |#1|) (-10 -7 (-15 -2583 ((-1073 |#1|) (-1073 |#1|))) (-15 -4059 ((-1073 |#1|) (-1073 |#1|))) (-15 -3834 ((-1073 |#1|) (-1073 |#1|))) (-15 -2001 ((-1073 |#1|) (-1073 |#1|) (-525) (-525)))) (-13 (-517) (-138))) (T -1069))
+((-2001 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1073 *4)) (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-1069 *4)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1069 *3)))) (-4059 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1069 *3)))) (-2583 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1069 *3)))))
+(-10 -7 (-15 -2583 ((-1073 |#1|) (-1073 |#1|))) (-15 -4059 ((-1073 |#1|) (-1073 |#1|))) (-15 -3834 ((-1073 |#1|) (-1073 |#1|))) (-15 -2001 ((-1073 |#1|) (-1073 |#1|) (-525) (-525))))
+((-2035 (((-1073 |#1|) (-1073 (-1073 |#1|))) 15)))
+(((-1070 |#1|) (-10 -7 (-15 -2035 ((-1073 |#1|) (-1073 (-1073 |#1|))))) (-1128)) (T -1070))
+((-2035 (*1 *2 *3) (-12 (-5 *3 (-1073 (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1070 *4)) (-4 *4 (-1128)))))
+(-10 -7 (-15 -2035 ((-1073 |#1|) (-1073 (-1073 |#1|)))))
+((-2159 (((-1073 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1073 |#1|)) 25)) (-3504 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1073 |#1|)) 26)) (-2016 (((-1073 |#2|) (-1 |#2| |#1|) (-1073 |#1|)) 16)))
+(((-1071 |#1| |#2|) (-10 -7 (-15 -2016 ((-1073 |#2|) (-1 |#2| |#1|) (-1073 |#1|))) (-15 -2159 ((-1073 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1073 |#1|))) (-15 -3504 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1073 |#1|)))) (-1128) (-1128)) (T -1071))
+((-3504 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1073 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-1071 *5 *2)))) (-2159 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1073 *6)) (-4 *6 (-1128)) (-4 *3 (-1128)) (-5 *2 (-1073 *3)) (-5 *1 (-1071 *6 *3)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1073 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1073 *6)) (-5 *1 (-1071 *5 *6)))))
+(-10 -7 (-15 -2016 ((-1073 |#2|) (-1 |#2| |#1|) (-1073 |#1|))) (-15 -2159 ((-1073 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1073 |#1|))) (-15 -3504 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1073 |#1|))))
+((-2016 (((-1073 |#3|) (-1 |#3| |#1| |#2|) (-1073 |#1|) (-1073 |#2|)) 21)))
+(((-1072 |#1| |#2| |#3|) (-10 -7 (-15 -2016 ((-1073 |#3|) (-1 |#3| |#1| |#2|) (-1073 |#1|) (-1073 |#2|)))) (-1128) (-1128) (-1128)) (T -1072))
+((-2016 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1073 *6)) (-5 *5 (-1073 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1073 *8)) (-5 *1 (-1072 *6 *7 *8)))))
+(-10 -7 (-15 -2016 ((-1073 |#3|) (-1 |#3| |#1| |#2|) (-1073 |#1|) (-1073 |#2|))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2219 ((|#1| $) NIL)) (-2250 ((|#1| $) NIL)) (-3979 (($ $) 51)) (-3289 (((-1179) $ (-525) (-525)) 76 (|has| $ (-6 -4260)))) (-1425 (($ $ (-525)) 110 (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) NIL)) (-3452 (((-798) $) 41 (|has| |#1| (-1020)))) (-3187 (((-108)) 40 (|has| |#1| (-1020)))) (-1947 ((|#1| $ |#1|) NIL (|has| $ (-6 -4260)))) (-3776 (($ $ $) 98 (|has| $ (-6 -4260))) (($ $ (-525) $) 122)) (-4193 ((|#1| $ |#1|) 107 (|has| $ (-6 -4260)))) (-2894 ((|#1| $ |#1|) 102 (|has| $ (-6 -4260)))) (-1233 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4260))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4260))) (($ $ "rest" $) 106 (|has| $ (-6 -4260))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) 89 (|has| $ (-6 -4260))) ((|#1| $ (-525) |#1|) 55 (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) NIL (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) |#1|) $) 58)) (-2237 ((|#1| $) NIL)) (-2475 (($) NIL T CONST)) (-4034 (($ $) 14)) (-1659 (($ $) 29) (($ $ (-713)) 88)) (-2302 (((-108) (-592 |#1|) $) 116 (|has| |#1| (-1020)))) (-2289 (($ (-592 |#1|)) 112)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) 57)) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3081 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) NIL)) (-3631 (((-108) $) NIL)) (-2175 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3990 (((-1179) (-525) $) 121 (|has| |#1| (-1020)))) (-1955 (((-713) $) 118)) (-3994 (((-592 $) $) NIL)) (-3569 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3324 (($ (-713) |#1|) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) NIL (|has| (-525) (-789)))) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-3069 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-4028 (((-108) $ (-713)) NIL)) (-2010 (((-592 |#1|) $) NIL)) (-3506 (((-108) $) NIL)) (-2802 (($ $) 90)) (-1859 (((-108) $) 13)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2718 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-2594 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) 74)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-4065 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-1511 ((|#1| $) 10)) (-1647 ((|#1| $) 28) (($ $ (-713)) 49)) (-3170 (((-2 (|:| |cycle?| (-108)) (|:| -2093 (-713)) (|:| |period| (-713))) (-713) $) 25)) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2374 (($ (-1 (-108) |#1|) $) 126)) (-2387 (($ (-1 (-108) |#1|) $) 127)) (-3453 (($ $ |#1|) 68 (|has| $ (-6 -4260)))) (-1397 (($ $ (-525)) 32)) (-2476 (((-108) $) 72)) (-3859 (((-108) $) 12)) (-1774 (((-108) $) 117)) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 20)) (-2456 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) NIL)) (-3479 (((-108) $) 15)) (-1558 (($) 43)) (-3431 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1141 (-525))) NIL) ((|#1| $ (-525)) 54) ((|#1| $ (-525) |#1|) NIL)) (-1707 (((-525) $ $) 48)) (-2139 (($ $ (-1141 (-525))) NIL) (($ $ (-525)) NIL)) (-1951 (($ (-1 $)) 47)) (-3953 (((-108) $) 69)) (-3675 (($ $) 70)) (-2789 (($ $) 99 (|has| $ (-6 -4260)))) (-4082 (((-713) $) NIL)) (-3077 (($ $) NIL)) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) 44)) (-2069 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 53)) (-3191 (($ |#1| $) 97)) (-4190 (($ $ $) 100 (|has| $ (-6 -4260))) (($ $ |#1|) 101 (|has| $ (-6 -4260)))) (-2035 (($ $ $) 78) (($ |#1| $) 45) (($ (-592 $)) 83) (($ $ |#1|) 77)) (-3926 (($ $) 50)) (-4100 (($ (-592 |#1|)) 111) (((-798) $) 42 (|has| |#1| (-566 (-798))))) (-3576 (((-592 $) $) NIL)) (-1791 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 114 (|has| |#1| (-1020)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-1073 |#1|) (-13 (-619 |#1|) (-10 -8 (-6 -4260) (-15 -4100 ($ (-592 |#1|))) (-15 -2289 ($ (-592 |#1|))) (IF (|has| |#1| (-1020)) (-15 -2302 ((-108) (-592 |#1|) $)) |%noBranch|) (-15 -3170 ((-2 (|:| |cycle?| (-108)) (|:| -2093 (-713)) (|:| |period| (-713))) (-713) $)) (-15 -1951 ($ (-1 $))) (-15 -3191 ($ |#1| $)) (IF (|has| |#1| (-1020)) (PROGN (-15 -3990 ((-1179) (-525) $)) (-15 -3452 ((-798) $)) (-15 -3187 ((-108)))) |%noBranch|) (-15 -3776 ($ $ (-525) $)) (-15 -4065 ($ (-1 |#1|))) (-15 -4065 ($ (-1 |#1| |#1|) |#1|)) (-15 -2374 ($ (-1 (-108) |#1|) $)) (-15 -2387 ($ (-1 (-108) |#1|) $)))) (-1128)) (T -1073))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3)))) (-2289 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3)))) (-2302 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1020)) (-4 *4 (-1128)) (-5 *2 (-108)) (-5 *1 (-1073 *4)))) (-3170 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-108)) (|:| -2093 (-713)) (|:| |period| (-713)))) (-5 *1 (-1073 *4)) (-4 *4 (-1128)) (-5 *3 (-713)))) (-1951 (*1 *1 *2) (-12 (-5 *2 (-1 (-1073 *3))) (-5 *1 (-1073 *3)) (-4 *3 (-1128)))) (-3191 (*1 *1 *2 *1) (-12 (-5 *1 (-1073 *2)) (-4 *2 (-1128)))) (-3990 (*1 *2 *3 *1) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-1073 *4)) (-4 *4 (-1020)) (-4 *4 (-1128)))) (-3452 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1073 *3)) (-4 *3 (-1020)) (-4 *3 (-1128)))) (-3187 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3)) (-4 *3 (-1020)) (-4 *3 (-1128)))) (-3776 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1073 *3)) (-4 *3 (-1128)))) (-4065 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3)))) (-4065 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3)))) (-2374 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3)))) (-2387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3)))))
+(-13 (-619 |#1|) (-10 -8 (-6 -4260) (-15 -4100 ($ (-592 |#1|))) (-15 -2289 ($ (-592 |#1|))) (IF (|has| |#1| (-1020)) (-15 -2302 ((-108) (-592 |#1|) $)) |%noBranch|) (-15 -3170 ((-2 (|:| |cycle?| (-108)) (|:| -2093 (-713)) (|:| |period| (-713))) (-713) $)) (-15 -1951 ($ (-1 $))) (-15 -3191 ($ |#1| $)) (IF (|has| |#1| (-1020)) (PROGN (-15 -3990 ((-1179) (-525) $)) (-15 -3452 ((-798) $)) (-15 -3187 ((-108)))) |%noBranch|) (-15 -3776 ($ $ (-525) $)) (-15 -4065 ($ (-1 |#1|))) (-15 -4065 ($ (-1 |#1| |#1|) |#1|)) (-15 -2374 ($ (-1 (-108) |#1|) $)) (-15 -2387 ($ (-1 (-108) |#1|) $))))
+((-4087 (((-108) $ $) 19)) (-3127 (($ $) 120)) (-2877 (($ $) 121)) (-2555 (($ $ (-135)) 108) (($ $ (-132)) 107)) (-3289 (((-1179) $ (-525) (-525)) 40 (|has| $ (-6 -4260)))) (-2746 (((-108) $ $) 118)) (-2726 (((-108) $ $ (-525)) 117)) (-3298 (($ (-525)) 127)) (-3224 (((-592 $) $ (-135)) 110) (((-592 $) $ (-132)) 109)) (-2358 (((-108) (-1 (-108) (-135) (-135)) $) 98) (((-108) $) 92 (|has| (-135) (-789)))) (-2436 (($ (-1 (-108) (-135) (-135)) $) 89 (|has| $ (-6 -4260))) (($ $) 88 (-12 (|has| (-135) (-789)) (|has| $ (-6 -4260))))) (-1842 (($ (-1 (-108) (-135) (-135)) $) 99) (($ $) 93 (|has| (-135) (-789)))) (-3779 (((-108) $ (-713)) 8)) (-1233 (((-135) $ (-525) (-135)) 52 (|has| $ (-6 -4260))) (((-135) $ (-1141 (-525)) (-135)) 58 (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) (-135)) $) 75 (|has| $ (-6 -4259)))) (-2475 (($) 7 T CONST)) (-1622 (($ $ (-135)) 104) (($ $ (-132)) 103)) (-2670 (($ $) 90 (|has| $ (-6 -4260)))) (-1652 (($ $) 100)) (-2058 (($ $ (-1141 (-525)) $) 114)) (-1681 (($ $) 78 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4259))))) (-2698 (($ (-135) $) 77 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) (-135)) $) 74 (|has| $ (-6 -4259)))) (-3504 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) 76 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4259)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) 73 (|has| $ (-6 -4259))) (((-135) (-1 (-135) (-135) (-135)) $) 72 (|has| $ (-6 -4259)))) (-3081 (((-135) $ (-525) (-135)) 53 (|has| $ (-6 -4260)))) (-3017 (((-135) $ (-525)) 51)) (-2768 (((-108) $ $) 119)) (-3856 (((-525) (-1 (-108) (-135)) $) 97) (((-525) (-135) $) 96 (|has| (-135) (-1020))) (((-525) (-135) $ (-525)) 95 (|has| (-135) (-1020))) (((-525) $ $ (-525)) 113) (((-525) (-132) $ (-525)) 112)) (-2175 (((-592 (-135)) $) 30 (|has| $ (-6 -4259)))) (-3324 (($ (-713) (-135)) 69)) (-2516 (((-108) $ (-713)) 9)) (-1732 (((-525) $) 43 (|has| (-525) (-789)))) (-3033 (($ $ $) 87 (|has| (-135) (-789)))) (-3212 (($ (-1 (-108) (-135) (-135)) $ $) 101) (($ $ $) 94 (|has| (-135) (-789)))) (-2617 (((-592 (-135)) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) (-135) $) 27 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4259))))) (-2231 (((-525) $) 44 (|has| (-525) (-789)))) (-1609 (($ $ $) 86 (|has| (-135) (-789)))) (-3516 (((-108) $ $ (-135)) 115)) (-1589 (((-713) $ $ (-135)) 116)) (-3069 (($ (-1 (-135) (-135)) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-135) (-135)) $) 35) (($ (-1 (-135) (-135) (-135)) $ $) 64)) (-2620 (($ $) 122)) (-1904 (($ $) 123)) (-4028 (((-108) $ (-713)) 10)) (-1633 (($ $ (-135)) 106) (($ $ (-132)) 105)) (-1289 (((-1075) $) 22)) (-2594 (($ (-135) $ (-525)) 60) (($ $ $ (-525)) 59)) (-3177 (((-592 (-525)) $) 46)) (-3461 (((-108) (-525) $) 47)) (-3993 (((-1039) $) 21)) (-1647 (((-135) $) 42 (|has| (-525) (-789)))) (-4202 (((-3 (-135) "failed") (-1 (-108) (-135)) $) 71)) (-3453 (($ $ (-135)) 41 (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) (-135)) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-135)))) 26 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-273 (-135))) 25 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-135) (-135)) 24 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-592 (-135)) (-592 (-135))) 23 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))))) (-1231 (((-108) $ $) 14)) (-2456 (((-108) (-135) $) 45 (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020))))) (-1717 (((-592 (-135)) $) 48)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 (((-135) $ (-525) (-135)) 50) (((-135) $ (-525)) 49) (($ $ (-1141 (-525))) 63) (($ $ $) 102)) (-2139 (($ $ (-525)) 62) (($ $ (-1141 (-525))) 61)) (-4002 (((-713) (-1 (-108) (-135)) $) 31 (|has| $ (-6 -4259))) (((-713) (-135) $) 28 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4259))))) (-3632 (($ $ $ (-525)) 91 (|has| $ (-6 -4260)))) (-2503 (($ $) 13)) (-2069 (((-501) $) 79 (|has| (-135) (-567 (-501))))) (-4114 (($ (-592 (-135))) 70)) (-2035 (($ $ (-135)) 68) (($ (-135) $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-4100 (($ (-135)) 111) (((-798) $) 18)) (-2706 (((-108) (-1 (-108) (-135)) $) 33 (|has| $ (-6 -4259)))) (-3660 (((-1075) $) 131) (((-1075) $ (-108)) 130) (((-1179) (-764) $) 129) (((-1179) (-764) $ (-108)) 128)) (-2830 (((-108) $ $) 84 (|has| (-135) (-789)))) (-2807 (((-108) $ $) 83 (|has| (-135) (-789)))) (-2775 (((-108) $ $) 20)) (-2817 (((-108) $ $) 85 (|has| (-135) (-789)))) (-2795 (((-108) $ $) 82 (|has| (-135) (-789)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-1074) (-131)) (T -1074))
-((-2986 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1074)))))
-(-13 (-1061) (-1020) (-770) (-10 -8 (-15 -2986 ($ (-525)))))
+((-3298 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1074)))))
+(-13 (-1061) (-1020) (-770) (-10 -8 (-15 -3298 ($ (-525)))))
(((-33) . T) ((-97) . T) ((-566 (-798)) . T) ((-142 #0=(-135)) . T) ((-567 (-501)) |has| (-135) (-567 (-501))) ((-265 #1=(-525) #0#) . T) ((-267 #1# #0#) . T) ((-288 #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))) ((-351 #0#) . T) ((-464 #0#) . T) ((-558 #1# #0#) . T) ((-486 #0# #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))) ((-597 #0#) . T) ((-19 #0#) . T) ((-770) . T) ((-789) |has| (-135) (-789)) ((-1020) . T) ((-1061) . T) ((-1128) . T))
-((-4236 (((-108) $ $) NIL)) (-2306 (($ $) NIL)) (-2723 (($ $) NIL)) (-3928 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-1672 (((-108) $ $) NIL)) (-1651 (((-108) $ $ (-525)) NIL)) (-2986 (($ (-525)) 7)) (-1260 (((-592 $) $ (-135)) NIL) (((-592 $) $ (-132)) NIL)) (-2470 (((-108) (-1 (-108) (-135) (-135)) $) NIL) (((-108) $) NIL (|has| (-135) (-789)))) (-2165 (($ (-1 (-108) (-135) (-135)) $) NIL (|has| $ (-6 -4259))) (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-135) (-789))))) (-2458 (($ (-1 (-108) (-135) (-135)) $) NIL) (($ $) NIL (|has| (-135) (-789)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 (((-135) $ (-525) (-135)) NIL (|has| $ (-6 -4259))) (((-135) $ (-1141 (-525)) (-135)) NIL (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4258)))) (-2169 (($) NIL T CONST)) (-2676 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-2700 (($ $) NIL (|has| $ (-6 -4259)))) (-3431 (($ $) NIL)) (-2434 (($ $ (-1141 (-525)) $) NIL)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020))))) (-1703 (($ (-135) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020)))) (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4258)))) (-1284 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) NIL (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) NIL (|has| $ (-6 -4258))) (((-135) (-1 (-135) (-135) (-135)) $) NIL (|has| $ (-6 -4258)))) (-2301 (((-135) $ (-525) (-135)) NIL (|has| $ (-6 -4259)))) (-2222 (((-135) $ (-525)) NIL)) (-1686 (((-108) $ $) NIL)) (-1932 (((-525) (-1 (-108) (-135)) $) NIL) (((-525) (-135) $) NIL (|has| (-135) (-1020))) (((-525) (-135) $ (-525)) NIL (|has| (-135) (-1020))) (((-525) $ $ (-525)) NIL) (((-525) (-132) $ (-525)) NIL)) (-3440 (((-592 (-135)) $) NIL (|has| $ (-6 -4258)))) (-3416 (($ (-713) (-135)) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) NIL (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (|has| (-135) (-789)))) (-1577 (($ (-1 (-108) (-135) (-135)) $ $) NIL) (($ $ $) NIL (|has| (-135) (-789)))) (-2694 (((-592 (-135)) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| (-135) (-789)))) (-2294 (((-108) $ $ (-135)) NIL)) (-4165 (((-713) $ $ (-135)) NIL)) (-2284 (($ (-1 (-135) (-135)) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-135) (-135)) $) NIL) (($ (-1 (-135) (-135) (-135)) $ $) NIL)) (-3511 (($ $) NIL)) (-1528 (($ $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2689 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-2619 (((-1075) $) NIL)) (-2531 (($ (-135) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-2093 (((-1039) $) NIL)) (-1872 (((-135) $) NIL (|has| (-525) (-789)))) (-1983 (((-3 (-135) "failed") (-1 (-108) (-135)) $) NIL)) (-1420 (($ $ (-135)) NIL (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-135)))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-273 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-135) (-135)) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-592 (-135)) (-592 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020))))) (-3341 (((-592 (-135)) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 (((-135) $ (-525) (-135)) NIL) (((-135) $ (-525)) NIL) (($ $ (-1141 (-525))) NIL) (($ $ $) NIL)) (-3038 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2110 (((-713) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4258))) (((-713) (-135) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-135) (-1020))))) (-4098 (($ $ $ (-525)) NIL (|has| $ (-6 -4259)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| (-135) (-567 (-501))))) (-1230 (($ (-592 (-135))) NIL)) (-2038 (($ $ (-135)) NIL) (($ (-135) $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1217 (($ (-135)) NIL) (((-798) $) NIL)) (-3029 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4258)))) (-1388 (((-1075) $) 18) (((-1075) $ (-108)) 20) (((-1179) (-764) $) 21) (((-1179) (-764) $ (-108)) 22)) (-4011 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3987 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3978 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL)) (-3127 (($ $) NIL)) (-2877 (($ $) NIL)) (-2555 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-2746 (((-108) $ $) NIL)) (-2726 (((-108) $ $ (-525)) NIL)) (-3298 (($ (-525)) 7)) (-3224 (((-592 $) $ (-135)) NIL) (((-592 $) $ (-132)) NIL)) (-2358 (((-108) (-1 (-108) (-135) (-135)) $) NIL) (((-108) $) NIL (|has| (-135) (-789)))) (-2436 (($ (-1 (-108) (-135) (-135)) $) NIL (|has| $ (-6 -4260))) (($ $) NIL (-12 (|has| $ (-6 -4260)) (|has| (-135) (-789))))) (-1842 (($ (-1 (-108) (-135) (-135)) $) NIL) (($ $) NIL (|has| (-135) (-789)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 (((-135) $ (-525) (-135)) NIL (|has| $ (-6 -4260))) (((-135) $ (-1141 (-525)) (-135)) NIL (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4259)))) (-2475 (($) NIL T CONST)) (-1622 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-2670 (($ $) NIL (|has| $ (-6 -4260)))) (-1652 (($ $) NIL)) (-2058 (($ $ (-1141 (-525)) $) NIL)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020))))) (-2698 (($ (-135) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020)))) (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4259)))) (-3504 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) NIL (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) NIL (|has| $ (-6 -4259))) (((-135) (-1 (-135) (-135) (-135)) $) NIL (|has| $ (-6 -4259)))) (-3081 (((-135) $ (-525) (-135)) NIL (|has| $ (-6 -4260)))) (-3017 (((-135) $ (-525)) NIL)) (-2768 (((-108) $ $) NIL)) (-3856 (((-525) (-1 (-108) (-135)) $) NIL) (((-525) (-135) $) NIL (|has| (-135) (-1020))) (((-525) (-135) $ (-525)) NIL (|has| (-135) (-1020))) (((-525) $ $ (-525)) NIL) (((-525) (-132) $ (-525)) NIL)) (-2175 (((-592 (-135)) $) NIL (|has| $ (-6 -4259)))) (-3324 (($ (-713) (-135)) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) NIL (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (|has| (-135) (-789)))) (-3212 (($ (-1 (-108) (-135) (-135)) $ $) NIL) (($ $ $) NIL (|has| (-135) (-789)))) (-2617 (((-592 (-135)) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| (-135) (-789)))) (-3516 (((-108) $ $ (-135)) NIL)) (-1589 (((-713) $ $ (-135)) NIL)) (-3069 (($ (-1 (-135) (-135)) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-135) (-135)) $) NIL) (($ (-1 (-135) (-135) (-135)) $ $) NIL)) (-2620 (($ $) NIL)) (-1904 (($ $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1633 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-1289 (((-1075) $) NIL)) (-2594 (($ (-135) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-3993 (((-1039) $) NIL)) (-1647 (((-135) $) NIL (|has| (-525) (-789)))) (-4202 (((-3 (-135) "failed") (-1 (-108) (-135)) $) NIL)) (-3453 (($ $ (-135)) NIL (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-135)))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-273 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-135) (-135)) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-592 (-135)) (-592 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020))))) (-1717 (((-592 (-135)) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 (((-135) $ (-525) (-135)) NIL) (((-135) $ (-525)) NIL) (($ $ (-1141 (-525))) NIL) (($ $ $) NIL)) (-2139 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-4002 (((-713) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4259))) (((-713) (-135) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-135) (-1020))))) (-3632 (($ $ $ (-525)) NIL (|has| $ (-6 -4260)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| (-135) (-567 (-501))))) (-4114 (($ (-592 (-135))) NIL)) (-2035 (($ $ (-135)) NIL) (($ (-135) $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-4100 (($ (-135)) NIL) (((-798) $) NIL)) (-2706 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4259)))) (-3660 (((-1075) $) 18) (((-1075) $ (-108)) 20) (((-1179) (-764) $) 21) (((-1179) (-764) $ (-108)) 22)) (-2830 (((-108) $ $) NIL (|has| (-135) (-789)))) (-2807 (((-108) $ $) NIL (|has| (-135) (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| (-135) (-789)))) (-2795 (((-108) $ $) NIL (|has| (-135) (-789)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
(((-1075) (-1074)) (T -1075))
NIL
(-1074)
-((-4236 (((-108) $ $) NIL (-3254 (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020)) (|has| |#1| (-1020))))) (-1675 (($) NIL) (($ (-592 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) NIL)) (-3456 (((-1179) $ (-1075) (-1075)) NIL (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 ((|#1| $ (-1075) |#1|) NIL)) (-1676 (($ (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258)))) (-2591 (((-3 |#1| "failed") (-1075) $) NIL)) (-2169 (($) NIL T CONST)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020))))) (-3271 (($ (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) $) NIL (|has| $ (-6 -4258))) (($ (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258))) (((-3 |#1| "failed") (-1075) $) NIL)) (-1703 (($ (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258)))) (-1284 (((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $ (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020)))) (((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $ (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) NIL (|has| $ (-6 -4258))) (((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258)))) (-2301 ((|#1| $ (-1075) |#1|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-1075)) NIL)) (-3440 (((-592 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258))) (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-1075) $) NIL (|has| (-1075) (-789)))) (-2694 (((-592 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258))) (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020)))) (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1847 (((-1075) $) NIL (|has| (-1075) (-789)))) (-2284 (($ (-1 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4259))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (-3254 (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020)) (|has| |#1| (-1020))))) (-2356 (((-592 (-1075)) $) NIL)) (-2239 (((-108) (-1075) $) NIL)) (-2992 (((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) $) NIL)) (-1262 (($ (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) $) NIL)) (-2628 (((-592 (-1075)) $) NIL)) (-2978 (((-108) (-1075) $) NIL)) (-2093 (((-1039) $) NIL (-3254 (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020)) (|has| |#1| (-1020))))) (-1872 ((|#1| $) NIL (|has| (-1075) (-789)))) (-1983 (((-3 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) "failed") (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL)) (-1420 (($ $ |#1|) NIL (|has| $ (-6 -4259)))) (-4127 (((-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) $) NIL)) (-3944 (((-108) (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))))) NIL (-12 (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-288 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020)))) (($ $ (-273 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) NIL (-12 (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-288 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020)))) (($ $ (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) NIL (-12 (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-288 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020)))) (($ $ (-592 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) (-592 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) NIL (-12 (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-288 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#1| $ (-1075)) NIL) ((|#1| $ (-1075) |#1|) NIL)) (-1760 (($) NIL) (($ (-592 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) NIL)) (-2110 (((-713) (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258))) (((-713) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020)))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-567 (-501))))) (-1230 (($ (-592 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) NIL)) (-1217 (((-798) $) NIL (-3254 (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-566 (-798))) (|has| |#1| (-566 (-798)))))) (-1956 (($ (-592 (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)))) NIL)) (-3029 (((-108) (-1 (-108) (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (-3254 (|has| (-2 (|:| -3364 (-1075)) (|:| -4201 |#1|)) (-1020)) (|has| |#1| (-1020))))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-1076 |#1|) (-13 (-1105 (-1075) |#1|) (-10 -7 (-6 -4258))) (-1020)) (T -1076))
-NIL
-(-13 (-1105 (-1075) |#1|) (-10 -7 (-6 -4258)))
-((-1693 (((-1073 |#1|) (-1073 |#1|)) 77)) (-3457 (((-3 (-1073 |#1|) "failed") (-1073 |#1|)) 37)) (-1775 (((-1073 |#1|) (-385 (-525)) (-1073 |#1|)) 121 (|has| |#1| (-37 (-385 (-525)))))) (-3047 (((-1073 |#1|) |#1| (-1073 |#1|)) 127 (|has| |#1| (-341)))) (-3596 (((-1073 |#1|) (-1073 |#1|)) 90)) (-3188 (((-1073 (-525)) (-525)) 57)) (-2400 (((-1073 |#1|) (-1073 (-1073 |#1|))) 109 (|has| |#1| (-37 (-385 (-525)))))) (-2909 (((-1073 |#1|) (-525) (-525) (-1073 |#1|)) 95)) (-2938 (((-1073 |#1|) |#1| (-525)) 45)) (-2273 (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 60)) (-3085 (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 124 (|has| |#1| (-341)))) (-1944 (((-1073 |#1|) |#1| (-1 (-1073 |#1|))) 108 (|has| |#1| (-37 (-385 (-525)))))) (-2109 (((-1073 |#1|) (-1 |#1| (-525)) |#1| (-1 (-1073 |#1|))) 125 (|has| |#1| (-341)))) (-3911 (((-1073 |#1|) (-1073 |#1|)) 89)) (-1826 (((-1073 |#1|) (-1073 |#1|)) 76)) (-1435 (((-1073 |#1|) (-525) (-525) (-1073 |#1|)) 96)) (-1206 (((-1073 |#1|) |#1| (-1073 |#1|)) 105 (|has| |#1| (-37 (-385 (-525)))))) (-1399 (((-1073 (-525)) (-525)) 56)) (-3848 (((-1073 |#1|) |#1|) 59)) (-2372 (((-1073 |#1|) (-1073 |#1|) (-525) (-525)) 92)) (-1511 (((-1073 |#1|) (-1 |#1| (-525)) (-1073 |#1|)) 66)) (-1715 (((-3 (-1073 |#1|) "failed") (-1073 |#1|) (-1073 |#1|)) 35)) (-1290 (((-1073 |#1|) (-1073 |#1|)) 91)) (-2457 (((-1073 |#1|) (-1073 |#1|) |#1|) 71)) (-2213 (((-1073 |#1|) (-1073 |#1|)) 62)) (-3011 (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 72)) (-1217 (((-1073 |#1|) |#1|) 67)) (-2867 (((-1073 |#1|) (-1073 (-1073 |#1|))) 82)) (-4075 (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 36)) (-4061 (((-1073 |#1|) (-1073 |#1|)) 21) (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 23)) (-4047 (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 17)) (* (((-1073 |#1|) (-1073 |#1|) |#1|) 29) (((-1073 |#1|) |#1| (-1073 |#1|)) 26) (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 27)))
-(((-1077 |#1|) (-10 -7 (-15 -4047 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -4061 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -4061 ((-1073 |#1|) (-1073 |#1|))) (-15 * ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 * ((-1073 |#1|) |#1| (-1073 |#1|))) (-15 * ((-1073 |#1|) (-1073 |#1|) |#1|)) (-15 -1715 ((-3 (-1073 |#1|) "failed") (-1073 |#1|) (-1073 |#1|))) (-15 -4075 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3457 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -2938 ((-1073 |#1|) |#1| (-525))) (-15 -1399 ((-1073 (-525)) (-525))) (-15 -3188 ((-1073 (-525)) (-525))) (-15 -3848 ((-1073 |#1|) |#1|)) (-15 -2273 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -2213 ((-1073 |#1|) (-1073 |#1|))) (-15 -1511 ((-1073 |#1|) (-1 |#1| (-525)) (-1073 |#1|))) (-15 -1217 ((-1073 |#1|) |#1|)) (-15 -2457 ((-1073 |#1|) (-1073 |#1|) |#1|)) (-15 -3011 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -1826 ((-1073 |#1|) (-1073 |#1|))) (-15 -1693 ((-1073 |#1|) (-1073 |#1|))) (-15 -2867 ((-1073 |#1|) (-1073 (-1073 |#1|)))) (-15 -3911 ((-1073 |#1|) (-1073 |#1|))) (-15 -3596 ((-1073 |#1|) (-1073 |#1|))) (-15 -1290 ((-1073 |#1|) (-1073 |#1|))) (-15 -2372 ((-1073 |#1|) (-1073 |#1|) (-525) (-525))) (-15 -2909 ((-1073 |#1|) (-525) (-525) (-1073 |#1|))) (-15 -1435 ((-1073 |#1|) (-525) (-525) (-1073 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -1206 ((-1073 |#1|) |#1| (-1073 |#1|))) (-15 -1944 ((-1073 |#1|) |#1| (-1 (-1073 |#1|)))) (-15 -2400 ((-1073 |#1|) (-1073 (-1073 |#1|)))) (-15 -1775 ((-1073 |#1|) (-385 (-525)) (-1073 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -3085 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -2109 ((-1073 |#1|) (-1 |#1| (-525)) |#1| (-1 (-1073 |#1|)))) (-15 -3047 ((-1073 |#1|) |#1| (-1073 |#1|)))) |%noBranch|)) (-977)) (T -1077))
-((-3047 (*1 *2 *3 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-341)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-2109 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-525))) (-5 *5 (-1 (-1073 *4))) (-4 *4 (-341)) (-4 *4 (-977)) (-5 *2 (-1073 *4)) (-5 *1 (-1077 *4)))) (-3085 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-341)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-1775 (*1 *2 *3 *2) (-12 (-5 *2 (-1073 *4)) (-4 *4 (-37 *3)) (-4 *4 (-977)) (-5 *3 (-385 (-525))) (-5 *1 (-1077 *4)))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-1073 (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1077 *4)) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-977)))) (-1944 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1073 *3))) (-5 *2 (-1073 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)))) (-1206 (*1 *2 *3 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-1435 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1073 *4)) (-5 *3 (-525)) (-4 *4 (-977)) (-5 *1 (-1077 *4)))) (-2909 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1073 *4)) (-5 *3 (-525)) (-4 *4 (-977)) (-5 *1 (-1077 *4)))) (-2372 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1073 *4)) (-5 *3 (-525)) (-4 *4 (-977)) (-5 *1 (-1077 *4)))) (-1290 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-1073 (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1077 *4)) (-4 *4 (-977)))) (-1693 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-3011 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-2457 (*1 *2 *2 *3) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-1217 (*1 *2 *3) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-977)))) (-1511 (*1 *2 *3 *2) (-12 (-5 *2 (-1073 *4)) (-5 *3 (-1 *4 (-525))) (-4 *4 (-977)) (-5 *1 (-1077 *4)))) (-2213 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-2273 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-3848 (*1 *2 *3) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-977)))) (-3188 (*1 *2 *3) (-12 (-5 *2 (-1073 (-525))) (-5 *1 (-1077 *4)) (-4 *4 (-977)) (-5 *3 (-525)))) (-1399 (*1 *2 *3) (-12 (-5 *2 (-1073 (-525))) (-5 *1 (-1077 *4)) (-4 *4 (-977)) (-5 *3 (-525)))) (-2938 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-5 *2 (-1073 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-977)))) (-3457 (*1 *2 *2) (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-4075 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-1715 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-4061 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-4061 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-4047 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))))
-(-10 -7 (-15 -4047 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -4061 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -4061 ((-1073 |#1|) (-1073 |#1|))) (-15 * ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 * ((-1073 |#1|) |#1| (-1073 |#1|))) (-15 * ((-1073 |#1|) (-1073 |#1|) |#1|)) (-15 -1715 ((-3 (-1073 |#1|) "failed") (-1073 |#1|) (-1073 |#1|))) (-15 -4075 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3457 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -2938 ((-1073 |#1|) |#1| (-525))) (-15 -1399 ((-1073 (-525)) (-525))) (-15 -3188 ((-1073 (-525)) (-525))) (-15 -3848 ((-1073 |#1|) |#1|)) (-15 -2273 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -2213 ((-1073 |#1|) (-1073 |#1|))) (-15 -1511 ((-1073 |#1|) (-1 |#1| (-525)) (-1073 |#1|))) (-15 -1217 ((-1073 |#1|) |#1|)) (-15 -2457 ((-1073 |#1|) (-1073 |#1|) |#1|)) (-15 -3011 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -1826 ((-1073 |#1|) (-1073 |#1|))) (-15 -1693 ((-1073 |#1|) (-1073 |#1|))) (-15 -2867 ((-1073 |#1|) (-1073 (-1073 |#1|)))) (-15 -3911 ((-1073 |#1|) (-1073 |#1|))) (-15 -3596 ((-1073 |#1|) (-1073 |#1|))) (-15 -1290 ((-1073 |#1|) (-1073 |#1|))) (-15 -2372 ((-1073 |#1|) (-1073 |#1|) (-525) (-525))) (-15 -2909 ((-1073 |#1|) (-525) (-525) (-1073 |#1|))) (-15 -1435 ((-1073 |#1|) (-525) (-525) (-1073 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -1206 ((-1073 |#1|) |#1| (-1073 |#1|))) (-15 -1944 ((-1073 |#1|) |#1| (-1 (-1073 |#1|)))) (-15 -2400 ((-1073 |#1|) (-1073 (-1073 |#1|)))) (-15 -1775 ((-1073 |#1|) (-385 (-525)) (-1073 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -3085 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -2109 ((-1073 |#1|) (-1 |#1| (-525)) |#1| (-1 (-1073 |#1|)))) (-15 -3047 ((-1073 |#1|) |#1| (-1073 |#1|)))) |%noBranch|))
-((-1575 (((-1073 |#1|) (-1073 |#1|)) 57)) (-2804 (((-1073 |#1|) (-1073 |#1|)) 39)) (-1549 (((-1073 |#1|) (-1073 |#1|)) 53)) (-2780 (((-1073 |#1|) (-1073 |#1|)) 35)) (-1599 (((-1073 |#1|) (-1073 |#1|)) 60)) (-2836 (((-1073 |#1|) (-1073 |#1|)) 42)) (-1517 (((-1073 |#1|) (-1073 |#1|)) 31)) (-3096 (((-1073 |#1|) (-1073 |#1|)) 27)) (-1609 (((-1073 |#1|) (-1073 |#1|)) 61)) (-1447 (((-1073 |#1|) (-1073 |#1|)) 43)) (-1587 (((-1073 |#1|) (-1073 |#1|)) 58)) (-2815 (((-1073 |#1|) (-1073 |#1|)) 40)) (-1562 (((-1073 |#1|) (-1073 |#1|)) 55)) (-2794 (((-1073 |#1|) (-1073 |#1|)) 37)) (-1649 (((-1073 |#1|) (-1073 |#1|)) 65)) (-1492 (((-1073 |#1|) (-1073 |#1|)) 47)) (-1630 (((-1073 |#1|) (-1073 |#1|)) 63)) (-1465 (((-1073 |#1|) (-1073 |#1|)) 45)) (-1669 (((-1073 |#1|) (-1073 |#1|)) 68)) (-1522 (((-1073 |#1|) (-1073 |#1|)) 50)) (-2359 (((-1073 |#1|) (-1073 |#1|)) 69)) (-1537 (((-1073 |#1|) (-1073 |#1|)) 51)) (-1659 (((-1073 |#1|) (-1073 |#1|)) 67)) (-1506 (((-1073 |#1|) (-1073 |#1|)) 49)) (-1639 (((-1073 |#1|) (-1073 |#1|)) 66)) (-1479 (((-1073 |#1|) (-1073 |#1|)) 48)) (** (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 33)))
-(((-1078 |#1|) (-10 -7 (-15 -3096 ((-1073 |#1|) (-1073 |#1|))) (-15 -1517 ((-1073 |#1|) (-1073 |#1|))) (-15 ** ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -2780 ((-1073 |#1|) (-1073 |#1|))) (-15 -2794 ((-1073 |#1|) (-1073 |#1|))) (-15 -2804 ((-1073 |#1|) (-1073 |#1|))) (-15 -2815 ((-1073 |#1|) (-1073 |#1|))) (-15 -2836 ((-1073 |#1|) (-1073 |#1|))) (-15 -1447 ((-1073 |#1|) (-1073 |#1|))) (-15 -1465 ((-1073 |#1|) (-1073 |#1|))) (-15 -1479 ((-1073 |#1|) (-1073 |#1|))) (-15 -1492 ((-1073 |#1|) (-1073 |#1|))) (-15 -1506 ((-1073 |#1|) (-1073 |#1|))) (-15 -1522 ((-1073 |#1|) (-1073 |#1|))) (-15 -1537 ((-1073 |#1|) (-1073 |#1|))) (-15 -1549 ((-1073 |#1|) (-1073 |#1|))) (-15 -1562 ((-1073 |#1|) (-1073 |#1|))) (-15 -1575 ((-1073 |#1|) (-1073 |#1|))) (-15 -1587 ((-1073 |#1|) (-1073 |#1|))) (-15 -1599 ((-1073 |#1|) (-1073 |#1|))) (-15 -1609 ((-1073 |#1|) (-1073 |#1|))) (-15 -1630 ((-1073 |#1|) (-1073 |#1|))) (-15 -1639 ((-1073 |#1|) (-1073 |#1|))) (-15 -1649 ((-1073 |#1|) (-1073 |#1|))) (-15 -1659 ((-1073 |#1|) (-1073 |#1|))) (-15 -1669 ((-1073 |#1|) (-1073 |#1|))) (-15 -2359 ((-1073 |#1|) (-1073 |#1|)))) (-37 (-385 (-525)))) (T -1078))
-((-2359 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1669 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1659 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1649 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1639 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1630 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1609 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1599 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1587 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1562 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1549 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1537 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1522 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1506 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1492 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1479 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1465 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1447 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2836 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2804 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2794 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1517 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-3096 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))))
-(-10 -7 (-15 -3096 ((-1073 |#1|) (-1073 |#1|))) (-15 -1517 ((-1073 |#1|) (-1073 |#1|))) (-15 ** ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -2780 ((-1073 |#1|) (-1073 |#1|))) (-15 -2794 ((-1073 |#1|) (-1073 |#1|))) (-15 -2804 ((-1073 |#1|) (-1073 |#1|))) (-15 -2815 ((-1073 |#1|) (-1073 |#1|))) (-15 -2836 ((-1073 |#1|) (-1073 |#1|))) (-15 -1447 ((-1073 |#1|) (-1073 |#1|))) (-15 -1465 ((-1073 |#1|) (-1073 |#1|))) (-15 -1479 ((-1073 |#1|) (-1073 |#1|))) (-15 -1492 ((-1073 |#1|) (-1073 |#1|))) (-15 -1506 ((-1073 |#1|) (-1073 |#1|))) (-15 -1522 ((-1073 |#1|) (-1073 |#1|))) (-15 -1537 ((-1073 |#1|) (-1073 |#1|))) (-15 -1549 ((-1073 |#1|) (-1073 |#1|))) (-15 -1562 ((-1073 |#1|) (-1073 |#1|))) (-15 -1575 ((-1073 |#1|) (-1073 |#1|))) (-15 -1587 ((-1073 |#1|) (-1073 |#1|))) (-15 -1599 ((-1073 |#1|) (-1073 |#1|))) (-15 -1609 ((-1073 |#1|) (-1073 |#1|))) (-15 -1630 ((-1073 |#1|) (-1073 |#1|))) (-15 -1639 ((-1073 |#1|) (-1073 |#1|))) (-15 -1649 ((-1073 |#1|) (-1073 |#1|))) (-15 -1659 ((-1073 |#1|) (-1073 |#1|))) (-15 -1669 ((-1073 |#1|) (-1073 |#1|))) (-15 -2359 ((-1073 |#1|) (-1073 |#1|))))
-((-1575 (((-1073 |#1|) (-1073 |#1|)) 100)) (-2804 (((-1073 |#1|) (-1073 |#1|)) 64)) (-3344 (((-2 (|:| -1549 (-1073 |#1|)) (|:| -1562 (-1073 |#1|))) (-1073 |#1|)) 96)) (-1549 (((-1073 |#1|) (-1073 |#1|)) 97)) (-1828 (((-2 (|:| -2780 (-1073 |#1|)) (|:| -2794 (-1073 |#1|))) (-1073 |#1|)) 53)) (-2780 (((-1073 |#1|) (-1073 |#1|)) 54)) (-1599 (((-1073 |#1|) (-1073 |#1|)) 102)) (-2836 (((-1073 |#1|) (-1073 |#1|)) 71)) (-1517 (((-1073 |#1|) (-1073 |#1|)) 39)) (-3096 (((-1073 |#1|) (-1073 |#1|)) 36)) (-1609 (((-1073 |#1|) (-1073 |#1|)) 103)) (-1447 (((-1073 |#1|) (-1073 |#1|)) 72)) (-1587 (((-1073 |#1|) (-1073 |#1|)) 101)) (-2815 (((-1073 |#1|) (-1073 |#1|)) 67)) (-1562 (((-1073 |#1|) (-1073 |#1|)) 98)) (-2794 (((-1073 |#1|) (-1073 |#1|)) 55)) (-1649 (((-1073 |#1|) (-1073 |#1|)) 111)) (-1492 (((-1073 |#1|) (-1073 |#1|)) 86)) (-1630 (((-1073 |#1|) (-1073 |#1|)) 105)) (-1465 (((-1073 |#1|) (-1073 |#1|)) 82)) (-1669 (((-1073 |#1|) (-1073 |#1|)) 115)) (-1522 (((-1073 |#1|) (-1073 |#1|)) 90)) (-2359 (((-1073 |#1|) (-1073 |#1|)) 117)) (-1537 (((-1073 |#1|) (-1073 |#1|)) 92)) (-1659 (((-1073 |#1|) (-1073 |#1|)) 113)) (-1506 (((-1073 |#1|) (-1073 |#1|)) 88)) (-1639 (((-1073 |#1|) (-1073 |#1|)) 107)) (-1479 (((-1073 |#1|) (-1073 |#1|)) 84)) (** (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 40)))
-(((-1079 |#1|) (-10 -7 (-15 -3096 ((-1073 |#1|) (-1073 |#1|))) (-15 -1517 ((-1073 |#1|) (-1073 |#1|))) (-15 ** ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -1828 ((-2 (|:| -2780 (-1073 |#1|)) (|:| -2794 (-1073 |#1|))) (-1073 |#1|))) (-15 -2780 ((-1073 |#1|) (-1073 |#1|))) (-15 -2794 ((-1073 |#1|) (-1073 |#1|))) (-15 -2804 ((-1073 |#1|) (-1073 |#1|))) (-15 -2815 ((-1073 |#1|) (-1073 |#1|))) (-15 -2836 ((-1073 |#1|) (-1073 |#1|))) (-15 -1447 ((-1073 |#1|) (-1073 |#1|))) (-15 -1465 ((-1073 |#1|) (-1073 |#1|))) (-15 -1479 ((-1073 |#1|) (-1073 |#1|))) (-15 -1492 ((-1073 |#1|) (-1073 |#1|))) (-15 -1506 ((-1073 |#1|) (-1073 |#1|))) (-15 -1522 ((-1073 |#1|) (-1073 |#1|))) (-15 -1537 ((-1073 |#1|) (-1073 |#1|))) (-15 -3344 ((-2 (|:| -1549 (-1073 |#1|)) (|:| -1562 (-1073 |#1|))) (-1073 |#1|))) (-15 -1549 ((-1073 |#1|) (-1073 |#1|))) (-15 -1562 ((-1073 |#1|) (-1073 |#1|))) (-15 -1575 ((-1073 |#1|) (-1073 |#1|))) (-15 -1587 ((-1073 |#1|) (-1073 |#1|))) (-15 -1599 ((-1073 |#1|) (-1073 |#1|))) (-15 -1609 ((-1073 |#1|) (-1073 |#1|))) (-15 -1630 ((-1073 |#1|) (-1073 |#1|))) (-15 -1639 ((-1073 |#1|) (-1073 |#1|))) (-15 -1649 ((-1073 |#1|) (-1073 |#1|))) (-15 -1659 ((-1073 |#1|) (-1073 |#1|))) (-15 -1669 ((-1073 |#1|) (-1073 |#1|))) (-15 -2359 ((-1073 |#1|) (-1073 |#1|)))) (-37 (-385 (-525)))) (T -1079))
-((-2359 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1669 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1659 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1649 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1639 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1630 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1609 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1599 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1587 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1562 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1549 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-3344 (*1 *2 *3) (-12 (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-2 (|:| -1549 (-1073 *4)) (|:| -1562 (-1073 *4)))) (-5 *1 (-1079 *4)) (-5 *3 (-1073 *4)))) (-1537 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1522 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1506 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1492 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1479 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1465 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1447 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-2836 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-2804 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-2794 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-2 (|:| -2780 (-1073 *4)) (|:| -2794 (-1073 *4)))) (-5 *1 (-1079 *4)) (-5 *3 (-1073 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1517 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-3096 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))))
-(-10 -7 (-15 -3096 ((-1073 |#1|) (-1073 |#1|))) (-15 -1517 ((-1073 |#1|) (-1073 |#1|))) (-15 ** ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -1828 ((-2 (|:| -2780 (-1073 |#1|)) (|:| -2794 (-1073 |#1|))) (-1073 |#1|))) (-15 -2780 ((-1073 |#1|) (-1073 |#1|))) (-15 -2794 ((-1073 |#1|) (-1073 |#1|))) (-15 -2804 ((-1073 |#1|) (-1073 |#1|))) (-15 -2815 ((-1073 |#1|) (-1073 |#1|))) (-15 -2836 ((-1073 |#1|) (-1073 |#1|))) (-15 -1447 ((-1073 |#1|) (-1073 |#1|))) (-15 -1465 ((-1073 |#1|) (-1073 |#1|))) (-15 -1479 ((-1073 |#1|) (-1073 |#1|))) (-15 -1492 ((-1073 |#1|) (-1073 |#1|))) (-15 -1506 ((-1073 |#1|) (-1073 |#1|))) (-15 -1522 ((-1073 |#1|) (-1073 |#1|))) (-15 -1537 ((-1073 |#1|) (-1073 |#1|))) (-15 -3344 ((-2 (|:| -1549 (-1073 |#1|)) (|:| -1562 (-1073 |#1|))) (-1073 |#1|))) (-15 -1549 ((-1073 |#1|) (-1073 |#1|))) (-15 -1562 ((-1073 |#1|) (-1073 |#1|))) (-15 -1575 ((-1073 |#1|) (-1073 |#1|))) (-15 -1587 ((-1073 |#1|) (-1073 |#1|))) (-15 -1599 ((-1073 |#1|) (-1073 |#1|))) (-15 -1609 ((-1073 |#1|) (-1073 |#1|))) (-15 -1630 ((-1073 |#1|) (-1073 |#1|))) (-15 -1639 ((-1073 |#1|) (-1073 |#1|))) (-15 -1649 ((-1073 |#1|) (-1073 |#1|))) (-15 -1659 ((-1073 |#1|) (-1073 |#1|))) (-15 -1669 ((-1073 |#1|) (-1073 |#1|))) (-15 -2359 ((-1073 |#1|) (-1073 |#1|))))
-((-3915 (((-892 |#2|) |#2| |#2|) 35)) (-1576 ((|#2| |#2| |#1|) 19 (|has| |#1| (-286)))))
-(((-1080 |#1| |#2|) (-10 -7 (-15 -3915 ((-892 |#2|) |#2| |#2|)) (IF (|has| |#1| (-286)) (-15 -1576 (|#2| |#2| |#1|)) |%noBranch|)) (-517) (-1150 |#1|)) (T -1080))
-((-1576 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-4 *3 (-517)) (-5 *1 (-1080 *3 *2)) (-4 *2 (-1150 *3)))) (-3915 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-892 *3)) (-5 *1 (-1080 *4 *3)) (-4 *3 (-1150 *4)))))
-(-10 -7 (-15 -3915 ((-892 |#2|) |#2| |#2|)) (IF (|has| |#1| (-286)) (-15 -1576 (|#2| |#2| |#1|)) |%noBranch|))
-((-4236 (((-108) $ $) NIL)) (-1563 (($ $ (-592 (-713))) 67)) (-3320 (($) 26)) (-3447 (($ $) 42)) (-2181 (((-592 $) $) 51)) (-3726 (((-108) $) 16)) (-2879 (((-592 (-878 |#2|)) $) 74)) (-1677 (($ $) 68)) (-3198 (((-713) $) 37)) (-3416 (($) 25)) (-3454 (($ $ (-592 (-713)) (-878 |#2|)) 60) (($ $ (-592 (-713)) (-713)) 61) (($ $ (-713) (-878 |#2|)) 63)) (-1577 (($ $ $) 48) (($ (-592 $)) 50)) (-3187 (((-713) $) 75)) (-3786 (((-108) $) 15)) (-2619 (((-1075) $) NIL)) (-3537 (((-108) $) 18)) (-2093 (((-1039) $) NIL)) (-2130 (((-159) $) 73)) (-2277 (((-878 |#2|) $) 69)) (-2873 (((-713) $) 70)) (-4005 (((-108) $) 72)) (-3822 (($ $ (-592 (-713)) (-159)) 66)) (-3552 (($ $) 43)) (-1217 (((-798) $) 86)) (-2620 (($ $ (-592 (-713)) (-108)) 65)) (-3793 (((-592 $) $) 11)) (-3316 (($ $ (-713)) 36)) (-1744 (($ $) 32)) (-3176 (($ $ $ (-878 |#2|) (-713)) 56)) (-1661 (($ $ (-878 |#2|)) 55)) (-2880 (($ $ (-592 (-713)) (-878 |#2|)) 54) (($ $ (-592 (-713)) (-713)) 58) (((-713) $ (-878 |#2|)) 59)) (-3955 (((-108) $ $) 80)))
-(((-1081 |#1| |#2|) (-13 (-1020) (-10 -8 (-15 -3786 ((-108) $)) (-15 -3726 ((-108) $)) (-15 -3537 ((-108) $)) (-15 -3416 ($)) (-15 -3320 ($)) (-15 -1744 ($ $)) (-15 -3316 ($ $ (-713))) (-15 -3793 ((-592 $) $)) (-15 -3198 ((-713) $)) (-15 -3447 ($ $)) (-15 -3552 ($ $)) (-15 -1577 ($ $ $)) (-15 -1577 ($ (-592 $))) (-15 -2181 ((-592 $) $)) (-15 -2880 ($ $ (-592 (-713)) (-878 |#2|))) (-15 -1661 ($ $ (-878 |#2|))) (-15 -3176 ($ $ $ (-878 |#2|) (-713))) (-15 -3454 ($ $ (-592 (-713)) (-878 |#2|))) (-15 -2880 ($ $ (-592 (-713)) (-713))) (-15 -3454 ($ $ (-592 (-713)) (-713))) (-15 -2880 ((-713) $ (-878 |#2|))) (-15 -3454 ($ $ (-713) (-878 |#2|))) (-15 -2620 ($ $ (-592 (-713)) (-108))) (-15 -3822 ($ $ (-592 (-713)) (-159))) (-15 -1563 ($ $ (-592 (-713)))) (-15 -2277 ((-878 |#2|) $)) (-15 -2873 ((-713) $)) (-15 -4005 ((-108) $)) (-15 -2130 ((-159) $)) (-15 -3187 ((-713) $)) (-15 -1677 ($ $)) (-15 -2879 ((-592 (-878 |#2|)) $)))) (-856) (-977)) (T -1081))
-((-3786 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-3416 (*1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-3320 (*1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-1744 (*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-3316 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-592 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-3447 (*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-3552 (*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-1577 (*1 *1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-1577 (*1 *1 *2) (-12 (-5 *2 (-592 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-2181 (*1 *2 *1) (-12 (-5 *2 (-592 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-2880 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-878 *5)) (-4 *5 (-977)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)))) (-1661 (*1 *1 *1 *2) (-12 (-5 *2 (-878 *4)) (-4 *4 (-977)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)))) (-3176 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-878 *5)) (-5 *3 (-713)) (-4 *5 (-977)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)))) (-3454 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-878 *5)) (-4 *5 (-977)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)))) (-2880 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)) (-4 *5 (-977)))) (-3454 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)) (-4 *5 (-977)))) (-2880 (*1 *2 *1 *3) (-12 (-5 *3 (-878 *5)) (-4 *5 (-977)) (-5 *2 (-713)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)))) (-3454 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-878 *5)) (-4 *5 (-977)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)))) (-2620 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-108)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)) (-4 *5 (-977)))) (-3822 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-159)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)) (-4 *5 (-977)))) (-1563 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-2277 (*1 *2 *1) (-12 (-5 *2 (-878 *4)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-3187 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-1677 (*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-592 (-878 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))))
-(-13 (-1020) (-10 -8 (-15 -3786 ((-108) $)) (-15 -3726 ((-108) $)) (-15 -3537 ((-108) $)) (-15 -3416 ($)) (-15 -3320 ($)) (-15 -1744 ($ $)) (-15 -3316 ($ $ (-713))) (-15 -3793 ((-592 $) $)) (-15 -3198 ((-713) $)) (-15 -3447 ($ $)) (-15 -3552 ($ $)) (-15 -1577 ($ $ $)) (-15 -1577 ($ (-592 $))) (-15 -2181 ((-592 $) $)) (-15 -2880 ($ $ (-592 (-713)) (-878 |#2|))) (-15 -1661 ($ $ (-878 |#2|))) (-15 -3176 ($ $ $ (-878 |#2|) (-713))) (-15 -3454 ($ $ (-592 (-713)) (-878 |#2|))) (-15 -2880 ($ $ (-592 (-713)) (-713))) (-15 -3454 ($ $ (-592 (-713)) (-713))) (-15 -2880 ((-713) $ (-878 |#2|))) (-15 -3454 ($ $ (-713) (-878 |#2|))) (-15 -2620 ($ $ (-592 (-713)) (-108))) (-15 -3822 ($ $ (-592 (-713)) (-159))) (-15 -1563 ($ $ (-592 (-713)))) (-15 -2277 ((-878 |#2|) $)) (-15 -2873 ((-713) $)) (-15 -4005 ((-108) $)) (-15 -2130 ((-159) $)) (-15 -3187 ((-713) $)) (-15 -1677 ($ $)) (-15 -2879 ((-592 (-878 |#2|)) $))))
-((-4236 (((-108) $ $) NIL)) (-2025 ((|#2| $) 11)) (-2012 ((|#1| $) 10)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1230 (($ |#1| |#2|) 9)) (-1217 (((-798) $) 16)) (-3955 (((-108) $ $) NIL)))
-(((-1082 |#1| |#2|) (-13 (-1020) (-10 -8 (-15 -1230 ($ |#1| |#2|)) (-15 -2012 (|#1| $)) (-15 -2025 (|#2| $)))) (-1020) (-1020)) (T -1082))
-((-1230 (*1 *1 *2 *3) (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-2012 (*1 *2 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1020)))) (-2025 (*1 *2 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-1082 *3 *2)) (-4 *3 (-1020)))))
-(-13 (-1020) (-10 -8 (-15 -1230 ($ |#1| |#2|)) (-15 -2012 (|#1| $)) (-15 -2025 (|#2| $))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1548 (((-1090 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-2897 (((-592 (-1005)) $) NIL)) (-2499 (((-1092) $) 11)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-4218 (($ $) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3171 (((-108) $) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3828 (($ $ (-525)) NIL) (($ $ (-525) (-525)) 66)) (-2755 (((-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) NIL)) (-3784 (((-1090 |#1| |#2| |#3|) $) 36)) (-4209 (((-3 (-1090 |#1| |#2| |#3|) "failed") $) 29)) (-2950 (((-1090 |#1| |#2| |#3|) $) 30)) (-1575 (($ $) 107 (|has| |#1| (-37 (-385 (-525)))))) (-2804 (($ $) 83 (|has| |#1| (-37 (-385 (-525)))))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-1286 (($ $) NIL (|has| |#1| (-341)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2782 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-2193 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1549 (($ $) 103 (|has| |#1| (-37 (-385 (-525)))))) (-2780 (($ $) 79 (|has| |#1| (-37 (-385 (-525)))))) (-3855 (((-525) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-2598 (($ (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) NIL)) (-1599 (($ $) 111 (|has| |#1| (-37 (-385 (-525)))))) (-2836 (($ $) 87 (|has| |#1| (-37 (-385 (-525)))))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-1090 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1092) "failed") $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-968 (-1092))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341)))) (((-3 (-525) "failed") $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341))))) (-1572 (((-1090 |#1| |#2| |#3|) $) 131) (((-1092) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-968 (-1092))) (|has| |#1| (-341)))) (((-385 (-525)) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341)))) (((-525) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341))))) (-3318 (($ $) 34) (($ (-525) $) 35)) (-1747 (($ $ $) NIL (|has| |#1| (-341)))) (-3063 (($ $) NIL)) (-1994 (((-632 (-1090 |#1| |#2| |#3|)) (-632 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -3407 (-632 (-1090 |#1| |#2| |#3|))) (|:| |vec| (-1174 (-1090 |#1| |#2| |#3|)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341))))) (-3457 (((-3 $ "failed") $) 48)) (-2925 (((-385 (-887 |#1|)) $ (-525)) 65 (|has| |#1| (-517))) (((-385 (-887 |#1|)) $ (-525) (-525)) 67 (|has| |#1| (-517)))) (-2502 (($) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-1733 (($ $ $) NIL (|has| |#1| (-341)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3673 (((-108) $) NIL (|has| |#1| (-341)))) (-1222 (((-108) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-2398 (((-108) $) 25)) (-3140 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-821 (-525))) (|has| |#1| (-341)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-821 (-357))) (|has| |#1| (-341))))) (-2581 (((-525) $) NIL) (((-525) $ (-525)) 24)) (-1396 (((-108) $) NIL)) (-3858 (($ $) NIL (|has| |#1| (-341)))) (-3114 (((-1090 |#1| |#2| |#3|) $) 38 (|has| |#1| (-341)))) (-2171 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3844 (((-3 $ "failed") $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-1068)) (|has| |#1| (-341))))) (-3256 (((-108) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-3326 (($ $ (-856)) NIL)) (-2066 (($ (-1 |#1| (-525)) $) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-525)) 18) (($ $ (-1005) (-525)) NIL) (($ $ (-592 (-1005)) (-592 (-525))) NIL)) (-2638 (($ $ $) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3662 (($ $ $) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-341)))) (-1517 (($ $) 72 (|has| |#1| (-37 (-385 (-525)))))) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2962 (($ (-525) (-1090 |#1| |#2| |#3|)) 33)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL (|has| |#1| (-341)))) (-1206 (($ $) 70 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) NIL (-3254 (-12 (|has| |#1| (-15 -1206 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -2897 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114))))) (($ $ (-1170 |#2|)) 71 (|has| |#1| (-37 (-385 (-525)))))) (-2295 (($) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-1068)) (|has| |#1| (-341))) CONST)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3628 (($ $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-2487 (((-1090 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-2770 (((-396 $) $) NIL (|has| |#1| (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-3931 (($ $ (-525)) 145)) (-1715 (((-3 $ "failed") $ $) 49 (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-3096 (($ $) 73 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1092) (-1090 |#1| |#2| |#3|)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-486 (-1092) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1092)) (-592 (-1090 |#1| |#2| |#3|))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-486 (-1092) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-273 (-1090 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-288 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-273 (-1090 |#1| |#2| |#3|))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-288 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-288 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1090 |#1| |#2| |#3|)) (-592 (-1090 |#1| |#2| |#3|))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-288 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-3684 (((-713) $) NIL (|has| |#1| (-341)))) (-3406 ((|#1| $ (-525)) NIL) (($ $ $) 54 (|has| (-525) (-1032))) (($ $ (-1090 |#1| |#2| |#3|)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-265 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-341)))) (-3376 (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1170 |#2|)) 51) (($ $ (-713)) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 50 (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092) (-713)) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-592 (-1092))) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092)) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))))) (-4143 (($ $) NIL (|has| |#1| (-341)))) (-3123 (((-1090 |#1| |#2| |#3|) $) 41 (|has| |#1| (-341)))) (-2343 (((-525) $) 37)) (-1609 (($ $) 113 (|has| |#1| (-37 (-385 (-525)))))) (-1447 (($ $) 89 (|has| |#1| (-37 (-385 (-525)))))) (-1587 (($ $) 109 (|has| |#1| (-37 (-385 (-525)))))) (-2815 (($ $) 85 (|has| |#1| (-37 (-385 (-525)))))) (-1562 (($ $) 105 (|has| |#1| (-37 (-385 (-525)))))) (-2794 (($ $) 81 (|has| |#1| (-37 (-385 (-525)))))) (-3210 (((-501) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-567 (-501))) (|has| |#1| (-341)))) (((-357) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-953)) (|has| |#1| (-341)))) (((-205) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-953)) (|has| |#1| (-341)))) (((-827 (-357)) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-567 (-827 (-357)))) (|has| |#1| (-341)))) (((-827 (-525)) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-567 (-827 (-525)))) (|has| |#1| (-341))))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-1489 (($ $) NIL)) (-1217 (((-798) $) 149) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1090 |#1| |#2| |#3|)) 27) (($ (-1170 |#2|)) 23) (($ (-1092)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-968 (-1092))) (|has| |#1| (-341)))) (($ $) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517)))) (($ (-385 (-525))) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341))) (|has| |#1| (-37 (-385 (-525))))))) (-1568 ((|#1| $ (-525)) 68)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-3917 (((-713)) NIL)) (-1340 ((|#1| $) 12)) (-3074 (((-1090 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-1649 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-1492 (($ $) 95 (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-1630 (($ $) 115 (|has| |#1| (-37 (-385 (-525)))))) (-1465 (($ $) 91 (|has| |#1| (-37 (-385 (-525)))))) (-1669 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1522 (($ $) 99 (|has| |#1| (-37 (-385 (-525)))))) (-1454 ((|#1| $ (-525)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -1217 (|#1| (-1092))))))) (-2359 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-1537 (($ $) 101 (|has| |#1| (-37 (-385 (-525)))))) (-1659 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-1506 (($ $) 97 (|has| |#1| (-37 (-385 (-525)))))) (-1639 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-1479 (($ $) 93 (|has| |#1| (-37 (-385 (-525)))))) (-2802 (($ $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3349 (($) 20 T CONST)) (-3359 (($) 16 T CONST)) (-2022 (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092) (-713)) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-592 (-1092))) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092)) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))))) (-4011 (((-108) $ $) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3987 (((-108) $ $) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3978 (((-108) $ $) NIL (-3254 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 44 (|has| |#1| (-341))) (($ (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) 45 (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) 21)) (** (($ $ (-856)) NIL) (($ $ (-713)) 53) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) 74 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 128 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1090 |#1| |#2| |#3|)) 43 (|has| |#1| (-341))) (($ (-1090 |#1| |#2| |#3|) $) 42 (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-1083 |#1| |#2| |#3|) (-13 (-1136 |#1| (-1090 |#1| |#2| |#3|)) (-10 -8 (-15 -1217 ($ (-1170 |#2|))) (-15 -3376 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1206 ($ $ (-1170 |#2|))) |%noBranch|))) (-977) (-1092) |#1|) (T -1083))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-1206 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
-(-13 (-1136 |#1| (-1090 |#1| |#2| |#3|)) (-10 -8 (-15 -1217 ($ (-1170 |#2|))) (-15 -3376 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1206 ($ $ (-1170 |#2|))) |%noBranch|)))
-((-3509 ((|#2| |#2| (-1013 |#2|)) 26) ((|#2| |#2| (-1092)) 28)))
-(((-1084 |#1| |#2|) (-10 -7 (-15 -3509 (|#2| |#2| (-1092))) (-15 -3509 (|#2| |#2| (-1013 |#2|)))) (-13 (-517) (-789) (-968 (-525)) (-588 (-525))) (-13 (-408 |#1|) (-149) (-27) (-1114))) (T -1084))
-((-3509 (*1 *2 *2 *3) (-12 (-5 *3 (-1013 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1114))) (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1084 *4 *2)))) (-3509 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1084 *4 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1114))))))
-(-10 -7 (-15 -3509 (|#2| |#2| (-1092))) (-15 -3509 (|#2| |#2| (-1013 |#2|))))
-((-3509 (((-3 (-385 (-887 |#1|)) (-294 |#1|)) (-385 (-887 |#1|)) (-1013 (-385 (-887 |#1|)))) 31) (((-385 (-887 |#1|)) (-887 |#1|) (-1013 (-887 |#1|))) 44) (((-3 (-385 (-887 |#1|)) (-294 |#1|)) (-385 (-887 |#1|)) (-1092)) 33) (((-385 (-887 |#1|)) (-887 |#1|) (-1092)) 36)))
-(((-1085 |#1|) (-10 -7 (-15 -3509 ((-385 (-887 |#1|)) (-887 |#1|) (-1092))) (-15 -3509 ((-3 (-385 (-887 |#1|)) (-294 |#1|)) (-385 (-887 |#1|)) (-1092))) (-15 -3509 ((-385 (-887 |#1|)) (-887 |#1|) (-1013 (-887 |#1|)))) (-15 -3509 ((-3 (-385 (-887 |#1|)) (-294 |#1|)) (-385 (-887 |#1|)) (-1013 (-385 (-887 |#1|)))))) (-13 (-517) (-789) (-968 (-525)))) (T -1085))
-((-3509 (*1 *2 *3 *4) (-12 (-5 *4 (-1013 (-385 (-887 *5)))) (-5 *3 (-385 (-887 *5))) (-4 *5 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-3 *3 (-294 *5))) (-5 *1 (-1085 *5)))) (-3509 (*1 *2 *3 *4) (-12 (-5 *4 (-1013 (-887 *5))) (-5 *3 (-887 *5)) (-4 *5 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-385 *3)) (-5 *1 (-1085 *5)))) (-3509 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-3 (-385 (-887 *5)) (-294 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-385 (-887 *5))))) (-3509 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-385 (-887 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-887 *5)))))
-(-10 -7 (-15 -3509 ((-385 (-887 |#1|)) (-887 |#1|) (-1092))) (-15 -3509 ((-3 (-385 (-887 |#1|)) (-294 |#1|)) (-385 (-887 |#1|)) (-1092))) (-15 -3509 ((-385 (-887 |#1|)) (-887 |#1|) (-1013 (-887 |#1|)))) (-15 -3509 ((-3 (-385 (-887 |#1|)) (-294 |#1|)) (-385 (-887 |#1|)) (-1013 (-385 (-887 |#1|))))))
-((-3165 (((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|)) 13)))
-(((-1086 |#1| |#2|) (-10 -7 (-15 -3165 ((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|)))) (-977) (-977)) (T -1086))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-5 *2 (-1088 *6)) (-5 *1 (-1086 *5 *6)))))
-(-10 -7 (-15 -3165 ((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|))))
-((-2669 (((-396 (-1088 (-385 |#4|))) (-1088 (-385 |#4|))) 51)) (-2770 (((-396 (-1088 (-385 |#4|))) (-1088 (-385 |#4|))) 52)))
-(((-1087 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2770 ((-396 (-1088 (-385 |#4|))) (-1088 (-385 |#4|)))) (-15 -2669 ((-396 (-1088 (-385 |#4|))) (-1088 (-385 |#4|))))) (-735) (-789) (-429) (-884 |#3| |#1| |#2|)) (T -1087))
-((-2669 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-396 (-1088 (-385 *7)))) (-5 *1 (-1087 *4 *5 *6 *7)) (-5 *3 (-1088 (-385 *7))))) (-2770 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-396 (-1088 (-385 *7)))) (-5 *1 (-1087 *4 *5 *6 *7)) (-5 *3 (-1088 (-385 *7))))))
-(-10 -7 (-15 -2770 ((-396 (-1088 (-385 |#4|))) (-1088 (-385 |#4|)))) (-15 -2669 ((-396 (-1088 (-385 |#4|))) (-1088 (-385 |#4|)))))
-((-4236 (((-108) $ $) 139)) (-1209 (((-108) $) 30)) (-2315 (((-1174 |#1|) $ (-713)) NIL)) (-2897 (((-592 (-1005)) $) NIL)) (-1801 (($ (-1088 |#1|)) NIL)) (-2744 (((-1088 $) $ (-1005)) 60) (((-1088 |#1|) $) 49)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) 134 (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-3212 (((-713) $) NIL) (((-713) $ (-592 (-1005))) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-4001 (($ $ $) 128 (|has| |#1| (-517)))) (-1448 (((-396 (-1088 $)) (-1088 $)) 73 (|has| |#1| (-844)))) (-1286 (($ $) NIL (|has| |#1| (-429)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 93 (|has| |#1| (-844)))) (-2193 (((-108) $ $) NIL (|has| |#1| (-341)))) (-2980 (($ $ (-713)) 42)) (-3682 (($ $ (-713)) 43)) (-2181 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-429)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-1005) "failed") $) NIL)) (-1572 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-1005) $) NIL)) (-3377 (($ $ $ (-1005)) NIL (|has| |#1| (-160))) ((|#1| $ $) 130 (|has| |#1| (-160)))) (-1747 (($ $ $) NIL (|has| |#1| (-341)))) (-3063 (($ $) 58)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1733 (($ $ $) NIL (|has| |#1| (-341)))) (-3585 (($ $ $) 106)) (-2814 (($ $ $) NIL (|has| |#1| (-517)))) (-3696 (((-2 (|:| -3244 |#1|) (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-517)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-1576 (($ $) 135 (|has| |#1| (-429))) (($ $ (-1005)) NIL (|has| |#1| (-429)))) (-3052 (((-592 $) $) NIL)) (-3673 (((-108) $) NIL (|has| |#1| (-844)))) (-2188 (($ $ |#1| (-713) $) 47)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1005) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1005) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-3846 (((-798) $ (-798)) 119)) (-2581 (((-713) $ $) NIL (|has| |#1| (-517)))) (-1396 (((-108) $) 32)) (-3399 (((-713) $) NIL)) (-3844 (((-3 $ "failed") $) NIL (|has| |#1| (-1068)))) (-2887 (($ (-1088 |#1|) (-1005)) 51) (($ (-1088 $) (-1005)) 67)) (-3326 (($ $ (-713)) 34)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-4144 (((-592 $) $) NIL)) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-713)) 65) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ (-1005)) NIL) (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 123)) (-2870 (((-713) $) NIL) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2172 (($ (-1 (-713) (-713)) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-1332 (((-1088 |#1|) $) NIL)) (-2431 (((-3 (-1005) "failed") $) NIL)) (-3031 (($ $) NIL)) (-3043 ((|#1| $) 54)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2619 (((-1075) $) NIL)) (-3203 (((-2 (|:| -2829 $) (|:| -1607 $)) $ (-713)) 41)) (-1334 (((-3 (-592 $) "failed") $) NIL)) (-2001 (((-3 (-592 $) "failed") $) NIL)) (-2121 (((-3 (-2 (|:| |var| (-1005)) (|:| -4193 (-713))) "failed") $) NIL)) (-1206 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2295 (($) NIL (|has| |#1| (-1068)) CONST)) (-2093 (((-1039) $) NIL)) (-3007 (((-108) $) 33)) (-3019 ((|#1| $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 81 (|has| |#1| (-429)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) 137 (|has| |#1| (-429)))) (-3493 (($ $ (-713) |#1| $) 101)) (-3076 (((-396 (-1088 $)) (-1088 $)) 79 (|has| |#1| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) 78 (|has| |#1| (-844)))) (-2770 (((-396 $) $) 86 (|has| |#1| (-844)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-1715 (((-3 $ "failed") $ |#1|) 133 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 102 (|has| |#1| (-517)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2457 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1005) |#1|) NIL) (($ $ (-592 (-1005)) (-592 |#1|)) NIL) (($ $ (-1005) $) NIL) (($ $ (-592 (-1005)) (-592 $)) NIL)) (-3684 (((-713) $) NIL (|has| |#1| (-341)))) (-3406 ((|#1| $ |#1|) 121) (($ $ $) 122) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) NIL (|has| |#1| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#1| (-517)))) (-2173 (((-3 $ "failed") $ (-713)) 37)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 140 (|has| |#1| (-341)))) (-1975 (($ $ (-1005)) NIL (|has| |#1| (-160))) ((|#1| $) 126 (|has| |#1| (-160)))) (-3376 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2343 (((-713) $) 56) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-3210 (((-827 (-357)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-1005) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-3658 ((|#1| $) 132 (|has| |#1| (-429))) (($ $ (-1005)) NIL (|has| |#1| (-429)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1561 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#1| (-517)))) (-1217 (((-798) $) 120) (($ (-525)) NIL) (($ |#1|) 55) (($ (-1005)) NIL) (($ (-385 (-525))) NIL (-3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-1684 (((-592 |#1|) $) NIL)) (-1568 ((|#1| $ (-713)) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-3917 (((-713)) NIL)) (-3716 (($ $ $ (-713)) 28 (|has| |#1| (-160)))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1619 (($ $ (-856)) 15) (($ $ (-713)) 16)) (-3349 (($) 17 T CONST)) (-3359 (($) 18 T CONST)) (-2022 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) 98)) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4075 (($ $ |#1|) 141 (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) 68)) (** (($ $ (-856)) 14) (($ $ (-713)) 12)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 27) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 104) (($ $ |#1|) NIL)))
-(((-1088 |#1|) (-13 (-1150 |#1|) (-10 -8 (-15 -3846 ((-798) $ (-798))) (-15 -3493 ($ $ (-713) |#1| $)))) (-977)) (T -1088))
-((-3846 (*1 *2 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1088 *3)) (-4 *3 (-977)))) (-3493 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1088 *3)) (-4 *3 (-977)))))
-(-13 (-1150 |#1|) (-10 -8 (-15 -3846 ((-798) $ (-798))) (-15 -3493 ($ $ (-713) |#1| $))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2897 (((-592 (-1005)) $) NIL)) (-2499 (((-1092) $) 11)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-3828 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-2755 (((-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) NIL)) (-1575 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2804 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL (|has| |#1| (-341)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2782 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2193 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1549 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2780 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2598 (($ (-713) (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-1599 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-1083 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1090 |#1| |#2| |#3|) "failed") $) 36)) (-1572 (((-1083 |#1| |#2| |#3|) $) NIL) (((-1090 |#1| |#2| |#3|) $) NIL)) (-1747 (($ $ $) NIL (|has| |#1| (-341)))) (-3063 (($ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-4177 (((-385 (-525)) $) 55)) (-1733 (($ $ $) NIL (|has| |#1| (-341)))) (-2973 (($ (-385 (-525)) (-1083 |#1| |#2| |#3|)) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3673 (((-108) $) NIL (|has| |#1| (-341)))) (-2398 (((-108) $) NIL)) (-3140 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2581 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) NIL)) (-1396 (((-108) $) NIL)) (-2171 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3326 (($ $ (-856)) NIL) (($ $ (-385 (-525))) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-385 (-525))) 20) (($ $ (-1005) (-385 (-525))) NIL) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-1517 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2279 (((-1083 |#1| |#2| |#3|) $) 41)) (-1520 (((-3 (-1083 |#1| |#2| |#3|) "failed") $) NIL)) (-2962 (((-1083 |#1| |#2| |#3|) $) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL (|has| |#1| (-341)))) (-1206 (($ $) 39 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) NIL (-3254 (-12 (|has| |#1| (-15 -1206 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -2897 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114))))) (($ $ (-1170 |#2|)) 40 (|has| |#1| (-37 (-385 (-525)))))) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2770 (((-396 $) $) NIL (|has| |#1| (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-3931 (($ $ (-385 (-525))) NIL)) (-1715 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-3096 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2457 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-3684 (((-713) $) NIL (|has| |#1| (-341)))) (-3406 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1032)))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-341)))) (-3376 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $ (-1170 |#2|)) 38)) (-2343 (((-385 (-525)) $) NIL)) (-1609 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1447 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1587 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1562 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2794 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1489 (($ $) NIL)) (-1217 (((-798) $) 58) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1083 |#1| |#2| |#3|)) 30) (($ (-1090 |#1| |#2| |#3|)) 31) (($ (-1170 |#2|)) 26) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-1568 ((|#1| $ (-385 (-525))) NIL)) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) NIL)) (-1340 ((|#1| $) 12)) (-1649 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1630 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1669 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1522 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1454 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1217 (|#1| (-1092))))))) (-2359 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1537 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1659 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1506 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1639 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1479 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3349 (($) 22 T CONST)) (-3359 (($) 16 T CONST)) (-2022 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) 24)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-1089 |#1| |#2| |#3|) (-13 (-1157 |#1| (-1083 |#1| |#2| |#3|)) (-968 (-1090 |#1| |#2| |#3|)) (-10 -8 (-15 -1217 ($ (-1170 |#2|))) (-15 -3376 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1206 ($ $ (-1170 |#2|))) |%noBranch|))) (-977) (-1092) |#1|) (T -1089))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-1206 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
-(-13 (-1157 |#1| (-1083 |#1| |#2| |#3|)) (-968 (-1090 |#1| |#2| |#3|)) (-10 -8 (-15 -1217 ($ (-1170 |#2|))) (-15 -3376 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1206 ($ $ (-1170 |#2|))) |%noBranch|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 125)) (-2897 (((-592 (-1005)) $) NIL)) (-2499 (((-1092) $) 116)) (-4210 (((-1147 |#2| |#1|) $ (-713)) 63)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-3828 (($ $ (-713)) 79) (($ $ (-713) (-713)) 76)) (-2755 (((-1073 (-2 (|:| |k| (-713)) (|:| |c| |#1|))) $) 102)) (-1575 (($ $) 169 (|has| |#1| (-37 (-385 (-525)))))) (-2804 (($ $) 145 (|has| |#1| (-37 (-385 (-525)))))) (-1578 (((-3 $ "failed") $ $) NIL)) (-2782 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1549 (($ $) 165 (|has| |#1| (-37 (-385 (-525)))))) (-2780 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-2598 (($ (-1073 (-2 (|:| |k| (-713)) (|:| |c| |#1|)))) 115) (($ (-1073 |#1|)) 110)) (-1599 (($ $) 173 (|has| |#1| (-37 (-385 (-525)))))) (-2836 (($ $) 149 (|has| |#1| (-37 (-385 (-525)))))) (-2169 (($) NIL T CONST)) (-3063 (($ $) NIL)) (-3457 (((-3 $ "failed") $) 23)) (-4224 (($ $) 26)) (-3882 (((-887 |#1|) $ (-713)) 75) (((-887 |#1|) $ (-713) (-713)) 77)) (-2398 (((-108) $) 120)) (-3140 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2581 (((-713) $) 122) (((-713) $ (-713)) 124)) (-1396 (((-108) $) NIL)) (-2171 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3326 (($ $ (-856)) NIL)) (-2066 (($ (-1 |#1| (-525)) $) NIL)) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-713)) 13) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-1517 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2619 (((-1075) $) NIL)) (-1206 (($ $) 129 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) NIL (-3254 (-12 (|has| |#1| (-15 -1206 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -2897 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114))))) (($ $ (-1170 |#2|)) 130 (|has| |#1| (-37 (-385 (-525)))))) (-2093 (((-1039) $) NIL)) (-3931 (($ $ (-713)) 15)) (-1715 (((-3 $ "failed") $ $) 24 (|has| |#1| (-517)))) (-3096 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-713)))))) (-3406 ((|#1| $ (-713)) 119) (($ $ $) 128 (|has| (-713) (-1032)))) (-3376 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $ (-1170 |#2|)) 29)) (-2343 (((-713) $) NIL)) (-1609 (($ $) 175 (|has| |#1| (-37 (-385 (-525)))))) (-1447 (($ $) 151 (|has| |#1| (-37 (-385 (-525)))))) (-1587 (($ $) 171 (|has| |#1| (-37 (-385 (-525)))))) (-2815 (($ $) 147 (|has| |#1| (-37 (-385 (-525)))))) (-1562 (($ $) 167 (|has| |#1| (-37 (-385 (-525)))))) (-2794 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-1489 (($ $) NIL)) (-1217 (((-798) $) 201) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 126 (|has| |#1| (-160))) (($ (-1147 |#2| |#1|)) 51) (($ (-1170 |#2|)) 32)) (-1684 (((-1073 |#1|) $) 98)) (-1568 ((|#1| $ (-713)) 118)) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) NIL)) (-1340 ((|#1| $) 54)) (-1649 (($ $) 181 (|has| |#1| (-37 (-385 (-525)))))) (-1492 (($ $) 157 (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1630 (($ $) 177 (|has| |#1| (-37 (-385 (-525)))))) (-1465 (($ $) 153 (|has| |#1| (-37 (-385 (-525)))))) (-1669 (($ $) 185 (|has| |#1| (-37 (-385 (-525)))))) (-1522 (($ $) 161 (|has| |#1| (-37 (-385 (-525)))))) (-1454 ((|#1| $ (-713)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-713)))) (|has| |#1| (-15 -1217 (|#1| (-1092))))))) (-2359 (($ $) 187 (|has| |#1| (-37 (-385 (-525)))))) (-1537 (($ $) 163 (|has| |#1| (-37 (-385 (-525)))))) (-1659 (($ $) 183 (|has| |#1| (-37 (-385 (-525)))))) (-1506 (($ $) 159 (|has| |#1| (-37 (-385 (-525)))))) (-1639 (($ $) 179 (|has| |#1| (-37 (-385 (-525)))))) (-1479 (($ $) 155 (|has| |#1| (-37 (-385 (-525)))))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 17 T CONST)) (-3359 (($) 19 T CONST)) (-2022 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) 194)) (-4047 (($ $ $) 31)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ |#1|) 198 (|has| |#1| (-341))) (($ $ $) 134 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 137 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-1090 |#1| |#2| |#3|) (-13 (-1165 |#1|) (-10 -8 (-15 -1217 ($ (-1147 |#2| |#1|))) (-15 -4210 ((-1147 |#2| |#1|) $ (-713))) (-15 -1217 ($ (-1170 |#2|))) (-15 -3376 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1206 ($ $ (-1170 |#2|))) |%noBranch|))) (-977) (-1092) |#1|) (T -1090))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-977)) (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-1090 *3 *4 *5)))) (-4210 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1090 *4 *5 *6)) (-4 *4 (-977)) (-14 *5 (-1092)) (-14 *6 *4))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-1206 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
-(-13 (-1165 |#1|) (-10 -8 (-15 -1217 ($ (-1147 |#2| |#1|))) (-15 -4210 ((-1147 |#2| |#1|) $ (-713))) (-15 -1217 ($ (-1170 |#2|))) (-15 -3376 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1206 ($ $ (-1170 |#2|))) |%noBranch|)))
-((-1217 (((-798) $) 27) (($ (-1092)) 29)) (-3254 (($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 40)) (-3243 (($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 33) (($ $) 34)) (-2314 (($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 35)) (-2305 (($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 37)) (-2286 (($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 36)) (-2274 (($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 38)) (-2604 (($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 39)))
-(((-1091) (-13 (-566 (-798)) (-10 -8 (-15 -1217 ($ (-1092))) (-15 -2314 ($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2286 ($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2305 ($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2274 ($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3254 ($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2604 ($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3243 ($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3243 ($ $))))) (T -1091))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1091)))) (-2314 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091)))) (-5 *1 (-1091)))) (-2286 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091)))) (-5 *1 (-1091)))) (-2305 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091)))) (-5 *1 (-1091)))) (-2274 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091)))) (-5 *1 (-1091)))) (-3254 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091)))) (-5 *1 (-1091)))) (-2604 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091)))) (-5 *1 (-1091)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091)))) (-5 *1 (-1091)))) (-3243 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091)))) (-5 *1 (-1091)))) (-3243 (*1 *1 *1) (-5 *1 (-1091))))
-(-13 (-566 (-798)) (-10 -8 (-15 -1217 ($ (-1092))) (-15 -2314 ($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2286 ($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2305 ($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2274 ($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3254 ($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2604 ($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3243 ($ (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3243 ($ $))))
-((-4236 (((-108) $ $) NIL)) (-4042 (($ $ (-592 (-798))) 59)) (-2547 (($ $ (-592 (-798))) 57)) (-2986 (((-1075) $) 84)) (-4191 (((-2 (|:| -2673 (-592 (-798))) (|:| -3167 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -2990 (-592 (-798))) (|:| |args| (-592 (-798)))) $) 87)) (-2922 (((-108) $) 22)) (-3089 (($ $ (-592 (-592 (-798)))) 56) (($ $ (-2 (|:| -2673 (-592 (-798))) (|:| -3167 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -2990 (-592 (-798))) (|:| |args| (-592 (-798))))) 82)) (-2169 (($) 124 T CONST)) (-3829 (((-1179)) 106)) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 66) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 73)) (-3416 (($) 95) (($ $) 101)) (-3257 (($ $) 83)) (-2638 (($ $ $) NIL)) (-3662 (($ $ $) NIL)) (-1755 (((-592 $) $) 107)) (-2619 (((-1075) $) 90)) (-2093 (((-1039) $) NIL)) (-3406 (($ $ (-592 (-798))) 58)) (-3210 (((-501) $) 46) (((-1092) $) 47) (((-827 (-525)) $) 77) (((-827 (-357)) $) 75)) (-1217 (((-798) $) 53) (($ (-1075)) 48)) (-3655 (($ $ (-592 (-798))) 60)) (-1388 (((-1075) $) 33) (((-1075) $ (-108)) 34) (((-1179) (-764) $) 35) (((-1179) (-764) $ (-108)) 36)) (-4011 (((-108) $ $) NIL)) (-3987 (((-108) $ $) NIL)) (-3955 (((-108) $ $) 49)) (-3999 (((-108) $ $) NIL)) (-3978 (((-108) $ $) 50)))
-(((-1092) (-13 (-789) (-567 (-501)) (-770) (-567 (-1092)) (-567 (-827 (-525))) (-567 (-827 (-357))) (-821 (-525)) (-821 (-357)) (-10 -8 (-15 -3416 ($)) (-15 -3416 ($ $)) (-15 -3829 ((-1179))) (-15 -1217 ($ (-1075))) (-15 -3257 ($ $)) (-15 -2922 ((-108) $)) (-15 -4191 ((-2 (|:| -2673 (-592 (-798))) (|:| -3167 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -2990 (-592 (-798))) (|:| |args| (-592 (-798)))) $)) (-15 -3089 ($ $ (-592 (-592 (-798))))) (-15 -3089 ($ $ (-2 (|:| -2673 (-592 (-798))) (|:| -3167 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -2990 (-592 (-798))) (|:| |args| (-592 (-798)))))) (-15 -2547 ($ $ (-592 (-798)))) (-15 -4042 ($ $ (-592 (-798)))) (-15 -3655 ($ $ (-592 (-798)))) (-15 -3406 ($ $ (-592 (-798)))) (-15 -2986 ((-1075) $)) (-15 -1755 ((-592 $) $)) (-15 -2169 ($) -2709)))) (T -1092))
-((-3416 (*1 *1) (-5 *1 (-1092))) (-3416 (*1 *1 *1) (-5 *1 (-1092))) (-3829 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1092)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1092)))) (-3257 (*1 *1 *1) (-5 *1 (-1092))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1092)))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2673 (-592 (-798))) (|:| -3167 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -2990 (-592 (-798))) (|:| |args| (-592 (-798))))) (-5 *1 (-1092)))) (-3089 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 (-798)))) (-5 *1 (-1092)))) (-3089 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2673 (-592 (-798))) (|:| -3167 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -2990 (-592 (-798))) (|:| |args| (-592 (-798))))) (-5 *1 (-1092)))) (-2547 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1092)))) (-4042 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1092)))) (-3655 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1092)))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1092)))) (-2986 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1092)))) (-1755 (*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-1092)))) (-2169 (*1 *1) (-5 *1 (-1092))))
-(-13 (-789) (-567 (-501)) (-770) (-567 (-1092)) (-567 (-827 (-525))) (-567 (-827 (-357))) (-821 (-525)) (-821 (-357)) (-10 -8 (-15 -3416 ($)) (-15 -3416 ($ $)) (-15 -3829 ((-1179))) (-15 -1217 ($ (-1075))) (-15 -3257 ($ $)) (-15 -2922 ((-108) $)) (-15 -4191 ((-2 (|:| -2673 (-592 (-798))) (|:| -3167 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -2990 (-592 (-798))) (|:| |args| (-592 (-798)))) $)) (-15 -3089 ($ $ (-592 (-592 (-798))))) (-15 -3089 ($ $ (-2 (|:| -2673 (-592 (-798))) (|:| -3167 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -2990 (-592 (-798))) (|:| |args| (-592 (-798)))))) (-15 -2547 ($ $ (-592 (-798)))) (-15 -4042 ($ $ (-592 (-798)))) (-15 -3655 ($ $ (-592 (-798)))) (-15 -3406 ($ $ (-592 (-798)))) (-15 -2986 ((-1075) $)) (-15 -1755 ((-592 $) $)) (-15 -2169 ($) -2709)))
-((-2617 (((-1174 |#1|) |#1| (-856)) 16) (((-1174 |#1|) (-592 |#1|)) 20)))
-(((-1093 |#1|) (-10 -7 (-15 -2617 ((-1174 |#1|) (-592 |#1|))) (-15 -2617 ((-1174 |#1|) |#1| (-856)))) (-977)) (T -1093))
-((-2617 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-5 *2 (-1174 *3)) (-5 *1 (-1093 *3)) (-4 *3 (-977)))) (-2617 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-977)) (-5 *2 (-1174 *4)) (-5 *1 (-1093 *4)))))
-(-10 -7 (-15 -2617 ((-1174 |#1|) (-592 |#1|))) (-15 -2617 ((-1174 |#1|) |#1| (-856))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-1572 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-3063 (($ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1576 (($ $) NIL (|has| |#1| (-429)))) (-2188 (($ $ |#1| (-904) $) NIL)) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) NIL)) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-904)) NIL)) (-2870 (((-904) $) NIL)) (-2172 (($ (-1 (-904) (-904)) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3007 (((-108) $) NIL)) (-3019 ((|#1| $) NIL)) (-3493 (($ $ (-904) |#1| $) NIL (-12 (|has| (-904) (-126)) (|has| |#1| (-517))))) (-1715 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-2343 (((-904) $) NIL)) (-3658 ((|#1| $) NIL (|has| |#1| (-429)))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) NIL) (($ (-385 (-525))) NIL (-3254 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-1684 (((-592 |#1|) $) NIL)) (-1568 ((|#1| $ (-904)) NIL)) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) NIL)) (-3716 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 9 T CONST)) (-3359 (($) 14 T CONST)) (-3955 (((-108) $ $) 16)) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) 19)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-1094 |#1|) (-13 (-304 |#1| (-904)) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| (-904) (-126)) (-15 -3493 ($ $ (-904) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4256)) (-6 -4256) |%noBranch|))) (-977)) (T -1094))
-((-3493 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-904)) (-4 *2 (-126)) (-5 *1 (-1094 *3)) (-4 *3 (-517)) (-4 *3 (-977)))))
-(-13 (-304 |#1| (-904)) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| (-904) (-126)) (-15 -3493 ($ $ (-904) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4256)) (-6 -4256) |%noBranch|)))
-((-1823 (((-1096) (-1092) $) 25)) (-3535 (($) 29)) (-1308 (((-3 (|:| |fst| (-412)) (|:| -1316 "void")) (-1092) $) 22)) (-1864 (((-1179) (-1092) (-3 (|:| |fst| (-412)) (|:| -1316 "void")) $) 41) (((-1179) (-1092) (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) 42) (((-1179) (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) 43)) (-2552 (((-1179) (-1092)) 58)) (-1848 (((-1179) (-1092) $) 55) (((-1179) (-1092)) 56) (((-1179)) 57)) (-2246 (((-1179) (-1092)) 37)) (-4065 (((-1092)) 36)) (-2512 (($) 34)) (-3337 (((-415) (-1092) (-415) (-1092) $) 45) (((-415) (-592 (-1092)) (-415) (-1092) $) 49) (((-415) (-1092) (-415)) 46) (((-415) (-1092) (-415) (-1092)) 50)) (-1523 (((-1092)) 35)) (-1217 (((-798) $) 28)) (-1902 (((-1179)) 30) (((-1179) (-1092)) 33)) (-3763 (((-592 (-1092)) (-1092) $) 24)) (-3967 (((-1179) (-1092) (-592 (-1092)) $) 38) (((-1179) (-1092) (-592 (-1092))) 39) (((-1179) (-592 (-1092))) 40)))
-(((-1095) (-13 (-566 (-798)) (-10 -8 (-15 -3535 ($)) (-15 -1902 ((-1179))) (-15 -1902 ((-1179) (-1092))) (-15 -3337 ((-415) (-1092) (-415) (-1092) $)) (-15 -3337 ((-415) (-592 (-1092)) (-415) (-1092) $)) (-15 -3337 ((-415) (-1092) (-415))) (-15 -3337 ((-415) (-1092) (-415) (-1092))) (-15 -2246 ((-1179) (-1092))) (-15 -1523 ((-1092))) (-15 -4065 ((-1092))) (-15 -3967 ((-1179) (-1092) (-592 (-1092)) $)) (-15 -3967 ((-1179) (-1092) (-592 (-1092)))) (-15 -3967 ((-1179) (-592 (-1092)))) (-15 -1864 ((-1179) (-1092) (-3 (|:| |fst| (-412)) (|:| -1316 "void")) $)) (-15 -1864 ((-1179) (-1092) (-3 (|:| |fst| (-412)) (|:| -1316 "void")))) (-15 -1864 ((-1179) (-3 (|:| |fst| (-412)) (|:| -1316 "void")))) (-15 -1848 ((-1179) (-1092) $)) (-15 -1848 ((-1179) (-1092))) (-15 -1848 ((-1179))) (-15 -2552 ((-1179) (-1092))) (-15 -2512 ($)) (-15 -1308 ((-3 (|:| |fst| (-412)) (|:| -1316 "void")) (-1092) $)) (-15 -3763 ((-592 (-1092)) (-1092) $)) (-15 -1823 ((-1096) (-1092) $))))) (T -1095))
-((-3535 (*1 *1) (-5 *1 (-1095))) (-1902 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1095)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-3337 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-415)) (-5 *3 (-1092)) (-5 *1 (-1095)))) (-3337 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1092))) (-5 *4 (-1092)) (-5 *1 (-1095)))) (-3337 (*1 *2 *3 *2) (-12 (-5 *2 (-415)) (-5 *3 (-1092)) (-5 *1 (-1095)))) (-3337 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-415)) (-5 *3 (-1092)) (-5 *1 (-1095)))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-1523 (*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1095)))) (-4065 (*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1095)))) (-3967 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-592 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-3967 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-592 (-1092))) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-1864 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1092)) (-5 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-1864 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-1864 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-1848 (*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-1848 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-1848 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1095)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-2512 (*1 *1) (-5 *1 (-1095))) (-1308 (*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-5 *1 (-1095)))) (-3763 (*1 *2 *3 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-1095)) (-5 *3 (-1092)))) (-1823 (*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-1096)) (-5 *1 (-1095)))))
-(-13 (-566 (-798)) (-10 -8 (-15 -3535 ($)) (-15 -1902 ((-1179))) (-15 -1902 ((-1179) (-1092))) (-15 -3337 ((-415) (-1092) (-415) (-1092) $)) (-15 -3337 ((-415) (-592 (-1092)) (-415) (-1092) $)) (-15 -3337 ((-415) (-1092) (-415))) (-15 -3337 ((-415) (-1092) (-415) (-1092))) (-15 -2246 ((-1179) (-1092))) (-15 -1523 ((-1092))) (-15 -4065 ((-1092))) (-15 -3967 ((-1179) (-1092) (-592 (-1092)) $)) (-15 -3967 ((-1179) (-1092) (-592 (-1092)))) (-15 -3967 ((-1179) (-592 (-1092)))) (-15 -1864 ((-1179) (-1092) (-3 (|:| |fst| (-412)) (|:| -1316 "void")) $)) (-15 -1864 ((-1179) (-1092) (-3 (|:| |fst| (-412)) (|:| -1316 "void")))) (-15 -1864 ((-1179) (-3 (|:| |fst| (-412)) (|:| -1316 "void")))) (-15 -1848 ((-1179) (-1092) $)) (-15 -1848 ((-1179) (-1092))) (-15 -1848 ((-1179))) (-15 -2552 ((-1179) (-1092))) (-15 -2512 ($)) (-15 -1308 ((-3 (|:| |fst| (-412)) (|:| -1316 "void")) (-1092) $)) (-15 -3763 ((-592 (-1092)) (-1092) $)) (-15 -1823 ((-1096) (-1092) $))))
-((-3024 (((-592 (-592 (-3 (|:| -3257 (-1092)) (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525))))))))) $) 59)) (-1481 (((-592 (-3 (|:| -3257 (-1092)) (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525)))))))) (-412) $) 43)) (-3207 (($ (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-415))))) 17)) (-2552 (((-1179) $) 67)) (-1446 (((-592 (-1092)) $) 22)) (-3945 (((-1024) $) 55)) (-2141 (((-415) (-1092) $) 27)) (-1869 (((-592 (-1092)) $) 30)) (-2512 (($) 19)) (-3337 (((-415) (-592 (-1092)) (-415) $) 25) (((-415) (-1092) (-415) $) 24)) (-1217 (((-798) $) 9) (((-1102 (-1092) (-415)) $) 13)))
-(((-1096) (-13 (-566 (-798)) (-10 -8 (-15 -1217 ((-1102 (-1092) (-415)) $)) (-15 -2512 ($)) (-15 -3337 ((-415) (-592 (-1092)) (-415) $)) (-15 -3337 ((-415) (-1092) (-415) $)) (-15 -2141 ((-415) (-1092) $)) (-15 -1446 ((-592 (-1092)) $)) (-15 -1481 ((-592 (-3 (|:| -3257 (-1092)) (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525)))))))) (-412) $)) (-15 -1869 ((-592 (-1092)) $)) (-15 -3024 ((-592 (-592 (-3 (|:| -3257 (-1092)) (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525))))))))) $)) (-15 -3945 ((-1024) $)) (-15 -2552 ((-1179) $)) (-15 -3207 ($ (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-415))))))))) (T -1096))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-1102 (-1092) (-415))) (-5 *1 (-1096)))) (-2512 (*1 *1) (-5 *1 (-1096))) (-3337 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1092))) (-5 *1 (-1096)))) (-3337 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-415)) (-5 *3 (-1092)) (-5 *1 (-1096)))) (-2141 (*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-415)) (-5 *1 (-1096)))) (-1446 (*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-1096)))) (-1481 (*1 *2 *3 *1) (-12 (-5 *3 (-412)) (-5 *2 (-592 (-3 (|:| -3257 (-1092)) (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525))))))))) (-5 *1 (-1096)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-1096)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-3 (|:| -3257 (-1092)) (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525)))))))))) (-5 *1 (-1096)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-1096)))) (-2552 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1096)))) (-3207 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-415))))) (-5 *1 (-1096)))))
-(-13 (-566 (-798)) (-10 -8 (-15 -1217 ((-1102 (-1092) (-415)) $)) (-15 -2512 ($)) (-15 -3337 ((-415) (-592 (-1092)) (-415) $)) (-15 -3337 ((-415) (-1092) (-415) $)) (-15 -2141 ((-415) (-1092) $)) (-15 -1446 ((-592 (-1092)) $)) (-15 -1481 ((-592 (-3 (|:| -3257 (-1092)) (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525)))))))) (-412) $)) (-15 -1869 ((-592 (-1092)) $)) (-15 -3024 ((-592 (-592 (-3 (|:| -3257 (-1092)) (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525))))))))) $)) (-15 -3945 ((-1024) $)) (-15 -2552 ((-1179) $)) (-15 -3207 ($ (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-415))))))))
-((-4236 (((-108) $ $) NIL)) (-1849 (((-108) $) 42)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-2479 (((-3 (-525) (-205) (-1092) (-1075) $) $) 50)) (-3725 (((-592 $) $) 55)) (-3210 (((-1024) $) 24) (($ (-1024)) 25)) (-2211 (((-108) $) 52)) (-1217 (((-798) $) NIL) (($ (-525)) 26) (((-525) $) 28) (($ (-205)) 29) (((-205) $) 31) (($ (-1092)) 32) (((-1092) $) 34) (($ (-1075)) 35) (((-1075) $) 37)) (-3338 (((-108) $ (|[\|\|]| (-525))) 11) (((-108) $ (|[\|\|]| (-205))) 15) (((-108) $ (|[\|\|]| (-1092))) 23) (((-108) $ (|[\|\|]| (-1075))) 19)) (-2151 (($ (-1092) (-592 $)) 39) (($ $ (-592 $)) 40)) (-1491 (((-525) $) 27) (((-205) $) 30) (((-1092) $) 33) (((-1075) $) 36)) (-3955 (((-108) $ $) 7)))
-(((-1097) (-13 (-1169) (-1020) (-10 -8 (-15 -3210 ((-1024) $)) (-15 -3210 ($ (-1024))) (-15 -1217 ($ (-525))) (-15 -1217 ((-525) $)) (-15 -1491 ((-525) $)) (-15 -1217 ($ (-205))) (-15 -1217 ((-205) $)) (-15 -1491 ((-205) $)) (-15 -1217 ($ (-1092))) (-15 -1217 ((-1092) $)) (-15 -1491 ((-1092) $)) (-15 -1217 ($ (-1075))) (-15 -1217 ((-1075) $)) (-15 -1491 ((-1075) $)) (-15 -2151 ($ (-1092) (-592 $))) (-15 -2151 ($ $ (-592 $))) (-15 -1849 ((-108) $)) (-15 -2479 ((-3 (-525) (-205) (-1092) (-1075) $) $)) (-15 -3725 ((-592 $) $)) (-15 -2211 ((-108) $)) (-15 -3338 ((-108) $ (|[\|\|]| (-525)))) (-15 -3338 ((-108) $ (|[\|\|]| (-205)))) (-15 -3338 ((-108) $ (|[\|\|]| (-1092)))) (-15 -3338 ((-108) $ (|[\|\|]| (-1075))))))) (T -1097))
-((-3210 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-1097)))) (-3210 (*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-1097)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1097)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1097)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1097)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1097)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1097)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1097)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1097)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1097)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1097)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1097)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1097)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1097)))) (-2151 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-1097))) (-5 *1 (-1097)))) (-2151 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1097))) (-5 *1 (-1097)))) (-1849 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1097)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-3 (-525) (-205) (-1092) (-1075) (-1097))) (-5 *1 (-1097)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-592 (-1097))) (-5 *1 (-1097)))) (-2211 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1097)))) (-3338 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-108)) (-5 *1 (-1097)))) (-3338 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-205))) (-5 *2 (-108)) (-5 *1 (-1097)))) (-3338 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1092))) (-5 *2 (-108)) (-5 *1 (-1097)))) (-3338 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-108)) (-5 *1 (-1097)))))
-(-13 (-1169) (-1020) (-10 -8 (-15 -3210 ((-1024) $)) (-15 -3210 ($ (-1024))) (-15 -1217 ($ (-525))) (-15 -1217 ((-525) $)) (-15 -1491 ((-525) $)) (-15 -1217 ($ (-205))) (-15 -1217 ((-205) $)) (-15 -1491 ((-205) $)) (-15 -1217 ($ (-1092))) (-15 -1217 ((-1092) $)) (-15 -1491 ((-1092) $)) (-15 -1217 ($ (-1075))) (-15 -1217 ((-1075) $)) (-15 -1491 ((-1075) $)) (-15 -2151 ($ (-1092) (-592 $))) (-15 -2151 ($ $ (-592 $))) (-15 -1849 ((-108) $)) (-15 -2479 ((-3 (-525) (-205) (-1092) (-1075) $) $)) (-15 -3725 ((-592 $) $)) (-15 -2211 ((-108) $)) (-15 -3338 ((-108) $ (|[\|\|]| (-525)))) (-15 -3338 ((-108) $ (|[\|\|]| (-205)))) (-15 -3338 ((-108) $ (|[\|\|]| (-1092)))) (-15 -3338 ((-108) $ (|[\|\|]| (-1075))))))
-((-2123 (((-592 (-592 (-887 |#1|))) (-592 (-385 (-887 |#1|))) (-592 (-1092))) 57)) (-3922 (((-592 (-273 (-385 (-887 |#1|)))) (-273 (-385 (-887 |#1|)))) 69) (((-592 (-273 (-385 (-887 |#1|)))) (-385 (-887 |#1|))) 65) (((-592 (-273 (-385 (-887 |#1|)))) (-273 (-385 (-887 |#1|))) (-1092)) 70) (((-592 (-273 (-385 (-887 |#1|)))) (-385 (-887 |#1|)) (-1092)) 64) (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-273 (-385 (-887 |#1|))))) 93) (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-385 (-887 |#1|)))) 92) (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-273 (-385 (-887 |#1|)))) (-592 (-1092))) 94) (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-385 (-887 |#1|))) (-592 (-1092))) 91)))
-(((-1098 |#1|) (-10 -7 (-15 -3922 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-385 (-887 |#1|))) (-592 (-1092)))) (-15 -3922 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-273 (-385 (-887 |#1|)))) (-592 (-1092)))) (-15 -3922 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-385 (-887 |#1|))))) (-15 -3922 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-273 (-385 (-887 |#1|)))))) (-15 -3922 ((-592 (-273 (-385 (-887 |#1|)))) (-385 (-887 |#1|)) (-1092))) (-15 -3922 ((-592 (-273 (-385 (-887 |#1|)))) (-273 (-385 (-887 |#1|))) (-1092))) (-15 -3922 ((-592 (-273 (-385 (-887 |#1|)))) (-385 (-887 |#1|)))) (-15 -3922 ((-592 (-273 (-385 (-887 |#1|)))) (-273 (-385 (-887 |#1|))))) (-15 -2123 ((-592 (-592 (-887 |#1|))) (-592 (-385 (-887 |#1|))) (-592 (-1092))))) (-517)) (T -1098))
-((-2123 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1092))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-887 *5)))) (-5 *1 (-1098 *5)))) (-3922 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-273 (-385 (-887 *4))))) (-5 *1 (-1098 *4)) (-5 *3 (-273 (-385 (-887 *4)))))) (-3922 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-273 (-385 (-887 *4))))) (-5 *1 (-1098 *4)) (-5 *3 (-385 (-887 *4))))) (-3922 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-517)) (-5 *2 (-592 (-273 (-385 (-887 *5))))) (-5 *1 (-1098 *5)) (-5 *3 (-273 (-385 (-887 *5)))))) (-3922 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-517)) (-5 *2 (-592 (-273 (-385 (-887 *5))))) (-5 *1 (-1098 *5)) (-5 *3 (-385 (-887 *5))))) (-3922 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *4)))))) (-5 *1 (-1098 *4)) (-5 *3 (-592 (-273 (-385 (-887 *4))))))) (-3922 (*1 *2 *3) (-12 (-5 *3 (-592 (-385 (-887 *4)))) (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *4)))))) (-5 *1 (-1098 *4)))) (-3922 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-1092))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *5)))))) (-5 *1 (-1098 *5)) (-5 *3 (-592 (-273 (-385 (-887 *5))))))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1092))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *5)))))) (-5 *1 (-1098 *5)))))
-(-10 -7 (-15 -3922 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-385 (-887 |#1|))) (-592 (-1092)))) (-15 -3922 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-273 (-385 (-887 |#1|)))) (-592 (-1092)))) (-15 -3922 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-385 (-887 |#1|))))) (-15 -3922 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-273 (-385 (-887 |#1|)))))) (-15 -3922 ((-592 (-273 (-385 (-887 |#1|)))) (-385 (-887 |#1|)) (-1092))) (-15 -3922 ((-592 (-273 (-385 (-887 |#1|)))) (-273 (-385 (-887 |#1|))) (-1092))) (-15 -3922 ((-592 (-273 (-385 (-887 |#1|)))) (-385 (-887 |#1|)))) (-15 -3922 ((-592 (-273 (-385 (-887 |#1|)))) (-273 (-385 (-887 |#1|))))) (-15 -2123 ((-592 (-592 (-887 |#1|))) (-592 (-385 (-887 |#1|))) (-592 (-1092)))))
-((-2446 (((-1075)) 7)) (-2265 (((-1075)) 9)) (-3753 (((-1179) (-1075)) 11)) (-1398 (((-1075)) 8)))
-(((-1099) (-10 -7 (-15 -2446 ((-1075))) (-15 -1398 ((-1075))) (-15 -2265 ((-1075))) (-15 -3753 ((-1179) (-1075))))) (T -1099))
-((-3753 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1099)))) (-2265 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1099)))) (-1398 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1099)))) (-2446 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1099)))))
-(-10 -7 (-15 -2446 ((-1075))) (-15 -1398 ((-1075))) (-15 -2265 ((-1075))) (-15 -3753 ((-1179) (-1075))))
-((-2189 (((-592 (-592 |#1|)) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|)))) 38)) (-2830 (((-592 (-592 (-592 |#1|))) (-592 (-592 |#1|))) 24)) (-2288 (((-1101 (-592 |#1|)) (-592 |#1|)) 34)) (-3368 (((-592 (-592 |#1|)) (-592 |#1|)) 30)) (-3618 (((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 (-592 (-592 |#1|)))) 37)) (-2740 (((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 |#1|) (-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|)))) 36)) (-1552 (((-592 (-592 |#1|)) (-592 (-592 |#1|))) 28)) (-1529 (((-592 |#1|) (-592 |#1|)) 31)) (-1922 (((-592 (-592 (-592 |#1|))) (-592 |#1|) (-592 (-592 (-592 |#1|)))) 18)) (-1997 (((-592 (-592 (-592 |#1|))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 (-592 |#1|)))) 16)) (-3521 (((-2 (|:| |fs| (-108)) (|:| |sd| (-592 |#1|)) (|:| |td| (-592 (-592 |#1|)))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 |#1|))) 14)) (-3087 (((-592 (-592 |#1|)) (-592 (-592 (-592 |#1|)))) 39)) (-1879 (((-592 (-592 |#1|)) (-1101 (-592 |#1|))) 41)))
-(((-1100 |#1|) (-10 -7 (-15 -3521 ((-2 (|:| |fs| (-108)) (|:| |sd| (-592 |#1|)) (|:| |td| (-592 (-592 |#1|)))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 |#1|)))) (-15 -1997 ((-592 (-592 (-592 |#1|))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -1922 ((-592 (-592 (-592 |#1|))) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -2189 ((-592 (-592 |#1|)) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -3087 ((-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -1879 ((-592 (-592 |#1|)) (-1101 (-592 |#1|)))) (-15 -2830 ((-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)))) (-15 -2288 ((-1101 (-592 |#1|)) (-592 |#1|))) (-15 -1552 ((-592 (-592 |#1|)) (-592 (-592 |#1|)))) (-15 -3368 ((-592 (-592 |#1|)) (-592 |#1|))) (-15 -1529 ((-592 |#1|) (-592 |#1|))) (-15 -2740 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 |#1|) (-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))))) (-15 -3618 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 (-592 (-592 |#1|)))))) (-789)) (T -1100))
-((-3618 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-2 (|:| |f1| (-592 *4)) (|:| |f2| (-592 (-592 (-592 *4)))) (|:| |f3| (-592 (-592 *4))) (|:| |f4| (-592 (-592 (-592 *4)))))) (-5 *1 (-1100 *4)) (-5 *3 (-592 (-592 (-592 *4)))))) (-2740 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-789)) (-5 *3 (-592 *6)) (-5 *5 (-592 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-592 *5)) (|:| |f3| *5) (|:| |f4| (-592 *5)))) (-5 *1 (-1100 *6)) (-5 *4 (-592 *5)))) (-1529 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-1100 *3)))) (-3368 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1100 *4)) (-5 *3 (-592 *4)))) (-1552 (*1 *2 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-789)) (-5 *1 (-1100 *3)))) (-2288 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-1101 (-592 *4))) (-5 *1 (-1100 *4)) (-5 *3 (-592 *4)))) (-2830 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 (-592 *4)))) (-5 *1 (-1100 *4)) (-5 *3 (-592 (-592 *4))))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-1101 (-592 *4))) (-4 *4 (-789)) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1100 *4)))) (-3087 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-592 *4)))) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1100 *4)) (-4 *4 (-789)))) (-2189 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-592 (-592 *4)))) (-5 *2 (-592 (-592 *4))) (-4 *4 (-789)) (-5 *1 (-1100 *4)))) (-1922 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-592 *4)) (-4 *4 (-789)) (-5 *1 (-1100 *4)))) (-1997 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-592 *5)) (-4 *5 (-789)) (-5 *1 (-1100 *5)))) (-3521 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-789)) (-5 *4 (-592 *6)) (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-592 *4)))) (-5 *1 (-1100 *6)) (-5 *5 (-592 *4)))))
-(-10 -7 (-15 -3521 ((-2 (|:| |fs| (-108)) (|:| |sd| (-592 |#1|)) (|:| |td| (-592 (-592 |#1|)))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 |#1|)))) (-15 -1997 ((-592 (-592 (-592 |#1|))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -1922 ((-592 (-592 (-592 |#1|))) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -2189 ((-592 (-592 |#1|)) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -3087 ((-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -1879 ((-592 (-592 |#1|)) (-1101 (-592 |#1|)))) (-15 -2830 ((-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)))) (-15 -2288 ((-1101 (-592 |#1|)) (-592 |#1|))) (-15 -1552 ((-592 (-592 |#1|)) (-592 (-592 |#1|)))) (-15 -3368 ((-592 (-592 |#1|)) (-592 |#1|))) (-15 -1529 ((-592 |#1|) (-592 |#1|))) (-15 -2740 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 |#1|) (-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))))) (-15 -3618 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 (-592 (-592 |#1|))))))
-((-2276 (($ (-592 (-592 |#1|))) 10)) (-4151 (((-592 (-592 |#1|)) $) 11)) (-1217 (((-798) $) 26)))
-(((-1101 |#1|) (-10 -8 (-15 -2276 ($ (-592 (-592 |#1|)))) (-15 -4151 ((-592 (-592 |#1|)) $)) (-15 -1217 ((-798) $))) (-1020)) (T -1101))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1101 *3)) (-4 *3 (-1020)))) (-4151 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 *3))) (-5 *1 (-1101 *3)) (-4 *3 (-1020)))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-1101 *3)))))
-(-10 -8 (-15 -2276 ($ (-592 (-592 |#1|)))) (-15 -4151 ((-592 (-592 |#1|)) $)) (-15 -1217 ((-798) $)))
-((-4236 (((-108) $ $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1675 (($) NIL) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-3456 (((-1179) $ |#1| |#1|) NIL (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 ((|#2| $ |#1| |#2|) NIL)) (-1676 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-2591 (((-3 |#2| "failed") |#1| $) NIL)) (-2169 (($) NIL T CONST)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-3271 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (|has| $ (-6 -4258))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-3 |#2| "failed") |#1| $) NIL)) (-1703 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-1284 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (|has| $ (-6 -4258))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258)))) (-2301 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#2| $ |#1|) NIL)) (-3440 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) NIL)) (-3666 ((|#1| $) NIL (|has| |#1| (-789)))) (-2694 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-592 |#2|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-1847 ((|#1| $) NIL (|has| |#1| (-789)))) (-2284 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4259))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-2356 (((-592 |#1|) $) NIL)) (-2239 (((-108) |#1| $) NIL)) (-2992 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-1262 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-2628 (((-592 |#1|) $) NIL)) (-2978 (((-108) |#1| $) NIL)) (-2093 (((-1039) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1872 ((|#2| $) NIL (|has| |#1| (-789)))) (-1983 (((-3 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) "failed") (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL)) (-1420 (($ $ |#2|) NIL (|has| $ (-6 -4259)))) (-4127 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL)) (-3944 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-3341 (((-592 |#2|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1760 (($) NIL) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-2110 (((-713) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-713) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) NIL (-12 (|has| $ (-6 -4258)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-567 (-501))))) (-1230 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-1217 (((-798) $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-1956 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) NIL)) (-3029 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) NIL (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) NIL (-3254 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-1102 |#1| |#2|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -4258))) (-1020) (-1020)) (T -1102))
-NIL
-(-13 (-1105 |#1| |#2|) (-10 -7 (-6 -4258)))
-((-4228 ((|#1| (-592 |#1|)) 32)) (-2102 ((|#1| |#1| (-525)) 18)) (-3573 (((-1088 |#1|) |#1| (-856)) 15)))
-(((-1103 |#1|) (-10 -7 (-15 -4228 (|#1| (-592 |#1|))) (-15 -3573 ((-1088 |#1|) |#1| (-856))) (-15 -2102 (|#1| |#1| (-525)))) (-341)) (T -1103))
-((-2102 (*1 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-1103 *2)) (-4 *2 (-341)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-5 *2 (-1088 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-341)))) (-4228 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-1103 *2)) (-4 *2 (-341)))))
-(-10 -7 (-15 -4228 (|#1| (-592 |#1|))) (-15 -3573 ((-1088 |#1|) |#1| (-856))) (-15 -2102 (|#1| |#1| (-525))))
-((-1675 (($) 10) (($ (-592 (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)))) 14)) (-3271 (($ (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) $) 61) (($ (-1 (-108) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3440 (((-592 (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) $) 39) (((-592 |#3|) $) 41)) (-2284 (($ (-1 (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-3165 (($ (-1 (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2992 (((-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) $) 54)) (-1262 (($ (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) $) 16)) (-2628 (((-592 |#2|) $) 19)) (-2978 (((-108) |#2| $) 59)) (-1983 (((-3 (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) "failed") (-1 (-108) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) $) 58)) (-4127 (((-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) $) 63)) (-3944 (((-108) (-1 (-108) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 67)) (-3341 (((-592 |#3|) $) 43)) (-3406 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2110 (((-713) (-1 (-108) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) $) NIL) (((-713) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) $) NIL) (((-713) |#3| $) NIL) (((-713) (-1 (-108) |#3|) $) 68)) (-1217 (((-798) $) 27)) (-3029 (((-108) (-1 (-108) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 65)) (-3955 (((-108) $ $) 49)))
-(((-1104 |#1| |#2| |#3|) (-10 -8 (-15 -1217 ((-798) |#1|)) (-15 -3955 ((-108) |#1| |#1|)) (-15 -3165 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1675 (|#1| (-592 (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))))) (-15 -1675 (|#1|)) (-15 -3165 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2284 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3029 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3944 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -2110 ((-713) (-1 (-108) |#3|) |#1|)) (-15 -3440 ((-592 |#3|) |#1|)) (-15 -2110 ((-713) |#3| |#1|)) (-15 -3406 (|#3| |#1| |#2| |#3|)) (-15 -3406 (|#3| |#1| |#2|)) (-15 -3341 ((-592 |#3|) |#1|)) (-15 -2978 ((-108) |#2| |#1|)) (-15 -2628 ((-592 |#2|) |#1|)) (-15 -3271 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3271 (|#1| (-1 (-108) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) |#1|)) (-15 -3271 (|#1| (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) |#1|)) (-15 -1983 ((-3 (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) "failed") (-1 (-108) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) |#1|)) (-15 -2992 ((-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) |#1|)) (-15 -1262 (|#1| (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) |#1|)) (-15 -4127 ((-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) |#1|)) (-15 -2110 ((-713) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) |#1|)) (-15 -3440 ((-592 (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) |#1|)) (-15 -2110 ((-713) (-1 (-108) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) |#1|)) (-15 -3944 ((-108) (-1 (-108) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) |#1|)) (-15 -3029 ((-108) (-1 (-108) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) |#1|)) (-15 -2284 (|#1| (-1 (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) |#1|)) (-15 -3165 (|#1| (-1 (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) |#1|))) (-1105 |#2| |#3|) (-1020) (-1020)) (T -1104))
-NIL
-(-10 -8 (-15 -1217 ((-798) |#1|)) (-15 -3955 ((-108) |#1| |#1|)) (-15 -3165 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1675 (|#1| (-592 (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))))) (-15 -1675 (|#1|)) (-15 -3165 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2284 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3029 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3944 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -2110 ((-713) (-1 (-108) |#3|) |#1|)) (-15 -3440 ((-592 |#3|) |#1|)) (-15 -2110 ((-713) |#3| |#1|)) (-15 -3406 (|#3| |#1| |#2| |#3|)) (-15 -3406 (|#3| |#1| |#2|)) (-15 -3341 ((-592 |#3|) |#1|)) (-15 -2978 ((-108) |#2| |#1|)) (-15 -2628 ((-592 |#2|) |#1|)) (-15 -3271 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3271 (|#1| (-1 (-108) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) |#1|)) (-15 -3271 (|#1| (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) |#1|)) (-15 -1983 ((-3 (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) "failed") (-1 (-108) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) |#1|)) (-15 -2992 ((-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) |#1|)) (-15 -1262 (|#1| (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) |#1|)) (-15 -4127 ((-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) |#1|)) (-15 -2110 ((-713) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) |#1|)) (-15 -3440 ((-592 (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) |#1|)) (-15 -2110 ((-713) (-1 (-108) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) |#1|)) (-15 -3944 ((-108) (-1 (-108) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) |#1|)) (-15 -3029 ((-108) (-1 (-108) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) |#1|)) (-15 -2284 (|#1| (-1 (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) |#1|)) (-15 -3165 (|#1| (-1 (-2 (|:| -3364 |#2|) (|:| -4201 |#3|)) (-2 (|:| -3364 |#2|) (|:| -4201 |#3|))) |#1|)))
-((-4236 (((-108) $ $) 19 (-3254 (|has| |#2| (-1020)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-1675 (($) 72) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 71)) (-3456 (((-1179) $ |#1| |#1|) 99 (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) 8)) (-1430 ((|#2| $ |#1| |#2|) 73)) (-1676 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 45 (|has| $ (-6 -4258)))) (-3785 (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 55 (|has| $ (-6 -4258)))) (-2591 (((-3 |#2| "failed") |#1| $) 61)) (-2169 (($) 7 T CONST)) (-1910 (($ $) 58 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258))))) (-3271 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 47 (|has| $ (-6 -4258))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 46 (|has| $ (-6 -4258))) (((-3 |#2| "failed") |#1| $) 62)) (-1703 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 54 (|has| $ (-6 -4258)))) (-1284 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 56 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258)))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 53 (|has| $ (-6 -4258))) (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 52 (|has| $ (-6 -4258)))) (-2301 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4259)))) (-2222 ((|#2| $ |#1|) 88)) (-3440 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 30 (|has| $ (-6 -4258))) (((-592 |#2|) $) 79 (|has| $ (-6 -4258)))) (-3924 (((-108) $ (-713)) 9)) (-3666 ((|#1| $) 96 (|has| |#1| (-789)))) (-2694 (((-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 29 (|has| $ (-6 -4258))) (((-592 |#2|) $) 80 (|has| $ (-6 -4258)))) (-2004 (((-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4258))))) (-1847 ((|#1| $) 95 (|has| |#1| (-789)))) (-2284 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 34 (|has| $ (-6 -4259))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4259)))) (-3165 (($ (-1 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2912 (((-108) $ (-713)) 10)) (-2619 (((-1075) $) 22 (-3254 (|has| |#2| (-1020)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-2356 (((-592 |#1|) $) 63)) (-2239 (((-108) |#1| $) 64)) (-2992 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 39)) (-1262 (($ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 40)) (-2628 (((-592 |#1|) $) 93)) (-2978 (((-108) |#1| $) 92)) (-2093 (((-1039) $) 21 (-3254 (|has| |#2| (-1020)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-1872 ((|#2| $) 97 (|has| |#1| (-789)))) (-1983 (((-3 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) "failed") (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 51)) (-1420 (($ $ |#2|) 98 (|has| $ (-6 -4259)))) (-4127 (((-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 41)) (-3944 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 32 (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))))) 26 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 25 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) 24 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 23 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) 86 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) 84 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) 83 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-2614 (((-108) $ $) 14)) (-2167 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4258)) (|has| |#2| (-1020))))) (-3341 (((-592 |#2|) $) 91)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1760 (($) 49) (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 48)) (-2110 (((-713) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 31 (|has| $ (-6 -4258))) (((-713) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| $ (-6 -4258)))) (((-713) |#2| $) 81 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4258)))) (((-713) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4258)))) (-1462 (($ $) 13)) (-3210 (((-501) $) 59 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-567 (-501))))) (-1230 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 50)) (-1217 (((-798) $) 18 (-3254 (|has| |#2| (-566 (-798))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-566 (-798)))))) (-1956 (($ (-592 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) 42)) (-3029 (((-108) (-1 (-108) (-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) $) 33 (|has| $ (-6 -4258))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (-3254 (|has| |#2| (-1020)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL (-2067 (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020)) (|has| |#1| (-1020))))) (-3311 (($) NIL) (($ (-592 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) NIL)) (-3289 (((-1179) $ (-1075) (-1075)) NIL (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 ((|#1| $ (-1075) |#1|) NIL)) (-3050 (($ (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259)))) (-1515 (((-3 |#1| "failed") (-1075) $) NIL)) (-2475 (($) NIL T CONST)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020))))) (-4205 (($ (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) $) NIL (|has| $ (-6 -4259))) (($ (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259))) (((-3 |#1| "failed") (-1075) $) NIL)) (-2698 (($ (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259)))) (-3504 (((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $ (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020)))) (((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $ (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) NIL (|has| $ (-6 -4259))) (((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259)))) (-3081 ((|#1| $ (-1075) |#1|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-1075)) NIL)) (-2175 (((-592 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259))) (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-1075) $) NIL (|has| (-1075) (-789)))) (-2617 (((-592 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259))) (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020)))) (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2231 (((-1075) $) NIL (|has| (-1075) (-789)))) (-3069 (($ (-1 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4260))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (-2067 (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020)) (|has| |#1| (-1020))))) (-1398 (((-592 (-1075)) $) NIL)) (-3770 (((-108) (-1075) $) NIL)) (-3577 (((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) $) NIL)) (-3246 (($ (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) $) NIL)) (-3177 (((-592 (-1075)) $) NIL)) (-3461 (((-108) (-1075) $) NIL)) (-3993 (((-1039) $) NIL (-2067 (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020)) (|has| |#1| (-1020))))) (-1647 ((|#1| $) NIL (|has| (-1075) (-789)))) (-4202 (((-3 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) "failed") (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL)) (-3453 (($ $ |#1|) NIL (|has| $ (-6 -4260)))) (-2724 (((-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) $) NIL)) (-1518 (((-108) (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))))) NIL (-12 (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-288 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020)))) (($ $ (-273 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) NIL (-12 (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-288 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020)))) (($ $ (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) NIL (-12 (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-288 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020)))) (($ $ (-592 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) (-592 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) NIL (-12 (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-288 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#1| $ (-1075)) NIL) ((|#1| $ (-1075) |#1|) NIL)) (-2637 (($) NIL) (($ (-592 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) NIL)) (-4002 (((-713) (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259))) (((-713) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020)))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-567 (-501))))) (-4114 (($ (-592 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) NIL)) (-4100 (((-798) $) NIL (-2067 (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-566 (-798))) (|has| |#1| (-566 (-798)))))) (-3905 (($ (-592 (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)))) NIL)) (-2706 (((-108) (-1 (-108) (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (-2067 (|has| (-2 (|:| -1556 (-1075)) (|:| -3448 |#1|)) (-1020)) (|has| |#1| (-1020))))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-1076 |#1|) (-13 (-1105 (-1075) |#1|) (-10 -7 (-6 -4259))) (-1020)) (T -1076))
+NIL
+(-13 (-1105 (-1075) |#1|) (-10 -7 (-6 -4259)))
+((-3223 (((-1073 |#1|) (-1073 |#1|)) 77)) (-3300 (((-3 (-1073 |#1|) "failed") (-1073 |#1|)) 37)) (-2752 (((-1073 |#1|) (-385 (-525)) (-1073 |#1|)) 121 (|has| |#1| (-37 (-385 (-525)))))) (-2855 (((-1073 |#1|) |#1| (-1073 |#1|)) 127 (|has| |#1| (-341)))) (-2234 (((-1073 |#1|) (-1073 |#1|)) 90)) (-1706 (((-1073 (-525)) (-525)) 57)) (-2873 (((-1073 |#1|) (-1073 (-1073 |#1|))) 109 (|has| |#1| (-37 (-385 (-525)))))) (-3997 (((-1073 |#1|) (-525) (-525) (-1073 |#1|)) 95)) (-2885 (((-1073 |#1|) |#1| (-525)) 45)) (-4084 (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 60)) (-2030 (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 124 (|has| |#1| (-341)))) (-3773 (((-1073 |#1|) |#1| (-1 (-1073 |#1|))) 108 (|has| |#1| (-37 (-385 (-525)))))) (-3007 (((-1073 |#1|) (-1 |#1| (-525)) |#1| (-1 (-1073 |#1|))) 125 (|has| |#1| (-341)))) (-2381 (((-1073 |#1|) (-1073 |#1|)) 89)) (-2036 (((-1073 |#1|) (-1073 |#1|)) 76)) (-3623 (((-1073 |#1|) (-525) (-525) (-1073 |#1|)) 96)) (-2367 (((-1073 |#1|) |#1| (-1073 |#1|)) 105 (|has| |#1| (-37 (-385 (-525)))))) (-2320 (((-1073 (-525)) (-525)) 56)) (-2915 (((-1073 |#1|) |#1|) 59)) (-2621 (((-1073 |#1|) (-1073 |#1|) (-525) (-525)) 92)) (-3253 (((-1073 |#1|) (-1 |#1| (-525)) (-1073 |#1|)) 66)) (-1311 (((-3 (-1073 |#1|) "failed") (-1073 |#1|) (-1073 |#1|)) 35)) (-1291 (((-1073 |#1|) (-1073 |#1|)) 91)) (-2825 (((-1073 |#1|) (-1073 |#1|) |#1|) 71)) (-1708 (((-1073 |#1|) (-1073 |#1|)) 62)) (-3728 (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 72)) (-4100 (((-1073 |#1|) |#1|) 67)) (-1783 (((-1073 |#1|) (-1073 (-1073 |#1|))) 82)) (-2880 (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 36)) (-2871 (((-1073 |#1|) (-1073 |#1|)) 21) (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 23)) (-2860 (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 17)) (* (((-1073 |#1|) (-1073 |#1|) |#1|) 29) (((-1073 |#1|) |#1| (-1073 |#1|)) 26) (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 27)))
+(((-1077 |#1|) (-10 -7 (-15 -2860 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -2871 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -2871 ((-1073 |#1|) (-1073 |#1|))) (-15 * ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 * ((-1073 |#1|) |#1| (-1073 |#1|))) (-15 * ((-1073 |#1|) (-1073 |#1|) |#1|)) (-15 -1311 ((-3 (-1073 |#1|) "failed") (-1073 |#1|) (-1073 |#1|))) (-15 -2880 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3300 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -2885 ((-1073 |#1|) |#1| (-525))) (-15 -2320 ((-1073 (-525)) (-525))) (-15 -1706 ((-1073 (-525)) (-525))) (-15 -2915 ((-1073 |#1|) |#1|)) (-15 -4084 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -1708 ((-1073 |#1|) (-1073 |#1|))) (-15 -3253 ((-1073 |#1|) (-1 |#1| (-525)) (-1073 |#1|))) (-15 -4100 ((-1073 |#1|) |#1|)) (-15 -2825 ((-1073 |#1|) (-1073 |#1|) |#1|)) (-15 -3728 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -2036 ((-1073 |#1|) (-1073 |#1|))) (-15 -3223 ((-1073 |#1|) (-1073 |#1|))) (-15 -1783 ((-1073 |#1|) (-1073 (-1073 |#1|)))) (-15 -2381 ((-1073 |#1|) (-1073 |#1|))) (-15 -2234 ((-1073 |#1|) (-1073 |#1|))) (-15 -1291 ((-1073 |#1|) (-1073 |#1|))) (-15 -2621 ((-1073 |#1|) (-1073 |#1|) (-525) (-525))) (-15 -3997 ((-1073 |#1|) (-525) (-525) (-1073 |#1|))) (-15 -3623 ((-1073 |#1|) (-525) (-525) (-1073 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2367 ((-1073 |#1|) |#1| (-1073 |#1|))) (-15 -3773 ((-1073 |#1|) |#1| (-1 (-1073 |#1|)))) (-15 -2873 ((-1073 |#1|) (-1073 (-1073 |#1|)))) (-15 -2752 ((-1073 |#1|) (-385 (-525)) (-1073 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -2030 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3007 ((-1073 |#1|) (-1 |#1| (-525)) |#1| (-1 (-1073 |#1|)))) (-15 -2855 ((-1073 |#1|) |#1| (-1073 |#1|)))) |%noBranch|)) (-977)) (T -1077))
+((-2855 (*1 *2 *3 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-341)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-3007 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-525))) (-5 *5 (-1 (-1073 *4))) (-4 *4 (-341)) (-4 *4 (-977)) (-5 *2 (-1073 *4)) (-5 *1 (-1077 *4)))) (-2030 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-341)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-2752 (*1 *2 *3 *2) (-12 (-5 *2 (-1073 *4)) (-4 *4 (-37 *3)) (-4 *4 (-977)) (-5 *3 (-385 (-525))) (-5 *1 (-1077 *4)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-1073 (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1077 *4)) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-977)))) (-3773 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1073 *3))) (-5 *2 (-1073 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)))) (-2367 (*1 *2 *3 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-3623 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1073 *4)) (-5 *3 (-525)) (-4 *4 (-977)) (-5 *1 (-1077 *4)))) (-3997 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1073 *4)) (-5 *3 (-525)) (-4 *4 (-977)) (-5 *1 (-1077 *4)))) (-2621 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1073 *4)) (-5 *3 (-525)) (-4 *4 (-977)) (-5 *1 (-1077 *4)))) (-1291 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-2234 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-2381 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-1073 (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1077 *4)) (-4 *4 (-977)))) (-3223 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-2036 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-3728 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-2825 (*1 *2 *2 *3) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-4100 (*1 *2 *3) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-977)))) (-3253 (*1 *2 *3 *2) (-12 (-5 *2 (-1073 *4)) (-5 *3 (-1 *4 (-525))) (-4 *4 (-977)) (-5 *1 (-1077 *4)))) (-1708 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-4084 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-2915 (*1 *2 *3) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-977)))) (-1706 (*1 *2 *3) (-12 (-5 *2 (-1073 (-525))) (-5 *1 (-1077 *4)) (-4 *4 (-977)) (-5 *3 (-525)))) (-2320 (*1 *2 *3) (-12 (-5 *2 (-1073 (-525))) (-5 *1 (-1077 *4)) (-4 *4 (-977)) (-5 *3 (-525)))) (-2885 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-5 *2 (-1073 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-977)))) (-3300 (*1 *2 *2) (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-2880 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-1311 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-2871 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-2871 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))) (-2860 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))))
+(-10 -7 (-15 -2860 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -2871 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -2871 ((-1073 |#1|) (-1073 |#1|))) (-15 * ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 * ((-1073 |#1|) |#1| (-1073 |#1|))) (-15 * ((-1073 |#1|) (-1073 |#1|) |#1|)) (-15 -1311 ((-3 (-1073 |#1|) "failed") (-1073 |#1|) (-1073 |#1|))) (-15 -2880 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3300 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -2885 ((-1073 |#1|) |#1| (-525))) (-15 -2320 ((-1073 (-525)) (-525))) (-15 -1706 ((-1073 (-525)) (-525))) (-15 -2915 ((-1073 |#1|) |#1|)) (-15 -4084 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -1708 ((-1073 |#1|) (-1073 |#1|))) (-15 -3253 ((-1073 |#1|) (-1 |#1| (-525)) (-1073 |#1|))) (-15 -4100 ((-1073 |#1|) |#1|)) (-15 -2825 ((-1073 |#1|) (-1073 |#1|) |#1|)) (-15 -3728 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -2036 ((-1073 |#1|) (-1073 |#1|))) (-15 -3223 ((-1073 |#1|) (-1073 |#1|))) (-15 -1783 ((-1073 |#1|) (-1073 (-1073 |#1|)))) (-15 -2381 ((-1073 |#1|) (-1073 |#1|))) (-15 -2234 ((-1073 |#1|) (-1073 |#1|))) (-15 -1291 ((-1073 |#1|) (-1073 |#1|))) (-15 -2621 ((-1073 |#1|) (-1073 |#1|) (-525) (-525))) (-15 -3997 ((-1073 |#1|) (-525) (-525) (-1073 |#1|))) (-15 -3623 ((-1073 |#1|) (-525) (-525) (-1073 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2367 ((-1073 |#1|) |#1| (-1073 |#1|))) (-15 -3773 ((-1073 |#1|) |#1| (-1 (-1073 |#1|)))) (-15 -2873 ((-1073 |#1|) (-1073 (-1073 |#1|)))) (-15 -2752 ((-1073 |#1|) (-385 (-525)) (-1073 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -2030 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3007 ((-1073 |#1|) (-1 |#1| (-525)) |#1| (-1 (-1073 |#1|)))) (-15 -2855 ((-1073 |#1|) |#1| (-1073 |#1|)))) |%noBranch|))
+((-1803 (((-1073 |#1|) (-1073 |#1|)) 57)) (-3659 (((-1073 |#1|) (-1073 |#1|)) 39)) (-1781 (((-1073 |#1|) (-1073 |#1|)) 53)) (-3638 (((-1073 |#1|) (-1073 |#1|)) 35)) (-1828 (((-1073 |#1|) (-1073 |#1|)) 60)) (-3698 (((-1073 |#1|) (-1073 |#1|)) 42)) (-2533 (((-1073 |#1|) (-1073 |#1|)) 31)) (-1618 (((-1073 |#1|) (-1073 |#1|)) 27)) (-1841 (((-1073 |#1|) (-1073 |#1|)) 61)) (-3798 (((-1073 |#1|) (-1073 |#1|)) 43)) (-1816 (((-1073 |#1|) (-1073 |#1|)) 58)) (-3678 (((-1073 |#1|) (-1073 |#1|)) 40)) (-1792 (((-1073 |#1|) (-1073 |#1|)) 55)) (-3649 (((-1073 |#1|) (-1073 |#1|)) 37)) (-1876 (((-1073 |#1|) (-1073 |#1|)) 65)) (-3853 (((-1073 |#1|) (-1073 |#1|)) 47)) (-1853 (((-1073 |#1|) (-1073 |#1|)) 63)) (-3808 (((-1073 |#1|) (-1073 |#1|)) 45)) (-1902 (((-1073 |#1|) (-1073 |#1|)) 68)) (-1760 (((-1073 |#1|) (-1073 |#1|)) 50)) (-3135 (((-1073 |#1|) (-1073 |#1|)) 69)) (-1770 (((-1073 |#1|) (-1073 |#1|)) 51)) (-1891 (((-1073 |#1|) (-1073 |#1|)) 67)) (-1748 (((-1073 |#1|) (-1073 |#1|)) 49)) (-1866 (((-1073 |#1|) (-1073 |#1|)) 66)) (-3820 (((-1073 |#1|) (-1073 |#1|)) 48)) (** (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 33)))
+(((-1078 |#1|) (-10 -7 (-15 -1618 ((-1073 |#1|) (-1073 |#1|))) (-15 -2533 ((-1073 |#1|) (-1073 |#1|))) (-15 ** ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3638 ((-1073 |#1|) (-1073 |#1|))) (-15 -3649 ((-1073 |#1|) (-1073 |#1|))) (-15 -3659 ((-1073 |#1|) (-1073 |#1|))) (-15 -3678 ((-1073 |#1|) (-1073 |#1|))) (-15 -3698 ((-1073 |#1|) (-1073 |#1|))) (-15 -3798 ((-1073 |#1|) (-1073 |#1|))) (-15 -3808 ((-1073 |#1|) (-1073 |#1|))) (-15 -3820 ((-1073 |#1|) (-1073 |#1|))) (-15 -3853 ((-1073 |#1|) (-1073 |#1|))) (-15 -1748 ((-1073 |#1|) (-1073 |#1|))) (-15 -1760 ((-1073 |#1|) (-1073 |#1|))) (-15 -1770 ((-1073 |#1|) (-1073 |#1|))) (-15 -1781 ((-1073 |#1|) (-1073 |#1|))) (-15 -1792 ((-1073 |#1|) (-1073 |#1|))) (-15 -1803 ((-1073 |#1|) (-1073 |#1|))) (-15 -1816 ((-1073 |#1|) (-1073 |#1|))) (-15 -1828 ((-1073 |#1|) (-1073 |#1|))) (-15 -1841 ((-1073 |#1|) (-1073 |#1|))) (-15 -1853 ((-1073 |#1|) (-1073 |#1|))) (-15 -1866 ((-1073 |#1|) (-1073 |#1|))) (-15 -1876 ((-1073 |#1|) (-1073 |#1|))) (-15 -1891 ((-1073 |#1|) (-1073 |#1|))) (-15 -1902 ((-1073 |#1|) (-1073 |#1|))) (-15 -3135 ((-1073 |#1|) (-1073 |#1|)))) (-37 (-385 (-525)))) (T -1078))
+((-3135 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1902 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1891 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1876 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1866 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1828 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1816 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1803 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1792 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1781 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1760 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1748 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-3853 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-3820 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-3798 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-3698 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-3678 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-3659 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-3649 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2533 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1618 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))))
+(-10 -7 (-15 -1618 ((-1073 |#1|) (-1073 |#1|))) (-15 -2533 ((-1073 |#1|) (-1073 |#1|))) (-15 ** ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3638 ((-1073 |#1|) (-1073 |#1|))) (-15 -3649 ((-1073 |#1|) (-1073 |#1|))) (-15 -3659 ((-1073 |#1|) (-1073 |#1|))) (-15 -3678 ((-1073 |#1|) (-1073 |#1|))) (-15 -3698 ((-1073 |#1|) (-1073 |#1|))) (-15 -3798 ((-1073 |#1|) (-1073 |#1|))) (-15 -3808 ((-1073 |#1|) (-1073 |#1|))) (-15 -3820 ((-1073 |#1|) (-1073 |#1|))) (-15 -3853 ((-1073 |#1|) (-1073 |#1|))) (-15 -1748 ((-1073 |#1|) (-1073 |#1|))) (-15 -1760 ((-1073 |#1|) (-1073 |#1|))) (-15 -1770 ((-1073 |#1|) (-1073 |#1|))) (-15 -1781 ((-1073 |#1|) (-1073 |#1|))) (-15 -1792 ((-1073 |#1|) (-1073 |#1|))) (-15 -1803 ((-1073 |#1|) (-1073 |#1|))) (-15 -1816 ((-1073 |#1|) (-1073 |#1|))) (-15 -1828 ((-1073 |#1|) (-1073 |#1|))) (-15 -1841 ((-1073 |#1|) (-1073 |#1|))) (-15 -1853 ((-1073 |#1|) (-1073 |#1|))) (-15 -1866 ((-1073 |#1|) (-1073 |#1|))) (-15 -1876 ((-1073 |#1|) (-1073 |#1|))) (-15 -1891 ((-1073 |#1|) (-1073 |#1|))) (-15 -1902 ((-1073 |#1|) (-1073 |#1|))) (-15 -3135 ((-1073 |#1|) (-1073 |#1|))))
+((-1803 (((-1073 |#1|) (-1073 |#1|)) 100)) (-3659 (((-1073 |#1|) (-1073 |#1|)) 64)) (-1737 (((-2 (|:| -1781 (-1073 |#1|)) (|:| -1792 (-1073 |#1|))) (-1073 |#1|)) 96)) (-1781 (((-1073 |#1|) (-1073 |#1|)) 97)) (-2057 (((-2 (|:| -3638 (-1073 |#1|)) (|:| -3649 (-1073 |#1|))) (-1073 |#1|)) 53)) (-3638 (((-1073 |#1|) (-1073 |#1|)) 54)) (-1828 (((-1073 |#1|) (-1073 |#1|)) 102)) (-3698 (((-1073 |#1|) (-1073 |#1|)) 71)) (-2533 (((-1073 |#1|) (-1073 |#1|)) 39)) (-1618 (((-1073 |#1|) (-1073 |#1|)) 36)) (-1841 (((-1073 |#1|) (-1073 |#1|)) 103)) (-3798 (((-1073 |#1|) (-1073 |#1|)) 72)) (-1816 (((-1073 |#1|) (-1073 |#1|)) 101)) (-3678 (((-1073 |#1|) (-1073 |#1|)) 67)) (-1792 (((-1073 |#1|) (-1073 |#1|)) 98)) (-3649 (((-1073 |#1|) (-1073 |#1|)) 55)) (-1876 (((-1073 |#1|) (-1073 |#1|)) 111)) (-3853 (((-1073 |#1|) (-1073 |#1|)) 86)) (-1853 (((-1073 |#1|) (-1073 |#1|)) 105)) (-3808 (((-1073 |#1|) (-1073 |#1|)) 82)) (-1902 (((-1073 |#1|) (-1073 |#1|)) 115)) (-1760 (((-1073 |#1|) (-1073 |#1|)) 90)) (-3135 (((-1073 |#1|) (-1073 |#1|)) 117)) (-1770 (((-1073 |#1|) (-1073 |#1|)) 92)) (-1891 (((-1073 |#1|) (-1073 |#1|)) 113)) (-1748 (((-1073 |#1|) (-1073 |#1|)) 88)) (-1866 (((-1073 |#1|) (-1073 |#1|)) 107)) (-3820 (((-1073 |#1|) (-1073 |#1|)) 84)) (** (((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) 40)))
+(((-1079 |#1|) (-10 -7 (-15 -1618 ((-1073 |#1|) (-1073 |#1|))) (-15 -2533 ((-1073 |#1|) (-1073 |#1|))) (-15 ** ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -2057 ((-2 (|:| -3638 (-1073 |#1|)) (|:| -3649 (-1073 |#1|))) (-1073 |#1|))) (-15 -3638 ((-1073 |#1|) (-1073 |#1|))) (-15 -3649 ((-1073 |#1|) (-1073 |#1|))) (-15 -3659 ((-1073 |#1|) (-1073 |#1|))) (-15 -3678 ((-1073 |#1|) (-1073 |#1|))) (-15 -3698 ((-1073 |#1|) (-1073 |#1|))) (-15 -3798 ((-1073 |#1|) (-1073 |#1|))) (-15 -3808 ((-1073 |#1|) (-1073 |#1|))) (-15 -3820 ((-1073 |#1|) (-1073 |#1|))) (-15 -3853 ((-1073 |#1|) (-1073 |#1|))) (-15 -1748 ((-1073 |#1|) (-1073 |#1|))) (-15 -1760 ((-1073 |#1|) (-1073 |#1|))) (-15 -1770 ((-1073 |#1|) (-1073 |#1|))) (-15 -1737 ((-2 (|:| -1781 (-1073 |#1|)) (|:| -1792 (-1073 |#1|))) (-1073 |#1|))) (-15 -1781 ((-1073 |#1|) (-1073 |#1|))) (-15 -1792 ((-1073 |#1|) (-1073 |#1|))) (-15 -1803 ((-1073 |#1|) (-1073 |#1|))) (-15 -1816 ((-1073 |#1|) (-1073 |#1|))) (-15 -1828 ((-1073 |#1|) (-1073 |#1|))) (-15 -1841 ((-1073 |#1|) (-1073 |#1|))) (-15 -1853 ((-1073 |#1|) (-1073 |#1|))) (-15 -1866 ((-1073 |#1|) (-1073 |#1|))) (-15 -1876 ((-1073 |#1|) (-1073 |#1|))) (-15 -1891 ((-1073 |#1|) (-1073 |#1|))) (-15 -1902 ((-1073 |#1|) (-1073 |#1|))) (-15 -3135 ((-1073 |#1|) (-1073 |#1|)))) (-37 (-385 (-525)))) (T -1079))
+((-3135 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1902 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1891 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1876 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1866 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1828 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1816 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1803 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1792 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1781 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1737 (*1 *2 *3) (-12 (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-2 (|:| -1781 (-1073 *4)) (|:| -1792 (-1073 *4)))) (-5 *1 (-1079 *4)) (-5 *3 (-1073 *4)))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1760 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1748 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-3853 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-3820 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-3798 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-3698 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-3678 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-3659 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-3649 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-2057 (*1 *2 *3) (-12 (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-2 (|:| -3638 (-1073 *4)) (|:| -3649 (-1073 *4)))) (-5 *1 (-1079 *4)) (-5 *3 (-1073 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-2533 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))) (-1618 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1079 *3)))))
+(-10 -7 (-15 -1618 ((-1073 |#1|) (-1073 |#1|))) (-15 -2533 ((-1073 |#1|) (-1073 |#1|))) (-15 ** ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -2057 ((-2 (|:| -3638 (-1073 |#1|)) (|:| -3649 (-1073 |#1|))) (-1073 |#1|))) (-15 -3638 ((-1073 |#1|) (-1073 |#1|))) (-15 -3649 ((-1073 |#1|) (-1073 |#1|))) (-15 -3659 ((-1073 |#1|) (-1073 |#1|))) (-15 -3678 ((-1073 |#1|) (-1073 |#1|))) (-15 -3698 ((-1073 |#1|) (-1073 |#1|))) (-15 -3798 ((-1073 |#1|) (-1073 |#1|))) (-15 -3808 ((-1073 |#1|) (-1073 |#1|))) (-15 -3820 ((-1073 |#1|) (-1073 |#1|))) (-15 -3853 ((-1073 |#1|) (-1073 |#1|))) (-15 -1748 ((-1073 |#1|) (-1073 |#1|))) (-15 -1760 ((-1073 |#1|) (-1073 |#1|))) (-15 -1770 ((-1073 |#1|) (-1073 |#1|))) (-15 -1737 ((-2 (|:| -1781 (-1073 |#1|)) (|:| -1792 (-1073 |#1|))) (-1073 |#1|))) (-15 -1781 ((-1073 |#1|) (-1073 |#1|))) (-15 -1792 ((-1073 |#1|) (-1073 |#1|))) (-15 -1803 ((-1073 |#1|) (-1073 |#1|))) (-15 -1816 ((-1073 |#1|) (-1073 |#1|))) (-15 -1828 ((-1073 |#1|) (-1073 |#1|))) (-15 -1841 ((-1073 |#1|) (-1073 |#1|))) (-15 -1853 ((-1073 |#1|) (-1073 |#1|))) (-15 -1866 ((-1073 |#1|) (-1073 |#1|))) (-15 -1876 ((-1073 |#1|) (-1073 |#1|))) (-15 -1891 ((-1073 |#1|) (-1073 |#1|))) (-15 -1902 ((-1073 |#1|) (-1073 |#1|))) (-15 -3135 ((-1073 |#1|) (-1073 |#1|))))
+((-2429 (((-892 |#2|) |#2| |#2|) 35)) (-3201 ((|#2| |#2| |#1|) 19 (|has| |#1| (-286)))))
+(((-1080 |#1| |#2|) (-10 -7 (-15 -2429 ((-892 |#2|) |#2| |#2|)) (IF (|has| |#1| (-286)) (-15 -3201 (|#2| |#2| |#1|)) |%noBranch|)) (-517) (-1150 |#1|)) (T -1080))
+((-3201 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-4 *3 (-517)) (-5 *1 (-1080 *3 *2)) (-4 *2 (-1150 *3)))) (-2429 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-892 *3)) (-5 *1 (-1080 *4 *3)) (-4 *3 (-1150 *4)))))
+(-10 -7 (-15 -2429 ((-892 |#2|) |#2| |#2|)) (IF (|has| |#1| (-286)) (-15 -3201 (|#2| |#2| |#1|)) |%noBranch|))
+((-4087 (((-108) $ $) NIL)) (-3082 (($ $ (-592 (-713))) 67)) (-1517 (($) 26)) (-3205 (($ $) 42)) (-1396 (((-592 $) $) 51)) (-4161 (((-108) $) 16)) (-1906 (((-592 (-878 |#2|)) $) 74)) (-3061 (($ $) 68)) (-1799 (((-713) $) 37)) (-3324 (($) 25)) (-3262 (($ $ (-592 (-713)) (-878 |#2|)) 60) (($ $ (-592 (-713)) (-713)) 61) (($ $ (-713) (-878 |#2|)) 63)) (-3212 (($ $ $) 48) (($ (-592 $)) 50)) (-2337 (((-713) $) 75)) (-3506 (((-108) $) 15)) (-1289 (((-1075) $) NIL)) (-2862 (((-108) $) 18)) (-3993 (((-1039) $) NIL)) (-2062 (((-159) $) 73)) (-4122 (((-878 |#2|) $) 69)) (-1856 (((-713) $) 70)) (-3928 (((-108) $) 72)) (-2671 (($ $ (-592 (-713)) (-159)) 66)) (-3003 (($ $) 43)) (-4100 (((-798) $) 86)) (-1299 (($ $ (-592 (-713)) (-108)) 65)) (-3576 (((-592 $) $) 11)) (-1477 (($ $ (-713)) 36)) (-2517 (($ $) 32)) (-1605 (($ $ $ (-878 |#2|) (-713)) 56)) (-4154 (($ $ (-878 |#2|)) 55)) (-1915 (($ $ (-592 (-713)) (-878 |#2|)) 54) (($ $ (-592 (-713)) (-713)) 58) (((-713) $ (-878 |#2|)) 59)) (-2775 (((-108) $ $) 80)))
+(((-1081 |#1| |#2|) (-13 (-1020) (-10 -8 (-15 -3506 ((-108) $)) (-15 -4161 ((-108) $)) (-15 -2862 ((-108) $)) (-15 -3324 ($)) (-15 -1517 ($)) (-15 -2517 ($ $)) (-15 -1477 ($ $ (-713))) (-15 -3576 ((-592 $) $)) (-15 -1799 ((-713) $)) (-15 -3205 ($ $)) (-15 -3003 ($ $)) (-15 -3212 ($ $ $)) (-15 -3212 ($ (-592 $))) (-15 -1396 ((-592 $) $)) (-15 -1915 ($ $ (-592 (-713)) (-878 |#2|))) (-15 -4154 ($ $ (-878 |#2|))) (-15 -1605 ($ $ $ (-878 |#2|) (-713))) (-15 -3262 ($ $ (-592 (-713)) (-878 |#2|))) (-15 -1915 ($ $ (-592 (-713)) (-713))) (-15 -3262 ($ $ (-592 (-713)) (-713))) (-15 -1915 ((-713) $ (-878 |#2|))) (-15 -3262 ($ $ (-713) (-878 |#2|))) (-15 -1299 ($ $ (-592 (-713)) (-108))) (-15 -2671 ($ $ (-592 (-713)) (-159))) (-15 -3082 ($ $ (-592 (-713)))) (-15 -4122 ((-878 |#2|) $)) (-15 -1856 ((-713) $)) (-15 -3928 ((-108) $)) (-15 -2062 ((-159) $)) (-15 -2337 ((-713) $)) (-15 -3061 ($ $)) (-15 -1906 ((-592 (-878 |#2|)) $)))) (-856) (-977)) (T -1081))
+((-3506 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-3324 (*1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-1517 (*1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-2517 (*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-1477 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-592 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-1799 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-3205 (*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-3003 (*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-3212 (*1 *1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-3212 (*1 *1 *2) (-12 (-5 *2 (-592 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-1396 (*1 *2 *1) (-12 (-5 *2 (-592 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-1915 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-878 *5)) (-4 *5 (-977)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 (-878 *4)) (-4 *4 (-977)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)))) (-1605 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-878 *5)) (-5 *3 (-713)) (-4 *5 (-977)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)))) (-3262 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-878 *5)) (-4 *5 (-977)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)))) (-1915 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)) (-4 *5 (-977)))) (-3262 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)) (-4 *5 (-977)))) (-1915 (*1 *2 *1 *3) (-12 (-5 *3 (-878 *5)) (-4 *5 (-977)) (-5 *2 (-713)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)))) (-3262 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-878 *5)) (-4 *5 (-977)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)))) (-1299 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-108)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)) (-4 *5 (-977)))) (-2671 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-159)) (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)) (-4 *5 (-977)))) (-3082 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-878 *4)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-3061 (*1 *1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-1906 (*1 *2 *1) (-12 (-5 *2 (-592 (-878 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))))
+(-13 (-1020) (-10 -8 (-15 -3506 ((-108) $)) (-15 -4161 ((-108) $)) (-15 -2862 ((-108) $)) (-15 -3324 ($)) (-15 -1517 ($)) (-15 -2517 ($ $)) (-15 -1477 ($ $ (-713))) (-15 -3576 ((-592 $) $)) (-15 -1799 ((-713) $)) (-15 -3205 ($ $)) (-15 -3003 ($ $)) (-15 -3212 ($ $ $)) (-15 -3212 ($ (-592 $))) (-15 -1396 ((-592 $) $)) (-15 -1915 ($ $ (-592 (-713)) (-878 |#2|))) (-15 -4154 ($ $ (-878 |#2|))) (-15 -1605 ($ $ $ (-878 |#2|) (-713))) (-15 -3262 ($ $ (-592 (-713)) (-878 |#2|))) (-15 -1915 ($ $ (-592 (-713)) (-713))) (-15 -3262 ($ $ (-592 (-713)) (-713))) (-15 -1915 ((-713) $ (-878 |#2|))) (-15 -3262 ($ $ (-713) (-878 |#2|))) (-15 -1299 ($ $ (-592 (-713)) (-108))) (-15 -2671 ($ $ (-592 (-713)) (-159))) (-15 -3082 ($ $ (-592 (-713)))) (-15 -4122 ((-878 |#2|) $)) (-15 -1856 ((-713) $)) (-15 -3928 ((-108) $)) (-15 -2062 ((-159) $)) (-15 -2337 ((-713) $)) (-15 -3061 ($ $)) (-15 -1906 ((-592 (-878 |#2|)) $))))
+((-4087 (((-108) $ $) NIL)) (-3283 ((|#2| $) 11)) (-3268 ((|#1| $) 10)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4114 (($ |#1| |#2|) 9)) (-4100 (((-798) $) 16)) (-2775 (((-108) $ $) NIL)))
+(((-1082 |#1| |#2|) (-13 (-1020) (-10 -8 (-15 -4114 ($ |#1| |#2|)) (-15 -3268 (|#1| $)) (-15 -3283 (|#2| $)))) (-1020) (-1020)) (T -1082))
+((-4114 (*1 *1 *2 *3) (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-3268 (*1 *2 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1020)))) (-3283 (*1 *2 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-1082 *3 *2)) (-4 *3 (-1020)))))
+(-13 (-1020) (-10 -8 (-15 -4114 ($ |#1| |#2|)) (-15 -3268 (|#1| $)) (-15 -3283 (|#2| $))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1653 (((-1090 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-1296 (((-592 (-1005)) $) NIL)) (-3469 (((-1092) $) 11)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-2433 (($ $) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-1568 (((-108) $) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-2730 (($ $ (-525)) NIL) (($ $ (-525) (-525)) 66)) (-2005 (((-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) NIL)) (-3494 (((-1090 |#1| |#2| |#3|) $) 36)) (-2326 (((-3 (-1090 |#1| |#2| |#3|) "failed") $) 29)) (-1350 (((-1090 |#1| |#2| |#3|) $) 30)) (-1803 (($ $) 107 (|has| |#1| (-37 (-385 (-525)))))) (-3659 (($ $) 83 (|has| |#1| (-37 (-385 (-525)))))) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-4195 (($ $) NIL (|has| |#1| (-341)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-341)))) (-4211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-1507 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1781 (($ $) 103 (|has| |#1| (-37 (-385 (-525)))))) (-3638 (($ $) 79 (|has| |#1| (-37 (-385 (-525)))))) (-2971 (((-525) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-2996 (($ (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) NIL)) (-1828 (($ $) 111 (|has| |#1| (-37 (-385 (-525)))))) (-3698 (($ $) 87 (|has| |#1| (-37 (-385 (-525)))))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-1090 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1092) "failed") $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-968 (-1092))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341)))) (((-3 (-525) "failed") $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341))))) (-4105 (((-1090 |#1| |#2| |#3|) $) 131) (((-1092) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-968 (-1092))) (|has| |#1| (-341)))) (((-385 (-525)) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341)))) (((-525) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341))))) (-1498 (($ $) 34) (($ (-525) $) 35)) (-1356 (($ $ $) NIL (|has| |#1| (-341)))) (-1451 (($ $) NIL)) (-3090 (((-632 (-1090 |#1| |#2| |#3|)) (-632 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -4108 (-632 (-1090 |#1| |#2| |#3|))) (|:| |vec| (-1174 (-1090 |#1| |#2| |#3|)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341))))) (-3300 (((-3 $ "failed") $) 48)) (-4181 (((-385 (-887 |#1|)) $ (-525)) 65 (|has| |#1| (-517))) (((-385 (-887 |#1|)) $ (-525) (-525)) 67 (|has| |#1| (-517)))) (-1903 (($) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-1332 (($ $ $) NIL (|has| |#1| (-341)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-1798 (((-108) $) NIL (|has| |#1| (-341)))) (-1889 (((-108) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-2853 (((-108) $) 25)) (-4106 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-821 (-525))) (|has| |#1| (-341)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-821 (-357))) (|has| |#1| (-341))))) (-4000 (((-525) $) NIL) (((-525) $ (-525)) 24)) (-2278 (((-108) $) NIL)) (-2999 (($ $) NIL (|has| |#1| (-341)))) (-4066 (((-1090 |#1| |#2| |#3|) $) 38 (|has| |#1| (-341)))) (-1303 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2878 (((-3 $ "failed") $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-1068)) (|has| |#1| (-341))))) (-4079 (((-108) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-1585 (($ $ (-856)) NIL)) (-2598 (($ (-1 |#1| (-525)) $) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-525)) 18) (($ $ (-1005) (-525)) NIL) (($ $ (-592 (-1005)) (-592 (-525))) NIL)) (-3033 (($ $ $) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-1609 (($ $ $) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-2016 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-341)))) (-2533 (($ $) 72 (|has| |#1| (-37 (-385 (-525)))))) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1361 (($ (-525) (-1090 |#1| |#2| |#3|)) 33)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL (|has| |#1| (-341)))) (-2367 (($ $) 70 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) NIL (-2067 (-12 (|has| |#1| (-15 -2367 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -1296 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114))))) (($ $ (-1170 |#2|)) 71 (|has| |#1| (-37 (-385 (-525)))))) (-2948 (($) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-1068)) (|has| |#1| (-341))) CONST)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1372 (($ $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-1340 (((-1090 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-4201 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-1397 (($ $ (-525)) 145)) (-1311 (((-3 $ "failed") $ $) 49 (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1618 (($ $) 73 (|has| |#1| (-37 (-385 (-525)))))) (-2825 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1092) (-1090 |#1| |#2| |#3|)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-486 (-1092) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1092)) (-592 (-1090 |#1| |#2| |#3|))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-486 (-1092) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-273 (-1090 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-288 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-273 (-1090 |#1| |#2| |#3|))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-288 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-288 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1090 |#1| |#2| |#3|)) (-592 (-1090 |#1| |#2| |#3|))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-288 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-1927 (((-713) $) NIL (|has| |#1| (-341)))) (-3431 ((|#1| $ (-525)) NIL) (($ $ $) 54 (|has| (-525) (-1032))) (($ $ (-1090 |#1| |#2| |#3|)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-265 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-341)))) (-2702 (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1170 |#2|)) 51) (($ $ (-713)) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 50 (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092) (-713)) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-592 (-1092))) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092)) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))))) (-2874 (($ $) NIL (|has| |#1| (-341)))) (-4080 (((-1090 |#1| |#2| |#3|) $) 41 (|has| |#1| (-341)))) (-3529 (((-525) $) 37)) (-1841 (($ $) 113 (|has| |#1| (-37 (-385 (-525)))))) (-3798 (($ $) 89 (|has| |#1| (-37 (-385 (-525)))))) (-1816 (($ $) 109 (|has| |#1| (-37 (-385 (-525)))))) (-3678 (($ $) 85 (|has| |#1| (-37 (-385 (-525)))))) (-1792 (($ $) 105 (|has| |#1| (-37 (-385 (-525)))))) (-3649 (($ $) 81 (|has| |#1| (-37 (-385 (-525)))))) (-2069 (((-501) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-567 (-501))) (|has| |#1| (-341)))) (((-357) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-953)) (|has| |#1| (-341)))) (((-205) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-953)) (|has| |#1| (-341)))) (((-827 (-357)) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-567 (-827 (-357)))) (|has| |#1| (-341)))) (((-827 (-525)) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-567 (-827 (-525)))) (|has| |#1| (-341))))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-3926 (($ $) NIL)) (-4100 (((-798) $) 149) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1090 |#1| |#2| |#3|)) 27) (($ (-1170 |#2|)) 23) (($ (-1092)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-968 (-1092))) (|has| |#1| (-341)))) (($ $) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517)))) (($ (-385 (-525))) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341))) (|has| |#1| (-37 (-385 (-525))))))) (-3136 ((|#1| $ (-525)) 68)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-2448 (((-713)) NIL)) (-1423 ((|#1| $) 12)) (-3064 (((-1090 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-1876 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-3853 (($ $) 95 (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-1853 (($ $) 115 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 91 (|has| |#1| (-37 (-385 (-525)))))) (-1902 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1760 (($ $) 99 (|has| |#1| (-37 (-385 (-525)))))) (-1485 ((|#1| $ (-525)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -4100 (|#1| (-1092))))))) (-3135 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) 101 (|has| |#1| (-37 (-385 (-525)))))) (-1891 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-1748 (($ $) 97 (|has| |#1| (-37 (-385 (-525)))))) (-1866 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-3820 (($ $) 93 (|has| |#1| (-37 (-385 (-525)))))) (-2380 (($ $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3364 (($) 20 T CONST)) (-3375 (($) 16 T CONST)) (-2401 (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092) (-713)) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-592 (-1092))) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092)) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))))) (-2830 (((-108) $ $) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-2807 (((-108) $ $) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-2795 (((-108) $ $) NIL (-2067 (-12 (|has| (-1090 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 44 (|has| |#1| (-341))) (($ (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) 45 (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) 21)) (** (($ $ (-856)) NIL) (($ $ (-713)) 53) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) 74 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 128 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1090 |#1| |#2| |#3|)) 43 (|has| |#1| (-341))) (($ (-1090 |#1| |#2| |#3|) $) 42 (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-1083 |#1| |#2| |#3|) (-13 (-1136 |#1| (-1090 |#1| |#2| |#3|)) (-10 -8 (-15 -4100 ($ (-1170 |#2|))) (-15 -2702 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2367 ($ $ (-1170 |#2|))) |%noBranch|))) (-977) (-1092) |#1|) (T -1083))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2702 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2367 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
+(-13 (-1136 |#1| (-1090 |#1| |#2| |#3|)) (-10 -8 (-15 -4100 ($ (-1170 |#2|))) (-15 -2702 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2367 ($ $ (-1170 |#2|))) |%noBranch|)))
+((-3764 ((|#2| |#2| (-1013 |#2|)) 26) ((|#2| |#2| (-1092)) 28)))
+(((-1084 |#1| |#2|) (-10 -7 (-15 -3764 (|#2| |#2| (-1092))) (-15 -3764 (|#2| |#2| (-1013 |#2|)))) (-13 (-517) (-789) (-968 (-525)) (-588 (-525))) (-13 (-408 |#1|) (-149) (-27) (-1114))) (T -1084))
+((-3764 (*1 *2 *2 *3) (-12 (-5 *3 (-1013 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1114))) (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1084 *4 *2)))) (-3764 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1084 *4 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1114))))))
+(-10 -7 (-15 -3764 (|#2| |#2| (-1092))) (-15 -3764 (|#2| |#2| (-1013 |#2|))))
+((-3764 (((-3 (-385 (-887 |#1|)) (-294 |#1|)) (-385 (-887 |#1|)) (-1013 (-385 (-887 |#1|)))) 31) (((-385 (-887 |#1|)) (-887 |#1|) (-1013 (-887 |#1|))) 44) (((-3 (-385 (-887 |#1|)) (-294 |#1|)) (-385 (-887 |#1|)) (-1092)) 33) (((-385 (-887 |#1|)) (-887 |#1|) (-1092)) 36)))
+(((-1085 |#1|) (-10 -7 (-15 -3764 ((-385 (-887 |#1|)) (-887 |#1|) (-1092))) (-15 -3764 ((-3 (-385 (-887 |#1|)) (-294 |#1|)) (-385 (-887 |#1|)) (-1092))) (-15 -3764 ((-385 (-887 |#1|)) (-887 |#1|) (-1013 (-887 |#1|)))) (-15 -3764 ((-3 (-385 (-887 |#1|)) (-294 |#1|)) (-385 (-887 |#1|)) (-1013 (-385 (-887 |#1|)))))) (-13 (-517) (-789) (-968 (-525)))) (T -1085))
+((-3764 (*1 *2 *3 *4) (-12 (-5 *4 (-1013 (-385 (-887 *5)))) (-5 *3 (-385 (-887 *5))) (-4 *5 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-3 *3 (-294 *5))) (-5 *1 (-1085 *5)))) (-3764 (*1 *2 *3 *4) (-12 (-5 *4 (-1013 (-887 *5))) (-5 *3 (-887 *5)) (-4 *5 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-385 *3)) (-5 *1 (-1085 *5)))) (-3764 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-3 (-385 (-887 *5)) (-294 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-385 (-887 *5))))) (-3764 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-385 (-887 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-887 *5)))))
+(-10 -7 (-15 -3764 ((-385 (-887 |#1|)) (-887 |#1|) (-1092))) (-15 -3764 ((-3 (-385 (-887 |#1|)) (-294 |#1|)) (-385 (-887 |#1|)) (-1092))) (-15 -3764 ((-385 (-887 |#1|)) (-887 |#1|) (-1013 (-887 |#1|)))) (-15 -3764 ((-3 (-385 (-887 |#1|)) (-294 |#1|)) (-385 (-887 |#1|)) (-1013 (-385 (-887 |#1|))))))
+((-2016 (((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|)) 13)))
+(((-1086 |#1| |#2|) (-10 -7 (-15 -2016 ((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|)))) (-977) (-977)) (T -1086))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-5 *2 (-1088 *6)) (-5 *1 (-1086 *5 *6)))))
+(-10 -7 (-15 -2016 ((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|))))
+((-3586 (((-396 (-1088 (-385 |#4|))) (-1088 (-385 |#4|))) 51)) (-4201 (((-396 (-1088 (-385 |#4|))) (-1088 (-385 |#4|))) 52)))
+(((-1087 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4201 ((-396 (-1088 (-385 |#4|))) (-1088 (-385 |#4|)))) (-15 -3586 ((-396 (-1088 (-385 |#4|))) (-1088 (-385 |#4|))))) (-735) (-789) (-429) (-884 |#3| |#1| |#2|)) (T -1087))
+((-3586 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-396 (-1088 (-385 *7)))) (-5 *1 (-1087 *4 *5 *6 *7)) (-5 *3 (-1088 (-385 *7))))) (-4201 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-396 (-1088 (-385 *7)))) (-5 *1 (-1087 *4 *5 *6 *7)) (-5 *3 (-1088 (-385 *7))))))
+(-10 -7 (-15 -4201 ((-396 (-1088 (-385 |#4|))) (-1088 (-385 |#4|)))) (-15 -3586 ((-396 (-1088 (-385 |#4|))) (-1088 (-385 |#4|)))))
+((-4087 (((-108) $ $) 139)) (-2414 (((-108) $) 30)) (-3216 (((-1174 |#1|) $ (-713)) NIL)) (-1296 (((-592 (-1005)) $) NIL)) (-2954 (($ (-1088 |#1|)) NIL)) (-4169 (((-1088 $) $ (-1005)) 60) (((-1088 |#1|) $) 49)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) 134 (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-1928 (((-713) $) NIL) (((-713) $ (-592 (-1005))) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-3882 (($ $ $) 128 (|has| |#1| (-517)))) (-2426 (((-396 (-1088 $)) (-1088 $)) 73 (|has| |#1| (-844)))) (-4195 (($ $) NIL (|has| |#1| (-429)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 93 (|has| |#1| (-844)))) (-1507 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3474 (($ $ (-713)) 42)) (-1911 (($ $ (-713)) 43)) (-1396 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-429)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-1005) "failed") $) NIL)) (-4105 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-1005) $) NIL)) (-3801 (($ $ $ (-1005)) NIL (|has| |#1| (-160))) ((|#1| $ $) 130 (|has| |#1| (-160)))) (-1356 (($ $ $) NIL (|has| |#1| (-341)))) (-1451 (($ $) 58)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1332 (($ $ $) NIL (|has| |#1| (-341)))) (-2149 (($ $ $) 106)) (-2477 (($ $ $) NIL (|has| |#1| (-517)))) (-3830 (((-2 (|:| -2681 |#1|) (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-517)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3201 (($ $) 135 (|has| |#1| (-429))) (($ $ (-1005)) NIL (|has| |#1| (-429)))) (-1441 (((-592 $) $) NIL)) (-1798 (((-108) $) NIL (|has| |#1| (-844)))) (-1457 (($ $ |#1| (-713) $) 47)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1005) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1005) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-2898 (((-798) $ (-798)) 119)) (-4000 (((-713) $ $) NIL (|has| |#1| (-517)))) (-2278 (((-108) $) 32)) (-4025 (((-713) $) NIL)) (-2878 (((-3 $ "failed") $) NIL (|has| |#1| (-1068)))) (-1284 (($ (-1088 |#1|) (-1005)) 51) (($ (-1088 $) (-1005)) 67)) (-1585 (($ $ (-713)) 34)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2884 (((-592 $) $) NIL)) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-713)) 65) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ (-1005)) NIL) (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 123)) (-1819 (((-713) $) NIL) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-1314 (($ (-1 (-713) (-713)) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2950 (((-1088 |#1|) $) NIL)) (-2018 (((-3 (-1005) "failed") $) NIL)) (-1418 (($ $) NIL)) (-1430 ((|#1| $) 54)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1289 (((-1075) $) NIL)) (-1849 (((-2 (|:| -1416 $) (|:| -3681 $)) $ (-713)) 41)) (-2977 (((-3 (-592 $) "failed") $) NIL)) (-3165 (((-3 (-592 $) "failed") $) NIL)) (-1986 (((-3 (-2 (|:| |var| (-1005)) (|:| -2168 (-713))) "failed") $) NIL)) (-2367 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2948 (($) NIL (|has| |#1| (-1068)) CONST)) (-3993 (((-1039) $) NIL)) (-1399 (((-108) $) 33)) (-1407 ((|#1| $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 81 (|has| |#1| (-429)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) 137 (|has| |#1| (-429)))) (-3653 (($ $ (-713) |#1| $) 101)) (-3089 (((-396 (-1088 $)) (-1088 $)) 79 (|has| |#1| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) 78 (|has| |#1| (-844)))) (-4201 (((-396 $) $) 86 (|has| |#1| (-844)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-1311 (((-3 $ "failed") $ |#1|) 133 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 102 (|has| |#1| (-517)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2825 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1005) |#1|) NIL) (($ $ (-592 (-1005)) (-592 |#1|)) NIL) (($ $ (-1005) $) NIL) (($ $ (-592 (-1005)) (-592 $)) NIL)) (-1927 (((-713) $) NIL (|has| |#1| (-341)))) (-3431 ((|#1| $ |#1|) 121) (($ $ $) 122) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) NIL (|has| |#1| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#1| (-517)))) (-1326 (((-3 $ "failed") $ (-713)) 37)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 140 (|has| |#1| (-341)))) (-4115 (($ $ (-1005)) NIL (|has| |#1| (-160))) ((|#1| $) 126 (|has| |#1| (-160)))) (-2702 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3529 (((-713) $) 56) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-2069 (((-827 (-357)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-1005) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-1661 ((|#1| $) 132 (|has| |#1| (-429))) (($ $ (-1005)) NIL (|has| |#1| (-429)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-3070 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#1| (-517)))) (-4100 (((-798) $) 120) (($ (-525)) NIL) (($ |#1|) 55) (($ (-1005)) NIL) (($ (-385 (-525))) NIL (-2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3137 (((-592 |#1|) $) NIL)) (-3136 ((|#1| $ (-713)) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2448 (((-713)) NIL)) (-4042 (($ $ $ (-713)) 28 (|has| |#1| (-160)))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3706 (($ $ (-856)) 15) (($ $ (-713)) 16)) (-3364 (($) 17 T CONST)) (-3375 (($) 18 T CONST)) (-2401 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1092)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) 98)) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2880 (($ $ |#1|) 141 (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) 68)) (** (($ $ (-856)) 14) (($ $ (-713)) 12)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 27) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 104) (($ $ |#1|) NIL)))
+(((-1088 |#1|) (-13 (-1150 |#1|) (-10 -8 (-15 -2898 ((-798) $ (-798))) (-15 -3653 ($ $ (-713) |#1| $)))) (-977)) (T -1088))
+((-2898 (*1 *2 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1088 *3)) (-4 *3 (-977)))) (-3653 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1088 *3)) (-4 *3 (-977)))))
+(-13 (-1150 |#1|) (-10 -8 (-15 -2898 ((-798) $ (-798))) (-15 -3653 ($ $ (-713) |#1| $))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1296 (((-592 (-1005)) $) NIL)) (-3469 (((-1092) $) 11)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-2730 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-2005 (((-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) NIL)) (-1803 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3659 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL (|has| |#1| (-341)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-341)))) (-4211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1507 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1781 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3638 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2996 (($ (-713) (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-1828 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3698 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-1083 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1090 |#1| |#2| |#3|) "failed") $) 36)) (-4105 (((-1083 |#1| |#2| |#3|) $) NIL) (((-1090 |#1| |#2| |#3|) $) NIL)) (-1356 (($ $ $) NIL (|has| |#1| (-341)))) (-1451 (($ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-2040 (((-385 (-525)) $) 55)) (-1332 (($ $ $) NIL (|has| |#1| (-341)))) (-1368 (($ (-385 (-525)) (-1083 |#1| |#2| |#3|)) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-1798 (((-108) $) NIL (|has| |#1| (-341)))) (-2853 (((-108) $) NIL)) (-4106 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4000 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) NIL)) (-2278 (((-108) $) NIL)) (-1303 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1585 (($ $ (-856)) NIL) (($ $ (-385 (-525))) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-385 (-525))) 20) (($ $ (-1005) (-385 (-525))) NIL) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2533 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4144 (((-1083 |#1| |#2| |#3|) $) 41)) (-1817 (((-3 (-1083 |#1| |#2| |#3|) "failed") $) NIL)) (-1361 (((-1083 |#1| |#2| |#3|) $) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL (|has| |#1| (-341)))) (-2367 (($ $) 39 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) NIL (-2067 (-12 (|has| |#1| (-15 -2367 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -1296 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114))))) (($ $ (-1170 |#2|)) 40 (|has| |#1| (-37 (-385 (-525)))))) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4201 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-1397 (($ $ (-385 (-525))) NIL)) (-1311 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1618 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2825 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-1927 (((-713) $) NIL (|has| |#1| (-341)))) (-3431 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1032)))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-341)))) (-2702 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $ (-1170 |#2|)) 38)) (-3529 (((-385 (-525)) $) NIL)) (-1841 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1816 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3678 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1792 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3649 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3926 (($ $) NIL)) (-4100 (((-798) $) 58) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1083 |#1| |#2| |#3|)) 30) (($ (-1090 |#1| |#2| |#3|)) 31) (($ (-1170 |#2|)) 26) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-3136 ((|#1| $ (-385 (-525))) NIL)) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) NIL)) (-1423 ((|#1| $) 12)) (-1876 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3853 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1853 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1902 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1760 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1485 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -4100 (|#1| (-1092))))))) (-3135 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1891 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1748 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1866 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3820 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3364 (($) 22 T CONST)) (-3375 (($) 16 T CONST)) (-2401 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) 24)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-1089 |#1| |#2| |#3|) (-13 (-1157 |#1| (-1083 |#1| |#2| |#3|)) (-968 (-1090 |#1| |#2| |#3|)) (-10 -8 (-15 -4100 ($ (-1170 |#2|))) (-15 -2702 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2367 ($ $ (-1170 |#2|))) |%noBranch|))) (-977) (-1092) |#1|) (T -1089))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2702 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2367 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
+(-13 (-1157 |#1| (-1083 |#1| |#2| |#3|)) (-968 (-1090 |#1| |#2| |#3|)) (-10 -8 (-15 -4100 ($ (-1170 |#2|))) (-15 -2702 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2367 ($ $ (-1170 |#2|))) |%noBranch|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 125)) (-1296 (((-592 (-1005)) $) NIL)) (-3469 (((-1092) $) 116)) (-2338 (((-1147 |#2| |#1|) $ (-713)) 63)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-2730 (($ $ (-713)) 79) (($ $ (-713) (-713)) 76)) (-2005 (((-1073 (-2 (|:| |k| (-713)) (|:| |c| |#1|))) $) 102)) (-1803 (($ $) 169 (|has| |#1| (-37 (-385 (-525)))))) (-3659 (($ $) 145 (|has| |#1| (-37 (-385 (-525)))))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1781 (($ $) 165 (|has| |#1| (-37 (-385 (-525)))))) (-3638 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-2996 (($ (-1073 (-2 (|:| |k| (-713)) (|:| |c| |#1|)))) 115) (($ (-1073 |#1|)) 110)) (-1828 (($ $) 173 (|has| |#1| (-37 (-385 (-525)))))) (-3698 (($ $) 149 (|has| |#1| (-37 (-385 (-525)))))) (-2475 (($) NIL T CONST)) (-1451 (($ $) NIL)) (-3300 (((-3 $ "failed") $) 23)) (-2491 (($ $) 26)) (-3565 (((-887 |#1|) $ (-713)) 75) (((-887 |#1|) $ (-713) (-713)) 77)) (-2853 (((-108) $) 120)) (-4106 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4000 (((-713) $) 122) (((-713) $ (-713)) 124)) (-2278 (((-108) $) NIL)) (-1303 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1585 (($ $ (-856)) NIL)) (-2598 (($ (-1 |#1| (-525)) $) NIL)) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-713)) 13) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2533 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-1289 (((-1075) $) NIL)) (-2367 (($ $) 129 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) NIL (-2067 (-12 (|has| |#1| (-15 -2367 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -1296 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114))))) (($ $ (-1170 |#2|)) 130 (|has| |#1| (-37 (-385 (-525)))))) (-3993 (((-1039) $) NIL)) (-1397 (($ $ (-713)) 15)) (-1311 (((-3 $ "failed") $ $) 24 (|has| |#1| (-517)))) (-1618 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2825 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-713)))))) (-3431 ((|#1| $ (-713)) 119) (($ $ $) 128 (|has| (-713) (-1032)))) (-2702 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $ (-1170 |#2|)) 29)) (-3529 (((-713) $) NIL)) (-1841 (($ $) 175 (|has| |#1| (-37 (-385 (-525)))))) (-3798 (($ $) 151 (|has| |#1| (-37 (-385 (-525)))))) (-1816 (($ $) 171 (|has| |#1| (-37 (-385 (-525)))))) (-3678 (($ $) 147 (|has| |#1| (-37 (-385 (-525)))))) (-1792 (($ $) 167 (|has| |#1| (-37 (-385 (-525)))))) (-3649 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-3926 (($ $) NIL)) (-4100 (((-798) $) 201) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 126 (|has| |#1| (-160))) (($ (-1147 |#2| |#1|)) 51) (($ (-1170 |#2|)) 32)) (-3137 (((-1073 |#1|) $) 98)) (-3136 ((|#1| $ (-713)) 118)) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) NIL)) (-1423 ((|#1| $) 54)) (-1876 (($ $) 181 (|has| |#1| (-37 (-385 (-525)))))) (-3853 (($ $) 157 (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1853 (($ $) 177 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 153 (|has| |#1| (-37 (-385 (-525)))))) (-1902 (($ $) 185 (|has| |#1| (-37 (-385 (-525)))))) (-1760 (($ $) 161 (|has| |#1| (-37 (-385 (-525)))))) (-1485 ((|#1| $ (-713)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-713)))) (|has| |#1| (-15 -4100 (|#1| (-1092))))))) (-3135 (($ $) 187 (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) 163 (|has| |#1| (-37 (-385 (-525)))))) (-1891 (($ $) 183 (|has| |#1| (-37 (-385 (-525)))))) (-1748 (($ $) 159 (|has| |#1| (-37 (-385 (-525)))))) (-1866 (($ $) 179 (|has| |#1| (-37 (-385 (-525)))))) (-3820 (($ $) 155 (|has| |#1| (-37 (-385 (-525)))))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 17 T CONST)) (-3375 (($) 19 T CONST)) (-2401 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) 194)) (-2860 (($ $ $) 31)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ |#1|) 198 (|has| |#1| (-341))) (($ $ $) 134 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 137 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-1090 |#1| |#2| |#3|) (-13 (-1165 |#1|) (-10 -8 (-15 -4100 ($ (-1147 |#2| |#1|))) (-15 -2338 ((-1147 |#2| |#1|) $ (-713))) (-15 -4100 ($ (-1170 |#2|))) (-15 -2702 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2367 ($ $ (-1170 |#2|))) |%noBranch|))) (-977) (-1092) |#1|) (T -1090))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-977)) (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-1090 *3 *4 *5)))) (-2338 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1090 *4 *5 *6)) (-4 *4 (-977)) (-14 *5 (-1092)) (-14 *6 *4))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2702 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2367 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
+(-13 (-1165 |#1|) (-10 -8 (-15 -4100 ($ (-1147 |#2| |#1|))) (-15 -2338 ((-1147 |#2| |#1|) $ (-713))) (-15 -4100 ($ (-1170 |#2|))) (-15 -2702 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2367 ($ $ (-1170 |#2|))) |%noBranch|)))
+((-4100 (((-798) $) 27) (($ (-1092)) 29)) (-2067 (($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 40)) (-2055 (($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 33) (($ $) 34)) (-3648 (($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 35)) (-3637 (($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 37)) (-3627 (($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 36)) (-3616 (($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 38)) (-1369 (($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 39)))
+(((-1091) (-13 (-566 (-798)) (-10 -8 (-15 -4100 ($ (-1092))) (-15 -3648 ($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3627 ($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3637 ($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3616 ($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2067 ($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -1369 ($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2055 ($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2055 ($ $))))) (T -1091))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1091)))) (-3648 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091)))) (-5 *1 (-1091)))) (-3627 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091)))) (-5 *1 (-1091)))) (-3637 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091)))) (-5 *1 (-1091)))) (-3616 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091)))) (-5 *1 (-1091)))) (-2067 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091)))) (-5 *1 (-1091)))) (-1369 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091)))) (-5 *1 (-1091)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091)))) (-5 *1 (-1091)))) (-2055 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091)))) (-5 *1 (-1091)))) (-2055 (*1 *1 *1) (-5 *1 (-1091))))
+(-13 (-566 (-798)) (-10 -8 (-15 -4100 ($ (-1092))) (-15 -3648 ($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3627 ($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3637 ($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3616 ($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2067 ($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -1369 ($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2055 ($ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2055 ($ $))))
+((-4087 (((-108) $ $) NIL)) (-1283 (($ $ (-592 (-798))) 59)) (-1884 (($ $ (-592 (-798))) 57)) (-3298 (((-1075) $) 84)) (-4139 (((-2 (|:| -3626 (-592 (-798))) (|:| -1525 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -3563 (-592 (-798))) (|:| |args| (-592 (-798)))) $) 87)) (-4146 (((-108) $) 22)) (-1768 (($ $ (-592 (-592 (-798)))) 56) (($ $ (-2 (|:| -3626 (-592 (-798))) (|:| -1525 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -3563 (-592 (-798))) (|:| |args| (-592 (-798))))) 82)) (-2475 (($) 124 T CONST)) (-2740 (((-1179)) 106)) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 66) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 73)) (-3324 (($) 95) (($ $) 101)) (-2411 (($ $) 83)) (-3033 (($ $ $) NIL)) (-1609 (($ $ $) NIL)) (-1522 (((-592 $) $) 107)) (-1289 (((-1075) $) 90)) (-3993 (((-1039) $) NIL)) (-3431 (($ $ (-592 (-798))) 58)) (-2069 (((-501) $) 46) (((-1092) $) 47) (((-827 (-525)) $) 77) (((-827 (-357)) $) 75)) (-4100 (((-798) $) 53) (($ (-1075)) 48)) (-1628 (($ $ (-592 (-798))) 60)) (-3660 (((-1075) $) 33) (((-1075) $ (-108)) 34) (((-1179) (-764) $) 35) (((-1179) (-764) $ (-108)) 36)) (-2830 (((-108) $ $) NIL)) (-2807 (((-108) $ $) NIL)) (-2775 (((-108) $ $) 49)) (-2817 (((-108) $ $) NIL)) (-2795 (((-108) $ $) 50)))
+(((-1092) (-13 (-789) (-567 (-501)) (-770) (-567 (-1092)) (-567 (-827 (-525))) (-567 (-827 (-357))) (-821 (-525)) (-821 (-357)) (-10 -8 (-15 -3324 ($)) (-15 -3324 ($ $)) (-15 -2740 ((-1179))) (-15 -4100 ($ (-1075))) (-15 -2411 ($ $)) (-15 -4146 ((-108) $)) (-15 -4139 ((-2 (|:| -3626 (-592 (-798))) (|:| -1525 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -3563 (-592 (-798))) (|:| |args| (-592 (-798)))) $)) (-15 -1768 ($ $ (-592 (-592 (-798))))) (-15 -1768 ($ $ (-2 (|:| -3626 (-592 (-798))) (|:| -1525 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -3563 (-592 (-798))) (|:| |args| (-592 (-798)))))) (-15 -1884 ($ $ (-592 (-798)))) (-15 -1283 ($ $ (-592 (-798)))) (-15 -1628 ($ $ (-592 (-798)))) (-15 -3431 ($ $ (-592 (-798)))) (-15 -3298 ((-1075) $)) (-15 -1522 ((-592 $) $)) (-15 -2475 ($) -2247)))) (T -1092))
+((-3324 (*1 *1) (-5 *1 (-1092))) (-3324 (*1 *1 *1) (-5 *1 (-1092))) (-2740 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1092)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1092)))) (-2411 (*1 *1 *1) (-5 *1 (-1092))) (-4146 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1092)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3626 (-592 (-798))) (|:| -1525 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -3563 (-592 (-798))) (|:| |args| (-592 (-798))))) (-5 *1 (-1092)))) (-1768 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 (-798)))) (-5 *1 (-1092)))) (-1768 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3626 (-592 (-798))) (|:| -1525 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -3563 (-592 (-798))) (|:| |args| (-592 (-798))))) (-5 *1 (-1092)))) (-1884 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1092)))) (-1283 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1092)))) (-1628 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1092)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1092)))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1092)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-1092)))) (-2475 (*1 *1) (-5 *1 (-1092))))
+(-13 (-789) (-567 (-501)) (-770) (-567 (-1092)) (-567 (-827 (-525))) (-567 (-827 (-357))) (-821 (-525)) (-821 (-357)) (-10 -8 (-15 -3324 ($)) (-15 -3324 ($ $)) (-15 -2740 ((-1179))) (-15 -4100 ($ (-1075))) (-15 -2411 ($ $)) (-15 -4146 ((-108) $)) (-15 -4139 ((-2 (|:| -3626 (-592 (-798))) (|:| -1525 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -3563 (-592 (-798))) (|:| |args| (-592 (-798)))) $)) (-15 -1768 ($ $ (-592 (-592 (-798))))) (-15 -1768 ($ $ (-2 (|:| -3626 (-592 (-798))) (|:| -1525 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -3563 (-592 (-798))) (|:| |args| (-592 (-798)))))) (-15 -1884 ($ $ (-592 (-798)))) (-15 -1283 ($ $ (-592 (-798)))) (-15 -1628 ($ $ (-592 (-798)))) (-15 -3431 ($ $ (-592 (-798)))) (-15 -3298 ((-1075) $)) (-15 -1522 ((-592 $) $)) (-15 -2475 ($) -2247)))
+((-1265 (((-1174 |#1|) |#1| (-856)) 16) (((-1174 |#1|) (-592 |#1|)) 20)))
+(((-1093 |#1|) (-10 -7 (-15 -1265 ((-1174 |#1|) (-592 |#1|))) (-15 -1265 ((-1174 |#1|) |#1| (-856)))) (-977)) (T -1093))
+((-1265 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-5 *2 (-1174 *3)) (-5 *1 (-1093 *3)) (-4 *3 (-977)))) (-1265 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-977)) (-5 *2 (-1174 *4)) (-5 *1 (-1093 *4)))))
+(-10 -7 (-15 -1265 ((-1174 |#1|) (-592 |#1|))) (-15 -1265 ((-1174 |#1|) |#1| (-856))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-4105 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-1451 (($ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3201 (($ $) NIL (|has| |#1| (-429)))) (-1457 (($ $ |#1| (-904) $) NIL)) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) NIL)) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-904)) NIL)) (-1819 (((-904) $) NIL)) (-1314 (($ (-1 (-904) (-904)) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1399 (((-108) $) NIL)) (-1407 ((|#1| $) NIL)) (-3653 (($ $ (-904) |#1| $) NIL (-12 (|has| (-904) (-126)) (|has| |#1| (-517))))) (-1311 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3529 (((-904) $) NIL)) (-1661 ((|#1| $) NIL (|has| |#1| (-429)))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) NIL) (($ (-385 (-525))) NIL (-2067 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-3137 (((-592 |#1|) $) NIL)) (-3136 ((|#1| $ (-904)) NIL)) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) NIL)) (-4042 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 9 T CONST)) (-3375 (($) 14 T CONST)) (-2775 (((-108) $ $) 16)) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) 19)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-1094 |#1|) (-13 (-304 |#1| (-904)) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| (-904) (-126)) (-15 -3653 ($ $ (-904) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4257)) (-6 -4257) |%noBranch|))) (-977)) (T -1094))
+((-3653 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-904)) (-4 *2 (-126)) (-5 *1 (-1094 *3)) (-4 *3 (-517)) (-4 *3 (-977)))))
+(-13 (-304 |#1| (-904)) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| (-904) (-126)) (-15 -3653 ($ $ (-904) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4257)) (-6 -4257) |%noBranch|)))
+((-2006 (((-1096) (-1092) $) 25)) (-2842 (($) 29)) (-3197 (((-3 (|:| |fst| (-412)) (|:| -3408 "void")) (-1092) $) 22)) (-2409 (((-1179) (-1092) (-3 (|:| |fst| (-412)) (|:| -3408 "void")) $) 41) (((-1179) (-1092) (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) 42) (((-1179) (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) 43)) (-1936 (((-1179) (-1092)) 58)) (-2245 (((-1179) (-1092) $) 55) (((-1179) (-1092)) 56) (((-1179)) 57)) (-3835 (((-1179) (-1092)) 37)) (-3303 (((-1092)) 36)) (-1558 (($) 34)) (-3860 (((-415) (-1092) (-415) (-1092) $) 45) (((-415) (-592 (-1092)) (-415) (-1092) $) 49) (((-415) (-1092) (-415)) 46) (((-415) (-1092) (-415) (-1092)) 50)) (-1854 (((-1092)) 35)) (-4100 (((-798) $) 28)) (-1555 (((-1179)) 30) (((-1179) (-1092)) 33)) (-3270 (((-592 (-1092)) (-1092) $) 24)) (-1738 (((-1179) (-1092) (-592 (-1092)) $) 38) (((-1179) (-1092) (-592 (-1092))) 39) (((-1179) (-592 (-1092))) 40)))
+(((-1095) (-13 (-566 (-798)) (-10 -8 (-15 -2842 ($)) (-15 -1555 ((-1179))) (-15 -1555 ((-1179) (-1092))) (-15 -3860 ((-415) (-1092) (-415) (-1092) $)) (-15 -3860 ((-415) (-592 (-1092)) (-415) (-1092) $)) (-15 -3860 ((-415) (-1092) (-415))) (-15 -3860 ((-415) (-1092) (-415) (-1092))) (-15 -3835 ((-1179) (-1092))) (-15 -1854 ((-1092))) (-15 -3303 ((-1092))) (-15 -1738 ((-1179) (-1092) (-592 (-1092)) $)) (-15 -1738 ((-1179) (-1092) (-592 (-1092)))) (-15 -1738 ((-1179) (-592 (-1092)))) (-15 -2409 ((-1179) (-1092) (-3 (|:| |fst| (-412)) (|:| -3408 "void")) $)) (-15 -2409 ((-1179) (-1092) (-3 (|:| |fst| (-412)) (|:| -3408 "void")))) (-15 -2409 ((-1179) (-3 (|:| |fst| (-412)) (|:| -3408 "void")))) (-15 -2245 ((-1179) (-1092) $)) (-15 -2245 ((-1179) (-1092))) (-15 -2245 ((-1179))) (-15 -1936 ((-1179) (-1092))) (-15 -1558 ($)) (-15 -3197 ((-3 (|:| |fst| (-412)) (|:| -3408 "void")) (-1092) $)) (-15 -3270 ((-592 (-1092)) (-1092) $)) (-15 -2006 ((-1096) (-1092) $))))) (T -1095))
+((-2842 (*1 *1) (-5 *1 (-1095))) (-1555 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1095)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-3860 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-415)) (-5 *3 (-1092)) (-5 *1 (-1095)))) (-3860 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1092))) (-5 *4 (-1092)) (-5 *1 (-1095)))) (-3860 (*1 *2 *3 *2) (-12 (-5 *2 (-415)) (-5 *3 (-1092)) (-5 *1 (-1095)))) (-3860 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-415)) (-5 *3 (-1092)) (-5 *1 (-1095)))) (-3835 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-1854 (*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1095)))) (-3303 (*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1095)))) (-1738 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-592 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-1738 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-592 (-1092))) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-2409 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1092)) (-5 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-2409 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-5 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-2245 (*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-2245 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1095)))) (-1936 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095)))) (-1558 (*1 *1) (-5 *1 (-1095))) (-3197 (*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-5 *1 (-1095)))) (-3270 (*1 *2 *3 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-1095)) (-5 *3 (-1092)))) (-2006 (*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-1096)) (-5 *1 (-1095)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -2842 ($)) (-15 -1555 ((-1179))) (-15 -1555 ((-1179) (-1092))) (-15 -3860 ((-415) (-1092) (-415) (-1092) $)) (-15 -3860 ((-415) (-592 (-1092)) (-415) (-1092) $)) (-15 -3860 ((-415) (-1092) (-415))) (-15 -3860 ((-415) (-1092) (-415) (-1092))) (-15 -3835 ((-1179) (-1092))) (-15 -1854 ((-1092))) (-15 -3303 ((-1092))) (-15 -1738 ((-1179) (-1092) (-592 (-1092)) $)) (-15 -1738 ((-1179) (-1092) (-592 (-1092)))) (-15 -1738 ((-1179) (-592 (-1092)))) (-15 -2409 ((-1179) (-1092) (-3 (|:| |fst| (-412)) (|:| -3408 "void")) $)) (-15 -2409 ((-1179) (-1092) (-3 (|:| |fst| (-412)) (|:| -3408 "void")))) (-15 -2409 ((-1179) (-3 (|:| |fst| (-412)) (|:| -3408 "void")))) (-15 -2245 ((-1179) (-1092) $)) (-15 -2245 ((-1179) (-1092))) (-15 -2245 ((-1179))) (-15 -1936 ((-1179) (-1092))) (-15 -1558 ($)) (-15 -3197 ((-3 (|:| |fst| (-412)) (|:| -3408 "void")) (-1092) $)) (-15 -3270 ((-592 (-1092)) (-1092) $)) (-15 -2006 ((-1096) (-1092) $))))
+((-2667 (((-592 (-592 (-3 (|:| -2411 (-1092)) (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525))))))))) $) 59)) (-1981 (((-592 (-3 (|:| -2411 (-1092)) (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525)))))))) (-412) $) 43)) (-2545 (($ (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-415))))) 17)) (-1936 (((-1179) $) 67)) (-2366 (((-592 (-1092)) $) 22)) (-1530 (((-1024) $) 55)) (-2170 (((-415) (-1092) $) 27)) (-2450 (((-592 (-1092)) $) 30)) (-1558 (($) 19)) (-3860 (((-415) (-592 (-1092)) (-415) $) 25) (((-415) (-1092) (-415) $) 24)) (-4100 (((-798) $) 9) (((-1102 (-1092) (-415)) $) 13)))
+(((-1096) (-13 (-566 (-798)) (-10 -8 (-15 -4100 ((-1102 (-1092) (-415)) $)) (-15 -1558 ($)) (-15 -3860 ((-415) (-592 (-1092)) (-415) $)) (-15 -3860 ((-415) (-1092) (-415) $)) (-15 -2170 ((-415) (-1092) $)) (-15 -2366 ((-592 (-1092)) $)) (-15 -1981 ((-592 (-3 (|:| -2411 (-1092)) (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525)))))))) (-412) $)) (-15 -2450 ((-592 (-1092)) $)) (-15 -2667 ((-592 (-592 (-3 (|:| -2411 (-1092)) (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525))))))))) $)) (-15 -1530 ((-1024) $)) (-15 -1936 ((-1179) $)) (-15 -2545 ($ (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-415))))))))) (T -1096))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-1102 (-1092) (-415))) (-5 *1 (-1096)))) (-1558 (*1 *1) (-5 *1 (-1096))) (-3860 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1092))) (-5 *1 (-1096)))) (-3860 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-415)) (-5 *3 (-1092)) (-5 *1 (-1096)))) (-2170 (*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-415)) (-5 *1 (-1096)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-1096)))) (-1981 (*1 *2 *3 *1) (-12 (-5 *3 (-412)) (-5 *2 (-592 (-3 (|:| -2411 (-1092)) (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525))))))))) (-5 *1 (-1096)))) (-2450 (*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-1096)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-3 (|:| -2411 (-1092)) (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525)))))))))) (-5 *1 (-1096)))) (-1530 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-1096)))) (-1936 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1096)))) (-2545 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-415))))) (-5 *1 (-1096)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -4100 ((-1102 (-1092) (-415)) $)) (-15 -1558 ($)) (-15 -3860 ((-415) (-592 (-1092)) (-415) $)) (-15 -3860 ((-415) (-1092) (-415) $)) (-15 -2170 ((-415) (-1092) $)) (-15 -2366 ((-592 (-1092)) $)) (-15 -1981 ((-592 (-3 (|:| -2411 (-1092)) (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525)))))))) (-412) $)) (-15 -2450 ((-592 (-1092)) $)) (-15 -2667 ((-592 (-592 (-3 (|:| -2411 (-1092)) (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525))))))))) $)) (-15 -1530 ((-1024) $)) (-15 -1936 ((-1179) $)) (-15 -2545 ($ (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-415))))))))
+((-4087 (((-108) $ $) NIL)) (-2259 (((-108) $) 42)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2452 (((-3 (-525) (-205) (-1092) (-1075) $) $) 50)) (-4149 (((-592 $) $) 55)) (-2069 (((-1024) $) 24) (($ (-1024)) 25)) (-1688 (((-108) $) 52)) (-4100 (((-798) $) NIL) (($ (-525)) 26) (((-525) $) 28) (($ (-205)) 29) (((-205) $) 31) (($ (-1092)) 32) (((-1092) $) 34) (($ (-1075)) 35) (((-1075) $) 37)) (-3353 (((-108) $ (|[\|\|]| (-525))) 11) (((-108) $ (|[\|\|]| (-205))) 15) (((-108) $ (|[\|\|]| (-1092))) 23) (((-108) $ (|[\|\|]| (-1075))) 19)) (-2277 (($ (-1092) (-592 $)) 39) (($ $ (-592 $)) 40)) (-2523 (((-525) $) 27) (((-205) $) 30) (((-1092) $) 33) (((-1075) $) 36)) (-2775 (((-108) $ $) 7)))
+(((-1097) (-13 (-1169) (-1020) (-10 -8 (-15 -2069 ((-1024) $)) (-15 -2069 ($ (-1024))) (-15 -4100 ($ (-525))) (-15 -4100 ((-525) $)) (-15 -2523 ((-525) $)) (-15 -4100 ($ (-205))) (-15 -4100 ((-205) $)) (-15 -2523 ((-205) $)) (-15 -4100 ($ (-1092))) (-15 -4100 ((-1092) $)) (-15 -2523 ((-1092) $)) (-15 -4100 ($ (-1075))) (-15 -4100 ((-1075) $)) (-15 -2523 ((-1075) $)) (-15 -2277 ($ (-1092) (-592 $))) (-15 -2277 ($ $ (-592 $))) (-15 -2259 ((-108) $)) (-15 -2452 ((-3 (-525) (-205) (-1092) (-1075) $) $)) (-15 -4149 ((-592 $) $)) (-15 -1688 ((-108) $)) (-15 -3353 ((-108) $ (|[\|\|]| (-525)))) (-15 -3353 ((-108) $ (|[\|\|]| (-205)))) (-15 -3353 ((-108) $ (|[\|\|]| (-1092)))) (-15 -3353 ((-108) $ (|[\|\|]| (-1075))))))) (T -1097))
+((-2069 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-1097)))) (-2069 (*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-1097)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1097)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1097)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1097)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1097)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1097)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1097)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1097)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1097)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1097)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1097)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1097)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1097)))) (-2277 (*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-1097))) (-5 *1 (-1097)))) (-2277 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1097))) (-5 *1 (-1097)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1097)))) (-2452 (*1 *2 *1) (-12 (-5 *2 (-3 (-525) (-205) (-1092) (-1075) (-1097))) (-5 *1 (-1097)))) (-4149 (*1 *2 *1) (-12 (-5 *2 (-592 (-1097))) (-5 *1 (-1097)))) (-1688 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1097)))) (-3353 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-108)) (-5 *1 (-1097)))) (-3353 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-205))) (-5 *2 (-108)) (-5 *1 (-1097)))) (-3353 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1092))) (-5 *2 (-108)) (-5 *1 (-1097)))) (-3353 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-108)) (-5 *1 (-1097)))))
+(-13 (-1169) (-1020) (-10 -8 (-15 -2069 ((-1024) $)) (-15 -2069 ($ (-1024))) (-15 -4100 ($ (-525))) (-15 -4100 ((-525) $)) (-15 -2523 ((-525) $)) (-15 -4100 ($ (-205))) (-15 -4100 ((-205) $)) (-15 -2523 ((-205) $)) (-15 -4100 ($ (-1092))) (-15 -4100 ((-1092) $)) (-15 -2523 ((-1092) $)) (-15 -4100 ($ (-1075))) (-15 -4100 ((-1075) $)) (-15 -2523 ((-1075) $)) (-15 -2277 ($ (-1092) (-592 $))) (-15 -2277 ($ $ (-592 $))) (-15 -2259 ((-108) $)) (-15 -2452 ((-3 (-525) (-205) (-1092) (-1075) $) $)) (-15 -4149 ((-592 $) $)) (-15 -1688 ((-108) $)) (-15 -3353 ((-108) $ (|[\|\|]| (-525)))) (-15 -3353 ((-108) $ (|[\|\|]| (-205)))) (-15 -3353 ((-108) $ (|[\|\|]| (-1092)))) (-15 -3353 ((-108) $ (|[\|\|]| (-1075))))))
+((-1996 (((-592 (-592 (-887 |#1|))) (-592 (-385 (-887 |#1|))) (-592 (-1092))) 57)) (-2496 (((-592 (-273 (-385 (-887 |#1|)))) (-273 (-385 (-887 |#1|)))) 69) (((-592 (-273 (-385 (-887 |#1|)))) (-385 (-887 |#1|))) 65) (((-592 (-273 (-385 (-887 |#1|)))) (-273 (-385 (-887 |#1|))) (-1092)) 70) (((-592 (-273 (-385 (-887 |#1|)))) (-385 (-887 |#1|)) (-1092)) 64) (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-273 (-385 (-887 |#1|))))) 93) (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-385 (-887 |#1|)))) 92) (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-273 (-385 (-887 |#1|)))) (-592 (-1092))) 94) (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-385 (-887 |#1|))) (-592 (-1092))) 91)))
+(((-1098 |#1|) (-10 -7 (-15 -2496 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-385 (-887 |#1|))) (-592 (-1092)))) (-15 -2496 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-273 (-385 (-887 |#1|)))) (-592 (-1092)))) (-15 -2496 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-385 (-887 |#1|))))) (-15 -2496 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-273 (-385 (-887 |#1|)))))) (-15 -2496 ((-592 (-273 (-385 (-887 |#1|)))) (-385 (-887 |#1|)) (-1092))) (-15 -2496 ((-592 (-273 (-385 (-887 |#1|)))) (-273 (-385 (-887 |#1|))) (-1092))) (-15 -2496 ((-592 (-273 (-385 (-887 |#1|)))) (-385 (-887 |#1|)))) (-15 -2496 ((-592 (-273 (-385 (-887 |#1|)))) (-273 (-385 (-887 |#1|))))) (-15 -1996 ((-592 (-592 (-887 |#1|))) (-592 (-385 (-887 |#1|))) (-592 (-1092))))) (-517)) (T -1098))
+((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1092))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-887 *5)))) (-5 *1 (-1098 *5)))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-273 (-385 (-887 *4))))) (-5 *1 (-1098 *4)) (-5 *3 (-273 (-385 (-887 *4)))))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-273 (-385 (-887 *4))))) (-5 *1 (-1098 *4)) (-5 *3 (-385 (-887 *4))))) (-2496 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-517)) (-5 *2 (-592 (-273 (-385 (-887 *5))))) (-5 *1 (-1098 *5)) (-5 *3 (-273 (-385 (-887 *5)))))) (-2496 (*1 *2 *3 *4) (-12 (-5 *4 (-1092)) (-4 *5 (-517)) (-5 *2 (-592 (-273 (-385 (-887 *5))))) (-5 *1 (-1098 *5)) (-5 *3 (-385 (-887 *5))))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *4)))))) (-5 *1 (-1098 *4)) (-5 *3 (-592 (-273 (-385 (-887 *4))))))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-592 (-385 (-887 *4)))) (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *4)))))) (-5 *1 (-1098 *4)))) (-2496 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-1092))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *5)))))) (-5 *1 (-1098 *5)) (-5 *3 (-592 (-273 (-385 (-887 *5))))))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1092))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *5)))))) (-5 *1 (-1098 *5)))))
+(-10 -7 (-15 -2496 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-385 (-887 |#1|))) (-592 (-1092)))) (-15 -2496 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-273 (-385 (-887 |#1|)))) (-592 (-1092)))) (-15 -2496 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-385 (-887 |#1|))))) (-15 -2496 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-273 (-385 (-887 |#1|)))))) (-15 -2496 ((-592 (-273 (-385 (-887 |#1|)))) (-385 (-887 |#1|)) (-1092))) (-15 -2496 ((-592 (-273 (-385 (-887 |#1|)))) (-273 (-385 (-887 |#1|))) (-1092))) (-15 -2496 ((-592 (-273 (-385 (-887 |#1|)))) (-385 (-887 |#1|)))) (-15 -2496 ((-592 (-273 (-385 (-887 |#1|)))) (-273 (-385 (-887 |#1|))))) (-15 -1996 ((-592 (-592 (-887 |#1|))) (-592 (-385 (-887 |#1|))) (-592 (-1092)))))
+((-2157 (((-1075)) 7)) (-4006 (((-1075)) 9)) (-3287 (((-1179) (-1075)) 11)) (-2310 (((-1075)) 8)))
+(((-1099) (-10 -7 (-15 -2157 ((-1075))) (-15 -2310 ((-1075))) (-15 -4006 ((-1075))) (-15 -3287 ((-1179) (-1075))))) (T -1099))
+((-3287 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1099)))) (-4006 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1099)))) (-2310 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1099)))) (-2157 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1099)))))
+(-10 -7 (-15 -2157 ((-1075))) (-15 -2310 ((-1075))) (-15 -4006 ((-1075))) (-15 -3287 ((-1179) (-1075))))
+((-1468 (((-592 (-592 |#1|)) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|)))) 38)) (-1429 (((-592 (-592 (-592 |#1|))) (-592 (-592 |#1|))) 24)) (-4210 (((-1101 (-592 |#1|)) (-592 |#1|)) 34)) (-3743 (((-592 (-592 |#1|)) (-592 |#1|)) 30)) (-4073 (((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 (-592 (-592 |#1|)))) 37)) (-3000 (((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 |#1|) (-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|)))) 36)) (-1696 (((-592 (-592 |#1|)) (-592 (-592 |#1|))) 28)) (-1921 (((-592 |#1|) (-592 |#1|)) 31)) (-1742 (((-592 (-592 (-592 |#1|))) (-592 |#1|) (-592 (-592 (-592 |#1|)))) 18)) (-3123 (((-592 (-592 (-592 |#1|))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 (-592 |#1|)))) 16)) (-2705 (((-2 (|:| |fs| (-108)) (|:| |sd| (-592 |#1|)) (|:| |td| (-592 (-592 |#1|)))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 |#1|))) 14)) (-2051 (((-592 (-592 |#1|)) (-592 (-592 (-592 |#1|)))) 39)) (-1351 (((-592 (-592 |#1|)) (-1101 (-592 |#1|))) 41)))
+(((-1100 |#1|) (-10 -7 (-15 -2705 ((-2 (|:| |fs| (-108)) (|:| |sd| (-592 |#1|)) (|:| |td| (-592 (-592 |#1|)))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 |#1|)))) (-15 -3123 ((-592 (-592 (-592 |#1|))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -1742 ((-592 (-592 (-592 |#1|))) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -1468 ((-592 (-592 |#1|)) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -2051 ((-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -1351 ((-592 (-592 |#1|)) (-1101 (-592 |#1|)))) (-15 -1429 ((-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)))) (-15 -4210 ((-1101 (-592 |#1|)) (-592 |#1|))) (-15 -1696 ((-592 (-592 |#1|)) (-592 (-592 |#1|)))) (-15 -3743 ((-592 (-592 |#1|)) (-592 |#1|))) (-15 -1921 ((-592 |#1|) (-592 |#1|))) (-15 -3000 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 |#1|) (-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))))) (-15 -4073 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 (-592 (-592 |#1|)))))) (-789)) (T -1100))
+((-4073 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-2 (|:| |f1| (-592 *4)) (|:| |f2| (-592 (-592 (-592 *4)))) (|:| |f3| (-592 (-592 *4))) (|:| |f4| (-592 (-592 (-592 *4)))))) (-5 *1 (-1100 *4)) (-5 *3 (-592 (-592 (-592 *4)))))) (-3000 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-789)) (-5 *3 (-592 *6)) (-5 *5 (-592 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-592 *5)) (|:| |f3| *5) (|:| |f4| (-592 *5)))) (-5 *1 (-1100 *6)) (-5 *4 (-592 *5)))) (-1921 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-1100 *3)))) (-3743 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1100 *4)) (-5 *3 (-592 *4)))) (-1696 (*1 *2 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-789)) (-5 *1 (-1100 *3)))) (-4210 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-1101 (-592 *4))) (-5 *1 (-1100 *4)) (-5 *3 (-592 *4)))) (-1429 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 (-592 *4)))) (-5 *1 (-1100 *4)) (-5 *3 (-592 (-592 *4))))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-1101 (-592 *4))) (-4 *4 (-789)) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1100 *4)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-592 *4)))) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1100 *4)) (-4 *4 (-789)))) (-1468 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-592 (-592 *4)))) (-5 *2 (-592 (-592 *4))) (-4 *4 (-789)) (-5 *1 (-1100 *4)))) (-1742 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-592 *4)) (-4 *4 (-789)) (-5 *1 (-1100 *4)))) (-3123 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-592 *5)) (-4 *5 (-789)) (-5 *1 (-1100 *5)))) (-2705 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-789)) (-5 *4 (-592 *6)) (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-592 *4)))) (-5 *1 (-1100 *6)) (-5 *5 (-592 *4)))))
+(-10 -7 (-15 -2705 ((-2 (|:| |fs| (-108)) (|:| |sd| (-592 |#1|)) (|:| |td| (-592 (-592 |#1|)))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 |#1|)))) (-15 -3123 ((-592 (-592 (-592 |#1|))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -1742 ((-592 (-592 (-592 |#1|))) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -1468 ((-592 (-592 |#1|)) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -2051 ((-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -1351 ((-592 (-592 |#1|)) (-1101 (-592 |#1|)))) (-15 -1429 ((-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)))) (-15 -4210 ((-1101 (-592 |#1|)) (-592 |#1|))) (-15 -1696 ((-592 (-592 |#1|)) (-592 (-592 |#1|)))) (-15 -3743 ((-592 (-592 |#1|)) (-592 |#1|))) (-15 -1921 ((-592 |#1|) (-592 |#1|))) (-15 -3000 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 |#1|) (-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))))) (-15 -4073 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 (-592 (-592 |#1|))))))
+((-4109 (($ (-592 (-592 |#1|))) 10)) (-2949 (((-592 (-592 |#1|)) $) 11)) (-4100 (((-798) $) 26)))
+(((-1101 |#1|) (-10 -8 (-15 -4109 ($ (-592 (-592 |#1|)))) (-15 -2949 ((-592 (-592 |#1|)) $)) (-15 -4100 ((-798) $))) (-1020)) (T -1101))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1101 *3)) (-4 *3 (-1020)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 *3))) (-5 *1 (-1101 *3)) (-4 *3 (-1020)))) (-4109 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-1101 *3)))))
+(-10 -8 (-15 -4109 ($ (-592 (-592 |#1|)))) (-15 -2949 ((-592 (-592 |#1|)) $)) (-15 -4100 ((-798) $)))
+((-4087 (((-108) $ $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3311 (($) NIL) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-3289 (((-1179) $ |#1| |#1|) NIL (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 ((|#2| $ |#1| |#2|) NIL)) (-3050 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-1515 (((-3 |#2| "failed") |#1| $) NIL)) (-2475 (($) NIL T CONST)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-4205 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (|has| $ (-6 -4259))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-3 |#2| "failed") |#1| $) NIL)) (-2698 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3504 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (|has| $ (-6 -4259))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259)))) (-3081 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#2| $ |#1|) NIL)) (-2175 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) NIL)) (-1732 ((|#1| $) NIL (|has| |#1| (-789)))) (-2617 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-592 |#2|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-2231 ((|#1| $) NIL (|has| |#1| (-789)))) (-3069 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4260))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1398 (((-592 |#1|) $) NIL)) (-3770 (((-108) |#1| $) NIL)) (-3577 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-3246 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-3177 (((-592 |#1|) $) NIL)) (-3461 (((-108) |#1| $) NIL)) (-3993 (((-1039) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1647 ((|#2| $) NIL (|has| |#1| (-789)))) (-4202 (((-3 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) "failed") (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL)) (-3453 (($ $ |#2|) NIL (|has| $ (-6 -4260)))) (-2724 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL)) (-1518 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-1717 (((-592 |#2|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2637 (($) NIL) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-4002 (((-713) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-713) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) NIL (-12 (|has| $ (-6 -4259)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-567 (-501))))) (-4114 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-4100 (((-798) $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-3905 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) NIL)) (-2706 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) NIL (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) NIL (-2067 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-1102 |#1| |#2|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -4259))) (-1020) (-1020)) (T -1102))
+NIL
+(-13 (-1105 |#1| |#2|) (-10 -7 (-6 -4259)))
+((-2530 ((|#1| (-592 |#1|)) 32)) (-2941 ((|#1| |#1| (-525)) 18)) (-2048 (((-1088 |#1|) |#1| (-856)) 15)))
+(((-1103 |#1|) (-10 -7 (-15 -2530 (|#1| (-592 |#1|))) (-15 -2048 ((-1088 |#1|) |#1| (-856))) (-15 -2941 (|#1| |#1| (-525)))) (-341)) (T -1103))
+((-2941 (*1 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-1103 *2)) (-4 *2 (-341)))) (-2048 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-5 *2 (-1088 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-341)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-1103 *2)) (-4 *2 (-341)))))
+(-10 -7 (-15 -2530 (|#1| (-592 |#1|))) (-15 -2048 ((-1088 |#1|) |#1| (-856))) (-15 -2941 (|#1| |#1| (-525))))
+((-3311 (($) 10) (($ (-592 (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)))) 14)) (-4205 (($ (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) $) 61) (($ (-1 (-108) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2175 (((-592 (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) $) 39) (((-592 |#3|) $) 41)) (-3069 (($ (-1 (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-2016 (($ (-1 (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3577 (((-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) $) 54)) (-3246 (($ (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) $) 16)) (-3177 (((-592 |#2|) $) 19)) (-3461 (((-108) |#2| $) 59)) (-4202 (((-3 (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) "failed") (-1 (-108) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) $) 58)) (-2724 (((-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) $) 63)) (-1518 (((-108) (-1 (-108) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 67)) (-1717 (((-592 |#3|) $) 43)) (-3431 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4002 (((-713) (-1 (-108) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) $) NIL) (((-713) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) $) NIL) (((-713) |#3| $) NIL) (((-713) (-1 (-108) |#3|) $) 68)) (-4100 (((-798) $) 27)) (-2706 (((-108) (-1 (-108) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 65)) (-2775 (((-108) $ $) 49)))
+(((-1104 |#1| |#2| |#3|) (-10 -8 (-15 -4100 ((-798) |#1|)) (-15 -2775 ((-108) |#1| |#1|)) (-15 -2016 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3311 (|#1| (-592 (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))))) (-15 -3311 (|#1|)) (-15 -2016 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3069 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2706 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -1518 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -4002 ((-713) (-1 (-108) |#3|) |#1|)) (-15 -2175 ((-592 |#3|) |#1|)) (-15 -4002 ((-713) |#3| |#1|)) (-15 -3431 (|#3| |#1| |#2| |#3|)) (-15 -3431 (|#3| |#1| |#2|)) (-15 -1717 ((-592 |#3|) |#1|)) (-15 -3461 ((-108) |#2| |#1|)) (-15 -3177 ((-592 |#2|) |#1|)) (-15 -4205 ((-3 |#3| "failed") |#2| |#1|)) (-15 -4205 (|#1| (-1 (-108) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) |#1|)) (-15 -4205 (|#1| (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) |#1|)) (-15 -4202 ((-3 (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) "failed") (-1 (-108) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) |#1|)) (-15 -3577 ((-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) |#1|)) (-15 -3246 (|#1| (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) |#1|)) (-15 -2724 ((-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) |#1|)) (-15 -4002 ((-713) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) |#1|)) (-15 -2175 ((-592 (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) |#1|)) (-15 -4002 ((-713) (-1 (-108) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) |#1|)) (-15 -1518 ((-108) (-1 (-108) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) |#1|)) (-15 -2706 ((-108) (-1 (-108) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) |#1|)) (-15 -3069 (|#1| (-1 (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) |#1|)) (-15 -2016 (|#1| (-1 (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) |#1|))) (-1105 |#2| |#3|) (-1020) (-1020)) (T -1104))
+NIL
+(-10 -8 (-15 -4100 ((-798) |#1|)) (-15 -2775 ((-108) |#1| |#1|)) (-15 -2016 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3311 (|#1| (-592 (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))))) (-15 -3311 (|#1|)) (-15 -2016 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3069 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2706 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -1518 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -4002 ((-713) (-1 (-108) |#3|) |#1|)) (-15 -2175 ((-592 |#3|) |#1|)) (-15 -4002 ((-713) |#3| |#1|)) (-15 -3431 (|#3| |#1| |#2| |#3|)) (-15 -3431 (|#3| |#1| |#2|)) (-15 -1717 ((-592 |#3|) |#1|)) (-15 -3461 ((-108) |#2| |#1|)) (-15 -3177 ((-592 |#2|) |#1|)) (-15 -4205 ((-3 |#3| "failed") |#2| |#1|)) (-15 -4205 (|#1| (-1 (-108) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) |#1|)) (-15 -4205 (|#1| (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) |#1|)) (-15 -4202 ((-3 (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) "failed") (-1 (-108) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) |#1|)) (-15 -3577 ((-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) |#1|)) (-15 -3246 (|#1| (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) |#1|)) (-15 -2724 ((-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) |#1|)) (-15 -4002 ((-713) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) |#1|)) (-15 -2175 ((-592 (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) |#1|)) (-15 -4002 ((-713) (-1 (-108) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) |#1|)) (-15 -1518 ((-108) (-1 (-108) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) |#1|)) (-15 -2706 ((-108) (-1 (-108) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) |#1|)) (-15 -3069 (|#1| (-1 (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) |#1|)) (-15 -2016 (|#1| (-1 (-2 (|:| -1556 |#2|) (|:| -3448 |#3|)) (-2 (|:| -1556 |#2|) (|:| -3448 |#3|))) |#1|)))
+((-4087 (((-108) $ $) 19 (-2067 (|has| |#2| (-1020)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-3311 (($) 72) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 71)) (-3289 (((-1179) $ |#1| |#1|) 99 (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) 8)) (-1233 ((|#2| $ |#1| |#2|) 73)) (-3050 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 45 (|has| $ (-6 -4259)))) (-2399 (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 55 (|has| $ (-6 -4259)))) (-1515 (((-3 |#2| "failed") |#1| $) 61)) (-2475 (($) 7 T CONST)) (-1681 (($ $) 58 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259))))) (-4205 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 47 (|has| $ (-6 -4259))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 46 (|has| $ (-6 -4259))) (((-3 |#2| "failed") |#1| $) 62)) (-2698 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 57 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 54 (|has| $ (-6 -4259)))) (-3504 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 56 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259)))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 53 (|has| $ (-6 -4259))) (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 52 (|has| $ (-6 -4259)))) (-3081 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4260)))) (-3017 ((|#2| $ |#1|) 88)) (-2175 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 30 (|has| $ (-6 -4259))) (((-592 |#2|) $) 79 (|has| $ (-6 -4259)))) (-2516 (((-108) $ (-713)) 9)) (-1732 ((|#1| $) 96 (|has| |#1| (-789)))) (-2617 (((-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 29 (|has| $ (-6 -4259))) (((-592 |#2|) $) 80 (|has| $ (-6 -4259)))) (-3198 (((-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 27 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4259))))) (-2231 ((|#1| $) 95 (|has| |#1| (-789)))) (-3069 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 34 (|has| $ (-6 -4260))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4260)))) (-2016 (($ (-1 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-4028 (((-108) $ (-713)) 10)) (-1289 (((-1075) $) 22 (-2067 (|has| |#2| (-1020)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-1398 (((-592 |#1|) $) 63)) (-3770 (((-108) |#1| $) 64)) (-3577 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 39)) (-3246 (($ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 40)) (-3177 (((-592 |#1|) $) 93)) (-3461 (((-108) |#1| $) 92)) (-3993 (((-1039) $) 21 (-2067 (|has| |#2| (-1020)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-1647 ((|#2| $) 97 (|has| |#1| (-789)))) (-4202 (((-3 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) "failed") (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 51)) (-3453 (($ $ |#2|) 98 (|has| $ (-6 -4260)))) (-2724 (((-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 41)) (-1518 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 32 (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))))) 26 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 25 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) 24 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 23 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) 86 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) 84 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) 83 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-1231 (((-108) $ $) 14)) (-2456 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4259)) (|has| |#2| (-1020))))) (-1717 (((-592 |#2|) $) 91)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-2637 (($) 49) (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 48)) (-4002 (((-713) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 31 (|has| $ (-6 -4259))) (((-713) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| $ (-6 -4259)))) (((-713) |#2| $) 81 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4259)))) (((-713) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4259)))) (-2503 (($ $) 13)) (-2069 (((-501) $) 59 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-567 (-501))))) (-4114 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 50)) (-4100 (((-798) $) 18 (-2067 (|has| |#2| (-566 (-798))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-566 (-798)))))) (-3905 (($ (-592 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) 42)) (-2706 (((-108) (-1 (-108) (-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) $) 33 (|has| $ (-6 -4259))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (-2067 (|has| |#2| (-1020)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-1105 |#1| |#2|) (-131) (-1020) (-1020)) (T -1105))
-((-1430 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1105 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))) (-1675 (*1 *1) (-12 (-4 *1 (-1105 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-1675 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3364 *3) (|:| -4201 *4)))) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *1 (-1105 *3 *4)))) (-3165 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1105 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))))
-(-13 (-563 |t#1| |t#2|) (-558 |t#1| |t#2|) (-10 -8 (-15 -1430 (|t#2| $ |t#1| |t#2|)) (-15 -1675 ($)) (-15 -1675 ($ (-592 (-2 (|:| -3364 |t#1|) (|:| -4201 |t#2|))))) (-15 -3165 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-33) . T) ((-102 #0=(-2 (|:| -3364 |#1|) (|:| -4201 |#2|))) . T) ((-97) -3254 (|has| |#2| (-1020)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))) ((-566 (-798)) -3254 (|has| |#2| (-1020)) (|has| |#2| (-566 (-798))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-566 (-798)))) ((-142 #0#) . T) ((-567 (-501)) |has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-567 (-501))) ((-209 #0#) . T) ((-215 #0#) . T) ((-265 |#1| |#2|) . T) ((-267 |#1| |#2|) . T) ((-288 #0#) -12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-464 #0#) . T) ((-464 |#2|) . T) ((-558 |#1| |#2|) . T) ((-486 #0# #0#) -12 (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-288 (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)))) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-563 |#1| |#2|) . T) ((-1020) -3254 (|has| |#2| (-1020)) (|has| (-2 (|:| -3364 |#1|) (|:| -4201 |#2|)) (-1020))) ((-1128) . T))
-((-4117 (((-108)) 24)) (-3609 (((-1179) (-1075)) 26)) (-2592 (((-108)) 36)) (-3442 (((-1179)) 34)) (-1338 (((-1179) (-1075) (-1075)) 25)) (-4129 (((-108)) 37)) (-1262 (((-1179) |#1| |#2|) 44)) (-3046 (((-1179)) 20)) (-2863 (((-3 |#2| "failed") |#1|) 42)) (-2449 (((-1179)) 35)))
-(((-1106 |#1| |#2|) (-10 -7 (-15 -3046 ((-1179))) (-15 -1338 ((-1179) (-1075) (-1075))) (-15 -3609 ((-1179) (-1075))) (-15 -3442 ((-1179))) (-15 -2449 ((-1179))) (-15 -4117 ((-108))) (-15 -2592 ((-108))) (-15 -4129 ((-108))) (-15 -2863 ((-3 |#2| "failed") |#1|)) (-15 -1262 ((-1179) |#1| |#2|))) (-1020) (-1020)) (T -1106))
-((-1262 (*1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-2863 (*1 *2 *3) (|partial| -12 (-4 *2 (-1020)) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1020)))) (-4129 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-2592 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-4117 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-2449 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-3442 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1020)))) (-1338 (*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1020)))) (-3046 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))))
-(-10 -7 (-15 -3046 ((-1179))) (-15 -1338 ((-1179) (-1075) (-1075))) (-15 -3609 ((-1179) (-1075))) (-15 -3442 ((-1179))) (-15 -2449 ((-1179))) (-15 -4117 ((-108))) (-15 -2592 ((-108))) (-15 -4129 ((-108))) (-15 -2863 ((-3 |#2| "failed") |#1|)) (-15 -1262 ((-1179) |#1| |#2|)))
-((-4072 (((-1075) (-1075)) 18)) (-3517 (((-51) (-1075)) 21)))
-(((-1107) (-10 -7 (-15 -3517 ((-51) (-1075))) (-15 -4072 ((-1075) (-1075))))) (T -1107))
-((-4072 (*1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1107)))) (-3517 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-51)) (-5 *1 (-1107)))))
-(-10 -7 (-15 -3517 ((-51) (-1075))) (-15 -4072 ((-1075) (-1075))))
-((-1217 (((-1109) |#1|) 11)))
-(((-1108 |#1|) (-10 -7 (-15 -1217 ((-1109) |#1|))) (-1020)) (T -1108))
-((-1217 (*1 *2 *3) (-12 (-5 *2 (-1109)) (-5 *1 (-1108 *3)) (-4 *3 (-1020)))))
-(-10 -7 (-15 -1217 ((-1109) |#1|)))
-((-4236 (((-108) $ $) NIL)) (-3118 (((-592 (-1075)) $) 34)) (-2680 (((-592 (-1075)) $ (-592 (-1075))) 37)) (-3730 (((-592 (-1075)) $ (-592 (-1075))) 36)) (-4170 (((-592 (-1075)) $ (-592 (-1075))) 38)) (-1458 (((-592 (-1075)) $) 33)) (-3416 (($) 22)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-2138 (((-592 (-1075)) $) 35)) (-2736 (((-1179) $ (-525)) 29) (((-1179) $) 30)) (-3210 (($ (-798) (-525)) 26) (($ (-798) (-525) (-798)) NIL)) (-1217 (((-798) $) 40) (($ (-798)) 24)) (-3955 (((-108) $ $) NIL)))
-(((-1109) (-13 (-1020) (-10 -8 (-15 -1217 ($ (-798))) (-15 -3210 ($ (-798) (-525))) (-15 -3210 ($ (-798) (-525) (-798))) (-15 -2736 ((-1179) $ (-525))) (-15 -2736 ((-1179) $)) (-15 -2138 ((-592 (-1075)) $)) (-15 -3118 ((-592 (-1075)) $)) (-15 -3416 ($)) (-15 -1458 ((-592 (-1075)) $)) (-15 -4170 ((-592 (-1075)) $ (-592 (-1075)))) (-15 -2680 ((-592 (-1075)) $ (-592 (-1075)))) (-15 -3730 ((-592 (-1075)) $ (-592 (-1075))))))) (T -1109))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1109)))) (-3210 (*1 *1 *2 *3) (-12 (-5 *2 (-798)) (-5 *3 (-525)) (-5 *1 (-1109)))) (-3210 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-798)) (-5 *3 (-525)) (-5 *1 (-1109)))) (-2736 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-1109)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1109)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))) (-3118 (*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))) (-3416 (*1 *1) (-5 *1 (-1109))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))) (-4170 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))) (-2680 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))) (-3730 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))))
-(-13 (-1020) (-10 -8 (-15 -1217 ($ (-798))) (-15 -3210 ($ (-798) (-525))) (-15 -3210 ($ (-798) (-525) (-798))) (-15 -2736 ((-1179) $ (-525))) (-15 -2736 ((-1179) $)) (-15 -2138 ((-592 (-1075)) $)) (-15 -3118 ((-592 (-1075)) $)) (-15 -3416 ($)) (-15 -1458 ((-592 (-1075)) $)) (-15 -4170 ((-592 (-1075)) $ (-592 (-1075)))) (-15 -2680 ((-592 (-1075)) $ (-592 (-1075)))) (-15 -3730 ((-592 (-1075)) $ (-592 (-1075))))))
-((-4236 (((-108) $ $) NIL)) (-2443 (((-1075) $ (-1075)) 17) (((-1075) $) 16)) (-3529 (((-1075) $ (-1075)) 15)) (-3897 (($ $ (-1075)) NIL)) (-2929 (((-3 (-1075) "failed") $) 11)) (-3667 (((-1075) $) 8)) (-3712 (((-3 (-1075) "failed") $) 12)) (-1364 (((-1075) $) 9)) (-3459 (($ (-366)) NIL) (($ (-366) (-1075)) NIL)) (-3257 (((-366) $) NIL)) (-2619 (((-1075) $) NIL)) (-3249 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3898 (((-108) $) 18)) (-1217 (((-798) $) NIL)) (-1512 (($ $) NIL)) (-3955 (((-108) $ $) NIL)))
-(((-1110) (-13 (-342 (-366) (-1075)) (-10 -8 (-15 -2443 ((-1075) $ (-1075))) (-15 -2443 ((-1075) $)) (-15 -3667 ((-1075) $)) (-15 -2929 ((-3 (-1075) "failed") $)) (-15 -3712 ((-3 (-1075) "failed") $)) (-15 -3898 ((-108) $))))) (T -1110))
-((-2443 (*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1110)))) (-2443 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1110)))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1110)))) (-2929 (*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-1110)))) (-3712 (*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-1110)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1110)))))
-(-13 (-342 (-366) (-1075)) (-10 -8 (-15 -2443 ((-1075) $ (-1075))) (-15 -2443 ((-1075) $)) (-15 -3667 ((-1075) $)) (-15 -2929 ((-3 (-1075) "failed") $)) (-15 -3712 ((-3 (-1075) "failed") $)) (-15 -3898 ((-108) $))))
-((-3855 (((-3 (-525) "failed") |#1|) 19)) (-2506 (((-3 (-525) "failed") |#1|) 14)) (-3078 (((-525) (-1075)) 28)))
-(((-1111 |#1|) (-10 -7 (-15 -3855 ((-3 (-525) "failed") |#1|)) (-15 -2506 ((-3 (-525) "failed") |#1|)) (-15 -3078 ((-525) (-1075)))) (-977)) (T -1111))
-((-3078 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-525)) (-5 *1 (-1111 *4)) (-4 *4 (-977)))) (-2506 (*1 *2 *3) (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1111 *3)) (-4 *3 (-977)))) (-3855 (*1 *2 *3) (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1111 *3)) (-4 *3 (-977)))))
-(-10 -7 (-15 -3855 ((-3 (-525) "failed") |#1|)) (-15 -2506 ((-3 (-525) "failed") |#1|)) (-15 -3078 ((-525) (-1075))))
-((-2473 (((-1052 (-205))) 9)))
-(((-1112) (-10 -7 (-15 -2473 ((-1052 (-205)))))) (T -1112))
-((-2473 (*1 *2) (-12 (-5 *2 (-1052 (-205))) (-5 *1 (-1112)))))
-(-10 -7 (-15 -2473 ((-1052 (-205)))))
-((-3140 (($) 11)) (-1649 (($ $) 35)) (-1630 (($ $) 33)) (-1465 (($ $) 25)) (-1669 (($ $) 17)) (-2359 (($ $) 15)) (-1659 (($ $) 19)) (-1506 (($ $) 30)) (-1639 (($ $) 34)) (-1479 (($ $) 29)))
-(((-1113 |#1|) (-10 -8 (-15 -3140 (|#1|)) (-15 -1649 (|#1| |#1|)) (-15 -1630 (|#1| |#1|)) (-15 -1669 (|#1| |#1|)) (-15 -2359 (|#1| |#1|)) (-15 -1659 (|#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -1479 (|#1| |#1|))) (-1114)) (T -1113))
-NIL
-(-10 -8 (-15 -3140 (|#1|)) (-15 -1649 (|#1| |#1|)) (-15 -1630 (|#1| |#1|)) (-15 -1669 (|#1| |#1|)) (-15 -2359 (|#1| |#1|)) (-15 -1659 (|#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -1479 (|#1| |#1|)))
-((-1575 (($ $) 26)) (-2804 (($ $) 11)) (-1549 (($ $) 27)) (-2780 (($ $) 10)) (-1599 (($ $) 28)) (-2836 (($ $) 9)) (-3140 (($) 16)) (-1517 (($ $) 19)) (-3096 (($ $) 18)) (-1609 (($ $) 29)) (-1447 (($ $) 8)) (-1587 (($ $) 30)) (-2815 (($ $) 7)) (-1562 (($ $) 31)) (-2794 (($ $) 6)) (-1649 (($ $) 20)) (-1492 (($ $) 32)) (-1630 (($ $) 21)) (-1465 (($ $) 33)) (-1669 (($ $) 22)) (-1522 (($ $) 34)) (-2359 (($ $) 23)) (-1537 (($ $) 35)) (-1659 (($ $) 24)) (-1506 (($ $) 36)) (-1639 (($ $) 25)) (-1479 (($ $) 37)) (** (($ $ $) 17)))
+((-1233 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1105 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))) (-3311 (*1 *1) (-12 (-4 *1 (-1105 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-3311 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -1556 *3) (|:| -3448 *4)))) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *1 (-1105 *3 *4)))) (-2016 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1105 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))))
+(-13 (-563 |t#1| |t#2|) (-558 |t#1| |t#2|) (-10 -8 (-15 -1233 (|t#2| $ |t#1| |t#2|)) (-15 -3311 ($)) (-15 -3311 ($ (-592 (-2 (|:| -1556 |t#1|) (|:| -3448 |t#2|))))) (-15 -2016 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-33) . T) ((-102 #0=(-2 (|:| -1556 |#1|) (|:| -3448 |#2|))) . T) ((-97) -2067 (|has| |#2| (-1020)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))) ((-566 (-798)) -2067 (|has| |#2| (-1020)) (|has| |#2| (-566 (-798))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-566 (-798)))) ((-142 #0#) . T) ((-567 (-501)) |has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-567 (-501))) ((-209 #0#) . T) ((-215 #0#) . T) ((-265 |#1| |#2|) . T) ((-267 |#1| |#2|) . T) ((-288 #0#) -12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-464 #0#) . T) ((-464 |#2|) . T) ((-558 |#1| |#2|) . T) ((-486 #0# #0#) -12 (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-288 (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)))) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-563 |#1| |#2|) . T) ((-1020) -2067 (|has| |#2| (-1020)) (|has| (-2 (|:| -1556 |#1|) (|:| -3448 |#2|)) (-1020))) ((-1128) . T))
+((-2633 (((-108)) 24)) (-2385 (((-1179) (-1075)) 26)) (-4090 (((-108)) 36)) (-3151 (((-1179)) 34)) (-3014 (((-1179) (-1075) (-1075)) 25)) (-2736 (((-108)) 37)) (-3246 (((-1179) |#1| |#2|) 44)) (-2844 (((-1179)) 20)) (-1739 (((-3 |#2| "failed") |#1|) 42)) (-2185 (((-1179)) 35)))
+(((-1106 |#1| |#2|) (-10 -7 (-15 -2844 ((-1179))) (-15 -3014 ((-1179) (-1075) (-1075))) (-15 -2385 ((-1179) (-1075))) (-15 -3151 ((-1179))) (-15 -2185 ((-1179))) (-15 -2633 ((-108))) (-15 -4090 ((-108))) (-15 -2736 ((-108))) (-15 -1739 ((-3 |#2| "failed") |#1|)) (-15 -3246 ((-1179) |#1| |#2|))) (-1020) (-1020)) (T -1106))
+((-3246 (*1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-1739 (*1 *2 *3) (|partial| -12 (-4 *2 (-1020)) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1020)))) (-2736 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-4090 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-2633 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-2185 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-3151 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1020)))) (-3014 (*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1020)))) (-2844 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))))
+(-10 -7 (-15 -2844 ((-1179))) (-15 -3014 ((-1179) (-1075) (-1075))) (-15 -2385 ((-1179) (-1075))) (-15 -3151 ((-1179))) (-15 -2185 ((-1179))) (-15 -2633 ((-108))) (-15 -4090 ((-108))) (-15 -2736 ((-108))) (-15 -1739 ((-3 |#2| "failed") |#1|)) (-15 -3246 ((-1179) |#1| |#2|)))
+((-3374 (((-1075) (-1075)) 18)) (-2674 (((-51) (-1075)) 21)))
+(((-1107) (-10 -7 (-15 -2674 ((-51) (-1075))) (-15 -3374 ((-1075) (-1075))))) (T -1107))
+((-3374 (*1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1107)))) (-2674 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-51)) (-5 *1 (-1107)))))
+(-10 -7 (-15 -2674 ((-51) (-1075))) (-15 -3374 ((-1075) (-1075))))
+((-4100 (((-1109) |#1|) 11)))
+(((-1108 |#1|) (-10 -7 (-15 -4100 ((-1109) |#1|))) (-1020)) (T -1108))
+((-4100 (*1 *2 *3) (-12 (-5 *2 (-1109)) (-5 *1 (-1108 *3)) (-4 *3 (-1020)))))
+(-10 -7 (-15 -4100 ((-1109) |#1|)))
+((-4087 (((-108) $ $) NIL)) (-1802 (((-592 (-1075)) $) 34)) (-3677 (((-592 (-1075)) $ (-592 (-1075))) 37)) (-4204 (((-592 (-1075)) $ (-592 (-1075))) 36)) (-3108 (((-592 (-1075)) $ (-592 (-1075))) 38)) (-2514 (((-592 (-1075)) $) 33)) (-3324 (($) 22)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2144 (((-592 (-1075)) $) 35)) (-2701 (((-1179) $ (-525)) 29) (((-1179) $) 30)) (-2069 (($ (-798) (-525)) 26) (($ (-798) (-525) (-798)) NIL)) (-4100 (((-798) $) 40) (($ (-798)) 24)) (-2775 (((-108) $ $) NIL)))
+(((-1109) (-13 (-1020) (-10 -8 (-15 -4100 ($ (-798))) (-15 -2069 ($ (-798) (-525))) (-15 -2069 ($ (-798) (-525) (-798))) (-15 -2701 ((-1179) $ (-525))) (-15 -2701 ((-1179) $)) (-15 -2144 ((-592 (-1075)) $)) (-15 -1802 ((-592 (-1075)) $)) (-15 -3324 ($)) (-15 -2514 ((-592 (-1075)) $)) (-15 -3108 ((-592 (-1075)) $ (-592 (-1075)))) (-15 -3677 ((-592 (-1075)) $ (-592 (-1075)))) (-15 -4204 ((-592 (-1075)) $ (-592 (-1075))))))) (T -1109))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1109)))) (-2069 (*1 *1 *2 *3) (-12 (-5 *2 (-798)) (-5 *3 (-525)) (-5 *1 (-1109)))) (-2069 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-798)) (-5 *3 (-525)) (-5 *1 (-1109)))) (-2701 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-1109)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1109)))) (-2144 (*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))) (-1802 (*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))) (-3324 (*1 *1) (-5 *1 (-1109))) (-2514 (*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))) (-3108 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))) (-3677 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))) (-4204 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))))
+(-13 (-1020) (-10 -8 (-15 -4100 ($ (-798))) (-15 -2069 ($ (-798) (-525))) (-15 -2069 ($ (-798) (-525) (-798))) (-15 -2701 ((-1179) $ (-525))) (-15 -2701 ((-1179) $)) (-15 -2144 ((-592 (-1075)) $)) (-15 -1802 ((-592 (-1075)) $)) (-15 -3324 ($)) (-15 -2514 ((-592 (-1075)) $)) (-15 -3108 ((-592 (-1075)) $ (-592 (-1075)))) (-15 -3677 ((-592 (-1075)) $ (-592 (-1075)))) (-15 -4204 ((-592 (-1075)) $ (-592 (-1075))))))
+((-4087 (((-108) $ $) NIL)) (-2130 (((-1075) $ (-1075)) 17) (((-1075) $) 16)) (-2773 (((-1075) $ (-1075)) 15)) (-2220 (($ $ (-1075)) NIL)) (-4222 (((-3 (-1075) "failed") $) 11)) (-1744 (((-1075) $) 8)) (-4012 (((-3 (-1075) "failed") $) 12)) (-1754 (((-1075) $) 9)) (-2046 (($ (-366)) NIL) (($ (-366) (-1075)) NIL)) (-2411 (((-366) $) NIL)) (-1289 (((-1075) $) NIL)) (-4022 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2229 (((-108) $) 18)) (-4100 (((-798) $) NIL)) (-3267 (($ $) NIL)) (-2775 (((-108) $ $) NIL)))
+(((-1110) (-13 (-342 (-366) (-1075)) (-10 -8 (-15 -2130 ((-1075) $ (-1075))) (-15 -2130 ((-1075) $)) (-15 -1744 ((-1075) $)) (-15 -4222 ((-3 (-1075) "failed") $)) (-15 -4012 ((-3 (-1075) "failed") $)) (-15 -2229 ((-108) $))))) (T -1110))
+((-2130 (*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1110)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1110)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1110)))) (-4222 (*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-1110)))) (-4012 (*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-1110)))) (-2229 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1110)))))
+(-13 (-342 (-366) (-1075)) (-10 -8 (-15 -2130 ((-1075) $ (-1075))) (-15 -2130 ((-1075) $)) (-15 -1744 ((-1075) $)) (-15 -4222 ((-3 (-1075) "failed") $)) (-15 -4012 ((-3 (-1075) "failed") $)) (-15 -2229 ((-108) $))))
+((-2971 (((-3 (-525) "failed") |#1|) 19)) (-1493 (((-3 (-525) "failed") |#1|) 14)) (-3098 (((-525) (-1075)) 28)))
+(((-1111 |#1|) (-10 -7 (-15 -2971 ((-3 (-525) "failed") |#1|)) (-15 -1493 ((-3 (-525) "failed") |#1|)) (-15 -3098 ((-525) (-1075)))) (-977)) (T -1111))
+((-3098 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-525)) (-5 *1 (-1111 *4)) (-4 *4 (-977)))) (-1493 (*1 *2 *3) (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1111 *3)) (-4 *3 (-977)))) (-2971 (*1 *2 *3) (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1111 *3)) (-4 *3 (-977)))))
+(-10 -7 (-15 -2971 ((-3 (-525) "failed") |#1|)) (-15 -1493 ((-3 (-525) "failed") |#1|)) (-15 -3098 ((-525) (-1075))))
+((-2398 (((-1052 (-205))) 9)))
+(((-1112) (-10 -7 (-15 -2398 ((-1052 (-205)))))) (T -1112))
+((-2398 (*1 *2) (-12 (-5 *2 (-1052 (-205))) (-5 *1 (-1112)))))
+(-10 -7 (-15 -2398 ((-1052 (-205)))))
+((-4106 (($) 11)) (-1876 (($ $) 35)) (-1853 (($ $) 33)) (-3808 (($ $) 25)) (-1902 (($ $) 17)) (-3135 (($ $) 15)) (-1891 (($ $) 19)) (-1748 (($ $) 30)) (-1866 (($ $) 34)) (-3820 (($ $) 29)))
+(((-1113 |#1|) (-10 -8 (-15 -4106 (|#1|)) (-15 -1876 (|#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1902 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -1891 (|#1| |#1|)) (-15 -1866 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -1748 (|#1| |#1|)) (-15 -3820 (|#1| |#1|))) (-1114)) (T -1113))
+NIL
+(-10 -8 (-15 -4106 (|#1|)) (-15 -1876 (|#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1902 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -1891 (|#1| |#1|)) (-15 -1866 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -1748 (|#1| |#1|)) (-15 -3820 (|#1| |#1|)))
+((-1803 (($ $) 26)) (-3659 (($ $) 11)) (-1781 (($ $) 27)) (-3638 (($ $) 10)) (-1828 (($ $) 28)) (-3698 (($ $) 9)) (-4106 (($) 16)) (-2533 (($ $) 19)) (-1618 (($ $) 18)) (-1841 (($ $) 29)) (-3798 (($ $) 8)) (-1816 (($ $) 30)) (-3678 (($ $) 7)) (-1792 (($ $) 31)) (-3649 (($ $) 6)) (-1876 (($ $) 20)) (-3853 (($ $) 32)) (-1853 (($ $) 21)) (-3808 (($ $) 33)) (-1902 (($ $) 22)) (-1760 (($ $) 34)) (-3135 (($ $) 23)) (-1770 (($ $) 35)) (-1891 (($ $) 24)) (-1748 (($ $) 36)) (-1866 (($ $) 25)) (-3820 (($ $) 37)) (** (($ $ $) 17)))
(((-1114) (-131)) (T -1114))
-((-3140 (*1 *1) (-4 *1 (-1114))))
-(-13 (-1117) (-91) (-466) (-34) (-263) (-10 -8 (-15 -3140 ($))))
+((-4106 (*1 *1) (-4 *1 (-1114))))
+(-13 (-1117) (-91) (-466) (-34) (-263) (-10 -8 (-15 -4106 ($))))
(((-34) . T) ((-91) . T) ((-263) . T) ((-466) . T) ((-1117) . T))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3284 ((|#1| $) 17)) (-1880 (($ |#1| (-592 $)) 23) (($ (-592 |#1|)) 27) (($ |#1|) 25)) (-3991 (((-108) $ (-713)) 48)) (-3214 ((|#1| $ |#1|) 14 (|has| $ (-6 -4259)))) (-1430 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) 13 (|has| $ (-6 -4259)))) (-2169 (($) NIL T CONST)) (-3440 (((-592 |#1|) $) 52 (|has| $ (-6 -4258)))) (-3396 (((-592 $) $) 43)) (-1729 (((-108) $ $) 33 (|has| |#1| (-1020)))) (-3924 (((-108) $ (-713)) 41)) (-2694 (((-592 |#1|) $) 53 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 51 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-2284 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 22)) (-2912 (((-108) $ (-713)) 40)) (-2803 (((-592 |#1|) $) 37)) (-3786 (((-108) $) 36)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3944 (((-108) (-1 (-108) |#1|) $) 50 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 74)) (-2659 (((-108) $) 9)) (-2512 (($) 10)) (-3406 ((|#1| $ "value") NIL)) (-3340 (((-525) $ $) 32)) (-2732 (((-592 $) $) 59)) (-1870 (((-108) $ $) 77)) (-1670 (((-592 $) $) 72)) (-3138 (($ $) 73)) (-2905 (((-108) $) 56)) (-2110 (((-713) (-1 (-108) |#1|) $) 20 (|has| $ (-6 -4258))) (((-713) |#1| $) 16 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1462 (($ $) 58)) (-1217 (((-798) $) 61 (|has| |#1| (-566 (-798))))) (-3793 (((-592 $) $) 12)) (-3351 (((-108) $ $) 29 (|has| |#1| (-1020)))) (-3029 (((-108) (-1 (-108) |#1|) $) 49 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 28 (|has| |#1| (-1020)))) (-3522 (((-713) $) 39 (|has| $ (-6 -4258)))))
-(((-1115 |#1|) (-13 (-942 |#1|) (-10 -8 (-6 -4258) (-6 -4259) (-15 -1880 ($ |#1| (-592 $))) (-15 -1880 ($ (-592 |#1|))) (-15 -1880 ($ |#1|)) (-15 -2905 ((-108) $)) (-15 -3138 ($ $)) (-15 -1670 ((-592 $) $)) (-15 -1870 ((-108) $ $)) (-15 -2732 ((-592 $) $)))) (-1020)) (T -1115))
-((-2905 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-1020)))) (-1880 (*1 *1 *2 *3) (-12 (-5 *3 (-592 (-1115 *2))) (-5 *1 (-1115 *2)) (-4 *2 (-1020)))) (-1880 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-1115 *3)))) (-1880 (*1 *1 *2) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1020)))) (-3138 (*1 *1 *1) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1020)))) (-1670 (*1 *2 *1) (-12 (-5 *2 (-592 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1020)))) (-1870 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-1020)))) (-2732 (*1 *2 *1) (-12 (-5 *2 (-592 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1020)))))
-(-13 (-942 |#1|) (-10 -8 (-6 -4258) (-6 -4259) (-15 -1880 ($ |#1| (-592 $))) (-15 -1880 ($ (-592 |#1|))) (-15 -1880 ($ |#1|)) (-15 -2905 ((-108) $)) (-15 -3138 ($ $)) (-15 -1670 ((-592 $) $)) (-15 -1870 ((-108) $ $)) (-15 -2732 ((-592 $) $))))
-((-2804 (($ $) 15)) (-2836 (($ $) 12)) (-1447 (($ $) 10)) (-2815 (($ $) 17)))
-(((-1116 |#1|) (-10 -8 (-15 -2815 (|#1| |#1|)) (-15 -1447 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2804 (|#1| |#1|))) (-1117)) (T -1116))
-NIL
-(-10 -8 (-15 -2815 (|#1| |#1|)) (-15 -1447 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2804 (|#1| |#1|)))
-((-2804 (($ $) 11)) (-2780 (($ $) 10)) (-2836 (($ $) 9)) (-1447 (($ $) 8)) (-2815 (($ $) 7)) (-2794 (($ $) 6)))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2219 ((|#1| $) 17)) (-1394 (($ |#1| (-592 $)) 23) (($ (-592 |#1|)) 27) (($ |#1|) 25)) (-3779 (((-108) $ (-713)) 48)) (-1947 ((|#1| $ |#1|) 14 (|has| $ (-6 -4260)))) (-1233 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) 13 (|has| $ (-6 -4260)))) (-2475 (($) NIL T CONST)) (-2175 (((-592 |#1|) $) 52 (|has| $ (-6 -4259)))) (-3994 (((-592 $) $) 43)) (-3569 (((-108) $ $) 33 (|has| |#1| (-1020)))) (-2516 (((-108) $ (-713)) 41)) (-2617 (((-592 |#1|) $) 53 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 51 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3069 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 22)) (-4028 (((-108) $ (-713)) 40)) (-2010 (((-592 |#1|) $) 37)) (-3506 (((-108) $) 36)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1518 (((-108) (-1 (-108) |#1|) $) 50 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 74)) (-3479 (((-108) $) 9)) (-1558 (($) 10)) (-3431 ((|#1| $ "value") NIL)) (-1707 (((-525) $ $) 32)) (-2952 (((-592 $) $) 59)) (-1262 (((-108) $ $) 77)) (-4239 (((-592 $) $) 72)) (-2473 (($ $) 73)) (-3953 (((-108) $) 56)) (-4002 (((-713) (-1 (-108) |#1|) $) 20 (|has| $ (-6 -4259))) (((-713) |#1| $) 16 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2503 (($ $) 58)) (-4100 (((-798) $) 61 (|has| |#1| (-566 (-798))))) (-3576 (((-592 $) $) 12)) (-1791 (((-108) $ $) 29 (|has| |#1| (-1020)))) (-2706 (((-108) (-1 (-108) |#1|) $) 49 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 28 (|has| |#1| (-1020)))) (-2827 (((-713) $) 39 (|has| $ (-6 -4259)))))
+(((-1115 |#1|) (-13 (-942 |#1|) (-10 -8 (-6 -4259) (-6 -4260) (-15 -1394 ($ |#1| (-592 $))) (-15 -1394 ($ (-592 |#1|))) (-15 -1394 ($ |#1|)) (-15 -3953 ((-108) $)) (-15 -2473 ($ $)) (-15 -4239 ((-592 $) $)) (-15 -1262 ((-108) $ $)) (-15 -2952 ((-592 $) $)))) (-1020)) (T -1115))
+((-3953 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-1020)))) (-1394 (*1 *1 *2 *3) (-12 (-5 *3 (-592 (-1115 *2))) (-5 *1 (-1115 *2)) (-4 *2 (-1020)))) (-1394 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-1115 *3)))) (-1394 (*1 *1 *2) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1020)))) (-2473 (*1 *1 *1) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1020)))) (-4239 (*1 *2 *1) (-12 (-5 *2 (-592 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1020)))) (-1262 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-1020)))) (-2952 (*1 *2 *1) (-12 (-5 *2 (-592 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1020)))))
+(-13 (-942 |#1|) (-10 -8 (-6 -4259) (-6 -4260) (-15 -1394 ($ |#1| (-592 $))) (-15 -1394 ($ (-592 |#1|))) (-15 -1394 ($ |#1|)) (-15 -3953 ((-108) $)) (-15 -2473 ($ $)) (-15 -4239 ((-592 $) $)) (-15 -1262 ((-108) $ $)) (-15 -2952 ((-592 $) $))))
+((-3659 (($ $) 15)) (-3698 (($ $) 12)) (-3798 (($ $) 10)) (-3678 (($ $) 17)))
+(((-1116 |#1|) (-10 -8 (-15 -3678 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3698 (|#1| |#1|)) (-15 -3659 (|#1| |#1|))) (-1117)) (T -1116))
+NIL
+(-10 -8 (-15 -3678 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3698 (|#1| |#1|)) (-15 -3659 (|#1| |#1|)))
+((-3659 (($ $) 11)) (-3638 (($ $) 10)) (-3698 (($ $) 9)) (-3798 (($ $) 8)) (-3678 (($ $) 7)) (-3649 (($ $) 6)))
(((-1117) (-131)) (T -1117))
-((-2804 (*1 *1 *1) (-4 *1 (-1117))) (-2780 (*1 *1 *1) (-4 *1 (-1117))) (-2836 (*1 *1 *1) (-4 *1 (-1117))) (-1447 (*1 *1 *1) (-4 *1 (-1117))) (-2815 (*1 *1 *1) (-4 *1 (-1117))) (-2794 (*1 *1 *1) (-4 *1 (-1117))))
-(-13 (-10 -8 (-15 -2794 ($ $)) (-15 -2815 ($ $)) (-15 -1447 ($ $)) (-15 -2836 ($ $)) (-15 -2780 ($ $)) (-15 -2804 ($ $))))
-((-2187 ((|#2| |#2|) 88)) (-1271 (((-108) |#2|) 26)) (-2796 ((|#2| |#2|) 30)) (-2806 ((|#2| |#2|) 32)) (-3079 ((|#2| |#2| (-1092)) 83) ((|#2| |#2|) 84)) (-3067 (((-157 |#2|) |#2|) 28)) (-3461 ((|#2| |#2| (-1092)) 85) ((|#2| |#2|) 86)))
-(((-1118 |#1| |#2|) (-10 -7 (-15 -3079 (|#2| |#2|)) (-15 -3079 (|#2| |#2| (-1092))) (-15 -3461 (|#2| |#2|)) (-15 -3461 (|#2| |#2| (-1092))) (-15 -2187 (|#2| |#2|)) (-15 -2796 (|#2| |#2|)) (-15 -2806 (|#2| |#2|)) (-15 -1271 ((-108) |#2|)) (-15 -3067 ((-157 |#2|) |#2|))) (-13 (-429) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1114) (-408 |#1|))) (T -1118))
-((-3067 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-157 *3)) (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *4))))) (-1271 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-108)) (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *4))))) (-2806 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))) (-2796 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))) (-2187 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))) (-3461 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))) (-3461 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))) (-3079 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))) (-3079 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))))
-(-10 -7 (-15 -3079 (|#2| |#2|)) (-15 -3079 (|#2| |#2| (-1092))) (-15 -3461 (|#2| |#2|)) (-15 -3461 (|#2| |#2| (-1092))) (-15 -2187 (|#2| |#2|)) (-15 -2796 (|#2| |#2|)) (-15 -2806 (|#2| |#2|)) (-15 -1271 ((-108) |#2|)) (-15 -3067 ((-157 |#2|) |#2|)))
-((-1240 ((|#4| |#4| |#1|) 27)) (-1918 ((|#4| |#4| |#1|) 28)))
-(((-1119 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1240 (|#4| |#4| |#1|)) (-15 -1918 (|#4| |#4| |#1|))) (-517) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -1119))
-((-1918 (*1 *2 *2 *3) (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-1240 (*1 *2 *2 *3) (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
-(-10 -7 (-15 -1240 (|#4| |#4| |#1|)) (-15 -1918 (|#4| |#4| |#1|)))
-((-1429 ((|#2| |#2|) 134)) (-1829 ((|#2| |#2|) 131)) (-3863 ((|#2| |#2|) 122)) (-2260 ((|#2| |#2|) 119)) (-3314 ((|#2| |#2|) 127)) (-3490 ((|#2| |#2|) 115)) (-1953 ((|#2| |#2|) 43)) (-1238 ((|#2| |#2|) 95)) (-2242 ((|#2| |#2|) 75)) (-1543 ((|#2| |#2|) 129)) (-3053 ((|#2| |#2|) 117)) (-4082 ((|#2| |#2|) 139)) (-3686 ((|#2| |#2|) 137)) (-4126 ((|#2| |#2|) 138)) (-1400 ((|#2| |#2|) 136)) (-2435 ((|#2| |#2|) 149)) (-3310 ((|#2| |#2|) 30 (-12 (|has| |#2| (-567 (-827 |#1|))) (|has| |#2| (-821 |#1|)) (|has| |#1| (-567 (-827 |#1|))) (|has| |#1| (-821 |#1|))))) (-2061 ((|#2| |#2|) 76)) (-4138 ((|#2| |#2|) 140)) (-3751 ((|#2| |#2|) 141)) (-1248 ((|#2| |#2|) 128)) (-2920 ((|#2| |#2|) 116)) (-2784 ((|#2| |#2|) 135)) (-3479 ((|#2| |#2|) 133)) (-1223 ((|#2| |#2|) 123)) (-1322 ((|#2| |#2|) 121)) (-3111 ((|#2| |#2|) 125)) (-2601 ((|#2| |#2|) 113)))
-(((-1120 |#1| |#2|) (-10 -7 (-15 -3751 (|#2| |#2|)) (-15 -2242 (|#2| |#2|)) (-15 -2435 (|#2| |#2|)) (-15 -1238 (|#2| |#2|)) (-15 -1953 (|#2| |#2|)) (-15 -2061 (|#2| |#2|)) (-15 -4138 (|#2| |#2|)) (-15 -2601 (|#2| |#2|)) (-15 -3111 (|#2| |#2|)) (-15 -1223 (|#2| |#2|)) (-15 -2784 (|#2| |#2|)) (-15 -2920 (|#2| |#2|)) (-15 -1248 (|#2| |#2|)) (-15 -3053 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3314 (|#2| |#2|)) (-15 -3863 (|#2| |#2|)) (-15 -1429 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -1829 (|#2| |#2|)) (-15 -1322 (|#2| |#2|)) (-15 -3479 (|#2| |#2|)) (-15 -1400 (|#2| |#2|)) (-15 -3686 (|#2| |#2|)) (-15 -4126 (|#2| |#2|)) (-15 -4082 (|#2| |#2|)) (IF (|has| |#1| (-821 |#1|)) (IF (|has| |#1| (-567 (-827 |#1|))) (IF (|has| |#2| (-567 (-827 |#1|))) (IF (|has| |#2| (-821 |#1|)) (-15 -3310 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-789) (-429)) (-13 (-408 |#1|) (-1114))) (T -1120))
-((-3310 (*1 *2 *2) (-12 (-4 *3 (-567 (-827 *3))) (-4 *3 (-821 *3)) (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-567 (-827 *3))) (-4 *2 (-821 *3)) (-4 *2 (-13 (-408 *3) (-1114))))) (-4082 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-4126 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-3686 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-1400 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-3479 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-1322 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-1829 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-1429 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-3314 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-3053 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-1248 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-2920 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-2784 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-1223 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-3111 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-2601 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-4138 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-2061 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-1953 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-1238 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-2435 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-3751 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))))
-(-10 -7 (-15 -3751 (|#2| |#2|)) (-15 -2242 (|#2| |#2|)) (-15 -2435 (|#2| |#2|)) (-15 -1238 (|#2| |#2|)) (-15 -1953 (|#2| |#2|)) (-15 -2061 (|#2| |#2|)) (-15 -4138 (|#2| |#2|)) (-15 -2601 (|#2| |#2|)) (-15 -3111 (|#2| |#2|)) (-15 -1223 (|#2| |#2|)) (-15 -2784 (|#2| |#2|)) (-15 -2920 (|#2| |#2|)) (-15 -1248 (|#2| |#2|)) (-15 -3053 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3314 (|#2| |#2|)) (-15 -3863 (|#2| |#2|)) (-15 -1429 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -1829 (|#2| |#2|)) (-15 -1322 (|#2| |#2|)) (-15 -3479 (|#2| |#2|)) (-15 -1400 (|#2| |#2|)) (-15 -3686 (|#2| |#2|)) (-15 -4126 (|#2| |#2|)) (-15 -4082 (|#2| |#2|)) (IF (|has| |#1| (-821 |#1|)) (IF (|has| |#1| (-567 (-827 |#1|))) (IF (|has| |#2| (-567 (-827 |#1|))) (IF (|has| |#2| (-821 |#1|)) (-15 -3310 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-3950 (((-108) |#5| $) 60) (((-108) $) 102)) (-2495 ((|#5| |#5| $) 75)) (-3785 (($ (-1 (-108) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2712 (((-592 |#5|) (-592 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 73)) (-3077 (((-3 $ "failed") (-592 |#5|)) 126)) (-1886 (((-3 $ "failed") $) 112)) (-3901 ((|#5| |#5| $) 94)) (-1961 (((-108) |#5| $ (-1 (-108) |#5| |#5|)) 31)) (-2834 ((|#5| |#5| $) 98)) (-1284 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 69)) (-1877 (((-2 (|:| -2719 (-592 |#5|)) (|:| -3459 (-592 |#5|))) $) 55)) (-2633 (((-108) |#5| $) 58) (((-108) $) 103)) (-3153 ((|#4| $) 108)) (-1717 (((-3 |#5| "failed") $) 110)) (-3159 (((-592 |#5|) $) 49)) (-2686 (((-108) |#5| $) 67) (((-108) $) 107)) (-2423 ((|#5| |#5| $) 81)) (-2338 (((-108) $ $) 27)) (-2696 (((-108) |#5| $) 63) (((-108) $) 105)) (-3872 ((|#5| |#5| $) 78)) (-1872 (((-3 |#5| "failed") $) 109)) (-3931 (($ $ |#5|) 127)) (-2343 (((-713) $) 52)) (-1230 (($ (-592 |#5|)) 124)) (-3264 (($ $ |#4|) 122)) (-1425 (($ $ |#4|) 121)) (-1320 (($ $) 120)) (-1217 (((-798) $) NIL) (((-592 |#5|) $) 113)) (-3735 (((-713) $) 130)) (-1622 (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|)) 45)) (-4027 (((-108) $ (-1 (-108) |#5| (-592 |#5|))) 100)) (-1221 (((-592 |#4|) $) 115)) (-2081 (((-108) |#4| $) 118)) (-3955 (((-108) $ $) 19)))
-(((-1121 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3735 ((-713) |#1|)) (-15 -3931 (|#1| |#1| |#5|)) (-15 -3785 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2081 ((-108) |#4| |#1|)) (-15 -1221 ((-592 |#4|) |#1|)) (-15 -1886 ((-3 |#1| "failed") |#1|)) (-15 -1717 ((-3 |#5| "failed") |#1|)) (-15 -1872 ((-3 |#5| "failed") |#1|)) (-15 -2834 (|#5| |#5| |#1|)) (-15 -1320 (|#1| |#1|)) (-15 -3901 (|#5| |#5| |#1|)) (-15 -2423 (|#5| |#5| |#1|)) (-15 -3872 (|#5| |#5| |#1|)) (-15 -2495 (|#5| |#5| |#1|)) (-15 -2712 ((-592 |#5|) (-592 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -1284 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2686 ((-108) |#1|)) (-15 -2696 ((-108) |#1|)) (-15 -3950 ((-108) |#1|)) (-15 -4027 ((-108) |#1| (-1 (-108) |#5| (-592 |#5|)))) (-15 -2686 ((-108) |#5| |#1|)) (-15 -2696 ((-108) |#5| |#1|)) (-15 -3950 ((-108) |#5| |#1|)) (-15 -1961 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -2633 ((-108) |#1|)) (-15 -2633 ((-108) |#5| |#1|)) (-15 -1877 ((-2 (|:| -2719 (-592 |#5|)) (|:| -3459 (-592 |#5|))) |#1|)) (-15 -2343 ((-713) |#1|)) (-15 -3159 ((-592 |#5|) |#1|)) (-15 -1622 ((-3 (-2 (|:| |bas| |#1|) (|:| -3412 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -1622 ((-3 (-2 (|:| |bas| |#1|) (|:| -3412 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5| |#5|))) (-15 -2338 ((-108) |#1| |#1|)) (-15 -3264 (|#1| |#1| |#4|)) (-15 -1425 (|#1| |#1| |#4|)) (-15 -3153 (|#4| |#1|)) (-15 -3077 ((-3 |#1| "failed") (-592 |#5|))) (-15 -1217 ((-592 |#5|) |#1|)) (-15 -1230 (|#1| (-592 |#5|))) (-15 -1284 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1284 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3785 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -1284 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1217 ((-798) |#1|)) (-15 -3955 ((-108) |#1| |#1|))) (-1122 |#2| |#3| |#4| |#5|) (-517) (-735) (-789) (-991 |#2| |#3| |#4|)) (T -1121))
-NIL
-(-10 -8 (-15 -3735 ((-713) |#1|)) (-15 -3931 (|#1| |#1| |#5|)) (-15 -3785 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2081 ((-108) |#4| |#1|)) (-15 -1221 ((-592 |#4|) |#1|)) (-15 -1886 ((-3 |#1| "failed") |#1|)) (-15 -1717 ((-3 |#5| "failed") |#1|)) (-15 -1872 ((-3 |#5| "failed") |#1|)) (-15 -2834 (|#5| |#5| |#1|)) (-15 -1320 (|#1| |#1|)) (-15 -3901 (|#5| |#5| |#1|)) (-15 -2423 (|#5| |#5| |#1|)) (-15 -3872 (|#5| |#5| |#1|)) (-15 -2495 (|#5| |#5| |#1|)) (-15 -2712 ((-592 |#5|) (-592 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -1284 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2686 ((-108) |#1|)) (-15 -2696 ((-108) |#1|)) (-15 -3950 ((-108) |#1|)) (-15 -4027 ((-108) |#1| (-1 (-108) |#5| (-592 |#5|)))) (-15 -2686 ((-108) |#5| |#1|)) (-15 -2696 ((-108) |#5| |#1|)) (-15 -3950 ((-108) |#5| |#1|)) (-15 -1961 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -2633 ((-108) |#1|)) (-15 -2633 ((-108) |#5| |#1|)) (-15 -1877 ((-2 (|:| -2719 (-592 |#5|)) (|:| -3459 (-592 |#5|))) |#1|)) (-15 -2343 ((-713) |#1|)) (-15 -3159 ((-592 |#5|) |#1|)) (-15 -1622 ((-3 (-2 (|:| |bas| |#1|) (|:| -3412 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -1622 ((-3 (-2 (|:| |bas| |#1|) (|:| -3412 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5| |#5|))) (-15 -2338 ((-108) |#1| |#1|)) (-15 -3264 (|#1| |#1| |#4|)) (-15 -1425 (|#1| |#1| |#4|)) (-15 -3153 (|#4| |#1|)) (-15 -3077 ((-3 |#1| "failed") (-592 |#5|))) (-15 -1217 ((-592 |#5|) |#1|)) (-15 -1230 (|#1| (-592 |#5|))) (-15 -1284 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1284 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3785 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -1284 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1217 ((-798) |#1|)) (-15 -3955 ((-108) |#1| |#1|)))
-((-4236 (((-108) $ $) 7)) (-1463 (((-592 (-2 (|:| -2719 $) (|:| -3459 (-592 |#4|)))) (-592 |#4|)) 85)) (-1589 (((-592 $) (-592 |#4|)) 86)) (-2897 (((-592 |#3|) $) 33)) (-2437 (((-108) $) 26)) (-2750 (((-108) $) 17 (|has| |#1| (-517)))) (-3950 (((-108) |#4| $) 101) (((-108) $) 97)) (-2495 ((|#4| |#4| $) 92)) (-2458 (((-2 (|:| |under| $) (|:| -2487 $) (|:| |upper| $)) $ |#3|) 27)) (-3991 (((-108) $ (-713)) 44)) (-3785 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4258))) (((-3 |#4| "failed") $ |#3|) 79)) (-2169 (($) 45 T CONST)) (-4089 (((-108) $) 22 (|has| |#1| (-517)))) (-2480 (((-108) $ $) 24 (|has| |#1| (-517)))) (-1207 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3339 (((-108) $) 25 (|has| |#1| (-517)))) (-2712 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3767 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-3333 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-3077 (((-3 $ "failed") (-592 |#4|)) 36)) (-1572 (($ (-592 |#4|)) 35)) (-1886 (((-3 $ "failed") $) 82)) (-3901 ((|#4| |#4| $) 89)) (-1910 (($ $) 68 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258))))) (-1703 (($ |#4| $) 67 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4258)))) (-1607 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-1961 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2834 ((|#4| |#4| $) 87)) (-1284 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4258))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4258))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1877 (((-2 (|:| -2719 (-592 |#4|)) (|:| -3459 (-592 |#4|))) $) 105)) (-3440 (((-592 |#4|) $) 52 (|has| $ (-6 -4258)))) (-2633 (((-108) |#4| $) 104) (((-108) $) 103)) (-3153 ((|#3| $) 34)) (-3924 (((-108) $ (-713)) 43)) (-2694 (((-592 |#4|) $) 53 (|has| $ (-6 -4258)))) (-2004 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#4| |#4|) $) 47)) (-1598 (((-592 |#3|) $) 32)) (-3919 (((-108) |#3| $) 31)) (-2912 (((-108) $ (-713)) 42)) (-2619 (((-1075) $) 9)) (-1717 (((-3 |#4| "failed") $) 83)) (-3159 (((-592 |#4|) $) 107)) (-2686 (((-108) |#4| $) 99) (((-108) $) 95)) (-2423 ((|#4| |#4| $) 90)) (-2338 (((-108) $ $) 110)) (-1806 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2696 (((-108) |#4| $) 100) (((-108) $) 96)) (-3872 ((|#4| |#4| $) 91)) (-2093 (((-1039) $) 10)) (-1872 (((-3 |#4| "failed") $) 84)) (-1983 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3044 (((-3 $ "failed") $ |#4|) 78)) (-3931 (($ $ |#4|) 77)) (-3944 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-2614 (((-108) $ $) 38)) (-2659 (((-108) $) 41)) (-2512 (($) 40)) (-2343 (((-713) $) 106)) (-2110 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4258)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4258)))) (-1462 (($ $) 39)) (-3210 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-1230 (($ (-592 |#4|)) 60)) (-3264 (($ $ |#3|) 28)) (-1425 (($ $ |#3|) 30)) (-1320 (($ $) 88)) (-4008 (($ $ |#3|) 29)) (-1217 (((-798) $) 11) (((-592 |#4|) $) 37)) (-3735 (((-713) $) 76 (|has| |#3| (-346)))) (-1622 (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4027 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-3029 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4258)))) (-1221 (((-592 |#3|) $) 81)) (-2081 (((-108) |#3| $) 80)) (-3955 (((-108) $ $) 6)) (-3522 (((-713) $) 46 (|has| $ (-6 -4258)))))
+((-3659 (*1 *1 *1) (-4 *1 (-1117))) (-3638 (*1 *1 *1) (-4 *1 (-1117))) (-3698 (*1 *1 *1) (-4 *1 (-1117))) (-3798 (*1 *1 *1) (-4 *1 (-1117))) (-3678 (*1 *1 *1) (-4 *1 (-1117))) (-3649 (*1 *1 *1) (-4 *1 (-1117))))
+(-13 (-10 -8 (-15 -3649 ($ $)) (-15 -3678 ($ $)) (-15 -3798 ($ $)) (-15 -3698 ($ $)) (-15 -3638 ($ $)) (-15 -3659 ($ $))))
+((-1448 ((|#2| |#2|) 88)) (-3934 (((-108) |#2|) 26)) (-4220 ((|#2| |#2|) 30)) (-4233 ((|#2| |#2|) 32)) (-3109 ((|#2| |#2| (-1092)) 83) ((|#2| |#2|) 84)) (-3005 (((-157 |#2|) |#2|) 28)) (-3338 ((|#2| |#2| (-1092)) 85) ((|#2| |#2|) 86)))
+(((-1118 |#1| |#2|) (-10 -7 (-15 -3109 (|#2| |#2|)) (-15 -3109 (|#2| |#2| (-1092))) (-15 -3338 (|#2| |#2|)) (-15 -3338 (|#2| |#2| (-1092))) (-15 -1448 (|#2| |#2|)) (-15 -4220 (|#2| |#2|)) (-15 -4233 (|#2| |#2|)) (-15 -3934 ((-108) |#2|)) (-15 -3005 ((-157 |#2|) |#2|))) (-13 (-429) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1114) (-408 |#1|))) (T -1118))
+((-3005 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-157 *3)) (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *4))))) (-3934 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-108)) (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *4))))) (-4233 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))) (-4220 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))) (-1448 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))) (-3338 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))) (-3338 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))) (-3109 (*1 *2 *2 *3) (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))) (-3109 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))))
+(-10 -7 (-15 -3109 (|#2| |#2|)) (-15 -3109 (|#2| |#2| (-1092))) (-15 -3338 (|#2| |#2|)) (-15 -3338 (|#2| |#2| (-1092))) (-15 -1448 (|#2| |#2|)) (-15 -4220 (|#2| |#2|)) (-15 -4233 (|#2| |#2|)) (-15 -3934 ((-108) |#2|)) (-15 -3005 ((-157 |#2|) |#2|)))
+((-2352 ((|#4| |#4| |#1|) 27)) (-1703 ((|#4| |#4| |#1|) 28)))
+(((-1119 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2352 (|#4| |#4| |#1|)) (-15 -1703 (|#4| |#4| |#1|))) (-517) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -1119))
+((-1703 (*1 *2 *2 *3) (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-2352 (*1 *2 *2 *3) (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
+(-10 -7 (-15 -2352 (|#4| |#4| |#1|)) (-15 -1703 (|#4| |#4| |#1|)))
+((-3581 ((|#2| |#2|) 134)) (-2068 ((|#2| |#2|) 131)) (-3049 ((|#2| |#2|) 122)) (-3961 ((|#2| |#2|) 119)) (-1458 ((|#2| |#2|) 127)) (-3621 ((|#2| |#2|) 115)) (-3873 ((|#2| |#2|) 43)) (-2319 ((|#2| |#2|) 95)) (-3800 ((|#2| |#2|) 75)) (-1595 ((|#2| |#2|) 129)) (-2893 ((|#2| |#2|) 117)) (-3462 ((|#2| |#2|) 139)) (-1937 ((|#2| |#2|) 137)) (-2715 ((|#2| |#2|) 138)) (-2332 ((|#2| |#2|) 136)) (-2049 ((|#2| |#2|) 149)) (-1427 ((|#2| |#2|) 30 (-12 (|has| |#2| (-567 (-827 |#1|))) (|has| |#2| (-821 |#1|)) (|has| |#1| (-567 (-827 |#1|))) (|has| |#1| (-821 |#1|))))) (-2552 ((|#2| |#2|) 76)) (-2820 ((|#2| |#2|) 140)) (-2361 ((|#2| |#2|) 141)) (-1626 ((|#2| |#2|) 128)) (-4124 ((|#2| |#2|) 116)) (-2230 ((|#2| |#2|) 135)) (-3518 ((|#2| |#2|) 133)) (-1900 ((|#2| |#2|) 123)) (-1435 ((|#2| |#2|) 121)) (-2227 ((|#2| |#2|) 125)) (-4174 ((|#2| |#2|) 113)))
+(((-1120 |#1| |#2|) (-10 -7 (-15 -2361 (|#2| |#2|)) (-15 -3800 (|#2| |#2|)) (-15 -2049 (|#2| |#2|)) (-15 -2319 (|#2| |#2|)) (-15 -3873 (|#2| |#2|)) (-15 -2552 (|#2| |#2|)) (-15 -2820 (|#2| |#2|)) (-15 -4174 (|#2| |#2|)) (-15 -2227 (|#2| |#2|)) (-15 -1900 (|#2| |#2|)) (-15 -2230 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (-15 -1626 (|#2| |#2|)) (-15 -2893 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -3621 (|#2| |#2|)) (-15 -1458 (|#2| |#2|)) (-15 -3049 (|#2| |#2|)) (-15 -3581 (|#2| |#2|)) (-15 -3961 (|#2| |#2|)) (-15 -2068 (|#2| |#2|)) (-15 -1435 (|#2| |#2|)) (-15 -3518 (|#2| |#2|)) (-15 -2332 (|#2| |#2|)) (-15 -1937 (|#2| |#2|)) (-15 -2715 (|#2| |#2|)) (-15 -3462 (|#2| |#2|)) (IF (|has| |#1| (-821 |#1|)) (IF (|has| |#1| (-567 (-827 |#1|))) (IF (|has| |#2| (-567 (-827 |#1|))) (IF (|has| |#2| (-821 |#1|)) (-15 -1427 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-789) (-429)) (-13 (-408 |#1|) (-1114))) (T -1120))
+((-1427 (*1 *2 *2) (-12 (-4 *3 (-567 (-827 *3))) (-4 *3 (-821 *3)) (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-567 (-827 *3))) (-4 *2 (-821 *3)) (-4 *2 (-13 (-408 *3) (-1114))))) (-3462 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-2715 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-1937 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-2332 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-3518 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-1435 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-2068 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-3581 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-3049 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-1458 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-1595 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-2893 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-1626 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-4124 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-2230 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-1900 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-2227 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-4174 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-2820 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-2552 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-3873 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-2319 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-2049 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))) (-2361 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-408 *3) (-1114))))))
+(-10 -7 (-15 -2361 (|#2| |#2|)) (-15 -3800 (|#2| |#2|)) (-15 -2049 (|#2| |#2|)) (-15 -2319 (|#2| |#2|)) (-15 -3873 (|#2| |#2|)) (-15 -2552 (|#2| |#2|)) (-15 -2820 (|#2| |#2|)) (-15 -4174 (|#2| |#2|)) (-15 -2227 (|#2| |#2|)) (-15 -1900 (|#2| |#2|)) (-15 -2230 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (-15 -1626 (|#2| |#2|)) (-15 -2893 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -3621 (|#2| |#2|)) (-15 -1458 (|#2| |#2|)) (-15 -3049 (|#2| |#2|)) (-15 -3581 (|#2| |#2|)) (-15 -3961 (|#2| |#2|)) (-15 -2068 (|#2| |#2|)) (-15 -1435 (|#2| |#2|)) (-15 -3518 (|#2| |#2|)) (-15 -2332 (|#2| |#2|)) (-15 -1937 (|#2| |#2|)) (-15 -2715 (|#2| |#2|)) (-15 -3462 (|#2| |#2|)) (IF (|has| |#1| (-821 |#1|)) (IF (|has| |#1| (-567 (-827 |#1|))) (IF (|has| |#2| (-567 (-827 |#1|))) (IF (|has| |#2| (-821 |#1|)) (-15 -1427 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-1587 (((-108) |#5| $) 60) (((-108) $) 102)) (-1402 ((|#5| |#5| $) 75)) (-2399 (($ (-1 (-108) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2783 (((-592 |#5|) (-592 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 73)) (-1934 (((-3 $ "failed") (-592 |#5|)) 126)) (-1659 (((-3 $ "failed") $) 112)) (-2268 ((|#5| |#5| $) 94)) (-3964 (((-108) |#5| $ (-1 (-108) |#5| |#5|)) 31)) (-1469 ((|#5| |#5| $) 98)) (-3504 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 69)) (-1329 (((-2 (|:| -2682 (-592 |#5|)) (|:| -2046 (-592 |#5|))) $) 55)) (-3221 (((-108) |#5| $) 58) (((-108) $) 103)) (-2577 ((|#4| $) 108)) (-2718 (((-3 |#5| "failed") $) 110)) (-1455 (((-592 |#5|) $) 49)) (-3732 (((-108) |#5| $) 67) (((-108) $) 107)) (-3076 ((|#5| |#5| $) 81)) (-3472 (((-108) $ $) 27)) (-2635 (((-108) |#5| $) 63) (((-108) $) 105)) (-1998 ((|#5| |#5| $) 78)) (-1647 (((-3 |#5| "failed") $) 109)) (-1397 (($ $ |#5|) 127)) (-3529 (((-713) $) 52)) (-4114 (($ (-592 |#5|)) 124)) (-4151 (($ $ |#4|) 122)) (-3522 (($ $ |#4|) 121)) (-1411 (($ $) 120)) (-4100 (((-798) $) NIL) (((-592 |#5|) $) 113)) (-1223 (((-713) $) 130)) (-3799 (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|)) 45)) (-4170 (((-108) $ (-1 (-108) |#5| (-592 |#5|))) 100)) (-1874 (((-592 |#4|) $) 115)) (-2738 (((-108) |#4| $) 118)) (-2775 (((-108) $ $) 19)))
+(((-1121 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1223 ((-713) |#1|)) (-15 -1397 (|#1| |#1| |#5|)) (-15 -2399 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2738 ((-108) |#4| |#1|)) (-15 -1874 ((-592 |#4|) |#1|)) (-15 -1659 ((-3 |#1| "failed") |#1|)) (-15 -2718 ((-3 |#5| "failed") |#1|)) (-15 -1647 ((-3 |#5| "failed") |#1|)) (-15 -1469 (|#5| |#5| |#1|)) (-15 -1411 (|#1| |#1|)) (-15 -2268 (|#5| |#5| |#1|)) (-15 -3076 (|#5| |#5| |#1|)) (-15 -1998 (|#5| |#5| |#1|)) (-15 -1402 (|#5| |#5| |#1|)) (-15 -2783 ((-592 |#5|) (-592 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3504 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3732 ((-108) |#1|)) (-15 -2635 ((-108) |#1|)) (-15 -1587 ((-108) |#1|)) (-15 -4170 ((-108) |#1| (-1 (-108) |#5| (-592 |#5|)))) (-15 -3732 ((-108) |#5| |#1|)) (-15 -2635 ((-108) |#5| |#1|)) (-15 -1587 ((-108) |#5| |#1|)) (-15 -3964 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -3221 ((-108) |#1|)) (-15 -3221 ((-108) |#5| |#1|)) (-15 -1329 ((-2 (|:| -2682 (-592 |#5|)) (|:| -2046 (-592 |#5|))) |#1|)) (-15 -3529 ((-713) |#1|)) (-15 -1455 ((-592 |#5|) |#1|)) (-15 -3799 ((-3 (-2 (|:| |bas| |#1|) (|:| -3490 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3799 ((-3 (-2 (|:| |bas| |#1|) (|:| -3490 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5| |#5|))) (-15 -3472 ((-108) |#1| |#1|)) (-15 -4151 (|#1| |#1| |#4|)) (-15 -3522 (|#1| |#1| |#4|)) (-15 -2577 (|#4| |#1|)) (-15 -1934 ((-3 |#1| "failed") (-592 |#5|))) (-15 -4100 ((-592 |#5|) |#1|)) (-15 -4114 (|#1| (-592 |#5|))) (-15 -3504 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3504 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2399 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -3504 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4100 ((-798) |#1|)) (-15 -2775 ((-108) |#1| |#1|))) (-1122 |#2| |#3| |#4| |#5|) (-517) (-735) (-789) (-991 |#2| |#3| |#4|)) (T -1121))
+NIL
+(-10 -8 (-15 -1223 ((-713) |#1|)) (-15 -1397 (|#1| |#1| |#5|)) (-15 -2399 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2738 ((-108) |#4| |#1|)) (-15 -1874 ((-592 |#4|) |#1|)) (-15 -1659 ((-3 |#1| "failed") |#1|)) (-15 -2718 ((-3 |#5| "failed") |#1|)) (-15 -1647 ((-3 |#5| "failed") |#1|)) (-15 -1469 (|#5| |#5| |#1|)) (-15 -1411 (|#1| |#1|)) (-15 -2268 (|#5| |#5| |#1|)) (-15 -3076 (|#5| |#5| |#1|)) (-15 -1998 (|#5| |#5| |#1|)) (-15 -1402 (|#5| |#5| |#1|)) (-15 -2783 ((-592 |#5|) (-592 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3504 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3732 ((-108) |#1|)) (-15 -2635 ((-108) |#1|)) (-15 -1587 ((-108) |#1|)) (-15 -4170 ((-108) |#1| (-1 (-108) |#5| (-592 |#5|)))) (-15 -3732 ((-108) |#5| |#1|)) (-15 -2635 ((-108) |#5| |#1|)) (-15 -1587 ((-108) |#5| |#1|)) (-15 -3964 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -3221 ((-108) |#1|)) (-15 -3221 ((-108) |#5| |#1|)) (-15 -1329 ((-2 (|:| -2682 (-592 |#5|)) (|:| -2046 (-592 |#5|))) |#1|)) (-15 -3529 ((-713) |#1|)) (-15 -1455 ((-592 |#5|) |#1|)) (-15 -3799 ((-3 (-2 (|:| |bas| |#1|) (|:| -3490 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3799 ((-3 (-2 (|:| |bas| |#1|) (|:| -3490 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5| |#5|))) (-15 -3472 ((-108) |#1| |#1|)) (-15 -4151 (|#1| |#1| |#4|)) (-15 -3522 (|#1| |#1| |#4|)) (-15 -2577 (|#4| |#1|)) (-15 -1934 ((-3 |#1| "failed") (-592 |#5|))) (-15 -4100 ((-592 |#5|) |#1|)) (-15 -4114 (|#1| (-592 |#5|))) (-15 -3504 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3504 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2399 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -3504 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4100 ((-798) |#1|)) (-15 -2775 ((-108) |#1| |#1|)))
+((-4087 (((-108) $ $) 7)) (-2562 (((-592 (-2 (|:| -2682 $) (|:| -2046 (-592 |#4|)))) (-592 |#4|)) 85)) (-3347 (((-592 $) (-592 |#4|)) 86)) (-1296 (((-592 |#3|) $) 33)) (-2071 (((-108) $) 26)) (-3093 (((-108) $) 17 (|has| |#1| (-517)))) (-1587 (((-108) |#4| $) 101) (((-108) $) 97)) (-1402 ((|#4| |#4| $) 92)) (-1842 (((-2 (|:| |under| $) (|:| -1340 $) (|:| |upper| $)) $ |#3|) 27)) (-3779 (((-108) $ (-713)) 44)) (-2399 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4259))) (((-3 |#4| "failed") $ |#3|) 79)) (-2475 (($) 45 T CONST)) (-3542 (((-108) $) 22 (|has| |#1| (-517)))) (-2462 (((-108) $ $) 24 (|has| |#1| (-517)))) (-2390 (((-108) $ $) 23 (|has| |#1| (-517)))) (-1698 (((-108) $) 25 (|has| |#1| (-517)))) (-2783 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3308 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-1655 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-1934 (((-3 $ "failed") (-592 |#4|)) 36)) (-4105 (($ (-592 |#4|)) 35)) (-1659 (((-3 $ "failed") $) 82)) (-2268 ((|#4| |#4| $) 89)) (-1681 (($ $) 68 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259))))) (-2698 (($ |#4| $) 67 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4259)))) (-3681 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-3964 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-1469 ((|#4| |#4| $) 87)) (-3504 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4259))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4259))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1329 (((-2 (|:| -2682 (-592 |#4|)) (|:| -2046 (-592 |#4|))) $) 105)) (-2175 (((-592 |#4|) $) 52 (|has| $ (-6 -4259)))) (-3221 (((-108) |#4| $) 104) (((-108) $) 103)) (-2577 ((|#3| $) 34)) (-2516 (((-108) $ (-713)) 43)) (-2617 (((-592 |#4|) $) 53 (|has| $ (-6 -4259)))) (-3198 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#4| |#4|) $) 47)) (-3435 (((-592 |#3|) $) 32)) (-2468 (((-108) |#3| $) 31)) (-4028 (((-108) $ (-713)) 42)) (-1289 (((-1075) $) 9)) (-2718 (((-3 |#4| "failed") $) 83)) (-1455 (((-592 |#4|) $) 107)) (-3732 (((-108) |#4| $) 99) (((-108) $) 95)) (-3076 ((|#4| |#4| $) 90)) (-3472 (((-108) $ $) 110)) (-2991 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2635 (((-108) |#4| $) 100) (((-108) $) 96)) (-1998 ((|#4| |#4| $) 91)) (-3993 (((-1039) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-4202 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2821 (((-3 $ "failed") $ |#4|) 78)) (-1397 (($ $ |#4|) 77)) (-1518 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-1231 (((-108) $ $) 38)) (-3479 (((-108) $) 41)) (-1558 (($) 40)) (-3529 (((-713) $) 106)) (-4002 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4259)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4259)))) (-2503 (($ $) 39)) (-2069 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-4114 (($ (-592 |#4|)) 60)) (-4151 (($ $ |#3|) 28)) (-3522 (($ $ |#3|) 30)) (-1411 (($ $) 88)) (-3963 (($ $ |#3|) 29)) (-4100 (((-798) $) 11) (((-592 |#4|) $) 37)) (-1223 (((-713) $) 76 (|has| |#3| (-346)))) (-3799 (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4170 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-2706 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4259)))) (-1874 (((-592 |#3|) $) 81)) (-2738 (((-108) |#3| $) 80)) (-2775 (((-108) $ $) 6)) (-2827 (((-713) $) 46 (|has| $ (-6 -4259)))))
(((-1122 |#1| |#2| |#3| |#4|) (-131) (-517) (-735) (-789) (-991 |t#1| |t#2| |t#3|)) (T -1122))
-((-2338 (*1 *2 *1 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-1622 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3412 (-592 *8)))) (-5 *3 (-592 *8)) (-4 *1 (-1122 *5 *6 *7 *8)))) (-1622 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) (-4 *9 (-991 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3412 (-592 *9)))) (-5 *3 (-592 *9)) (-4 *1 (-1122 *6 *7 *8 *9)))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *6)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-713)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-2 (|:| -2719 (-592 *6)) (|:| -3459 (-592 *6)))))) (-2633 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-2633 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-1961 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1122 *5 *6 *7 *3)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-108)))) (-3950 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-2696 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-2686 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-4027 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-108) *7 (-592 *7))) (-4 *1 (-1122 *4 *5 *6 *7)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-2696 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-1284 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) (-4 *1 (-1122 *5 *6 *7 *2)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *2 (-991 *5 *6 *7)))) (-2712 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1122 *5 *6 *7 *8)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)))) (-2495 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-3872 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-2423 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-3901 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-1320 (*1 *1 *1) (-12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *2 (-517)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-991 *2 *3 *4)))) (-2834 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-1589 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-1122 *4 *5 *6 *7)))) (-1463 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| -2719 *1) (|:| -3459 (-592 *7))))) (-5 *3 (-592 *7)) (-4 *1 (-1122 *4 *5 *6 *7)))) (-1872 (*1 *2 *1) (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-1717 (*1 *2 *1) (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-1886 (*1 *1 *1) (|partial| -12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *2 (-517)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-991 *2 *3 *4)))) (-1221 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *5)))) (-2081 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *3 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *6 (-991 *4 *5 *3)) (-5 *2 (-108)))) (-3785 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1122 *4 *5 *3 *2)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *2 (-991 *4 *5 *3)))) (-3044 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-3931 (*1 *1 *1 *2) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *5 (-346)) (-5 *2 (-713)))))
-(-13 (-909 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4258) (-6 -4259) (-15 -2338 ((-108) $ $)) (-15 -1622 ((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |t#4|))) "failed") (-592 |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -1622 ((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |t#4|))) "failed") (-592 |t#4|) (-1 (-108) |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3159 ((-592 |t#4|) $)) (-15 -2343 ((-713) $)) (-15 -1877 ((-2 (|:| -2719 (-592 |t#4|)) (|:| -3459 (-592 |t#4|))) $)) (-15 -2633 ((-108) |t#4| $)) (-15 -2633 ((-108) $)) (-15 -1961 ((-108) |t#4| $ (-1 (-108) |t#4| |t#4|))) (-15 -3950 ((-108) |t#4| $)) (-15 -2696 ((-108) |t#4| $)) (-15 -2686 ((-108) |t#4| $)) (-15 -4027 ((-108) $ (-1 (-108) |t#4| (-592 |t#4|)))) (-15 -3950 ((-108) $)) (-15 -2696 ((-108) $)) (-15 -2686 ((-108) $)) (-15 -1284 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2712 ((-592 |t#4|) (-592 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2495 (|t#4| |t#4| $)) (-15 -3872 (|t#4| |t#4| $)) (-15 -2423 (|t#4| |t#4| $)) (-15 -3901 (|t#4| |t#4| $)) (-15 -1320 ($ $)) (-15 -2834 (|t#4| |t#4| $)) (-15 -1589 ((-592 $) (-592 |t#4|))) (-15 -1463 ((-592 (-2 (|:| -2719 $) (|:| -3459 (-592 |t#4|)))) (-592 |t#4|))) (-15 -1872 ((-3 |t#4| "failed") $)) (-15 -1717 ((-3 |t#4| "failed") $)) (-15 -1886 ((-3 $ "failed") $)) (-15 -1221 ((-592 |t#3|) $)) (-15 -2081 ((-108) |t#3| $)) (-15 -3785 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3044 ((-3 $ "failed") $ |t#4|)) (-15 -3931 ($ $ |t#4|)) (IF (|has| |t#3| (-346)) (-15 -3735 ((-713) $)) |%noBranch|)))
+((-3472 (*1 *2 *1 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-3799 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3490 (-592 *8)))) (-5 *3 (-592 *8)) (-4 *1 (-1122 *5 *6 *7 *8)))) (-3799 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) (-4 *9 (-991 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3490 (-592 *9)))) (-5 *3 (-592 *9)) (-4 *1 (-1122 *6 *7 *8 *9)))) (-1455 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *6)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-713)))) (-1329 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-2 (|:| -2682 (-592 *6)) (|:| -2046 (-592 *6)))))) (-3221 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-3221 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-3964 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1122 *5 *6 *7 *3)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-108)))) (-1587 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-2635 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-3732 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-4170 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-108) *7 (-592 *7))) (-4 *1 (-1122 *4 *5 *6 *7)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-2635 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-3504 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) (-4 *1 (-1122 *5 *6 *7 *2)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *2 (-991 *5 *6 *7)))) (-2783 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1122 *5 *6 *7 *8)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)))) (-1402 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-1998 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-3076 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-2268 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-1411 (*1 *1 *1) (-12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *2 (-517)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-991 *2 *3 *4)))) (-1469 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-1122 *4 *5 *6 *7)))) (-2562 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| -2682 *1) (|:| -2046 (-592 *7))))) (-5 *3 (-592 *7)) (-4 *1 (-1122 *4 *5 *6 *7)))) (-1647 (*1 *2 *1) (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-2718 (*1 *2 *1) (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-1659 (*1 *1 *1) (|partial| -12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *2 (-517)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-991 *2 *3 *4)))) (-1874 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *5)))) (-2738 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *3 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *6 (-991 *4 *5 *3)) (-5 *2 (-108)))) (-2399 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1122 *4 *5 *3 *2)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *2 (-991 *4 *5 *3)))) (-2821 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-1397 (*1 *1 *1 *2) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-1223 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *5 (-346)) (-5 *2 (-713)))))
+(-13 (-909 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4259) (-6 -4260) (-15 -3472 ((-108) $ $)) (-15 -3799 ((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |t#4|))) "failed") (-592 |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3799 ((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |t#4|))) "failed") (-592 |t#4|) (-1 (-108) |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -1455 ((-592 |t#4|) $)) (-15 -3529 ((-713) $)) (-15 -1329 ((-2 (|:| -2682 (-592 |t#4|)) (|:| -2046 (-592 |t#4|))) $)) (-15 -3221 ((-108) |t#4| $)) (-15 -3221 ((-108) $)) (-15 -3964 ((-108) |t#4| $ (-1 (-108) |t#4| |t#4|))) (-15 -1587 ((-108) |t#4| $)) (-15 -2635 ((-108) |t#4| $)) (-15 -3732 ((-108) |t#4| $)) (-15 -4170 ((-108) $ (-1 (-108) |t#4| (-592 |t#4|)))) (-15 -1587 ((-108) $)) (-15 -2635 ((-108) $)) (-15 -3732 ((-108) $)) (-15 -3504 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2783 ((-592 |t#4|) (-592 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -1402 (|t#4| |t#4| $)) (-15 -1998 (|t#4| |t#4| $)) (-15 -3076 (|t#4| |t#4| $)) (-15 -2268 (|t#4| |t#4| $)) (-15 -1411 ($ $)) (-15 -1469 (|t#4| |t#4| $)) (-15 -3347 ((-592 $) (-592 |t#4|))) (-15 -2562 ((-592 (-2 (|:| -2682 $) (|:| -2046 (-592 |t#4|)))) (-592 |t#4|))) (-15 -1647 ((-3 |t#4| "failed") $)) (-15 -2718 ((-3 |t#4| "failed") $)) (-15 -1659 ((-3 $ "failed") $)) (-15 -1874 ((-592 |t#3|) $)) (-15 -2738 ((-108) |t#3| $)) (-15 -2399 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2821 ((-3 $ "failed") $ |t#4|)) (-15 -1397 ($ $ |t#4|)) (IF (|has| |t#3| (-346)) (-15 -1223 ((-713) $)) |%noBranch|)))
(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-798)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-909 |#1| |#2| |#3| |#4|) . T) ((-1020) . T) ((-1128) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2897 (((-592 (-1092)) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-1575 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2804 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1578 (((-3 $ "failed") $ $) NIL)) (-2782 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1549 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2780 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1599 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2169 (($) NIL T CONST)) (-3063 (($ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-3882 (((-887 |#1|) $ (-713)) 17) (((-887 |#1|) $ (-713) (-713)) NIL)) (-2398 (((-108) $) NIL)) (-3140 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2581 (((-713) $ (-1092)) NIL) (((-713) $ (-1092) (-713)) NIL)) (-1396 (((-108) $) NIL)) (-2171 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1212 (((-108) $) NIL)) (-2876 (($ $ (-592 (-1092)) (-592 (-497 (-1092)))) NIL) (($ $ (-1092) (-497 (-1092))) NIL) (($ |#1| (-497 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-1517 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2619 (((-1075) $) NIL)) (-1206 (($ $ (-1092)) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092) |#1|) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2093 (((-1039) $) NIL)) (-3741 (($ (-1 $) (-1092) |#1|) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $ (-713)) NIL)) (-1715 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3096 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $ (-1092) $) NIL) (($ $ (-592 (-1092)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL)) (-3376 (($ $ (-1092)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL)) (-2343 (((-497 (-1092)) $) NIL)) (-1609 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1447 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1587 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1562 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2794 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1489 (($ $) NIL)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ $) NIL (|has| |#1| (-517))) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-1092)) NIL) (($ (-887 |#1|)) NIL)) (-1568 ((|#1| $ (-497 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (((-887 |#1|) $ (-713)) NIL)) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) NIL)) (-1649 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1630 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1669 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1522 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2359 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1537 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1659 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1506 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1639 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1479 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) NIL T CONST)) (-2022 (($ $ (-1092)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL)) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1123 |#1|) (-13 (-683 |#1| (-1092)) (-10 -8 (-15 -1568 ((-887 |#1|) $ (-713))) (-15 -1217 ($ (-1092))) (-15 -1217 ($ (-887 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -1206 ($ $ (-1092) |#1|)) (-15 -3741 ($ (-1 $) (-1092) |#1|))) |%noBranch|))) (-977)) (T -1123))
-((-1568 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-887 *4)) (-5 *1 (-1123 *4)) (-4 *4 (-977)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1123 *3)) (-4 *3 (-977)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-887 *3)) (-4 *3 (-977)) (-5 *1 (-1123 *3)))) (-1206 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *1 (-1123 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)))) (-3741 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1123 *4))) (-5 *3 (-1092)) (-5 *1 (-1123 *4)) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-977)))))
-(-13 (-683 |#1| (-1092)) (-10 -8 (-15 -1568 ((-887 |#1|) $ (-713))) (-15 -1217 ($ (-1092))) (-15 -1217 ($ (-887 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -1206 ($ $ (-1092) |#1|)) (-15 -3741 ($ (-1 $) (-1092) |#1|))) |%noBranch|)))
-((-3702 (($ |#1| (-592 (-592 (-878 (-205)))) (-108)) 19)) (-3677 (((-108) $ (-108)) 18)) (-2289 (((-108) $) 17)) (-3853 (((-592 (-592 (-878 (-205)))) $) 13)) (-3937 ((|#1| $) 8)) (-1261 (((-108) $) 15)))
-(((-1124 |#1|) (-10 -8 (-15 -3937 (|#1| $)) (-15 -3853 ((-592 (-592 (-878 (-205)))) $)) (-15 -1261 ((-108) $)) (-15 -2289 ((-108) $)) (-15 -3677 ((-108) $ (-108))) (-15 -3702 ($ |#1| (-592 (-592 (-878 (-205)))) (-108)))) (-907)) (T -1124))
-((-3702 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-108)) (-5 *1 (-1124 *2)) (-4 *2 (-907)))) (-3677 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1124 *3)) (-4 *3 (-907)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1124 *3)) (-4 *3 (-907)))) (-1261 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1124 *3)) (-4 *3 (-907)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-1124 *3)) (-4 *3 (-907)))) (-3937 (*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-907)))))
-(-10 -8 (-15 -3937 (|#1| $)) (-15 -3853 ((-592 (-592 (-878 (-205)))) $)) (-15 -1261 ((-108) $)) (-15 -2289 ((-108) $)) (-15 -3677 ((-108) $ (-108))) (-15 -3702 ($ |#1| (-592 (-592 (-878 (-205)))) (-108))))
-((-4083 (((-878 (-205)) (-878 (-205))) 25)) (-2568 (((-878 (-205)) (-205) (-205) (-205) (-205)) 10)) (-2555 (((-592 (-878 (-205))) (-878 (-205)) (-878 (-205)) (-878 (-205)) (-205) (-592 (-592 (-205)))) 37)) (-2047 (((-205) (-878 (-205)) (-878 (-205))) 21)) (-2364 (((-878 (-205)) (-878 (-205)) (-878 (-205))) 22)) (-2292 (((-592 (-592 (-205))) (-525)) 31)) (-4061 (((-878 (-205)) (-878 (-205)) (-878 (-205))) 20)) (-4047 (((-878 (-205)) (-878 (-205)) (-878 (-205))) 19)) (* (((-878 (-205)) (-205) (-878 (-205))) 18)))
-(((-1125) (-10 -7 (-15 -2568 ((-878 (-205)) (-205) (-205) (-205) (-205))) (-15 * ((-878 (-205)) (-205) (-878 (-205)))) (-15 -4047 ((-878 (-205)) (-878 (-205)) (-878 (-205)))) (-15 -4061 ((-878 (-205)) (-878 (-205)) (-878 (-205)))) (-15 -2047 ((-205) (-878 (-205)) (-878 (-205)))) (-15 -2364 ((-878 (-205)) (-878 (-205)) (-878 (-205)))) (-15 -4083 ((-878 (-205)) (-878 (-205)))) (-15 -2292 ((-592 (-592 (-205))) (-525))) (-15 -2555 ((-592 (-878 (-205))) (-878 (-205)) (-878 (-205)) (-878 (-205)) (-205) (-592 (-592 (-205))))))) (T -1125))
-((-2555 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-592 (-592 (-205)))) (-5 *4 (-205)) (-5 *2 (-592 (-878 *4))) (-5 *1 (-1125)) (-5 *3 (-878 *4)))) (-2292 (*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-1125)))) (-4083 (*1 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1125)))) (-2364 (*1 *2 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1125)))) (-2047 (*1 *2 *3 *3) (-12 (-5 *3 (-878 (-205))) (-5 *2 (-205)) (-5 *1 (-1125)))) (-4061 (*1 *2 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1125)))) (-4047 (*1 *2 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1125)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-878 (-205))) (-5 *3 (-205)) (-5 *1 (-1125)))) (-2568 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1125)) (-5 *3 (-205)))))
-(-10 -7 (-15 -2568 ((-878 (-205)) (-205) (-205) (-205) (-205))) (-15 * ((-878 (-205)) (-205) (-878 (-205)))) (-15 -4047 ((-878 (-205)) (-878 (-205)) (-878 (-205)))) (-15 -4061 ((-878 (-205)) (-878 (-205)) (-878 (-205)))) (-15 -2047 ((-205) (-878 (-205)) (-878 (-205)))) (-15 -2364 ((-878 (-205)) (-878 (-205)) (-878 (-205)))) (-15 -4083 ((-878 (-205)) (-878 (-205)))) (-15 -2292 ((-592 (-592 (-205))) (-525))) (-15 -2555 ((-592 (-878 (-205))) (-878 (-205)) (-878 (-205)) (-878 (-205)) (-205) (-592 (-592 (-205))))))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3785 ((|#1| $ (-713)) 13)) (-4178 (((-713) $) 12)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1217 (((-892 |#1|) $) 10) (($ (-892 |#1|)) 9) (((-798) $) 23 (|has| |#1| (-566 (-798))))) (-3955 (((-108) $ $) 16 (|has| |#1| (-1020)))))
-(((-1126 |#1|) (-13 (-566 (-892 |#1|)) (-10 -8 (-15 -1217 ($ (-892 |#1|))) (-15 -3785 (|#1| $ (-713))) (-15 -4178 ((-713) $)) (IF (|has| |#1| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|))) (-1128)) (T -1126))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-892 *3)) (-4 *3 (-1128)) (-5 *1 (-1126 *3)))) (-3785 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-1126 *2)) (-4 *2 (-1128)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1126 *3)) (-4 *3 (-1128)))))
-(-13 (-566 (-892 |#1|)) (-10 -8 (-15 -1217 ($ (-892 |#1|))) (-15 -3785 (|#1| $ (-713))) (-15 -4178 ((-713) $)) (IF (|has| |#1| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|)))
-((-2037 (((-396 (-1088 (-1088 |#1|))) (-1088 (-1088 |#1|)) (-525)) 80)) (-1500 (((-396 (-1088 (-1088 |#1|))) (-1088 (-1088 |#1|))) 74)) (-3952 (((-396 (-1088 (-1088 |#1|))) (-1088 (-1088 |#1|))) 59)))
-(((-1127 |#1|) (-10 -7 (-15 -1500 ((-396 (-1088 (-1088 |#1|))) (-1088 (-1088 |#1|)))) (-15 -3952 ((-396 (-1088 (-1088 |#1|))) (-1088 (-1088 |#1|)))) (-15 -2037 ((-396 (-1088 (-1088 |#1|))) (-1088 (-1088 |#1|)) (-525)))) (-327)) (T -1127))
-((-2037 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-4 *5 (-327)) (-5 *2 (-396 (-1088 (-1088 *5)))) (-5 *1 (-1127 *5)) (-5 *3 (-1088 (-1088 *5))))) (-3952 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1088 (-1088 *4)))) (-5 *1 (-1127 *4)) (-5 *3 (-1088 (-1088 *4))))) (-1500 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1088 (-1088 *4)))) (-5 *1 (-1127 *4)) (-5 *3 (-1088 (-1088 *4))))))
-(-10 -7 (-15 -1500 ((-396 (-1088 (-1088 |#1|))) (-1088 (-1088 |#1|)))) (-15 -3952 ((-396 (-1088 (-1088 |#1|))) (-1088 (-1088 |#1|)))) (-15 -2037 ((-396 (-1088 (-1088 |#1|))) (-1088 (-1088 |#1|)) (-525))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1296 (((-592 (-1092)) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-1803 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3659 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1781 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3638 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1828 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3698 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2475 (($) NIL T CONST)) (-1451 (($ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-3565 (((-887 |#1|) $ (-713)) 17) (((-887 |#1|) $ (-713) (-713)) NIL)) (-2853 (((-108) $) NIL)) (-4106 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4000 (((-713) $ (-1092)) NIL) (((-713) $ (-1092) (-713)) NIL)) (-2278 (((-108) $) NIL)) (-1303 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2457 (((-108) $) NIL)) (-1272 (($ $ (-592 (-1092)) (-592 (-497 (-1092)))) NIL) (($ $ (-1092) (-497 (-1092))) NIL) (($ |#1| (-497 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2533 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-1289 (((-1075) $) NIL)) (-2367 (($ $ (-1092)) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092) |#1|) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3993 (((-1039) $) NIL)) (-1275 (($ (-1 $) (-1092) |#1|) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1397 (($ $ (-713)) NIL)) (-1311 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1618 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2825 (($ $ (-1092) $) NIL) (($ $ (-592 (-1092)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL)) (-2702 (($ $ (-1092)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL)) (-3529 (((-497 (-1092)) $) NIL)) (-1841 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1816 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3678 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1792 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3649 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3926 (($ $) NIL)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ $) NIL (|has| |#1| (-517))) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-1092)) NIL) (($ (-887 |#1|)) NIL)) (-3136 ((|#1| $ (-497 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (((-887 |#1|) $ (-713)) NIL)) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) NIL)) (-1876 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3853 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1853 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1902 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1760 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3135 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1891 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1748 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1866 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3820 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) NIL T CONST)) (-2401 (($ $ (-1092)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL)) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1123 |#1|) (-13 (-683 |#1| (-1092)) (-10 -8 (-15 -3136 ((-887 |#1|) $ (-713))) (-15 -4100 ($ (-1092))) (-15 -4100 ($ (-887 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2367 ($ $ (-1092) |#1|)) (-15 -1275 ($ (-1 $) (-1092) |#1|))) |%noBranch|))) (-977)) (T -1123))
+((-3136 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-887 *4)) (-5 *1 (-1123 *4)) (-4 *4 (-977)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1123 *3)) (-4 *3 (-977)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-887 *3)) (-4 *3 (-977)) (-5 *1 (-1123 *3)))) (-2367 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *1 (-1123 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)))) (-1275 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1123 *4))) (-5 *3 (-1092)) (-5 *1 (-1123 *4)) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-977)))))
+(-13 (-683 |#1| (-1092)) (-10 -8 (-15 -3136 ((-887 |#1|) $ (-713))) (-15 -4100 ($ (-1092))) (-15 -4100 ($ (-887 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2367 ($ $ (-1092) |#1|)) (-15 -1275 ($ (-1 $) (-1092) |#1|))) |%noBranch|)))
+((-3897 (($ |#1| (-592 (-592 (-878 (-205)))) (-108)) 19)) (-1847 (((-108) $ (-108)) 18)) (-4219 (((-108) $) 17)) (-2953 (((-592 (-592 (-878 (-205)))) $) 13)) (-1460 ((|#1| $) 8)) (-3235 (((-108) $) 15)))
+(((-1124 |#1|) (-10 -8 (-15 -1460 (|#1| $)) (-15 -2953 ((-592 (-592 (-878 (-205)))) $)) (-15 -3235 ((-108) $)) (-15 -4219 ((-108) $)) (-15 -1847 ((-108) $ (-108))) (-15 -3897 ($ |#1| (-592 (-592 (-878 (-205)))) (-108)))) (-907)) (T -1124))
+((-3897 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-108)) (-5 *1 (-1124 *2)) (-4 *2 (-907)))) (-1847 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1124 *3)) (-4 *3 (-907)))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1124 *3)) (-4 *3 (-907)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1124 *3)) (-4 *3 (-907)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-1124 *3)) (-4 *3 (-907)))) (-1460 (*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-907)))))
+(-10 -8 (-15 -1460 (|#1| $)) (-15 -2953 ((-592 (-592 (-878 (-205)))) $)) (-15 -3235 ((-108) $)) (-15 -4219 ((-108) $)) (-15 -1847 ((-108) $ (-108))) (-15 -3897 ($ |#1| (-592 (-592 (-878 (-205)))) (-108))))
+((-3473 (((-878 (-205)) (-878 (-205))) 25)) (-4112 (((-878 (-205)) (-205) (-205) (-205) (-205)) 10)) (-3767 (((-592 (-878 (-205))) (-878 (-205)) (-878 (-205)) (-878 (-205)) (-205) (-592 (-592 (-205)))) 37)) (-3584 (((-205) (-878 (-205)) (-878 (-205))) 21)) (-2548 (((-878 (-205)) (-878 (-205)) (-878 (-205))) 22)) (-1216 (((-592 (-592 (-205))) (-525)) 31)) (-2871 (((-878 (-205)) (-878 (-205)) (-878 (-205))) 20)) (-2860 (((-878 (-205)) (-878 (-205)) (-878 (-205))) 19)) (* (((-878 (-205)) (-205) (-878 (-205))) 18)))
+(((-1125) (-10 -7 (-15 -4112 ((-878 (-205)) (-205) (-205) (-205) (-205))) (-15 * ((-878 (-205)) (-205) (-878 (-205)))) (-15 -2860 ((-878 (-205)) (-878 (-205)) (-878 (-205)))) (-15 -2871 ((-878 (-205)) (-878 (-205)) (-878 (-205)))) (-15 -3584 ((-205) (-878 (-205)) (-878 (-205)))) (-15 -2548 ((-878 (-205)) (-878 (-205)) (-878 (-205)))) (-15 -3473 ((-878 (-205)) (-878 (-205)))) (-15 -1216 ((-592 (-592 (-205))) (-525))) (-15 -3767 ((-592 (-878 (-205))) (-878 (-205)) (-878 (-205)) (-878 (-205)) (-205) (-592 (-592 (-205))))))) (T -1125))
+((-3767 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-592 (-592 (-205)))) (-5 *4 (-205)) (-5 *2 (-592 (-878 *4))) (-5 *1 (-1125)) (-5 *3 (-878 *4)))) (-1216 (*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-1125)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1125)))) (-2548 (*1 *2 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1125)))) (-3584 (*1 *2 *3 *3) (-12 (-5 *3 (-878 (-205))) (-5 *2 (-205)) (-5 *1 (-1125)))) (-2871 (*1 *2 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1125)))) (-2860 (*1 *2 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1125)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-878 (-205))) (-5 *3 (-205)) (-5 *1 (-1125)))) (-4112 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1125)) (-5 *3 (-205)))))
+(-10 -7 (-15 -4112 ((-878 (-205)) (-205) (-205) (-205) (-205))) (-15 * ((-878 (-205)) (-205) (-878 (-205)))) (-15 -2860 ((-878 (-205)) (-878 (-205)) (-878 (-205)))) (-15 -2871 ((-878 (-205)) (-878 (-205)) (-878 (-205)))) (-15 -3584 ((-205) (-878 (-205)) (-878 (-205)))) (-15 -2548 ((-878 (-205)) (-878 (-205)) (-878 (-205)))) (-15 -3473 ((-878 (-205)) (-878 (-205)))) (-15 -1216 ((-592 (-592 (-205))) (-525))) (-15 -3767 ((-592 (-878 (-205))) (-878 (-205)) (-878 (-205)) (-878 (-205)) (-205) (-592 (-592 (-205))))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2399 ((|#1| $ (-713)) 13)) (-4128 (((-713) $) 12)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-4100 (((-892 |#1|) $) 10) (($ (-892 |#1|)) 9) (((-798) $) 23 (|has| |#1| (-566 (-798))))) (-2775 (((-108) $ $) 16 (|has| |#1| (-1020)))))
+(((-1126 |#1|) (-13 (-566 (-892 |#1|)) (-10 -8 (-15 -4100 ($ (-892 |#1|))) (-15 -2399 (|#1| $ (-713))) (-15 -4128 ((-713) $)) (IF (|has| |#1| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|))) (-1128)) (T -1126))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-892 *3)) (-4 *3 (-1128)) (-5 *1 (-1126 *3)))) (-2399 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-1126 *2)) (-4 *2 (-1128)))) (-4128 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1126 *3)) (-4 *3 (-1128)))))
+(-13 (-566 (-892 |#1|)) (-10 -8 (-15 -4100 ($ (-892 |#1|))) (-15 -2399 (|#1| $ (-713))) (-15 -4128 ((-713) $)) (IF (|has| |#1| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|)))
+((-3491 (((-396 (-1088 (-1088 |#1|))) (-1088 (-1088 |#1|)) (-525)) 80)) (-3066 (((-396 (-1088 (-1088 |#1|))) (-1088 (-1088 |#1|))) 74)) (-1611 (((-396 (-1088 (-1088 |#1|))) (-1088 (-1088 |#1|))) 59)))
+(((-1127 |#1|) (-10 -7 (-15 -3066 ((-396 (-1088 (-1088 |#1|))) (-1088 (-1088 |#1|)))) (-15 -1611 ((-396 (-1088 (-1088 |#1|))) (-1088 (-1088 |#1|)))) (-15 -3491 ((-396 (-1088 (-1088 |#1|))) (-1088 (-1088 |#1|)) (-525)))) (-327)) (T -1127))
+((-3491 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-4 *5 (-327)) (-5 *2 (-396 (-1088 (-1088 *5)))) (-5 *1 (-1127 *5)) (-5 *3 (-1088 (-1088 *5))))) (-1611 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1088 (-1088 *4)))) (-5 *1 (-1127 *4)) (-5 *3 (-1088 (-1088 *4))))) (-3066 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1088 (-1088 *4)))) (-5 *1 (-1127 *4)) (-5 *3 (-1088 (-1088 *4))))))
+(-10 -7 (-15 -3066 ((-396 (-1088 (-1088 |#1|))) (-1088 (-1088 |#1|)))) (-15 -1611 ((-396 (-1088 (-1088 |#1|))) (-1088 (-1088 |#1|)))) (-15 -3491 ((-396 (-1088 (-1088 |#1|))) (-1088 (-1088 |#1|)) (-525))))
NIL
(((-1128) (-131)) (T -1128))
NIL
-(-13 (-10 -7 (-6 -1405)))
-((-3948 (((-108)) 15)) (-3498 (((-1179) (-592 |#1|) (-592 |#1|)) 19) (((-1179) (-592 |#1|)) 20)) (-3924 (((-108) |#1| |#1|) 32 (|has| |#1| (-789)))) (-2912 (((-108) |#1| |#1| (-1 (-108) |#1| |#1|)) 27) (((-3 (-108) "failed") |#1| |#1|) 25)) (-3638 ((|#1| (-592 |#1|)) 33 (|has| |#1| (-789))) ((|#1| (-592 |#1|) (-1 (-108) |#1| |#1|)) 28)) (-3553 (((-2 (|:| -2235 (-592 |#1|)) (|:| -1519 (-592 |#1|)))) 17)))
-(((-1129 |#1|) (-10 -7 (-15 -3498 ((-1179) (-592 |#1|))) (-15 -3498 ((-1179) (-592 |#1|) (-592 |#1|))) (-15 -3553 ((-2 (|:| -2235 (-592 |#1|)) (|:| -1519 (-592 |#1|))))) (-15 -2912 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2912 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -3638 (|#1| (-592 |#1|) (-1 (-108) |#1| |#1|))) (-15 -3948 ((-108))) (IF (|has| |#1| (-789)) (PROGN (-15 -3638 (|#1| (-592 |#1|))) (-15 -3924 ((-108) |#1| |#1|))) |%noBranch|)) (-1020)) (T -1129))
-((-3924 (*1 *2 *3 *3) (-12 (-5 *2 (-108)) (-5 *1 (-1129 *3)) (-4 *3 (-789)) (-4 *3 (-1020)))) (-3638 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-789)) (-5 *1 (-1129 *2)))) (-3948 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1129 *3)) (-4 *3 (-1020)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1129 *2)) (-4 *2 (-1020)))) (-2912 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1020)) (-5 *2 (-108)) (-5 *1 (-1129 *3)))) (-2912 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1129 *3)) (-4 *3 (-1020)))) (-3553 (*1 *2) (-12 (-5 *2 (-2 (|:| -2235 (-592 *3)) (|:| -1519 (-592 *3)))) (-5 *1 (-1129 *3)) (-4 *3 (-1020)))) (-3498 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1020)) (-5 *2 (-1179)) (-5 *1 (-1129 *4)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1020)) (-5 *2 (-1179)) (-5 *1 (-1129 *4)))))
-(-10 -7 (-15 -3498 ((-1179) (-592 |#1|))) (-15 -3498 ((-1179) (-592 |#1|) (-592 |#1|))) (-15 -3553 ((-2 (|:| -2235 (-592 |#1|)) (|:| -1519 (-592 |#1|))))) (-15 -2912 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2912 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -3638 (|#1| (-592 |#1|) (-1 (-108) |#1| |#1|))) (-15 -3948 ((-108))) (IF (|has| |#1| (-789)) (PROGN (-15 -3638 (|#1| (-592 |#1|))) (-15 -3924 ((-108) |#1| |#1|))) |%noBranch|))
-((-1278 (((-1179) (-592 (-1092)) (-592 (-1092))) 13) (((-1179) (-592 (-1092))) 11)) (-2667 (((-1179)) 14)) (-3258 (((-2 (|:| -1519 (-592 (-1092))) (|:| -2235 (-592 (-1092))))) 18)))
-(((-1130) (-10 -7 (-15 -1278 ((-1179) (-592 (-1092)))) (-15 -1278 ((-1179) (-592 (-1092)) (-592 (-1092)))) (-15 -3258 ((-2 (|:| -1519 (-592 (-1092))) (|:| -2235 (-592 (-1092)))))) (-15 -2667 ((-1179))))) (T -1130))
-((-2667 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1130)))) (-3258 (*1 *2) (-12 (-5 *2 (-2 (|:| -1519 (-592 (-1092))) (|:| -2235 (-592 (-1092))))) (-5 *1 (-1130)))) (-1278 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-1092))) (-5 *2 (-1179)) (-5 *1 (-1130)))) (-1278 (*1 *2 *3) (-12 (-5 *3 (-592 (-1092))) (-5 *2 (-1179)) (-5 *1 (-1130)))))
-(-10 -7 (-15 -1278 ((-1179) (-592 (-1092)))) (-15 -1278 ((-1179) (-592 (-1092)) (-592 (-1092)))) (-15 -3258 ((-2 (|:| -1519 (-592 (-1092))) (|:| -2235 (-592 (-1092)))))) (-15 -2667 ((-1179))))
-((-1286 (($ $) 17)) (-3673 (((-108) $) 24)))
-(((-1131 |#1|) (-10 -8 (-15 -1286 (|#1| |#1|)) (-15 -3673 ((-108) |#1|))) (-1132)) (T -1131))
-NIL
-(-10 -8 (-15 -1286 (|#1| |#1|)) (-15 -3673 ((-108) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-1578 (((-3 $ "failed") $ $) 19)) (-1286 (($ $) 51)) (-2669 (((-396 $) $) 52)) (-2169 (($) 17 T CONST)) (-3457 (((-3 $ "failed") $) 34)) (-3673 (((-108) $) 53)) (-1396 (((-108) $) 31)) (-2556 (($ $ $) 46) (($ (-592 $)) 45)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2589 (($ $ $) 48) (($ (-592 $)) 47)) (-2770 (((-396 $) $) 50)) (-1715 (((-3 $ "failed") $ $) 42)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-3917 (((-713)) 29)) (-3325 (((-108) $ $) 39)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+(-13 (-10 -7 (-6 -1456)))
+((-1563 (((-108)) 15)) (-3704 (((-1179) (-592 |#1|) (-592 |#1|)) 19) (((-1179) (-592 |#1|)) 20)) (-2516 (((-108) |#1| |#1|) 32 (|has| |#1| (-789)))) (-4028 (((-108) |#1| |#1| (-1 (-108) |#1| |#1|)) 27) (((-3 (-108) "failed") |#1| |#1|) 25)) (-1473 ((|#1| (-592 |#1|)) 33 (|has| |#1| (-789))) ((|#1| (-592 |#1|) (-1 (-108) |#1| |#1|)) 28)) (-3011 (((-2 (|:| -3736 (-592 |#1|)) (|:| -1805 (-592 |#1|)))) 17)))
+(((-1129 |#1|) (-10 -7 (-15 -3704 ((-1179) (-592 |#1|))) (-15 -3704 ((-1179) (-592 |#1|) (-592 |#1|))) (-15 -3011 ((-2 (|:| -3736 (-592 |#1|)) (|:| -1805 (-592 |#1|))))) (-15 -4028 ((-3 (-108) "failed") |#1| |#1|)) (-15 -4028 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -1473 (|#1| (-592 |#1|) (-1 (-108) |#1| |#1|))) (-15 -1563 ((-108))) (IF (|has| |#1| (-789)) (PROGN (-15 -1473 (|#1| (-592 |#1|))) (-15 -2516 ((-108) |#1| |#1|))) |%noBranch|)) (-1020)) (T -1129))
+((-2516 (*1 *2 *3 *3) (-12 (-5 *2 (-108)) (-5 *1 (-1129 *3)) (-4 *3 (-789)) (-4 *3 (-1020)))) (-1473 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-789)) (-5 *1 (-1129 *2)))) (-1563 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1129 *3)) (-4 *3 (-1020)))) (-1473 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1129 *2)) (-4 *2 (-1020)))) (-4028 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1020)) (-5 *2 (-108)) (-5 *1 (-1129 *3)))) (-4028 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1129 *3)) (-4 *3 (-1020)))) (-3011 (*1 *2) (-12 (-5 *2 (-2 (|:| -3736 (-592 *3)) (|:| -1805 (-592 *3)))) (-5 *1 (-1129 *3)) (-4 *3 (-1020)))) (-3704 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1020)) (-5 *2 (-1179)) (-5 *1 (-1129 *4)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1020)) (-5 *2 (-1179)) (-5 *1 (-1129 *4)))))
+(-10 -7 (-15 -3704 ((-1179) (-592 |#1|))) (-15 -3704 ((-1179) (-592 |#1|) (-592 |#1|))) (-15 -3011 ((-2 (|:| -3736 (-592 |#1|)) (|:| -1805 (-592 |#1|))))) (-15 -4028 ((-3 (-108) "failed") |#1| |#1|)) (-15 -4028 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -1473 (|#1| (-592 |#1|) (-1 (-108) |#1| |#1|))) (-15 -1563 ((-108))) (IF (|has| |#1| (-789)) (PROGN (-15 -1473 (|#1| (-592 |#1|))) (-15 -2516 ((-108) |#1| |#1|))) |%noBranch|))
+((-4091 (((-1179) (-592 (-1092)) (-592 (-1092))) 13) (((-1179) (-592 (-1092))) 11)) (-3568 (((-1179)) 14)) (-4092 (((-2 (|:| -1805 (-592 (-1092))) (|:| -3736 (-592 (-1092))))) 18)))
+(((-1130) (-10 -7 (-15 -4091 ((-1179) (-592 (-1092)))) (-15 -4091 ((-1179) (-592 (-1092)) (-592 (-1092)))) (-15 -4092 ((-2 (|:| -1805 (-592 (-1092))) (|:| -3736 (-592 (-1092)))))) (-15 -3568 ((-1179))))) (T -1130))
+((-3568 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1130)))) (-4092 (*1 *2) (-12 (-5 *2 (-2 (|:| -1805 (-592 (-1092))) (|:| -3736 (-592 (-1092))))) (-5 *1 (-1130)))) (-4091 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-1092))) (-5 *2 (-1179)) (-5 *1 (-1130)))) (-4091 (*1 *2 *3) (-12 (-5 *3 (-592 (-1092))) (-5 *2 (-1179)) (-5 *1 (-1130)))))
+(-10 -7 (-15 -4091 ((-1179) (-592 (-1092)))) (-15 -4091 ((-1179) (-592 (-1092)) (-592 (-1092)))) (-15 -4092 ((-2 (|:| -1805 (-592 (-1092))) (|:| -3736 (-592 (-1092)))))) (-15 -3568 ((-1179))))
+((-4195 (($ $) 17)) (-1798 (((-108) $) 24)))
+(((-1131 |#1|) (-10 -8 (-15 -4195 (|#1| |#1|)) (-15 -1798 ((-108) |#1|))) (-1132)) (T -1131))
+NIL
+(-10 -8 (-15 -4195 (|#1| |#1|)) (-15 -1798 ((-108) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-3222 (((-3 $ "failed") $ $) 19)) (-4195 (($ $) 51)) (-3586 (((-396 $) $) 52)) (-2475 (($) 17 T CONST)) (-3300 (((-3 $ "failed") $) 34)) (-1798 (((-108) $) 53)) (-2278 (((-108) $) 31)) (-2739 (($ $ $) 46) (($ (-592 $)) 45)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2772 (($ $ $) 48) (($ (-592 $)) 47)) (-4201 (((-396 $) $) 50)) (-1311 (((-3 $ "failed") $ $) 42)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-2448 (((-713)) 29)) (-1571 (((-108) $ $) 39)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-1132) (-131)) (T -1132))
-((-3673 (*1 *2 *1) (-12 (-4 *1 (-1132)) (-5 *2 (-108)))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1132)))) (-1286 (*1 *1 *1) (-4 *1 (-1132))) (-2770 (*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1132)))))
-(-13 (-429) (-10 -8 (-15 -3673 ((-108) $)) (-15 -2669 ((-396 $) $)) (-15 -1286 ($ $)) (-15 -2770 ((-396 $) $))))
+((-1798 (*1 *2 *1) (-12 (-4 *1 (-1132)) (-5 *2 (-108)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1132)))) (-4195 (*1 *1 *1) (-4 *1 (-1132))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1132)))))
+(-13 (-429) (-10 -8 (-15 -1798 ((-108) $)) (-15 -3586 ((-396 $) $)) (-15 -4195 ($ $)) (-15 -4201 ((-396 $) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-3165 (((-1138 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1138 |#1| |#3| |#5|)) 23)))
-(((-1133 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3165 ((-1138 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1138 |#1| |#3| |#5|)))) (-977) (-977) (-1092) (-1092) |#1| |#2|) (T -1133))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5 *7 *9)) (-4 *5 (-977)) (-4 *6 (-977)) (-14 *7 (-1092)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1138 *6 *8 *10)) (-5 *1 (-1133 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1092)))))
-(-10 -7 (-15 -3165 ((-1138 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1138 |#1| |#3| |#5|))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2897 (((-592 (-1005)) $) 74)) (-2499 (((-1092) $) 103)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-4218 (($ $) 52 (|has| |#1| (-517)))) (-3171 (((-108) $) 54 (|has| |#1| (-517)))) (-3828 (($ $ (-525)) 98) (($ $ (-525) (-525)) 97)) (-2755 (((-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 105)) (-1575 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-2804 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-1578 (((-3 $ "failed") $ $) 19)) (-1286 (($ $) 162 (|has| |#1| (-341)))) (-2669 (((-396 $) $) 163 (|has| |#1| (-341)))) (-2782 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-2193 (((-108) $ $) 153 (|has| |#1| (-341)))) (-1549 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-2780 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-2598 (($ (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 174)) (-1599 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2836 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2169 (($) 17 T CONST)) (-1747 (($ $ $) 157 (|has| |#1| (-341)))) (-3063 (($ $) 60)) (-3457 (((-3 $ "failed") $) 34)) (-2925 (((-385 (-887 |#1|)) $ (-525)) 172 (|has| |#1| (-517))) (((-385 (-887 |#1|)) $ (-525) (-525)) 171 (|has| |#1| (-517)))) (-1733 (($ $ $) 156 (|has| |#1| (-341)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-3673 (((-108) $) 164 (|has| |#1| (-341)))) (-2398 (((-108) $) 73)) (-3140 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-2581 (((-525) $) 100) (((-525) $ (-525)) 99)) (-1396 (((-108) $) 31)) (-2171 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-3326 (($ $ (-856)) 101)) (-2066 (($ (-1 |#1| (-525)) $) 173)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-1212 (((-108) $) 62)) (-2876 (($ |#1| (-525)) 61) (($ $ (-1005) (-525)) 76) (($ $ (-592 (-1005)) (-592 (-525))) 75)) (-3165 (($ (-1 |#1| |#1|) $) 63)) (-1517 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-3031 (($ $) 65)) (-3043 ((|#1| $) 66)) (-2556 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-2619 (((-1075) $) 9)) (-2997 (($ $) 165 (|has| |#1| (-341)))) (-1206 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) 169 (-3254 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-893)) (|has| |#1| (-1114)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -2897 ((-592 (-1092)) |#1|))) (|has| |#1| (-15 -1206 (|#1| |#1| (-1092)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 150 (|has| |#1| (-341)))) (-2589 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-2770 (((-396 $) $) 161 (|has| |#1| (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 158 (|has| |#1| (-341)))) (-3931 (($ $ (-525)) 95)) (-1715 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-3096 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (((-1073 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-525)))))) (-3684 (((-713) $) 154 (|has| |#1| (-341)))) (-3406 ((|#1| $ (-525)) 104) (($ $ $) 81 (|has| (-525) (-1032)))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 155 (|has| |#1| (-341)))) (-3376 (($ $ (-592 (-1092)) (-592 (-713))) 89 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1092) (-713)) 88 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092))) 87 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1092)) 86 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-2343 (((-525) $) 64)) (-1609 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-1447 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-1587 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-2815 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-1562 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-2794 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1489 (($ $) 72)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-1568 ((|#1| $ (-525)) 59)) (-3637 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-3917 (((-713)) 29)) (-1340 ((|#1| $) 102)) (-1649 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-1492 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1630 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-1465 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-1669 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-1522 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-1454 ((|#1| $ (-525)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -1217 (|#1| (-1092))))))) (-2359 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-1537 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-1659 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-1506 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-1639 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-1479 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $ (-592 (-1092)) (-592 (-713))) 93 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1092) (-713)) 92 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092))) 91 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1092)) 90 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-3955 (((-108) $ $) 6)) (-4075 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
+((-2016 (((-1138 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1138 |#1| |#3| |#5|)) 23)))
+(((-1133 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2016 ((-1138 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1138 |#1| |#3| |#5|)))) (-977) (-977) (-1092) (-1092) |#1| |#2|) (T -1133))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5 *7 *9)) (-4 *5 (-977)) (-4 *6 (-977)) (-14 *7 (-1092)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1138 *6 *8 *10)) (-5 *1 (-1133 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1092)))))
+(-10 -7 (-15 -2016 ((-1138 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1138 |#1| |#3| |#5|))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-1296 (((-592 (-1005)) $) 74)) (-3469 (((-1092) $) 103)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-2433 (($ $) 52 (|has| |#1| (-517)))) (-1568 (((-108) $) 54 (|has| |#1| (-517)))) (-2730 (($ $ (-525)) 98) (($ $ (-525) (-525)) 97)) (-2005 (((-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 105)) (-1803 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-3659 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3222 (((-3 $ "failed") $ $) 19)) (-4195 (($ $) 162 (|has| |#1| (-341)))) (-3586 (((-396 $) $) 163 (|has| |#1| (-341)))) (-4211 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-1507 (((-108) $ $) 153 (|has| |#1| (-341)))) (-1781 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-3638 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-2996 (($ (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 174)) (-1828 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-3698 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2475 (($) 17 T CONST)) (-1356 (($ $ $) 157 (|has| |#1| (-341)))) (-1451 (($ $) 60)) (-3300 (((-3 $ "failed") $) 34)) (-4181 (((-385 (-887 |#1|)) $ (-525)) 172 (|has| |#1| (-517))) (((-385 (-887 |#1|)) $ (-525) (-525)) 171 (|has| |#1| (-517)))) (-1332 (($ $ $) 156 (|has| |#1| (-341)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-1798 (((-108) $) 164 (|has| |#1| (-341)))) (-2853 (((-108) $) 73)) (-4106 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-4000 (((-525) $) 100) (((-525) $ (-525)) 99)) (-2278 (((-108) $) 31)) (-1303 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-1585 (($ $ (-856)) 101)) (-2598 (($ (-1 |#1| (-525)) $) 173)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-2457 (((-108) $) 62)) (-1272 (($ |#1| (-525)) 61) (($ $ (-1005) (-525)) 76) (($ $ (-592 (-1005)) (-592 (-525))) 75)) (-2016 (($ (-1 |#1| |#1|) $) 63)) (-2533 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-1418 (($ $) 65)) (-1430 ((|#1| $) 66)) (-2739 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-1289 (((-1075) $) 9)) (-1387 (($ $) 165 (|has| |#1| (-341)))) (-2367 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) 169 (-2067 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-893)) (|has| |#1| (-1114)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -1296 ((-592 (-1092)) |#1|))) (|has| |#1| (-15 -2367 (|#1| |#1| (-1092)))) (|has| |#1| (-37 (-385 (-525)))))))) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 150 (|has| |#1| (-341)))) (-2772 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-4201 (((-396 $) $) 161 (|has| |#1| (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 158 (|has| |#1| (-341)))) (-1397 (($ $ (-525)) 95)) (-1311 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-1618 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2825 (((-1073 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-525)))))) (-1927 (((-713) $) 154 (|has| |#1| (-341)))) (-3431 ((|#1| $ (-525)) 104) (($ $ $) 81 (|has| (-525) (-1032)))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 155 (|has| |#1| (-341)))) (-2702 (($ $ (-592 (-1092)) (-592 (-713))) 89 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1092) (-713)) 88 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092))) 87 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1092)) 86 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-3529 (((-525) $) 64)) (-1841 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-3798 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-1816 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3678 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-1792 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-3649 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-3926 (($ $) 72)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-3136 ((|#1| $ (-525)) 59)) (-1463 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2448 (((-713)) 29)) (-1423 ((|#1| $) 102)) (-1876 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3853 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1853 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-1902 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-1760 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-1485 ((|#1| $ (-525)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -4100 (|#1| (-1092))))))) (-3135 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-1891 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-1748 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-1866 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-3820 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $ (-592 (-1092)) (-592 (-713))) 93 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1092) (-713)) 92 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092))) 91 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1092)) 90 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-2775 (((-108) $ $) 6)) (-2880 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
(((-1134 |#1|) (-131) (-977)) (T -1134))
-((-2598 (*1 *1 *2) (-12 (-5 *2 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *3)))) (-4 *3 (-977)) (-4 *1 (-1134 *3)))) (-2066 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1134 *3)) (-4 *3 (-977)))) (-2925 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-1134 *4)) (-4 *4 (-977)) (-4 *4 (-517)) (-5 *2 (-385 (-887 *4))))) (-2925 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-1134 *4)) (-4 *4 (-977)) (-4 *4 (-517)) (-5 *2 (-385 (-887 *4))))) (-1206 (*1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525)))))) (-1206 (*1 *1 *1 *2) (-3254 (-12 (-5 *2 (-1092)) (-4 *1 (-1134 *3)) (-4 *3 (-977)) (-12 (-4 *3 (-29 (-525))) (-4 *3 (-893)) (-4 *3 (-1114)) (-4 *3 (-37 (-385 (-525)))))) (-12 (-5 *2 (-1092)) (-4 *1 (-1134 *3)) (-4 *3 (-977)) (-12 (|has| *3 (-15 -2897 ((-592 *2) *3))) (|has| *3 (-15 -1206 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525)))))))))
-(-13 (-1152 |t#1| (-525)) (-10 -8 (-15 -2598 ($ (-1073 (-2 (|:| |k| (-525)) (|:| |c| |t#1|))))) (-15 -2066 ($ (-1 |t#1| (-525)) $)) (IF (|has| |t#1| (-517)) (PROGN (-15 -2925 ((-385 (-887 |t#1|)) $ (-525))) (-15 -2925 ((-385 (-887 |t#1|)) $ (-525) (-525)))) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -1206 ($ $)) (IF (|has| |t#1| (-15 -1206 (|t#1| |t#1| (-1092)))) (IF (|has| |t#1| (-15 -2897 ((-592 (-1092)) |t#1|))) (-15 -1206 ($ $ (-1092))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1114)) (IF (|has| |t#1| (-893)) (IF (|has| |t#1| (-29 (-525))) (-15 -1206 ($ $ (-1092))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-934)) (-6 (-1114))) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-525)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3254 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3254 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-525) |#1|))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-525) (-1032)) ((-269) -3254 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-341) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) -3254 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-835 (-1092)) -12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))) ((-906 |#1| #0# (-1005)) . T) ((-855) |has| |#1| (-341)) ((-934) |has| |#1| (-37 (-385 (-525)))) ((-983 #1#) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-983 |#1|) . T) ((-983 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1114) |has| |#1| (-37 (-385 (-525)))) ((-1117) |has| |#1| (-37 (-385 (-525)))) ((-1132) |has| |#1| (-341)) ((-1152 |#1| #0#) . T))
-((-1209 (((-108) $) 12)) (-3077 (((-3 |#3| "failed") $) 17) (((-3 (-1092) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL)) (-1572 ((|#3| $) 14) (((-1092) $) NIL) (((-385 (-525)) $) NIL) (((-525) $) NIL)))
-(((-1135 |#1| |#2| |#3|) (-10 -8 (-15 -1572 ((-525) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1572 ((-1092) |#1|)) (-15 -3077 ((-3 (-1092) "failed") |#1|)) (-15 -1572 (|#3| |#1|)) (-15 -3077 ((-3 |#3| "failed") |#1|)) (-15 -1209 ((-108) |#1|))) (-1136 |#2| |#3|) (-977) (-1165 |#2|)) (T -1135))
-NIL
-(-10 -8 (-15 -1572 ((-525) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1572 ((-1092) |#1|)) (-15 -3077 ((-3 (-1092) "failed") |#1|)) (-15 -1572 (|#3| |#1|)) (-15 -3077 ((-3 |#3| "failed") |#1|)) (-15 -1209 ((-108) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1548 ((|#2| $) 231 (-3762 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-2897 (((-592 (-1005)) $) 74)) (-2499 (((-1092) $) 103)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-4218 (($ $) 52 (|has| |#1| (-517)))) (-3171 (((-108) $) 54 (|has| |#1| (-517)))) (-3828 (($ $ (-525)) 98) (($ $ (-525) (-525)) 97)) (-2755 (((-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 105)) (-3784 ((|#2| $) 267)) (-4209 (((-3 |#2| "failed") $) 263)) (-2950 ((|#2| $) 264)) (-1575 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-2804 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-1578 (((-3 $ "failed") $ $) 19)) (-1448 (((-396 (-1088 $)) (-1088 $)) 240 (-3762 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-1286 (($ $) 162 (|has| |#1| (-341)))) (-2669 (((-396 $) $) 163 (|has| |#1| (-341)))) (-2782 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 237 (-3762 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-2193 (((-108) $ $) 153 (|has| |#1| (-341)))) (-1549 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-2780 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-3855 (((-525) $) 249 (-3762 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-2598 (($ (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 174)) (-1599 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2836 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2169 (($) 17 T CONST)) (-3077 (((-3 |#2| "failed") $) 270) (((-3 (-525) "failed") $) 259 (-3762 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) 257 (-3762 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-3 (-1092) "failed") $) 242 (-3762 (|has| |#2| (-968 (-1092))) (|has| |#1| (-341))))) (-1572 ((|#2| $) 269) (((-525) $) 260 (-3762 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-385 (-525)) $) 258 (-3762 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-1092) $) 243 (-3762 (|has| |#2| (-968 (-1092))) (|has| |#1| (-341))))) (-3318 (($ $) 266) (($ (-525) $) 265)) (-1747 (($ $ $) 157 (|has| |#1| (-341)))) (-3063 (($ $) 60)) (-1994 (((-632 |#2|) (-632 $)) 221 (|has| |#1| (-341))) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) 220 (|has| |#1| (-341))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 219 (-3762 (|has| |#2| (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) 218 (-3762 (|has| |#2| (-588 (-525))) (|has| |#1| (-341))))) (-3457 (((-3 $ "failed") $) 34)) (-2925 (((-385 (-887 |#1|)) $ (-525)) 172 (|has| |#1| (-517))) (((-385 (-887 |#1|)) $ (-525) (-525)) 171 (|has| |#1| (-517)))) (-2502 (($) 233 (-3762 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-1733 (($ $ $) 156 (|has| |#1| (-341)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-3673 (((-108) $) 164 (|has| |#1| (-341)))) (-1222 (((-108) $) 247 (-3762 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-2398 (((-108) $) 73)) (-3140 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 225 (-3762 (|has| |#2| (-821 (-357))) (|has| |#1| (-341)))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 224 (-3762 (|has| |#2| (-821 (-525))) (|has| |#1| (-341))))) (-2581 (((-525) $) 100) (((-525) $ (-525)) 99)) (-1396 (((-108) $) 31)) (-3858 (($ $) 229 (|has| |#1| (-341)))) (-3114 ((|#2| $) 227 (|has| |#1| (-341)))) (-2171 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-3844 (((-3 $ "failed") $) 261 (-3762 (|has| |#2| (-1068)) (|has| |#1| (-341))))) (-3256 (((-108) $) 248 (-3762 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-3326 (($ $ (-856)) 101)) (-2066 (($ (-1 |#1| (-525)) $) 173)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-1212 (((-108) $) 62)) (-2876 (($ |#1| (-525)) 61) (($ $ (-1005) (-525)) 76) (($ $ (-592 (-1005)) (-592 (-525))) 75)) (-2638 (($ $ $) 251 (-3762 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3662 (($ $ $) 252 (-3762 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3165 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-341)))) (-1517 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-3031 (($ $) 65)) (-3043 ((|#1| $) 66)) (-2556 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-2962 (($ (-525) |#2|) 268)) (-2619 (((-1075) $) 9)) (-2997 (($ $) 165 (|has| |#1| (-341)))) (-1206 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) 169 (-3254 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-893)) (|has| |#1| (-1114)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -2897 ((-592 (-1092)) |#1|))) (|has| |#1| (-15 -1206 (|#1| |#1| (-1092)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2295 (($) 262 (-3762 (|has| |#2| (-1068)) (|has| |#1| (-341))) CONST)) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 150 (|has| |#1| (-341)))) (-2589 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-3628 (($ $) 232 (-3762 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-2487 ((|#2| $) 235 (-3762 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-3076 (((-396 (-1088 $)) (-1088 $)) 238 (-3762 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-4099 (((-396 (-1088 $)) (-1088 $)) 239 (-3762 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-2770 (((-396 $) $) 161 (|has| |#1| (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 158 (|has| |#1| (-341)))) (-3931 (($ $ (-525)) 95)) (-1715 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-3096 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (((-1073 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1092) |#2|) 212 (-3762 (|has| |#2| (-486 (-1092) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-1092)) (-592 |#2|)) 211 (-3762 (|has| |#2| (-486 (-1092) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-273 |#2|))) 210 (-3762 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-273 |#2|)) 209 (-3762 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ |#2| |#2|) 208 (-3762 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-592 |#2|) (-592 |#2|)) 207 (-3762 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341))))) (-3684 (((-713) $) 154 (|has| |#1| (-341)))) (-3406 ((|#1| $ (-525)) 104) (($ $ $) 81 (|has| (-525) (-1032))) (($ $ |#2|) 206 (-3762 (|has| |#2| (-265 |#2| |#2|)) (|has| |#1| (-341))))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 155 (|has| |#1| (-341)))) (-3376 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) 216 (|has| |#1| (-341))) (($ $ (-713)) 84 (-3254 (-3762 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 82 (-3254 (-3762 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092)) (-592 (-713))) 89 (-3254 (-3762 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1092) (-713)) 88 (-3254 (-3762 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-592 (-1092))) 87 (-3254 (-3762 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1092)) 86 (-3254 (-3762 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))))) (-4143 (($ $) 230 (|has| |#1| (-341)))) (-3123 ((|#2| $) 228 (|has| |#1| (-341)))) (-2343 (((-525) $) 64)) (-1609 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-1447 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-1587 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-2815 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-1562 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-2794 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-3210 (((-205) $) 246 (-3762 (|has| |#2| (-953)) (|has| |#1| (-341)))) (((-357) $) 245 (-3762 (|has| |#2| (-953)) (|has| |#1| (-341)))) (((-501) $) 244 (-3762 (|has| |#2| (-567 (-501))) (|has| |#1| (-341)))) (((-827 (-357)) $) 223 (-3762 (|has| |#2| (-567 (-827 (-357)))) (|has| |#1| (-341)))) (((-827 (-525)) $) 222 (-3762 (|has| |#2| (-567 (-827 (-525)))) (|has| |#1| (-341))))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) 236 (-3762 (-3762 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#1| (-341))))) (-1489 (($ $) 72)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ |#2|) 271) (($ (-1092)) 241 (-3762 (|has| |#2| (-968 (-1092))) (|has| |#1| (-341)))) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-1568 ((|#1| $ (-525)) 59)) (-3637 (((-3 $ "failed") $) 48 (-3254 (-3762 (-3254 (|has| |#2| (-136)) (-3762 (|has| $ (-136)) (|has| |#2| (-844)))) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-3917 (((-713)) 29)) (-1340 ((|#1| $) 102)) (-3074 ((|#2| $) 234 (-3762 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-1649 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-1492 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1630 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-1465 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-1669 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-1522 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-1454 ((|#1| $ (-525)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -1217 (|#1| (-1092))))))) (-2359 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-1537 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-1659 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-1506 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-1639 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-1479 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-2802 (($ $) 250 (-3762 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) 214 (|has| |#1| (-341))) (($ $ (-713)) 85 (-3254 (-3762 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 83 (-3254 (-3762 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092)) (-592 (-713))) 93 (-3254 (-3762 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1092) (-713)) 92 (-3254 (-3762 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-592 (-1092))) 91 (-3254 (-3762 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1092)) 90 (-3254 (-3762 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))))) (-4011 (((-108) $ $) 254 (-3762 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3987 (((-108) $ $) 255 (-3762 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 253 (-3762 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3978 (((-108) $ $) 256 (-3762 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-4075 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341))) (($ |#2| |#2|) 226 (|has| |#1| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-341))) (($ |#2| $) 204 (|has| |#1| (-341))) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
+((-2996 (*1 *1 *2) (-12 (-5 *2 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *3)))) (-4 *3 (-977)) (-4 *1 (-1134 *3)))) (-2598 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1134 *3)) (-4 *3 (-977)))) (-4181 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-1134 *4)) (-4 *4 (-977)) (-4 *4 (-517)) (-5 *2 (-385 (-887 *4))))) (-4181 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-1134 *4)) (-4 *4 (-977)) (-4 *4 (-517)) (-5 *2 (-385 (-887 *4))))) (-2367 (*1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525)))))) (-2367 (*1 *1 *1 *2) (-2067 (-12 (-5 *2 (-1092)) (-4 *1 (-1134 *3)) (-4 *3 (-977)) (-12 (-4 *3 (-29 (-525))) (-4 *3 (-893)) (-4 *3 (-1114)) (-4 *3 (-37 (-385 (-525)))))) (-12 (-5 *2 (-1092)) (-4 *1 (-1134 *3)) (-4 *3 (-977)) (-12 (|has| *3 (-15 -1296 ((-592 *2) *3))) (|has| *3 (-15 -2367 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525)))))))))
+(-13 (-1152 |t#1| (-525)) (-10 -8 (-15 -2996 ($ (-1073 (-2 (|:| |k| (-525)) (|:| |c| |t#1|))))) (-15 -2598 ($ (-1 |t#1| (-525)) $)) (IF (|has| |t#1| (-517)) (PROGN (-15 -4181 ((-385 (-887 |t#1|)) $ (-525))) (-15 -4181 ((-385 (-887 |t#1|)) $ (-525) (-525)))) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -2367 ($ $)) (IF (|has| |t#1| (-15 -2367 (|t#1| |t#1| (-1092)))) (IF (|has| |t#1| (-15 -1296 ((-592 (-1092)) |t#1|))) (-15 -2367 ($ $ (-1092))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1114)) (IF (|has| |t#1| (-893)) (IF (|has| |t#1| (-29 (-525))) (-15 -2367 ($ $ (-1092))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-934)) (-6 (-1114))) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-525)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -2067 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -2067 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-525) |#1|))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-525) (-1032)) ((-269) -2067 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-341) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) -2067 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-835 (-1092)) -12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))) ((-906 |#1| #0# (-1005)) . T) ((-855) |has| |#1| (-341)) ((-934) |has| |#1| (-37 (-385 (-525)))) ((-983 #1#) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-983 |#1|) . T) ((-983 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1114) |has| |#1| (-37 (-385 (-525)))) ((-1117) |has| |#1| (-37 (-385 (-525)))) ((-1132) |has| |#1| (-341)) ((-1152 |#1| #0#) . T))
+((-2414 (((-108) $) 12)) (-1934 (((-3 |#3| "failed") $) 17) (((-3 (-1092) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL)) (-4105 ((|#3| $) 14) (((-1092) $) NIL) (((-385 (-525)) $) NIL) (((-525) $) NIL)))
+(((-1135 |#1| |#2| |#3|) (-10 -8 (-15 -4105 ((-525) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4105 ((-1092) |#1|)) (-15 -1934 ((-3 (-1092) "failed") |#1|)) (-15 -4105 (|#3| |#1|)) (-15 -1934 ((-3 |#3| "failed") |#1|)) (-15 -2414 ((-108) |#1|))) (-1136 |#2| |#3|) (-977) (-1165 |#2|)) (T -1135))
+NIL
+(-10 -8 (-15 -4105 ((-525) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4105 ((-1092) |#1|)) (-15 -1934 ((-3 (-1092) "failed") |#1|)) (-15 -4105 (|#3| |#1|)) (-15 -1934 ((-3 |#3| "failed") |#1|)) (-15 -2414 ((-108) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-1653 ((|#2| $) 231 (-3944 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-1296 (((-592 (-1005)) $) 74)) (-3469 (((-1092) $) 103)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-2433 (($ $) 52 (|has| |#1| (-517)))) (-1568 (((-108) $) 54 (|has| |#1| (-517)))) (-2730 (($ $ (-525)) 98) (($ $ (-525) (-525)) 97)) (-2005 (((-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 105)) (-3494 ((|#2| $) 267)) (-2326 (((-3 |#2| "failed") $) 263)) (-1350 ((|#2| $) 264)) (-1803 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-3659 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3222 (((-3 $ "failed") $ $) 19)) (-2426 (((-396 (-1088 $)) (-1088 $)) 240 (-3944 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-4195 (($ $) 162 (|has| |#1| (-341)))) (-3586 (((-396 $) $) 163 (|has| |#1| (-341)))) (-4211 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 237 (-3944 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-1507 (((-108) $ $) 153 (|has| |#1| (-341)))) (-1781 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-3638 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-2971 (((-525) $) 249 (-3944 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-2996 (($ (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 174)) (-1828 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-3698 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2475 (($) 17 T CONST)) (-1934 (((-3 |#2| "failed") $) 270) (((-3 (-525) "failed") $) 259 (-3944 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) 257 (-3944 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-3 (-1092) "failed") $) 242 (-3944 (|has| |#2| (-968 (-1092))) (|has| |#1| (-341))))) (-4105 ((|#2| $) 269) (((-525) $) 260 (-3944 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-385 (-525)) $) 258 (-3944 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-1092) $) 243 (-3944 (|has| |#2| (-968 (-1092))) (|has| |#1| (-341))))) (-1498 (($ $) 266) (($ (-525) $) 265)) (-1356 (($ $ $) 157 (|has| |#1| (-341)))) (-1451 (($ $) 60)) (-3090 (((-632 |#2|) (-632 $)) 221 (|has| |#1| (-341))) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) 220 (|has| |#1| (-341))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 219 (-3944 (|has| |#2| (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) 218 (-3944 (|has| |#2| (-588 (-525))) (|has| |#1| (-341))))) (-3300 (((-3 $ "failed") $) 34)) (-4181 (((-385 (-887 |#1|)) $ (-525)) 172 (|has| |#1| (-517))) (((-385 (-887 |#1|)) $ (-525) (-525)) 171 (|has| |#1| (-517)))) (-1903 (($) 233 (-3944 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-1332 (($ $ $) 156 (|has| |#1| (-341)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-1798 (((-108) $) 164 (|has| |#1| (-341)))) (-1889 (((-108) $) 247 (-3944 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-2853 (((-108) $) 73)) (-4106 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 225 (-3944 (|has| |#2| (-821 (-357))) (|has| |#1| (-341)))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 224 (-3944 (|has| |#2| (-821 (-525))) (|has| |#1| (-341))))) (-4000 (((-525) $) 100) (((-525) $ (-525)) 99)) (-2278 (((-108) $) 31)) (-2999 (($ $) 229 (|has| |#1| (-341)))) (-4066 ((|#2| $) 227 (|has| |#1| (-341)))) (-1303 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-2878 (((-3 $ "failed") $) 261 (-3944 (|has| |#2| (-1068)) (|has| |#1| (-341))))) (-4079 (((-108) $) 248 (-3944 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-1585 (($ $ (-856)) 101)) (-2598 (($ (-1 |#1| (-525)) $) 173)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-2457 (((-108) $) 62)) (-1272 (($ |#1| (-525)) 61) (($ $ (-1005) (-525)) 76) (($ $ (-592 (-1005)) (-592 (-525))) 75)) (-3033 (($ $ $) 251 (-3944 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-1609 (($ $ $) 252 (-3944 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-2016 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-341)))) (-2533 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-1418 (($ $) 65)) (-1430 ((|#1| $) 66)) (-2739 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-1361 (($ (-525) |#2|) 268)) (-1289 (((-1075) $) 9)) (-1387 (($ $) 165 (|has| |#1| (-341)))) (-2367 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) 169 (-2067 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-893)) (|has| |#1| (-1114)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -1296 ((-592 (-1092)) |#1|))) (|has| |#1| (-15 -2367 (|#1| |#1| (-1092)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2948 (($) 262 (-3944 (|has| |#2| (-1068)) (|has| |#1| (-341))) CONST)) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 150 (|has| |#1| (-341)))) (-2772 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-1372 (($ $) 232 (-3944 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-1340 ((|#2| $) 235 (-3944 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-3089 (((-396 (-1088 $)) (-1088 $)) 238 (-3944 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-3644 (((-396 (-1088 $)) (-1088 $)) 239 (-3944 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-4201 (((-396 $) $) 161 (|has| |#1| (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 158 (|has| |#1| (-341)))) (-1397 (($ $ (-525)) 95)) (-1311 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-1618 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2825 (((-1073 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1092) |#2|) 212 (-3944 (|has| |#2| (-486 (-1092) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-1092)) (-592 |#2|)) 211 (-3944 (|has| |#2| (-486 (-1092) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-273 |#2|))) 210 (-3944 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-273 |#2|)) 209 (-3944 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ |#2| |#2|) 208 (-3944 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-592 |#2|) (-592 |#2|)) 207 (-3944 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341))))) (-1927 (((-713) $) 154 (|has| |#1| (-341)))) (-3431 ((|#1| $ (-525)) 104) (($ $ $) 81 (|has| (-525) (-1032))) (($ $ |#2|) 206 (-3944 (|has| |#2| (-265 |#2| |#2|)) (|has| |#1| (-341))))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 155 (|has| |#1| (-341)))) (-2702 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) 216 (|has| |#1| (-341))) (($ $ (-713)) 84 (-2067 (-3944 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 82 (-2067 (-3944 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092)) (-592 (-713))) 89 (-2067 (-3944 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1092) (-713)) 88 (-2067 (-3944 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-592 (-1092))) 87 (-2067 (-3944 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1092)) 86 (-2067 (-3944 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))))) (-2874 (($ $) 230 (|has| |#1| (-341)))) (-4080 ((|#2| $) 228 (|has| |#1| (-341)))) (-3529 (((-525) $) 64)) (-1841 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-3798 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-1816 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3678 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-1792 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-3649 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-2069 (((-205) $) 246 (-3944 (|has| |#2| (-953)) (|has| |#1| (-341)))) (((-357) $) 245 (-3944 (|has| |#2| (-953)) (|has| |#1| (-341)))) (((-501) $) 244 (-3944 (|has| |#2| (-567 (-501))) (|has| |#1| (-341)))) (((-827 (-357)) $) 223 (-3944 (|has| |#2| (-567 (-827 (-357)))) (|has| |#1| (-341)))) (((-827 (-525)) $) 222 (-3944 (|has| |#2| (-567 (-827 (-525)))) (|has| |#1| (-341))))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) 236 (-3944 (-3944 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#1| (-341))))) (-3926 (($ $) 72)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ |#2|) 271) (($ (-1092)) 241 (-3944 (|has| |#2| (-968 (-1092))) (|has| |#1| (-341)))) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-3136 ((|#1| $ (-525)) 59)) (-1463 (((-3 $ "failed") $) 48 (-2067 (-3944 (-2067 (|has| |#2| (-136)) (-3944 (|has| $ (-136)) (|has| |#2| (-844)))) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-2448 (((-713)) 29)) (-1423 ((|#1| $) 102)) (-3064 ((|#2| $) 234 (-3944 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-1876 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3853 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1853 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-1902 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-1760 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-1485 ((|#1| $ (-525)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -4100 (|#1| (-1092))))))) (-3135 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-1891 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-1748 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-1866 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-3820 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-2380 (($ $) 250 (-3944 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) 214 (|has| |#1| (-341))) (($ $ (-713)) 85 (-2067 (-3944 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 83 (-2067 (-3944 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092)) (-592 (-713))) 93 (-2067 (-3944 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1092) (-713)) 92 (-2067 (-3944 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-592 (-1092))) 91 (-2067 (-3944 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1092)) 90 (-2067 (-3944 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))))) (-2830 (((-108) $ $) 254 (-3944 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-2807 (((-108) $ $) 255 (-3944 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 253 (-3944 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-2795 (((-108) $ $) 256 (-3944 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-2880 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341))) (($ |#2| |#2|) 226 (|has| |#1| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-341))) (($ |#2| $) 204 (|has| |#1| (-341))) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
(((-1136 |#1| |#2|) (-131) (-977) (-1165 |t#1|)) (T -1136))
-((-2343 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1165 *3)) (-5 *2 (-525)))) (-1217 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *1 (-1136 *3 *2)) (-4 *2 (-1165 *3)))) (-2962 (*1 *1 *2 *3) (-12 (-5 *2 (-525)) (-4 *4 (-977)) (-4 *1 (-1136 *4 *3)) (-4 *3 (-1165 *4)))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1165 *3)))) (-3318 (*1 *1 *1) (-12 (-4 *1 (-1136 *2 *3)) (-4 *2 (-977)) (-4 *3 (-1165 *2)))) (-3318 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-1136 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1165 *3)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1165 *3)))) (-4209 (*1 *2 *1) (|partial| -12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1165 *3)))))
-(-13 (-1134 |t#1|) (-968 |t#2|) (-10 -8 (-15 -2962 ($ (-525) |t#2|)) (-15 -2343 ((-525) $)) (-15 -3784 (|t#2| $)) (-15 -3318 ($ $)) (-15 -3318 ($ (-525) $)) (-15 -1217 ($ |t#2|)) (-15 -2950 (|t#2| $)) (-15 -4209 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-341)) (-6 (-925 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-525)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 |#2|) |has| |#1| (-341)) ((-37 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 |#2| |#2|) |has| |#1| (-341)) ((-107 $ $) -3254 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) -3254 (-12 (|has| |#1| (-341)) (|has| |#2| (-136))) (|has| |#1| (-136))) ((-138) -3254 (-12 (|has| |#1| (-341)) (|has| |#2| (-138))) (|has| |#1| (-138))) ((-566 (-798)) . T) ((-160) -3254 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-567 (-205)) -12 (|has| |#1| (-341)) (|has| |#2| (-953))) ((-567 (-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-953))) ((-567 (-501)) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-501)))) ((-567 (-827 (-357))) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-827 (-357))))) ((-567 (-827 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-827 (-525))))) ((-211 |#2|) |has| |#1| (-341)) ((-213) -3254 (-12 (|has| |#1| (-341)) (|has| |#2| (-213))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 |#2| $) -12 (|has| |#1| (-341)) (|has| |#2| (-265 |#2| |#2|))) ((-265 $ $) |has| (-525) (-1032)) ((-269) -3254 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-288 |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-288 |#2|))) ((-341) |has| |#1| (-341)) ((-316 |#2|) |has| |#1| (-341)) ((-355 |#2|) |has| |#1| (-341)) ((-378 |#2|) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-486 (-1092) |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-486 (-1092) |#2|))) ((-486 |#2| |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-288 |#2|))) ((-517) -3254 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 |#2|) |has| |#1| (-341)) ((-594 $) . T) ((-588 (-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-588 (-525)))) ((-588 |#2|) |has| |#1| (-341)) ((-660 #1#) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 |#2|) |has| |#1| (-341)) ((-660 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-733) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-734) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-736) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-737) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-762) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-787) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-789) -3254 (-12 (|has| |#1| (-341)) (|has| |#2| (-789))) (-12 (|has| |#1| (-341)) (|has| |#2| (-762)))) ((-835 (-1092)) -3254 (-12 (|has| |#1| (-341)) (|has| |#2| (-835 (-1092)))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))) ((-821 (-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-821 (-357)))) ((-821 (-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-821 (-525)))) ((-819 |#2|) |has| |#1| (-341)) ((-844) -12 (|has| |#1| (-341)) (|has| |#2| (-844))) ((-906 |#1| #0# (-1005)) . T) ((-855) |has| |#1| (-341)) ((-925 |#2|) |has| |#1| (-341)) ((-934) |has| |#1| (-37 (-385 (-525)))) ((-953) -12 (|has| |#1| (-341)) (|has| |#2| (-953))) ((-968 (-385 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-968 (-525)))) ((-968 (-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-968 (-525)))) ((-968 (-1092)) -12 (|has| |#1| (-341)) (|has| |#2| (-968 (-1092)))) ((-968 |#2|) . T) ((-983 #1#) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-983 |#1|) . T) ((-983 |#2|) |has| |#1| (-341)) ((-983 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1068) -12 (|has| |#1| (-341)) (|has| |#2| (-1068))) ((-1114) |has| |#1| (-37 (-385 (-525)))) ((-1117) |has| |#1| (-37 (-385 (-525)))) ((-1128) |has| |#1| (-341)) ((-1132) |has| |#1| (-341)) ((-1134 |#1|) . T) ((-1152 |#1| #0#) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 70)) (-1548 ((|#2| $) NIL (-12 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-2897 (((-592 (-1005)) $) NIL)) (-2499 (((-1092) $) 88)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-3828 (($ $ (-525)) 97) (($ $ (-525) (-525)) 99)) (-2755 (((-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 47)) (-3784 ((|#2| $) 11)) (-4209 (((-3 |#2| "failed") $) 30)) (-2950 ((|#2| $) 31)) (-1575 (($ $) 192 (|has| |#1| (-37 (-385 (-525)))))) (-2804 (($ $) 168 (|has| |#1| (-37 (-385 (-525)))))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-1286 (($ $) NIL (|has| |#1| (-341)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2782 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-2193 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1549 (($ $) 188 (|has| |#1| (-37 (-385 (-525)))))) (-2780 (($ $) 164 (|has| |#1| (-37 (-385 (-525)))))) (-3855 (((-525) $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-2598 (($ (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 57)) (-1599 (($ $) 196 (|has| |#1| (-37 (-385 (-525)))))) (-2836 (($ $) 172 (|has| |#1| (-37 (-385 (-525)))))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#2| "failed") $) 144) (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-3 (-1092) "failed") $) NIL (-12 (|has| |#2| (-968 (-1092))) (|has| |#1| (-341))))) (-1572 ((|#2| $) 143) (((-525) $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-1092) $) NIL (-12 (|has| |#2| (-968 (-1092))) (|has| |#1| (-341))))) (-3318 (($ $) 61) (($ (-525) $) 24)) (-1747 (($ $ $) NIL (|has| |#1| (-341)))) (-3063 (($ $) NIL)) (-1994 (((-632 |#2|) (-632 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#1| (-341))))) (-3457 (((-3 $ "failed") $) 77)) (-2925 (((-385 (-887 |#1|)) $ (-525)) 112 (|has| |#1| (-517))) (((-385 (-887 |#1|)) $ (-525) (-525)) 114 (|has| |#1| (-517)))) (-2502 (($) NIL (-12 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-1733 (($ $ $) NIL (|has| |#1| (-341)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3673 (((-108) $) NIL (|has| |#1| (-341)))) (-1222 (((-108) $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-2398 (((-108) $) 64)) (-3140 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| |#2| (-821 (-357))) (|has| |#1| (-341)))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| |#2| (-821 (-525))) (|has| |#1| (-341))))) (-2581 (((-525) $) 93) (((-525) $ (-525)) 95)) (-1396 (((-108) $) NIL)) (-3858 (($ $) NIL (|has| |#1| (-341)))) (-3114 ((|#2| $) 151 (|has| |#1| (-341)))) (-2171 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3844 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1068)) (|has| |#1| (-341))))) (-3256 (((-108) $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-3326 (($ $ (-856)) 136)) (-2066 (($ (-1 |#1| (-525)) $) 132)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-525)) 19) (($ $ (-1005) (-525)) NIL) (($ $ (-592 (-1005)) (-592 (-525))) NIL)) (-2638 (($ $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3662 (($ $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3165 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-341)))) (-1517 (($ $) 162 (|has| |#1| (-37 (-385 (-525)))))) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2962 (($ (-525) |#2|) 10)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) 145 (|has| |#1| (-341)))) (-1206 (($ $) 214 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) 219 (-3254 (-12 (|has| |#1| (-15 -1206 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -2897 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114)))))) (-2295 (($) NIL (-12 (|has| |#2| (-1068)) (|has| |#1| (-341))) CONST)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3628 (($ $) NIL (-12 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-2487 ((|#2| $) NIL (-12 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-2770 (((-396 $) $) NIL (|has| |#1| (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-3931 (($ $ (-525)) 126)) (-1715 (((-3 $ "failed") $ $) 116 (|has| |#1| (-517)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-3096 (($ $) 160 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (((-1073 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1092) |#2|) NIL (-12 (|has| |#2| (-486 (-1092) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-1092)) (-592 |#2|)) NIL (-12 (|has| |#2| (-486 (-1092) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341))))) (-3684 (((-713) $) NIL (|has| |#1| (-341)))) (-3406 ((|#1| $ (-525)) 91) (($ $ $) 79 (|has| (-525) (-1032))) (($ $ |#2|) NIL (-12 (|has| |#2| (-265 |#2| |#2|)) (|has| |#1| (-341))))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-341)))) (-3376 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-3254 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 137 (-3254 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-3254 (-12 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092) (-713)) NIL (-3254 (-12 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-592 (-1092))) NIL (-3254 (-12 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092)) 140 (-3254 (-12 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))))) (-4143 (($ $) NIL (|has| |#1| (-341)))) (-3123 ((|#2| $) 152 (|has| |#1| (-341)))) (-2343 (((-525) $) 12)) (-1609 (($ $) 198 (|has| |#1| (-37 (-385 (-525)))))) (-1447 (($ $) 174 (|has| |#1| (-37 (-385 (-525)))))) (-1587 (($ $) 194 (|has| |#1| (-37 (-385 (-525)))))) (-2815 (($ $) 170 (|has| |#1| (-37 (-385 (-525)))))) (-1562 (($ $) 190 (|has| |#1| (-37 (-385 (-525)))))) (-2794 (($ $) 166 (|has| |#1| (-37 (-385 (-525)))))) (-3210 (((-205) $) NIL (-12 (|has| |#2| (-953)) (|has| |#1| (-341)))) (((-357) $) NIL (-12 (|has| |#2| (-953)) (|has| |#1| (-341)))) (((-501) $) NIL (-12 (|has| |#2| (-567 (-501))) (|has| |#1| (-341)))) (((-827 (-357)) $) NIL (-12 (|has| |#2| (-567 (-827 (-357)))) (|has| |#1| (-341)))) (((-827 (-525)) $) NIL (-12 (|has| |#2| (-567 (-827 (-525)))) (|has| |#1| (-341))))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844)) (|has| |#1| (-341))))) (-1489 (($ $) 124)) (-1217 (((-798) $) 245) (($ (-525)) 23) (($ |#1|) 21 (|has| |#1| (-160))) (($ |#2|) 20) (($ (-1092)) NIL (-12 (|has| |#2| (-968 (-1092))) (|has| |#1| (-341)))) (($ (-385 (-525))) 155 (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-1568 ((|#1| $ (-525)) 74)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| |#2| (-844)) (|has| |#1| (-341))) (-12 (|has| |#2| (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-3917 (((-713)) 142)) (-1340 ((|#1| $) 90)) (-3074 ((|#2| $) NIL (-12 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-1649 (($ $) 204 (|has| |#1| (-37 (-385 (-525)))))) (-1492 (($ $) 180 (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1630 (($ $) 200 (|has| |#1| (-37 (-385 (-525)))))) (-1465 (($ $) 176 (|has| |#1| (-37 (-385 (-525)))))) (-1669 (($ $) 208 (|has| |#1| (-37 (-385 (-525)))))) (-1522 (($ $) 184 (|has| |#1| (-37 (-385 (-525)))))) (-1454 ((|#1| $ (-525)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -1217 (|#1| (-1092))))))) (-2359 (($ $) 210 (|has| |#1| (-37 (-385 (-525)))))) (-1537 (($ $) 186 (|has| |#1| (-37 (-385 (-525)))))) (-1659 (($ $) 206 (|has| |#1| (-37 (-385 (-525)))))) (-1506 (($ $) 182 (|has| |#1| (-37 (-385 (-525)))))) (-1639 (($ $) 202 (|has| |#1| (-37 (-385 (-525)))))) (-1479 (($ $) 178 (|has| |#1| (-37 (-385 (-525)))))) (-2802 (($ $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3349 (($) 13 T CONST)) (-3359 (($) 17 T CONST)) (-2022 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-3254 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) NIL (-3254 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-3254 (-12 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092) (-713)) NIL (-3254 (-12 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-592 (-1092))) NIL (-3254 (-12 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092)) NIL (-3254 (-12 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))))) (-4011 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3987 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3955 (((-108) $ $) 63)) (-3999 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3978 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 149 (|has| |#1| (-341))) (($ |#2| |#2|) 150 (|has| |#1| (-341)))) (-4061 (($ $) 213) (($ $ $) 68)) (-4047 (($ $ $) 66)) (** (($ $ (-856)) NIL) (($ $ (-713)) 73) (($ $ (-525)) 146 (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-341))) (($ |#2| $) 147 (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+((-3529 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1165 *3)) (-5 *2 (-525)))) (-4100 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *1 (-1136 *3 *2)) (-4 *2 (-1165 *3)))) (-1361 (*1 *1 *2 *3) (-12 (-5 *2 (-525)) (-4 *4 (-977)) (-4 *1 (-1136 *4 *3)) (-4 *3 (-1165 *4)))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1165 *3)))) (-1498 (*1 *1 *1) (-12 (-4 *1 (-1136 *2 *3)) (-4 *2 (-977)) (-4 *3 (-1165 *2)))) (-1498 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-1136 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1165 *3)))) (-1350 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1165 *3)))) (-2326 (*1 *2 *1) (|partial| -12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1165 *3)))))
+(-13 (-1134 |t#1|) (-968 |t#2|) (-10 -8 (-15 -1361 ($ (-525) |t#2|)) (-15 -3529 ((-525) $)) (-15 -3494 (|t#2| $)) (-15 -1498 ($ $)) (-15 -1498 ($ (-525) $)) (-15 -4100 ($ |t#2|)) (-15 -1350 (|t#2| $)) (-15 -2326 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-341)) (-6 (-925 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-525)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 |#2|) |has| |#1| (-341)) ((-37 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 |#2| |#2|) |has| |#1| (-341)) ((-107 $ $) -2067 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) -2067 (-12 (|has| |#1| (-341)) (|has| |#2| (-136))) (|has| |#1| (-136))) ((-138) -2067 (-12 (|has| |#1| (-341)) (|has| |#2| (-138))) (|has| |#1| (-138))) ((-566 (-798)) . T) ((-160) -2067 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-567 (-205)) -12 (|has| |#1| (-341)) (|has| |#2| (-953))) ((-567 (-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-953))) ((-567 (-501)) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-501)))) ((-567 (-827 (-357))) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-827 (-357))))) ((-567 (-827 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-827 (-525))))) ((-211 |#2|) |has| |#1| (-341)) ((-213) -2067 (-12 (|has| |#1| (-341)) (|has| |#2| (-213))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 |#2| $) -12 (|has| |#1| (-341)) (|has| |#2| (-265 |#2| |#2|))) ((-265 $ $) |has| (-525) (-1032)) ((-269) -2067 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-288 |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-288 |#2|))) ((-341) |has| |#1| (-341)) ((-316 |#2|) |has| |#1| (-341)) ((-355 |#2|) |has| |#1| (-341)) ((-378 |#2|) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-486 (-1092) |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-486 (-1092) |#2|))) ((-486 |#2| |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-288 |#2|))) ((-517) -2067 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 |#2|) |has| |#1| (-341)) ((-594 $) . T) ((-588 (-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-588 (-525)))) ((-588 |#2|) |has| |#1| (-341)) ((-660 #1#) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 |#2|) |has| |#1| (-341)) ((-660 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-733) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-734) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-736) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-737) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-762) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-787) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-789) -2067 (-12 (|has| |#1| (-341)) (|has| |#2| (-789))) (-12 (|has| |#1| (-341)) (|has| |#2| (-762)))) ((-835 (-1092)) -2067 (-12 (|has| |#1| (-341)) (|has| |#2| (-835 (-1092)))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))) ((-821 (-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-821 (-357)))) ((-821 (-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-821 (-525)))) ((-819 |#2|) |has| |#1| (-341)) ((-844) -12 (|has| |#1| (-341)) (|has| |#2| (-844))) ((-906 |#1| #0# (-1005)) . T) ((-855) |has| |#1| (-341)) ((-925 |#2|) |has| |#1| (-341)) ((-934) |has| |#1| (-37 (-385 (-525)))) ((-953) -12 (|has| |#1| (-341)) (|has| |#2| (-953))) ((-968 (-385 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-968 (-525)))) ((-968 (-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-968 (-525)))) ((-968 (-1092)) -12 (|has| |#1| (-341)) (|has| |#2| (-968 (-1092)))) ((-968 |#2|) . T) ((-983 #1#) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-983 |#1|) . T) ((-983 |#2|) |has| |#1| (-341)) ((-983 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1068) -12 (|has| |#1| (-341)) (|has| |#2| (-1068))) ((-1114) |has| |#1| (-37 (-385 (-525)))) ((-1117) |has| |#1| (-37 (-385 (-525)))) ((-1128) |has| |#1| (-341)) ((-1132) |has| |#1| (-341)) ((-1134 |#1|) . T) ((-1152 |#1| #0#) . T))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 70)) (-1653 ((|#2| $) NIL (-12 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-1296 (((-592 (-1005)) $) NIL)) (-3469 (((-1092) $) 88)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-2730 (($ $ (-525)) 97) (($ $ (-525) (-525)) 99)) (-2005 (((-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 47)) (-3494 ((|#2| $) 11)) (-2326 (((-3 |#2| "failed") $) 30)) (-1350 ((|#2| $) 31)) (-1803 (($ $) 192 (|has| |#1| (-37 (-385 (-525)))))) (-3659 (($ $) 168 (|has| |#1| (-37 (-385 (-525)))))) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-4195 (($ $) NIL (|has| |#1| (-341)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-341)))) (-4211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-1507 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1781 (($ $) 188 (|has| |#1| (-37 (-385 (-525)))))) (-3638 (($ $) 164 (|has| |#1| (-37 (-385 (-525)))))) (-2971 (((-525) $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-2996 (($ (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 57)) (-1828 (($ $) 196 (|has| |#1| (-37 (-385 (-525)))))) (-3698 (($ $) 172 (|has| |#1| (-37 (-385 (-525)))))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#2| "failed") $) 144) (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-3 (-1092) "failed") $) NIL (-12 (|has| |#2| (-968 (-1092))) (|has| |#1| (-341))))) (-4105 ((|#2| $) 143) (((-525) $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-1092) $) NIL (-12 (|has| |#2| (-968 (-1092))) (|has| |#1| (-341))))) (-1498 (($ $) 61) (($ (-525) $) 24)) (-1356 (($ $ $) NIL (|has| |#1| (-341)))) (-1451 (($ $) NIL)) (-3090 (((-632 |#2|) (-632 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#1| (-341))))) (-3300 (((-3 $ "failed") $) 77)) (-4181 (((-385 (-887 |#1|)) $ (-525)) 112 (|has| |#1| (-517))) (((-385 (-887 |#1|)) $ (-525) (-525)) 114 (|has| |#1| (-517)))) (-1903 (($) NIL (-12 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-1332 (($ $ $) NIL (|has| |#1| (-341)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-1798 (((-108) $) NIL (|has| |#1| (-341)))) (-1889 (((-108) $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-2853 (((-108) $) 64)) (-4106 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| |#2| (-821 (-357))) (|has| |#1| (-341)))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| |#2| (-821 (-525))) (|has| |#1| (-341))))) (-4000 (((-525) $) 93) (((-525) $ (-525)) 95)) (-2278 (((-108) $) NIL)) (-2999 (($ $) NIL (|has| |#1| (-341)))) (-4066 ((|#2| $) 151 (|has| |#1| (-341)))) (-1303 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2878 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1068)) (|has| |#1| (-341))))) (-4079 (((-108) $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-1585 (($ $ (-856)) 136)) (-2598 (($ (-1 |#1| (-525)) $) 132)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-525)) 19) (($ $ (-1005) (-525)) NIL) (($ $ (-592 (-1005)) (-592 (-525))) NIL)) (-3033 (($ $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-1609 (($ $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-2016 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-341)))) (-2533 (($ $) 162 (|has| |#1| (-37 (-385 (-525)))))) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1361 (($ (-525) |#2|) 10)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) 145 (|has| |#1| (-341)))) (-2367 (($ $) 214 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) 219 (-2067 (-12 (|has| |#1| (-15 -2367 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -1296 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114)))))) (-2948 (($) NIL (-12 (|has| |#2| (-1068)) (|has| |#1| (-341))) CONST)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1372 (($ $) NIL (-12 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-1340 ((|#2| $) NIL (-12 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-4201 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-1397 (($ $ (-525)) 126)) (-1311 (((-3 $ "failed") $ $) 116 (|has| |#1| (-517)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1618 (($ $) 160 (|has| |#1| (-37 (-385 (-525)))))) (-2825 (((-1073 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1092) |#2|) NIL (-12 (|has| |#2| (-486 (-1092) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-1092)) (-592 |#2|)) NIL (-12 (|has| |#2| (-486 (-1092) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341))))) (-1927 (((-713) $) NIL (|has| |#1| (-341)))) (-3431 ((|#1| $ (-525)) 91) (($ $ $) 79 (|has| (-525) (-1032))) (($ $ |#2|) NIL (-12 (|has| |#2| (-265 |#2| |#2|)) (|has| |#1| (-341))))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-341)))) (-2702 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-2067 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 137 (-2067 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-2067 (-12 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092) (-713)) NIL (-2067 (-12 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-592 (-1092))) NIL (-2067 (-12 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092)) 140 (-2067 (-12 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))))) (-2874 (($ $) NIL (|has| |#1| (-341)))) (-4080 ((|#2| $) 152 (|has| |#1| (-341)))) (-3529 (((-525) $) 12)) (-1841 (($ $) 198 (|has| |#1| (-37 (-385 (-525)))))) (-3798 (($ $) 174 (|has| |#1| (-37 (-385 (-525)))))) (-1816 (($ $) 194 (|has| |#1| (-37 (-385 (-525)))))) (-3678 (($ $) 170 (|has| |#1| (-37 (-385 (-525)))))) (-1792 (($ $) 190 (|has| |#1| (-37 (-385 (-525)))))) (-3649 (($ $) 166 (|has| |#1| (-37 (-385 (-525)))))) (-2069 (((-205) $) NIL (-12 (|has| |#2| (-953)) (|has| |#1| (-341)))) (((-357) $) NIL (-12 (|has| |#2| (-953)) (|has| |#1| (-341)))) (((-501) $) NIL (-12 (|has| |#2| (-567 (-501))) (|has| |#1| (-341)))) (((-827 (-357)) $) NIL (-12 (|has| |#2| (-567 (-827 (-357)))) (|has| |#1| (-341)))) (((-827 (-525)) $) NIL (-12 (|has| |#2| (-567 (-827 (-525)))) (|has| |#1| (-341))))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844)) (|has| |#1| (-341))))) (-3926 (($ $) 124)) (-4100 (((-798) $) 245) (($ (-525)) 23) (($ |#1|) 21 (|has| |#1| (-160))) (($ |#2|) 20) (($ (-1092)) NIL (-12 (|has| |#2| (-968 (-1092))) (|has| |#1| (-341)))) (($ (-385 (-525))) 155 (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-3136 ((|#1| $ (-525)) 74)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| |#2| (-844)) (|has| |#1| (-341))) (-12 (|has| |#2| (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-2448 (((-713)) 142)) (-1423 ((|#1| $) 90)) (-3064 ((|#2| $) NIL (-12 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-1876 (($ $) 204 (|has| |#1| (-37 (-385 (-525)))))) (-3853 (($ $) 180 (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1853 (($ $) 200 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 176 (|has| |#1| (-37 (-385 (-525)))))) (-1902 (($ $) 208 (|has| |#1| (-37 (-385 (-525)))))) (-1760 (($ $) 184 (|has| |#1| (-37 (-385 (-525)))))) (-1485 ((|#1| $ (-525)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -4100 (|#1| (-1092))))))) (-3135 (($ $) 210 (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) 186 (|has| |#1| (-37 (-385 (-525)))))) (-1891 (($ $) 206 (|has| |#1| (-37 (-385 (-525)))))) (-1748 (($ $) 182 (|has| |#1| (-37 (-385 (-525)))))) (-1866 (($ $) 202 (|has| |#1| (-37 (-385 (-525)))))) (-3820 (($ $) 178 (|has| |#1| (-37 (-385 (-525)))))) (-2380 (($ $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3364 (($) 13 T CONST)) (-3375 (($) 17 T CONST)) (-2401 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-2067 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) NIL (-2067 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-2067 (-12 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092) (-713)) NIL (-2067 (-12 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-592 (-1092))) NIL (-2067 (-12 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092)) NIL (-2067 (-12 (|has| |#2| (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))))) (-2830 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-2807 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-2775 (((-108) $ $) 63)) (-2817 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-2795 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 149 (|has| |#1| (-341))) (($ |#2| |#2|) 150 (|has| |#1| (-341)))) (-2871 (($ $) 213) (($ $ $) 68)) (-2860 (($ $ $) 66)) (** (($ $ (-856)) NIL) (($ $ (-713)) 73) (($ $ (-525)) 146 (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-341))) (($ |#2| $) 147 (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
(((-1137 |#1| |#2|) (-1136 |#1| |#2|) (-977) (-1165 |#1|)) (T -1137))
NIL
(-1136 |#1| |#2|)
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1548 (((-1166 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-2897 (((-592 (-1005)) $) NIL)) (-2499 (((-1092) $) 10)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-4218 (($ $) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3171 (((-108) $) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3828 (($ $ (-525)) NIL) (($ $ (-525) (-525)) NIL)) (-2755 (((-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) NIL)) (-3784 (((-1166 |#1| |#2| |#3|) $) NIL)) (-4209 (((-3 (-1166 |#1| |#2| |#3|) "failed") $) NIL)) (-2950 (((-1166 |#1| |#2| |#3|) $) NIL)) (-1575 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2804 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-1286 (($ $) NIL (|has| |#1| (-341)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2782 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-2193 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1549 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2780 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3855 (((-525) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-2598 (($ (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) NIL)) (-1599 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-1166 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1092) "failed") $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-968 (-1092))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341)))) (((-3 (-525) "failed") $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341))))) (-1572 (((-1166 |#1| |#2| |#3|) $) NIL) (((-1092) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-968 (-1092))) (|has| |#1| (-341)))) (((-385 (-525)) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341)))) (((-525) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341))))) (-3318 (($ $) NIL) (($ (-525) $) NIL)) (-1747 (($ $ $) NIL (|has| |#1| (-341)))) (-3063 (($ $) NIL)) (-1994 (((-632 (-1166 |#1| |#2| |#3|)) (-632 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -3407 (-632 (-1166 |#1| |#2| |#3|))) (|:| |vec| (-1174 (-1166 |#1| |#2| |#3|)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341))))) (-3457 (((-3 $ "failed") $) NIL)) (-2925 (((-385 (-887 |#1|)) $ (-525)) NIL (|has| |#1| (-517))) (((-385 (-887 |#1|)) $ (-525) (-525)) NIL (|has| |#1| (-517)))) (-2502 (($) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-1733 (($ $ $) NIL (|has| |#1| (-341)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3673 (((-108) $) NIL (|has| |#1| (-341)))) (-1222 (((-108) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-2398 (((-108) $) NIL)) (-3140 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2989 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-821 (-525))) (|has| |#1| (-341)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-821 (-357))) (|has| |#1| (-341))))) (-2581 (((-525) $) NIL) (((-525) $ (-525)) NIL)) (-1396 (((-108) $) NIL)) (-3858 (($ $) NIL (|has| |#1| (-341)))) (-3114 (((-1166 |#1| |#2| |#3|) $) NIL (|has| |#1| (-341)))) (-2171 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3844 (((-3 $ "failed") $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1068)) (|has| |#1| (-341))))) (-3256 (((-108) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-3326 (($ $ (-856)) NIL)) (-2066 (($ (-1 |#1| (-525)) $) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-525)) 17) (($ $ (-1005) (-525)) NIL) (($ $ (-592 (-1005)) (-592 (-525))) NIL)) (-2638 (($ $ $) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3662 (($ $ $) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-341)))) (-1517 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2962 (($ (-525) (-1166 |#1| |#2| |#3|)) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL (|has| |#1| (-341)))) (-1206 (($ $) 25 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) NIL (-3254 (-12 (|has| |#1| (-15 -1206 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -2897 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114))))) (($ $ (-1170 |#2|)) 26 (|has| |#1| (-37 (-385 (-525)))))) (-2295 (($) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1068)) (|has| |#1| (-341))) CONST)) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3628 (($ $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-2487 (((-1166 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-2770 (((-396 $) $) NIL (|has| |#1| (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-3931 (($ $ (-525)) NIL)) (-1715 (((-3 $ "failed") $ $) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-3096 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2457 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1092) (-1166 |#1| |#2| |#3|)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-486 (-1092) (-1166 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1092)) (-592 (-1166 |#1| |#2| |#3|))) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-486 (-1092) (-1166 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-273 (-1166 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-288 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-273 (-1166 |#1| |#2| |#3|))) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-288 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-288 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1166 |#1| |#2| |#3|)) (-592 (-1166 |#1| |#2| |#3|))) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-288 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-3684 (((-713) $) NIL (|has| |#1| (-341)))) (-3406 ((|#1| $ (-525)) NIL) (($ $ $) NIL (|has| (-525) (-1032))) (($ $ (-1166 |#1| |#2| |#3|)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-265 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-341)))) (-3376 (($ $ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1170 |#2|)) 24) (($ $ (-713)) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 23 (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092) (-713)) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-592 (-1092))) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092)) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))))) (-4143 (($ $) NIL (|has| |#1| (-341)))) (-3123 (((-1166 |#1| |#2| |#3|) $) NIL (|has| |#1| (-341)))) (-2343 (((-525) $) NIL)) (-1609 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1447 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1587 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1562 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2794 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3210 (((-501) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-567 (-501))) (|has| |#1| (-341)))) (((-357) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-953)) (|has| |#1| (-341)))) (((-205) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-953)) (|has| |#1| (-341)))) (((-827 (-357)) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-567 (-827 (-357)))) (|has| |#1| (-341)))) (((-827 (-525)) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-567 (-827 (-525)))) (|has| |#1| (-341))))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-1489 (($ $) NIL)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1166 |#1| |#2| |#3|)) NIL) (($ (-1170 |#2|)) 22) (($ (-1092)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-968 (-1092))) (|has| |#1| (-341)))) (($ $) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517)))) (($ (-385 (-525))) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341))) (|has| |#1| (-37 (-385 (-525))))))) (-1568 ((|#1| $ (-525)) NIL)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-3917 (((-713)) NIL)) (-1340 ((|#1| $) 11)) (-3074 (((-1166 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-1649 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-1630 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1669 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1522 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1454 ((|#1| $ (-525)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -1217 (|#1| (-1092))))))) (-2359 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1537 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1659 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1506 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1639 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1479 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2802 (($ $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3349 (($) 19 T CONST)) (-3359 (($) 15 T CONST)) (-2022 (($ $ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092) (-713)) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-592 (-1092))) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092)) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))))) (-4011 (((-108) $ $) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3987 (((-108) $ $) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3978 (((-108) $ $) NIL (-3254 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341))) (($ (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) NIL (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) 20)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1166 |#1| |#2| |#3|)) NIL (|has| |#1| (-341))) (($ (-1166 |#1| |#2| |#3|) $) NIL (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-1138 |#1| |#2| |#3|) (-13 (-1136 |#1| (-1166 |#1| |#2| |#3|)) (-10 -8 (-15 -1217 ($ (-1170 |#2|))) (-15 -3376 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1206 ($ $ (-1170 |#2|))) |%noBranch|))) (-977) (-1092) |#1|) (T -1138))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-1206 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
-(-13 (-1136 |#1| (-1166 |#1| |#2| |#3|)) (-10 -8 (-15 -1217 ($ (-1170 |#2|))) (-15 -3376 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1206 ($ $ (-1170 |#2|))) |%noBranch|)))
-((-3405 (((-2 (|:| |contp| (-525)) (|:| -3843 (-592 (-2 (|:| |irr| |#1|) (|:| -1616 (-525)))))) |#1| (-108)) 12)) (-2635 (((-396 |#1|) |#1|) 22)) (-2770 (((-396 |#1|) |#1|) 21)))
-(((-1139 |#1|) (-10 -7 (-15 -2770 ((-396 |#1|) |#1|)) (-15 -2635 ((-396 |#1|) |#1|)) (-15 -3405 ((-2 (|:| |contp| (-525)) (|:| -3843 (-592 (-2 (|:| |irr| |#1|) (|:| -1616 (-525)))))) |#1| (-108)))) (-1150 (-525))) (T -1139))
-((-3405 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-525)) (|:| -3843 (-592 (-2 (|:| |irr| *3) (|:| -1616 (-525))))))) (-5 *1 (-1139 *3)) (-4 *3 (-1150 (-525))))) (-2635 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-1139 *3)) (-4 *3 (-1150 (-525))))) (-2770 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-1139 *3)) (-4 *3 (-1150 (-525))))))
-(-10 -7 (-15 -2770 ((-396 |#1|) |#1|)) (-15 -2635 ((-396 |#1|) |#1|)) (-15 -3405 ((-2 (|:| |contp| (-525)) (|:| -3843 (-592 (-2 (|:| |irr| |#1|) (|:| -1616 (-525)))))) |#1| (-108))))
-((-3165 (((-1073 |#2|) (-1 |#2| |#1|) (-1141 |#1|)) 23 (|has| |#1| (-787))) (((-1141 |#2|) (-1 |#2| |#1|) (-1141 |#1|)) 17)))
-(((-1140 |#1| |#2|) (-10 -7 (-15 -3165 ((-1141 |#2|) (-1 |#2| |#1|) (-1141 |#1|))) (IF (|has| |#1| (-787)) (-15 -3165 ((-1073 |#2|) (-1 |#2| |#1|) (-1141 |#1|))) |%noBranch|)) (-1128) (-1128)) (T -1140))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5)) (-4 *5 (-787)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1073 *6)) (-5 *1 (-1140 *5 *6)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1141 *6)) (-5 *1 (-1140 *5 *6)))))
-(-10 -7 (-15 -3165 ((-1141 |#2|) (-1 |#2| |#1|) (-1141 |#1|))) (IF (|has| |#1| (-787)) (-15 -3165 ((-1073 |#2|) (-1 |#2| |#1|) (-1141 |#1|))) |%noBranch|))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3467 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3165 (((-1073 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-787)))) (-2235 ((|#1| $) 14)) (-3564 ((|#1| $) 10)) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3575 (((-525) $) 18)) (-1519 ((|#1| $) 17)) (-3586 ((|#1| $) 11)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-3938 (((-108) $) 16)) (-3751 (((-1073 |#1|) $) 38 (|has| |#1| (-787))) (((-1073 |#1|) (-592 $)) 37 (|has| |#1| (-787)))) (-3210 (($ |#1|) 25)) (-1217 (($ (-1015 |#1|)) 24) (((-798) $) 34 (|has| |#1| (-1020)))) (-3195 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3752 (($ $ (-525)) 13)) (-3955 (((-108) $ $) 27 (|has| |#1| (-1020)))))
-(((-1141 |#1|) (-13 (-1014 |#1|) (-10 -8 (-15 -3195 ($ |#1|)) (-15 -3467 ($ |#1|)) (-15 -1217 ($ (-1015 |#1|))) (-15 -3938 ((-108) $)) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-1016 |#1| (-1073 |#1|))) |%noBranch|))) (-1128)) (T -1141))
-((-3195 (*1 *1 *2) (-12 (-5 *1 (-1141 *2)) (-4 *2 (-1128)))) (-3467 (*1 *1 *2) (-12 (-5 *1 (-1141 *2)) (-4 *2 (-1128)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-1015 *3)) (-4 *3 (-1128)) (-5 *1 (-1141 *3)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1141 *3)) (-4 *3 (-1128)))))
-(-13 (-1014 |#1|) (-10 -8 (-15 -3195 ($ |#1|)) (-15 -3467 ($ |#1|)) (-15 -1217 ($ (-1015 |#1|))) (-15 -3938 ((-108) $)) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-1016 |#1| (-1073 |#1|))) |%noBranch|)))
-((-3165 (((-1147 |#3| |#4|) (-1 |#4| |#2|) (-1147 |#1| |#2|)) 15)))
-(((-1142 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3165 ((-1147 |#3| |#4|) (-1 |#4| |#2|) (-1147 |#1| |#2|)))) (-1092) (-977) (-1092) (-977)) (T -1142))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1147 *5 *6)) (-14 *5 (-1092)) (-4 *6 (-977)) (-4 *8 (-977)) (-5 *2 (-1147 *7 *8)) (-5 *1 (-1142 *5 *6 *7 *8)) (-14 *7 (-1092)))))
-(-10 -7 (-15 -3165 ((-1147 |#3| |#4|) (-1 |#4| |#2|) (-1147 |#1| |#2|))))
-((-3711 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3815 ((|#1| |#3|) 13)) (-3607 ((|#3| |#3|) 19)))
-(((-1143 |#1| |#2| |#3|) (-10 -7 (-15 -3815 (|#1| |#3|)) (-15 -3607 (|#3| |#3|)) (-15 -3711 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-517) (-925 |#1|) (-1150 |#2|)) (T -1143))
-((-3711 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-925 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1143 *4 *5 *3)) (-4 *3 (-1150 *5)))) (-3607 (*1 *2 *2) (-12 (-4 *3 (-517)) (-4 *4 (-925 *3)) (-5 *1 (-1143 *3 *4 *2)) (-4 *2 (-1150 *4)))) (-3815 (*1 *2 *3) (-12 (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-1143 *2 *4 *3)) (-4 *3 (-1150 *4)))))
-(-10 -7 (-15 -3815 (|#1| |#3|)) (-15 -3607 (|#3| |#3|)) (-15 -3711 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2831 (((-3 |#2| "failed") |#2| (-713) |#1|) 29)) (-3054 (((-3 |#2| "failed") |#2| (-713)) 30)) (-3170 (((-3 (-2 (|:| -3507 |#2|) (|:| -3519 |#2|)) "failed") |#2|) 43)) (-3849 (((-592 |#2|) |#2|) 45)) (-3764 (((-3 |#2| "failed") |#2| |#2|) 40)))
-(((-1144 |#1| |#2|) (-10 -7 (-15 -3054 ((-3 |#2| "failed") |#2| (-713))) (-15 -2831 ((-3 |#2| "failed") |#2| (-713) |#1|)) (-15 -3764 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3170 ((-3 (-2 (|:| -3507 |#2|) (|:| -3519 |#2|)) "failed") |#2|)) (-15 -3849 ((-592 |#2|) |#2|))) (-13 (-517) (-138)) (-1150 |#1|)) (T -1144))
-((-3849 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-138))) (-5 *2 (-592 *3)) (-5 *1 (-1144 *4 *3)) (-4 *3 (-1150 *4)))) (-3170 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-517) (-138))) (-5 *2 (-2 (|:| -3507 *3) (|:| -3519 *3))) (-5 *1 (-1144 *4 *3)) (-4 *3 (-1150 *4)))) (-3764 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1144 *3 *2)) (-4 *2 (-1150 *3)))) (-2831 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-1144 *4 *2)) (-4 *2 (-1150 *4)))) (-3054 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-1144 *4 *2)) (-4 *2 (-1150 *4)))))
-(-10 -7 (-15 -3054 ((-3 |#2| "failed") |#2| (-713))) (-15 -2831 ((-3 |#2| "failed") |#2| (-713) |#1|)) (-15 -3764 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3170 ((-3 (-2 (|:| -3507 |#2|) (|:| -3519 |#2|)) "failed") |#2|)) (-15 -3849 ((-592 |#2|) |#2|)))
-((-3574 (((-3 (-2 (|:| -2829 |#2|) (|:| -1607 |#2|)) "failed") |#2| |#2|) 32)))
-(((-1145 |#1| |#2|) (-10 -7 (-15 -3574 ((-3 (-2 (|:| -2829 |#2|) (|:| -1607 |#2|)) "failed") |#2| |#2|))) (-517) (-1150 |#1|)) (T -1145))
-((-3574 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1607 *3))) (-5 *1 (-1145 *4 *3)) (-4 *3 (-1150 *4)))))
-(-10 -7 (-15 -3574 ((-3 (-2 (|:| -2829 |#2|) (|:| -1607 |#2|)) "failed") |#2| |#2|)))
-((-2051 ((|#2| |#2| |#2|) 19)) (-2521 ((|#2| |#2| |#2|) 30)) (-2184 ((|#2| |#2| |#2| (-713) (-713)) 36)))
-(((-1146 |#1| |#2|) (-10 -7 (-15 -2051 (|#2| |#2| |#2|)) (-15 -2521 (|#2| |#2| |#2|)) (-15 -2184 (|#2| |#2| |#2| (-713) (-713)))) (-977) (-1150 |#1|)) (T -1146))
-((-2184 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-713)) (-4 *4 (-977)) (-5 *1 (-1146 *4 *2)) (-4 *2 (-1150 *4)))) (-2521 (*1 *2 *2 *2) (-12 (-4 *3 (-977)) (-5 *1 (-1146 *3 *2)) (-4 *2 (-1150 *3)))) (-2051 (*1 *2 *2 *2) (-12 (-4 *3 (-977)) (-5 *1 (-1146 *3 *2)) (-4 *2 (-1150 *3)))))
-(-10 -7 (-15 -2051 (|#2| |#2| |#2|)) (-15 -2521 (|#2| |#2| |#2|)) (-15 -2184 (|#2| |#2| |#2| (-713) (-713))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2315 (((-1174 |#2|) $ (-713)) NIL)) (-2897 (((-592 (-1005)) $) NIL)) (-1801 (($ (-1088 |#2|)) NIL)) (-2744 (((-1088 $) $ (-1005)) NIL) (((-1088 |#2|) $) NIL)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-4218 (($ $) NIL (|has| |#2| (-517)))) (-3171 (((-108) $) NIL (|has| |#2| (-517)))) (-3212 (((-713) $) NIL) (((-713) $ (-592 (-1005))) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-4001 (($ $ $) NIL (|has| |#2| (-517)))) (-1448 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-1286 (($ $) NIL (|has| |#2| (-429)))) (-2669 (((-396 $) $) NIL (|has| |#2| (-429)))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-2193 (((-108) $ $) NIL (|has| |#2| (-341)))) (-2980 (($ $ (-713)) NIL)) (-3682 (($ $ (-713)) NIL)) (-2181 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-429)))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-1005) "failed") $) NIL)) (-1572 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-1005) $) NIL)) (-3377 (($ $ $ (-1005)) NIL (|has| |#2| (-160))) ((|#2| $ $) NIL (|has| |#2| (-160)))) (-1747 (($ $ $) NIL (|has| |#2| (-341)))) (-3063 (($ $) NIL)) (-1994 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-1733 (($ $ $) NIL (|has| |#2| (-341)))) (-3585 (($ $ $) NIL)) (-2814 (($ $ $) NIL (|has| |#2| (-517)))) (-3696 (((-2 (|:| -3244 |#2|) (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#2| (-517)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| |#2| (-341)))) (-1576 (($ $) NIL (|has| |#2| (-429))) (($ $ (-1005)) NIL (|has| |#2| (-429)))) (-3052 (((-592 $) $) NIL)) (-3673 (((-108) $) NIL (|has| |#2| (-844)))) (-2188 (($ $ |#2| (-713) $) NIL)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1005) (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1005) (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-2581 (((-713) $ $) NIL (|has| |#2| (-517)))) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) NIL)) (-3844 (((-3 $ "failed") $) NIL (|has| |#2| (-1068)))) (-2887 (($ (-1088 |#2|) (-1005)) NIL) (($ (-1088 $) (-1005)) NIL)) (-3326 (($ $ (-713)) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-4144 (((-592 $) $) NIL)) (-1212 (((-108) $) NIL)) (-2876 (($ |#2| (-713)) 17) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ (-1005)) NIL) (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL)) (-2870 (((-713) $) NIL) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-2638 (($ $ $) NIL (|has| |#2| (-789)))) (-3662 (($ $ $) NIL (|has| |#2| (-789)))) (-2172 (($ (-1 (-713) (-713)) $) NIL)) (-3165 (($ (-1 |#2| |#2|) $) NIL)) (-1332 (((-1088 |#2|) $) NIL)) (-2431 (((-3 (-1005) "failed") $) NIL)) (-3031 (($ $) NIL)) (-3043 ((|#2| $) NIL)) (-2556 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2619 (((-1075) $) NIL)) (-3203 (((-2 (|:| -2829 $) (|:| -1607 $)) $ (-713)) NIL)) (-1334 (((-3 (-592 $) "failed") $) NIL)) (-2001 (((-3 (-592 $) "failed") $) NIL)) (-2121 (((-3 (-2 (|:| |var| (-1005)) (|:| -4193 (-713))) "failed") $) NIL)) (-1206 (($ $) NIL (|has| |#2| (-37 (-385 (-525)))))) (-2295 (($) NIL (|has| |#2| (-1068)) CONST)) (-2093 (((-1039) $) NIL)) (-3007 (((-108) $) NIL)) (-3019 ((|#2| $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#2| (-429)))) (-2589 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3493 (($ $ (-713) |#2| $) NIL)) (-3076 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-2770 (((-396 $) $) NIL (|has| |#2| (-844)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#2| (-341)))) (-1715 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-2457 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1005) |#2|) NIL) (($ $ (-592 (-1005)) (-592 |#2|)) NIL) (($ $ (-1005) $) NIL) (($ $ (-592 (-1005)) (-592 $)) NIL)) (-3684 (((-713) $) NIL (|has| |#2| (-341)))) (-3406 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#2| (-517))) ((|#2| (-385 $) |#2|) NIL (|has| |#2| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#2| (-517)))) (-2173 (((-3 $ "failed") $ (-713)) NIL)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#2| (-341)))) (-1975 (($ $ (-1005)) NIL (|has| |#2| (-160))) ((|#2| $) NIL (|has| |#2| (-160)))) (-3376 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2343 (((-713) $) NIL) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-3210 (((-827 (-357)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-1005) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-3658 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-1005)) NIL (|has| |#2| (-429)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844))))) (-1561 (((-3 $ "failed") $ $) NIL (|has| |#2| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#2| (-517)))) (-1217 (((-798) $) 13) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-1005)) NIL) (($ (-1170 |#1|)) 19) (($ (-385 (-525))) NIL (-3254 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-1684 (((-592 |#2|) $) NIL)) (-1568 ((|#2| $ (-713)) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-3637 (((-3 $ "failed") $) NIL (-3254 (-12 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#2| (-136))))) (-3917 (((-713)) NIL)) (-3716 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-3325 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-3359 (($) 14 T CONST)) (-2022 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4011 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3955 (((-108) $ $) NIL)) (-3999 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4075 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1147 |#1| |#2|) (-13 (-1150 |#2|) (-10 -8 (-15 -1217 ($ (-1170 |#1|))) (-15 -3493 ($ $ (-713) |#2| $)))) (-1092) (-977)) (T -1147))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-14 *3 (-1092)) (-5 *1 (-1147 *3 *4)) (-4 *4 (-977)))) (-3493 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1147 *4 *3)) (-14 *4 (-1092)) (-4 *3 (-977)))))
-(-13 (-1150 |#2|) (-10 -8 (-15 -1217 ($ (-1170 |#1|))) (-15 -3493 ($ $ (-713) |#2| $))))
-((-3165 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1148 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3165 (|#4| (-1 |#3| |#1|) |#2|))) (-977) (-1150 |#1|) (-977) (-1150 |#3|)) (T -1148))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-4 *2 (-1150 *6)) (-5 *1 (-1148 *5 *4 *6 *2)) (-4 *4 (-1150 *5)))))
-(-10 -7 (-15 -3165 (|#4| (-1 |#3| |#1|) |#2|)))
-((-2315 (((-1174 |#2|) $ (-713)) 114)) (-2897 (((-592 (-1005)) $) 15)) (-1801 (($ (-1088 |#2|)) 67)) (-3212 (((-713) $) NIL) (((-713) $ (-592 (-1005))) 18)) (-1448 (((-396 (-1088 $)) (-1088 $)) 185)) (-1286 (($ $) 175)) (-2669 (((-396 $) $) 173)) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 82)) (-2980 (($ $ (-713)) 71)) (-3682 (($ $ (-713)) 73)) (-2181 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3077 (((-3 |#2| "failed") $) 117) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 (-1005) "failed") $) NIL)) (-1572 ((|#2| $) 115) (((-385 (-525)) $) NIL) (((-525) $) NIL) (((-1005) $) NIL)) (-2814 (($ $ $) 151)) (-3696 (((-2 (|:| -3244 |#2|) (|:| -2829 $) (|:| -1607 $)) $ $) 153)) (-2581 (((-713) $ $) 170)) (-3844 (((-3 $ "failed") $) 123)) (-2876 (($ |#2| (-713)) NIL) (($ $ (-1005) (-713)) 47) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-2870 (((-713) $) NIL) (((-713) $ (-1005)) 42) (((-592 (-713)) $ (-592 (-1005))) 43)) (-1332 (((-1088 |#2|) $) 59)) (-2431 (((-3 (-1005) "failed") $) 40)) (-3203 (((-2 (|:| -2829 $) (|:| -1607 $)) $ (-713)) 70)) (-1206 (($ $) 197)) (-2295 (($) 119)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 182)) (-3076 (((-396 (-1088 $)) (-1088 $)) 88)) (-4099 (((-396 (-1088 $)) (-1088 $)) 86)) (-2770 (((-396 $) $) 107)) (-2457 (($ $ (-592 (-273 $))) 39) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1005) |#2|) 31) (($ $ (-592 (-1005)) (-592 |#2|)) 28) (($ $ (-1005) $) 25) (($ $ (-592 (-1005)) (-592 $)) 23)) (-3684 (((-713) $) 188)) (-3406 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) 147) ((|#2| (-385 $) |#2|) 187) (((-385 $) $ (-385 $)) 169)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 191)) (-3376 (($ $ (-1005)) 140) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) 138) (($ $ (-1092)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-2343 (((-713) $) NIL) (((-713) $ (-1005)) 16) (((-592 (-713)) $ (-592 (-1005))) 20)) (-3658 ((|#2| $) NIL) (($ $ (-1005)) 125)) (-1561 (((-3 $ "failed") $ $) 161) (((-3 (-385 $) "failed") (-385 $) $) 157)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-1005)) 51) (($ (-385 (-525))) NIL) (($ $) NIL)))
-(((-1149 |#1| |#2|) (-10 -8 (-15 -1217 (|#1| |#1|)) (-15 -1883 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|))) (-15 -2669 ((-396 |#1|) |#1|)) (-15 -1286 (|#1| |#1|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -2295 (|#1|)) (-15 -3844 ((-3 |#1| "failed") |#1|)) (-15 -3406 ((-385 |#1|) |#1| (-385 |#1|))) (-15 -3684 ((-713) |#1|)) (-15 -2818 ((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|)) (-15 -1206 (|#1| |#1|)) (-15 -3406 (|#2| (-385 |#1|) |#2|)) (-15 -2181 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3696 ((-2 (|:| -3244 |#2|) (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|)) (-15 -2814 (|#1| |#1| |#1|)) (-15 -1561 ((-3 (-385 |#1|) "failed") (-385 |#1|) |#1|)) (-15 -1561 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2581 ((-713) |#1| |#1|)) (-15 -3406 ((-385 |#1|) (-385 |#1|) (-385 |#1|))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3682 (|#1| |#1| (-713))) (-15 -2980 (|#1| |#1| (-713))) (-15 -3203 ((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| (-713))) (-15 -1801 (|#1| (-1088 |#2|))) (-15 -1332 ((-1088 |#2|) |#1|)) (-15 -2315 ((-1174 |#2|) |#1| (-713))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1|)) (-15 -3376 (|#1| |#1| (-713))) (-15 -3406 (|#1| |#1| |#1|)) (-15 -3406 (|#2| |#1| |#2|)) (-15 -2770 ((-396 |#1|) |#1|)) (-15 -1448 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -4099 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3076 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -2969 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|))) (-15 -3658 (|#1| |#1| (-1005))) (-15 -2897 ((-592 (-1005)) |#1|)) (-15 -3212 ((-713) |#1| (-592 (-1005)))) (-15 -3212 ((-713) |#1|)) (-15 -2876 (|#1| |#1| (-592 (-1005)) (-592 (-713)))) (-15 -2876 (|#1| |#1| (-1005) (-713))) (-15 -2870 ((-592 (-713)) |#1| (-592 (-1005)))) (-15 -2870 ((-713) |#1| (-1005))) (-15 -2431 ((-3 (-1005) "failed") |#1|)) (-15 -2343 ((-592 (-713)) |#1| (-592 (-1005)))) (-15 -2343 ((-713) |#1| (-1005))) (-15 -1572 ((-1005) |#1|)) (-15 -3077 ((-3 (-1005) "failed") |#1|)) (-15 -1217 (|#1| (-1005))) (-15 -2457 (|#1| |#1| (-592 (-1005)) (-592 |#1|))) (-15 -2457 (|#1| |#1| (-1005) |#1|)) (-15 -2457 (|#1| |#1| (-592 (-1005)) (-592 |#2|))) (-15 -2457 (|#1| |#1| (-1005) |#2|)) (-15 -2457 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2457 (|#1| |#1| |#1| |#1|)) (-15 -2457 (|#1| |#1| (-273 |#1|))) (-15 -2457 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2343 ((-713) |#1|)) (-15 -2876 (|#1| |#2| (-713))) (-15 -1572 ((-525) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1217 (|#1| |#2|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -2870 ((-713) |#1|)) (-15 -3658 (|#2| |#1|)) (-15 -3376 (|#1| |#1| (-592 (-1005)) (-592 (-713)))) (-15 -3376 (|#1| |#1| (-1005) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1005)))) (-15 -3376 (|#1| |#1| (-1005))) (-15 -1217 (|#1| (-525))) (-15 -1217 ((-798) |#1|))) (-1150 |#2|) (-977)) (T -1149))
-NIL
-(-10 -8 (-15 -1217 (|#1| |#1|)) (-15 -1883 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|))) (-15 -2669 ((-396 |#1|) |#1|)) (-15 -1286 (|#1| |#1|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -2295 (|#1|)) (-15 -3844 ((-3 |#1| "failed") |#1|)) (-15 -3406 ((-385 |#1|) |#1| (-385 |#1|))) (-15 -3684 ((-713) |#1|)) (-15 -2818 ((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|)) (-15 -1206 (|#1| |#1|)) (-15 -3406 (|#2| (-385 |#1|) |#2|)) (-15 -2181 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3696 ((-2 (|:| -3244 |#2|) (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| |#1|)) (-15 -2814 (|#1| |#1| |#1|)) (-15 -1561 ((-3 (-385 |#1|) "failed") (-385 |#1|) |#1|)) (-15 -1561 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2581 ((-713) |#1| |#1|)) (-15 -3406 ((-385 |#1|) (-385 |#1|) (-385 |#1|))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3682 (|#1| |#1| (-713))) (-15 -2980 (|#1| |#1| (-713))) (-15 -3203 ((-2 (|:| -2829 |#1|) (|:| -1607 |#1|)) |#1| (-713))) (-15 -1801 (|#1| (-1088 |#2|))) (-15 -1332 ((-1088 |#2|) |#1|)) (-15 -2315 ((-1174 |#2|) |#1| (-713))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3376 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -3376 (|#1| |#1| (-1092) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1092)))) (-15 -3376 (|#1| |#1| (-1092))) (-15 -3376 (|#1| |#1|)) (-15 -3376 (|#1| |#1| (-713))) (-15 -3406 (|#1| |#1| |#1|)) (-15 -3406 (|#2| |#1| |#2|)) (-15 -2770 ((-396 |#1|) |#1|)) (-15 -1448 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -4099 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3076 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -2969 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|))) (-15 -3658 (|#1| |#1| (-1005))) (-15 -2897 ((-592 (-1005)) |#1|)) (-15 -3212 ((-713) |#1| (-592 (-1005)))) (-15 -3212 ((-713) |#1|)) (-15 -2876 (|#1| |#1| (-592 (-1005)) (-592 (-713)))) (-15 -2876 (|#1| |#1| (-1005) (-713))) (-15 -2870 ((-592 (-713)) |#1| (-592 (-1005)))) (-15 -2870 ((-713) |#1| (-1005))) (-15 -2431 ((-3 (-1005) "failed") |#1|)) (-15 -2343 ((-592 (-713)) |#1| (-592 (-1005)))) (-15 -2343 ((-713) |#1| (-1005))) (-15 -1572 ((-1005) |#1|)) (-15 -3077 ((-3 (-1005) "failed") |#1|)) (-15 -1217 (|#1| (-1005))) (-15 -2457 (|#1| |#1| (-592 (-1005)) (-592 |#1|))) (-15 -2457 (|#1| |#1| (-1005) |#1|)) (-15 -2457 (|#1| |#1| (-592 (-1005)) (-592 |#2|))) (-15 -2457 (|#1| |#1| (-1005) |#2|)) (-15 -2457 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2457 (|#1| |#1| |#1| |#1|)) (-15 -2457 (|#1| |#1| (-273 |#1|))) (-15 -2457 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2343 ((-713) |#1|)) (-15 -2876 (|#1| |#2| (-713))) (-15 -1572 ((-525) |#1|)) (-15 -3077 ((-3 (-525) "failed") |#1|)) (-15 -1572 ((-385 (-525)) |#1|)) (-15 -3077 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1217 (|#1| |#2|)) (-15 -3077 ((-3 |#2| "failed") |#1|)) (-15 -1572 (|#2| |#1|)) (-15 -2870 ((-713) |#1|)) (-15 -3658 (|#2| |#1|)) (-15 -3376 (|#1| |#1| (-592 (-1005)) (-592 (-713)))) (-15 -3376 (|#1| |#1| (-1005) (-713))) (-15 -3376 (|#1| |#1| (-592 (-1005)))) (-15 -3376 (|#1| |#1| (-1005))) (-15 -1217 (|#1| (-525))) (-15 -1217 ((-798) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2315 (((-1174 |#1|) $ (-713)) 238)) (-2897 (((-592 (-1005)) $) 110)) (-1801 (($ (-1088 |#1|)) 236)) (-2744 (((-1088 $) $ (-1005)) 125) (((-1088 |#1|) $) 124)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-4218 (($ $) 88 (|has| |#1| (-517)))) (-3171 (((-108) $) 90 (|has| |#1| (-517)))) (-3212 (((-713) $) 112) (((-713) $ (-592 (-1005))) 111)) (-1578 (((-3 $ "failed") $ $) 19)) (-4001 (($ $ $) 223 (|has| |#1| (-517)))) (-1448 (((-396 (-1088 $)) (-1088 $)) 100 (|has| |#1| (-844)))) (-1286 (($ $) 98 (|has| |#1| (-429)))) (-2669 (((-396 $) $) 97 (|has| |#1| (-429)))) (-2969 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 103 (|has| |#1| (-844)))) (-2193 (((-108) $ $) 208 (|has| |#1| (-341)))) (-2980 (($ $ (-713)) 231)) (-3682 (($ $ (-713)) 230)) (-2181 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-429)))) (-2169 (($) 17 T CONST)) (-3077 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-968 (-525)))) (((-3 (-1005) "failed") $) 136)) (-1572 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-968 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-968 (-525)))) (((-1005) $) 135)) (-3377 (($ $ $ (-1005)) 108 (|has| |#1| (-160))) ((|#1| $ $) 226 (|has| |#1| (-160)))) (-1747 (($ $ $) 212 (|has| |#1| (-341)))) (-3063 (($ $) 154)) (-1994 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3407 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-3457 (((-3 $ "failed") $) 34)) (-1733 (($ $ $) 211 (|has| |#1| (-341)))) (-3585 (($ $ $) 229)) (-2814 (($ $ $) 220 (|has| |#1| (-517)))) (-3696 (((-2 (|:| -3244 |#1|) (|:| -2829 $) (|:| -1607 $)) $ $) 219 (|has| |#1| (-517)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 206 (|has| |#1| (-341)))) (-1576 (($ $) 176 (|has| |#1| (-429))) (($ $ (-1005)) 105 (|has| |#1| (-429)))) (-3052 (((-592 $) $) 109)) (-3673 (((-108) $) 96 (|has| |#1| (-844)))) (-2188 (($ $ |#1| (-713) $) 172)) (-2989 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 84 (-12 (|has| (-1005) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 83 (-12 (|has| (-1005) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-2581 (((-713) $ $) 224 (|has| |#1| (-517)))) (-1396 (((-108) $) 31)) (-3399 (((-713) $) 169)) (-3844 (((-3 $ "failed") $) 204 (|has| |#1| (-1068)))) (-2887 (($ (-1088 |#1|) (-1005)) 117) (($ (-1088 $) (-1005)) 116)) (-3326 (($ $ (-713)) 235)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 215 (|has| |#1| (-341)))) (-4144 (((-592 $) $) 126)) (-1212 (((-108) $) 152)) (-2876 (($ |#1| (-713)) 153) (($ $ (-1005) (-713)) 119) (($ $ (-592 (-1005)) (-592 (-713))) 118)) (-2418 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $ (-1005)) 120) (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 233)) (-2870 (((-713) $) 170) (((-713) $ (-1005)) 122) (((-592 (-713)) $ (-592 (-1005))) 121)) (-2638 (($ $ $) 79 (|has| |#1| (-789)))) (-3662 (($ $ $) 78 (|has| |#1| (-789)))) (-2172 (($ (-1 (-713) (-713)) $) 171)) (-3165 (($ (-1 |#1| |#1|) $) 151)) (-1332 (((-1088 |#1|) $) 237)) (-2431 (((-3 (-1005) "failed") $) 123)) (-3031 (($ $) 149)) (-3043 ((|#1| $) 148)) (-2556 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-2619 (((-1075) $) 9)) (-3203 (((-2 (|:| -2829 $) (|:| -1607 $)) $ (-713)) 232)) (-1334 (((-3 (-592 $) "failed") $) 114)) (-2001 (((-3 (-592 $) "failed") $) 115)) (-2121 (((-3 (-2 (|:| |var| (-1005)) (|:| -4193 (-713))) "failed") $) 113)) (-1206 (($ $) 216 (|has| |#1| (-37 (-385 (-525)))))) (-2295 (($) 203 (|has| |#1| (-1068)) CONST)) (-2093 (((-1039) $) 10)) (-3007 (((-108) $) 166)) (-3019 ((|#1| $) 167)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 95 (|has| |#1| (-429)))) (-2589 (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-3076 (((-396 (-1088 $)) (-1088 $)) 102 (|has| |#1| (-844)))) (-4099 (((-396 (-1088 $)) (-1088 $)) 101 (|has| |#1| (-844)))) (-2770 (((-396 $) $) 99 (|has| |#1| (-844)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 213 (|has| |#1| (-341)))) (-1715 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 207 (|has| |#1| (-341)))) (-2457 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ (-1005) |#1|) 141) (($ $ (-592 (-1005)) (-592 |#1|)) 140) (($ $ (-1005) $) 139) (($ $ (-592 (-1005)) (-592 $)) 138)) (-3684 (((-713) $) 209 (|has| |#1| (-341)))) (-3406 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-385 $) (-385 $) (-385 $)) 225 (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) 217 (|has| |#1| (-341))) (((-385 $) $ (-385 $)) 205 (|has| |#1| (-517)))) (-2173 (((-3 $ "failed") $ (-713)) 234)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 210 (|has| |#1| (-341)))) (-1975 (($ $ (-1005)) 107 (|has| |#1| (-160))) ((|#1| $) 227 (|has| |#1| (-160)))) (-3376 (($ $ (-1005)) 42) (($ $ (-592 (-1005))) 41) (($ $ (-1005) (-713)) 40) (($ $ (-592 (-1005)) (-592 (-713))) 39) (($ $ (-713)) 253) (($ $) 251) (($ $ (-1092)) 250 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 249 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 248 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) 247 (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-2343 (((-713) $) 150) (((-713) $ (-1005)) 130) (((-592 (-713)) $ (-592 (-1005))) 129)) (-3210 (((-827 (-357)) $) 82 (-12 (|has| (-1005) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) 81 (-12 (|has| (-1005) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) 80 (-12 (|has| (-1005) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-3658 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ (-1005)) 106 (|has| |#1| (-429)))) (-1940 (((-3 (-1174 $) "failed") (-632 $)) 104 (-3762 (|has| $ (-136)) (|has| |#1| (-844))))) (-1561 (((-3 $ "failed") $ $) 222 (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) 221 (|has| |#1| (-517)))) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ (-1005)) 137) (($ (-385 (-525))) 72 (-3254 (|has| |#1| (-968 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))))) (($ $) 85 (|has| |#1| (-517)))) (-1684 (((-592 |#1|) $) 168)) (-1568 ((|#1| $ (-713)) 155) (($ $ (-1005) (-713)) 128) (($ $ (-592 (-1005)) (-592 (-713))) 127)) (-3637 (((-3 $ "failed") $) 73 (-3254 (-3762 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-3917 (((-713)) 29)) (-3716 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-3325 (((-108) $ $) 89 (|has| |#1| (-517)))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $ (-1005)) 38) (($ $ (-592 (-1005))) 37) (($ $ (-1005) (-713)) 36) (($ $ (-592 (-1005)) (-592 (-713))) 35) (($ $ (-713)) 254) (($ $) 252) (($ $ (-1092)) 246 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 245 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 244 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) 243 (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-4011 (((-108) $ $) 76 (|has| |#1| (-789)))) (-3987 (((-108) $ $) 75 (|has| |#1| (-789)))) (-3955 (((-108) $ $) 6)) (-3999 (((-108) $ $) 77 (|has| |#1| (-789)))) (-3978 (((-108) $ $) 74 (|has| |#1| (-789)))) (-4075 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1653 (((-1166 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-1296 (((-592 (-1005)) $) NIL)) (-3469 (((-1092) $) 10)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-2433 (($ $) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-1568 (((-108) $) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-2730 (($ $ (-525)) NIL) (($ $ (-525) (-525)) NIL)) (-2005 (((-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) NIL)) (-3494 (((-1166 |#1| |#2| |#3|) $) NIL)) (-2326 (((-3 (-1166 |#1| |#2| |#3|) "failed") $) NIL)) (-1350 (((-1166 |#1| |#2| |#3|) $) NIL)) (-1803 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3659 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3222 (((-3 $ "failed") $ $) NIL)) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-4195 (($ $) NIL (|has| |#1| (-341)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-341)))) (-4211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-1507 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1781 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3638 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2971 (((-525) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-2996 (($ (-1073 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) NIL)) (-1828 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3698 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-1166 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1092) "failed") $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-968 (-1092))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341)))) (((-3 (-525) "failed") $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341))))) (-4105 (((-1166 |#1| |#2| |#3|) $) NIL) (((-1092) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-968 (-1092))) (|has| |#1| (-341)))) (((-385 (-525)) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341)))) (((-525) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341))))) (-1498 (($ $) NIL) (($ (-525) $) NIL)) (-1356 (($ $ $) NIL (|has| |#1| (-341)))) (-1451 (($ $) NIL)) (-3090 (((-632 (-1166 |#1| |#2| |#3|)) (-632 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -4108 (-632 (-1166 |#1| |#2| |#3|))) (|:| |vec| (-1174 (-1166 |#1| |#2| |#3|)))) (-632 $) (-1174 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341))))) (-3300 (((-3 $ "failed") $) NIL)) (-4181 (((-385 (-887 |#1|)) $ (-525)) NIL (|has| |#1| (-517))) (((-385 (-887 |#1|)) $ (-525) (-525)) NIL (|has| |#1| (-517)))) (-1903 (($) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-1332 (($ $ $) NIL (|has| |#1| (-341)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-1798 (((-108) $) NIL (|has| |#1| (-341)))) (-1889 (((-108) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-2853 (((-108) $) NIL)) (-4106 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3552 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-821 (-525))) (|has| |#1| (-341)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-821 (-357))) (|has| |#1| (-341))))) (-4000 (((-525) $) NIL) (((-525) $ (-525)) NIL)) (-2278 (((-108) $) NIL)) (-2999 (($ $) NIL (|has| |#1| (-341)))) (-4066 (((-1166 |#1| |#2| |#3|) $) NIL (|has| |#1| (-341)))) (-1303 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2878 (((-3 $ "failed") $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1068)) (|has| |#1| (-341))))) (-4079 (((-108) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-1585 (($ $ (-856)) NIL)) (-2598 (($ (-1 |#1| (-525)) $) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-525)) 17) (($ $ (-1005) (-525)) NIL) (($ $ (-592 (-1005)) (-592 (-525))) NIL)) (-3033 (($ $ $) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-1609 (($ $ $) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-2016 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-341)))) (-2533 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1361 (($ (-525) (-1166 |#1| |#2| |#3|)) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL (|has| |#1| (-341)))) (-2367 (($ $) 25 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) NIL (-2067 (-12 (|has| |#1| (-15 -2367 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -1296 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114))))) (($ $ (-1170 |#2|)) 26 (|has| |#1| (-37 (-385 (-525)))))) (-2948 (($) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1068)) (|has| |#1| (-341))) CONST)) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1372 (($ $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-1340 (((-1166 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-4201 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-1397 (($ $ (-525)) NIL)) (-1311 (((-3 $ "failed") $ $) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1618 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2825 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1092) (-1166 |#1| |#2| |#3|)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-486 (-1092) (-1166 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1092)) (-592 (-1166 |#1| |#2| |#3|))) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-486 (-1092) (-1166 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-273 (-1166 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-288 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-273 (-1166 |#1| |#2| |#3|))) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-288 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-288 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1166 |#1| |#2| |#3|)) (-592 (-1166 |#1| |#2| |#3|))) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-288 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-1927 (((-713) $) NIL (|has| |#1| (-341)))) (-3431 ((|#1| $ (-525)) NIL) (($ $ $) NIL (|has| (-525) (-1032))) (($ $ (-1166 |#1| |#2| |#3|)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-265 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-341)))) (-2702 (($ $ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1170 |#2|)) 24) (($ $ (-713)) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 23 (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092) (-713)) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-592 (-1092))) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092)) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))))) (-2874 (($ $) NIL (|has| |#1| (-341)))) (-4080 (((-1166 |#1| |#2| |#3|) $) NIL (|has| |#1| (-341)))) (-3529 (((-525) $) NIL)) (-1841 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1816 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3678 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1792 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3649 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2069 (((-501) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-567 (-501))) (|has| |#1| (-341)))) (((-357) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-953)) (|has| |#1| (-341)))) (((-205) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-953)) (|has| |#1| (-341)))) (((-827 (-357)) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-567 (-827 (-357)))) (|has| |#1| (-341)))) (((-827 (-525)) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-567 (-827 (-525)))) (|has| |#1| (-341))))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-3926 (($ $) NIL)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1166 |#1| |#2| |#3|)) NIL) (($ (-1170 |#2|)) 22) (($ (-1092)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-968 (-1092))) (|has| |#1| (-341)))) (($ $) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517)))) (($ (-385 (-525))) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341))) (|has| |#1| (-37 (-385 (-525))))))) (-3136 ((|#1| $ (-525)) NIL)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-2448 (((-713)) NIL)) (-1423 ((|#1| $) 11)) (-3064 (((-1166 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3853 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1902 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1760 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1485 ((|#1| $ (-525)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -4100 (|#1| (-1092))))))) (-3135 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1891 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1748 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1866 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3820 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2380 (($ $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3364 (($) 19 T CONST)) (-3375 (($) 15 T CONST)) (-2401 (($ $ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092) (-713)) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-592 (-1092))) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092)))))) (($ $ (-1092)) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-835 (-1092))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1092))))))) (-2830 (((-108) $ $) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-2807 (((-108) $ $) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-2795 (((-108) $ $) NIL (-2067 (-12 (|has| (-1166 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341))) (($ (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) NIL (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) 20)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1166 |#1| |#2| |#3|)) NIL (|has| |#1| (-341))) (($ (-1166 |#1| |#2| |#3|) $) NIL (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-1138 |#1| |#2| |#3|) (-13 (-1136 |#1| (-1166 |#1| |#2| |#3|)) (-10 -8 (-15 -4100 ($ (-1170 |#2|))) (-15 -2702 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2367 ($ $ (-1170 |#2|))) |%noBranch|))) (-977) (-1092) |#1|) (T -1138))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2702 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2367 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
+(-13 (-1136 |#1| (-1166 |#1| |#2| |#3|)) (-10 -8 (-15 -4100 ($ (-1170 |#2|))) (-15 -2702 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2367 ($ $ (-1170 |#2|))) |%noBranch|)))
+((-4096 (((-2 (|:| |contp| (-525)) (|:| -2868 (-592 (-2 (|:| |irr| |#1|) (|:| -3750 (-525)))))) |#1| (-108)) 12)) (-3243 (((-396 |#1|) |#1|) 22)) (-4201 (((-396 |#1|) |#1|) 21)))
+(((-1139 |#1|) (-10 -7 (-15 -4201 ((-396 |#1|) |#1|)) (-15 -3243 ((-396 |#1|) |#1|)) (-15 -4096 ((-2 (|:| |contp| (-525)) (|:| -2868 (-592 (-2 (|:| |irr| |#1|) (|:| -3750 (-525)))))) |#1| (-108)))) (-1150 (-525))) (T -1139))
+((-4096 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-525)) (|:| -2868 (-592 (-2 (|:| |irr| *3) (|:| -3750 (-525))))))) (-5 *1 (-1139 *3)) (-4 *3 (-1150 (-525))))) (-3243 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-1139 *3)) (-4 *3 (-1150 (-525))))) (-4201 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-1139 *3)) (-4 *3 (-1150 (-525))))))
+(-10 -7 (-15 -4201 ((-396 |#1|) |#1|)) (-15 -3243 ((-396 |#1|) |#1|)) (-15 -4096 ((-2 (|:| |contp| (-525)) (|:| -2868 (-592 (-2 (|:| |irr| |#1|) (|:| -3750 (-525)))))) |#1| (-108))))
+((-2016 (((-1073 |#2|) (-1 |#2| |#1|) (-1141 |#1|)) 23 (|has| |#1| (-787))) (((-1141 |#2|) (-1 |#2| |#1|) (-1141 |#1|)) 17)))
+(((-1140 |#1| |#2|) (-10 -7 (-15 -2016 ((-1141 |#2|) (-1 |#2| |#1|) (-1141 |#1|))) (IF (|has| |#1| (-787)) (-15 -2016 ((-1073 |#2|) (-1 |#2| |#1|) (-1141 |#1|))) |%noBranch|)) (-1128) (-1128)) (T -1140))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5)) (-4 *5 (-787)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1073 *6)) (-5 *1 (-1140 *5 *6)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1141 *6)) (-5 *1 (-1140 *5 *6)))))
+(-10 -7 (-15 -2016 ((-1141 |#2|) (-1 |#2| |#1|) (-1141 |#1|))) (IF (|has| |#1| (-787)) (-15 -2016 ((-1073 |#2|) (-1 |#2| |#1|) (-1141 |#1|))) |%noBranch|))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-4009 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-2016 (((-1073 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-787)))) (-3736 ((|#1| $) 14)) (-3909 ((|#1| $) 10)) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-3922 (((-525) $) 18)) (-1805 ((|#1| $) 17)) (-3935 ((|#1| $) 11)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1470 (((-108) $) 16)) (-2361 (((-1073 |#1|) $) 38 (|has| |#1| (-787))) (((-1073 |#1|) (-592 $)) 37 (|has| |#1| (-787)))) (-2069 (($ |#1|) 25)) (-4100 (($ (-1015 |#1|)) 24) (((-798) $) 34 (|has| |#1| (-1020)))) (-1393 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-2578 (($ $ (-525)) 13)) (-2775 (((-108) $ $) 27 (|has| |#1| (-1020)))))
+(((-1141 |#1|) (-13 (-1014 |#1|) (-10 -8 (-15 -1393 ($ |#1|)) (-15 -4009 ($ |#1|)) (-15 -4100 ($ (-1015 |#1|))) (-15 -1470 ((-108) $)) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-1016 |#1| (-1073 |#1|))) |%noBranch|))) (-1128)) (T -1141))
+((-1393 (*1 *1 *2) (-12 (-5 *1 (-1141 *2)) (-4 *2 (-1128)))) (-4009 (*1 *1 *2) (-12 (-5 *1 (-1141 *2)) (-4 *2 (-1128)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-1015 *3)) (-4 *3 (-1128)) (-5 *1 (-1141 *3)))) (-1470 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1141 *3)) (-4 *3 (-1128)))))
+(-13 (-1014 |#1|) (-10 -8 (-15 -1393 ($ |#1|)) (-15 -4009 ($ |#1|)) (-15 -4100 ($ (-1015 |#1|))) (-15 -1470 ((-108) $)) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-1016 |#1| (-1073 |#1|))) |%noBranch|)))
+((-2016 (((-1147 |#3| |#4|) (-1 |#4| |#2|) (-1147 |#1| |#2|)) 15)))
+(((-1142 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2016 ((-1147 |#3| |#4|) (-1 |#4| |#2|) (-1147 |#1| |#2|)))) (-1092) (-977) (-1092) (-977)) (T -1142))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1147 *5 *6)) (-14 *5 (-1092)) (-4 *6 (-977)) (-4 *8 (-977)) (-5 *2 (-1147 *7 *8)) (-5 *1 (-1142 *5 *6 *7 *8)) (-14 *7 (-1092)))))
+(-10 -7 (-15 -2016 ((-1147 |#3| |#4|) (-1 |#4| |#2|) (-1147 |#1| |#2|))))
+((-3999 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2618 ((|#1| |#3|) 13)) (-2360 ((|#3| |#3|) 19)))
+(((-1143 |#1| |#2| |#3|) (-10 -7 (-15 -2618 (|#1| |#3|)) (-15 -2360 (|#3| |#3|)) (-15 -3999 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-517) (-925 |#1|) (-1150 |#2|)) (T -1143))
+((-3999 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-925 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1143 *4 *5 *3)) (-4 *3 (-1150 *5)))) (-2360 (*1 *2 *2) (-12 (-4 *3 (-517)) (-4 *4 (-925 *3)) (-5 *1 (-1143 *3 *4 *2)) (-4 *2 (-1150 *4)))) (-2618 (*1 *2 *3) (-12 (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-1143 *2 *4 *3)) (-4 *3 (-1150 *4)))))
+(-10 -7 (-15 -2618 (|#1| |#3|)) (-15 -2360 (|#3| |#3|)) (-15 -3999 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1440 (((-3 |#2| "failed") |#2| (-713) |#1|) 29)) (-2903 (((-3 |#2| "failed") |#2| (-713)) 30)) (-1559 (((-3 (-2 (|:| -3436 |#2|) (|:| -3446 |#2|)) "failed") |#2|) 43)) (-2923 (((-592 |#2|) |#2|) 45)) (-3285 (((-3 |#2| "failed") |#2| |#2|) 40)))
+(((-1144 |#1| |#2|) (-10 -7 (-15 -2903 ((-3 |#2| "failed") |#2| (-713))) (-15 -1440 ((-3 |#2| "failed") |#2| (-713) |#1|)) (-15 -3285 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1559 ((-3 (-2 (|:| -3436 |#2|) (|:| -3446 |#2|)) "failed") |#2|)) (-15 -2923 ((-592 |#2|) |#2|))) (-13 (-517) (-138)) (-1150 |#1|)) (T -1144))
+((-2923 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-138))) (-5 *2 (-592 *3)) (-5 *1 (-1144 *4 *3)) (-4 *3 (-1150 *4)))) (-1559 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-517) (-138))) (-5 *2 (-2 (|:| -3436 *3) (|:| -3446 *3))) (-5 *1 (-1144 *4 *3)) (-4 *3 (-1150 *4)))) (-3285 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1144 *3 *2)) (-4 *2 (-1150 *3)))) (-1440 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-1144 *4 *2)) (-4 *2 (-1150 *4)))) (-2903 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-1144 *4 *2)) (-4 *2 (-1150 *4)))))
+(-10 -7 (-15 -2903 ((-3 |#2| "failed") |#2| (-713))) (-15 -1440 ((-3 |#2| "failed") |#2| (-713) |#1|)) (-15 -3285 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1559 ((-3 (-2 (|:| -3436 |#2|) (|:| -3446 |#2|)) "failed") |#2|)) (-15 -2923 ((-592 |#2|) |#2|)))
+((-2059 (((-3 (-2 (|:| -1416 |#2|) (|:| -3681 |#2|)) "failed") |#2| |#2|) 32)))
+(((-1145 |#1| |#2|) (-10 -7 (-15 -2059 ((-3 (-2 (|:| -1416 |#2|) (|:| -3681 |#2|)) "failed") |#2| |#2|))) (-517) (-1150 |#1|)) (T -1145))
+((-2059 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -1416 *3) (|:| -3681 *3))) (-5 *1 (-1145 *4 *3)) (-4 *3 (-1150 *4)))))
+(-10 -7 (-15 -2059 ((-3 (-2 (|:| -1416 |#2|) (|:| -3681 |#2|)) "failed") |#2| |#2|)))
+((-3625 ((|#2| |#2| |#2|) 19)) (-1638 ((|#2| |#2| |#2|) 30)) (-1415 ((|#2| |#2| |#2| (-713) (-713)) 36)))
+(((-1146 |#1| |#2|) (-10 -7 (-15 -3625 (|#2| |#2| |#2|)) (-15 -1638 (|#2| |#2| |#2|)) (-15 -1415 (|#2| |#2| |#2| (-713) (-713)))) (-977) (-1150 |#1|)) (T -1146))
+((-1415 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-713)) (-4 *4 (-977)) (-5 *1 (-1146 *4 *2)) (-4 *2 (-1150 *4)))) (-1638 (*1 *2 *2 *2) (-12 (-4 *3 (-977)) (-5 *1 (-1146 *3 *2)) (-4 *2 (-1150 *3)))) (-3625 (*1 *2 *2 *2) (-12 (-4 *3 (-977)) (-5 *1 (-1146 *3 *2)) (-4 *2 (-1150 *3)))))
+(-10 -7 (-15 -3625 (|#2| |#2| |#2|)) (-15 -1638 (|#2| |#2| |#2|)) (-15 -1415 (|#2| |#2| |#2| (-713) (-713))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3216 (((-1174 |#2|) $ (-713)) NIL)) (-1296 (((-592 (-1005)) $) NIL)) (-2954 (($ (-1088 |#2|)) NIL)) (-4169 (((-1088 $) $ (-1005)) NIL) (((-1088 |#2|) $) NIL)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-2433 (($ $) NIL (|has| |#2| (-517)))) (-1568 (((-108) $) NIL (|has| |#2| (-517)))) (-1928 (((-713) $) NIL) (((-713) $ (-592 (-1005))) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-3882 (($ $ $) NIL (|has| |#2| (-517)))) (-2426 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-4195 (($ $) NIL (|has| |#2| (-429)))) (-3586 (((-396 $) $) NIL (|has| |#2| (-429)))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-1507 (((-108) $ $) NIL (|has| |#2| (-341)))) (-3474 (($ $ (-713)) NIL)) (-1911 (($ $ (-713)) NIL)) (-1396 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-429)))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-1005) "failed") $) NIL)) (-4105 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-1005) $) NIL)) (-3801 (($ $ $ (-1005)) NIL (|has| |#2| (-160))) ((|#2| $ $) NIL (|has| |#2| (-160)))) (-1356 (($ $ $) NIL (|has| |#2| (-341)))) (-1451 (($ $) NIL)) (-3090 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#2|)) (|:| |vec| (-1174 |#2|))) (-632 $) (-1174 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-1332 (($ $ $) NIL (|has| |#2| (-341)))) (-2149 (($ $ $) NIL)) (-2477 (($ $ $) NIL (|has| |#2| (-517)))) (-3830 (((-2 (|:| -2681 |#2|) (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#2| (-517)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| |#2| (-341)))) (-3201 (($ $) NIL (|has| |#2| (-429))) (($ $ (-1005)) NIL (|has| |#2| (-429)))) (-1441 (((-592 $) $) NIL)) (-1798 (((-108) $) NIL (|has| |#2| (-844)))) (-1457 (($ $ |#2| (-713) $) NIL)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1005) (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1005) (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-4000 (((-713) $ $) NIL (|has| |#2| (-517)))) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) NIL)) (-2878 (((-3 $ "failed") $) NIL (|has| |#2| (-1068)))) (-1284 (($ (-1088 |#2|) (-1005)) NIL) (($ (-1088 $) (-1005)) NIL)) (-1585 (($ $ (-713)) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-2884 (((-592 $) $) NIL)) (-2457 (((-108) $) NIL)) (-1272 (($ |#2| (-713)) 17) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ (-1005)) NIL) (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL)) (-1819 (((-713) $) NIL) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-3033 (($ $ $) NIL (|has| |#2| (-789)))) (-1609 (($ $ $) NIL (|has| |#2| (-789)))) (-1314 (($ (-1 (-713) (-713)) $) NIL)) (-2016 (($ (-1 |#2| |#2|) $) NIL)) (-2950 (((-1088 |#2|) $) NIL)) (-2018 (((-3 (-1005) "failed") $) NIL)) (-1418 (($ $) NIL)) (-1430 ((|#2| $) NIL)) (-2739 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-1289 (((-1075) $) NIL)) (-1849 (((-2 (|:| -1416 $) (|:| -3681 $)) $ (-713)) NIL)) (-2977 (((-3 (-592 $) "failed") $) NIL)) (-3165 (((-3 (-592 $) "failed") $) NIL)) (-1986 (((-3 (-2 (|:| |var| (-1005)) (|:| -2168 (-713))) "failed") $) NIL)) (-2367 (($ $) NIL (|has| |#2| (-37 (-385 (-525)))))) (-2948 (($) NIL (|has| |#2| (-1068)) CONST)) (-3993 (((-1039) $) NIL)) (-1399 (((-108) $) NIL)) (-1407 ((|#2| $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#2| (-429)))) (-2772 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3653 (($ $ (-713) |#2| $) NIL)) (-3089 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) NIL (|has| |#2| (-844)))) (-4201 (((-396 $) $) NIL (|has| |#2| (-844)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#2| (-341)))) (-1311 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-2825 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1005) |#2|) NIL) (($ $ (-592 (-1005)) (-592 |#2|)) NIL) (($ $ (-1005) $) NIL) (($ $ (-592 (-1005)) (-592 $)) NIL)) (-1927 (((-713) $) NIL (|has| |#2| (-341)))) (-3431 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#2| (-517))) ((|#2| (-385 $) |#2|) NIL (|has| |#2| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#2| (-517)))) (-1326 (((-3 $ "failed") $ (-713)) NIL)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#2| (-341)))) (-4115 (($ $ (-1005)) NIL (|has| |#2| (-160))) ((|#2| $) NIL (|has| |#2| (-160)))) (-2702 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3529 (((-713) $) NIL) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-2069 (((-827 (-357)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-1005) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-1661 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-1005)) NIL (|has| |#2| (-429)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844))))) (-3070 (((-3 $ "failed") $ $) NIL (|has| |#2| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#2| (-517)))) (-4100 (((-798) $) 13) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-1005)) NIL) (($ (-1170 |#1|)) 19) (($ (-385 (-525))) NIL (-2067 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-3137 (((-592 |#2|) $) NIL)) (-3136 ((|#2| $ (-713)) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-1463 (((-3 $ "failed") $) NIL (-2067 (-12 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#2| (-136))))) (-2448 (((-713)) NIL)) (-4042 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-1571 (((-108) $ $) NIL (|has| |#2| (-517)))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-3375 (($) 14 T CONST)) (-2401 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1092)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1092) (-713)) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) NIL (|has| |#2| (-835 (-1092)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2830 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2775 (((-108) $ $) NIL)) (-2817 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#2| (-789)))) (-2880 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1147 |#1| |#2|) (-13 (-1150 |#2|) (-10 -8 (-15 -4100 ($ (-1170 |#1|))) (-15 -3653 ($ $ (-713) |#2| $)))) (-1092) (-977)) (T -1147))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-14 *3 (-1092)) (-5 *1 (-1147 *3 *4)) (-4 *4 (-977)))) (-3653 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1147 *4 *3)) (-14 *4 (-1092)) (-4 *3 (-977)))))
+(-13 (-1150 |#2|) (-10 -8 (-15 -4100 ($ (-1170 |#1|))) (-15 -3653 ($ $ (-713) |#2| $))))
+((-2016 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1148 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2016 (|#4| (-1 |#3| |#1|) |#2|))) (-977) (-1150 |#1|) (-977) (-1150 |#3|)) (T -1148))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-4 *2 (-1150 *6)) (-5 *1 (-1148 *5 *4 *6 *2)) (-4 *4 (-1150 *5)))))
+(-10 -7 (-15 -2016 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3216 (((-1174 |#2|) $ (-713)) 114)) (-1296 (((-592 (-1005)) $) 15)) (-2954 (($ (-1088 |#2|)) 67)) (-1928 (((-713) $) NIL) (((-713) $ (-592 (-1005))) 18)) (-2426 (((-396 (-1088 $)) (-1088 $)) 185)) (-4195 (($ $) 175)) (-3586 (((-396 $) $) 173)) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 82)) (-3474 (($ $ (-713)) 71)) (-1911 (($ $ (-713)) 73)) (-1396 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-1934 (((-3 |#2| "failed") $) 117) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 (-1005) "failed") $) NIL)) (-4105 ((|#2| $) 115) (((-385 (-525)) $) NIL) (((-525) $) NIL) (((-1005) $) NIL)) (-2477 (($ $ $) 151)) (-3830 (((-2 (|:| -2681 |#2|) (|:| -1416 $) (|:| -3681 $)) $ $) 153)) (-4000 (((-713) $ $) 170)) (-2878 (((-3 $ "failed") $) 123)) (-1272 (($ |#2| (-713)) NIL) (($ $ (-1005) (-713)) 47) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-1819 (((-713) $) NIL) (((-713) $ (-1005)) 42) (((-592 (-713)) $ (-592 (-1005))) 43)) (-2950 (((-1088 |#2|) $) 59)) (-2018 (((-3 (-1005) "failed") $) 40)) (-1849 (((-2 (|:| -1416 $) (|:| -3681 $)) $ (-713)) 70)) (-2367 (($ $) 197)) (-2948 (($) 119)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 182)) (-3089 (((-396 (-1088 $)) (-1088 $)) 88)) (-3644 (((-396 (-1088 $)) (-1088 $)) 86)) (-4201 (((-396 $) $) 107)) (-2825 (($ $ (-592 (-273 $))) 39) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1005) |#2|) 31) (($ $ (-592 (-1005)) (-592 |#2|)) 28) (($ $ (-1005) $) 25) (($ $ (-592 (-1005)) (-592 $)) 23)) (-1927 (((-713) $) 188)) (-3431 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) 147) ((|#2| (-385 $) |#2|) 187) (((-385 $) $ (-385 $)) 169)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 191)) (-2702 (($ $ (-1005)) 140) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) 138) (($ $ (-1092)) NIL) (($ $ (-592 (-1092))) NIL) (($ $ (-1092) (-713)) NIL) (($ $ (-592 (-1092)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-3529 (((-713) $) NIL) (((-713) $ (-1005)) 16) (((-592 (-713)) $ (-592 (-1005))) 20)) (-1661 ((|#2| $) NIL) (($ $ (-1005)) 125)) (-3070 (((-3 $ "failed") $ $) 161) (((-3 (-385 $) "failed") (-385 $) $) 157)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-1005)) 51) (($ (-385 (-525))) NIL) (($ $) NIL)))
+(((-1149 |#1| |#2|) (-10 -8 (-15 -4100 (|#1| |#1|)) (-15 -1379 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|))) (-15 -3586 ((-396 |#1|) |#1|)) (-15 -4195 (|#1| |#1|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -2948 (|#1|)) (-15 -2878 ((-3 |#1| "failed") |#1|)) (-15 -3431 ((-385 |#1|) |#1| (-385 |#1|))) (-15 -1927 ((-713) |#1|)) (-15 -2494 ((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -3431 (|#2| (-385 |#1|) |#2|)) (-15 -1396 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3830 ((-2 (|:| -2681 |#2|) (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|)) (-15 -2477 (|#1| |#1| |#1|)) (-15 -3070 ((-3 (-385 |#1|) "failed") (-385 |#1|) |#1|)) (-15 -3070 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4000 ((-713) |#1| |#1|)) (-15 -3431 ((-385 |#1|) (-385 |#1|) (-385 |#1|))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1911 (|#1| |#1| (-713))) (-15 -3474 (|#1| |#1| (-713))) (-15 -1849 ((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| (-713))) (-15 -2954 (|#1| (-1088 |#2|))) (-15 -2950 ((-1088 |#2|) |#1|)) (-15 -3216 ((-1174 |#2|) |#1| (-713))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-713))) (-15 -3431 (|#1| |#1| |#1|)) (-15 -3431 (|#2| |#1| |#2|)) (-15 -4201 ((-396 |#1|) |#1|)) (-15 -2426 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3644 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3089 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3373 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|))) (-15 -1661 (|#1| |#1| (-1005))) (-15 -1296 ((-592 (-1005)) |#1|)) (-15 -1928 ((-713) |#1| (-592 (-1005)))) (-15 -1928 ((-713) |#1|)) (-15 -1272 (|#1| |#1| (-592 (-1005)) (-592 (-713)))) (-15 -1272 (|#1| |#1| (-1005) (-713))) (-15 -1819 ((-592 (-713)) |#1| (-592 (-1005)))) (-15 -1819 ((-713) |#1| (-1005))) (-15 -2018 ((-3 (-1005) "failed") |#1|)) (-15 -3529 ((-592 (-713)) |#1| (-592 (-1005)))) (-15 -3529 ((-713) |#1| (-1005))) (-15 -4105 ((-1005) |#1|)) (-15 -1934 ((-3 (-1005) "failed") |#1|)) (-15 -4100 (|#1| (-1005))) (-15 -2825 (|#1| |#1| (-592 (-1005)) (-592 |#1|))) (-15 -2825 (|#1| |#1| (-1005) |#1|)) (-15 -2825 (|#1| |#1| (-592 (-1005)) (-592 |#2|))) (-15 -2825 (|#1| |#1| (-1005) |#2|)) (-15 -2825 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2825 (|#1| |#1| |#1| |#1|)) (-15 -2825 (|#1| |#1| (-273 |#1|))) (-15 -2825 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3529 ((-713) |#1|)) (-15 -1272 (|#1| |#2| (-713))) (-15 -4105 ((-525) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4100 (|#1| |#2|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -4105 (|#2| |#1|)) (-15 -1819 ((-713) |#1|)) (-15 -1661 (|#2| |#1|)) (-15 -2702 (|#1| |#1| (-592 (-1005)) (-592 (-713)))) (-15 -2702 (|#1| |#1| (-1005) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1005)))) (-15 -2702 (|#1| |#1| (-1005))) (-15 -4100 (|#1| (-525))) (-15 -4100 ((-798) |#1|))) (-1150 |#2|) (-977)) (T -1149))
+NIL
+(-10 -8 (-15 -4100 (|#1| |#1|)) (-15 -1379 ((-1088 |#1|) (-1088 |#1|) (-1088 |#1|))) (-15 -3586 ((-396 |#1|) |#1|)) (-15 -4195 (|#1| |#1|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -2948 (|#1|)) (-15 -2878 ((-3 |#1| "failed") |#1|)) (-15 -3431 ((-385 |#1|) |#1| (-385 |#1|))) (-15 -1927 ((-713) |#1|)) (-15 -2494 ((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -3431 (|#2| (-385 |#1|) |#2|)) (-15 -1396 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3830 ((-2 (|:| -2681 |#2|) (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| |#1|)) (-15 -2477 (|#1| |#1| |#1|)) (-15 -3070 ((-3 (-385 |#1|) "failed") (-385 |#1|) |#1|)) (-15 -3070 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4000 ((-713) |#1| |#1|)) (-15 -3431 ((-385 |#1|) (-385 |#1|) (-385 |#1|))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1911 (|#1| |#1| (-713))) (-15 -3474 (|#1| |#1| (-713))) (-15 -1849 ((-2 (|:| -1416 |#1|) (|:| -3681 |#1|)) |#1| (-713))) (-15 -2954 (|#1| (-1088 |#2|))) (-15 -2950 ((-1088 |#2|) |#1|)) (-15 -3216 ((-1174 |#2|) |#1| (-713))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2702 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)) (-592 (-713)))) (-15 -2702 (|#1| |#1| (-1092) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1092)))) (-15 -2702 (|#1| |#1| (-1092))) (-15 -2702 (|#1| |#1|)) (-15 -2702 (|#1| |#1| (-713))) (-15 -3431 (|#1| |#1| |#1|)) (-15 -3431 (|#2| |#1| |#2|)) (-15 -4201 ((-396 |#1|) |#1|)) (-15 -2426 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3644 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3089 ((-396 (-1088 |#1|)) (-1088 |#1|))) (-15 -3373 ((-3 (-592 (-1088 |#1|)) "failed") (-592 (-1088 |#1|)) (-1088 |#1|))) (-15 -1661 (|#1| |#1| (-1005))) (-15 -1296 ((-592 (-1005)) |#1|)) (-15 -1928 ((-713) |#1| (-592 (-1005)))) (-15 -1928 ((-713) |#1|)) (-15 -1272 (|#1| |#1| (-592 (-1005)) (-592 (-713)))) (-15 -1272 (|#1| |#1| (-1005) (-713))) (-15 -1819 ((-592 (-713)) |#1| (-592 (-1005)))) (-15 -1819 ((-713) |#1| (-1005))) (-15 -2018 ((-3 (-1005) "failed") |#1|)) (-15 -3529 ((-592 (-713)) |#1| (-592 (-1005)))) (-15 -3529 ((-713) |#1| (-1005))) (-15 -4105 ((-1005) |#1|)) (-15 -1934 ((-3 (-1005) "failed") |#1|)) (-15 -4100 (|#1| (-1005))) (-15 -2825 (|#1| |#1| (-592 (-1005)) (-592 |#1|))) (-15 -2825 (|#1| |#1| (-1005) |#1|)) (-15 -2825 (|#1| |#1| (-592 (-1005)) (-592 |#2|))) (-15 -2825 (|#1| |#1| (-1005) |#2|)) (-15 -2825 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2825 (|#1| |#1| |#1| |#1|)) (-15 -2825 (|#1| |#1| (-273 |#1|))) (-15 -2825 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3529 ((-713) |#1|)) (-15 -1272 (|#1| |#2| (-713))) (-15 -4105 ((-525) |#1|)) (-15 -1934 ((-3 (-525) "failed") |#1|)) (-15 -4105 ((-385 (-525)) |#1|)) (-15 -1934 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4100 (|#1| |#2|)) (-15 -1934 ((-3 |#2| "failed") |#1|)) (-15 -4105 (|#2| |#1|)) (-15 -1819 ((-713) |#1|)) (-15 -1661 (|#2| |#1|)) (-15 -2702 (|#1| |#1| (-592 (-1005)) (-592 (-713)))) (-15 -2702 (|#1| |#1| (-1005) (-713))) (-15 -2702 (|#1| |#1| (-592 (-1005)))) (-15 -2702 (|#1| |#1| (-1005))) (-15 -4100 (|#1| (-525))) (-15 -4100 ((-798) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3216 (((-1174 |#1|) $ (-713)) 238)) (-1296 (((-592 (-1005)) $) 110)) (-2954 (($ (-1088 |#1|)) 236)) (-4169 (((-1088 $) $ (-1005)) 125) (((-1088 |#1|) $) 124)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-2433 (($ $) 88 (|has| |#1| (-517)))) (-1568 (((-108) $) 90 (|has| |#1| (-517)))) (-1928 (((-713) $) 112) (((-713) $ (-592 (-1005))) 111)) (-3222 (((-3 $ "failed") $ $) 19)) (-3882 (($ $ $) 223 (|has| |#1| (-517)))) (-2426 (((-396 (-1088 $)) (-1088 $)) 100 (|has| |#1| (-844)))) (-4195 (($ $) 98 (|has| |#1| (-429)))) (-3586 (((-396 $) $) 97 (|has| |#1| (-429)))) (-3373 (((-3 (-592 (-1088 $)) "failed") (-592 (-1088 $)) (-1088 $)) 103 (|has| |#1| (-844)))) (-1507 (((-108) $ $) 208 (|has| |#1| (-341)))) (-3474 (($ $ (-713)) 231)) (-1911 (($ $ (-713)) 230)) (-1396 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-429)))) (-2475 (($) 17 T CONST)) (-1934 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-968 (-525)))) (((-3 (-1005) "failed") $) 136)) (-4105 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-968 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-968 (-525)))) (((-1005) $) 135)) (-3801 (($ $ $ (-1005)) 108 (|has| |#1| (-160))) ((|#1| $ $) 226 (|has| |#1| (-160)))) (-1356 (($ $ $) 212 (|has| |#1| (-341)))) (-1451 (($ $) 154)) (-3090 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 (-525))) (|:| |vec| (-1174 (-525)))) (-632 $) (-1174 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -4108 (-632 |#1|)) (|:| |vec| (-1174 |#1|))) (-632 $) (-1174 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-3300 (((-3 $ "failed") $) 34)) (-1332 (($ $ $) 211 (|has| |#1| (-341)))) (-2149 (($ $ $) 229)) (-2477 (($ $ $) 220 (|has| |#1| (-517)))) (-3830 (((-2 (|:| -2681 |#1|) (|:| -1416 $) (|:| -3681 $)) $ $) 219 (|has| |#1| (-517)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 206 (|has| |#1| (-341)))) (-3201 (($ $) 176 (|has| |#1| (-429))) (($ $ (-1005)) 105 (|has| |#1| (-429)))) (-1441 (((-592 $) $) 109)) (-1798 (((-108) $) 96 (|has| |#1| (-844)))) (-1457 (($ $ |#1| (-713) $) 172)) (-3552 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 84 (-12 (|has| (-1005) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 83 (-12 (|has| (-1005) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-4000 (((-713) $ $) 224 (|has| |#1| (-517)))) (-2278 (((-108) $) 31)) (-4025 (((-713) $) 169)) (-2878 (((-3 $ "failed") $) 204 (|has| |#1| (-1068)))) (-1284 (($ (-1088 |#1|) (-1005)) 117) (($ (-1088 $) (-1005)) 116)) (-1585 (($ $ (-713)) 235)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 215 (|has| |#1| (-341)))) (-2884 (((-592 $) $) 126)) (-2457 (((-108) $) 152)) (-1272 (($ |#1| (-713)) 153) (($ $ (-1005) (-713)) 119) (($ $ (-592 (-1005)) (-592 (-713))) 118)) (-3021 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $ (-1005)) 120) (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 233)) (-1819 (((-713) $) 170) (((-713) $ (-1005)) 122) (((-592 (-713)) $ (-592 (-1005))) 121)) (-3033 (($ $ $) 79 (|has| |#1| (-789)))) (-1609 (($ $ $) 78 (|has| |#1| (-789)))) (-1314 (($ (-1 (-713) (-713)) $) 171)) (-2016 (($ (-1 |#1| |#1|) $) 151)) (-2950 (((-1088 |#1|) $) 237)) (-2018 (((-3 (-1005) "failed") $) 123)) (-1418 (($ $) 149)) (-1430 ((|#1| $) 148)) (-2739 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-1289 (((-1075) $) 9)) (-1849 (((-2 (|:| -1416 $) (|:| -3681 $)) $ (-713)) 232)) (-2977 (((-3 (-592 $) "failed") $) 114)) (-3165 (((-3 (-592 $) "failed") $) 115)) (-1986 (((-3 (-2 (|:| |var| (-1005)) (|:| -2168 (-713))) "failed") $) 113)) (-2367 (($ $) 216 (|has| |#1| (-37 (-385 (-525)))))) (-2948 (($) 203 (|has| |#1| (-1068)) CONST)) (-3993 (((-1039) $) 10)) (-1399 (((-108) $) 166)) (-1407 ((|#1| $) 167)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 95 (|has| |#1| (-429)))) (-2772 (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-3089 (((-396 (-1088 $)) (-1088 $)) 102 (|has| |#1| (-844)))) (-3644 (((-396 (-1088 $)) (-1088 $)) 101 (|has| |#1| (-844)))) (-4201 (((-396 $) $) 99 (|has| |#1| (-844)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 213 (|has| |#1| (-341)))) (-1311 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 207 (|has| |#1| (-341)))) (-2825 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ (-1005) |#1|) 141) (($ $ (-592 (-1005)) (-592 |#1|)) 140) (($ $ (-1005) $) 139) (($ $ (-592 (-1005)) (-592 $)) 138)) (-1927 (((-713) $) 209 (|has| |#1| (-341)))) (-3431 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-385 $) (-385 $) (-385 $)) 225 (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) 217 (|has| |#1| (-341))) (((-385 $) $ (-385 $)) 205 (|has| |#1| (-517)))) (-1326 (((-3 $ "failed") $ (-713)) 234)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 210 (|has| |#1| (-341)))) (-4115 (($ $ (-1005)) 107 (|has| |#1| (-160))) ((|#1| $) 227 (|has| |#1| (-160)))) (-2702 (($ $ (-1005)) 42) (($ $ (-592 (-1005))) 41) (($ $ (-1005) (-713)) 40) (($ $ (-592 (-1005)) (-592 (-713))) 39) (($ $ (-713)) 253) (($ $) 251) (($ $ (-1092)) 250 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 249 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 248 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) 247 (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-3529 (((-713) $) 150) (((-713) $ (-1005)) 130) (((-592 (-713)) $ (-592 (-1005))) 129)) (-2069 (((-827 (-357)) $) 82 (-12 (|has| (-1005) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) 81 (-12 (|has| (-1005) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) 80 (-12 (|has| (-1005) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-1661 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ (-1005)) 106 (|has| |#1| (-429)))) (-3739 (((-3 (-1174 $) "failed") (-632 $)) 104 (-3944 (|has| $ (-136)) (|has| |#1| (-844))))) (-3070 (((-3 $ "failed") $ $) 222 (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) 221 (|has| |#1| (-517)))) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ (-1005)) 137) (($ (-385 (-525))) 72 (-2067 (|has| |#1| (-968 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))))) (($ $) 85 (|has| |#1| (-517)))) (-3137 (((-592 |#1|) $) 168)) (-3136 ((|#1| $ (-713)) 155) (($ $ (-1005) (-713)) 128) (($ $ (-592 (-1005)) (-592 (-713))) 127)) (-1463 (((-3 $ "failed") $) 73 (-2067 (-3944 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2448 (((-713)) 29)) (-4042 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-1571 (((-108) $ $) 89 (|has| |#1| (-517)))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $ (-1005)) 38) (($ $ (-592 (-1005))) 37) (($ $ (-1005) (-713)) 36) (($ $ (-592 (-1005)) (-592 (-713))) 35) (($ $ (-713)) 254) (($ $) 252) (($ $ (-1092)) 246 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092))) 245 (|has| |#1| (-835 (-1092)))) (($ $ (-1092) (-713)) 244 (|has| |#1| (-835 (-1092)))) (($ $ (-592 (-1092)) (-592 (-713))) 243 (|has| |#1| (-835 (-1092)))) (($ $ (-1 |#1| |#1|) (-713)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-2830 (((-108) $ $) 76 (|has| |#1| (-789)))) (-2807 (((-108) $ $) 75 (|has| |#1| (-789)))) (-2775 (((-108) $ $) 6)) (-2817 (((-108) $ $) 77 (|has| |#1| (-789)))) (-2795 (((-108) $ $) 74 (|has| |#1| (-789)))) (-2880 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
(((-1150 |#1|) (-131) (-977)) (T -1150))
-((-2315 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-1150 *4)) (-4 *4 (-977)) (-5 *2 (-1174 *4)))) (-1332 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-977)) (-5 *2 (-1088 *3)))) (-1801 (*1 *1 *2) (-12 (-5 *2 (-1088 *3)) (-4 *3 (-977)) (-4 *1 (-1150 *3)))) (-3326 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1150 *3)) (-4 *3 (-977)))) (-2173 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-713)) (-4 *1 (-1150 *3)) (-4 *3 (-977)))) (-2418 (*1 *2 *1 *1) (-12 (-4 *3 (-977)) (-5 *2 (-2 (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-1150 *3)))) (-3203 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *4 (-977)) (-5 *2 (-2 (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-1150 *4)))) (-2980 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1150 *3)) (-4 *3 (-977)))) (-3682 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1150 *3)) (-4 *3 (-977)))) (-3585 (*1 *1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)))) (-3376 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1150 *3)) (-4 *3 (-977)))) (-1975 (*1 *2 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-160)))) (-3377 (*1 *2 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-160)))) (-3406 (*1 *2 *2 *2) (-12 (-5 *2 (-385 *1)) (-4 *1 (-1150 *3)) (-4 *3 (-977)) (-4 *3 (-517)))) (-2581 (*1 *2 *1 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-977)) (-4 *3 (-517)) (-5 *2 (-713)))) (-4001 (*1 *1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-517)))) (-1561 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-517)))) (-1561 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-385 *1)) (-4 *1 (-1150 *3)) (-4 *3 (-977)) (-4 *3 (-517)))) (-2814 (*1 *1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-517)))) (-3696 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-5 *2 (-2 (|:| -3244 *3) (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-1150 *3)))) (-2181 (*1 *2 *1 *1) (-12 (-4 *3 (-429)) (-4 *3 (-977)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1150 *3)))) (-3406 (*1 *2 *3 *2) (-12 (-5 *3 (-385 *1)) (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-1206 (*1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525)))))))
-(-13 (-884 |t#1| (-713) (-1005)) (-265 |t#1| |t#1|) (-265 $ $) (-213) (-211 |t#1|) (-10 -8 (-15 -2315 ((-1174 |t#1|) $ (-713))) (-15 -1332 ((-1088 |t#1|) $)) (-15 -1801 ($ (-1088 |t#1|))) (-15 -3326 ($ $ (-713))) (-15 -2173 ((-3 $ "failed") $ (-713))) (-15 -2418 ((-2 (|:| -2829 $) (|:| -1607 $)) $ $)) (-15 -3203 ((-2 (|:| -2829 $) (|:| -1607 $)) $ (-713))) (-15 -2980 ($ $ (-713))) (-15 -3682 ($ $ (-713))) (-15 -3585 ($ $ $)) (-15 -3376 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1068)) (-6 (-1068)) |%noBranch|) (IF (|has| |t#1| (-160)) (PROGN (-15 -1975 (|t#1| $)) (-15 -3377 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-6 (-265 (-385 $) (-385 $))) (-15 -3406 ((-385 $) (-385 $) (-385 $))) (-15 -2581 ((-713) $ $)) (-15 -4001 ($ $ $)) (-15 -1561 ((-3 $ "failed") $ $)) (-15 -1561 ((-3 (-385 $) "failed") (-385 $) $)) (-15 -2814 ($ $ $)) (-15 -3696 ((-2 (|:| -3244 |t#1|) (|:| -2829 $) (|:| -1607 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-429)) (-15 -2181 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-6 (-286)) (-6 -4254) (-15 -3406 (|t#1| (-385 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (-15 -1206 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-713)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| (-1005) (-567 (-501))) (|has| |#1| (-567 (-501)))) ((-567 (-827 (-357))) -12 (|has| (-1005) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357))))) ((-567 (-827 (-525))) -12 (|has| (-1005) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525))))) ((-211 |#1|) . T) ((-213) . T) ((-265 (-385 $) (-385 $)) |has| |#1| (-517)) ((-265 |#1| |#1|) . T) ((-265 $ $) . T) ((-269) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-288 $) . T) ((-304 |#1| #0#) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3254 (|has| |#1| (-844)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-486 #2=(-1005) |#1|) . T) ((-486 #2# $) . T) ((-486 $ $) . T) ((-517) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-594 #1#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #1#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-835 #2#) . T) ((-835 (-1092)) |has| |#1| (-835 (-1092))) ((-821 (-357)) -12 (|has| (-1005) (-821 (-357))) (|has| |#1| (-821 (-357)))) ((-821 (-525)) -12 (|has| (-1005) (-821 (-525))) (|has| |#1| (-821 (-525)))) ((-884 |#1| #0# #2#) . T) ((-844) |has| |#1| (-844)) ((-855) |has| |#1| (-341)) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 #2#) . T) ((-968 |#1|) . T) ((-983 #1#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3254 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1068) |has| |#1| (-1068)) ((-1132) |has| |#1| (-844)))
-((-2897 (((-592 (-1005)) $) 28)) (-3063 (($ $) 25)) (-2876 (($ |#2| |#3|) NIL) (($ $ (-1005) |#3|) 22) (($ $ (-592 (-1005)) (-592 |#3|)) 21)) (-3031 (($ $) 14)) (-3043 ((|#2| $) 12)) (-2343 ((|#3| $) 10)))
-(((-1151 |#1| |#2| |#3|) (-10 -8 (-15 -2897 ((-592 (-1005)) |#1|)) (-15 -2876 (|#1| |#1| (-592 (-1005)) (-592 |#3|))) (-15 -2876 (|#1| |#1| (-1005) |#3|)) (-15 -3063 (|#1| |#1|)) (-15 -2876 (|#1| |#2| |#3|)) (-15 -2343 (|#3| |#1|)) (-15 -3031 (|#1| |#1|)) (-15 -3043 (|#2| |#1|))) (-1152 |#2| |#3|) (-977) (-734)) (T -1151))
-NIL
-(-10 -8 (-15 -2897 ((-592 (-1005)) |#1|)) (-15 -2876 (|#1| |#1| (-592 (-1005)) (-592 |#3|))) (-15 -2876 (|#1| |#1| (-1005) |#3|)) (-15 -3063 (|#1| |#1|)) (-15 -2876 (|#1| |#2| |#3|)) (-15 -2343 (|#3| |#1|)) (-15 -3031 (|#1| |#1|)) (-15 -3043 (|#2| |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2897 (((-592 (-1005)) $) 74)) (-2499 (((-1092) $) 103)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-4218 (($ $) 52 (|has| |#1| (-517)))) (-3171 (((-108) $) 54 (|has| |#1| (-517)))) (-3828 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-2755 (((-1073 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3063 (($ $) 60)) (-3457 (((-3 $ "failed") $) 34)) (-2398 (((-108) $) 73)) (-2581 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-1396 (((-108) $) 31)) (-3326 (($ $ (-856)) 101)) (-1212 (((-108) $) 62)) (-2876 (($ |#1| |#2|) 61) (($ $ (-1005) |#2|) 76) (($ $ (-592 (-1005)) (-592 |#2|)) 75)) (-3165 (($ (-1 |#1| |#1|) $) 63)) (-3031 (($ $) 65)) (-3043 ((|#1| $) 66)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-3931 (($ $ |#2|) 95)) (-1715 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2457 (((-1073 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-3406 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1032)))) (-3376 (($ $ (-592 (-1092)) (-592 (-713))) 89 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1092) (-713)) 88 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-592 (-1092))) 87 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1092)) 86 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2343 ((|#2| $) 64)) (-1489 (($ $) 72)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-1568 ((|#1| $ |#2|) 59)) (-3637 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-3917 (((-713)) 29)) (-1340 ((|#1| $) 102)) (-3325 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1454 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -1217 (|#1| (-1092))))))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $ (-592 (-1092)) (-592 (-713))) 93 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1092) (-713)) 92 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-592 (-1092))) 91 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1092)) 90 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3955 (((-108) $ $) 6)) (-4075 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
+((-3216 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-1150 *4)) (-4 *4 (-977)) (-5 *2 (-1174 *4)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-977)) (-5 *2 (-1088 *3)))) (-2954 (*1 *1 *2) (-12 (-5 *2 (-1088 *3)) (-4 *3 (-977)) (-4 *1 (-1150 *3)))) (-1585 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1150 *3)) (-4 *3 (-977)))) (-1326 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-713)) (-4 *1 (-1150 *3)) (-4 *3 (-977)))) (-3021 (*1 *2 *1 *1) (-12 (-4 *3 (-977)) (-5 *2 (-2 (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-1150 *3)))) (-1849 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *4 (-977)) (-5 *2 (-2 (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-1150 *4)))) (-3474 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1150 *3)) (-4 *3 (-977)))) (-1911 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1150 *3)) (-4 *3 (-977)))) (-2149 (*1 *1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)))) (-2702 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1150 *3)) (-4 *3 (-977)))) (-4115 (*1 *2 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-160)))) (-3801 (*1 *2 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-160)))) (-3431 (*1 *2 *2 *2) (-12 (-5 *2 (-385 *1)) (-4 *1 (-1150 *3)) (-4 *3 (-977)) (-4 *3 (-517)))) (-4000 (*1 *2 *1 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-977)) (-4 *3 (-517)) (-5 *2 (-713)))) (-3882 (*1 *1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-517)))) (-3070 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-517)))) (-3070 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-385 *1)) (-4 *1 (-1150 *3)) (-4 *3 (-977)) (-4 *3 (-517)))) (-2477 (*1 *1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-517)))) (-3830 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-5 *2 (-2 (|:| -2681 *3) (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-1150 *3)))) (-1396 (*1 *2 *1 *1) (-12 (-4 *3 (-429)) (-4 *3 (-977)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1150 *3)))) (-3431 (*1 *2 *3 *2) (-12 (-5 *3 (-385 *1)) (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-2367 (*1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525)))))))
+(-13 (-884 |t#1| (-713) (-1005)) (-265 |t#1| |t#1|) (-265 $ $) (-213) (-211 |t#1|) (-10 -8 (-15 -3216 ((-1174 |t#1|) $ (-713))) (-15 -2950 ((-1088 |t#1|) $)) (-15 -2954 ($ (-1088 |t#1|))) (-15 -1585 ($ $ (-713))) (-15 -1326 ((-3 $ "failed") $ (-713))) (-15 -3021 ((-2 (|:| -1416 $) (|:| -3681 $)) $ $)) (-15 -1849 ((-2 (|:| -1416 $) (|:| -3681 $)) $ (-713))) (-15 -3474 ($ $ (-713))) (-15 -1911 ($ $ (-713))) (-15 -2149 ($ $ $)) (-15 -2702 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1068)) (-6 (-1068)) |%noBranch|) (IF (|has| |t#1| (-160)) (PROGN (-15 -4115 (|t#1| $)) (-15 -3801 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-6 (-265 (-385 $) (-385 $))) (-15 -3431 ((-385 $) (-385 $) (-385 $))) (-15 -4000 ((-713) $ $)) (-15 -3882 ($ $ $)) (-15 -3070 ((-3 $ "failed") $ $)) (-15 -3070 ((-3 (-385 $) "failed") (-385 $) $)) (-15 -2477 ($ $ $)) (-15 -3830 ((-2 (|:| -2681 |t#1|) (|:| -1416 $) (|:| -3681 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-429)) (-15 -1396 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-6 (-286)) (-6 -4255) (-15 -3431 (|t#1| (-385 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (-15 -2367 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-713)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| (-1005) (-567 (-501))) (|has| |#1| (-567 (-501)))) ((-567 (-827 (-357))) -12 (|has| (-1005) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357))))) ((-567 (-827 (-525))) -12 (|has| (-1005) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525))))) ((-211 |#1|) . T) ((-213) . T) ((-265 (-385 $) (-385 $)) |has| |#1| (-517)) ((-265 |#1| |#1|) . T) ((-265 $ $) . T) ((-269) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-288 $) . T) ((-304 |#1| #0#) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -2067 (|has| |#1| (-844)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-486 #2=(-1005) |#1|) . T) ((-486 #2# $) . T) ((-486 $ $) . T) ((-517) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-594 #1#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #1#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-835 #2#) . T) ((-835 (-1092)) |has| |#1| (-835 (-1092))) ((-821 (-357)) -12 (|has| (-1005) (-821 (-357))) (|has| |#1| (-821 (-357)))) ((-821 (-525)) -12 (|has| (-1005) (-821 (-525))) (|has| |#1| (-821 (-525)))) ((-884 |#1| #0# #2#) . T) ((-844) |has| |#1| (-844)) ((-855) |has| |#1| (-341)) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 #2#) . T) ((-968 |#1|) . T) ((-983 #1#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -2067 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1068) |has| |#1| (-1068)) ((-1132) |has| |#1| (-844)))
+((-1296 (((-592 (-1005)) $) 28)) (-1451 (($ $) 25)) (-1272 (($ |#2| |#3|) NIL) (($ $ (-1005) |#3|) 22) (($ $ (-592 (-1005)) (-592 |#3|)) 21)) (-1418 (($ $) 14)) (-1430 ((|#2| $) 12)) (-3529 ((|#3| $) 10)))
+(((-1151 |#1| |#2| |#3|) (-10 -8 (-15 -1296 ((-592 (-1005)) |#1|)) (-15 -1272 (|#1| |#1| (-592 (-1005)) (-592 |#3|))) (-15 -1272 (|#1| |#1| (-1005) |#3|)) (-15 -1451 (|#1| |#1|)) (-15 -1272 (|#1| |#2| |#3|)) (-15 -3529 (|#3| |#1|)) (-15 -1418 (|#1| |#1|)) (-15 -1430 (|#2| |#1|))) (-1152 |#2| |#3|) (-977) (-734)) (T -1151))
+NIL
+(-10 -8 (-15 -1296 ((-592 (-1005)) |#1|)) (-15 -1272 (|#1| |#1| (-592 (-1005)) (-592 |#3|))) (-15 -1272 (|#1| |#1| (-1005) |#3|)) (-15 -1451 (|#1| |#1|)) (-15 -1272 (|#1| |#2| |#3|)) (-15 -3529 (|#3| |#1|)) (-15 -1418 (|#1| |#1|)) (-15 -1430 (|#2| |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-1296 (((-592 (-1005)) $) 74)) (-3469 (((-1092) $) 103)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-2433 (($ $) 52 (|has| |#1| (-517)))) (-1568 (((-108) $) 54 (|has| |#1| (-517)))) (-2730 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-2005 (((-1073 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1451 (($ $) 60)) (-3300 (((-3 $ "failed") $) 34)) (-2853 (((-108) $) 73)) (-4000 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-2278 (((-108) $) 31)) (-1585 (($ $ (-856)) 101)) (-2457 (((-108) $) 62)) (-1272 (($ |#1| |#2|) 61) (($ $ (-1005) |#2|) 76) (($ $ (-592 (-1005)) (-592 |#2|)) 75)) (-2016 (($ (-1 |#1| |#1|) $) 63)) (-1418 (($ $) 65)) (-1430 ((|#1| $) 66)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1397 (($ $ |#2|) 95)) (-1311 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2825 (((-1073 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-3431 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1032)))) (-2702 (($ $ (-592 (-1092)) (-592 (-713))) 89 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1092) (-713)) 88 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-592 (-1092))) 87 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1092)) 86 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3529 ((|#2| $) 64)) (-3926 (($ $) 72)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-3136 ((|#1| $ |#2|) 59)) (-1463 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2448 (((-713)) 29)) (-1423 ((|#1| $) 102)) (-1571 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1485 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4100 (|#1| (-1092))))))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $ (-592 (-1092)) (-592 (-713))) 93 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1092) (-713)) 92 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-592 (-1092))) 91 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1092)) 90 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2775 (((-108) $ $) 6)) (-2880 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
(((-1152 |#1| |#2|) (-131) (-977) (-734)) (T -1152))
-((-2755 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-5 *2 (-1073 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3406 (*1 *2 *1 *3) (-12 (-4 *1 (-1152 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)))) (-2499 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-5 *2 (-1092)))) (-1340 (*1 *2 *1) (-12 (-4 *1 (-1152 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)))) (-3326 (*1 *1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-1152 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-2581 (*1 *2 *1 *2) (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-3828 (*1 *1 *1 *2) (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-3828 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-1454 (*1 *2 *1 *3) (-12 (-4 *1 (-1152 *2 *3)) (-4 *3 (-734)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1217 (*2 (-1092)))) (-4 *2 (-977)))) (-3931 (*1 *1 *1 *2) (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-2457 (*1 *2 *1 *3) (-12 (-4 *1 (-1152 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1073 *3)))))
-(-13 (-906 |t#1| |t#2| (-1005)) (-10 -8 (-15 -2755 ((-1073 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3406 (|t#1| $ |t#2|)) (-15 -2499 ((-1092) $)) (-15 -1340 (|t#1| $)) (-15 -3326 ($ $ (-856))) (-15 -2581 (|t#2| $)) (-15 -2581 (|t#2| $ |t#2|)) (-15 -3828 ($ $ |t#2|)) (-15 -3828 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -1217 (|t#1| (-1092)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1454 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3931 ($ $ |t#2|)) (IF (|has| |t#2| (-1032)) (-6 (-265 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-213)) (IF (|has| |t#1| (-835 (-1092))) (-6 (-835 (-1092))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2457 ((-1073 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3254 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3254 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-265 $ $) |has| |#2| (-1032)) ((-269) |has| |#1| (-517)) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-835 (-1092)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-835 (-1092)))) ((-906 |#1| |#2| (-1005)) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-1286 ((|#2| |#2|) 12)) (-2669 (((-396 |#2|) |#2|) 14)) (-2380 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525)))) 30)))
-(((-1153 |#1| |#2|) (-10 -7 (-15 -2669 ((-396 |#2|) |#2|)) (-15 -1286 (|#2| |#2|)) (-15 -2380 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525)))))) (-517) (-13 (-1150 |#1|) (-517) (-10 -8 (-15 -2589 ($ $ $))))) (T -1153))
-((-2380 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-525)))) (-4 *4 (-13 (-1150 *3) (-517) (-10 -8 (-15 -2589 ($ $ $))))) (-4 *3 (-517)) (-5 *1 (-1153 *3 *4)))) (-1286 (*1 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-13 (-1150 *3) (-517) (-10 -8 (-15 -2589 ($ $ $))))))) (-2669 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-1153 *4 *3)) (-4 *3 (-13 (-1150 *4) (-517) (-10 -8 (-15 -2589 ($ $ $))))))))
-(-10 -7 (-15 -2669 ((-396 |#2|) |#2|)) (-15 -1286 (|#2| |#2|)) (-15 -2380 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))))))
-((-3165 (((-1159 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1159 |#1| |#3| |#5|)) 24)))
-(((-1154 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3165 ((-1159 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1159 |#1| |#3| |#5|)))) (-977) (-977) (-1092) (-1092) |#1| |#2|) (T -1154))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1159 *5 *7 *9)) (-4 *5 (-977)) (-4 *6 (-977)) (-14 *7 (-1092)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1159 *6 *8 *10)) (-5 *1 (-1154 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1092)))))
-(-10 -7 (-15 -3165 ((-1159 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1159 |#1| |#3| |#5|))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2897 (((-592 (-1005)) $) 74)) (-2499 (((-1092) $) 103)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-4218 (($ $) 52 (|has| |#1| (-517)))) (-3171 (((-108) $) 54 (|has| |#1| (-517)))) (-3828 (($ $ (-385 (-525))) 98) (($ $ (-385 (-525)) (-385 (-525))) 97)) (-2755 (((-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 105)) (-1575 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-2804 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-1578 (((-3 $ "failed") $ $) 19)) (-1286 (($ $) 162 (|has| |#1| (-341)))) (-2669 (((-396 $) $) 163 (|has| |#1| (-341)))) (-2782 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-2193 (((-108) $ $) 153 (|has| |#1| (-341)))) (-1549 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-2780 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-2598 (($ (-713) (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) 172)) (-1599 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2836 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2169 (($) 17 T CONST)) (-1747 (($ $ $) 157 (|has| |#1| (-341)))) (-3063 (($ $) 60)) (-3457 (((-3 $ "failed") $) 34)) (-1733 (($ $ $) 156 (|has| |#1| (-341)))) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-3673 (((-108) $) 164 (|has| |#1| (-341)))) (-2398 (((-108) $) 73)) (-3140 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-2581 (((-385 (-525)) $) 100) (((-385 (-525)) $ (-385 (-525))) 99)) (-1396 (((-108) $) 31)) (-2171 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-3326 (($ $ (-856)) 101) (($ $ (-385 (-525))) 171)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-1212 (((-108) $) 62)) (-2876 (($ |#1| (-385 (-525))) 61) (($ $ (-1005) (-385 (-525))) 76) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) 75)) (-3165 (($ (-1 |#1| |#1|) $) 63)) (-1517 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-3031 (($ $) 65)) (-3043 ((|#1| $) 66)) (-2556 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-2619 (((-1075) $) 9)) (-2997 (($ $) 165 (|has| |#1| (-341)))) (-1206 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) 169 (-3254 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-893)) (|has| |#1| (-1114)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -2897 ((-592 (-1092)) |#1|))) (|has| |#1| (-15 -1206 (|#1| |#1| (-1092)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 150 (|has| |#1| (-341)))) (-2589 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-2770 (((-396 $) $) 161 (|has| |#1| (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 158 (|has| |#1| (-341)))) (-3931 (($ $ (-385 (-525))) 95)) (-1715 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-3096 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (((-1073 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-3684 (((-713) $) 154 (|has| |#1| (-341)))) (-3406 ((|#1| $ (-385 (-525))) 104) (($ $ $) 81 (|has| (-385 (-525)) (-1032)))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 155 (|has| |#1| (-341)))) (-3376 (($ $ (-592 (-1092)) (-592 (-713))) 89 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1092) (-713)) 88 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1092))) 87 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1092)) 86 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2343 (((-385 (-525)) $) 64)) (-1609 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-1447 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-1587 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-2815 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-1562 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-2794 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1489 (($ $) 72)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-1568 ((|#1| $ (-385 (-525))) 59)) (-3637 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-3917 (((-713)) 29)) (-1340 ((|#1| $) 102)) (-1649 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-1492 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1630 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-1465 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-1669 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-1522 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-1454 ((|#1| $ (-385 (-525))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1217 (|#1| (-1092))))))) (-2359 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-1537 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-1659 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-1506 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-1639 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-1479 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $ (-592 (-1092)) (-592 (-713))) 93 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1092) (-713)) 92 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1092))) 91 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1092)) 90 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3955 (((-108) $ $) 6)) (-4075 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
+((-2005 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-5 *2 (-1073 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3431 (*1 *2 *1 *3) (-12 (-4 *1 (-1152 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-5 *2 (-1092)))) (-1423 (*1 *2 *1) (-12 (-4 *1 (-1152 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)))) (-1585 (*1 *1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-1152 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-4000 (*1 *2 *1 *2) (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-2730 (*1 *1 *1 *2) (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-2730 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-1485 (*1 *2 *1 *3) (-12 (-4 *1 (-1152 *2 *3)) (-4 *3 (-734)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4100 (*2 (-1092)))) (-4 *2 (-977)))) (-1397 (*1 *1 *1 *2) (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-2825 (*1 *2 *1 *3) (-12 (-4 *1 (-1152 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1073 *3)))))
+(-13 (-906 |t#1| |t#2| (-1005)) (-10 -8 (-15 -2005 ((-1073 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3431 (|t#1| $ |t#2|)) (-15 -3469 ((-1092) $)) (-15 -1423 (|t#1| $)) (-15 -1585 ($ $ (-856))) (-15 -4000 (|t#2| $)) (-15 -4000 (|t#2| $ |t#2|)) (-15 -2730 ($ $ |t#2|)) (-15 -2730 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4100 (|t#1| (-1092)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1485 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1397 ($ $ |t#2|)) (IF (|has| |t#2| (-1032)) (-6 (-265 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-213)) (IF (|has| |t#1| (-835 (-1092))) (-6 (-835 (-1092))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2825 ((-1073 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -2067 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -2067 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-265 $ $) |has| |#2| (-1032)) ((-269) |has| |#1| (-517)) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-835 (-1092)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-835 (-1092)))) ((-906 |#1| |#2| (-1005)) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-4195 ((|#2| |#2|) 12)) (-3586 (((-396 |#2|) |#2|) 14)) (-2684 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525)))) 30)))
+(((-1153 |#1| |#2|) (-10 -7 (-15 -3586 ((-396 |#2|) |#2|)) (-15 -4195 (|#2| |#2|)) (-15 -2684 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525)))))) (-517) (-13 (-1150 |#1|) (-517) (-10 -8 (-15 -2772 ($ $ $))))) (T -1153))
+((-2684 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-525)))) (-4 *4 (-13 (-1150 *3) (-517) (-10 -8 (-15 -2772 ($ $ $))))) (-4 *3 (-517)) (-5 *1 (-1153 *3 *4)))) (-4195 (*1 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-13 (-1150 *3) (-517) (-10 -8 (-15 -2772 ($ $ $))))))) (-3586 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-1153 *4 *3)) (-4 *3 (-13 (-1150 *4) (-517) (-10 -8 (-15 -2772 ($ $ $))))))))
+(-10 -7 (-15 -3586 ((-396 |#2|) |#2|)) (-15 -4195 (|#2| |#2|)) (-15 -2684 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))))))
+((-2016 (((-1159 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1159 |#1| |#3| |#5|)) 24)))
+(((-1154 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2016 ((-1159 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1159 |#1| |#3| |#5|)))) (-977) (-977) (-1092) (-1092) |#1| |#2|) (T -1154))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1159 *5 *7 *9)) (-4 *5 (-977)) (-4 *6 (-977)) (-14 *7 (-1092)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1159 *6 *8 *10)) (-5 *1 (-1154 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1092)))))
+(-10 -7 (-15 -2016 ((-1159 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1159 |#1| |#3| |#5|))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-1296 (((-592 (-1005)) $) 74)) (-3469 (((-1092) $) 103)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-2433 (($ $) 52 (|has| |#1| (-517)))) (-1568 (((-108) $) 54 (|has| |#1| (-517)))) (-2730 (($ $ (-385 (-525))) 98) (($ $ (-385 (-525)) (-385 (-525))) 97)) (-2005 (((-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 105)) (-1803 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-3659 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3222 (((-3 $ "failed") $ $) 19)) (-4195 (($ $) 162 (|has| |#1| (-341)))) (-3586 (((-396 $) $) 163 (|has| |#1| (-341)))) (-4211 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-1507 (((-108) $ $) 153 (|has| |#1| (-341)))) (-1781 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-3638 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-2996 (($ (-713) (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) 172)) (-1828 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-3698 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2475 (($) 17 T CONST)) (-1356 (($ $ $) 157 (|has| |#1| (-341)))) (-1451 (($ $) 60)) (-3300 (((-3 $ "failed") $) 34)) (-1332 (($ $ $) 156 (|has| |#1| (-341)))) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-1798 (((-108) $) 164 (|has| |#1| (-341)))) (-2853 (((-108) $) 73)) (-4106 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-4000 (((-385 (-525)) $) 100) (((-385 (-525)) $ (-385 (-525))) 99)) (-2278 (((-108) $) 31)) (-1303 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-1585 (($ $ (-856)) 101) (($ $ (-385 (-525))) 171)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-2457 (((-108) $) 62)) (-1272 (($ |#1| (-385 (-525))) 61) (($ $ (-1005) (-385 (-525))) 76) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) 75)) (-2016 (($ (-1 |#1| |#1|) $) 63)) (-2533 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-1418 (($ $) 65)) (-1430 ((|#1| $) 66)) (-2739 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-1289 (((-1075) $) 9)) (-1387 (($ $) 165 (|has| |#1| (-341)))) (-2367 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) 169 (-2067 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-893)) (|has| |#1| (-1114)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -1296 ((-592 (-1092)) |#1|))) (|has| |#1| (-15 -2367 (|#1| |#1| (-1092)))) (|has| |#1| (-37 (-385 (-525)))))))) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 150 (|has| |#1| (-341)))) (-2772 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-4201 (((-396 $) $) 161 (|has| |#1| (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 158 (|has| |#1| (-341)))) (-1397 (($ $ (-385 (-525))) 95)) (-1311 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-1618 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2825 (((-1073 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-1927 (((-713) $) 154 (|has| |#1| (-341)))) (-3431 ((|#1| $ (-385 (-525))) 104) (($ $ $) 81 (|has| (-385 (-525)) (-1032)))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 155 (|has| |#1| (-341)))) (-2702 (($ $ (-592 (-1092)) (-592 (-713))) 89 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1092) (-713)) 88 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1092))) 87 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1092)) 86 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3529 (((-385 (-525)) $) 64)) (-1841 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-3798 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-1816 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3678 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-1792 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-3649 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-3926 (($ $) 72)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-3136 ((|#1| $ (-385 (-525))) 59)) (-1463 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2448 (((-713)) 29)) (-1423 ((|#1| $) 102)) (-1876 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3853 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1853 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-1902 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-1760 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-1485 ((|#1| $ (-385 (-525))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -4100 (|#1| (-1092))))))) (-3135 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-1891 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-1748 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-1866 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-3820 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $ (-592 (-1092)) (-592 (-713))) 93 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1092) (-713)) 92 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1092))) 91 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1092)) 90 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2775 (((-108) $ $) 6)) (-2880 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
(((-1155 |#1|) (-131) (-977)) (T -1155))
-((-2598 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4)))) (-4 *4 (-977)) (-4 *1 (-1155 *4)))) (-3326 (*1 *1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-1155 *3)) (-4 *3 (-977)))) (-1206 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525)))))) (-1206 (*1 *1 *1 *2) (-3254 (-12 (-5 *2 (-1092)) (-4 *1 (-1155 *3)) (-4 *3 (-977)) (-12 (-4 *3 (-29 (-525))) (-4 *3 (-893)) (-4 *3 (-1114)) (-4 *3 (-37 (-385 (-525)))))) (-12 (-5 *2 (-1092)) (-4 *1 (-1155 *3)) (-4 *3 (-977)) (-12 (|has| *3 (-15 -2897 ((-592 *2) *3))) (|has| *3 (-15 -1206 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525)))))))))
-(-13 (-1152 |t#1| (-385 (-525))) (-10 -8 (-15 -2598 ($ (-713) (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |t#1|))))) (-15 -3326 ($ $ (-385 (-525)))) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -1206 ($ $)) (IF (|has| |t#1| (-15 -1206 (|t#1| |t#1| (-1092)))) (IF (|has| |t#1| (-15 -2897 ((-592 (-1092)) |t#1|))) (-15 -1206 ($ $ (-1092))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1114)) (IF (|has| |t#1| (-893)) (IF (|has| |t#1| (-29 (-525))) (-15 -1206 ($ $ (-1092))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-934)) (-6 (-1114))) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-385 (-525))) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3254 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3254 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-385 (-525)) (-1032)) ((-269) -3254 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-341) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) -3254 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-835 (-1092)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092)))) ((-906 |#1| #0# (-1005)) . T) ((-855) |has| |#1| (-341)) ((-934) |has| |#1| (-37 (-385 (-525)))) ((-983 #1#) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-983 |#1|) . T) ((-983 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1114) |has| |#1| (-37 (-385 (-525)))) ((-1117) |has| |#1| (-37 (-385 (-525)))) ((-1132) |has| |#1| (-341)) ((-1152 |#1| #0#) . T))
-((-1209 (((-108) $) 12)) (-3077 (((-3 |#3| "failed") $) 17)) (-1572 ((|#3| $) 14)))
-(((-1156 |#1| |#2| |#3|) (-10 -8 (-15 -1572 (|#3| |#1|)) (-15 -3077 ((-3 |#3| "failed") |#1|)) (-15 -1209 ((-108) |#1|))) (-1157 |#2| |#3|) (-977) (-1134 |#2|)) (T -1156))
-NIL
-(-10 -8 (-15 -1572 (|#3| |#1|)) (-15 -3077 ((-3 |#3| "failed") |#1|)) (-15 -1209 ((-108) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2897 (((-592 (-1005)) $) 74)) (-2499 (((-1092) $) 103)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-4218 (($ $) 52 (|has| |#1| (-517)))) (-3171 (((-108) $) 54 (|has| |#1| (-517)))) (-3828 (($ $ (-385 (-525))) 98) (($ $ (-385 (-525)) (-385 (-525))) 97)) (-2755 (((-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 105)) (-1575 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-2804 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-1578 (((-3 $ "failed") $ $) 19)) (-1286 (($ $) 162 (|has| |#1| (-341)))) (-2669 (((-396 $) $) 163 (|has| |#1| (-341)))) (-2782 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-2193 (((-108) $ $) 153 (|has| |#1| (-341)))) (-1549 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-2780 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-2598 (($ (-713) (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) 172)) (-1599 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2836 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2169 (($) 17 T CONST)) (-3077 (((-3 |#2| "failed") $) 183)) (-1572 ((|#2| $) 182)) (-1747 (($ $ $) 157 (|has| |#1| (-341)))) (-3063 (($ $) 60)) (-3457 (((-3 $ "failed") $) 34)) (-4177 (((-385 (-525)) $) 180)) (-1733 (($ $ $) 156 (|has| |#1| (-341)))) (-2973 (($ (-385 (-525)) |#2|) 181)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-3673 (((-108) $) 164 (|has| |#1| (-341)))) (-2398 (((-108) $) 73)) (-3140 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-2581 (((-385 (-525)) $) 100) (((-385 (-525)) $ (-385 (-525))) 99)) (-1396 (((-108) $) 31)) (-2171 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-3326 (($ $ (-856)) 101) (($ $ (-385 (-525))) 171)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-1212 (((-108) $) 62)) (-2876 (($ |#1| (-385 (-525))) 61) (($ $ (-1005) (-385 (-525))) 76) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) 75)) (-3165 (($ (-1 |#1| |#1|) $) 63)) (-1517 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-3031 (($ $) 65)) (-3043 ((|#1| $) 66)) (-2556 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-2279 ((|#2| $) 179)) (-1520 (((-3 |#2| "failed") $) 177)) (-2962 ((|#2| $) 178)) (-2619 (((-1075) $) 9)) (-2997 (($ $) 165 (|has| |#1| (-341)))) (-1206 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) 169 (-3254 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-893)) (|has| |#1| (-1114)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -2897 ((-592 (-1092)) |#1|))) (|has| |#1| (-15 -1206 (|#1| |#1| (-1092)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 150 (|has| |#1| (-341)))) (-2589 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-2770 (((-396 $) $) 161 (|has| |#1| (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 158 (|has| |#1| (-341)))) (-3931 (($ $ (-385 (-525))) 95)) (-1715 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-3096 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (((-1073 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-3684 (((-713) $) 154 (|has| |#1| (-341)))) (-3406 ((|#1| $ (-385 (-525))) 104) (($ $ $) 81 (|has| (-385 (-525)) (-1032)))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 155 (|has| |#1| (-341)))) (-3376 (($ $ (-592 (-1092)) (-592 (-713))) 89 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1092) (-713)) 88 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1092))) 87 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1092)) 86 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2343 (((-385 (-525)) $) 64)) (-1609 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-1447 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-1587 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-2815 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-1562 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-2794 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1489 (($ $) 72)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ |#2|) 184) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-1568 ((|#1| $ (-385 (-525))) 59)) (-3637 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-3917 (((-713)) 29)) (-1340 ((|#1| $) 102)) (-1649 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-1492 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1630 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-1465 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-1669 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-1522 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-1454 ((|#1| $ (-385 (-525))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1217 (|#1| (-1092))))))) (-2359 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-1537 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-1659 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-1506 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-1639 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-1479 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $ (-592 (-1092)) (-592 (-713))) 93 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1092) (-713)) 92 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1092))) 91 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1092)) 90 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3955 (((-108) $ $) 6)) (-4075 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
+((-2996 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4)))) (-4 *4 (-977)) (-4 *1 (-1155 *4)))) (-1585 (*1 *1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-1155 *3)) (-4 *3 (-977)))) (-2367 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525)))))) (-2367 (*1 *1 *1 *2) (-2067 (-12 (-5 *2 (-1092)) (-4 *1 (-1155 *3)) (-4 *3 (-977)) (-12 (-4 *3 (-29 (-525))) (-4 *3 (-893)) (-4 *3 (-1114)) (-4 *3 (-37 (-385 (-525)))))) (-12 (-5 *2 (-1092)) (-4 *1 (-1155 *3)) (-4 *3 (-977)) (-12 (|has| *3 (-15 -1296 ((-592 *2) *3))) (|has| *3 (-15 -2367 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525)))))))))
+(-13 (-1152 |t#1| (-385 (-525))) (-10 -8 (-15 -2996 ($ (-713) (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |t#1|))))) (-15 -1585 ($ $ (-385 (-525)))) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -2367 ($ $)) (IF (|has| |t#1| (-15 -2367 (|t#1| |t#1| (-1092)))) (IF (|has| |t#1| (-15 -1296 ((-592 (-1092)) |t#1|))) (-15 -2367 ($ $ (-1092))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1114)) (IF (|has| |t#1| (-893)) (IF (|has| |t#1| (-29 (-525))) (-15 -2367 ($ $ (-1092))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-934)) (-6 (-1114))) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-385 (-525))) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -2067 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -2067 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-385 (-525)) (-1032)) ((-269) -2067 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-341) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) -2067 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-835 (-1092)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092)))) ((-906 |#1| #0# (-1005)) . T) ((-855) |has| |#1| (-341)) ((-934) |has| |#1| (-37 (-385 (-525)))) ((-983 #1#) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-983 |#1|) . T) ((-983 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1114) |has| |#1| (-37 (-385 (-525)))) ((-1117) |has| |#1| (-37 (-385 (-525)))) ((-1132) |has| |#1| (-341)) ((-1152 |#1| #0#) . T))
+((-2414 (((-108) $) 12)) (-1934 (((-3 |#3| "failed") $) 17)) (-4105 ((|#3| $) 14)))
+(((-1156 |#1| |#2| |#3|) (-10 -8 (-15 -4105 (|#3| |#1|)) (-15 -1934 ((-3 |#3| "failed") |#1|)) (-15 -2414 ((-108) |#1|))) (-1157 |#2| |#3|) (-977) (-1134 |#2|)) (T -1156))
+NIL
+(-10 -8 (-15 -4105 (|#3| |#1|)) (-15 -1934 ((-3 |#3| "failed") |#1|)) (-15 -2414 ((-108) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-1296 (((-592 (-1005)) $) 74)) (-3469 (((-1092) $) 103)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-2433 (($ $) 52 (|has| |#1| (-517)))) (-1568 (((-108) $) 54 (|has| |#1| (-517)))) (-2730 (($ $ (-385 (-525))) 98) (($ $ (-385 (-525)) (-385 (-525))) 97)) (-2005 (((-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 105)) (-1803 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-3659 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3222 (((-3 $ "failed") $ $) 19)) (-4195 (($ $) 162 (|has| |#1| (-341)))) (-3586 (((-396 $) $) 163 (|has| |#1| (-341)))) (-4211 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-1507 (((-108) $ $) 153 (|has| |#1| (-341)))) (-1781 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-3638 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-2996 (($ (-713) (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) 172)) (-1828 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-3698 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2475 (($) 17 T CONST)) (-1934 (((-3 |#2| "failed") $) 183)) (-4105 ((|#2| $) 182)) (-1356 (($ $ $) 157 (|has| |#1| (-341)))) (-1451 (($ $) 60)) (-3300 (((-3 $ "failed") $) 34)) (-2040 (((-385 (-525)) $) 180)) (-1332 (($ $ $) 156 (|has| |#1| (-341)))) (-1368 (($ (-385 (-525)) |#2|) 181)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-1798 (((-108) $) 164 (|has| |#1| (-341)))) (-2853 (((-108) $) 73)) (-4106 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-4000 (((-385 (-525)) $) 100) (((-385 (-525)) $ (-385 (-525))) 99)) (-2278 (((-108) $) 31)) (-1303 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-1585 (($ $ (-856)) 101) (($ $ (-385 (-525))) 171)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-2457 (((-108) $) 62)) (-1272 (($ |#1| (-385 (-525))) 61) (($ $ (-1005) (-385 (-525))) 76) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) 75)) (-2016 (($ (-1 |#1| |#1|) $) 63)) (-2533 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-1418 (($ $) 65)) (-1430 ((|#1| $) 66)) (-2739 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-4144 ((|#2| $) 179)) (-1817 (((-3 |#2| "failed") $) 177)) (-1361 ((|#2| $) 178)) (-1289 (((-1075) $) 9)) (-1387 (($ $) 165 (|has| |#1| (-341)))) (-2367 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) 169 (-2067 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-893)) (|has| |#1| (-1114)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -1296 ((-592 (-1092)) |#1|))) (|has| |#1| (-15 -2367 (|#1| |#1| (-1092)))) (|has| |#1| (-37 (-385 (-525)))))))) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 150 (|has| |#1| (-341)))) (-2772 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-4201 (((-396 $) $) 161 (|has| |#1| (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 158 (|has| |#1| (-341)))) (-1397 (($ $ (-385 (-525))) 95)) (-1311 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-1618 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2825 (((-1073 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-1927 (((-713) $) 154 (|has| |#1| (-341)))) (-3431 ((|#1| $ (-385 (-525))) 104) (($ $ $) 81 (|has| (-385 (-525)) (-1032)))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 155 (|has| |#1| (-341)))) (-2702 (($ $ (-592 (-1092)) (-592 (-713))) 89 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1092) (-713)) 88 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1092))) 87 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1092)) 86 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3529 (((-385 (-525)) $) 64)) (-1841 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-3798 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-1816 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3678 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-1792 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-3649 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-3926 (($ $) 72)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ |#2|) 184) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-3136 ((|#1| $ (-385 (-525))) 59)) (-1463 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2448 (((-713)) 29)) (-1423 ((|#1| $) 102)) (-1876 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3853 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1853 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-1902 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-1760 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-1485 ((|#1| $ (-385 (-525))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -4100 (|#1| (-1092))))))) (-3135 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-1891 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-1748 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-1866 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-3820 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $ (-592 (-1092)) (-592 (-713))) 93 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1092) (-713)) 92 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1092))) 91 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1092)) 90 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2775 (((-108) $ $) 6)) (-2880 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
(((-1157 |#1| |#2|) (-131) (-977) (-1134 |t#1|)) (T -1157))
-((-2343 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1134 *3)) (-5 *2 (-385 (-525))))) (-1217 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *1 (-1157 *3 *2)) (-4 *2 (-1134 *3)))) (-2973 (*1 *1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-4 *4 (-977)) (-4 *1 (-1157 *4 *3)) (-4 *3 (-1134 *4)))) (-4177 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1134 *3)) (-5 *2 (-385 (-525))))) (-2279 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1134 *3)))) (-2962 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1134 *3)))) (-1520 (*1 *2 *1) (|partial| -12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1134 *3)))))
-(-13 (-1155 |t#1|) (-968 |t#2|) (-10 -8 (-15 -2973 ($ (-385 (-525)) |t#2|)) (-15 -4177 ((-385 (-525)) $)) (-15 -2279 (|t#2| $)) (-15 -2343 ((-385 (-525)) $)) (-15 -1217 ($ |t#2|)) (-15 -2962 (|t#2| $)) (-15 -1520 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-385 (-525))) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3254 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3254 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-385 (-525)) (-1032)) ((-269) -3254 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-341) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) -3254 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-835 (-1092)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092)))) ((-906 |#1| #0# (-1005)) . T) ((-855) |has| |#1| (-341)) ((-934) |has| |#1| (-37 (-385 (-525)))) ((-968 |#2|) . T) ((-983 #1#) -3254 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-983 |#1|) . T) ((-983 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1114) |has| |#1| (-37 (-385 (-525)))) ((-1117) |has| |#1| (-37 (-385 (-525)))) ((-1132) |has| |#1| (-341)) ((-1152 |#1| #0#) . T) ((-1155 |#1|) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2897 (((-592 (-1005)) $) NIL)) (-2499 (((-1092) $) 96)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-3828 (($ $ (-385 (-525))) 106) (($ $ (-385 (-525)) (-385 (-525))) 108)) (-2755 (((-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 51)) (-1575 (($ $) 180 (|has| |#1| (-37 (-385 (-525)))))) (-2804 (($ $) 156 (|has| |#1| (-37 (-385 (-525)))))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL (|has| |#1| (-341)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2782 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2193 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1549 (($ $) 176 (|has| |#1| (-37 (-385 (-525)))))) (-2780 (($ $) 152 (|has| |#1| (-37 (-385 (-525)))))) (-2598 (($ (-713) (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) 61)) (-1599 (($ $) 184 (|has| |#1| (-37 (-385 (-525)))))) (-2836 (($ $) 160 (|has| |#1| (-37 (-385 (-525)))))) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#2| "failed") $) NIL)) (-1572 ((|#2| $) NIL)) (-1747 (($ $ $) NIL (|has| |#1| (-341)))) (-3063 (($ $) NIL)) (-3457 (((-3 $ "failed") $) 79)) (-4177 (((-385 (-525)) $) 13)) (-1733 (($ $ $) NIL (|has| |#1| (-341)))) (-2973 (($ (-385 (-525)) |#2|) 11)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3673 (((-108) $) NIL (|has| |#1| (-341)))) (-2398 (((-108) $) 68)) (-3140 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2581 (((-385 (-525)) $) 103) (((-385 (-525)) $ (-385 (-525))) 104)) (-1396 (((-108) $) NIL)) (-2171 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3326 (($ $ (-856)) 120) (($ $ (-385 (-525))) 118)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-385 (-525))) 31) (($ $ (-1005) (-385 (-525))) NIL) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) NIL)) (-3165 (($ (-1 |#1| |#1|) $) 115)) (-1517 (($ $) 150 (|has| |#1| (-37 (-385 (-525)))))) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2279 ((|#2| $) 12)) (-1520 (((-3 |#2| "failed") $) 41)) (-2962 ((|#2| $) 42)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) 93 (|has| |#1| (-341)))) (-1206 (($ $) 135 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) 140 (-3254 (-12 (|has| |#1| (-15 -1206 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -2897 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114)))))) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2770 (((-396 $) $) NIL (|has| |#1| (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-3931 (($ $ (-385 (-525))) 112)) (-1715 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-3096 (($ $) 148 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (((-1073 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-3684 (((-713) $) NIL (|has| |#1| (-341)))) (-3406 ((|#1| $ (-385 (-525))) 100) (($ $ $) 86 (|has| (-385 (-525)) (-1032)))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-341)))) (-3376 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) 127 (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2343 (((-385 (-525)) $) 16)) (-1609 (($ $) 186 (|has| |#1| (-37 (-385 (-525)))))) (-1447 (($ $) 162 (|has| |#1| (-37 (-385 (-525)))))) (-1587 (($ $) 182 (|has| |#1| (-37 (-385 (-525)))))) (-2815 (($ $) 158 (|has| |#1| (-37 (-385 (-525)))))) (-1562 (($ $) 178 (|has| |#1| (-37 (-385 (-525)))))) (-2794 (($ $) 154 (|has| |#1| (-37 (-385 (-525)))))) (-1489 (($ $) 110)) (-1217 (((-798) $) NIL) (($ (-525)) 35) (($ |#1|) 27 (|has| |#1| (-160))) (($ |#2|) 32) (($ (-385 (-525))) 128 (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-1568 ((|#1| $ (-385 (-525))) 99)) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) 117)) (-1340 ((|#1| $) 98)) (-1649 (($ $) 192 (|has| |#1| (-37 (-385 (-525)))))) (-1492 (($ $) 168 (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1630 (($ $) 188 (|has| |#1| (-37 (-385 (-525)))))) (-1465 (($ $) 164 (|has| |#1| (-37 (-385 (-525)))))) (-1669 (($ $) 196 (|has| |#1| (-37 (-385 (-525)))))) (-1522 (($ $) 172 (|has| |#1| (-37 (-385 (-525)))))) (-1454 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1217 (|#1| (-1092))))))) (-2359 (($ $) 198 (|has| |#1| (-37 (-385 (-525)))))) (-1537 (($ $) 174 (|has| |#1| (-37 (-385 (-525)))))) (-1659 (($ $) 194 (|has| |#1| (-37 (-385 (-525)))))) (-1506 (($ $) 170 (|has| |#1| (-37 (-385 (-525)))))) (-1639 (($ $) 190 (|has| |#1| (-37 (-385 (-525)))))) (-1479 (($ $) 166 (|has| |#1| (-37 (-385 (-525)))))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3349 (($) 21 T CONST)) (-3359 (($) 17 T CONST)) (-2022 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3955 (((-108) $ $) 66)) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 92 (|has| |#1| (-341)))) (-4061 (($ $) 131) (($ $ $) 72)) (-4047 (($ $ $) 70)) (** (($ $ (-856)) NIL) (($ $ (-713)) 76) (($ $ (-525)) 145 (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 146 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+((-3529 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1134 *3)) (-5 *2 (-385 (-525))))) (-4100 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *1 (-1157 *3 *2)) (-4 *2 (-1134 *3)))) (-1368 (*1 *1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-4 *4 (-977)) (-4 *1 (-1157 *4 *3)) (-4 *3 (-1134 *4)))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1134 *3)) (-5 *2 (-385 (-525))))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1134 *3)))) (-1361 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1134 *3)))) (-1817 (*1 *2 *1) (|partial| -12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1134 *3)))))
+(-13 (-1155 |t#1|) (-968 |t#2|) (-10 -8 (-15 -1368 ($ (-385 (-525)) |t#2|)) (-15 -2040 ((-385 (-525)) $)) (-15 -4144 (|t#2| $)) (-15 -3529 ((-385 (-525)) $)) (-15 -4100 ($ |t#2|)) (-15 -1361 (|t#2| $)) (-15 -1817 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-385 (-525))) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -2067 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -2067 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-385 (-525)) (-1032)) ((-269) -2067 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-341) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) -2067 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-835 (-1092)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092)))) ((-906 |#1| #0# (-1005)) . T) ((-855) |has| |#1| (-341)) ((-934) |has| |#1| (-37 (-385 (-525)))) ((-968 |#2|) . T) ((-983 #1#) -2067 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-983 |#1|) . T) ((-983 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1114) |has| |#1| (-37 (-385 (-525)))) ((-1117) |has| |#1| (-37 (-385 (-525)))) ((-1132) |has| |#1| (-341)) ((-1152 |#1| #0#) . T) ((-1155 |#1|) . T))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1296 (((-592 (-1005)) $) NIL)) (-3469 (((-1092) $) 96)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-2730 (($ $ (-385 (-525))) 106) (($ $ (-385 (-525)) (-385 (-525))) 108)) (-2005 (((-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 51)) (-1803 (($ $) 180 (|has| |#1| (-37 (-385 (-525)))))) (-3659 (($ $) 156 (|has| |#1| (-37 (-385 (-525)))))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL (|has| |#1| (-341)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-341)))) (-4211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1507 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1781 (($ $) 176 (|has| |#1| (-37 (-385 (-525)))))) (-3638 (($ $) 152 (|has| |#1| (-37 (-385 (-525)))))) (-2996 (($ (-713) (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) 61)) (-1828 (($ $) 184 (|has| |#1| (-37 (-385 (-525)))))) (-3698 (($ $) 160 (|has| |#1| (-37 (-385 (-525)))))) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#2| "failed") $) NIL)) (-4105 ((|#2| $) NIL)) (-1356 (($ $ $) NIL (|has| |#1| (-341)))) (-1451 (($ $) NIL)) (-3300 (((-3 $ "failed") $) 79)) (-2040 (((-385 (-525)) $) 13)) (-1332 (($ $ $) NIL (|has| |#1| (-341)))) (-1368 (($ (-385 (-525)) |#2|) 11)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-1798 (((-108) $) NIL (|has| |#1| (-341)))) (-2853 (((-108) $) 68)) (-4106 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4000 (((-385 (-525)) $) 103) (((-385 (-525)) $ (-385 (-525))) 104)) (-2278 (((-108) $) NIL)) (-1303 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1585 (($ $ (-856)) 120) (($ $ (-385 (-525))) 118)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-385 (-525))) 31) (($ $ (-1005) (-385 (-525))) NIL) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) NIL)) (-2016 (($ (-1 |#1| |#1|) $) 115)) (-2533 (($ $) 150 (|has| |#1| (-37 (-385 (-525)))))) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4144 ((|#2| $) 12)) (-1817 (((-3 |#2| "failed") $) 41)) (-1361 ((|#2| $) 42)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) 93 (|has| |#1| (-341)))) (-2367 (($ $) 135 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) 140 (-2067 (-12 (|has| |#1| (-15 -2367 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -1296 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114)))))) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4201 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-1397 (($ $ (-385 (-525))) 112)) (-1311 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1618 (($ $) 148 (|has| |#1| (-37 (-385 (-525)))))) (-2825 (((-1073 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-1927 (((-713) $) NIL (|has| |#1| (-341)))) (-3431 ((|#1| $ (-385 (-525))) 100) (($ $ $) 86 (|has| (-385 (-525)) (-1032)))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-341)))) (-2702 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) 127 (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3529 (((-385 (-525)) $) 16)) (-1841 (($ $) 186 (|has| |#1| (-37 (-385 (-525)))))) (-3798 (($ $) 162 (|has| |#1| (-37 (-385 (-525)))))) (-1816 (($ $) 182 (|has| |#1| (-37 (-385 (-525)))))) (-3678 (($ $) 158 (|has| |#1| (-37 (-385 (-525)))))) (-1792 (($ $) 178 (|has| |#1| (-37 (-385 (-525)))))) (-3649 (($ $) 154 (|has| |#1| (-37 (-385 (-525)))))) (-3926 (($ $) 110)) (-4100 (((-798) $) NIL) (($ (-525)) 35) (($ |#1|) 27 (|has| |#1| (-160))) (($ |#2|) 32) (($ (-385 (-525))) 128 (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-3136 ((|#1| $ (-385 (-525))) 99)) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) 117)) (-1423 ((|#1| $) 98)) (-1876 (($ $) 192 (|has| |#1| (-37 (-385 (-525)))))) (-3853 (($ $) 168 (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1853 (($ $) 188 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 164 (|has| |#1| (-37 (-385 (-525)))))) (-1902 (($ $) 196 (|has| |#1| (-37 (-385 (-525)))))) (-1760 (($ $) 172 (|has| |#1| (-37 (-385 (-525)))))) (-1485 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -4100 (|#1| (-1092))))))) (-3135 (($ $) 198 (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) 174 (|has| |#1| (-37 (-385 (-525)))))) (-1891 (($ $) 194 (|has| |#1| (-37 (-385 (-525)))))) (-1748 (($ $) 170 (|has| |#1| (-37 (-385 (-525)))))) (-1866 (($ $) 190 (|has| |#1| (-37 (-385 (-525)))))) (-3820 (($ $) 166 (|has| |#1| (-37 (-385 (-525)))))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3364 (($) 21 T CONST)) (-3375 (($) 17 T CONST)) (-2401 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2775 (((-108) $ $) 66)) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 92 (|has| |#1| (-341)))) (-2871 (($ $) 131) (($ $ $) 72)) (-2860 (($ $ $) 70)) (** (($ $ (-856)) NIL) (($ $ (-713)) 76) (($ $ (-525)) 145 (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 146 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
(((-1158 |#1| |#2|) (-1157 |#1| |#2|) (-977) (-1134 |#1|)) (T -1158))
NIL
(-1157 |#1| |#2|)
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2897 (((-592 (-1005)) $) NIL)) (-2499 (((-1092) $) 11)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) NIL (|has| |#1| (-517)))) (-3828 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-2755 (((-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) NIL)) (-1575 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2804 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1578 (((-3 $ "failed") $ $) NIL)) (-1286 (($ $) NIL (|has| |#1| (-341)))) (-2669 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2782 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2193 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1549 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2780 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2598 (($ (-713) (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-1599 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-1138 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1166 |#1| |#2| |#3|) "failed") $) 22)) (-1572 (((-1138 |#1| |#2| |#3|) $) NIL) (((-1166 |#1| |#2| |#3|) $) NIL)) (-1747 (($ $ $) NIL (|has| |#1| (-341)))) (-3063 (($ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-4177 (((-385 (-525)) $) 57)) (-1733 (($ $ $) NIL (|has| |#1| (-341)))) (-2973 (($ (-385 (-525)) (-1138 |#1| |#2| |#3|)) NIL)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3673 (((-108) $) NIL (|has| |#1| (-341)))) (-2398 (((-108) $) NIL)) (-3140 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2581 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) NIL)) (-1396 (((-108) $) NIL)) (-2171 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3326 (($ $ (-856)) NIL) (($ $ (-385 (-525))) NIL)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-385 (-525))) 30) (($ $ (-1005) (-385 (-525))) NIL) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-1517 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2556 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2279 (((-1138 |#1| |#2| |#3|) $) 60)) (-1520 (((-3 (-1138 |#1| |#2| |#3|) "failed") $) NIL)) (-2962 (((-1138 |#1| |#2| |#3|) $) NIL)) (-2619 (((-1075) $) NIL)) (-2997 (($ $) NIL (|has| |#1| (-341)))) (-1206 (($ $) 39 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) NIL (-3254 (-12 (|has| |#1| (-15 -1206 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -2897 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114))))) (($ $ (-1170 |#2|)) 40 (|has| |#1| (-37 (-385 (-525)))))) (-2093 (((-1039) $) NIL)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2589 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2770 (((-396 $) $) NIL (|has| |#1| (-341)))) (-1774 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) NIL (|has| |#1| (-341)))) (-3931 (($ $ (-385 (-525))) NIL)) (-1715 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1842 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-3096 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2457 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-3684 (((-713) $) NIL (|has| |#1| (-341)))) (-3406 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1032)))) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) NIL (|has| |#1| (-341)))) (-3376 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $ (-1170 |#2|)) 38)) (-2343 (((-385 (-525)) $) NIL)) (-1609 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1447 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1587 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1562 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2794 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1489 (($ $) NIL)) (-1217 (((-798) $) 89) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1138 |#1| |#2| |#3|)) 16) (($ (-1166 |#1| |#2| |#3|)) 17) (($ (-1170 |#2|)) 36) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-1568 ((|#1| $ (-385 (-525))) NIL)) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) NIL)) (-1340 ((|#1| $) 12)) (-1649 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1630 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1669 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1522 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1454 ((|#1| $ (-385 (-525))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1217 (|#1| (-1092))))))) (-2359 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1537 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1659 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1506 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1639 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1479 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3349 (($) 32 T CONST)) (-3359 (($) 26 T CONST)) (-2022 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) 34)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-1159 |#1| |#2| |#3|) (-13 (-1157 |#1| (-1138 |#1| |#2| |#3|)) (-968 (-1166 |#1| |#2| |#3|)) (-10 -8 (-15 -1217 ($ (-1170 |#2|))) (-15 -3376 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1206 ($ $ (-1170 |#2|))) |%noBranch|))) (-977) (-1092) |#1|) (T -1159))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-1206 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
-(-13 (-1157 |#1| (-1138 |#1| |#2| |#3|)) (-968 (-1166 |#1| |#2| |#3|)) (-10 -8 (-15 -1217 ($ (-1170 |#2|))) (-15 -3376 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1206 ($ $ (-1170 |#2|))) |%noBranch|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 34)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL)) (-4218 (($ $) NIL)) (-3171 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 (-525) "failed") $) NIL (|has| (-1159 |#2| |#3| |#4|) (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-1159 |#2| |#3| |#4|) (-968 (-385 (-525))))) (((-3 (-1159 |#2| |#3| |#4|) "failed") $) 20)) (-1572 (((-525) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-968 (-525)))) (((-385 (-525)) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-968 (-385 (-525))))) (((-1159 |#2| |#3| |#4|) $) NIL)) (-3063 (($ $) 35)) (-3457 (((-3 $ "failed") $) 25)) (-1576 (($ $) NIL (|has| (-1159 |#2| |#3| |#4|) (-429)))) (-2188 (($ $ (-1159 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|) $) NIL)) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) 11)) (-1212 (((-108) $) NIL)) (-2876 (($ (-1159 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) 23)) (-2870 (((-297 |#2| |#3| |#4|) $) NIL)) (-2172 (($ (-1 (-297 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) $) NIL)) (-3165 (($ (-1 (-1159 |#2| |#3| |#4|) (-1159 |#2| |#3| |#4|)) $) NIL)) (-2677 (((-3 (-782 |#2|) "failed") $) 75)) (-3031 (($ $) NIL)) (-3043 (((-1159 |#2| |#3| |#4|) $) 18)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3007 (((-108) $) NIL)) (-3019 (((-1159 |#2| |#3| |#4|) $) NIL)) (-1715 (((-3 $ "failed") $ (-1159 |#2| |#3| |#4|)) NIL (|has| (-1159 |#2| |#3| |#4|) (-517))) (((-3 $ "failed") $ $) NIL)) (-1633 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 |#2| |#3| |#4|)) (|:| |%expon| (-297 |#2| |#3| |#4|)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#2|)))))) (|:| |%type| (-1075))) "failed") $) 58)) (-2343 (((-297 |#2| |#3| |#4|) $) 14)) (-3658 (((-1159 |#2| |#3| |#4|) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-429)))) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ (-1159 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL (-3254 (|has| (-1159 |#2| |#3| |#4|) (-37 (-385 (-525)))) (|has| (-1159 |#2| |#3| |#4|) (-968 (-385 (-525))))))) (-1684 (((-592 (-1159 |#2| |#3| |#4|)) $) NIL)) (-1568 (((-1159 |#2| |#3| |#4|) $ (-297 |#2| |#3| |#4|)) NIL)) (-3637 (((-3 $ "failed") $) NIL (|has| (-1159 |#2| |#3| |#4|) (-136)))) (-3917 (((-713)) NIL)) (-3716 (($ $ $ (-713)) NIL (|has| (-1159 |#2| |#3| |#4|) (-160)))) (-3325 (((-108) $ $) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 63 T CONST)) (-3359 (($) NIL T CONST)) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ (-1159 |#2| |#3| |#4|)) NIL (|has| (-1159 |#2| |#3| |#4|) (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-1159 |#2| |#3| |#4|)) NIL) (($ (-1159 |#2| |#3| |#4|) $) NIL) (($ (-385 (-525)) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| (-1159 |#2| |#3| |#4|) (-37 (-385 (-525)))))))
-(((-1160 |#1| |#2| |#3| |#4|) (-13 (-304 (-1159 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) (-517) (-10 -8 (-15 -2677 ((-3 (-782 |#2|) "failed") $)) (-15 -1633 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 |#2| |#3| |#4|)) (|:| |%expon| (-297 |#2| |#3| |#4|)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#2|)))))) (|:| |%type| (-1075))) "failed") $)))) (-13 (-789) (-968 (-525)) (-588 (-525)) (-429)) (-13 (-27) (-1114) (-408 |#1|)) (-1092) |#2|) (T -1160))
-((-2677 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429))) (-5 *2 (-782 *4)) (-5 *1 (-1160 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-408 *3))) (-14 *5 (-1092)) (-14 *6 *4))) (-1633 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 *4 *5 *6)) (|:| |%expon| (-297 *4 *5 *6)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4)))))) (|:| |%type| (-1075)))) (-5 *1 (-1160 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-408 *3))) (-14 *5 (-1092)) (-14 *6 *4))))
-(-13 (-304 (-1159 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) (-517) (-10 -8 (-15 -2677 ((-3 (-782 |#2|) "failed") $)) (-15 -1633 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 |#2| |#3| |#4|)) (|:| |%expon| (-297 |#2| |#3| |#4|)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#2|)))))) (|:| |%type| (-1075))) "failed") $))))
-((-3284 ((|#2| $) 29)) (-3581 ((|#2| $) 18)) (-2798 (($ $) 36)) (-4238 (($ $ (-525)) 64)) (-3991 (((-108) $ (-713)) 33)) (-3214 ((|#2| $ |#2|) 61)) (-2603 ((|#2| $ |#2|) 59)) (-1430 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-1318 (($ $ (-592 $)) 60)) (-3570 ((|#2| $) 17)) (-1886 (($ $) NIL) (($ $ (-713)) 42)) (-3396 (((-592 $) $) 26)) (-1729 (((-108) $ $) 50)) (-3924 (((-108) $ (-713)) 32)) (-2912 (((-108) $ (-713)) 31)) (-3786 (((-108) $) 28)) (-1717 ((|#2| $) 24) (($ $ (-713)) 46)) (-3406 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2905 (((-108) $) 22)) (-3004 (($ $) 39)) (-1354 (($ $) 65)) (-1654 (((-713) $) 41)) (-4167 (($ $) 40)) (-2038 (($ $ $) 58) (($ |#2| $) NIL)) (-3793 (((-592 $) $) 27)) (-3955 (((-108) $ $) 48)) (-3522 (((-713) $) 35)))
-(((-1161 |#1| |#2|) (-10 -8 (-15 -4238 (|#1| |#1| (-525))) (-15 -1430 (|#2| |#1| "last" |#2|)) (-15 -2603 (|#2| |#1| |#2|)) (-15 -1430 (|#1| |#1| "rest" |#1|)) (-15 -1430 (|#2| |#1| "first" |#2|)) (-15 -1354 (|#1| |#1|)) (-15 -3004 (|#1| |#1|)) (-15 -1654 ((-713) |#1|)) (-15 -4167 (|#1| |#1|)) (-15 -3581 (|#2| |#1|)) (-15 -3570 (|#2| |#1|)) (-15 -2798 (|#1| |#1|)) (-15 -1717 (|#1| |#1| (-713))) (-15 -3406 (|#2| |#1| "last")) (-15 -1717 (|#2| |#1|)) (-15 -1886 (|#1| |#1| (-713))) (-15 -3406 (|#1| |#1| "rest")) (-15 -1886 (|#1| |#1|)) (-15 -3406 (|#2| |#1| "first")) (-15 -2038 (|#1| |#2| |#1|)) (-15 -2038 (|#1| |#1| |#1|)) (-15 -3214 (|#2| |#1| |#2|)) (-15 -1430 (|#2| |#1| "value" |#2|)) (-15 -1318 (|#1| |#1| (-592 |#1|))) (-15 -1729 ((-108) |#1| |#1|)) (-15 -2905 ((-108) |#1|)) (-15 -3406 (|#2| |#1| "value")) (-15 -3284 (|#2| |#1|)) (-15 -3786 ((-108) |#1|)) (-15 -3396 ((-592 |#1|) |#1|)) (-15 -3793 ((-592 |#1|) |#1|)) (-15 -3955 ((-108) |#1| |#1|)) (-15 -3522 ((-713) |#1|)) (-15 -3991 ((-108) |#1| (-713))) (-15 -3924 ((-108) |#1| (-713))) (-15 -2912 ((-108) |#1| (-713)))) (-1162 |#2|) (-1128)) (T -1161))
-NIL
-(-10 -8 (-15 -4238 (|#1| |#1| (-525))) (-15 -1430 (|#2| |#1| "last" |#2|)) (-15 -2603 (|#2| |#1| |#2|)) (-15 -1430 (|#1| |#1| "rest" |#1|)) (-15 -1430 (|#2| |#1| "first" |#2|)) (-15 -1354 (|#1| |#1|)) (-15 -3004 (|#1| |#1|)) (-15 -1654 ((-713) |#1|)) (-15 -4167 (|#1| |#1|)) (-15 -3581 (|#2| |#1|)) (-15 -3570 (|#2| |#1|)) (-15 -2798 (|#1| |#1|)) (-15 -1717 (|#1| |#1| (-713))) (-15 -3406 (|#2| |#1| "last")) (-15 -1717 (|#2| |#1|)) (-15 -1886 (|#1| |#1| (-713))) (-15 -3406 (|#1| |#1| "rest")) (-15 -1886 (|#1| |#1|)) (-15 -3406 (|#2| |#1| "first")) (-15 -2038 (|#1| |#2| |#1|)) (-15 -2038 (|#1| |#1| |#1|)) (-15 -3214 (|#2| |#1| |#2|)) (-15 -1430 (|#2| |#1| "value" |#2|)) (-15 -1318 (|#1| |#1| (-592 |#1|))) (-15 -1729 ((-108) |#1| |#1|)) (-15 -2905 ((-108) |#1|)) (-15 -3406 (|#2| |#1| "value")) (-15 -3284 (|#2| |#1|)) (-15 -3786 ((-108) |#1|)) (-15 -3396 ((-592 |#1|) |#1|)) (-15 -3793 ((-592 |#1|) |#1|)) (-15 -3955 ((-108) |#1| |#1|)) (-15 -3522 ((-713) |#1|)) (-15 -3991 ((-108) |#1| (-713))) (-15 -3924 ((-108) |#1| (-713))) (-15 -2912 ((-108) |#1| (-713))))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3284 ((|#1| $) 48)) (-3581 ((|#1| $) 65)) (-2798 (($ $) 67)) (-4238 (($ $ (-525)) 52 (|has| $ (-6 -4259)))) (-3991 (((-108) $ (-713)) 8)) (-3214 ((|#1| $ |#1|) 39 (|has| $ (-6 -4259)))) (-1620 (($ $ $) 56 (|has| $ (-6 -4259)))) (-2603 ((|#1| $ |#1|) 54 (|has| $ (-6 -4259)))) (-4145 ((|#1| $ |#1|) 58 (|has| $ (-6 -4259)))) (-1430 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4259))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4259))) (($ $ "rest" $) 55 (|has| $ (-6 -4259))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4259)))) (-1318 (($ $ (-592 $)) 41 (|has| $ (-6 -4259)))) (-3570 ((|#1| $) 66)) (-2169 (($) 7 T CONST)) (-1886 (($ $) 73) (($ $ (-713)) 71)) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-3396 (((-592 $) $) 50)) (-1729 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-3924 (((-108) $ (-713)) 9)) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35)) (-2912 (((-108) $ (-713)) 10)) (-2803 (((-592 |#1|) $) 45)) (-3786 (((-108) $) 49)) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-1717 ((|#1| $) 70) (($ $ (-713)) 68)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1872 ((|#1| $) 76) (($ $ (-713)) 74)) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3340 (((-525) $ $) 44)) (-2905 (((-108) $) 46)) (-3004 (($ $) 62)) (-1354 (($ $) 59 (|has| $ (-6 -4259)))) (-1654 (((-713) $) 63)) (-4167 (($ $) 64)) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1462 (($ $) 13)) (-4029 (($ $ $) 61 (|has| $ (-6 -4259))) (($ $ |#1|) 60 (|has| $ (-6 -4259)))) (-2038 (($ $ $) 78) (($ |#1| $) 77)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3793 (((-592 $) $) 51)) (-3351 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1296 (((-592 (-1005)) $) NIL)) (-3469 (((-1092) $) 11)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) NIL (|has| |#1| (-517)))) (-2730 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-2005 (((-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) NIL)) (-1803 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3659 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4195 (($ $) NIL (|has| |#1| (-341)))) (-3586 (((-396 $) $) NIL (|has| |#1| (-341)))) (-4211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1507 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1781 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3638 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2996 (($ (-713) (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-1828 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3698 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-1138 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1166 |#1| |#2| |#3|) "failed") $) 22)) (-4105 (((-1138 |#1| |#2| |#3|) $) NIL) (((-1166 |#1| |#2| |#3|) $) NIL)) (-1356 (($ $ $) NIL (|has| |#1| (-341)))) (-1451 (($ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-2040 (((-385 (-525)) $) 57)) (-1332 (($ $ $) NIL (|has| |#1| (-341)))) (-1368 (($ (-385 (-525)) (-1138 |#1| |#2| |#3|)) NIL)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-1798 (((-108) $) NIL (|has| |#1| (-341)))) (-2853 (((-108) $) NIL)) (-4106 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4000 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) NIL)) (-2278 (((-108) $) NIL)) (-1303 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1585 (($ $ (-856)) NIL) (($ $ (-385 (-525))) NIL)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-385 (-525))) 30) (($ $ (-1005) (-385 (-525))) NIL) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2533 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-2739 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4144 (((-1138 |#1| |#2| |#3|) $) 60)) (-1817 (((-3 (-1138 |#1| |#2| |#3|) "failed") $) NIL)) (-1361 (((-1138 |#1| |#2| |#3|) $) NIL)) (-1289 (((-1075) $) NIL)) (-1387 (($ $) NIL (|has| |#1| (-341)))) (-2367 (($ $) 39 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) NIL (-2067 (-12 (|has| |#1| (-15 -2367 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -1296 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114))))) (($ $ (-1170 |#2|)) 40 (|has| |#1| (-37 (-385 (-525)))))) (-3993 (((-1039) $) NIL)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) NIL (|has| |#1| (-341)))) (-2772 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4201 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2741 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) NIL (|has| |#1| (-341)))) (-1397 (($ $ (-385 (-525))) NIL)) (-1311 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2183 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1618 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2825 (((-1073 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-1927 (((-713) $) NIL (|has| |#1| (-341)))) (-3431 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1032)))) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) NIL (|has| |#1| (-341)))) (-2702 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $ (-1170 |#2|)) 38)) (-3529 (((-385 (-525)) $) NIL)) (-1841 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1816 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3678 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1792 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3649 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3926 (($ $) NIL)) (-4100 (((-798) $) 89) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1138 |#1| |#2| |#3|)) 16) (($ (-1166 |#1| |#2| |#3|)) 17) (($ (-1170 |#2|)) 36) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-3136 ((|#1| $ (-385 (-525))) NIL)) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) NIL)) (-1423 ((|#1| $) 12)) (-1876 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3853 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1853 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1902 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1760 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1485 ((|#1| $ (-385 (-525))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -4100 (|#1| (-1092))))))) (-3135 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1891 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1748 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1866 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3820 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3364 (($) 32 T CONST)) (-3375 (($) 26 T CONST)) (-2401 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) 34)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-1159 |#1| |#2| |#3|) (-13 (-1157 |#1| (-1138 |#1| |#2| |#3|)) (-968 (-1166 |#1| |#2| |#3|)) (-10 -8 (-15 -4100 ($ (-1170 |#2|))) (-15 -2702 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2367 ($ $ (-1170 |#2|))) |%noBranch|))) (-977) (-1092) |#1|) (T -1159))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2702 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2367 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
+(-13 (-1157 |#1| (-1138 |#1| |#2| |#3|)) (-968 (-1166 |#1| |#2| |#3|)) (-10 -8 (-15 -4100 ($ (-1170 |#2|))) (-15 -2702 ($ $ (-1170 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2367 ($ $ (-1170 |#2|))) |%noBranch|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 34)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL)) (-2433 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 (-525) "failed") $) NIL (|has| (-1159 |#2| |#3| |#4|) (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-1159 |#2| |#3| |#4|) (-968 (-385 (-525))))) (((-3 (-1159 |#2| |#3| |#4|) "failed") $) 20)) (-4105 (((-525) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-968 (-525)))) (((-385 (-525)) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-968 (-385 (-525))))) (((-1159 |#2| |#3| |#4|) $) NIL)) (-1451 (($ $) 35)) (-3300 (((-3 $ "failed") $) 25)) (-3201 (($ $) NIL (|has| (-1159 |#2| |#3| |#4|) (-429)))) (-1457 (($ $ (-1159 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|) $) NIL)) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) 11)) (-2457 (((-108) $) NIL)) (-1272 (($ (-1159 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) 23)) (-1819 (((-297 |#2| |#3| |#4|) $) NIL)) (-1314 (($ (-1 (-297 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) $) NIL)) (-2016 (($ (-1 (-1159 |#2| |#3| |#4|) (-1159 |#2| |#3| |#4|)) $) NIL)) (-3658 (((-3 (-782 |#2|) "failed") $) 75)) (-1418 (($ $) NIL)) (-1430 (((-1159 |#2| |#3| |#4|) $) 18)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1399 (((-108) $) NIL)) (-1407 (((-1159 |#2| |#3| |#4|) $) NIL)) (-1311 (((-3 $ "failed") $ (-1159 |#2| |#3| |#4|)) NIL (|has| (-1159 |#2| |#3| |#4|) (-517))) (((-3 $ "failed") $ $) NIL)) (-3900 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 |#2| |#3| |#4|)) (|:| |%expon| (-297 |#2| |#3| |#4|)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#2|)))))) (|:| |%type| (-1075))) "failed") $) 58)) (-3529 (((-297 |#2| |#3| |#4|) $) 14)) (-1661 (((-1159 |#2| |#3| |#4|) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-429)))) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ (-1159 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL (-2067 (|has| (-1159 |#2| |#3| |#4|) (-37 (-385 (-525)))) (|has| (-1159 |#2| |#3| |#4|) (-968 (-385 (-525))))))) (-3137 (((-592 (-1159 |#2| |#3| |#4|)) $) NIL)) (-3136 (((-1159 |#2| |#3| |#4|) $ (-297 |#2| |#3| |#4|)) NIL)) (-1463 (((-3 $ "failed") $) NIL (|has| (-1159 |#2| |#3| |#4|) (-136)))) (-2448 (((-713)) NIL)) (-4042 (($ $ $ (-713)) NIL (|has| (-1159 |#2| |#3| |#4|) (-160)))) (-1571 (((-108) $ $) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 63 T CONST)) (-3375 (($) NIL T CONST)) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ (-1159 |#2| |#3| |#4|)) NIL (|has| (-1159 |#2| |#3| |#4|) (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-1159 |#2| |#3| |#4|)) NIL) (($ (-1159 |#2| |#3| |#4|) $) NIL) (($ (-385 (-525)) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| (-1159 |#2| |#3| |#4|) (-37 (-385 (-525)))))))
+(((-1160 |#1| |#2| |#3| |#4|) (-13 (-304 (-1159 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) (-517) (-10 -8 (-15 -3658 ((-3 (-782 |#2|) "failed") $)) (-15 -3900 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 |#2| |#3| |#4|)) (|:| |%expon| (-297 |#2| |#3| |#4|)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#2|)))))) (|:| |%type| (-1075))) "failed") $)))) (-13 (-789) (-968 (-525)) (-588 (-525)) (-429)) (-13 (-27) (-1114) (-408 |#1|)) (-1092) |#2|) (T -1160))
+((-3658 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429))) (-5 *2 (-782 *4)) (-5 *1 (-1160 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-408 *3))) (-14 *5 (-1092)) (-14 *6 *4))) (-3900 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 *4 *5 *6)) (|:| |%expon| (-297 *4 *5 *6)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4)))))) (|:| |%type| (-1075)))) (-5 *1 (-1160 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-408 *3))) (-14 *5 (-1092)) (-14 *6 *4))))
+(-13 (-304 (-1159 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) (-517) (-10 -8 (-15 -3658 ((-3 (-782 |#2|) "failed") $)) (-15 -3900 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 |#2| |#3| |#4|)) (|:| |%expon| (-297 |#2| |#3| |#4|)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#2|)))))) (|:| |%type| (-1075))) "failed") $))))
+((-2219 ((|#2| $) 29)) (-2250 ((|#2| $) 18)) (-3979 (($ $) 36)) (-1425 (($ $ (-525)) 64)) (-3779 (((-108) $ (-713)) 33)) (-1947 ((|#2| $ |#2|) 61)) (-4193 ((|#2| $ |#2|) 59)) (-1233 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3379 (($ $ (-592 $)) 60)) (-2237 ((|#2| $) 17)) (-1659 (($ $) NIL) (($ $ (-713)) 42)) (-3994 (((-592 $) $) 26)) (-3569 (((-108) $ $) 50)) (-2516 (((-108) $ (-713)) 32)) (-4028 (((-108) $ (-713)) 31)) (-3506 (((-108) $) 28)) (-2718 ((|#2| $) 24) (($ $ (-713)) 46)) (-3431 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3953 (((-108) $) 22)) (-3675 (($ $) 39)) (-2789 (($ $) 65)) (-4082 (((-713) $) 41)) (-3077 (($ $) 40)) (-2035 (($ $ $) 58) (($ |#2| $) NIL)) (-3576 (((-592 $) $) 27)) (-2775 (((-108) $ $) 48)) (-2827 (((-713) $) 35)))
+(((-1161 |#1| |#2|) (-10 -8 (-15 -1425 (|#1| |#1| (-525))) (-15 -1233 (|#2| |#1| "last" |#2|)) (-15 -4193 (|#2| |#1| |#2|)) (-15 -1233 (|#1| |#1| "rest" |#1|)) (-15 -1233 (|#2| |#1| "first" |#2|)) (-15 -2789 (|#1| |#1|)) (-15 -3675 (|#1| |#1|)) (-15 -4082 ((-713) |#1|)) (-15 -3077 (|#1| |#1|)) (-15 -2250 (|#2| |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -3979 (|#1| |#1|)) (-15 -2718 (|#1| |#1| (-713))) (-15 -3431 (|#2| |#1| "last")) (-15 -2718 (|#2| |#1|)) (-15 -1659 (|#1| |#1| (-713))) (-15 -3431 (|#1| |#1| "rest")) (-15 -1659 (|#1| |#1|)) (-15 -3431 (|#2| |#1| "first")) (-15 -2035 (|#1| |#2| |#1|)) (-15 -2035 (|#1| |#1| |#1|)) (-15 -1947 (|#2| |#1| |#2|)) (-15 -1233 (|#2| |#1| "value" |#2|)) (-15 -3379 (|#1| |#1| (-592 |#1|))) (-15 -3569 ((-108) |#1| |#1|)) (-15 -3953 ((-108) |#1|)) (-15 -3431 (|#2| |#1| "value")) (-15 -2219 (|#2| |#1|)) (-15 -3506 ((-108) |#1|)) (-15 -3994 ((-592 |#1|) |#1|)) (-15 -3576 ((-592 |#1|) |#1|)) (-15 -2775 ((-108) |#1| |#1|)) (-15 -2827 ((-713) |#1|)) (-15 -3779 ((-108) |#1| (-713))) (-15 -2516 ((-108) |#1| (-713))) (-15 -4028 ((-108) |#1| (-713)))) (-1162 |#2|) (-1128)) (T -1161))
+NIL
+(-10 -8 (-15 -1425 (|#1| |#1| (-525))) (-15 -1233 (|#2| |#1| "last" |#2|)) (-15 -4193 (|#2| |#1| |#2|)) (-15 -1233 (|#1| |#1| "rest" |#1|)) (-15 -1233 (|#2| |#1| "first" |#2|)) (-15 -2789 (|#1| |#1|)) (-15 -3675 (|#1| |#1|)) (-15 -4082 ((-713) |#1|)) (-15 -3077 (|#1| |#1|)) (-15 -2250 (|#2| |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -3979 (|#1| |#1|)) (-15 -2718 (|#1| |#1| (-713))) (-15 -3431 (|#2| |#1| "last")) (-15 -2718 (|#2| |#1|)) (-15 -1659 (|#1| |#1| (-713))) (-15 -3431 (|#1| |#1| "rest")) (-15 -1659 (|#1| |#1|)) (-15 -3431 (|#2| |#1| "first")) (-15 -2035 (|#1| |#2| |#1|)) (-15 -2035 (|#1| |#1| |#1|)) (-15 -1947 (|#2| |#1| |#2|)) (-15 -1233 (|#2| |#1| "value" |#2|)) (-15 -3379 (|#1| |#1| (-592 |#1|))) (-15 -3569 ((-108) |#1| |#1|)) (-15 -3953 ((-108) |#1|)) (-15 -3431 (|#2| |#1| "value")) (-15 -2219 (|#2| |#1|)) (-15 -3506 ((-108) |#1|)) (-15 -3994 ((-592 |#1|) |#1|)) (-15 -3576 ((-592 |#1|) |#1|)) (-15 -2775 ((-108) |#1| |#1|)) (-15 -2827 ((-713) |#1|)) (-15 -3779 ((-108) |#1| (-713))) (-15 -2516 ((-108) |#1| (-713))) (-15 -4028 ((-108) |#1| (-713))))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2219 ((|#1| $) 48)) (-2250 ((|#1| $) 65)) (-3979 (($ $) 67)) (-1425 (($ $ (-525)) 52 (|has| $ (-6 -4260)))) (-3779 (((-108) $ (-713)) 8)) (-1947 ((|#1| $ |#1|) 39 (|has| $ (-6 -4260)))) (-3776 (($ $ $) 56 (|has| $ (-6 -4260)))) (-4193 ((|#1| $ |#1|) 54 (|has| $ (-6 -4260)))) (-2894 ((|#1| $ |#1|) 58 (|has| $ (-6 -4260)))) (-1233 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4260))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4260))) (($ $ "rest" $) 55 (|has| $ (-6 -4260))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4260)))) (-3379 (($ $ (-592 $)) 41 (|has| $ (-6 -4260)))) (-2237 ((|#1| $) 66)) (-2475 (($) 7 T CONST)) (-1659 (($ $) 73) (($ $ (-713)) 71)) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-3994 (((-592 $) $) 50)) (-3569 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-2516 (((-108) $ (-713)) 9)) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35)) (-4028 (((-108) $ (-713)) 10)) (-2010 (((-592 |#1|) $) 45)) (-3506 (((-108) $) 49)) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2718 ((|#1| $) 70) (($ $ (-713)) 68)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1647 ((|#1| $) 76) (($ $ (-713)) 74)) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1707 (((-525) $ $) 44)) (-3953 (((-108) $) 46)) (-3675 (($ $) 62)) (-2789 (($ $) 59 (|has| $ (-6 -4260)))) (-4082 (((-713) $) 63)) (-3077 (($ $) 64)) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2503 (($ $) 13)) (-4190 (($ $ $) 61 (|has| $ (-6 -4260))) (($ $ |#1|) 60 (|has| $ (-6 -4260)))) (-2035 (($ $ $) 78) (($ |#1| $) 77)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3576 (((-592 $) $) 51)) (-1791 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-1162 |#1|) (-131) (-1128)) (T -1162))
-((-2038 (*1 *1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-2038 (*1 *1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-1872 (*1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-3406 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-1872 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1162 *3)) (-4 *3 (-1128)))) (-1886 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1162 *3)) (-4 *3 (-1128)))) (-1886 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1162 *3)) (-4 *3 (-1128)))) (-1717 (*1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-3406 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-1717 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1162 *3)) (-4 *3 (-1128)))) (-2798 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-4167 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-1162 *3)) (-4 *3 (-1128)) (-5 *2 (-713)))) (-3004 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-4029 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-4029 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-1354 (*1 *1 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-4145 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-1430 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4259)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-1620 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-1430 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4259)) (-4 *1 (-1162 *3)) (-4 *3 (-1128)))) (-2603 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-1430 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4259)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-4238 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (|has| *1 (-6 -4259)) (-4 *1 (-1162 *3)) (-4 *3 (-1128)))))
-(-13 (-942 |t#1|) (-10 -8 (-15 -2038 ($ $ $)) (-15 -2038 ($ |t#1| $)) (-15 -1872 (|t#1| $)) (-15 -3406 (|t#1| $ "first")) (-15 -1872 ($ $ (-713))) (-15 -1886 ($ $)) (-15 -3406 ($ $ "rest")) (-15 -1886 ($ $ (-713))) (-15 -1717 (|t#1| $)) (-15 -3406 (|t#1| $ "last")) (-15 -1717 ($ $ (-713))) (-15 -2798 ($ $)) (-15 -3570 (|t#1| $)) (-15 -3581 (|t#1| $)) (-15 -4167 ($ $)) (-15 -1654 ((-713) $)) (-15 -3004 ($ $)) (IF (|has| $ (-6 -4259)) (PROGN (-15 -4029 ($ $ $)) (-15 -4029 ($ $ |t#1|)) (-15 -1354 ($ $)) (-15 -4145 (|t#1| $ |t#1|)) (-15 -1430 (|t#1| $ "first" |t#1|)) (-15 -1620 ($ $ $)) (-15 -1430 ($ $ "rest" $)) (-15 -2603 (|t#1| $ |t#1|)) (-15 -1430 (|t#1| $ "last" |t#1|)) (-15 -4238 ($ $ (-525)))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-942 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
-((-3165 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1163 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3165 (|#4| (-1 |#2| |#1|) |#3|))) (-977) (-977) (-1165 |#1|) (-1165 |#2|)) (T -1163))
-((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-4 *2 (-1165 *6)) (-5 *1 (-1163 *5 *6 *4 *2)) (-4 *4 (-1165 *5)))))
-(-10 -7 (-15 -3165 (|#4| (-1 |#2| |#1|) |#3|)))
-((-1209 (((-108) $) 15)) (-1575 (($ $) 92)) (-2804 (($ $) 68)) (-1549 (($ $) 88)) (-2780 (($ $) 64)) (-1599 (($ $) 96)) (-2836 (($ $) 72)) (-1517 (($ $) 62)) (-3096 (($ $) 60)) (-1609 (($ $) 98)) (-1447 (($ $) 74)) (-1587 (($ $) 94)) (-2815 (($ $) 70)) (-1562 (($ $) 90)) (-2794 (($ $) 66)) (-1217 (((-798) $) 48) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1649 (($ $) 104)) (-1492 (($ $) 80)) (-1630 (($ $) 100)) (-1465 (($ $) 76)) (-1669 (($ $) 108)) (-1522 (($ $) 84)) (-2359 (($ $) 110)) (-1537 (($ $) 86)) (-1659 (($ $) 106)) (-1506 (($ $) 82)) (-1639 (($ $) 102)) (-1479 (($ $) 78)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-385 (-525))) 58)))
-(((-1164 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -2804 (|#1| |#1|)) (-15 -2780 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -1447 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -2794 (|#1| |#1|)) (-15 -1479 (|#1| |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -1537 (|#1| |#1|)) (-15 -1522 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -1609 (|#1| |#1|)) (-15 -1599 (|#1| |#1|)) (-15 -1549 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -1659 (|#1| |#1|)) (-15 -2359 (|#1| |#1|)) (-15 -1669 (|#1| |#1|)) (-15 -1630 (|#1| |#1|)) (-15 -1649 (|#1| |#1|)) (-15 -1517 (|#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1217 (|#1| |#2|)) (-15 -1217 (|#1| |#1|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -1217 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-856))) (-15 -1209 ((-108) |#1|)) (-15 -1217 ((-798) |#1|))) (-1165 |#2|) (-977)) (T -1164))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -2804 (|#1| |#1|)) (-15 -2780 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -1447 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -2794 (|#1| |#1|)) (-15 -1479 (|#1| |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -1537 (|#1| |#1|)) (-15 -1522 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -1609 (|#1| |#1|)) (-15 -1599 (|#1| |#1|)) (-15 -1549 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -1659 (|#1| |#1|)) (-15 -2359 (|#1| |#1|)) (-15 -1669 (|#1| |#1|)) (-15 -1630 (|#1| |#1|)) (-15 -1649 (|#1| |#1|)) (-15 -1517 (|#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1217 (|#1| |#2|)) (-15 -1217 (|#1| |#1|)) (-15 -1217 (|#1| (-385 (-525)))) (-15 -1217 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-856))) (-15 -1209 ((-108) |#1|)) (-15 -1217 ((-798) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2897 (((-592 (-1005)) $) 74)) (-2499 (((-1092) $) 103)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-4218 (($ $) 52 (|has| |#1| (-517)))) (-3171 (((-108) $) 54 (|has| |#1| (-517)))) (-3828 (($ $ (-713)) 98) (($ $ (-713) (-713)) 97)) (-2755 (((-1073 (-2 (|:| |k| (-713)) (|:| |c| |#1|))) $) 105)) (-1575 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-2804 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-1578 (((-3 $ "failed") $ $) 19)) (-2782 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-1549 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-2780 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-2598 (($ (-1073 (-2 (|:| |k| (-713)) (|:| |c| |#1|)))) 155) (($ (-1073 |#1|)) 153)) (-1599 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2836 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2169 (($) 17 T CONST)) (-3063 (($ $) 60)) (-3457 (((-3 $ "failed") $) 34)) (-4224 (($ $) 152)) (-3882 (((-887 |#1|) $ (-713)) 150) (((-887 |#1|) $ (-713) (-713)) 149)) (-2398 (((-108) $) 73)) (-3140 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-2581 (((-713) $) 100) (((-713) $ (-713)) 99)) (-1396 (((-108) $) 31)) (-2171 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-3326 (($ $ (-856)) 101)) (-2066 (($ (-1 |#1| (-525)) $) 151)) (-1212 (((-108) $) 62)) (-2876 (($ |#1| (-713)) 61) (($ $ (-1005) (-713)) 76) (($ $ (-592 (-1005)) (-592 (-713))) 75)) (-3165 (($ (-1 |#1| |#1|) $) 63)) (-1517 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-3031 (($ $) 65)) (-3043 ((|#1| $) 66)) (-2619 (((-1075) $) 9)) (-1206 (($ $) 147 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) 146 (-3254 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-893)) (|has| |#1| (-1114)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -2897 ((-592 (-1092)) |#1|))) (|has| |#1| (-15 -1206 (|#1| |#1| (-1092)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2093 (((-1039) $) 10)) (-3931 (($ $ (-713)) 95)) (-1715 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-3096 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (((-1073 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-713)))))) (-3406 ((|#1| $ (-713)) 104) (($ $ $) 81 (|has| (-713) (-1032)))) (-3376 (($ $ (-592 (-1092)) (-592 (-713))) 89 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1092) (-713)) 88 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-592 (-1092))) 87 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1092)) 86 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-2343 (((-713) $) 64)) (-1609 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-1447 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-1587 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-2815 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-1562 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-2794 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1489 (($ $) 72)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-1684 (((-1073 |#1|) $) 154)) (-1568 ((|#1| $ (-713)) 59)) (-3637 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-3917 (((-713)) 29)) (-1340 ((|#1| $) 102)) (-1649 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-1492 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1630 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-1465 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-1669 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-1522 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-1454 ((|#1| $ (-713)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-713)))) (|has| |#1| (-15 -1217 (|#1| (-1092))))))) (-2359 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-1537 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-1659 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-1506 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-1639 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-1479 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-2022 (($ $ (-592 (-1092)) (-592 (-713))) 93 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1092) (-713)) 92 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-592 (-1092))) 91 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1092)) 90 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-3955 (((-108) $ $) 6)) (-4075 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ |#1|) 148 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
+((-2035 (*1 *1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-2035 (*1 *1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-3431 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-1647 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1162 *3)) (-4 *3 (-1128)))) (-1659 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1162 *3)) (-4 *3 (-1128)))) (-1659 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1162 *3)) (-4 *3 (-1128)))) (-2718 (*1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-3431 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-2718 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1162 *3)) (-4 *3 (-1128)))) (-3979 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-2237 (*1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-3077 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1162 *3)) (-4 *3 (-1128)) (-5 *2 (-713)))) (-3675 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-4190 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4260)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-4190 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4260)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-2789 (*1 *1 *1) (-12 (|has| *1 (-6 -4260)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-2894 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4260)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-1233 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4260)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-3776 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4260)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-1233 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4260)) (-4 *1 (-1162 *3)) (-4 *3 (-1128)))) (-4193 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4260)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-1233 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4260)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))) (-1425 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (|has| *1 (-6 -4260)) (-4 *1 (-1162 *3)) (-4 *3 (-1128)))))
+(-13 (-942 |t#1|) (-10 -8 (-15 -2035 ($ $ $)) (-15 -2035 ($ |t#1| $)) (-15 -1647 (|t#1| $)) (-15 -3431 (|t#1| $ "first")) (-15 -1647 ($ $ (-713))) (-15 -1659 ($ $)) (-15 -3431 ($ $ "rest")) (-15 -1659 ($ $ (-713))) (-15 -2718 (|t#1| $)) (-15 -3431 (|t#1| $ "last")) (-15 -2718 ($ $ (-713))) (-15 -3979 ($ $)) (-15 -2237 (|t#1| $)) (-15 -2250 (|t#1| $)) (-15 -3077 ($ $)) (-15 -4082 ((-713) $)) (-15 -3675 ($ $)) (IF (|has| $ (-6 -4260)) (PROGN (-15 -4190 ($ $ $)) (-15 -4190 ($ $ |t#1|)) (-15 -2789 ($ $)) (-15 -2894 (|t#1| $ |t#1|)) (-15 -1233 (|t#1| $ "first" |t#1|)) (-15 -3776 ($ $ $)) (-15 -1233 ($ $ "rest" $)) (-15 -4193 (|t#1| $ |t#1|)) (-15 -1233 (|t#1| $ "last" |t#1|)) (-15 -1425 ($ $ (-525)))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-942 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1128) . T))
+((-2016 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1163 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2016 (|#4| (-1 |#2| |#1|) |#3|))) (-977) (-977) (-1165 |#1|) (-1165 |#2|)) (T -1163))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-4 *2 (-1165 *6)) (-5 *1 (-1163 *5 *6 *4 *2)) (-4 *4 (-1165 *5)))))
+(-10 -7 (-15 -2016 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2414 (((-108) $) 15)) (-1803 (($ $) 92)) (-3659 (($ $) 68)) (-1781 (($ $) 88)) (-3638 (($ $) 64)) (-1828 (($ $) 96)) (-3698 (($ $) 72)) (-2533 (($ $) 62)) (-1618 (($ $) 60)) (-1841 (($ $) 98)) (-3798 (($ $) 74)) (-1816 (($ $) 94)) (-3678 (($ $) 70)) (-1792 (($ $) 90)) (-3649 (($ $) 66)) (-4100 (((-798) $) 48) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1876 (($ $) 104)) (-3853 (($ $) 80)) (-1853 (($ $) 100)) (-3808 (($ $) 76)) (-1902 (($ $) 108)) (-1760 (($ $) 84)) (-3135 (($ $) 110)) (-1770 (($ $) 86)) (-1891 (($ $) 106)) (-1748 (($ $) 82)) (-1866 (($ $) 102)) (-3820 (($ $) 78)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-385 (-525))) 58)))
+(((-1164 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -3659 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3698 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3678 (|#1| |#1|)) (-15 -3649 (|#1| |#1|)) (-15 -3820 (|#1| |#1|)) (-15 -1748 (|#1| |#1|)) (-15 -1770 (|#1| |#1|)) (-15 -1760 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -1792 (|#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -1781 (|#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -1866 (|#1| |#1|)) (-15 -1891 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -1902 (|#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -2533 (|#1| |#1|)) (-15 -1618 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4100 (|#1| |#2|)) (-15 -4100 (|#1| |#1|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -4100 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-856))) (-15 -2414 ((-108) |#1|)) (-15 -4100 ((-798) |#1|))) (-1165 |#2|) (-977)) (T -1164))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -3659 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3698 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3678 (|#1| |#1|)) (-15 -3649 (|#1| |#1|)) (-15 -3820 (|#1| |#1|)) (-15 -1748 (|#1| |#1|)) (-15 -1770 (|#1| |#1|)) (-15 -1760 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -1792 (|#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -1781 (|#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -1866 (|#1| |#1|)) (-15 -1891 (|#1| |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -1902 (|#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -2533 (|#1| |#1|)) (-15 -1618 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4100 (|#1| |#2|)) (-15 -4100 (|#1| |#1|)) (-15 -4100 (|#1| (-385 (-525)))) (-15 -4100 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-856))) (-15 -2414 ((-108) |#1|)) (-15 -4100 ((-798) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-1296 (((-592 (-1005)) $) 74)) (-3469 (((-1092) $) 103)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-2433 (($ $) 52 (|has| |#1| (-517)))) (-1568 (((-108) $) 54 (|has| |#1| (-517)))) (-2730 (($ $ (-713)) 98) (($ $ (-713) (-713)) 97)) (-2005 (((-1073 (-2 (|:| |k| (-713)) (|:| |c| |#1|))) $) 105)) (-1803 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-3659 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3222 (((-3 $ "failed") $ $) 19)) (-4211 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-1781 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-3638 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-2996 (($ (-1073 (-2 (|:| |k| (-713)) (|:| |c| |#1|)))) 155) (($ (-1073 |#1|)) 153)) (-1828 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-3698 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2475 (($) 17 T CONST)) (-1451 (($ $) 60)) (-3300 (((-3 $ "failed") $) 34)) (-2491 (($ $) 152)) (-3565 (((-887 |#1|) $ (-713)) 150) (((-887 |#1|) $ (-713) (-713)) 149)) (-2853 (((-108) $) 73)) (-4106 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-4000 (((-713) $) 100) (((-713) $ (-713)) 99)) (-2278 (((-108) $) 31)) (-1303 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-1585 (($ $ (-856)) 101)) (-2598 (($ (-1 |#1| (-525)) $) 151)) (-2457 (((-108) $) 62)) (-1272 (($ |#1| (-713)) 61) (($ $ (-1005) (-713)) 76) (($ $ (-592 (-1005)) (-592 (-713))) 75)) (-2016 (($ (-1 |#1| |#1|) $) 63)) (-2533 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-1418 (($ $) 65)) (-1430 ((|#1| $) 66)) (-1289 (((-1075) $) 9)) (-2367 (($ $) 147 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) 146 (-2067 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-893)) (|has| |#1| (-1114)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -1296 ((-592 (-1092)) |#1|))) (|has| |#1| (-15 -2367 (|#1| |#1| (-1092)))) (|has| |#1| (-37 (-385 (-525)))))))) (-3993 (((-1039) $) 10)) (-1397 (($ $ (-713)) 95)) (-1311 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-1618 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2825 (((-1073 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-713)))))) (-3431 ((|#1| $ (-713)) 104) (($ $ $) 81 (|has| (-713) (-1032)))) (-2702 (($ $ (-592 (-1092)) (-592 (-713))) 89 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1092) (-713)) 88 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-592 (-1092))) 87 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1092)) 86 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-3529 (((-713) $) 64)) (-1841 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-3798 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-1816 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3678 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-1792 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-3649 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-3926 (($ $) 72)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-3137 (((-1073 |#1|) $) 154)) (-3136 ((|#1| $ (-713)) 59)) (-1463 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2448 (((-713)) 29)) (-1423 ((|#1| $) 102)) (-1876 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3853 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1853 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-1902 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-1760 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-1485 ((|#1| $ (-713)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-713)))) (|has| |#1| (-15 -4100 (|#1| (-1092))))))) (-3135 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-1891 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-1748 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-1866 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-3820 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2401 (($ $ (-592 (-1092)) (-592 (-713))) 93 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1092) (-713)) 92 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-592 (-1092))) 91 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1092)) 90 (-12 (|has| |#1| (-835 (-1092))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-2775 (((-108) $ $) 6)) (-2880 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ |#1|) 148 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
(((-1165 |#1|) (-131) (-977)) (T -1165))
-((-2598 (*1 *1 *2) (-12 (-5 *2 (-1073 (-2 (|:| |k| (-713)) (|:| |c| *3)))) (-4 *3 (-977)) (-4 *1 (-1165 *3)))) (-1684 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-977)) (-5 *2 (-1073 *3)))) (-2598 (*1 *1 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-4 *1 (-1165 *3)))) (-4224 (*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-977)))) (-2066 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1165 *3)) (-4 *3 (-977)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-1165 *4)) (-4 *4 (-977)) (-5 *2 (-887 *4)))) (-3882 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-4 *1 (-1165 *4)) (-4 *4 (-977)) (-5 *2 (-887 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-1206 (*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525)))))) (-1206 (*1 *1 *1 *2) (-3254 (-12 (-5 *2 (-1092)) (-4 *1 (-1165 *3)) (-4 *3 (-977)) (-12 (-4 *3 (-29 (-525))) (-4 *3 (-893)) (-4 *3 (-1114)) (-4 *3 (-37 (-385 (-525)))))) (-12 (-5 *2 (-1092)) (-4 *1 (-1165 *3)) (-4 *3 (-977)) (-12 (|has| *3 (-15 -2897 ((-592 *2) *3))) (|has| *3 (-15 -1206 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525)))))))))
-(-13 (-1152 |t#1| (-713)) (-10 -8 (-15 -2598 ($ (-1073 (-2 (|:| |k| (-713)) (|:| |c| |t#1|))))) (-15 -1684 ((-1073 |t#1|) $)) (-15 -2598 ($ (-1073 |t#1|))) (-15 -4224 ($ $)) (-15 -2066 ($ (-1 |t#1| (-525)) $)) (-15 -3882 ((-887 |t#1|) $ (-713))) (-15 -3882 ((-887 |t#1|) $ (-713) (-713))) (IF (|has| |t#1| (-341)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -1206 ($ $)) (IF (|has| |t#1| (-15 -1206 (|t#1| |t#1| (-1092)))) (IF (|has| |t#1| (-15 -2897 ((-592 (-1092)) |t#1|))) (-15 -1206 ($ $ (-1092))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1114)) (IF (|has| |t#1| (-893)) (IF (|has| |t#1| (-29 (-525))) (-15 -1206 ($ $ (-1092))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-934)) (-6 (-1114))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-713)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3254 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3254 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-713) |#1|))) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-713) (-1032)) ((-269) |has| |#1| (-517)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) |has| |#1| (-517)) ((-594 #1#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-835 (-1092)) -12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092)))) ((-906 |#1| #0# (-1005)) . T) ((-934) |has| |#1| (-37 (-385 (-525)))) ((-983 #1#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3254 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1114) |has| |#1| (-37 (-385 (-525)))) ((-1117) |has| |#1| (-37 (-385 (-525)))) ((-1152 |#1| #0#) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2897 (((-592 (-1005)) $) NIL)) (-2499 (((-1092) $) 87)) (-4210 (((-1147 |#2| |#1|) $ (-713)) 73)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-4218 (($ $) NIL (|has| |#1| (-517)))) (-3171 (((-108) $) 137 (|has| |#1| (-517)))) (-3828 (($ $ (-713)) 122) (($ $ (-713) (-713)) 124)) (-2755 (((-1073 (-2 (|:| |k| (-713)) (|:| |c| |#1|))) $) 42)) (-1575 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2804 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1578 (((-3 $ "failed") $ $) NIL)) (-2782 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1549 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2780 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2598 (($ (-1073 (-2 (|:| |k| (-713)) (|:| |c| |#1|)))) 53) (($ (-1073 |#1|)) NIL)) (-1599 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2169 (($) NIL T CONST)) (-1693 (($ $) 128)) (-3063 (($ $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-4224 (($ $) 135)) (-3882 (((-887 |#1|) $ (-713)) 63) (((-887 |#1|) $ (-713) (-713)) 65)) (-2398 (((-108) $) NIL)) (-3140 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2581 (((-713) $) NIL) (((-713) $ (-713)) NIL)) (-1396 (((-108) $) NIL)) (-3596 (($ $) 112)) (-2171 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2909 (($ (-525) (-525) $) 130)) (-3326 (($ $ (-856)) 134)) (-2066 (($ (-1 |#1| (-525)) $) 106)) (-1212 (((-108) $) NIL)) (-2876 (($ |#1| (-713)) 15) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-3165 (($ (-1 |#1| |#1|) $) 94)) (-1517 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3031 (($ $) NIL)) (-3043 ((|#1| $) NIL)) (-2619 (((-1075) $) NIL)) (-3911 (($ $) 110)) (-1826 (($ $) 108)) (-1435 (($ (-525) (-525) $) 132)) (-1206 (($ $) 145 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) 151 (-3254 (-12 (|has| |#1| (-15 -1206 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -2897 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114))))) (($ $ (-1170 |#2|)) 146 (|has| |#1| (-37 (-385 (-525)))))) (-2093 (((-1039) $) NIL)) (-2372 (($ $ (-525) (-525)) 116)) (-3931 (($ $ (-713)) 118)) (-1715 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3096 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1290 (($ $) 114)) (-2457 (((-1073 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-713)))))) (-3406 ((|#1| $ (-713)) 91) (($ $ $) 126 (|has| (-713) (-1032)))) (-3376 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) 103 (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $ (-1170 |#2|)) 99)) (-2343 (((-713) $) NIL)) (-1609 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1447 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1587 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1562 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2794 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1489 (($ $) 120)) (-1217 (((-798) $) NIL) (($ (-525)) 24) (($ (-385 (-525))) 143 (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 23 (|has| |#1| (-160))) (($ (-1147 |#2| |#1|)) 80) (($ (-1170 |#2|)) 20)) (-1684 (((-1073 |#1|) $) NIL)) (-1568 ((|#1| $ (-713)) 90)) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3917 (((-713)) NIL)) (-1340 ((|#1| $) 88)) (-1649 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3325 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1630 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1669 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1522 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1454 ((|#1| $ (-713)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-713)))) (|has| |#1| (-15 -1217 (|#1| (-1092))))))) (-2359 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1537 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1659 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1506 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1639 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1479 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 17 T CONST)) (-3359 (($) 13 T CONST)) (-2022 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-3955 (((-108) $ $) NIL)) (-4075 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) 102)) (-4047 (($ $ $) 18)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ |#1|) 140 (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-1166 |#1| |#2| |#3|) (-13 (-1165 |#1|) (-10 -8 (-15 -1217 ($ (-1147 |#2| |#1|))) (-15 -4210 ((-1147 |#2| |#1|) $ (-713))) (-15 -1217 ($ (-1170 |#2|))) (-15 -3376 ($ $ (-1170 |#2|))) (-15 -1826 ($ $)) (-15 -3911 ($ $)) (-15 -3596 ($ $)) (-15 -1290 ($ $)) (-15 -2372 ($ $ (-525) (-525))) (-15 -1693 ($ $)) (-15 -2909 ($ (-525) (-525) $)) (-15 -1435 ($ (-525) (-525) $)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1206 ($ $ (-1170 |#2|))) |%noBranch|))) (-977) (-1092) |#1|) (T -1166))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-977)) (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-1166 *3 *4 *5)))) (-4210 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1166 *4 *5 *6)) (-4 *4 (-977)) (-14 *5 (-1092)) (-14 *6 *4))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-1826 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092)) (-14 *4 *2))) (-3911 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092)) (-14 *4 *2))) (-3596 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092)) (-14 *4 *2))) (-1290 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092)) (-14 *4 *2))) (-2372 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-977)) (-14 *4 (-1092)) (-14 *5 *3))) (-1693 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092)) (-14 *4 *2))) (-2909 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-977)) (-14 *4 (-1092)) (-14 *5 *3))) (-1435 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-977)) (-14 *4 (-1092)) (-14 *5 *3))) (-1206 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
-(-13 (-1165 |#1|) (-10 -8 (-15 -1217 ($ (-1147 |#2| |#1|))) (-15 -4210 ((-1147 |#2| |#1|) $ (-713))) (-15 -1217 ($ (-1170 |#2|))) (-15 -3376 ($ $ (-1170 |#2|))) (-15 -1826 ($ $)) (-15 -3911 ($ $)) (-15 -3596 ($ $)) (-15 -1290 ($ $)) (-15 -2372 ($ $ (-525) (-525))) (-15 -1693 ($ $)) (-15 -2909 ($ (-525) (-525) $)) (-15 -1435 ($ (-525) (-525) $)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1206 ($ $ (-1170 |#2|))) |%noBranch|)))
-((-3964 (((-1 (-1073 |#1|) (-592 (-1073 |#1|))) (-1 |#2| (-592 |#2|))) 24)) (-4034 (((-1 (-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1369 (((-1 (-1073 |#1|) (-1073 |#1|)) (-1 |#2| |#2|)) 13)) (-3510 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2575 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1280 ((|#2| (-1 |#2| (-592 |#2|)) (-592 |#1|)) 54)) (-2340 (((-592 |#2|) (-592 |#1|) (-592 (-1 |#2| (-592 |#2|)))) 61)) (-3518 ((|#2| |#2| |#2|) 43)))
-(((-1167 |#1| |#2|) (-10 -7 (-15 -1369 ((-1 (-1073 |#1|) (-1073 |#1|)) (-1 |#2| |#2|))) (-15 -4034 ((-1 (-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3964 ((-1 (-1073 |#1|) (-592 (-1073 |#1|))) (-1 |#2| (-592 |#2|)))) (-15 -3518 (|#2| |#2| |#2|)) (-15 -2575 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1280 (|#2| (-1 |#2| (-592 |#2|)) (-592 |#1|))) (-15 -2340 ((-592 |#2|) (-592 |#1|) (-592 (-1 |#2| (-592 |#2|)))))) (-37 (-385 (-525))) (-1165 |#1|)) (T -1167))
-((-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 (-1 *6 (-592 *6)))) (-4 *5 (-37 (-385 (-525)))) (-4 *6 (-1165 *5)) (-5 *2 (-592 *6)) (-5 *1 (-1167 *5 *6)))) (-1280 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-592 *2))) (-5 *4 (-592 *5)) (-4 *5 (-37 (-385 (-525)))) (-4 *2 (-1165 *5)) (-5 *1 (-1167 *5 *2)))) (-3510 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1165 *4)) (-5 *1 (-1167 *4 *2)) (-4 *4 (-37 (-385 (-525)))))) (-2575 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1165 *4)) (-5 *1 (-1167 *4 *2)) (-4 *4 (-37 (-385 (-525)))))) (-3518 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1167 *3 *2)) (-4 *2 (-1165 *3)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-592 *5))) (-4 *5 (-1165 *4)) (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1073 *4) (-592 (-1073 *4)))) (-5 *1 (-1167 *4 *5)))) (-4034 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1165 *4)) (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1073 *4) (-1073 *4) (-1073 *4))) (-5 *1 (-1167 *4 *5)))) (-1369 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1165 *4)) (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1073 *4) (-1073 *4))) (-5 *1 (-1167 *4 *5)))))
-(-10 -7 (-15 -1369 ((-1 (-1073 |#1|) (-1073 |#1|)) (-1 |#2| |#2|))) (-15 -4034 ((-1 (-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3964 ((-1 (-1073 |#1|) (-592 (-1073 |#1|))) (-1 |#2| (-592 |#2|)))) (-15 -3518 (|#2| |#2| |#2|)) (-15 -2575 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1280 (|#2| (-1 |#2| (-592 |#2|)) (-592 |#1|))) (-15 -2340 ((-592 |#2|) (-592 |#1|) (-592 (-1 |#2| (-592 |#2|))))))
-((-2125 ((|#2| |#4| (-713)) 30)) (-4095 ((|#4| |#2|) 25)) (-1699 ((|#4| (-385 |#2|)) 52 (|has| |#1| (-517)))) (-4100 (((-1 |#4| (-592 |#4|)) |#3|) 46)))
-(((-1168 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4095 (|#4| |#2|)) (-15 -2125 (|#2| |#4| (-713))) (-15 -4100 ((-1 |#4| (-592 |#4|)) |#3|)) (IF (|has| |#1| (-517)) (-15 -1699 (|#4| (-385 |#2|))) |%noBranch|)) (-977) (-1150 |#1|) (-602 |#2|) (-1165 |#1|)) (T -1168))
-((-1699 (*1 *2 *3) (-12 (-5 *3 (-385 *5)) (-4 *5 (-1150 *4)) (-4 *4 (-517)) (-4 *4 (-977)) (-4 *2 (-1165 *4)) (-5 *1 (-1168 *4 *5 *6 *2)) (-4 *6 (-602 *5)))) (-4100 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *5 (-1150 *4)) (-5 *2 (-1 *6 (-592 *6))) (-5 *1 (-1168 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-1165 *4)))) (-2125 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-977)) (-4 *2 (-1150 *5)) (-5 *1 (-1168 *5 *2 *6 *3)) (-4 *6 (-602 *2)) (-4 *3 (-1165 *5)))) (-4095 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *3 (-1150 *4)) (-4 *2 (-1165 *4)) (-5 *1 (-1168 *4 *3 *5 *2)) (-4 *5 (-602 *3)))))
-(-10 -7 (-15 -4095 (|#4| |#2|)) (-15 -2125 (|#2| |#4| (-713))) (-15 -4100 ((-1 |#4| (-592 |#4|)) |#3|)) (IF (|has| |#1| (-517)) (-15 -1699 (|#4| (-385 |#2|))) |%noBranch|))
+((-2996 (*1 *1 *2) (-12 (-5 *2 (-1073 (-2 (|:| |k| (-713)) (|:| |c| *3)))) (-4 *3 (-977)) (-4 *1 (-1165 *3)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-977)) (-5 *2 (-1073 *3)))) (-2996 (*1 *1 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-4 *1 (-1165 *3)))) (-2491 (*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-977)))) (-2598 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1165 *3)) (-4 *3 (-977)))) (-3565 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-1165 *4)) (-4 *4 (-977)) (-5 *2 (-887 *4)))) (-3565 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-4 *1 (-1165 *4)) (-4 *4 (-977)) (-5 *2 (-887 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-2367 (*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525)))))) (-2367 (*1 *1 *1 *2) (-2067 (-12 (-5 *2 (-1092)) (-4 *1 (-1165 *3)) (-4 *3 (-977)) (-12 (-4 *3 (-29 (-525))) (-4 *3 (-893)) (-4 *3 (-1114)) (-4 *3 (-37 (-385 (-525)))))) (-12 (-5 *2 (-1092)) (-4 *1 (-1165 *3)) (-4 *3 (-977)) (-12 (|has| *3 (-15 -1296 ((-592 *2) *3))) (|has| *3 (-15 -2367 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525)))))))))
+(-13 (-1152 |t#1| (-713)) (-10 -8 (-15 -2996 ($ (-1073 (-2 (|:| |k| (-713)) (|:| |c| |t#1|))))) (-15 -3137 ((-1073 |t#1|) $)) (-15 -2996 ($ (-1073 |t#1|))) (-15 -2491 ($ $)) (-15 -2598 ($ (-1 |t#1| (-525)) $)) (-15 -3565 ((-887 |t#1|) $ (-713))) (-15 -3565 ((-887 |t#1|) $ (-713) (-713))) (IF (|has| |t#1| (-341)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -2367 ($ $)) (IF (|has| |t#1| (-15 -2367 (|t#1| |t#1| (-1092)))) (IF (|has| |t#1| (-15 -1296 ((-592 (-1092)) |t#1|))) (-15 -2367 ($ $ (-1092))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1114)) (IF (|has| |t#1| (-893)) (IF (|has| |t#1| (-29 (-525))) (-15 -2367 ($ $ (-1092))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-934)) (-6 (-1114))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-713)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -2067 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -2067 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-713) |#1|))) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-713) (-1032)) ((-269) |has| |#1| (-517)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) |has| |#1| (-517)) ((-594 #1#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-835 (-1092)) -12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092)))) ((-906 |#1| #0# (-1005)) . T) ((-934) |has| |#1| (-37 (-385 (-525)))) ((-983 #1#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -2067 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1114) |has| |#1| (-37 (-385 (-525)))) ((-1117) |has| |#1| (-37 (-385 (-525)))) ((-1152 |#1| #0#) . T))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-1296 (((-592 (-1005)) $) NIL)) (-3469 (((-1092) $) 87)) (-2338 (((-1147 |#2| |#1|) $ (-713)) 73)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2433 (($ $) NIL (|has| |#1| (-517)))) (-1568 (((-108) $) 137 (|has| |#1| (-517)))) (-2730 (($ $ (-713)) 122) (($ $ (-713) (-713)) 124)) (-2005 (((-1073 (-2 (|:| |k| (-713)) (|:| |c| |#1|))) $) 42)) (-1803 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3659 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3222 (((-3 $ "failed") $ $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1781 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3638 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2996 (($ (-1073 (-2 (|:| |k| (-713)) (|:| |c| |#1|)))) 53) (($ (-1073 |#1|)) NIL)) (-1828 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3698 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2475 (($) NIL T CONST)) (-3223 (($ $) 128)) (-1451 (($ $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-2491 (($ $) 135)) (-3565 (((-887 |#1|) $ (-713)) 63) (((-887 |#1|) $ (-713) (-713)) 65)) (-2853 (((-108) $) NIL)) (-4106 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4000 (((-713) $) NIL) (((-713) $ (-713)) NIL)) (-2278 (((-108) $) NIL)) (-2234 (($ $) 112)) (-1303 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3997 (($ (-525) (-525) $) 130)) (-1585 (($ $ (-856)) 134)) (-2598 (($ (-1 |#1| (-525)) $) 106)) (-2457 (((-108) $) NIL)) (-1272 (($ |#1| (-713)) 15) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-2016 (($ (-1 |#1| |#1|) $) 94)) (-2533 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1418 (($ $) NIL)) (-1430 ((|#1| $) NIL)) (-1289 (((-1075) $) NIL)) (-2381 (($ $) 110)) (-2036 (($ $) 108)) (-3623 (($ (-525) (-525) $) 132)) (-2367 (($ $) 145 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1092)) 151 (-2067 (-12 (|has| |#1| (-15 -2367 (|#1| |#1| (-1092)))) (|has| |#1| (-15 -1296 ((-592 (-1092)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1114))))) (($ $ (-1170 |#2|)) 146 (|has| |#1| (-37 (-385 (-525)))))) (-3993 (((-1039) $) NIL)) (-2621 (($ $ (-525) (-525)) 116)) (-1397 (($ $ (-713)) 118)) (-1311 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1618 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1291 (($ $) 114)) (-2825 (((-1073 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-713)))))) (-3431 ((|#1| $ (-713)) 91) (($ $ $) 126 (|has| (-713) (-1032)))) (-2702 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) 103 (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $ (-1170 |#2|)) 99)) (-3529 (((-713) $) NIL)) (-1841 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3798 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1816 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3678 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1792 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3649 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3926 (($ $) 120)) (-4100 (((-798) $) NIL) (($ (-525)) 24) (($ (-385 (-525))) 143 (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 23 (|has| |#1| (-160))) (($ (-1147 |#2| |#1|)) 80) (($ (-1170 |#2|)) 20)) (-3137 (((-1073 |#1|) $) NIL)) (-3136 ((|#1| $ (-713)) 90)) (-1463 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2448 (((-713)) NIL)) (-1423 ((|#1| $) 88)) (-1876 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3853 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1571 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1853 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1902 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1760 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1485 ((|#1| $ (-713)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-713)))) (|has| |#1| (-15 -4100 (|#1| (-1092))))))) (-3135 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1891 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1748 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1866 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3820 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 17 T CONST)) (-3375 (($) 13 T CONST)) (-2401 (($ $ (-592 (-1092)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-592 (-1092))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-1092)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1092))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-2775 (((-108) $ $) NIL)) (-2880 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) 102)) (-2860 (($ $ $) 18)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ |#1|) 140 (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-1166 |#1| |#2| |#3|) (-13 (-1165 |#1|) (-10 -8 (-15 -4100 ($ (-1147 |#2| |#1|))) (-15 -2338 ((-1147 |#2| |#1|) $ (-713))) (-15 -4100 ($ (-1170 |#2|))) (-15 -2702 ($ $ (-1170 |#2|))) (-15 -2036 ($ $)) (-15 -2381 ($ $)) (-15 -2234 ($ $)) (-15 -1291 ($ $)) (-15 -2621 ($ $ (-525) (-525))) (-15 -3223 ($ $)) (-15 -3997 ($ (-525) (-525) $)) (-15 -3623 ($ (-525) (-525) $)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2367 ($ $ (-1170 |#2|))) |%noBranch|))) (-977) (-1092) |#1|) (T -1166))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-977)) (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-1166 *3 *4 *5)))) (-2338 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1166 *4 *5 *6)) (-4 *4 (-977)) (-14 *5 (-1092)) (-14 *6 *4))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2702 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2036 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092)) (-14 *4 *2))) (-2381 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092)) (-14 *4 *2))) (-2234 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092)) (-14 *4 *2))) (-1291 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092)) (-14 *4 *2))) (-2621 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-977)) (-14 *4 (-1092)) (-14 *5 *3))) (-3223 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092)) (-14 *4 *2))) (-3997 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-977)) (-14 *4 (-1092)) (-14 *5 *3))) (-3623 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-977)) (-14 *4 (-1092)) (-14 *5 *3))) (-2367 (*1 *1 *1 *2) (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
+(-13 (-1165 |#1|) (-10 -8 (-15 -4100 ($ (-1147 |#2| |#1|))) (-15 -2338 ((-1147 |#2| |#1|) $ (-713))) (-15 -4100 ($ (-1170 |#2|))) (-15 -2702 ($ $ (-1170 |#2|))) (-15 -2036 ($ $)) (-15 -2381 ($ $)) (-15 -2234 ($ $)) (-15 -1291 ($ $)) (-15 -2621 ($ $ (-525) (-525))) (-15 -3223 ($ $)) (-15 -3997 ($ (-525) (-525) $)) (-15 -3623 ($ (-525) (-525) $)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2367 ($ $ (-1170 |#2|))) |%noBranch|)))
+((-1720 (((-1 (-1073 |#1|) (-592 (-1073 |#1|))) (-1 |#2| (-592 |#2|))) 24)) (-1208 (((-1 (-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1811 (((-1 (-1073 |#1|) (-1073 |#1|)) (-1 |#2| |#2|)) 13)) (-2612 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3945 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4130 ((|#2| (-1 |#2| (-592 |#2|)) (-592 |#1|)) 54)) (-3497 (((-592 |#2|) (-592 |#1|) (-592 (-1 |#2| (-592 |#2|)))) 61)) (-2685 ((|#2| |#2| |#2|) 43)))
+(((-1167 |#1| |#2|) (-10 -7 (-15 -1811 ((-1 (-1073 |#1|) (-1073 |#1|)) (-1 |#2| |#2|))) (-15 -1208 ((-1 (-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1720 ((-1 (-1073 |#1|) (-592 (-1073 |#1|))) (-1 |#2| (-592 |#2|)))) (-15 -2685 (|#2| |#2| |#2|)) (-15 -3945 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2612 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4130 (|#2| (-1 |#2| (-592 |#2|)) (-592 |#1|))) (-15 -3497 ((-592 |#2|) (-592 |#1|) (-592 (-1 |#2| (-592 |#2|)))))) (-37 (-385 (-525))) (-1165 |#1|)) (T -1167))
+((-3497 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 (-1 *6 (-592 *6)))) (-4 *5 (-37 (-385 (-525)))) (-4 *6 (-1165 *5)) (-5 *2 (-592 *6)) (-5 *1 (-1167 *5 *6)))) (-4130 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-592 *2))) (-5 *4 (-592 *5)) (-4 *5 (-37 (-385 (-525)))) (-4 *2 (-1165 *5)) (-5 *1 (-1167 *5 *2)))) (-2612 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1165 *4)) (-5 *1 (-1167 *4 *2)) (-4 *4 (-37 (-385 (-525)))))) (-3945 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1165 *4)) (-5 *1 (-1167 *4 *2)) (-4 *4 (-37 (-385 (-525)))))) (-2685 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1167 *3 *2)) (-4 *2 (-1165 *3)))) (-1720 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-592 *5))) (-4 *5 (-1165 *4)) (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1073 *4) (-592 (-1073 *4)))) (-5 *1 (-1167 *4 *5)))) (-1208 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1165 *4)) (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1073 *4) (-1073 *4) (-1073 *4))) (-5 *1 (-1167 *4 *5)))) (-1811 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1165 *4)) (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1073 *4) (-1073 *4))) (-5 *1 (-1167 *4 *5)))))
+(-10 -7 (-15 -1811 ((-1 (-1073 |#1|) (-1073 |#1|)) (-1 |#2| |#2|))) (-15 -1208 ((-1 (-1073 |#1|) (-1073 |#1|) (-1073 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1720 ((-1 (-1073 |#1|) (-592 (-1073 |#1|))) (-1 |#2| (-592 |#2|)))) (-15 -2685 (|#2| |#2| |#2|)) (-15 -3945 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2612 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4130 (|#2| (-1 |#2| (-592 |#2|)) (-592 |#1|))) (-15 -3497 ((-592 |#2|) (-592 |#1|) (-592 (-1 |#2| (-592 |#2|))))))
+((-2011 ((|#2| |#4| (-713)) 30)) (-3601 ((|#4| |#2|) 25)) (-3299 ((|#4| (-385 |#2|)) 52 (|has| |#1| (-517)))) (-3655 (((-1 |#4| (-592 |#4|)) |#3|) 46)))
+(((-1168 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3601 (|#4| |#2|)) (-15 -2011 (|#2| |#4| (-713))) (-15 -3655 ((-1 |#4| (-592 |#4|)) |#3|)) (IF (|has| |#1| (-517)) (-15 -3299 (|#4| (-385 |#2|))) |%noBranch|)) (-977) (-1150 |#1|) (-602 |#2|) (-1165 |#1|)) (T -1168))
+((-3299 (*1 *2 *3) (-12 (-5 *3 (-385 *5)) (-4 *5 (-1150 *4)) (-4 *4 (-517)) (-4 *4 (-977)) (-4 *2 (-1165 *4)) (-5 *1 (-1168 *4 *5 *6 *2)) (-4 *6 (-602 *5)))) (-3655 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *5 (-1150 *4)) (-5 *2 (-1 *6 (-592 *6))) (-5 *1 (-1168 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-1165 *4)))) (-2011 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-977)) (-4 *2 (-1150 *5)) (-5 *1 (-1168 *5 *2 *6 *3)) (-4 *6 (-602 *2)) (-4 *3 (-1165 *5)))) (-3601 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *3 (-1150 *4)) (-4 *2 (-1165 *4)) (-5 *1 (-1168 *4 *3 *5 *2)) (-4 *5 (-602 *3)))))
+(-10 -7 (-15 -3601 (|#4| |#2|)) (-15 -2011 (|#2| |#4| (-713))) (-15 -3655 ((-1 |#4| (-592 |#4|)) |#3|)) (IF (|has| |#1| (-517)) (-15 -3299 (|#4| (-385 |#2|))) |%noBranch|))
NIL
(((-1169) (-131)) (T -1169))
NIL
-(-13 (-10 -7 (-6 -1405)))
-((-4236 (((-108) $ $) NIL)) (-2499 (((-1092)) 12)) (-2619 (((-1075) $) 17)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 11) (((-1092) $) 8)) (-3955 (((-108) $ $) 14)))
-(((-1170 |#1|) (-13 (-1020) (-566 (-1092)) (-10 -8 (-15 -1217 ((-1092) $)) (-15 -2499 ((-1092))))) (-1092)) (T -1170))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1170 *3)) (-14 *3 *2))) (-2499 (*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1170 *3)) (-14 *3 *2))))
-(-13 (-1020) (-566 (-1092)) (-10 -8 (-15 -1217 ((-1092) $)) (-15 -2499 ((-1092)))))
-((-2609 (($ (-713)) 18)) (-1544 (((-632 |#2|) $ $) 40)) (-3139 ((|#2| $) 48)) (-4178 ((|#2| $) 47)) (-2047 ((|#2| $ $) 35)) (-2364 (($ $ $) 44)) (-4061 (($ $) 22) (($ $ $) 28)) (-4047 (($ $ $) 15)) (* (($ (-525) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
-(((-1171 |#1| |#2|) (-10 -8 (-15 -3139 (|#2| |#1|)) (-15 -4178 (|#2| |#1|)) (-15 -2364 (|#1| |#1| |#1|)) (-15 -1544 ((-632 |#2|) |#1| |#1|)) (-15 -2047 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4061 (|#1| |#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 -2609 (|#1| (-713))) (-15 -4047 (|#1| |#1| |#1|))) (-1172 |#2|) (-1128)) (T -1171))
+(-13 (-10 -7 (-6 -1456)))
+((-4087 (((-108) $ $) NIL)) (-3469 (((-1092)) 12)) (-1289 (((-1075) $) 17)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 11) (((-1092) $) 8)) (-2775 (((-108) $ $) 14)))
+(((-1170 |#1|) (-13 (-1020) (-566 (-1092)) (-10 -8 (-15 -4100 ((-1092) $)) (-15 -3469 ((-1092))))) (-1092)) (T -1170))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1170 *3)) (-14 *3 *2))) (-3469 (*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1170 *3)) (-14 *3 *2))))
+(-13 (-1020) (-566 (-1092)) (-10 -8 (-15 -4100 ((-1092) $)) (-15 -3469 ((-1092)))))
+((-1221 (($ (-713)) 18)) (-1825 (((-632 |#2|) $ $) 40)) (-2482 ((|#2| $) 48)) (-4128 ((|#2| $) 47)) (-3584 ((|#2| $ $) 35)) (-2548 (($ $ $) 44)) (-2871 (($ $) 22) (($ $ $) 28)) (-2860 (($ $ $) 15)) (* (($ (-525) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
+(((-1171 |#1| |#2|) (-10 -8 (-15 -2482 (|#2| |#1|)) (-15 -4128 (|#2| |#1|)) (-15 -2548 (|#1| |#1| |#1|)) (-15 -1825 ((-632 |#2|) |#1| |#1|)) (-15 -3584 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 -1221 (|#1| (-713))) (-15 -2860 (|#1| |#1| |#1|))) (-1172 |#2|) (-1128)) (T -1171))
NIL
-(-10 -8 (-15 -3139 (|#2| |#1|)) (-15 -4178 (|#2| |#1|)) (-15 -2364 (|#1| |#1| |#1|)) (-15 -1544 ((-632 |#2|) |#1| |#1|)) (-15 -2047 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4061 (|#1| |#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 -2609 (|#1| (-713))) (-15 -4047 (|#1| |#1| |#1|)))
-((-4236 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2609 (($ (-713)) 112 (|has| |#1| (-23)))) (-3456 (((-1179) $ (-525) (-525)) 40 (|has| $ (-6 -4259)))) (-2470 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-2165 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4259))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4259))))) (-2458 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-3991 (((-108) $ (-713)) 8)) (-1430 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) 58 (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4258)))) (-2169 (($) 7 T CONST)) (-2700 (($ $) 90 (|has| $ (-6 -4259)))) (-3431 (($ $) 100)) (-1910 (($ $) 78 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1703 (($ |#1| $) 77 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4258)))) (-2301 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) 51)) (-1932 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1020)))) (-3440 (((-592 |#1|) $) 30 (|has| $ (-6 -4258)))) (-1544 (((-632 |#1|) $ $) 105 (|has| |#1| (-977)))) (-3416 (($ (-713) |#1|) 69)) (-3924 (((-108) $ (-713)) 9)) (-3666 (((-525) $) 43 (|has| (-525) (-789)))) (-2638 (($ $ $) 87 (|has| |#1| (-789)))) (-1577 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-2694 (((-592 |#1|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-1847 (((-525) $) 44 (|has| (-525) (-789)))) (-3662 (($ $ $) 86 (|has| |#1| (-789)))) (-2284 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3139 ((|#1| $) 102 (-12 (|has| |#1| (-977)) (|has| |#1| (-934))))) (-2912 (((-108) $ (-713)) 10)) (-4178 ((|#1| $) 103 (-12 (|has| |#1| (-977)) (|has| |#1| (-934))))) (-2619 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2531 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-2628 (((-592 (-525)) $) 46)) (-2978 (((-108) (-525) $) 47)) (-2093 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1872 ((|#1| $) 42 (|has| (-525) (-789)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1420 (($ $ |#1|) 41 (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) 14)) (-2167 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) 48)) (-2659 (((-108) $) 11)) (-2512 (($) 12)) (-3406 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1141 (-525))) 63)) (-2047 ((|#1| $ $) 106 (|has| |#1| (-977)))) (-3038 (($ $ (-525)) 62) (($ $ (-1141 (-525))) 61)) (-2364 (($ $ $) 104 (|has| |#1| (-977)))) (-2110 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4258))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4258))))) (-4098 (($ $ $ (-525)) 91 (|has| $ (-6 -4259)))) (-1462 (($ $) 13)) (-3210 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 70)) (-2038 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1217 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) 84 (|has| |#1| (-789)))) (-3987 (((-108) $ $) 83 (|has| |#1| (-789)))) (-3955 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3999 (((-108) $ $) 85 (|has| |#1| (-789)))) (-3978 (((-108) $ $) 82 (|has| |#1| (-789)))) (-4061 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4047 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-525) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-669))) (($ $ |#1|) 107 (|has| |#1| (-669)))) (-3522 (((-713) $) 6 (|has| $ (-6 -4258)))))
+(-10 -8 (-15 -2482 (|#2| |#1|)) (-15 -4128 (|#2| |#1|)) (-15 -2548 (|#1| |#1| |#1|)) (-15 -1825 ((-632 |#2|) |#1| |#1|)) (-15 -3584 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 -1221 (|#1| (-713))) (-15 -2860 (|#1| |#1| |#1|)))
+((-4087 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-1221 (($ (-713)) 112 (|has| |#1| (-23)))) (-3289 (((-1179) $ (-525) (-525)) 40 (|has| $ (-6 -4260)))) (-2358 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-2436 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4260))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4260))))) (-1842 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-3779 (((-108) $ (-713)) 8)) (-1233 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) 58 (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4259)))) (-2475 (($) 7 T CONST)) (-2670 (($ $) 90 (|has| $ (-6 -4260)))) (-1652 (($ $) 100)) (-1681 (($ $) 78 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2698 (($ |#1| $) 77 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4259)))) (-3081 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) 51)) (-3856 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1020)))) (-2175 (((-592 |#1|) $) 30 (|has| $ (-6 -4259)))) (-1825 (((-632 |#1|) $ $) 105 (|has| |#1| (-977)))) (-3324 (($ (-713) |#1|) 69)) (-2516 (((-108) $ (-713)) 9)) (-1732 (((-525) $) 43 (|has| (-525) (-789)))) (-3033 (($ $ $) 87 (|has| |#1| (-789)))) (-3212 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-2617 (((-592 |#1|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-2231 (((-525) $) 44 (|has| (-525) (-789)))) (-1609 (($ $ $) 86 (|has| |#1| (-789)))) (-3069 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2482 ((|#1| $) 102 (-12 (|has| |#1| (-977)) (|has| |#1| (-934))))) (-4028 (((-108) $ (-713)) 10)) (-4128 ((|#1| $) 103 (-12 (|has| |#1| (-977)) (|has| |#1| (-934))))) (-1289 (((-1075) $) 22 (|has| |#1| (-1020)))) (-2594 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-3177 (((-592 (-525)) $) 46)) (-3461 (((-108) (-525) $) 47)) (-3993 (((-1039) $) 21 (|has| |#1| (-1020)))) (-1647 ((|#1| $) 42 (|has| (-525) (-789)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-3453 (($ $ |#1|) 41 (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) 14)) (-2456 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) 48)) (-3479 (((-108) $) 11)) (-1558 (($) 12)) (-3431 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1141 (-525))) 63)) (-3584 ((|#1| $ $) 106 (|has| |#1| (-977)))) (-2139 (($ $ (-525)) 62) (($ $ (-1141 (-525))) 61)) (-2548 (($ $ $) 104 (|has| |#1| (-977)))) (-4002 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4259))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4259))))) (-3632 (($ $ $ (-525)) 91 (|has| $ (-6 -4260)))) (-2503 (($ $) 13)) (-2069 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 70)) (-2035 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-4100 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) 84 (|has| |#1| (-789)))) (-2807 (((-108) $ $) 83 (|has| |#1| (-789)))) (-2775 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-2817 (((-108) $ $) 85 (|has| |#1| (-789)))) (-2795 (((-108) $ $) 82 (|has| |#1| (-789)))) (-2871 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2860 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-525) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-669))) (($ $ |#1|) 107 (|has| |#1| (-669)))) (-2827 (((-713) $) 6 (|has| $ (-6 -4259)))))
(((-1172 |#1|) (-131) (-1128)) (T -1172))
-((-4047 (*1 *1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-25)))) (-2609 (*1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1172 *3)) (-4 *3 (-23)) (-4 *3 (-1128)))) (-4061 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-21)))) (-4061 (*1 *1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-1172 *3)) (-4 *3 (-1128)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-669)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-669)))) (-2047 (*1 *2 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-977)))) (-1544 (*1 *2 *1 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-1128)) (-4 *3 (-977)) (-5 *2 (-632 *3)))) (-2364 (*1 *1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-977)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-934)) (-4 *2 (-977)))) (-3139 (*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-934)) (-4 *2 (-977)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4047 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2609 ($ (-713))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4061 ($ $)) (-15 -4061 ($ $ $)) (-15 * ($ (-525) $))) |%noBranch|) (IF (|has| |t#1| (-669)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-977)) (PROGN (-15 -2047 (|t#1| $ $)) (-15 -1544 ((-632 |t#1|) $ $)) (-15 -2364 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-934)) (IF (|has| |t#1| (-977)) (PROGN (-15 -4178 (|t#1| $)) (-15 -3139 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-33) . T) ((-97) -3254 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-566 (-798)) -3254 (|has| |#1| (-1020)) (|has| |#1| (-789)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-19 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1020) -3254 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-1128) . T))
-((-4192 (((-1174 |#2|) (-1 |#2| |#1| |#2|) (-1174 |#1|) |#2|) 13)) (-1284 ((|#2| (-1 |#2| |#1| |#2|) (-1174 |#1|) |#2|) 15)) (-3165 (((-3 (-1174 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1174 |#1|)) 28) (((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|)) 18)))
-(((-1173 |#1| |#2|) (-10 -7 (-15 -4192 ((-1174 |#2|) (-1 |#2| |#1| |#2|) (-1174 |#1|) |#2|)) (-15 -1284 (|#2| (-1 |#2| |#1| |#2|) (-1174 |#1|) |#2|)) (-15 -3165 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|))) (-15 -3165 ((-3 (-1174 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1174 |#1|)))) (-1128) (-1128)) (T -1173))
-((-3165 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1174 *6)) (-5 *1 (-1173 *5 *6)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1174 *6)) (-5 *1 (-1173 *5 *6)))) (-1284 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1174 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-1173 *5 *2)))) (-4192 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1174 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-1174 *5)) (-5 *1 (-1173 *6 *5)))))
-(-10 -7 (-15 -4192 ((-1174 |#2|) (-1 |#2| |#1| |#2|) (-1174 |#1|) |#2|)) (-15 -1284 (|#2| (-1 |#2| |#1| |#2|) (-1174 |#1|) |#2|)) (-15 -3165 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|))) (-15 -3165 ((-3 (-1174 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1174 |#1|))))
-((-4236 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2609 (($ (-713)) NIL (|has| |#1| (-23)))) (-3367 (($ (-592 |#1|)) 9)) (-3456 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4259)))) (-2470 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2165 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4259))) (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-789))))) (-2458 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3991 (((-108) $ (-713)) NIL)) (-1430 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4259))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4259)))) (-3785 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2169 (($) NIL T CONST)) (-2700 (($ $) NIL (|has| $ (-6 -4259)))) (-3431 (($ $) NIL)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1703 (($ |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-1284 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4258))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4258)))) (-2301 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4259)))) (-2222 ((|#1| $ (-525)) NIL)) (-1932 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-3440 (((-592 |#1|) $) 15 (|has| $ (-6 -4258)))) (-1544 (((-632 |#1|) $ $) NIL (|has| |#1| (-977)))) (-3416 (($ (-713) |#1|) NIL)) (-3924 (((-108) $ (-713)) NIL)) (-3666 (((-525) $) NIL (|has| (-525) (-789)))) (-2638 (($ $ $) NIL (|has| |#1| (-789)))) (-1577 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2694 (((-592 |#1|) $) NIL (|has| $ (-6 -4258)))) (-2004 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-1847 (((-525) $) NIL (|has| (-525) (-789)))) (-3662 (($ $ $) NIL (|has| |#1| (-789)))) (-2284 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3139 ((|#1| $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-977))))) (-2912 (((-108) $ (-713)) NIL)) (-4178 ((|#1| $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-977))))) (-2619 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2531 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2628 (((-592 (-525)) $) NIL)) (-2978 (((-108) (-525) $) NIL)) (-2093 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1872 ((|#1| $) NIL (|has| (-525) (-789)))) (-1983 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1420 (($ $ |#1|) NIL (|has| $ (-6 -4259)))) (-3944 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2167 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-3341 (((-592 |#1|) $) NIL)) (-2659 (((-108) $) NIL)) (-2512 (($) NIL)) (-3406 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2047 ((|#1| $ $) NIL (|has| |#1| (-977)))) (-3038 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2364 (($ $ $) NIL (|has| |#1| (-977)))) (-2110 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#1| (-1020))))) (-4098 (($ $ $ (-525)) NIL (|has| $ (-6 -4259)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) 19 (|has| |#1| (-567 (-501))))) (-1230 (($ (-592 |#1|)) 8)) (-2038 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1217 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3029 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4258)))) (-4011 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3987 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3955 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3999 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3978 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4061 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4047 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-525) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-669))) (($ $ |#1|) NIL (|has| |#1| (-669)))) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-1174 |#1|) (-13 (-1172 |#1|) (-10 -8 (-15 -3367 ($ (-592 |#1|))))) (-1128)) (T -1174))
-((-3367 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-1174 *3)))))
-(-13 (-1172 |#1|) (-10 -8 (-15 -3367 ($ (-592 |#1|)))))
-((-4236 (((-108) $ $) NIL)) (-1404 (((-1075) $ (-1075)) 90) (((-1075) $ (-1075) (-1075)) 88) (((-1075) $ (-1075) (-592 (-1075))) 87)) (-4233 (($) 59)) (-1857 (((-1179) $ (-445) (-856)) 45)) (-3306 (((-1179) $ (-856) (-1075)) 73) (((-1179) $ (-856) (-809)) 74)) (-3109 (((-1179) $ (-856) (-357) (-357)) 48)) (-2655 (((-1179) $ (-1075)) 69)) (-2930 (((-1179) $ (-856) (-1075)) 78)) (-2778 (((-1179) $ (-856) (-357) (-357)) 49)) (-1459 (((-1179) $ (-856) (-856)) 46)) (-1373 (((-1179) $) 70)) (-3913 (((-1179) $ (-856) (-1075)) 77)) (-3847 (((-1179) $ (-445) (-856)) 31)) (-2388 (((-1179) $ (-856) (-1075)) 76)) (-3374 (((-592 (-242)) $) 23) (($ $ (-592 (-242))) 24)) (-1999 (((-1179) $ (-713) (-713)) 43)) (-2131 (($ $) 60) (($ (-445) (-592 (-242))) 61)) (-2619 (((-1075) $) NIL)) (-3364 (((-525) $) 38)) (-2093 (((-1039) $) NIL)) (-4190 (((-1174 (-3 (-445) "undefined")) $) 37)) (-1323 (((-1174 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -2388 (-525)) (|:| -3617 (-525)) (|:| |spline| (-525)) (|:| -3692 (-525)) (|:| |axesColor| (-809)) (|:| -3306 (-525)) (|:| |unitsColor| (-809)) (|:| |showing| (-525)))) $) 36)) (-1480 (((-1179) $ (-856) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-809) (-525) (-809) (-525)) 68)) (-3189 (((-592 (-878 (-205))) $) NIL)) (-2923 (((-445) $ (-856)) 33)) (-3288 (((-1179) $ (-713) (-713) (-856) (-856)) 40)) (-1249 (((-1179) $ (-1075)) 79)) (-3617 (((-1179) $ (-856) (-1075)) 75)) (-1217 (((-798) $) 85)) (-2719 (((-1179) $) 80)) (-3692 (((-1179) $ (-856) (-1075)) 71) (((-1179) $ (-856) (-809)) 72)) (-3955 (((-108) $ $) NIL)))
-(((-1175) (-13 (-1020) (-10 -8 (-15 -3189 ((-592 (-878 (-205))) $)) (-15 -4233 ($)) (-15 -2131 ($ $)) (-15 -3374 ((-592 (-242)) $)) (-15 -3374 ($ $ (-592 (-242)))) (-15 -2131 ($ (-445) (-592 (-242)))) (-15 -1480 ((-1179) $ (-856) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-809) (-525) (-809) (-525))) (-15 -1323 ((-1174 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -2388 (-525)) (|:| -3617 (-525)) (|:| |spline| (-525)) (|:| -3692 (-525)) (|:| |axesColor| (-809)) (|:| -3306 (-525)) (|:| |unitsColor| (-809)) (|:| |showing| (-525)))) $)) (-15 -4190 ((-1174 (-3 (-445) "undefined")) $)) (-15 -2655 ((-1179) $ (-1075))) (-15 -3847 ((-1179) $ (-445) (-856))) (-15 -2923 ((-445) $ (-856))) (-15 -3692 ((-1179) $ (-856) (-1075))) (-15 -3692 ((-1179) $ (-856) (-809))) (-15 -3306 ((-1179) $ (-856) (-1075))) (-15 -3306 ((-1179) $ (-856) (-809))) (-15 -2388 ((-1179) $ (-856) (-1075))) (-15 -3913 ((-1179) $ (-856) (-1075))) (-15 -3617 ((-1179) $ (-856) (-1075))) (-15 -1249 ((-1179) $ (-1075))) (-15 -2719 ((-1179) $)) (-15 -3288 ((-1179) $ (-713) (-713) (-856) (-856))) (-15 -2778 ((-1179) $ (-856) (-357) (-357))) (-15 -3109 ((-1179) $ (-856) (-357) (-357))) (-15 -2930 ((-1179) $ (-856) (-1075))) (-15 -1999 ((-1179) $ (-713) (-713))) (-15 -1857 ((-1179) $ (-445) (-856))) (-15 -1459 ((-1179) $ (-856) (-856))) (-15 -1404 ((-1075) $ (-1075))) (-15 -1404 ((-1075) $ (-1075) (-1075))) (-15 -1404 ((-1075) $ (-1075) (-592 (-1075)))) (-15 -1373 ((-1179) $)) (-15 -3364 ((-525) $)) (-15 -1217 ((-798) $))))) (T -1175))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1175)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-592 (-878 (-205)))) (-5 *1 (-1175)))) (-4233 (*1 *1) (-5 *1 (-1175))) (-2131 (*1 *1 *1) (-5 *1 (-1175))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1175)))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1175)))) (-2131 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-592 (-242))) (-5 *1 (-1175)))) (-1480 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-856)) (-5 *4 (-205)) (-5 *5 (-525)) (-5 *6 (-809)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-1174 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -2388 (-525)) (|:| -3617 (-525)) (|:| |spline| (-525)) (|:| -3692 (-525)) (|:| |axesColor| (-809)) (|:| -3306 (-525)) (|:| |unitsColor| (-809)) (|:| |showing| (-525))))) (-5 *1 (-1175)))) (-4190 (*1 *2 *1) (-12 (-5 *2 (-1174 (-3 (-445) "undefined"))) (-5 *1 (-1175)))) (-2655 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-3847 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-445)) (-5 *4 (-856)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-2923 (*1 *2 *1 *3) (-12 (-5 *3 (-856)) (-5 *2 (-445)) (-5 *1 (-1175)))) (-3692 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-3692 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-809)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-3306 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-3306 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-809)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-2388 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-3913 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-3617 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-1249 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1175)))) (-3288 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-713)) (-5 *4 (-856)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-2778 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-856)) (-5 *4 (-357)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-3109 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-856)) (-5 *4 (-357)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-2930 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-1999 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-1857 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-445)) (-5 *4 (-856)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-1459 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-1404 (*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1175)))) (-1404 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1175)))) (-1404 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-1075)) (-5 *1 (-1175)))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1175)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1175)))))
-(-13 (-1020) (-10 -8 (-15 -3189 ((-592 (-878 (-205))) $)) (-15 -4233 ($)) (-15 -2131 ($ $)) (-15 -3374 ((-592 (-242)) $)) (-15 -3374 ($ $ (-592 (-242)))) (-15 -2131 ($ (-445) (-592 (-242)))) (-15 -1480 ((-1179) $ (-856) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-809) (-525) (-809) (-525))) (-15 -1323 ((-1174 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -2388 (-525)) (|:| -3617 (-525)) (|:| |spline| (-525)) (|:| -3692 (-525)) (|:| |axesColor| (-809)) (|:| -3306 (-525)) (|:| |unitsColor| (-809)) (|:| |showing| (-525)))) $)) (-15 -4190 ((-1174 (-3 (-445) "undefined")) $)) (-15 -2655 ((-1179) $ (-1075))) (-15 -3847 ((-1179) $ (-445) (-856))) (-15 -2923 ((-445) $ (-856))) (-15 -3692 ((-1179) $ (-856) (-1075))) (-15 -3692 ((-1179) $ (-856) (-809))) (-15 -3306 ((-1179) $ (-856) (-1075))) (-15 -3306 ((-1179) $ (-856) (-809))) (-15 -2388 ((-1179) $ (-856) (-1075))) (-15 -3913 ((-1179) $ (-856) (-1075))) (-15 -3617 ((-1179) $ (-856) (-1075))) (-15 -1249 ((-1179) $ (-1075))) (-15 -2719 ((-1179) $)) (-15 -3288 ((-1179) $ (-713) (-713) (-856) (-856))) (-15 -2778 ((-1179) $ (-856) (-357) (-357))) (-15 -3109 ((-1179) $ (-856) (-357) (-357))) (-15 -2930 ((-1179) $ (-856) (-1075))) (-15 -1999 ((-1179) $ (-713) (-713))) (-15 -1857 ((-1179) $ (-445) (-856))) (-15 -1459 ((-1179) $ (-856) (-856))) (-15 -1404 ((-1075) $ (-1075))) (-15 -1404 ((-1075) $ (-1075) (-1075))) (-15 -1404 ((-1075) $ (-1075) (-592 (-1075)))) (-15 -1373 ((-1179) $)) (-15 -3364 ((-525) $)) (-15 -1217 ((-798) $))))
-((-4236 (((-108) $ $) NIL)) (-2247 (((-1179) $ (-357)) 140) (((-1179) $ (-357) (-357) (-357)) 141)) (-1404 (((-1075) $ (-1075)) 148) (((-1075) $ (-1075) (-1075)) 146) (((-1075) $ (-1075) (-592 (-1075))) 145)) (-2322 (($) 50)) (-4225 (((-1179) $ (-357) (-357) (-357) (-357) (-357)) 116) (((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) $) 114) (((-1179) $ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) 115) (((-1179) $ (-525) (-525) (-357) (-357) (-357)) 117) (((-1179) $ (-357) (-357)) 118) (((-1179) $ (-357) (-357) (-357)) 125)) (-2514 (((-357)) 97) (((-357) (-357)) 98)) (-3993 (((-357)) 92) (((-357) (-357)) 94)) (-2914 (((-357)) 95) (((-357) (-357)) 96)) (-3444 (((-357)) 101) (((-357) (-357)) 102)) (-3355 (((-357)) 99) (((-357) (-357)) 100)) (-3109 (((-1179) $ (-357) (-357)) 142)) (-2655 (((-1179) $ (-1075)) 126)) (-3320 (((-1052 (-205)) $) 51) (($ $ (-1052 (-205))) 52)) (-3503 (((-1179) $ (-1075)) 154)) (-1224 (((-1179) $ (-1075)) 155)) (-2904 (((-1179) $ (-357) (-357)) 124) (((-1179) $ (-525) (-525)) 139)) (-1459 (((-1179) $ (-856) (-856)) 132)) (-1373 (((-1179) $) 112)) (-2590 (((-1179) $ (-1075)) 153)) (-3619 (((-1179) $ (-1075)) 109)) (-3374 (((-592 (-242)) $) 53) (($ $ (-592 (-242))) 54)) (-1999 (((-1179) $ (-713) (-713)) 131)) (-2749 (((-1179) $ (-713) (-878 (-205))) 160)) (-3528 (($ $) 56) (($ (-1052 (-205)) (-1075)) 57) (($ (-1052 (-205)) (-592 (-242))) 58)) (-1608 (((-1179) $ (-357) (-357) (-357)) 106)) (-2619 (((-1075) $) NIL)) (-3364 (((-525) $) 103)) (-2153 (((-1179) $ (-357)) 143)) (-1939 (((-1179) $ (-357)) 158)) (-2093 (((-1039) $) NIL)) (-3352 (((-1179) $ (-357)) 157)) (-2068 (((-1179) $ (-1075)) 111)) (-3288 (((-1179) $ (-713) (-713) (-856) (-856)) 130)) (-2714 (((-1179) $ (-1075)) 108)) (-1249 (((-1179) $ (-1075)) 110)) (-3755 (((-1179) $ (-146) (-146)) 129)) (-1217 (((-798) $) 137)) (-2719 (((-1179) $) 113)) (-1375 (((-1179) $ (-1075)) 156)) (-3692 (((-1179) $ (-1075)) 107)) (-3955 (((-108) $ $) NIL)))
-(((-1176) (-13 (-1020) (-10 -8 (-15 -3993 ((-357))) (-15 -3993 ((-357) (-357))) (-15 -2914 ((-357))) (-15 -2914 ((-357) (-357))) (-15 -2514 ((-357))) (-15 -2514 ((-357) (-357))) (-15 -3355 ((-357))) (-15 -3355 ((-357) (-357))) (-15 -3444 ((-357))) (-15 -3444 ((-357) (-357))) (-15 -2322 ($)) (-15 -3528 ($ $)) (-15 -3528 ($ (-1052 (-205)) (-1075))) (-15 -3528 ($ (-1052 (-205)) (-592 (-242)))) (-15 -3320 ((-1052 (-205)) $)) (-15 -3320 ($ $ (-1052 (-205)))) (-15 -2749 ((-1179) $ (-713) (-878 (-205)))) (-15 -3374 ((-592 (-242)) $)) (-15 -3374 ($ $ (-592 (-242)))) (-15 -1999 ((-1179) $ (-713) (-713))) (-15 -1459 ((-1179) $ (-856) (-856))) (-15 -2655 ((-1179) $ (-1075))) (-15 -3288 ((-1179) $ (-713) (-713) (-856) (-856))) (-15 -4225 ((-1179) $ (-357) (-357) (-357) (-357) (-357))) (-15 -4225 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) $)) (-15 -4225 ((-1179) $ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -4225 ((-1179) $ (-525) (-525) (-357) (-357) (-357))) (-15 -4225 ((-1179) $ (-357) (-357))) (-15 -4225 ((-1179) $ (-357) (-357) (-357))) (-15 -1249 ((-1179) $ (-1075))) (-15 -3692 ((-1179) $ (-1075))) (-15 -2714 ((-1179) $ (-1075))) (-15 -3619 ((-1179) $ (-1075))) (-15 -2068 ((-1179) $ (-1075))) (-15 -2904 ((-1179) $ (-357) (-357))) (-15 -2904 ((-1179) $ (-525) (-525))) (-15 -2247 ((-1179) $ (-357))) (-15 -2247 ((-1179) $ (-357) (-357) (-357))) (-15 -3109 ((-1179) $ (-357) (-357))) (-15 -2590 ((-1179) $ (-1075))) (-15 -3352 ((-1179) $ (-357))) (-15 -1939 ((-1179) $ (-357))) (-15 -3503 ((-1179) $ (-1075))) (-15 -1224 ((-1179) $ (-1075))) (-15 -1375 ((-1179) $ (-1075))) (-15 -1608 ((-1179) $ (-357) (-357) (-357))) (-15 -2153 ((-1179) $ (-357))) (-15 -1373 ((-1179) $)) (-15 -3755 ((-1179) $ (-146) (-146))) (-15 -1404 ((-1075) $ (-1075))) (-15 -1404 ((-1075) $ (-1075) (-1075))) (-15 -1404 ((-1075) $ (-1075) (-592 (-1075)))) (-15 -2719 ((-1179) $)) (-15 -3364 ((-525) $))))) (T -1176))
-((-3993 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-3993 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-2914 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-2914 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-2514 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-2514 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-3355 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-3355 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-3444 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-3444 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-2322 (*1 *1) (-5 *1 (-1176))) (-3528 (*1 *1 *1) (-5 *1 (-1176))) (-3528 (*1 *1 *2 *3) (-12 (-5 *2 (-1052 (-205))) (-5 *3 (-1075)) (-5 *1 (-1176)))) (-3528 (*1 *1 *2 *3) (-12 (-5 *2 (-1052 (-205))) (-5 *3 (-592 (-242))) (-5 *1 (-1176)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1052 (-205))) (-5 *1 (-1176)))) (-3320 (*1 *1 *1 *2) (-12 (-5 *2 (-1052 (-205))) (-5 *1 (-1176)))) (-2749 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-878 (-205))) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1176)))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1176)))) (-1999 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-1459 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2655 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3288 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-713)) (-5 *4 (-856)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-4225 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-4225 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *1 (-1176)))) (-4225 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-4225 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-525)) (-5 *4 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-4225 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-4225 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-1249 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3692 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2714 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3619 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2068 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2904 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2904 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2247 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2247 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3109 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2590 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3352 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3503 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-1224 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-1375 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-1608 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2153 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3755 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-146)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-1404 (*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1176)))) (-1404 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1176)))) (-1404 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-1075)) (-5 *1 (-1176)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1176)))))
-(-13 (-1020) (-10 -8 (-15 -3993 ((-357))) (-15 -3993 ((-357) (-357))) (-15 -2914 ((-357))) (-15 -2914 ((-357) (-357))) (-15 -2514 ((-357))) (-15 -2514 ((-357) (-357))) (-15 -3355 ((-357))) (-15 -3355 ((-357) (-357))) (-15 -3444 ((-357))) (-15 -3444 ((-357) (-357))) (-15 -2322 ($)) (-15 -3528 ($ $)) (-15 -3528 ($ (-1052 (-205)) (-1075))) (-15 -3528 ($ (-1052 (-205)) (-592 (-242)))) (-15 -3320 ((-1052 (-205)) $)) (-15 -3320 ($ $ (-1052 (-205)))) (-15 -2749 ((-1179) $ (-713) (-878 (-205)))) (-15 -3374 ((-592 (-242)) $)) (-15 -3374 ($ $ (-592 (-242)))) (-15 -1999 ((-1179) $ (-713) (-713))) (-15 -1459 ((-1179) $ (-856) (-856))) (-15 -2655 ((-1179) $ (-1075))) (-15 -3288 ((-1179) $ (-713) (-713) (-856) (-856))) (-15 -4225 ((-1179) $ (-357) (-357) (-357) (-357) (-357))) (-15 -4225 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) $)) (-15 -4225 ((-1179) $ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -4225 ((-1179) $ (-525) (-525) (-357) (-357) (-357))) (-15 -4225 ((-1179) $ (-357) (-357))) (-15 -4225 ((-1179) $ (-357) (-357) (-357))) (-15 -1249 ((-1179) $ (-1075))) (-15 -3692 ((-1179) $ (-1075))) (-15 -2714 ((-1179) $ (-1075))) (-15 -3619 ((-1179) $ (-1075))) (-15 -2068 ((-1179) $ (-1075))) (-15 -2904 ((-1179) $ (-357) (-357))) (-15 -2904 ((-1179) $ (-525) (-525))) (-15 -2247 ((-1179) $ (-357))) (-15 -2247 ((-1179) $ (-357) (-357) (-357))) (-15 -3109 ((-1179) $ (-357) (-357))) (-15 -2590 ((-1179) $ (-1075))) (-15 -3352 ((-1179) $ (-357))) (-15 -1939 ((-1179) $ (-357))) (-15 -3503 ((-1179) $ (-1075))) (-15 -1224 ((-1179) $ (-1075))) (-15 -1375 ((-1179) $ (-1075))) (-15 -1608 ((-1179) $ (-357) (-357) (-357))) (-15 -2153 ((-1179) $ (-357))) (-15 -1373 ((-1179) $)) (-15 -3755 ((-1179) $ (-146) (-146))) (-15 -1404 ((-1075) $ (-1075))) (-15 -1404 ((-1075) $ (-1075) (-1075))) (-15 -1404 ((-1075) $ (-1075) (-592 (-1075)))) (-15 -2719 ((-1179) $)) (-15 -3364 ((-525) $))))
-((-3365 (((-592 (-1075)) (-592 (-1075))) 94) (((-592 (-1075))) 90)) (-1721 (((-592 (-1075))) 88)) (-4068 (((-592 (-856)) (-592 (-856))) 63) (((-592 (-856))) 60)) (-3694 (((-592 (-713)) (-592 (-713))) 57) (((-592 (-713))) 53)) (-2248 (((-1179)) 65)) (-2621 (((-856) (-856)) 81) (((-856)) 80)) (-4017 (((-856) (-856)) 79) (((-856)) 78)) (-3796 (((-809) (-809)) 75) (((-809)) 74)) (-1371 (((-205)) 85) (((-205) (-357)) 87)) (-3021 (((-856)) 82) (((-856) (-856)) 83)) (-3788 (((-856) (-856)) 77) (((-856)) 76)) (-3817 (((-809) (-809)) 69) (((-809)) 67)) (-3097 (((-809) (-809)) 71) (((-809)) 70)) (-1707 (((-809) (-809)) 73) (((-809)) 72)))
-(((-1177) (-10 -7 (-15 -3817 ((-809))) (-15 -3817 ((-809) (-809))) (-15 -3097 ((-809))) (-15 -3097 ((-809) (-809))) (-15 -1707 ((-809))) (-15 -1707 ((-809) (-809))) (-15 -3796 ((-809))) (-15 -3796 ((-809) (-809))) (-15 -3788 ((-856))) (-15 -3788 ((-856) (-856))) (-15 -3694 ((-592 (-713)))) (-15 -3694 ((-592 (-713)) (-592 (-713)))) (-15 -4068 ((-592 (-856)))) (-15 -4068 ((-592 (-856)) (-592 (-856)))) (-15 -2248 ((-1179))) (-15 -3365 ((-592 (-1075)))) (-15 -3365 ((-592 (-1075)) (-592 (-1075)))) (-15 -1721 ((-592 (-1075)))) (-15 -4017 ((-856))) (-15 -2621 ((-856))) (-15 -4017 ((-856) (-856))) (-15 -2621 ((-856) (-856))) (-15 -3021 ((-856) (-856))) (-15 -3021 ((-856))) (-15 -1371 ((-205) (-357))) (-15 -1371 ((-205))))) (T -1177))
-((-1371 (*1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1177)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-1177)))) (-3021 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))) (-2621 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))) (-4017 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))) (-2621 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))) (-4017 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))) (-1721 (*1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1177)))) (-3365 (*1 *2 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1177)))) (-3365 (*1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1177)))) (-2248 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1177)))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1177)))) (-4068 (*1 *2) (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1177)))) (-3694 (*1 *2 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1177)))) (-3694 (*1 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1177)))) (-3788 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))) (-3788 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))) (-3796 (*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))) (-3796 (*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))) (-1707 (*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))) (-1707 (*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))) (-3097 (*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))) (-3097 (*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))) (-3817 (*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))) (-3817 (*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))))
-(-10 -7 (-15 -3817 ((-809))) (-15 -3817 ((-809) (-809))) (-15 -3097 ((-809))) (-15 -3097 ((-809) (-809))) (-15 -1707 ((-809))) (-15 -1707 ((-809) (-809))) (-15 -3796 ((-809))) (-15 -3796 ((-809) (-809))) (-15 -3788 ((-856))) (-15 -3788 ((-856) (-856))) (-15 -3694 ((-592 (-713)))) (-15 -3694 ((-592 (-713)) (-592 (-713)))) (-15 -4068 ((-592 (-856)))) (-15 -4068 ((-592 (-856)) (-592 (-856)))) (-15 -2248 ((-1179))) (-15 -3365 ((-592 (-1075)))) (-15 -3365 ((-592 (-1075)) (-592 (-1075)))) (-15 -1721 ((-592 (-1075)))) (-15 -4017 ((-856))) (-15 -2621 ((-856))) (-15 -4017 ((-856) (-856))) (-15 -2621 ((-856) (-856))) (-15 -3021 ((-856) (-856))) (-15 -3021 ((-856))) (-15 -1371 ((-205) (-357))) (-15 -1371 ((-205))))
-((-4077 (((-445) (-592 (-592 (-878 (-205)))) (-592 (-242))) 21) (((-445) (-592 (-592 (-878 (-205))))) 20) (((-445) (-592 (-592 (-878 (-205)))) (-809) (-809) (-856) (-592 (-242))) 19)) (-1770 (((-1175) (-592 (-592 (-878 (-205)))) (-592 (-242))) 27) (((-1175) (-592 (-592 (-878 (-205)))) (-809) (-809) (-856) (-592 (-242))) 26)) (-1217 (((-1175) (-445)) 38)))
-(((-1178) (-10 -7 (-15 -4077 ((-445) (-592 (-592 (-878 (-205)))) (-809) (-809) (-856) (-592 (-242)))) (-15 -4077 ((-445) (-592 (-592 (-878 (-205)))))) (-15 -4077 ((-445) (-592 (-592 (-878 (-205)))) (-592 (-242)))) (-15 -1770 ((-1175) (-592 (-592 (-878 (-205)))) (-809) (-809) (-856) (-592 (-242)))) (-15 -1770 ((-1175) (-592 (-592 (-878 (-205)))) (-592 (-242)))) (-15 -1217 ((-1175) (-445))))) (T -1178))
-((-1217 (*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-1175)) (-5 *1 (-1178)))) (-1770 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-1178)))) (-1770 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-809)) (-5 *5 (-856)) (-5 *6 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-1178)))) (-4077 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-592 (-242))) (-5 *2 (-445)) (-5 *1 (-1178)))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *2 (-445)) (-5 *1 (-1178)))) (-4077 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-809)) (-5 *5 (-856)) (-5 *6 (-592 (-242))) (-5 *2 (-445)) (-5 *1 (-1178)))))
-(-10 -7 (-15 -4077 ((-445) (-592 (-592 (-878 (-205)))) (-809) (-809) (-856) (-592 (-242)))) (-15 -4077 ((-445) (-592 (-592 (-878 (-205)))))) (-15 -4077 ((-445) (-592 (-592 (-878 (-205)))) (-592 (-242)))) (-15 -1770 ((-1175) (-592 (-592 (-878 (-205)))) (-809) (-809) (-856) (-592 (-242)))) (-15 -1770 ((-1175) (-592 (-592 (-878 (-205)))) (-592 (-242)))) (-15 -1217 ((-1175) (-445))))
-((-1316 (($) 7)) (-1217 (((-798) $) 10)))
-(((-1179) (-10 -8 (-15 -1316 ($)) (-15 -1217 ((-798) $)))) (T -1179))
-((-1217 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1179)))) (-1316 (*1 *1) (-5 *1 (-1179))))
-(-10 -8 (-15 -1316 ($)) (-15 -1217 ((-798) $)))
-((-4075 (($ $ |#2|) 10)))
-(((-1180 |#1| |#2|) (-10 -8 (-15 -4075 (|#1| |#1| |#2|))) (-1181 |#2|) (-341)) (T -1180))
-NIL
-(-10 -8 (-15 -4075 (|#1| |#1| |#2|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-3705 (((-128)) 28)) (-1217 (((-798) $) 11)) (-3349 (($) 18 T CONST)) (-3955 (((-108) $ $) 6)) (-4075 (($ $ |#1|) 29)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+((-2860 (*1 *1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-25)))) (-1221 (*1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1172 *3)) (-4 *3 (-23)) (-4 *3 (-1128)))) (-2871 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-21)))) (-2871 (*1 *1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-1172 *3)) (-4 *3 (-1128)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-669)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-669)))) (-3584 (*1 *2 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-977)))) (-1825 (*1 *2 *1 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-1128)) (-4 *3 (-977)) (-5 *2 (-632 *3)))) (-2548 (*1 *1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-977)))) (-4128 (*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-934)) (-4 *2 (-977)))) (-2482 (*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-934)) (-4 *2 (-977)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2860 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1221 ($ (-713))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2871 ($ $)) (-15 -2871 ($ $ $)) (-15 * ($ (-525) $))) |%noBranch|) (IF (|has| |t#1| (-669)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-977)) (PROGN (-15 -3584 (|t#1| $ $)) (-15 -1825 ((-632 |t#1|) $ $)) (-15 -2548 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-934)) (IF (|has| |t#1| (-977)) (PROGN (-15 -4128 (|t#1| $)) (-15 -2482 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-33) . T) ((-97) -2067 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-566 (-798)) -2067 (|has| |#1| (-1020)) (|has| |#1| (-789)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-19 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1020) -2067 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-1128) . T))
+((-2159 (((-1174 |#2|) (-1 |#2| |#1| |#2|) (-1174 |#1|) |#2|) 13)) (-3504 ((|#2| (-1 |#2| |#1| |#2|) (-1174 |#1|) |#2|) 15)) (-2016 (((-3 (-1174 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1174 |#1|)) 28) (((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|)) 18)))
+(((-1173 |#1| |#2|) (-10 -7 (-15 -2159 ((-1174 |#2|) (-1 |#2| |#1| |#2|) (-1174 |#1|) |#2|)) (-15 -3504 (|#2| (-1 |#2| |#1| |#2|) (-1174 |#1|) |#2|)) (-15 -2016 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|))) (-15 -2016 ((-3 (-1174 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1174 |#1|)))) (-1128) (-1128)) (T -1173))
+((-2016 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1174 *6)) (-5 *1 (-1173 *5 *6)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1174 *6)) (-5 *1 (-1173 *5 *6)))) (-3504 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1174 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-1173 *5 *2)))) (-2159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1174 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-1174 *5)) (-5 *1 (-1173 *6 *5)))))
+(-10 -7 (-15 -2159 ((-1174 |#2|) (-1 |#2| |#1| |#2|) (-1174 |#1|) |#2|)) (-15 -3504 (|#2| (-1 |#2| |#1| |#2|) (-1174 |#1|) |#2|)) (-15 -2016 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|))) (-15 -2016 ((-3 (-1174 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1174 |#1|))))
+((-4087 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1221 (($ (-713)) NIL (|has| |#1| (-23)))) (-2691 (($ (-592 |#1|)) 9)) (-3289 (((-1179) $ (-525) (-525)) NIL (|has| $ (-6 -4260)))) (-2358 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2436 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4260))) (($ $) NIL (-12 (|has| $ (-6 -4260)) (|has| |#1| (-789))))) (-1842 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3779 (((-108) $ (-713)) NIL)) (-1233 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4260))) ((|#1| $ (-1141 (-525)) |#1|) NIL (|has| $ (-6 -4260)))) (-2399 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2475 (($) NIL T CONST)) (-2670 (($ $) NIL (|has| $ (-6 -4260)))) (-1652 (($ $) NIL)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-3504 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4259))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4259)))) (-3081 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4260)))) (-3017 ((|#1| $ (-525)) NIL)) (-3856 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-2175 (((-592 |#1|) $) 15 (|has| $ (-6 -4259)))) (-1825 (((-632 |#1|) $ $) NIL (|has| |#1| (-977)))) (-3324 (($ (-713) |#1|) NIL)) (-2516 (((-108) $ (-713)) NIL)) (-1732 (((-525) $) NIL (|has| (-525) (-789)))) (-3033 (($ $ $) NIL (|has| |#1| (-789)))) (-3212 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2617 (((-592 |#1|) $) NIL (|has| $ (-6 -4259)))) (-3198 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-2231 (((-525) $) NIL (|has| (-525) (-789)))) (-1609 (($ $ $) NIL (|has| |#1| (-789)))) (-3069 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2482 ((|#1| $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-977))))) (-4028 (((-108) $ (-713)) NIL)) (-4128 ((|#1| $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-977))))) (-1289 (((-1075) $) NIL (|has| |#1| (-1020)))) (-2594 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3177 (((-592 (-525)) $) NIL)) (-3461 (((-108) (-525) $) NIL)) (-3993 (((-1039) $) NIL (|has| |#1| (-1020)))) (-1647 ((|#1| $) NIL (|has| (-525) (-789)))) (-4202 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3453 (($ $ |#1|) NIL (|has| $ (-6 -4260)))) (-1518 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-1231 (((-108) $ $) NIL)) (-2456 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-1717 (((-592 |#1|) $) NIL)) (-3479 (((-108) $) NIL)) (-1558 (($) NIL)) (-3431 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-3584 ((|#1| $ $) NIL (|has| |#1| (-977)))) (-2139 (($ $ (-525)) NIL) (($ $ (-1141 (-525))) NIL)) (-2548 (($ $ $) NIL (|has| |#1| (-977)))) (-4002 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#1| (-1020))))) (-3632 (($ $ $ (-525)) NIL (|has| $ (-6 -4260)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) 19 (|has| |#1| (-567 (-501))))) (-4114 (($ (-592 |#1|)) 8)) (-2035 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-4100 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-2706 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4259)))) (-2830 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2807 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2775 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2817 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2795 (((-108) $ $) NIL (|has| |#1| (-789)))) (-2871 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2860 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-525) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-669))) (($ $ |#1|) NIL (|has| |#1| (-669)))) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-1174 |#1|) (-13 (-1172 |#1|) (-10 -8 (-15 -2691 ($ (-592 |#1|))))) (-1128)) (T -1174))
+((-2691 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-1174 *3)))))
+(-13 (-1172 |#1|) (-10 -8 (-15 -2691 ($ (-592 |#1|)))))
+((-4087 (((-108) $ $) NIL)) (-1624 (((-1075) $ (-1075)) 90) (((-1075) $ (-1075) (-1075)) 88) (((-1075) $ (-1075) (-592 (-1075))) 87)) (-2579 (($) 59)) (-3790 (((-1179) $ (-445) (-856)) 45)) (-1526 (((-1179) $ (-856) (-1075)) 73) (((-1179) $ (-856) (-809)) 74)) (-2133 (((-1179) $ (-856) (-357) (-357)) 48)) (-3037 (((-1179) $ (-1075)) 69)) (-2907 (((-1179) $ (-856) (-1075)) 78)) (-2201 (((-1179) $ (-856) (-357) (-357)) 49)) (-2525 (((-1179) $ (-856) (-856)) 46)) (-1574 (((-1179) $) 70)) (-2406 (((-1179) $ (-856) (-1075)) 77)) (-2906 (((-1179) $ (-445) (-856)) 31)) (-2764 (((-1179) $ (-856) (-1075)) 76)) (-3259 (((-592 (-242)) $) 23) (($ $ (-592 (-242))) 24)) (-3144 (((-1179) $ (-713) (-713)) 43)) (-2075 (($ $) 60) (($ (-445) (-592 (-242))) 61)) (-1289 (((-1075) $) NIL)) (-1556 (((-525) $) 38)) (-3993 (((-1039) $) NIL)) (-2151 (((-1174 (-3 (-445) "undefined")) $) 37)) (-1445 (((-1174 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -2764 (-525)) (|:| -2471 (-525)) (|:| |spline| (-525)) (|:| -3797 (-525)) (|:| |axesColor| (-809)) (|:| -1526 (-525)) (|:| |unitsColor| (-809)) (|:| |showing| (-525)))) $) 36)) (-1964 (((-1179) $ (-856) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-809) (-525) (-809) (-525)) 68)) (-1716 (((-592 (-878 (-205))) $) NIL)) (-4158 (((-445) $ (-856)) 33)) (-1323 (((-1179) $ (-713) (-713) (-856) (-856)) 40)) (-1648 (((-1179) $ (-1075)) 79)) (-2471 (((-1179) $ (-856) (-1075)) 75)) (-4100 (((-798) $) 85)) (-2682 (((-1179) $) 80)) (-3797 (((-1179) $ (-856) (-1075)) 71) (((-1179) $ (-856) (-809)) 72)) (-2775 (((-108) $ $) NIL)))
+(((-1175) (-13 (-1020) (-10 -8 (-15 -1716 ((-592 (-878 (-205))) $)) (-15 -2579 ($)) (-15 -2075 ($ $)) (-15 -3259 ((-592 (-242)) $)) (-15 -3259 ($ $ (-592 (-242)))) (-15 -2075 ($ (-445) (-592 (-242)))) (-15 -1964 ((-1179) $ (-856) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-809) (-525) (-809) (-525))) (-15 -1445 ((-1174 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -2764 (-525)) (|:| -2471 (-525)) (|:| |spline| (-525)) (|:| -3797 (-525)) (|:| |axesColor| (-809)) (|:| -1526 (-525)) (|:| |unitsColor| (-809)) (|:| |showing| (-525)))) $)) (-15 -2151 ((-1174 (-3 (-445) "undefined")) $)) (-15 -3037 ((-1179) $ (-1075))) (-15 -2906 ((-1179) $ (-445) (-856))) (-15 -4158 ((-445) $ (-856))) (-15 -3797 ((-1179) $ (-856) (-1075))) (-15 -3797 ((-1179) $ (-856) (-809))) (-15 -1526 ((-1179) $ (-856) (-1075))) (-15 -1526 ((-1179) $ (-856) (-809))) (-15 -2764 ((-1179) $ (-856) (-1075))) (-15 -2406 ((-1179) $ (-856) (-1075))) (-15 -2471 ((-1179) $ (-856) (-1075))) (-15 -1648 ((-1179) $ (-1075))) (-15 -2682 ((-1179) $)) (-15 -1323 ((-1179) $ (-713) (-713) (-856) (-856))) (-15 -2201 ((-1179) $ (-856) (-357) (-357))) (-15 -2133 ((-1179) $ (-856) (-357) (-357))) (-15 -2907 ((-1179) $ (-856) (-1075))) (-15 -3144 ((-1179) $ (-713) (-713))) (-15 -3790 ((-1179) $ (-445) (-856))) (-15 -2525 ((-1179) $ (-856) (-856))) (-15 -1624 ((-1075) $ (-1075))) (-15 -1624 ((-1075) $ (-1075) (-1075))) (-15 -1624 ((-1075) $ (-1075) (-592 (-1075)))) (-15 -1574 ((-1179) $)) (-15 -1556 ((-525) $)) (-15 -4100 ((-798) $))))) (T -1175))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1175)))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-592 (-878 (-205)))) (-5 *1 (-1175)))) (-2579 (*1 *1) (-5 *1 (-1175))) (-2075 (*1 *1 *1) (-5 *1 (-1175))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1175)))) (-3259 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1175)))) (-2075 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-592 (-242))) (-5 *1 (-1175)))) (-1964 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-856)) (-5 *4 (-205)) (-5 *5 (-525)) (-5 *6 (-809)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-1445 (*1 *2 *1) (-12 (-5 *2 (-1174 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -2764 (-525)) (|:| -2471 (-525)) (|:| |spline| (-525)) (|:| -3797 (-525)) (|:| |axesColor| (-809)) (|:| -1526 (-525)) (|:| |unitsColor| (-809)) (|:| |showing| (-525))))) (-5 *1 (-1175)))) (-2151 (*1 *2 *1) (-12 (-5 *2 (-1174 (-3 (-445) "undefined"))) (-5 *1 (-1175)))) (-3037 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-2906 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-445)) (-5 *4 (-856)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-4158 (*1 *2 *1 *3) (-12 (-5 *3 (-856)) (-5 *2 (-445)) (-5 *1 (-1175)))) (-3797 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-3797 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-809)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-1526 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-1526 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-809)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-2764 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-2406 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-2471 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-1648 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1175)))) (-1323 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-713)) (-5 *4 (-856)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-2201 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-856)) (-5 *4 (-357)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-2133 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-856)) (-5 *4 (-357)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-2907 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-3144 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-3790 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-445)) (-5 *4 (-856)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-2525 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1179)) (-5 *1 (-1175)))) (-1624 (*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1175)))) (-1624 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1175)))) (-1624 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-1075)) (-5 *1 (-1175)))) (-1574 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1175)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1175)))))
+(-13 (-1020) (-10 -8 (-15 -1716 ((-592 (-878 (-205))) $)) (-15 -2579 ($)) (-15 -2075 ($ $)) (-15 -3259 ((-592 (-242)) $)) (-15 -3259 ($ $ (-592 (-242)))) (-15 -2075 ($ (-445) (-592 (-242)))) (-15 -1964 ((-1179) $ (-856) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-809) (-525) (-809) (-525))) (-15 -1445 ((-1174 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -2764 (-525)) (|:| -2471 (-525)) (|:| |spline| (-525)) (|:| -3797 (-525)) (|:| |axesColor| (-809)) (|:| -1526 (-525)) (|:| |unitsColor| (-809)) (|:| |showing| (-525)))) $)) (-15 -2151 ((-1174 (-3 (-445) "undefined")) $)) (-15 -3037 ((-1179) $ (-1075))) (-15 -2906 ((-1179) $ (-445) (-856))) (-15 -4158 ((-445) $ (-856))) (-15 -3797 ((-1179) $ (-856) (-1075))) (-15 -3797 ((-1179) $ (-856) (-809))) (-15 -1526 ((-1179) $ (-856) (-1075))) (-15 -1526 ((-1179) $ (-856) (-809))) (-15 -2764 ((-1179) $ (-856) (-1075))) (-15 -2406 ((-1179) $ (-856) (-1075))) (-15 -2471 ((-1179) $ (-856) (-1075))) (-15 -1648 ((-1179) $ (-1075))) (-15 -2682 ((-1179) $)) (-15 -1323 ((-1179) $ (-713) (-713) (-856) (-856))) (-15 -2201 ((-1179) $ (-856) (-357) (-357))) (-15 -2133 ((-1179) $ (-856) (-357) (-357))) (-15 -2907 ((-1179) $ (-856) (-1075))) (-15 -3144 ((-1179) $ (-713) (-713))) (-15 -3790 ((-1179) $ (-445) (-856))) (-15 -2525 ((-1179) $ (-856) (-856))) (-15 -1624 ((-1075) $ (-1075))) (-15 -1624 ((-1075) $ (-1075) (-1075))) (-15 -1624 ((-1075) $ (-1075) (-592 (-1075)))) (-15 -1574 ((-1179) $)) (-15 -1556 ((-525) $)) (-15 -4100 ((-798) $))))
+((-4087 (((-108) $ $) NIL)) (-3845 (((-1179) $ (-357)) 140) (((-1179) $ (-357) (-357) (-357)) 141)) (-1624 (((-1075) $ (-1075)) 148) (((-1075) $ (-1075) (-1075)) 146) (((-1075) $ (-1075) (-592 (-1075))) 145)) (-3301 (($) 50)) (-2501 (((-1179) $ (-357) (-357) (-357) (-357) (-357)) 116) (((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) $) 114) (((-1179) $ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) 115) (((-1179) $ (-525) (-525) (-357) (-357) (-357)) 117) (((-1179) $ (-357) (-357)) 118) (((-1179) $ (-357) (-357) (-357)) 125)) (-1580 (((-357)) 97) (((-357) (-357)) 98)) (-3803 (((-357)) 92) (((-357) (-357)) 94)) (-4048 (((-357)) 95) (((-357) (-357)) 96)) (-3172 (((-357)) 101) (((-357) (-357)) 102)) (-1829 (((-357)) 99) (((-357) (-357)) 100)) (-2133 (((-1179) $ (-357) (-357)) 142)) (-3037 (((-1179) $ (-1075)) 126)) (-1517 (((-1052 (-205)) $) 51) (($ $ (-1052 (-205))) 52)) (-2576 (((-1179) $ (-1075)) 154)) (-1913 (((-1179) $ (-1075)) 155)) (-3941 (((-1179) $ (-357) (-357)) 124) (((-1179) $ (-525) (-525)) 139)) (-2525 (((-1179) $ (-856) (-856)) 132)) (-1574 (((-1179) $) 112)) (-4077 (((-1179) $ (-1075)) 153)) (-2480 (((-1179) $ (-1075)) 109)) (-3259 (((-592 (-242)) $) 53) (($ $ (-592 (-242))) 54)) (-3144 (((-1179) $ (-713) (-713)) 131)) (-3084 (((-1179) $ (-713) (-878 (-205))) 160)) (-2765 (($ $) 56) (($ (-1052 (-205)) (-1075)) 57) (($ (-1052 (-205)) (-592 (-242))) 58)) (-3690 (((-1179) $ (-357) (-357) (-357)) 106)) (-1289 (((-1075) $) NIL)) (-1556 (((-525) $) 103)) (-2297 (((-1179) $ (-357)) 143)) (-3730 (((-1179) $ (-357)) 158)) (-3993 (((-1039) $) NIL)) (-1804 (((-1179) $ (-357)) 157)) (-2616 (((-1179) $ (-1075)) 111)) (-1323 (((-1179) $ (-713) (-713) (-856) (-856)) 130)) (-2803 (((-1179) $ (-1075)) 108)) (-1648 (((-1179) $ (-1075)) 110)) (-3188 (((-1179) $ (-146) (-146)) 129)) (-4100 (((-798) $) 137)) (-2682 (((-1179) $) 113)) (-3795 (((-1179) $ (-1075)) 156)) (-3797 (((-1179) $ (-1075)) 107)) (-2775 (((-108) $ $) NIL)))
+(((-1176) (-13 (-1020) (-10 -8 (-15 -3803 ((-357))) (-15 -3803 ((-357) (-357))) (-15 -4048 ((-357))) (-15 -4048 ((-357) (-357))) (-15 -1580 ((-357))) (-15 -1580 ((-357) (-357))) (-15 -1829 ((-357))) (-15 -1829 ((-357) (-357))) (-15 -3172 ((-357))) (-15 -3172 ((-357) (-357))) (-15 -3301 ($)) (-15 -2765 ($ $)) (-15 -2765 ($ (-1052 (-205)) (-1075))) (-15 -2765 ($ (-1052 (-205)) (-592 (-242)))) (-15 -1517 ((-1052 (-205)) $)) (-15 -1517 ($ $ (-1052 (-205)))) (-15 -3084 ((-1179) $ (-713) (-878 (-205)))) (-15 -3259 ((-592 (-242)) $)) (-15 -3259 ($ $ (-592 (-242)))) (-15 -3144 ((-1179) $ (-713) (-713))) (-15 -2525 ((-1179) $ (-856) (-856))) (-15 -3037 ((-1179) $ (-1075))) (-15 -1323 ((-1179) $ (-713) (-713) (-856) (-856))) (-15 -2501 ((-1179) $ (-357) (-357) (-357) (-357) (-357))) (-15 -2501 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) $)) (-15 -2501 ((-1179) $ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2501 ((-1179) $ (-525) (-525) (-357) (-357) (-357))) (-15 -2501 ((-1179) $ (-357) (-357))) (-15 -2501 ((-1179) $ (-357) (-357) (-357))) (-15 -1648 ((-1179) $ (-1075))) (-15 -3797 ((-1179) $ (-1075))) (-15 -2803 ((-1179) $ (-1075))) (-15 -2480 ((-1179) $ (-1075))) (-15 -2616 ((-1179) $ (-1075))) (-15 -3941 ((-1179) $ (-357) (-357))) (-15 -3941 ((-1179) $ (-525) (-525))) (-15 -3845 ((-1179) $ (-357))) (-15 -3845 ((-1179) $ (-357) (-357) (-357))) (-15 -2133 ((-1179) $ (-357) (-357))) (-15 -4077 ((-1179) $ (-1075))) (-15 -1804 ((-1179) $ (-357))) (-15 -3730 ((-1179) $ (-357))) (-15 -2576 ((-1179) $ (-1075))) (-15 -1913 ((-1179) $ (-1075))) (-15 -3795 ((-1179) $ (-1075))) (-15 -3690 ((-1179) $ (-357) (-357) (-357))) (-15 -2297 ((-1179) $ (-357))) (-15 -1574 ((-1179) $)) (-15 -3188 ((-1179) $ (-146) (-146))) (-15 -1624 ((-1075) $ (-1075))) (-15 -1624 ((-1075) $ (-1075) (-1075))) (-15 -1624 ((-1075) $ (-1075) (-592 (-1075)))) (-15 -2682 ((-1179) $)) (-15 -1556 ((-525) $))))) (T -1176))
+((-3803 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-4048 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-4048 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-1580 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-1580 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-1829 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-1829 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-3172 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-3172 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))) (-3301 (*1 *1) (-5 *1 (-1176))) (-2765 (*1 *1 *1) (-5 *1 (-1176))) (-2765 (*1 *1 *2 *3) (-12 (-5 *2 (-1052 (-205))) (-5 *3 (-1075)) (-5 *1 (-1176)))) (-2765 (*1 *1 *2 *3) (-12 (-5 *2 (-1052 (-205))) (-5 *3 (-592 (-242))) (-5 *1 (-1176)))) (-1517 (*1 *2 *1) (-12 (-5 *2 (-1052 (-205))) (-5 *1 (-1176)))) (-1517 (*1 *1 *1 *2) (-12 (-5 *2 (-1052 (-205))) (-5 *1 (-1176)))) (-3084 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-878 (-205))) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1176)))) (-3259 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1176)))) (-3144 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2525 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3037 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-1323 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-713)) (-5 *4 (-856)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2501 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2501 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *1 (-1176)))) (-2501 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2501 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-525)) (-5 *4 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2501 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2501 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-1648 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3797 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2803 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2480 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2616 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3941 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3941 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3845 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3845 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2133 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-4077 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-1804 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3730 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2576 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-1913 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3795 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3690 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-2297 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-1574 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1176)))) (-3188 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-146)) (-5 *2 (-1179)) (-5 *1 (-1176)))) (-1624 (*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1176)))) (-1624 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1176)))) (-1624 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-1075)) (-5 *1 (-1176)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1176)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1176)))))
+(-13 (-1020) (-10 -8 (-15 -3803 ((-357))) (-15 -3803 ((-357) (-357))) (-15 -4048 ((-357))) (-15 -4048 ((-357) (-357))) (-15 -1580 ((-357))) (-15 -1580 ((-357) (-357))) (-15 -1829 ((-357))) (-15 -1829 ((-357) (-357))) (-15 -3172 ((-357))) (-15 -3172 ((-357) (-357))) (-15 -3301 ($)) (-15 -2765 ($ $)) (-15 -2765 ($ (-1052 (-205)) (-1075))) (-15 -2765 ($ (-1052 (-205)) (-592 (-242)))) (-15 -1517 ((-1052 (-205)) $)) (-15 -1517 ($ $ (-1052 (-205)))) (-15 -3084 ((-1179) $ (-713) (-878 (-205)))) (-15 -3259 ((-592 (-242)) $)) (-15 -3259 ($ $ (-592 (-242)))) (-15 -3144 ((-1179) $ (-713) (-713))) (-15 -2525 ((-1179) $ (-856) (-856))) (-15 -3037 ((-1179) $ (-1075))) (-15 -1323 ((-1179) $ (-713) (-713) (-856) (-856))) (-15 -2501 ((-1179) $ (-357) (-357) (-357) (-357) (-357))) (-15 -2501 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) $)) (-15 -2501 ((-1179) $ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2501 ((-1179) $ (-525) (-525) (-357) (-357) (-357))) (-15 -2501 ((-1179) $ (-357) (-357))) (-15 -2501 ((-1179) $ (-357) (-357) (-357))) (-15 -1648 ((-1179) $ (-1075))) (-15 -3797 ((-1179) $ (-1075))) (-15 -2803 ((-1179) $ (-1075))) (-15 -2480 ((-1179) $ (-1075))) (-15 -2616 ((-1179) $ (-1075))) (-15 -3941 ((-1179) $ (-357) (-357))) (-15 -3941 ((-1179) $ (-525) (-525))) (-15 -3845 ((-1179) $ (-357))) (-15 -3845 ((-1179) $ (-357) (-357) (-357))) (-15 -2133 ((-1179) $ (-357) (-357))) (-15 -4077 ((-1179) $ (-1075))) (-15 -1804 ((-1179) $ (-357))) (-15 -3730 ((-1179) $ (-357))) (-15 -2576 ((-1179) $ (-1075))) (-15 -1913 ((-1179) $ (-1075))) (-15 -3795 ((-1179) $ (-1075))) (-15 -3690 ((-1179) $ (-357) (-357) (-357))) (-15 -2297 ((-1179) $ (-357))) (-15 -1574 ((-1179) $)) (-15 -3188 ((-1179) $ (-146) (-146))) (-15 -1624 ((-1075) $ (-1075))) (-15 -1624 ((-1075) $ (-1075) (-1075))) (-15 -1624 ((-1075) $ (-1075) (-592 (-1075)))) (-15 -2682 ((-1179) $)) (-15 -1556 ((-525) $))))
+((-3727 (((-592 (-1075)) (-592 (-1075))) 94) (((-592 (-1075))) 90)) (-3507 (((-592 (-1075))) 88)) (-3340 (((-592 (-856)) (-592 (-856))) 63) (((-592 (-856))) 60)) (-3816 (((-592 (-713)) (-592 (-713))) 57) (((-592 (-713))) 53)) (-3857 (((-1179)) 65)) (-1309 (((-856) (-856)) 81) (((-856)) 80)) (-4049 (((-856) (-856)) 79) (((-856)) 78)) (-3604 (((-809) (-809)) 75) (((-809)) 74)) (-1848 (((-205)) 85) (((-205) (-357)) 87)) (-2641 (((-856)) 82) (((-856) (-856)) 83)) (-3526 (((-856) (-856)) 77) (((-856)) 76)) (-2636 (((-809) (-809)) 69) (((-809)) 67)) (-2122 (((-809) (-809)) 71) (((-809)) 70)) (-3381 (((-809) (-809)) 73) (((-809)) 72)))
+(((-1177) (-10 -7 (-15 -2636 ((-809))) (-15 -2636 ((-809) (-809))) (-15 -2122 ((-809))) (-15 -2122 ((-809) (-809))) (-15 -3381 ((-809))) (-15 -3381 ((-809) (-809))) (-15 -3604 ((-809))) (-15 -3604 ((-809) (-809))) (-15 -3526 ((-856))) (-15 -3526 ((-856) (-856))) (-15 -3816 ((-592 (-713)))) (-15 -3816 ((-592 (-713)) (-592 (-713)))) (-15 -3340 ((-592 (-856)))) (-15 -3340 ((-592 (-856)) (-592 (-856)))) (-15 -3857 ((-1179))) (-15 -3727 ((-592 (-1075)))) (-15 -3727 ((-592 (-1075)) (-592 (-1075)))) (-15 -3507 ((-592 (-1075)))) (-15 -4049 ((-856))) (-15 -1309 ((-856))) (-15 -4049 ((-856) (-856))) (-15 -1309 ((-856) (-856))) (-15 -2641 ((-856) (-856))) (-15 -2641 ((-856))) (-15 -1848 ((-205) (-357))) (-15 -1848 ((-205))))) (T -1177))
+((-1848 (*1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1177)))) (-1848 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-1177)))) (-2641 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))) (-2641 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))) (-1309 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))) (-4049 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))) (-1309 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))) (-4049 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))) (-3507 (*1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1177)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1177)))) (-3727 (*1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1177)))) (-3857 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1177)))) (-3340 (*1 *2 *2) (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1177)))) (-3340 (*1 *2) (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1177)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1177)))) (-3816 (*1 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1177)))) (-3526 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))) (-3526 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))) (-3604 (*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))) (-3604 (*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))) (-3381 (*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))) (-3381 (*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))) (-2122 (*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))) (-2122 (*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))) (-2636 (*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))) (-2636 (*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))))
+(-10 -7 (-15 -2636 ((-809))) (-15 -2636 ((-809) (-809))) (-15 -2122 ((-809))) (-15 -2122 ((-809) (-809))) (-15 -3381 ((-809))) (-15 -3381 ((-809) (-809))) (-15 -3604 ((-809))) (-15 -3604 ((-809) (-809))) (-15 -3526 ((-856))) (-15 -3526 ((-856) (-856))) (-15 -3816 ((-592 (-713)))) (-15 -3816 ((-592 (-713)) (-592 (-713)))) (-15 -3340 ((-592 (-856)))) (-15 -3340 ((-592 (-856)) (-592 (-856)))) (-15 -3857 ((-1179))) (-15 -3727 ((-592 (-1075)))) (-15 -3727 ((-592 (-1075)) (-592 (-1075)))) (-15 -3507 ((-592 (-1075)))) (-15 -4049 ((-856))) (-15 -1309 ((-856))) (-15 -4049 ((-856) (-856))) (-15 -1309 ((-856) (-856))) (-15 -2641 ((-856) (-856))) (-15 -2641 ((-856))) (-15 -1848 ((-205) (-357))) (-15 -1848 ((-205))))
+((-3418 (((-445) (-592 (-592 (-878 (-205)))) (-592 (-242))) 21) (((-445) (-592 (-592 (-878 (-205))))) 20) (((-445) (-592 (-592 (-878 (-205)))) (-809) (-809) (-856) (-592 (-242))) 19)) (-2711 (((-1175) (-592 (-592 (-878 (-205)))) (-592 (-242))) 27) (((-1175) (-592 (-592 (-878 (-205)))) (-809) (-809) (-856) (-592 (-242))) 26)) (-4100 (((-1175) (-445)) 38)))
+(((-1178) (-10 -7 (-15 -3418 ((-445) (-592 (-592 (-878 (-205)))) (-809) (-809) (-856) (-592 (-242)))) (-15 -3418 ((-445) (-592 (-592 (-878 (-205)))))) (-15 -3418 ((-445) (-592 (-592 (-878 (-205)))) (-592 (-242)))) (-15 -2711 ((-1175) (-592 (-592 (-878 (-205)))) (-809) (-809) (-856) (-592 (-242)))) (-15 -2711 ((-1175) (-592 (-592 (-878 (-205)))) (-592 (-242)))) (-15 -4100 ((-1175) (-445))))) (T -1178))
+((-4100 (*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-1175)) (-5 *1 (-1178)))) (-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-1178)))) (-2711 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-809)) (-5 *5 (-856)) (-5 *6 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-1178)))) (-3418 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-592 (-242))) (-5 *2 (-445)) (-5 *1 (-1178)))) (-3418 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *2 (-445)) (-5 *1 (-1178)))) (-3418 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-809)) (-5 *5 (-856)) (-5 *6 (-592 (-242))) (-5 *2 (-445)) (-5 *1 (-1178)))))
+(-10 -7 (-15 -3418 ((-445) (-592 (-592 (-878 (-205)))) (-809) (-809) (-856) (-592 (-242)))) (-15 -3418 ((-445) (-592 (-592 (-878 (-205)))))) (-15 -3418 ((-445) (-592 (-592 (-878 (-205)))) (-592 (-242)))) (-15 -2711 ((-1175) (-592 (-592 (-878 (-205)))) (-809) (-809) (-856) (-592 (-242)))) (-15 -2711 ((-1175) (-592 (-592 (-878 (-205)))) (-592 (-242)))) (-15 -4100 ((-1175) (-445))))
+((-3408 (($) 7)) (-4100 (((-798) $) 10)))
+(((-1179) (-10 -8 (-15 -3408 ($)) (-15 -4100 ((-798) $)))) (T -1179))
+((-4100 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1179)))) (-3408 (*1 *1) (-5 *1 (-1179))))
+(-10 -8 (-15 -3408 ($)) (-15 -4100 ((-798) $)))
+((-2880 (($ $ |#2|) 10)))
+(((-1180 |#1| |#2|) (-10 -8 (-15 -2880 (|#1| |#1| |#2|))) (-1181 |#2|) (-341)) (T -1180))
+NIL
+(-10 -8 (-15 -2880 (|#1| |#1| |#2|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-3933 (((-128)) 28)) (-4100 (((-798) $) 11)) (-3364 (($) 18 T CONST)) (-2775 (((-108) $ $) 6)) (-2880 (($ $ |#1|) 29)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-1181 |#1|) (-131) (-341)) (T -1181))
-((-4075 (*1 *1 *1 *2) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-341)))) (-3705 (*1 *2) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-341)) (-5 *2 (-128)))))
-(-13 (-660 |t#1|) (-10 -8 (-15 -4075 ($ $ |t#1|)) (-15 -3705 ((-128)))))
+((-2880 (*1 *1 *1 *2) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-341)))) (-3933 (*1 *2) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-341)) (-5 *2 (-128)))))
+(-13 (-660 |t#1|) (-10 -8 (-15 -2880 ($ $ |t#1|)) (-15 -3933 ((-128)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-983 |#1|) . T) ((-1020) . T))
-((-4043 (((-592 (-1123 |#1|)) (-1092) (-1123 |#1|)) 78)) (-2530 (((-1073 (-1073 (-887 |#1|))) (-1092) (-1073 (-887 |#1|))) 57)) (-4108 (((-1 (-1073 (-1123 |#1|)) (-1073 (-1123 |#1|))) (-713) (-1123 |#1|) (-1073 (-1123 |#1|))) 68)) (-4131 (((-1 (-1073 (-887 |#1|)) (-1073 (-887 |#1|))) (-713)) 59)) (-2118 (((-1 (-1088 (-887 |#1|)) (-887 |#1|)) (-1092)) 29)) (-1819 (((-1 (-1073 (-887 |#1|)) (-1073 (-887 |#1|))) (-713)) 58)))
-(((-1182 |#1|) (-10 -7 (-15 -4131 ((-1 (-1073 (-887 |#1|)) (-1073 (-887 |#1|))) (-713))) (-15 -1819 ((-1 (-1073 (-887 |#1|)) (-1073 (-887 |#1|))) (-713))) (-15 -2530 ((-1073 (-1073 (-887 |#1|))) (-1092) (-1073 (-887 |#1|)))) (-15 -2118 ((-1 (-1088 (-887 |#1|)) (-887 |#1|)) (-1092))) (-15 -4043 ((-592 (-1123 |#1|)) (-1092) (-1123 |#1|))) (-15 -4108 ((-1 (-1073 (-1123 |#1|)) (-1073 (-1123 |#1|))) (-713) (-1123 |#1|) (-1073 (-1123 |#1|))))) (-341)) (T -1182))
-((-4108 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-713)) (-4 *6 (-341)) (-5 *4 (-1123 *6)) (-5 *2 (-1 (-1073 *4) (-1073 *4))) (-5 *1 (-1182 *6)) (-5 *5 (-1073 *4)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-4 *5 (-341)) (-5 *2 (-592 (-1123 *5))) (-5 *1 (-1182 *5)) (-5 *4 (-1123 *5)))) (-2118 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1 (-1088 (-887 *4)) (-887 *4))) (-5 *1 (-1182 *4)) (-4 *4 (-341)))) (-2530 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-4 *5 (-341)) (-5 *2 (-1073 (-1073 (-887 *5)))) (-5 *1 (-1182 *5)) (-5 *4 (-1073 (-887 *5))))) (-1819 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1073 (-887 *4)) (-1073 (-887 *4)))) (-5 *1 (-1182 *4)) (-4 *4 (-341)))) (-4131 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1073 (-887 *4)) (-1073 (-887 *4)))) (-5 *1 (-1182 *4)) (-4 *4 (-341)))))
-(-10 -7 (-15 -4131 ((-1 (-1073 (-887 |#1|)) (-1073 (-887 |#1|))) (-713))) (-15 -1819 ((-1 (-1073 (-887 |#1|)) (-1073 (-887 |#1|))) (-713))) (-15 -2530 ((-1073 (-1073 (-887 |#1|))) (-1092) (-1073 (-887 |#1|)))) (-15 -2118 ((-1 (-1088 (-887 |#1|)) (-887 |#1|)) (-1092))) (-15 -4043 ((-592 (-1123 |#1|)) (-1092) (-1123 |#1|))) (-15 -4108 ((-1 (-1073 (-1123 |#1|)) (-1073 (-1123 |#1|))) (-713) (-1123 |#1|) (-1073 (-1123 |#1|)))))
-((-2868 (((-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|) 75)) (-2641 (((-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) 74)))
-(((-1183 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2641 ((-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -2868 ((-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|))) (-327) (-1150 |#1|) (-1150 |#2|) (-387 |#2| |#3|)) (T -1183))
-((-2868 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 *3)) (-5 *2 (-2 (|:| -3094 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-1183 *4 *3 *5 *6)) (-4 *6 (-387 *3 *5)))) (-2641 (*1 *2) (-12 (-4 *3 (-327)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 *4)) (-5 *2 (-2 (|:| -3094 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) (-5 *1 (-1183 *3 *4 *5 *6)) (-4 *6 (-387 *4 *5)))))
-(-10 -7 (-15 -2641 ((-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -2868 ((-2 (|:| -3094 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 43)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3457 (((-3 $ "failed") $) NIL)) (-1396 (((-108) $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1217 (((-798) $) 64) (($ (-525)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-160)))) (-3917 (((-713)) NIL)) (-2214 (((-1179) (-713)) 16)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 27 T CONST)) (-3359 (($) 67 T CONST)) (-3955 (((-108) $ $) 69)) (-4075 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-4061 (($ $) 71) (($ $ $) NIL)) (-4047 (($ $ $) 47)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160)))))
-(((-1184 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-977) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1217 (|#4| $)) (IF (|has| |#1| (-341)) (-15 -4075 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1217 ($ |#4|)) (-15 -2214 ((-1179) (-713))))) (-977) (-789) (-735) (-884 |#1| |#3| |#2|) (-592 |#2|) (-592 (-713)) (-713)) (T -1184))
-((-1217 (*1 *2 *1) (-12 (-4 *2 (-884 *3 *5 *4)) (-5 *1 (-1184 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4)) (-14 *7 (-592 (-713))) (-14 *8 (-713)))) (-4075 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-341)) (-4 *2 (-977)) (-4 *3 (-789)) (-4 *4 (-735)) (-14 *6 (-592 *3)) (-5 *1 (-1184 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-884 *2 *4 *3)) (-14 *7 (-592 (-713))) (-14 *8 (-713)))) (-1217 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4)) (-5 *1 (-1184 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-884 *3 *5 *4)) (-14 *7 (-592 (-713))) (-14 *8 (-713)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-977)) (-4 *5 (-789)) (-4 *6 (-735)) (-14 *8 (-592 *5)) (-5 *2 (-1179)) (-5 *1 (-1184 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-884 *4 *6 *5)) (-14 *9 (-592 *3)) (-14 *10 *3))))
-(-13 (-977) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1217 (|#4| $)) (IF (|has| |#1| (-341)) (-15 -4075 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1217 ($ |#4|)) (-15 -2214 ((-1179) (-713)))))
-((-4236 (((-108) $ $) NIL)) (-1463 (((-592 (-2 (|:| -2719 $) (|:| -3459 (-592 |#4|)))) (-592 |#4|)) NIL)) (-1589 (((-592 $) (-592 |#4|)) 88)) (-2897 (((-592 |#3|) $) NIL)) (-2437 (((-108) $) NIL)) (-2750 (((-108) $) NIL (|has| |#1| (-517)))) (-3950 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2495 ((|#4| |#4| $) NIL)) (-2458 (((-2 (|:| |under| $) (|:| -2487 $) (|:| |upper| $)) $ |#3|) NIL)) (-3991 (((-108) $ (-713)) NIL)) (-3785 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2169 (($) NIL T CONST)) (-4089 (((-108) $) NIL (|has| |#1| (-517)))) (-2480 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1207 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3339 (((-108) $) NIL (|has| |#1| (-517)))) (-2712 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 28)) (-3767 (((-592 |#4|) (-592 |#4|) $) 25 (|has| |#1| (-517)))) (-3333 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-3077 (((-3 $ "failed") (-592 |#4|)) NIL)) (-1572 (($ (-592 |#4|)) NIL)) (-1886 (((-3 $ "failed") $) 70)) (-3901 ((|#4| |#4| $) 75)) (-1910 (($ $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020))))) (-1703 (($ |#4| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-1607 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-1961 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2834 ((|#4| |#4| $) NIL)) (-1284 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4258))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4258))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1877 (((-2 (|:| -2719 (-592 |#4|)) (|:| -3459 (-592 |#4|))) $) NIL)) (-3440 (((-592 |#4|) $) NIL (|has| $ (-6 -4258)))) (-2633 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3153 ((|#3| $) 76)) (-3924 (((-108) $ (-713)) NIL)) (-2694 (((-592 |#4|) $) 29 (|has| $ (-6 -4258)))) (-2004 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020))))) (-1916 (((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-592 |#4|)) 35)) (-2284 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4259)))) (-3165 (($ (-1 |#4| |#4|) $) NIL)) (-1598 (((-592 |#3|) $) NIL)) (-3919 (((-108) |#3| $) NIL)) (-2912 (((-108) $ (-713)) NIL)) (-2619 (((-1075) $) NIL)) (-1717 (((-3 |#4| "failed") $) NIL)) (-3159 (((-592 |#4|) $) 50)) (-2686 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2423 ((|#4| |#4| $) 74)) (-2338 (((-108) $ $) 85)) (-1806 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2696 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3872 ((|#4| |#4| $) NIL)) (-2093 (((-1039) $) NIL)) (-1872 (((-3 |#4| "failed") $) 69)) (-1983 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3044 (((-3 $ "failed") $ |#4|) NIL)) (-3931 (($ $ |#4|) NIL)) (-3944 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-2457 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-2614 (((-108) $ $) NIL)) (-2659 (((-108) $) 67)) (-2512 (($) 42)) (-2343 (((-713) $) NIL)) (-2110 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4258)) (|has| |#4| (-1020)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-1462 (($ $) NIL)) (-3210 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-1230 (($ (-592 |#4|)) NIL)) (-3264 (($ $ |#3|) NIL)) (-1425 (($ $ |#3|) NIL)) (-1320 (($ $) NIL)) (-4008 (($ $ |#3|) NIL)) (-1217 (((-798) $) NIL) (((-592 |#4|) $) 57)) (-3735 (((-713) $) NIL (|has| |#3| (-346)))) (-1977 (((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-592 |#4|)) 41)) (-2486 (((-592 $) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-592 $) (-592 |#4|)) 66)) (-1622 (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3412 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4027 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-3029 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4258)))) (-1221 (((-592 |#3|) $) NIL)) (-2081 (((-108) |#3| $) NIL)) (-3955 (((-108) $ $) NIL)) (-3522 (((-713) $) NIL (|has| $ (-6 -4258)))))
-(((-1185 |#1| |#2| |#3| |#4|) (-13 (-1122 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1916 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1916 ((-3 $ "failed") (-592 |#4|))) (-15 -1977 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1977 ((-3 $ "failed") (-592 |#4|))) (-15 -2486 ((-592 $) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2486 ((-592 $) (-592 |#4|))))) (-517) (-735) (-789) (-991 |#1| |#2| |#3|)) (T -1185))
-((-1916 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1185 *5 *6 *7 *8)))) (-1916 (*1 *1 *2) (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1185 *3 *4 *5 *6)))) (-1977 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1185 *5 *6 *7 *8)))) (-1977 (*1 *1 *2) (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1185 *3 *4 *5 *6)))) (-2486 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-991 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-592 (-1185 *6 *7 *8 *9))) (-5 *1 (-1185 *6 *7 *8 *9)))) (-2486 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-1185 *4 *5 *6 *7))) (-5 *1 (-1185 *4 *5 *6 *7)))))
-(-13 (-1122 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1916 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1916 ((-3 $ "failed") (-592 |#4|))) (-15 -1977 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1977 ((-3 $ "failed") (-592 |#4|))) (-15 -2486 ((-592 $) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2486 ((-592 $) (-592 |#4|)))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-1578 (((-3 $ "failed") $ $) 19)) (-2169 (($) 17 T CONST)) (-3457 (((-3 $ "failed") $) 34)) (-1396 (((-108) $) 31)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 38)) (-3917 (((-713)) 29)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+((-1295 (((-592 (-1123 |#1|)) (-1092) (-1123 |#1|)) 78)) (-1714 (((-1073 (-1073 (-887 |#1|))) (-1092) (-1073 (-887 |#1|))) 57)) (-3729 (((-1 (-1073 (-1123 |#1|)) (-1073 (-1123 |#1|))) (-713) (-1123 |#1|) (-1073 (-1123 |#1|))) 68)) (-2756 (((-1 (-1073 (-887 |#1|)) (-1073 (-887 |#1|))) (-713)) 59)) (-1958 (((-1 (-1088 (-887 |#1|)) (-887 |#1|)) (-1092)) 29)) (-1982 (((-1 (-1073 (-887 |#1|)) (-1073 (-887 |#1|))) (-713)) 58)))
+(((-1182 |#1|) (-10 -7 (-15 -2756 ((-1 (-1073 (-887 |#1|)) (-1073 (-887 |#1|))) (-713))) (-15 -1982 ((-1 (-1073 (-887 |#1|)) (-1073 (-887 |#1|))) (-713))) (-15 -1714 ((-1073 (-1073 (-887 |#1|))) (-1092) (-1073 (-887 |#1|)))) (-15 -1958 ((-1 (-1088 (-887 |#1|)) (-887 |#1|)) (-1092))) (-15 -1295 ((-592 (-1123 |#1|)) (-1092) (-1123 |#1|))) (-15 -3729 ((-1 (-1073 (-1123 |#1|)) (-1073 (-1123 |#1|))) (-713) (-1123 |#1|) (-1073 (-1123 |#1|))))) (-341)) (T -1182))
+((-3729 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-713)) (-4 *6 (-341)) (-5 *4 (-1123 *6)) (-5 *2 (-1 (-1073 *4) (-1073 *4))) (-5 *1 (-1182 *6)) (-5 *5 (-1073 *4)))) (-1295 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-4 *5 (-341)) (-5 *2 (-592 (-1123 *5))) (-5 *1 (-1182 *5)) (-5 *4 (-1123 *5)))) (-1958 (*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1 (-1088 (-887 *4)) (-887 *4))) (-5 *1 (-1182 *4)) (-4 *4 (-341)))) (-1714 (*1 *2 *3 *4) (-12 (-5 *3 (-1092)) (-4 *5 (-341)) (-5 *2 (-1073 (-1073 (-887 *5)))) (-5 *1 (-1182 *5)) (-5 *4 (-1073 (-887 *5))))) (-1982 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1073 (-887 *4)) (-1073 (-887 *4)))) (-5 *1 (-1182 *4)) (-4 *4 (-341)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1073 (-887 *4)) (-1073 (-887 *4)))) (-5 *1 (-1182 *4)) (-4 *4 (-341)))))
+(-10 -7 (-15 -2756 ((-1 (-1073 (-887 |#1|)) (-1073 (-887 |#1|))) (-713))) (-15 -1982 ((-1 (-1073 (-887 |#1|)) (-1073 (-887 |#1|))) (-713))) (-15 -1714 ((-1073 (-1073 (-887 |#1|))) (-1092) (-1073 (-887 |#1|)))) (-15 -1958 ((-1 (-1088 (-887 |#1|)) (-887 |#1|)) (-1092))) (-15 -1295 ((-592 (-1123 |#1|)) (-1092) (-1123 |#1|))) (-15 -3729 ((-1 (-1073 (-1123 |#1|)) (-1073 (-1123 |#1|))) (-713) (-1123 |#1|) (-1073 (-1123 |#1|)))))
+((-1794 (((-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|) 75)) (-3295 (((-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) 74)))
+(((-1183 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3295 ((-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -1794 ((-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|))) (-327) (-1150 |#1|) (-1150 |#2|) (-387 |#2| |#3|)) (T -1183))
+((-1794 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 *3)) (-5 *2 (-2 (|:| -2103 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-1183 *4 *3 *5 *6)) (-4 *6 (-387 *3 *5)))) (-3295 (*1 *2) (-12 (-4 *3 (-327)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 *4)) (-5 *2 (-2 (|:| -2103 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) (-5 *1 (-1183 *3 *4 *5 *6)) (-4 *6 (-387 *4 *5)))))
+(-10 -7 (-15 -3295 ((-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -1794 ((-2 (|:| -2103 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 43)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-3300 (((-3 $ "failed") $) NIL)) (-2278 (((-108) $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-4100 (((-798) $) 64) (($ (-525)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-160)))) (-2448 (((-713)) NIL)) (-1718 (((-1179) (-713)) 16)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 27 T CONST)) (-3375 (($) 67 T CONST)) (-2775 (((-108) $ $) 69)) (-2880 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2871 (($ $) 71) (($ $ $) NIL)) (-2860 (($ $ $) 47)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160)))))
+(((-1184 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-977) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4100 (|#4| $)) (IF (|has| |#1| (-341)) (-15 -2880 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4100 ($ |#4|)) (-15 -1718 ((-1179) (-713))))) (-977) (-789) (-735) (-884 |#1| |#3| |#2|) (-592 |#2|) (-592 (-713)) (-713)) (T -1184))
+((-4100 (*1 *2 *1) (-12 (-4 *2 (-884 *3 *5 *4)) (-5 *1 (-1184 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4)) (-14 *7 (-592 (-713))) (-14 *8 (-713)))) (-2880 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-341)) (-4 *2 (-977)) (-4 *3 (-789)) (-4 *4 (-735)) (-14 *6 (-592 *3)) (-5 *1 (-1184 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-884 *2 *4 *3)) (-14 *7 (-592 (-713))) (-14 *8 (-713)))) (-4100 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4)) (-5 *1 (-1184 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-884 *3 *5 *4)) (-14 *7 (-592 (-713))) (-14 *8 (-713)))) (-1718 (*1 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-977)) (-4 *5 (-789)) (-4 *6 (-735)) (-14 *8 (-592 *5)) (-5 *2 (-1179)) (-5 *1 (-1184 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-884 *4 *6 *5)) (-14 *9 (-592 *3)) (-14 *10 *3))))
+(-13 (-977) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4100 (|#4| $)) (IF (|has| |#1| (-341)) (-15 -2880 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4100 ($ |#4|)) (-15 -1718 ((-1179) (-713)))))
+((-4087 (((-108) $ $) NIL)) (-2562 (((-592 (-2 (|:| -2682 $) (|:| -2046 (-592 |#4|)))) (-592 |#4|)) NIL)) (-3347 (((-592 $) (-592 |#4|)) 88)) (-1296 (((-592 |#3|) $) NIL)) (-2071 (((-108) $) NIL)) (-3093 (((-108) $) NIL (|has| |#1| (-517)))) (-1587 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1402 ((|#4| |#4| $) NIL)) (-1842 (((-2 (|:| |under| $) (|:| -1340 $) (|:| |upper| $)) $ |#3|) NIL)) (-3779 (((-108) $ (-713)) NIL)) (-2399 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2475 (($) NIL T CONST)) (-3542 (((-108) $) NIL (|has| |#1| (-517)))) (-2462 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2390 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1698 (((-108) $) NIL (|has| |#1| (-517)))) (-2783 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 28)) (-3308 (((-592 |#4|) (-592 |#4|) $) 25 (|has| |#1| (-517)))) (-1655 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1934 (((-3 $ "failed") (-592 |#4|)) NIL)) (-4105 (($ (-592 |#4|)) NIL)) (-1659 (((-3 $ "failed") $) 70)) (-2268 ((|#4| |#4| $) 75)) (-1681 (($ $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020))))) (-2698 (($ |#4| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-3681 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-3964 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-1469 ((|#4| |#4| $) NIL)) (-3504 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4259))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4259))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1329 (((-2 (|:| -2682 (-592 |#4|)) (|:| -2046 (-592 |#4|))) $) NIL)) (-2175 (((-592 |#4|) $) NIL (|has| $ (-6 -4259)))) (-3221 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2577 ((|#3| $) 76)) (-2516 (((-108) $ (-713)) NIL)) (-2617 (((-592 |#4|) $) 29 (|has| $ (-6 -4259)))) (-3198 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020))))) (-1683 (((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-592 |#4|)) 35)) (-3069 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4260)))) (-2016 (($ (-1 |#4| |#4|) $) NIL)) (-3435 (((-592 |#3|) $) NIL)) (-2468 (((-108) |#3| $) NIL)) (-4028 (((-108) $ (-713)) NIL)) (-1289 (((-1075) $) NIL)) (-2718 (((-3 |#4| "failed") $) NIL)) (-1455 (((-592 |#4|) $) 50)) (-3732 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3076 ((|#4| |#4| $) 74)) (-3472 (((-108) $ $) 85)) (-2991 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2635 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1998 ((|#4| |#4| $) NIL)) (-3993 (((-1039) $) NIL)) (-1647 (((-3 |#4| "failed") $) 69)) (-4202 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2821 (((-3 $ "failed") $ |#4|) NIL)) (-1397 (($ $ |#4|) NIL)) (-1518 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-2825 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-1231 (((-108) $ $) NIL)) (-3479 (((-108) $) 67)) (-1558 (($) 42)) (-3529 (((-713) $) NIL)) (-4002 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4259)) (|has| |#4| (-1020)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-2503 (($ $) NIL)) (-2069 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-4114 (($ (-592 |#4|)) NIL)) (-4151 (($ $ |#3|) NIL)) (-3522 (($ $ |#3|) NIL)) (-1411 (($ $) NIL)) (-3963 (($ $ |#3|) NIL)) (-4100 (((-798) $) NIL) (((-592 |#4|) $) 57)) (-1223 (((-713) $) NIL (|has| |#3| (-346)))) (-4137 (((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-592 |#4|)) 41)) (-2519 (((-592 $) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-592 $) (-592 |#4|)) 66)) (-3799 (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3490 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4170 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-2706 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4259)))) (-1874 (((-592 |#3|) $) NIL)) (-2738 (((-108) |#3| $) NIL)) (-2775 (((-108) $ $) NIL)) (-2827 (((-713) $) NIL (|has| $ (-6 -4259)))))
+(((-1185 |#1| |#2| |#3| |#4|) (-13 (-1122 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1683 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1683 ((-3 $ "failed") (-592 |#4|))) (-15 -4137 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4137 ((-3 $ "failed") (-592 |#4|))) (-15 -2519 ((-592 $) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2519 ((-592 $) (-592 |#4|))))) (-517) (-735) (-789) (-991 |#1| |#2| |#3|)) (T -1185))
+((-1683 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1185 *5 *6 *7 *8)))) (-1683 (*1 *1 *2) (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1185 *3 *4 *5 *6)))) (-4137 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1185 *5 *6 *7 *8)))) (-4137 (*1 *1 *2) (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1185 *3 *4 *5 *6)))) (-2519 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-991 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-592 (-1185 *6 *7 *8 *9))) (-5 *1 (-1185 *6 *7 *8 *9)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-1185 *4 *5 *6 *7))) (-5 *1 (-1185 *4 *5 *6 *7)))))
+(-13 (-1122 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1683 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1683 ((-3 $ "failed") (-592 |#4|))) (-15 -4137 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4137 ((-3 $ "failed") (-592 |#4|))) (-15 -2519 ((-592 $) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2519 ((-592 $) (-592 |#4|)))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-3222 (((-3 $ "failed") $ $) 19)) (-2475 (($) 17 T CONST)) (-3300 (((-3 $ "failed") $) 34)) (-2278 (((-108) $) 31)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 38)) (-2448 (((-713)) 29)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-1186 |#1|) (-131) (-977)) (T -1186))
-((-1217 (*1 *1 *2) (-12 (-4 *1 (-1186 *2)) (-4 *2 (-977)))))
-(-13 (-977) (-107 |t#1| |t#1|) (-10 -8 (-15 -1217 ($ |t#1|)) (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|)))
+((-4100 (*1 *1 *2) (-12 (-4 *1 (-1186 *2)) (-4 *2 (-977)))))
+(-13 (-977) (-107 |t#1| |t#1|) (-10 -8 (-15 -4100 ($ |t#1|)) (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) |has| |#1| (-160)) ((-669) . T) ((-983 |#1|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
-((-4236 (((-108) $ $) 60)) (-1209 (((-108) $) NIL)) (-2726 (((-592 |#1|) $) 45)) (-1656 (($ $ (-713)) 39)) (-1578 (((-3 $ "failed") $ $) NIL)) (-3525 (($ $ (-713)) 18 (|has| |#2| (-160))) (($ $ $) 19 (|has| |#2| (-160)))) (-2169 (($) NIL T CONST)) (-2579 (($ $ $) 63) (($ $ (-761 |#1|)) 49) (($ $ |#1|) 53)) (-3077 (((-3 (-761 |#1|) "failed") $) NIL)) (-1572 (((-761 |#1|) $) NIL)) (-3063 (($ $) 32)) (-3457 (((-3 $ "failed") $) NIL)) (-2757 (((-108) $) NIL)) (-3629 (($ $) NIL)) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) NIL)) (-4144 (((-592 $) $) NIL)) (-1212 (((-108) $) NIL)) (-2938 (($ (-761 |#1|) |#2|) 31)) (-1276 (($ $) 33)) (-2792 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) 12)) (-4172 (((-761 |#1|) $) NIL)) (-3878 (((-761 |#1|) $) 34)) (-3165 (($ (-1 |#2| |#2|) $) NIL)) (-1530 (($ $ $) 62) (($ $ (-761 |#1|)) 51) (($ $ |#1|) 55)) (-2074 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3031 (((-761 |#1|) $) 28)) (-3043 ((|#2| $) 30)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-2343 (((-713) $) 36)) (-1226 (((-108) $) 40)) (-2709 ((|#2| $) NIL)) (-1217 (((-798) $) NIL) (($ (-761 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-525)) NIL)) (-1684 (((-592 |#2|) $) NIL)) (-1568 ((|#2| $ (-761 |#1|)) NIL)) (-3244 ((|#2| $ $) 65) ((|#2| $ (-761 |#1|)) NIL)) (-3917 (((-713)) NIL)) (-1619 (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3349 (($) 13 T CONST)) (-3359 (($) 15 T CONST)) (-1719 (((-592 (-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3955 (((-108) $ $) 38)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) 22)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-761 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
+((-4087 (((-108) $ $) 60)) (-2414 (((-108) $) NIL)) (-2668 (((-592 |#1|) $) 45)) (-4107 (($ $ (-713)) 39)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2734 (($ $ (-713)) 18 (|has| |#2| (-160))) (($ $ $) 19 (|has| |#2| (-160)))) (-2475 (($) NIL T CONST)) (-3976 (($ $ $) 63) (($ $ (-761 |#1|)) 49) (($ $ |#1|) 53)) (-1934 (((-3 (-761 |#1|) "failed") $) NIL)) (-4105 (((-761 |#1|) $) NIL)) (-1451 (($ $) 32)) (-3300 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-1381 (($ $) NIL)) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) NIL)) (-2884 (((-592 $) $) NIL)) (-2457 (((-108) $) NIL)) (-2885 (($ (-761 |#1|) |#2|) 31)) (-4064 (($ $) 33)) (-2321 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) 12)) (-3130 (((-761 |#1|) $) NIL)) (-2054 (((-761 |#1|) $) 34)) (-2016 (($ (-1 |#2| |#2|) $) NIL)) (-1225 (($ $ $) 62) (($ $ (-761 |#1|)) 51) (($ $ |#1|) 55)) (-2669 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1418 (((-761 |#1|) $) 28)) (-1430 ((|#2| $) 30)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-3529 (((-713) $) 36)) (-1930 (((-108) $) 40)) (-2247 ((|#2| $) NIL)) (-4100 (((-798) $) NIL) (($ (-761 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-525)) NIL)) (-3137 (((-592 |#2|) $) NIL)) (-3136 ((|#2| $ (-761 |#1|)) NIL)) (-2681 ((|#2| $ $) 65) ((|#2| $ (-761 |#1|)) NIL)) (-2448 (((-713)) NIL)) (-3706 (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3364 (($) 13 T CONST)) (-3375 (($) 15 T CONST)) (-3482 (((-592 (-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2775 (((-108) $ $) 38)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) 22)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-761 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
(((-1187 |#1| |#2|) (-13 (-360 |#2| (-761 |#1|)) (-1193 |#1| |#2|)) (-789) (-977)) (T -1187))
NIL
(-13 (-360 |#2| (-761 |#1|)) (-1193 |#1| |#2|))
-((-1517 ((|#3| |#3| (-713)) 23)) (-3096 ((|#3| |#3| (-713)) 28)) (-3389 ((|#3| |#3| |#3| (-713)) 29)))
-(((-1188 |#1| |#2| |#3|) (-10 -7 (-15 -3096 (|#3| |#3| (-713))) (-15 -1517 (|#3| |#3| (-713))) (-15 -3389 (|#3| |#3| |#3| (-713)))) (-13 (-977) (-660 (-385 (-525)))) (-789) (-1193 |#2| |#1|)) (T -1188))
-((-3389 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-13 (-977) (-660 (-385 (-525))))) (-4 *5 (-789)) (-5 *1 (-1188 *4 *5 *2)) (-4 *2 (-1193 *5 *4)))) (-1517 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-13 (-977) (-660 (-385 (-525))))) (-4 *5 (-789)) (-5 *1 (-1188 *4 *5 *2)) (-4 *2 (-1193 *5 *4)))) (-3096 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-13 (-977) (-660 (-385 (-525))))) (-4 *5 (-789)) (-5 *1 (-1188 *4 *5 *2)) (-4 *2 (-1193 *5 *4)))))
-(-10 -7 (-15 -3096 (|#3| |#3| (-713))) (-15 -1517 (|#3| |#3| (-713))) (-15 -3389 (|#3| |#3| |#3| (-713))))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2726 (((-592 |#1|) $) 40)) (-1578 (((-3 $ "failed") $ $) 19)) (-3525 (($ $ $) 43 (|has| |#2| (-160))) (($ $ (-713)) 42 (|has| |#2| (-160)))) (-2169 (($) 17 T CONST)) (-2579 (($ $ |#1|) 54) (($ $ (-761 |#1|)) 53) (($ $ $) 52)) (-3077 (((-3 (-761 |#1|) "failed") $) 64)) (-1572 (((-761 |#1|) $) 63)) (-3457 (((-3 $ "failed") $) 34)) (-2757 (((-108) $) 45)) (-3629 (($ $) 44)) (-1396 (((-108) $) 31)) (-1212 (((-108) $) 50)) (-2938 (($ (-761 |#1|) |#2|) 51)) (-1276 (($ $) 49)) (-2792 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) 60)) (-4172 (((-761 |#1|) $) 61)) (-3165 (($ (-1 |#2| |#2|) $) 41)) (-1530 (($ $ |#1|) 57) (($ $ (-761 |#1|)) 56) (($ $ $) 55)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-1226 (((-108) $) 47)) (-2709 ((|#2| $) 46)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#2|) 68) (($ (-761 |#1|)) 65) (($ |#1|) 48)) (-3244 ((|#2| $ (-761 |#1|)) 59) ((|#2| $ $) 58)) (-3917 (((-713)) 29)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+((-2533 ((|#3| |#3| (-713)) 23)) (-1618 ((|#3| |#3| (-713)) 28)) (-3925 ((|#3| |#3| |#3| (-713)) 29)))
+(((-1188 |#1| |#2| |#3|) (-10 -7 (-15 -1618 (|#3| |#3| (-713))) (-15 -2533 (|#3| |#3| (-713))) (-15 -3925 (|#3| |#3| |#3| (-713)))) (-13 (-977) (-660 (-385 (-525)))) (-789) (-1193 |#2| |#1|)) (T -1188))
+((-3925 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-13 (-977) (-660 (-385 (-525))))) (-4 *5 (-789)) (-5 *1 (-1188 *4 *5 *2)) (-4 *2 (-1193 *5 *4)))) (-2533 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-13 (-977) (-660 (-385 (-525))))) (-4 *5 (-789)) (-5 *1 (-1188 *4 *5 *2)) (-4 *2 (-1193 *5 *4)))) (-1618 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-13 (-977) (-660 (-385 (-525))))) (-4 *5 (-789)) (-5 *1 (-1188 *4 *5 *2)) (-4 *2 (-1193 *5 *4)))))
+(-10 -7 (-15 -1618 (|#3| |#3| (-713))) (-15 -2533 (|#3| |#3| (-713))) (-15 -3925 (|#3| |#3| |#3| (-713))))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-2668 (((-592 |#1|) $) 40)) (-3222 (((-3 $ "failed") $ $) 19)) (-2734 (($ $ $) 43 (|has| |#2| (-160))) (($ $ (-713)) 42 (|has| |#2| (-160)))) (-2475 (($) 17 T CONST)) (-3976 (($ $ |#1|) 54) (($ $ (-761 |#1|)) 53) (($ $ $) 52)) (-1934 (((-3 (-761 |#1|) "failed") $) 64)) (-4105 (((-761 |#1|) $) 63)) (-3300 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 45)) (-1381 (($ $) 44)) (-2278 (((-108) $) 31)) (-2457 (((-108) $) 50)) (-2885 (($ (-761 |#1|) |#2|) 51)) (-4064 (($ $) 49)) (-2321 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) 60)) (-3130 (((-761 |#1|) $) 61)) (-2016 (($ (-1 |#2| |#2|) $) 41)) (-1225 (($ $ |#1|) 57) (($ $ (-761 |#1|)) 56) (($ $ $) 55)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-1930 (((-108) $) 47)) (-2247 ((|#2| $) 46)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#2|) 68) (($ (-761 |#1|)) 65) (($ |#1|) 48)) (-2681 ((|#2| $ (-761 |#1|)) 59) ((|#2| $ $) 58)) (-2448 (((-713)) 29)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
(((-1189 |#1| |#2|) (-131) (-789) (-977)) (T -1189))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-789)) (-4 *2 (-977)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-761 *3)))) (-2792 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-2 (|:| |k| (-761 *3)) (|:| |c| *4))))) (-3244 (*1 *2 *1 *3) (-12 (-5 *3 (-761 *4)) (-4 *1 (-1189 *4 *2)) (-4 *4 (-789)) (-4 *2 (-977)))) (-3244 (*1 *2 *1 *1) (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-789)) (-4 *2 (-977)))) (-1530 (*1 *1 *1 *2) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-1530 (*1 *1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))) (-1530 (*1 *1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-2579 (*1 *1 *1 *2) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-2579 (*1 *1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))) (-2579 (*1 *1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-2938 (*1 *1 *2 *3) (-12 (-5 *2 (-761 *4)) (-4 *4 (-789)) (-4 *1 (-1189 *4 *3)) (-4 *3 (-977)))) (-1212 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-108)))) (-1276 (*1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-1217 (*1 *1 *2) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-1226 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-108)))) (-2709 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-789)) (-4 *2 (-977)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-108)))) (-3629 (*1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-3525 (*1 *1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)) (-4 *3 (-160)))) (-3525 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-4 *4 (-160)))) (-3165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))) (-2726 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-592 *3)))))
-(-13 (-977) (-1186 |t#2|) (-968 (-761 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4172 ((-761 |t#1|) $)) (-15 -2792 ((-2 (|:| |k| (-761 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3244 (|t#2| $ (-761 |t#1|))) (-15 -3244 (|t#2| $ $)) (-15 -1530 ($ $ |t#1|)) (-15 -1530 ($ $ (-761 |t#1|))) (-15 -1530 ($ $ $)) (-15 -2579 ($ $ |t#1|)) (-15 -2579 ($ $ (-761 |t#1|))) (-15 -2579 ($ $ $)) (-15 -2938 ($ (-761 |t#1|) |t#2|)) (-15 -1212 ((-108) $)) (-15 -1276 ($ $)) (-15 -1217 ($ |t#1|)) (-15 -1226 ((-108) $)) (-15 -2709 (|t#2| $)) (-15 -2757 ((-108) $)) (-15 -3629 ($ $)) (IF (|has| |t#2| (-160)) (PROGN (-15 -3525 ($ $ $)) (-15 -3525 ($ $ (-713)))) |%noBranch|) (-15 -3165 ($ (-1 |t#2| |t#2|) $)) (-15 -2726 ((-592 |t#1|) $)) (IF (|has| |t#2| (-6 -4251)) (-6 -4251) |%noBranch|)))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-789)) (-4 *2 (-977)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-761 *3)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-2 (|:| |k| (-761 *3)) (|:| |c| *4))))) (-2681 (*1 *2 *1 *3) (-12 (-5 *3 (-761 *4)) (-4 *1 (-1189 *4 *2)) (-4 *4 (-789)) (-4 *2 (-977)))) (-2681 (*1 *2 *1 *1) (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-789)) (-4 *2 (-977)))) (-1225 (*1 *1 *1 *2) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-1225 (*1 *1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))) (-1225 (*1 *1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-3976 (*1 *1 *1 *2) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-3976 (*1 *1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))) (-3976 (*1 *1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-2885 (*1 *1 *2 *3) (-12 (-5 *2 (-761 *4)) (-4 *4 (-789)) (-4 *1 (-1189 *4 *3)) (-4 *3 (-977)))) (-2457 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-108)))) (-4064 (*1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-4100 (*1 *1 *2) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-1930 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-108)))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-789)) (-4 *2 (-977)))) (-2023 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-108)))) (-1381 (*1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-2734 (*1 *1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)) (-4 *3 (-160)))) (-2734 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-4 *4 (-160)))) (-2016 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-592 *3)))))
+(-13 (-977) (-1186 |t#2|) (-968 (-761 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3130 ((-761 |t#1|) $)) (-15 -2321 ((-2 (|:| |k| (-761 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2681 (|t#2| $ (-761 |t#1|))) (-15 -2681 (|t#2| $ $)) (-15 -1225 ($ $ |t#1|)) (-15 -1225 ($ $ (-761 |t#1|))) (-15 -1225 ($ $ $)) (-15 -3976 ($ $ |t#1|)) (-15 -3976 ($ $ (-761 |t#1|))) (-15 -3976 ($ $ $)) (-15 -2885 ($ (-761 |t#1|) |t#2|)) (-15 -2457 ((-108) $)) (-15 -4064 ($ $)) (-15 -4100 ($ |t#1|)) (-15 -1930 ((-108) $)) (-15 -2247 (|t#2| $)) (-15 -2023 ((-108) $)) (-15 -1381 ($ $)) (IF (|has| |t#2| (-160)) (PROGN (-15 -2734 ($ $ $)) (-15 -2734 ($ $ (-713)))) |%noBranch|) (-15 -2016 ($ (-1 |t#2| |t#2|) $)) (-15 -2668 ((-592 |t#1|) $)) (IF (|has| |t#2| (-6 -4252)) (-6 -4252) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-160)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#2|) . T) ((-594 $) . T) ((-660 |#2|) |has| |#2| (-160)) ((-669) . T) ((-968 (-761 |#1|)) . T) ((-983 |#2|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1186 |#2|) . T))
-((-1259 (((-108) $) 15)) (-2081 (((-108) $) 14)) (-3127 (($ $) 19) (($ $ (-713)) 20)))
-(((-1190 |#1| |#2|) (-10 -8 (-15 -3127 (|#1| |#1| (-713))) (-15 -3127 (|#1| |#1|)) (-15 -1259 ((-108) |#1|)) (-15 -2081 ((-108) |#1|))) (-1191 |#2|) (-341)) (T -1190))
+((-3214 (((-108) $) 15)) (-2738 (((-108) $) 14)) (-2363 (($ $) 19) (($ $ (-713)) 20)))
+(((-1190 |#1| |#2|) (-10 -8 (-15 -2363 (|#1| |#1| (-713))) (-15 -2363 (|#1| |#1|)) (-15 -3214 ((-108) |#1|)) (-15 -2738 ((-108) |#1|))) (-1191 |#2|) (-341)) (T -1190))
NIL
-(-10 -8 (-15 -3127 (|#1| |#1| (-713))) (-15 -3127 (|#1| |#1|)) (-15 -1259 ((-108) |#1|)) (-15 -2081 ((-108) |#1|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2582 (((-2 (|:| -2841 $) (|:| -4245 $) (|:| |associate| $)) $) 41)) (-4218 (($ $) 40)) (-3171 (((-108) $) 38)) (-1259 (((-108) $) 94)) (-3098 (((-713)) 90)) (-1578 (((-3 $ "failed") $ $) 19)) (-1286 (($ $) 73)) (-2669 (((-396 $) $) 72)) (-2193 (((-108) $ $) 59)) (-2169 (($) 17 T CONST)) (-3077 (((-3 |#1| "failed") $) 101)) (-1572 ((|#1| $) 100)) (-1747 (($ $ $) 55)) (-3457 (((-3 $ "failed") $) 34)) (-1733 (($ $ $) 56)) (-2168 (((-2 (|:| -3244 (-592 $)) (|:| -3409 $)) (-592 $)) 51)) (-3625 (($ $ (-713)) 87 (-3254 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) 86 (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3673 (((-108) $) 71)) (-2581 (((-775 (-856)) $) 84 (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1396 (((-108) $) 31)) (-3798 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2556 (($ $ $) 46) (($ (-592 $)) 45)) (-2619 (((-1075) $) 9)) (-2997 (($ $) 70)) (-2703 (((-108) $) 93)) (-2093 (((-1039) $) 10)) (-1883 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2589 (($ $ $) 48) (($ (-592 $)) 47)) (-2770 (((-396 $) $) 74)) (-2858 (((-775 (-856))) 91)) (-1774 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3409 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1715 (((-3 $ "failed") $ $) 42)) (-1842 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-3684 (((-713) $) 58)) (-2818 (((-2 (|:| -2829 $) (|:| -1607 $)) $ $) 57)) (-3877 (((-3 (-713) "failed") $ $) 85 (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3705 (((-128)) 99)) (-2343 (((-775 (-856)) $) 92)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ |#1|) 102)) (-3637 (((-3 $ "failed") $) 83 (-3254 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3917 (((-713)) 29)) (-3325 (((-108) $ $) 39)) (-2081 (((-108) $) 95)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3127 (($ $) 89 (|has| |#1| (-346))) (($ $ (-713)) 88 (|has| |#1| (-346)))) (-3955 (((-108) $ $) 6)) (-4075 (($ $ $) 64) (($ $ |#1|) 98)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+(-10 -8 (-15 -2363 (|#1| |#1| (-713))) (-15 -2363 (|#1| |#1|)) (-15 -3214 ((-108) |#1|)) (-15 -2738 ((-108) |#1|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-4011 (((-2 (|:| -1509 $) (|:| -4246 $) (|:| |associate| $)) $) 41)) (-2433 (($ $) 40)) (-1568 (((-108) $) 38)) (-3214 (((-108) $) 94)) (-2132 (((-713)) 90)) (-3222 (((-3 $ "failed") $ $) 19)) (-4195 (($ $) 73)) (-3586 (((-396 $) $) 72)) (-1507 (((-108) $ $) 59)) (-2475 (($) 17 T CONST)) (-1934 (((-3 |#1| "failed") $) 101)) (-4105 ((|#1| $) 100)) (-1356 (($ $ $) 55)) (-3300 (((-3 $ "failed") $) 34)) (-1332 (($ $ $) 56)) (-2466 (((-2 (|:| -2681 (-592 $)) (|:| -3817 $)) (-592 $)) 51)) (-1339 (($ $ (-713)) 87 (-2067 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) 86 (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1798 (((-108) $) 71)) (-4000 (((-775 (-856)) $) 84 (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2278 (((-108) $) 31)) (-3624 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2739 (($ $ $) 46) (($ (-592 $)) 45)) (-1289 (((-1075) $) 9)) (-1387 (($ $) 70)) (-2700 (((-108) $) 93)) (-3993 (((-1039) $) 10)) (-1379 (((-1088 $) (-1088 $) (-1088 $)) 44)) (-2772 (($ $ $) 48) (($ (-592 $)) 47)) (-4201 (((-396 $) $) 74)) (-1690 (((-775 (-856))) 91)) (-2741 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3817 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1311 (((-3 $ "failed") $ $) 42)) (-2183 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1927 (((-713) $) 58)) (-2494 (((-2 (|:| -1416 $) (|:| -3681 $)) $ $) 57)) (-2043 (((-3 (-713) "failed") $ $) 85 (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3933 (((-128)) 99)) (-3529 (((-775 (-856)) $) 92)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ |#1|) 102)) (-1463 (((-3 $ "failed") $) 83 (-2067 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2448 (((-713)) 29)) (-1571 (((-108) $ $) 39)) (-2738 (((-108) $) 95)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2363 (($ $) 89 (|has| |#1| (-346))) (($ $ (-713)) 88 (|has| |#1| (-346)))) (-2775 (((-108) $ $) 6)) (-2880 (($ $ $) 64) (($ $ |#1|) 98)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
(((-1191 |#1|) (-131) (-341)) (T -1191))
-((-2081 (*1 *2 *1) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-108)))) (-1259 (*1 *2 *1) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-108)))) (-2703 (*1 *2 *1) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-108)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-856))))) (-2858 (*1 *2) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-856))))) (-3098 (*1 *2) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-713)))) (-3127 (*1 *1 *1) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-341)) (-4 *2 (-346)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-4 *3 (-346)))))
-(-13 (-341) (-968 |t#1|) (-1181 |t#1|) (-10 -8 (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-380)) |%noBranch|) (-15 -2081 ((-108) $)) (-15 -1259 ((-108) $)) (-15 -2703 ((-108) $)) (-15 -2343 ((-775 (-856)) $)) (-15 -2858 ((-775 (-856)))) (-15 -3098 ((-713))) (IF (|has| |t#1| (-346)) (PROGN (-6 (-380)) (-15 -3127 ($ $)) (-15 -3127 ($ $ (-713)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3254 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-380) -3254 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-669) . T) ((-855) . T) ((-968 |#1|) . T) ((-983 #0#) . T) ((-983 |#1|) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1132) . T) ((-1181 |#1|) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2726 (((-592 |#1|) $) 86)) (-1656 (($ $ (-713)) 89)) (-1578 (((-3 $ "failed") $ $) NIL)) (-3525 (($ $ $) NIL (|has| |#2| (-160))) (($ $ (-713)) NIL (|has| |#2| (-160)))) (-2169 (($) NIL T CONST)) (-2579 (($ $ |#1|) NIL) (($ $ (-761 |#1|)) NIL) (($ $ $) NIL)) (-3077 (((-3 (-761 |#1|) "failed") $) NIL) (((-3 (-828 |#1|) "failed") $) NIL)) (-1572 (((-761 |#1|) $) NIL) (((-828 |#1|) $) NIL)) (-3063 (($ $) 88)) (-3457 (((-3 $ "failed") $) NIL)) (-2757 (((-108) $) 77)) (-3629 (($ $) 81)) (-1683 (($ $ $ (-713)) 90)) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) NIL)) (-4144 (((-592 $) $) NIL)) (-1212 (((-108) $) NIL)) (-2938 (($ (-761 |#1|) |#2|) NIL) (($ (-828 |#1|) |#2|) 26)) (-1276 (($ $) 103)) (-2792 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4172 (((-761 |#1|) $) NIL)) (-3878 (((-761 |#1|) $) NIL)) (-3165 (($ (-1 |#2| |#2|) $) NIL)) (-1530 (($ $ |#1|) NIL) (($ $ (-761 |#1|)) NIL) (($ $ $) NIL)) (-1517 (($ $ (-713)) 97 (|has| |#2| (-660 (-385 (-525)))))) (-2074 (((-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3031 (((-828 |#1|) $) 70)) (-3043 ((|#2| $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3096 (($ $ (-713)) 94 (|has| |#2| (-660 (-385 (-525)))))) (-2343 (((-713) $) 87)) (-1226 (((-108) $) 71)) (-2709 ((|#2| $) 75)) (-1217 (((-798) $) 57) (($ (-525)) NIL) (($ |#2|) 51) (($ (-761 |#1|)) NIL) (($ |#1|) 59) (($ (-828 |#1|)) NIL) (($ (-610 |#1| |#2|)) 43) (((-1187 |#1| |#2|) $) 64) (((-1196 |#1| |#2|) $) 69)) (-1684 (((-592 |#2|) $) NIL)) (-1568 ((|#2| $ (-828 |#1|)) NIL)) (-3244 ((|#2| $ (-761 |#1|)) NIL) ((|#2| $ $) NIL)) (-3917 (((-713)) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 21 T CONST)) (-3359 (($) 25 T CONST)) (-1719 (((-592 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1882 (((-3 (-610 |#1| |#2|) "failed") $) 102)) (-3955 (((-108) $ $) 65)) (-4061 (($ $) 96) (($ $ $) 95)) (-4047 (($ $ $) 20)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-828 |#1|)) NIL)))
-(((-1192 |#1| |#2|) (-13 (-1193 |#1| |#2|) (-360 |#2| (-828 |#1|)) (-10 -8 (-15 -1217 ($ (-610 |#1| |#2|))) (-15 -1217 ((-1187 |#1| |#2|) $)) (-15 -1217 ((-1196 |#1| |#2|) $)) (-15 -1882 ((-3 (-610 |#1| |#2|) "failed") $)) (-15 -1683 ($ $ $ (-713))) (IF (|has| |#2| (-660 (-385 (-525)))) (PROGN (-15 -3096 ($ $ (-713))) (-15 -1517 ($ $ (-713)))) |%noBranch|))) (-789) (-160)) (T -1192))
-((-1217 (*1 *1 *2) (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *1 (-1192 *3 *4)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-1187 *3 *4)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-1882 (*1 *2 *1) (|partial| -12 (-5 *2 (-610 *3 *4)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-1683 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-3096 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1192 *3 *4)) (-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160)))) (-1517 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1192 *3 *4)) (-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160)))))
-(-13 (-1193 |#1| |#2|) (-360 |#2| (-828 |#1|)) (-10 -8 (-15 -1217 ($ (-610 |#1| |#2|))) (-15 -1217 ((-1187 |#1| |#2|) $)) (-15 -1217 ((-1196 |#1| |#2|) $)) (-15 -1882 ((-3 (-610 |#1| |#2|) "failed") $)) (-15 -1683 ($ $ $ (-713))) (IF (|has| |#2| (-660 (-385 (-525)))) (PROGN (-15 -3096 ($ $ (-713))) (-15 -1517 ($ $ (-713)))) |%noBranch|)))
-((-4236 (((-108) $ $) 7)) (-1209 (((-108) $) 16)) (-2726 (((-592 |#1|) $) 40)) (-1656 (($ $ (-713)) 73)) (-1578 (((-3 $ "failed") $ $) 19)) (-3525 (($ $ $) 43 (|has| |#2| (-160))) (($ $ (-713)) 42 (|has| |#2| (-160)))) (-2169 (($) 17 T CONST)) (-2579 (($ $ |#1|) 54) (($ $ (-761 |#1|)) 53) (($ $ $) 52)) (-3077 (((-3 (-761 |#1|) "failed") $) 64)) (-1572 (((-761 |#1|) $) 63)) (-3457 (((-3 $ "failed") $) 34)) (-2757 (((-108) $) 45)) (-3629 (($ $) 44)) (-1396 (((-108) $) 31)) (-1212 (((-108) $) 50)) (-2938 (($ (-761 |#1|) |#2|) 51)) (-1276 (($ $) 49)) (-2792 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) 60)) (-4172 (((-761 |#1|) $) 61)) (-3878 (((-761 |#1|) $) 75)) (-3165 (($ (-1 |#2| |#2|) $) 41)) (-1530 (($ $ |#1|) 57) (($ $ (-761 |#1|)) 56) (($ $ $) 55)) (-2619 (((-1075) $) 9)) (-2093 (((-1039) $) 10)) (-2343 (((-713) $) 74)) (-1226 (((-108) $) 47)) (-2709 ((|#2| $) 46)) (-1217 (((-798) $) 11) (($ (-525)) 28) (($ |#2|) 68) (($ (-761 |#1|)) 65) (($ |#1|) 48)) (-3244 ((|#2| $ (-761 |#1|)) 59) ((|#2| $ $) 58)) (-3917 (((-713)) 29)) (-1619 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3349 (($) 18 T CONST)) (-3359 (($) 30 T CONST)) (-3955 (((-108) $ $) 6)) (-4061 (($ $) 22) (($ $ $) 21)) (-4047 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+((-2738 (*1 *2 *1) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-108)))) (-3214 (*1 *2 *1) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-108)))) (-2700 (*1 *2 *1) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-108)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-856))))) (-1690 (*1 *2) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-856))))) (-2132 (*1 *2) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-713)))) (-2363 (*1 *1 *1) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-341)) (-4 *2 (-346)))) (-2363 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-4 *3 (-346)))))
+(-13 (-341) (-968 |t#1|) (-1181 |t#1|) (-10 -8 (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-380)) |%noBranch|) (-15 -2738 ((-108) $)) (-15 -3214 ((-108) $)) (-15 -2700 ((-108) $)) (-15 -3529 ((-775 (-856)) $)) (-15 -1690 ((-775 (-856)))) (-15 -2132 ((-713))) (IF (|has| |t#1| (-346)) (PROGN (-6 (-380)) (-15 -2363 ($ $)) (-15 -2363 ($ $ (-713)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -2067 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-380) -2067 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-669) . T) ((-855) . T) ((-968 |#1|) . T) ((-983 #0#) . T) ((-983 |#1|) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1132) . T) ((-1181 |#1|) . T))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-2668 (((-592 |#1|) $) 86)) (-4107 (($ $ (-713)) 89)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2734 (($ $ $) NIL (|has| |#2| (-160))) (($ $ (-713)) NIL (|has| |#2| (-160)))) (-2475 (($) NIL T CONST)) (-3976 (($ $ |#1|) NIL) (($ $ (-761 |#1|)) NIL) (($ $ $) NIL)) (-1934 (((-3 (-761 |#1|) "failed") $) NIL) (((-3 (-828 |#1|) "failed") $) NIL)) (-4105 (((-761 |#1|) $) NIL) (((-828 |#1|) $) NIL)) (-1451 (($ $) 88)) (-3300 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) 77)) (-1381 (($ $) 81)) (-3125 (($ $ $ (-713)) 90)) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) NIL)) (-2884 (((-592 $) $) NIL)) (-2457 (((-108) $) NIL)) (-2885 (($ (-761 |#1|) |#2|) NIL) (($ (-828 |#1|) |#2|) 26)) (-4064 (($ $) 103)) (-2321 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3130 (((-761 |#1|) $) NIL)) (-2054 (((-761 |#1|) $) NIL)) (-2016 (($ (-1 |#2| |#2|) $) NIL)) (-1225 (($ $ |#1|) NIL) (($ $ (-761 |#1|)) NIL) (($ $ $) NIL)) (-2533 (($ $ (-713)) 97 (|has| |#2| (-660 (-385 (-525)))))) (-2669 (((-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1418 (((-828 |#1|) $) 70)) (-1430 ((|#2| $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1618 (($ $ (-713)) 94 (|has| |#2| (-660 (-385 (-525)))))) (-3529 (((-713) $) 87)) (-1930 (((-108) $) 71)) (-2247 ((|#2| $) 75)) (-4100 (((-798) $) 57) (($ (-525)) NIL) (($ |#2|) 51) (($ (-761 |#1|)) NIL) (($ |#1|) 59) (($ (-828 |#1|)) NIL) (($ (-610 |#1| |#2|)) 43) (((-1187 |#1| |#2|) $) 64) (((-1196 |#1| |#2|) $) 69)) (-3137 (((-592 |#2|) $) NIL)) (-3136 ((|#2| $ (-828 |#1|)) NIL)) (-2681 ((|#2| $ (-761 |#1|)) NIL) ((|#2| $ $) NIL)) (-2448 (((-713)) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 21 T CONST)) (-3375 (($) 25 T CONST)) (-3482 (((-592 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1370 (((-3 (-610 |#1| |#2|) "failed") $) 102)) (-2775 (((-108) $ $) 65)) (-2871 (($ $) 96) (($ $ $) 95)) (-2860 (($ $ $) 20)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-828 |#1|)) NIL)))
+(((-1192 |#1| |#2|) (-13 (-1193 |#1| |#2|) (-360 |#2| (-828 |#1|)) (-10 -8 (-15 -4100 ($ (-610 |#1| |#2|))) (-15 -4100 ((-1187 |#1| |#2|) $)) (-15 -4100 ((-1196 |#1| |#2|) $)) (-15 -1370 ((-3 (-610 |#1| |#2|) "failed") $)) (-15 -3125 ($ $ $ (-713))) (IF (|has| |#2| (-660 (-385 (-525)))) (PROGN (-15 -1618 ($ $ (-713))) (-15 -2533 ($ $ (-713)))) |%noBranch|))) (-789) (-160)) (T -1192))
+((-4100 (*1 *1 *2) (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *1 (-1192 *3 *4)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1187 *3 *4)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-1370 (*1 *2 *1) (|partial| -12 (-5 *2 (-610 *3 *4)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-3125 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-1618 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1192 *3 *4)) (-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160)))) (-2533 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1192 *3 *4)) (-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160)))))
+(-13 (-1193 |#1| |#2|) (-360 |#2| (-828 |#1|)) (-10 -8 (-15 -4100 ($ (-610 |#1| |#2|))) (-15 -4100 ((-1187 |#1| |#2|) $)) (-15 -4100 ((-1196 |#1| |#2|) $)) (-15 -1370 ((-3 (-610 |#1| |#2|) "failed") $)) (-15 -3125 ($ $ $ (-713))) (IF (|has| |#2| (-660 (-385 (-525)))) (PROGN (-15 -1618 ($ $ (-713))) (-15 -2533 ($ $ (-713)))) |%noBranch|)))
+((-4087 (((-108) $ $) 7)) (-2414 (((-108) $) 16)) (-2668 (((-592 |#1|) $) 40)) (-4107 (($ $ (-713)) 73)) (-3222 (((-3 $ "failed") $ $) 19)) (-2734 (($ $ $) 43 (|has| |#2| (-160))) (($ $ (-713)) 42 (|has| |#2| (-160)))) (-2475 (($) 17 T CONST)) (-3976 (($ $ |#1|) 54) (($ $ (-761 |#1|)) 53) (($ $ $) 52)) (-1934 (((-3 (-761 |#1|) "failed") $) 64)) (-4105 (((-761 |#1|) $) 63)) (-3300 (((-3 $ "failed") $) 34)) (-2023 (((-108) $) 45)) (-1381 (($ $) 44)) (-2278 (((-108) $) 31)) (-2457 (((-108) $) 50)) (-2885 (($ (-761 |#1|) |#2|) 51)) (-4064 (($ $) 49)) (-2321 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) 60)) (-3130 (((-761 |#1|) $) 61)) (-2054 (((-761 |#1|) $) 75)) (-2016 (($ (-1 |#2| |#2|) $) 41)) (-1225 (($ $ |#1|) 57) (($ $ (-761 |#1|)) 56) (($ $ $) 55)) (-1289 (((-1075) $) 9)) (-3993 (((-1039) $) 10)) (-3529 (((-713) $) 74)) (-1930 (((-108) $) 47)) (-2247 ((|#2| $) 46)) (-4100 (((-798) $) 11) (($ (-525)) 28) (($ |#2|) 68) (($ (-761 |#1|)) 65) (($ |#1|) 48)) (-2681 ((|#2| $ (-761 |#1|)) 59) ((|#2| $ $) 58)) (-2448 (((-713)) 29)) (-3706 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3364 (($) 18 T CONST)) (-3375 (($) 30 T CONST)) (-2775 (((-108) $ $) 6)) (-2871 (($ $) 22) (($ $ $) 21)) (-2860 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
(((-1193 |#1| |#2|) (-131) (-789) (-977)) (T -1193))
-((-3878 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-761 *3)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-713)))) (-1656 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1193 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))))
-(-13 (-1189 |t#1| |t#2|) (-10 -8 (-15 -3878 ((-761 |t#1|) $)) (-15 -2343 ((-713) $)) (-15 -1656 ($ $ (-713)))))
+((-2054 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-761 *3)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-713)))) (-4107 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1193 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))))
+(-13 (-1189 |t#1| |t#2|) (-10 -8 (-15 -2054 ((-761 |t#1|) $)) (-15 -3529 ((-713) $)) (-15 -4107 ($ $ (-713)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-160)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#2|) . T) ((-594 $) . T) ((-660 |#2|) |has| |#2| (-160)) ((-669) . T) ((-968 (-761 |#1|)) . T) ((-983 |#2|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1186 |#2|) . T) ((-1189 |#1| |#2|) . T))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-2726 (((-592 (-1092)) $) NIL)) (-1253 (($ (-1187 (-1092) |#1|)) NIL)) (-1656 (($ $ (-713)) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-3525 (($ $ $) NIL (|has| |#1| (-160))) (($ $ (-713)) NIL (|has| |#1| (-160)))) (-2169 (($) NIL T CONST)) (-2579 (($ $ (-1092)) NIL) (($ $ (-761 (-1092))) NIL) (($ $ $) NIL)) (-3077 (((-3 (-761 (-1092)) "failed") $) NIL)) (-1572 (((-761 (-1092)) $) NIL)) (-3457 (((-3 $ "failed") $) NIL)) (-2757 (((-108) $) NIL)) (-3629 (($ $) NIL)) (-1396 (((-108) $) NIL)) (-1212 (((-108) $) NIL)) (-2938 (($ (-761 (-1092)) |#1|) NIL)) (-1276 (($ $) NIL)) (-2792 (((-2 (|:| |k| (-761 (-1092))) (|:| |c| |#1|)) $) NIL)) (-4172 (((-761 (-1092)) $) NIL)) (-3878 (((-761 (-1092)) $) NIL)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-1530 (($ $ (-1092)) NIL) (($ $ (-761 (-1092))) NIL) (($ $ $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3751 (((-1187 (-1092) |#1|) $) NIL)) (-2343 (((-713) $) NIL)) (-1226 (((-108) $) NIL)) (-2709 ((|#1| $) NIL)) (-1217 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-761 (-1092))) NIL) (($ (-1092)) NIL)) (-3244 ((|#1| $ (-761 (-1092))) NIL) ((|#1| $ $) NIL)) (-3917 (((-713)) NIL)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) NIL T CONST)) (-1456 (((-592 (-2 (|:| |k| (-1092)) (|:| |c| $))) $) NIL)) (-3359 (($) NIL T CONST)) (-3955 (((-108) $ $) NIL)) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1092) $) NIL)))
-(((-1194 |#1|) (-13 (-1193 (-1092) |#1|) (-10 -8 (-15 -3751 ((-1187 (-1092) |#1|) $)) (-15 -1253 ($ (-1187 (-1092) |#1|))) (-15 -1456 ((-592 (-2 (|:| |k| (-1092)) (|:| |c| $))) $)))) (-977)) (T -1194))
-((-3751 (*1 *2 *1) (-12 (-5 *2 (-1187 (-1092) *3)) (-5 *1 (-1194 *3)) (-4 *3 (-977)))) (-1253 (*1 *1 *2) (-12 (-5 *2 (-1187 (-1092) *3)) (-4 *3 (-977)) (-5 *1 (-1194 *3)))) (-1456 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| (-1092)) (|:| |c| (-1194 *3))))) (-5 *1 (-1194 *3)) (-4 *3 (-977)))))
-(-13 (-1193 (-1092) |#1|) (-10 -8 (-15 -3751 ((-1187 (-1092) |#1|) $)) (-15 -1253 ($ (-1187 (-1092) |#1|))) (-15 -1456 ((-592 (-2 (|:| |k| (-1092)) (|:| |c| $))) $))))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) NIL)) (-1578 (((-3 $ "failed") $ $) NIL)) (-2169 (($) NIL T CONST)) (-3077 (((-3 |#2| "failed") $) NIL)) (-1572 ((|#2| $) NIL)) (-3063 (($ $) NIL)) (-3457 (((-3 $ "failed") $) 36)) (-2757 (((-108) $) 30)) (-3629 (($ $) 32)) (-1396 (((-108) $) NIL)) (-3399 (((-713) $) NIL)) (-4144 (((-592 $) $) NIL)) (-1212 (((-108) $) NIL)) (-2938 (($ |#2| |#1|) NIL)) (-4172 ((|#2| $) 19)) (-3878 ((|#2| $) 16)) (-3165 (($ (-1 |#1| |#1|) $) NIL)) (-2074 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3031 ((|#2| $) NIL)) (-3043 ((|#1| $) NIL)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-1226 (((-108) $) 27)) (-2709 ((|#1| $) 28)) (-1217 (((-798) $) 55) (($ (-525)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-1684 (((-592 |#1|) $) NIL)) (-1568 ((|#1| $ |#2|) NIL)) (-3244 ((|#1| $ |#2|) 24)) (-3917 (((-713)) 14)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 25 T CONST)) (-3359 (($) 11 T CONST)) (-1719 (((-592 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3955 (((-108) $ $) 26)) (-4075 (($ $ |#1|) 57 (|has| |#1| (-341)))) (-4061 (($ $) NIL) (($ $ $) NIL)) (-4047 (($ $ $) 44)) (** (($ $ (-856)) NIL) (($ $ (-713)) 46)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3522 (((-713) $) 15)))
-(((-1195 |#1| |#2|) (-13 (-977) (-1186 |#1|) (-360 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3522 ((-713) $)) (-15 -1217 ($ |#2|)) (-15 -3878 (|#2| $)) (-15 -4172 (|#2| $)) (-15 -3063 ($ $)) (-15 -3244 (|#1| $ |#2|)) (-15 -1226 ((-108) $)) (-15 -2709 (|#1| $)) (-15 -2757 ((-108) $)) (-15 -3629 ($ $)) (-15 -3165 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-341)) (-15 -4075 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4251)) (-6 -4251) |%noBranch|) (IF (|has| |#1| (-6 -4255)) (-6 -4255) |%noBranch|) (IF (|has| |#1| (-6 -4256)) (-6 -4256) |%noBranch|))) (-977) (-785)) (T -1195))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1195 *2 *3)) (-4 *2 (-977)) (-4 *3 (-785)))) (-3063 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-4 *2 (-977)) (-4 *3 (-785)))) (-3165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-1195 *3 *4)) (-4 *4 (-785)))) (-1217 (*1 *1 *2) (-12 (-5 *1 (-1195 *3 *2)) (-4 *3 (-977)) (-4 *2 (-785)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-977)) (-4 *4 (-785)))) (-3878 (*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1195 *3 *2)) (-4 *3 (-977)))) (-4172 (*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1195 *3 *2)) (-4 *3 (-977)))) (-3244 (*1 *2 *1 *3) (-12 (-4 *2 (-977)) (-5 *1 (-1195 *2 *3)) (-4 *3 (-785)))) (-1226 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-977)) (-4 *4 (-785)))) (-2709 (*1 *2 *1) (-12 (-4 *2 (-977)) (-5 *1 (-1195 *2 *3)) (-4 *3 (-785)))) (-2757 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-977)) (-4 *4 (-785)))) (-3629 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-4 *2 (-977)) (-4 *3 (-785)))) (-4075 (*1 *1 *1 *2) (-12 (-5 *1 (-1195 *2 *3)) (-4 *2 (-341)) (-4 *2 (-977)) (-4 *3 (-785)))))
-(-13 (-977) (-1186 |#1|) (-360 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3522 ((-713) $)) (-15 -1217 ($ |#2|)) (-15 -3878 (|#2| $)) (-15 -4172 (|#2| $)) (-15 -3063 ($ $)) (-15 -3244 (|#1| $ |#2|)) (-15 -1226 ((-108) $)) (-15 -2709 (|#1| $)) (-15 -2757 ((-108) $)) (-15 -3629 ($ $)) (-15 -3165 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-341)) (-15 -4075 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4251)) (-6 -4251) |%noBranch|) (IF (|has| |#1| (-6 -4255)) (-6 -4255) |%noBranch|) (IF (|has| |#1| (-6 -4256)) (-6 -4256) |%noBranch|)))
-((-4236 (((-108) $ $) 26)) (-1209 (((-108) $) NIL)) (-2726 (((-592 |#1|) $) 120)) (-1253 (($ (-1187 |#1| |#2|)) 44)) (-1656 (($ $ (-713)) 32)) (-1578 (((-3 $ "failed") $ $) NIL)) (-3525 (($ $ $) 48 (|has| |#2| (-160))) (($ $ (-713)) 46 (|has| |#2| (-160)))) (-2169 (($) NIL T CONST)) (-2579 (($ $ |#1|) 102) (($ $ (-761 |#1|)) 103) (($ $ $) 25)) (-3077 (((-3 (-761 |#1|) "failed") $) NIL)) (-1572 (((-761 |#1|) $) NIL)) (-3457 (((-3 $ "failed") $) 110)) (-2757 (((-108) $) 105)) (-3629 (($ $) 106)) (-1396 (((-108) $) NIL)) (-1212 (((-108) $) NIL)) (-2938 (($ (-761 |#1|) |#2|) 19)) (-1276 (($ $) NIL)) (-2792 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4172 (((-761 |#1|) $) 111)) (-3878 (((-761 |#1|) $) 114)) (-3165 (($ (-1 |#2| |#2|) $) 119)) (-1530 (($ $ |#1|) 100) (($ $ (-761 |#1|)) 101) (($ $ $) 56)) (-2619 (((-1075) $) NIL)) (-2093 (((-1039) $) NIL)) (-3751 (((-1187 |#1| |#2|) $) 84)) (-2343 (((-713) $) 117)) (-1226 (((-108) $) 70)) (-2709 ((|#2| $) 28)) (-1217 (((-798) $) 63) (($ (-525)) 77) (($ |#2|) 74) (($ (-761 |#1|)) 17) (($ |#1|) 73)) (-3244 ((|#2| $ (-761 |#1|)) 104) ((|#2| $ $) 27)) (-3917 (((-713)) 108)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 14 T CONST)) (-1456 (((-592 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3359 (($) 29 T CONST)) (-3955 (((-108) $ $) 13)) (-4061 (($ $) 88) (($ $ $) 91)) (-4047 (($ $ $) 55)) (** (($ $ (-856)) NIL) (($ $ (-713)) 49)) (* (($ (-856) $) NIL) (($ (-713) $) 47) (($ (-525) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
-(((-1196 |#1| |#2|) (-13 (-1193 |#1| |#2|) (-10 -8 (-15 -3751 ((-1187 |#1| |#2|) $)) (-15 -1253 ($ (-1187 |#1| |#2|))) (-15 -1456 ((-592 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-789) (-977)) (T -1196))
-((-3751 (*1 *2 *1) (-12 (-5 *2 (-1187 *3 *4)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))) (-1253 (*1 *1 *2) (-12 (-5 *2 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *1 (-1196 *3 *4)))) (-1456 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| *3) (|:| |c| (-1196 *3 *4))))) (-5 *1 (-1196 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))))
-(-13 (-1193 |#1| |#2|) (-10 -8 (-15 -3751 ((-1187 |#1| |#2|) $)) (-15 -1253 ($ (-1187 |#1| |#2|))) (-15 -1456 ((-592 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-3418 (((-592 (-1073 |#1|)) (-1 (-592 (-1073 |#1|)) (-592 (-1073 |#1|))) (-525)) 15) (((-1073 |#1|) (-1 (-1073 |#1|) (-1073 |#1|))) 11)))
-(((-1197 |#1|) (-10 -7 (-15 -3418 ((-1073 |#1|) (-1 (-1073 |#1|) (-1073 |#1|)))) (-15 -3418 ((-592 (-1073 |#1|)) (-1 (-592 (-1073 |#1|)) (-592 (-1073 |#1|))) (-525)))) (-1128)) (T -1197))
-((-3418 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-592 (-1073 *5)) (-592 (-1073 *5)))) (-5 *4 (-525)) (-5 *2 (-592 (-1073 *5))) (-5 *1 (-1197 *5)) (-4 *5 (-1128)))) (-3418 (*1 *2 *3) (-12 (-5 *3 (-1 (-1073 *4) (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1197 *4)) (-4 *4 (-1128)))))
-(-10 -7 (-15 -3418 ((-1073 |#1|) (-1 (-1073 |#1|) (-1073 |#1|)))) (-15 -3418 ((-592 (-1073 |#1|)) (-1 (-592 (-1073 |#1|)) (-592 (-1073 |#1|))) (-525))))
-((-3206 (((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|))) 148) (((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108)) 147) (((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108)) 146) (((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108) (-108)) 145) (((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-974 |#1| |#2|)) 130)) (-2924 (((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|))) 72) (((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)) (-108)) 71) (((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)) (-108) (-108)) 70)) (-2669 (((-592 (-1063 |#1| (-497 (-800 |#3|)) (-800 |#3|) (-722 |#1| (-800 |#3|)))) (-974 |#1| |#2|)) 61)) (-1690 (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|))) 115) (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108)) 114) (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108)) 113) (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108) (-108)) 112) (((-592 (-592 (-955 (-385 |#1|)))) (-974 |#1| |#2|)) 107)) (-2182 (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|))) 120) (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108)) 119) (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108)) 118) (((-592 (-592 (-955 (-385 |#1|)))) (-974 |#1| |#2|)) 117)) (-3210 (((-592 (-722 |#1| (-800 |#3|))) (-1063 |#1| (-497 (-800 |#3|)) (-800 |#3|) (-722 |#1| (-800 |#3|)))) 98) (((-1088 (-955 (-385 |#1|))) (-1088 |#1|)) 89) (((-887 (-955 (-385 |#1|))) (-722 |#1| (-800 |#3|))) 96) (((-887 (-955 (-385 |#1|))) (-887 |#1|)) 94) (((-722 |#1| (-800 |#3|)) (-722 |#1| (-800 |#2|))) 33)))
-(((-1198 |#1| |#2| |#3|) (-10 -7 (-15 -2924 ((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)) (-108) (-108))) (-15 -2924 ((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)) (-108))) (-15 -2924 ((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)))) (-15 -3206 ((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-974 |#1| |#2|))) (-15 -3206 ((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108) (-108))) (-15 -3206 ((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108))) (-15 -3206 ((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108))) (-15 -3206 ((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)))) (-15 -1690 ((-592 (-592 (-955 (-385 |#1|)))) (-974 |#1| |#2|))) (-15 -1690 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108) (-108))) (-15 -1690 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108))) (-15 -1690 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108))) (-15 -1690 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)))) (-15 -2182 ((-592 (-592 (-955 (-385 |#1|)))) (-974 |#1| |#2|))) (-15 -2182 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108))) (-15 -2182 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108))) (-15 -2182 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)))) (-15 -2669 ((-592 (-1063 |#1| (-497 (-800 |#3|)) (-800 |#3|) (-722 |#1| (-800 |#3|)))) (-974 |#1| |#2|))) (-15 -3210 ((-722 |#1| (-800 |#3|)) (-722 |#1| (-800 |#2|)))) (-15 -3210 ((-887 (-955 (-385 |#1|))) (-887 |#1|))) (-15 -3210 ((-887 (-955 (-385 |#1|))) (-722 |#1| (-800 |#3|)))) (-15 -3210 ((-1088 (-955 (-385 |#1|))) (-1088 |#1|))) (-15 -3210 ((-592 (-722 |#1| (-800 |#3|))) (-1063 |#1| (-497 (-800 |#3|)) (-800 |#3|) (-722 |#1| (-800 |#3|)))))) (-13 (-787) (-286) (-138) (-953)) (-592 (-1092)) (-592 (-1092))) (T -1198))
-((-3210 (*1 *2 *3) (-12 (-5 *3 (-1063 *4 (-497 (-800 *6)) (-800 *6) (-722 *4 (-800 *6)))) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *6 (-592 (-1092))) (-5 *2 (-592 (-722 *4 (-800 *6)))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-592 (-1092))))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-1088 *4)) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-1088 (-955 (-385 *4)))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-722 *4 (-800 *6))) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *6 (-592 (-1092))) (-5 *2 (-887 (-955 (-385 *4)))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-592 (-1092))))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-887 (-955 (-385 *4)))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-722 *4 (-800 *5))) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *5 (-592 (-1092))) (-5 *2 (-722 *4 (-800 *6))) (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-592 (-1092))))) (-2669 (*1 *2 *3) (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *5 (-592 (-1092))) (-5 *2 (-592 (-1063 *4 (-497 (-800 *6)) (-800 *6) (-722 *4 (-800 *6))))) (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-592 (-1092))))) (-2182 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *4))))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))) (-2182 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))) (-2182 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))) (-2182 (*1 *2 *3) (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *5 (-592 (-1092))) (-5 *2 (-592 (-592 (-955 (-385 *4))))) (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-592 (-1092))))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *4))))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))) (-1690 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))) (-1690 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))) (-1690 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *5 (-592 (-1092))) (-5 *2 (-592 (-592 (-955 (-385 *4))))) (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-592 (-1092))))) (-3206 (*1 *2 *3) (-12 (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-2 (|:| -2706 (-1088 *4)) (|:| -2387 (-592 (-887 *4)))))) (-5 *1 (-1198 *4 *5 *6)) (-5 *3 (-592 (-887 *4))) (-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))) (-3206 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-2 (|:| -2706 (-1088 *5)) (|:| -2387 (-592 (-887 *5)))))) (-5 *1 (-1198 *5 *6 *7)) (-5 *3 (-592 (-887 *5))) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))) (-3206 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-2 (|:| -2706 (-1088 *5)) (|:| -2387 (-592 (-887 *5)))))) (-5 *1 (-1198 *5 *6 *7)) (-5 *3 (-592 (-887 *5))) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))) (-3206 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-2 (|:| -2706 (-1088 *5)) (|:| -2387 (-592 (-887 *5)))))) (-5 *1 (-1198 *5 *6 *7)) (-5 *3 (-592 (-887 *5))) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *5 (-592 (-1092))) (-5 *2 (-592 (-2 (|:| -2706 (-1088 *4)) (|:| -2387 (-592 (-887 *4)))))) (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-592 (-1092))))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-974 *4 *5))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))) (-2924 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))) (-2924 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))))
-(-10 -7 (-15 -2924 ((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)) (-108) (-108))) (-15 -2924 ((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)) (-108))) (-15 -2924 ((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)))) (-15 -3206 ((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-974 |#1| |#2|))) (-15 -3206 ((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108) (-108))) (-15 -3206 ((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108))) (-15 -3206 ((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108))) (-15 -3206 ((-592 (-2 (|:| -2706 (-1088 |#1|)) (|:| -2387 (-592 (-887 |#1|))))) (-592 (-887 |#1|)))) (-15 -1690 ((-592 (-592 (-955 (-385 |#1|)))) (-974 |#1| |#2|))) (-15 -1690 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108) (-108))) (-15 -1690 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108))) (-15 -1690 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108))) (-15 -1690 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)))) (-15 -2182 ((-592 (-592 (-955 (-385 |#1|)))) (-974 |#1| |#2|))) (-15 -2182 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108))) (-15 -2182 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108))) (-15 -2182 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)))) (-15 -2669 ((-592 (-1063 |#1| (-497 (-800 |#3|)) (-800 |#3|) (-722 |#1| (-800 |#3|)))) (-974 |#1| |#2|))) (-15 -3210 ((-722 |#1| (-800 |#3|)) (-722 |#1| (-800 |#2|)))) (-15 -3210 ((-887 (-955 (-385 |#1|))) (-887 |#1|))) (-15 -3210 ((-887 (-955 (-385 |#1|))) (-722 |#1| (-800 |#3|)))) (-15 -3210 ((-1088 (-955 (-385 |#1|))) (-1088 |#1|))) (-15 -3210 ((-592 (-722 |#1| (-800 |#3|))) (-1063 |#1| (-497 (-800 |#3|)) (-800 |#3|) (-722 |#1| (-800 |#3|))))))
-((-2389 (((-3 (-1174 (-385 (-525))) "failed") (-1174 |#1|) |#1|) 21)) (-1333 (((-108) (-1174 |#1|)) 12)) (-3717 (((-3 (-1174 (-525)) "failed") (-1174 |#1|)) 16)))
-(((-1199 |#1|) (-10 -7 (-15 -1333 ((-108) (-1174 |#1|))) (-15 -3717 ((-3 (-1174 (-525)) "failed") (-1174 |#1|))) (-15 -2389 ((-3 (-1174 (-385 (-525))) "failed") (-1174 |#1|) |#1|))) (-588 (-525))) (T -1199))
-((-2389 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1174 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-1174 (-385 (-525)))) (-5 *1 (-1199 *4)))) (-3717 (*1 *2 *3) (|partial| -12 (-5 *3 (-1174 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-1174 (-525))) (-5 *1 (-1199 *4)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-108)) (-5 *1 (-1199 *4)))))
-(-10 -7 (-15 -1333 ((-108) (-1174 |#1|))) (-15 -3717 ((-3 (-1174 (-525)) "failed") (-1174 |#1|))) (-15 -2389 ((-3 (-1174 (-385 (-525))) "failed") (-1174 |#1|) |#1|)))
-((-4236 (((-108) $ $) NIL)) (-1209 (((-108) $) 11)) (-1578 (((-3 $ "failed") $ $) NIL)) (-1834 (((-713)) 8)) (-2169 (($) NIL T CONST)) (-3457 (((-3 $ "failed") $) 43)) (-2502 (($) 36)) (-1396 (((-108) $) NIL)) (-3844 (((-3 $ "failed") $) 29)) (-3005 (((-856) $) 15)) (-2619 (((-1075) $) NIL)) (-2295 (($) 25 T CONST)) (-3555 (($ (-856)) 37)) (-2093 (((-1039) $) NIL)) (-3210 (((-525) $) 13)) (-1217 (((-798) $) 22) (($ (-525)) 19)) (-3917 (((-713)) 9)) (-1619 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3349 (($) 23 T CONST)) (-3359 (($) 24 T CONST)) (-3955 (((-108) $ $) 27)) (-4061 (($ $) 38) (($ $ $) 35)) (-4047 (($ $ $) 26)) (** (($ $ (-856)) NIL) (($ $ (-713)) 40)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 32) (($ $ $) 31)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-2668 (((-592 (-1092)) $) NIL)) (-1692 (($ (-1187 (-1092) |#1|)) NIL)) (-4107 (($ $ (-713)) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2734 (($ $ $) NIL (|has| |#1| (-160))) (($ $ (-713)) NIL (|has| |#1| (-160)))) (-2475 (($) NIL T CONST)) (-3976 (($ $ (-1092)) NIL) (($ $ (-761 (-1092))) NIL) (($ $ $) NIL)) (-1934 (((-3 (-761 (-1092)) "failed") $) NIL)) (-4105 (((-761 (-1092)) $) NIL)) (-3300 (((-3 $ "failed") $) NIL)) (-2023 (((-108) $) NIL)) (-1381 (($ $) NIL)) (-2278 (((-108) $) NIL)) (-2457 (((-108) $) NIL)) (-2885 (($ (-761 (-1092)) |#1|) NIL)) (-4064 (($ $) NIL)) (-2321 (((-2 (|:| |k| (-761 (-1092))) (|:| |c| |#1|)) $) NIL)) (-3130 (((-761 (-1092)) $) NIL)) (-2054 (((-761 (-1092)) $) NIL)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-1225 (($ $ (-1092)) NIL) (($ $ (-761 (-1092))) NIL) (($ $ $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2361 (((-1187 (-1092) |#1|) $) NIL)) (-3529 (((-713) $) NIL)) (-1930 (((-108) $) NIL)) (-2247 ((|#1| $) NIL)) (-4100 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-761 (-1092))) NIL) (($ (-1092)) NIL)) (-2681 ((|#1| $ (-761 (-1092))) NIL) ((|#1| $ $) NIL)) (-2448 (((-713)) NIL)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) NIL T CONST)) (-2493 (((-592 (-2 (|:| |k| (-1092)) (|:| |c| $))) $) NIL)) (-3375 (($) NIL T CONST)) (-2775 (((-108) $ $) NIL)) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1092) $) NIL)))
+(((-1194 |#1|) (-13 (-1193 (-1092) |#1|) (-10 -8 (-15 -2361 ((-1187 (-1092) |#1|) $)) (-15 -1692 ($ (-1187 (-1092) |#1|))) (-15 -2493 ((-592 (-2 (|:| |k| (-1092)) (|:| |c| $))) $)))) (-977)) (T -1194))
+((-2361 (*1 *2 *1) (-12 (-5 *2 (-1187 (-1092) *3)) (-5 *1 (-1194 *3)) (-4 *3 (-977)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-1187 (-1092) *3)) (-4 *3 (-977)) (-5 *1 (-1194 *3)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| (-1092)) (|:| |c| (-1194 *3))))) (-5 *1 (-1194 *3)) (-4 *3 (-977)))))
+(-13 (-1193 (-1092) |#1|) (-10 -8 (-15 -2361 ((-1187 (-1092) |#1|) $)) (-15 -1692 ($ (-1187 (-1092) |#1|))) (-15 -2493 ((-592 (-2 (|:| |k| (-1092)) (|:| |c| $))) $))))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) NIL)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2475 (($) NIL T CONST)) (-1934 (((-3 |#2| "failed") $) NIL)) (-4105 ((|#2| $) NIL)) (-1451 (($ $) NIL)) (-3300 (((-3 $ "failed") $) 36)) (-2023 (((-108) $) 30)) (-1381 (($ $) 32)) (-2278 (((-108) $) NIL)) (-4025 (((-713) $) NIL)) (-2884 (((-592 $) $) NIL)) (-2457 (((-108) $) NIL)) (-2885 (($ |#2| |#1|) NIL)) (-3130 ((|#2| $) 19)) (-2054 ((|#2| $) 16)) (-2016 (($ (-1 |#1| |#1|) $) NIL)) (-2669 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1418 ((|#2| $) NIL)) (-1430 ((|#1| $) NIL)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-1930 (((-108) $) 27)) (-2247 ((|#1| $) 28)) (-4100 (((-798) $) 55) (($ (-525)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-3137 (((-592 |#1|) $) NIL)) (-3136 ((|#1| $ |#2|) NIL)) (-2681 ((|#1| $ |#2|) 24)) (-2448 (((-713)) 14)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 25 T CONST)) (-3375 (($) 11 T CONST)) (-3482 (((-592 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2775 (((-108) $ $) 26)) (-2880 (($ $ |#1|) 57 (|has| |#1| (-341)))) (-2871 (($ $) NIL) (($ $ $) NIL)) (-2860 (($ $ $) 44)) (** (($ $ (-856)) NIL) (($ $ (-713)) 46)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2827 (((-713) $) 15)))
+(((-1195 |#1| |#2|) (-13 (-977) (-1186 |#1|) (-360 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2827 ((-713) $)) (-15 -4100 ($ |#2|)) (-15 -2054 (|#2| $)) (-15 -3130 (|#2| $)) (-15 -1451 ($ $)) (-15 -2681 (|#1| $ |#2|)) (-15 -1930 ((-108) $)) (-15 -2247 (|#1| $)) (-15 -2023 ((-108) $)) (-15 -1381 ($ $)) (-15 -2016 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-341)) (-15 -2880 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4252)) (-6 -4252) |%noBranch|) (IF (|has| |#1| (-6 -4256)) (-6 -4256) |%noBranch|) (IF (|has| |#1| (-6 -4257)) (-6 -4257) |%noBranch|))) (-977) (-785)) (T -1195))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1195 *2 *3)) (-4 *2 (-977)) (-4 *3 (-785)))) (-1451 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-4 *2 (-977)) (-4 *3 (-785)))) (-2016 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-1195 *3 *4)) (-4 *4 (-785)))) (-4100 (*1 *1 *2) (-12 (-5 *1 (-1195 *3 *2)) (-4 *3 (-977)) (-4 *2 (-785)))) (-2827 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-977)) (-4 *4 (-785)))) (-2054 (*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1195 *3 *2)) (-4 *3 (-977)))) (-3130 (*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1195 *3 *2)) (-4 *3 (-977)))) (-2681 (*1 *2 *1 *3) (-12 (-4 *2 (-977)) (-5 *1 (-1195 *2 *3)) (-4 *3 (-785)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-977)) (-4 *4 (-785)))) (-2247 (*1 *2 *1) (-12 (-4 *2 (-977)) (-5 *1 (-1195 *2 *3)) (-4 *3 (-785)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-977)) (-4 *4 (-785)))) (-1381 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-4 *2 (-977)) (-4 *3 (-785)))) (-2880 (*1 *1 *1 *2) (-12 (-5 *1 (-1195 *2 *3)) (-4 *2 (-341)) (-4 *2 (-977)) (-4 *3 (-785)))))
+(-13 (-977) (-1186 |#1|) (-360 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2827 ((-713) $)) (-15 -4100 ($ |#2|)) (-15 -2054 (|#2| $)) (-15 -3130 (|#2| $)) (-15 -1451 ($ $)) (-15 -2681 (|#1| $ |#2|)) (-15 -1930 ((-108) $)) (-15 -2247 (|#1| $)) (-15 -2023 ((-108) $)) (-15 -1381 ($ $)) (-15 -2016 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-341)) (-15 -2880 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4252)) (-6 -4252) |%noBranch|) (IF (|has| |#1| (-6 -4256)) (-6 -4256) |%noBranch|) (IF (|has| |#1| (-6 -4257)) (-6 -4257) |%noBranch|)))
+((-4087 (((-108) $ $) 26)) (-2414 (((-108) $) NIL)) (-2668 (((-592 |#1|) $) 120)) (-1692 (($ (-1187 |#1| |#2|)) 44)) (-4107 (($ $ (-713)) 32)) (-3222 (((-3 $ "failed") $ $) NIL)) (-2734 (($ $ $) 48 (|has| |#2| (-160))) (($ $ (-713)) 46 (|has| |#2| (-160)))) (-2475 (($) NIL T CONST)) (-3976 (($ $ |#1|) 102) (($ $ (-761 |#1|)) 103) (($ $ $) 25)) (-1934 (((-3 (-761 |#1|) "failed") $) NIL)) (-4105 (((-761 |#1|) $) NIL)) (-3300 (((-3 $ "failed") $) 110)) (-2023 (((-108) $) 105)) (-1381 (($ $) 106)) (-2278 (((-108) $) NIL)) (-2457 (((-108) $) NIL)) (-2885 (($ (-761 |#1|) |#2|) 19)) (-4064 (($ $) NIL)) (-2321 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3130 (((-761 |#1|) $) 111)) (-2054 (((-761 |#1|) $) 114)) (-2016 (($ (-1 |#2| |#2|) $) 119)) (-1225 (($ $ |#1|) 100) (($ $ (-761 |#1|)) 101) (($ $ $) 56)) (-1289 (((-1075) $) NIL)) (-3993 (((-1039) $) NIL)) (-2361 (((-1187 |#1| |#2|) $) 84)) (-3529 (((-713) $) 117)) (-1930 (((-108) $) 70)) (-2247 ((|#2| $) 28)) (-4100 (((-798) $) 63) (($ (-525)) 77) (($ |#2|) 74) (($ (-761 |#1|)) 17) (($ |#1|) 73)) (-2681 ((|#2| $ (-761 |#1|)) 104) ((|#2| $ $) 27)) (-2448 (((-713)) 108)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 14 T CONST)) (-2493 (((-592 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3375 (($) 29 T CONST)) (-2775 (((-108) $ $) 13)) (-2871 (($ $) 88) (($ $ $) 91)) (-2860 (($ $ $) 55)) (** (($ $ (-856)) NIL) (($ $ (-713)) 49)) (* (($ (-856) $) NIL) (($ (-713) $) 47) (($ (-525) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
+(((-1196 |#1| |#2|) (-13 (-1193 |#1| |#2|) (-10 -8 (-15 -2361 ((-1187 |#1| |#2|) $)) (-15 -1692 ($ (-1187 |#1| |#2|))) (-15 -2493 ((-592 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-789) (-977)) (T -1196))
+((-2361 (*1 *2 *1) (-12 (-5 *2 (-1187 *3 *4)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *1 (-1196 *3 *4)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| *3) (|:| |c| (-1196 *3 *4))))) (-5 *1 (-1196 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))))
+(-13 (-1193 |#1| |#2|) (-10 -8 (-15 -2361 ((-1187 |#1| |#2|) $)) (-15 -1692 ($ (-1187 |#1| |#2|))) (-15 -2493 ((-592 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-1499 (((-592 (-1073 |#1|)) (-1 (-592 (-1073 |#1|)) (-592 (-1073 |#1|))) (-525)) 15) (((-1073 |#1|) (-1 (-1073 |#1|) (-1073 |#1|))) 11)))
+(((-1197 |#1|) (-10 -7 (-15 -1499 ((-1073 |#1|) (-1 (-1073 |#1|) (-1073 |#1|)))) (-15 -1499 ((-592 (-1073 |#1|)) (-1 (-592 (-1073 |#1|)) (-592 (-1073 |#1|))) (-525)))) (-1128)) (T -1197))
+((-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-592 (-1073 *5)) (-592 (-1073 *5)))) (-5 *4 (-525)) (-5 *2 (-592 (-1073 *5))) (-5 *1 (-1197 *5)) (-4 *5 (-1128)))) (-1499 (*1 *2 *3) (-12 (-5 *3 (-1 (-1073 *4) (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1197 *4)) (-4 *4 (-1128)))))
+(-10 -7 (-15 -1499 ((-1073 |#1|) (-1 (-1073 |#1|) (-1073 |#1|)))) (-15 -1499 ((-592 (-1073 |#1|)) (-1 (-592 (-1073 |#1|)) (-592 (-1073 |#1|))) (-525))))
+((-1885 (((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|))) 148) (((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108)) 147) (((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108)) 146) (((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108) (-108)) 145) (((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-974 |#1| |#2|)) 130)) (-4171 (((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|))) 72) (((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)) (-108)) 71) (((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)) (-108) (-108)) 70)) (-3586 (((-592 (-1063 |#1| (-497 (-800 |#3|)) (-800 |#3|) (-722 |#1| (-800 |#3|)))) (-974 |#1| |#2|)) 61)) (-3192 (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|))) 115) (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108)) 114) (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108)) 113) (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108) (-108)) 112) (((-592 (-592 (-955 (-385 |#1|)))) (-974 |#1| |#2|)) 107)) (-1404 (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|))) 120) (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108)) 119) (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108)) 118) (((-592 (-592 (-955 (-385 |#1|)))) (-974 |#1| |#2|)) 117)) (-2069 (((-592 (-722 |#1| (-800 |#3|))) (-1063 |#1| (-497 (-800 |#3|)) (-800 |#3|) (-722 |#1| (-800 |#3|)))) 98) (((-1088 (-955 (-385 |#1|))) (-1088 |#1|)) 89) (((-887 (-955 (-385 |#1|))) (-722 |#1| (-800 |#3|))) 96) (((-887 (-955 (-385 |#1|))) (-887 |#1|)) 94) (((-722 |#1| (-800 |#3|)) (-722 |#1| (-800 |#2|))) 33)))
+(((-1198 |#1| |#2| |#3|) (-10 -7 (-15 -4171 ((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)) (-108) (-108))) (-15 -4171 ((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)) (-108))) (-15 -4171 ((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)))) (-15 -1885 ((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-974 |#1| |#2|))) (-15 -1885 ((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108) (-108))) (-15 -1885 ((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108))) (-15 -1885 ((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108))) (-15 -1885 ((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)))) (-15 -3192 ((-592 (-592 (-955 (-385 |#1|)))) (-974 |#1| |#2|))) (-15 -3192 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108) (-108))) (-15 -3192 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108))) (-15 -3192 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108))) (-15 -3192 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)))) (-15 -1404 ((-592 (-592 (-955 (-385 |#1|)))) (-974 |#1| |#2|))) (-15 -1404 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108))) (-15 -1404 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108))) (-15 -1404 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)))) (-15 -3586 ((-592 (-1063 |#1| (-497 (-800 |#3|)) (-800 |#3|) (-722 |#1| (-800 |#3|)))) (-974 |#1| |#2|))) (-15 -2069 ((-722 |#1| (-800 |#3|)) (-722 |#1| (-800 |#2|)))) (-15 -2069 ((-887 (-955 (-385 |#1|))) (-887 |#1|))) (-15 -2069 ((-887 (-955 (-385 |#1|))) (-722 |#1| (-800 |#3|)))) (-15 -2069 ((-1088 (-955 (-385 |#1|))) (-1088 |#1|))) (-15 -2069 ((-592 (-722 |#1| (-800 |#3|))) (-1063 |#1| (-497 (-800 |#3|)) (-800 |#3|) (-722 |#1| (-800 |#3|)))))) (-13 (-787) (-286) (-138) (-953)) (-592 (-1092)) (-592 (-1092))) (T -1198))
+((-2069 (*1 *2 *3) (-12 (-5 *3 (-1063 *4 (-497 (-800 *6)) (-800 *6) (-722 *4 (-800 *6)))) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *6 (-592 (-1092))) (-5 *2 (-592 (-722 *4 (-800 *6)))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-592 (-1092))))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-1088 *4)) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-1088 (-955 (-385 *4)))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-722 *4 (-800 *6))) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *6 (-592 (-1092))) (-5 *2 (-887 (-955 (-385 *4)))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-592 (-1092))))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-887 (-955 (-385 *4)))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-722 *4 (-800 *5))) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *5 (-592 (-1092))) (-5 *2 (-722 *4 (-800 *6))) (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-592 (-1092))))) (-3586 (*1 *2 *3) (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *5 (-592 (-1092))) (-5 *2 (-592 (-1063 *4 (-497 (-800 *6)) (-800 *6) (-722 *4 (-800 *6))))) (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-592 (-1092))))) (-1404 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *4))))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))) (-1404 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))) (-1404 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))) (-1404 (*1 *2 *3) (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *5 (-592 (-1092))) (-5 *2 (-592 (-592 (-955 (-385 *4))))) (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-592 (-1092))))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *4))))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))) (-3192 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))) (-3192 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))) (-3192 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *5 (-592 (-1092))) (-5 *2 (-592 (-592 (-955 (-385 *4))))) (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-592 (-1092))))) (-1885 (*1 *2 *3) (-12 (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-2 (|:| -2729 (-1088 *4)) (|:| -2754 (-592 (-887 *4)))))) (-5 *1 (-1198 *4 *5 *6)) (-5 *3 (-592 (-887 *4))) (-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))) (-1885 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-2 (|:| -2729 (-1088 *5)) (|:| -2754 (-592 (-887 *5)))))) (-5 *1 (-1198 *5 *6 *7)) (-5 *3 (-592 (-887 *5))) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))) (-1885 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-2 (|:| -2729 (-1088 *5)) (|:| -2754 (-592 (-887 *5)))))) (-5 *1 (-1198 *5 *6 *7)) (-5 *3 (-592 (-887 *5))) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))) (-1885 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-2 (|:| -2729 (-1088 *5)) (|:| -2754 (-592 (-887 *5)))))) (-5 *1 (-1198 *5 *6 *7)) (-5 *3 (-592 (-887 *5))) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *5 (-592 (-1092))) (-5 *2 (-592 (-2 (|:| -2729 (-1088 *4)) (|:| -2754 (-592 (-887 *4)))))) (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-592 (-1092))))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-974 *4 *5))) (-5 *1 (-1198 *4 *5 *6)) (-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))) (-4171 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))) (-4171 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-1198 *5 *6 *7)) (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092))))))
+(-10 -7 (-15 -4171 ((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)) (-108) (-108))) (-15 -4171 ((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)) (-108))) (-15 -4171 ((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)))) (-15 -1885 ((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-974 |#1| |#2|))) (-15 -1885 ((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108) (-108))) (-15 -1885 ((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108))) (-15 -1885 ((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108))) (-15 -1885 ((-592 (-2 (|:| -2729 (-1088 |#1|)) (|:| -2754 (-592 (-887 |#1|))))) (-592 (-887 |#1|)))) (-15 -3192 ((-592 (-592 (-955 (-385 |#1|)))) (-974 |#1| |#2|))) (-15 -3192 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108) (-108))) (-15 -3192 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108))) (-15 -3192 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108))) (-15 -3192 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)))) (-15 -1404 ((-592 (-592 (-955 (-385 |#1|)))) (-974 |#1| |#2|))) (-15 -1404 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108))) (-15 -1404 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108))) (-15 -1404 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)))) (-15 -3586 ((-592 (-1063 |#1| (-497 (-800 |#3|)) (-800 |#3|) (-722 |#1| (-800 |#3|)))) (-974 |#1| |#2|))) (-15 -2069 ((-722 |#1| (-800 |#3|)) (-722 |#1| (-800 |#2|)))) (-15 -2069 ((-887 (-955 (-385 |#1|))) (-887 |#1|))) (-15 -2069 ((-887 (-955 (-385 |#1|))) (-722 |#1| (-800 |#3|)))) (-15 -2069 ((-1088 (-955 (-385 |#1|))) (-1088 |#1|))) (-15 -2069 ((-592 (-722 |#1| (-800 |#3|))) (-1063 |#1| (-497 (-800 |#3|)) (-800 |#3|) (-722 |#1| (-800 |#3|))))))
+((-2777 (((-3 (-1174 (-385 (-525))) "failed") (-1174 |#1|) |#1|) 21)) (-2959 (((-108) (-1174 |#1|)) 12)) (-4052 (((-3 (-1174 (-525)) "failed") (-1174 |#1|)) 16)))
+(((-1199 |#1|) (-10 -7 (-15 -2959 ((-108) (-1174 |#1|))) (-15 -4052 ((-3 (-1174 (-525)) "failed") (-1174 |#1|))) (-15 -2777 ((-3 (-1174 (-385 (-525))) "failed") (-1174 |#1|) |#1|))) (-588 (-525))) (T -1199))
+((-2777 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1174 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-1174 (-385 (-525)))) (-5 *1 (-1199 *4)))) (-4052 (*1 *2 *3) (|partial| -12 (-5 *3 (-1174 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-1174 (-525))) (-5 *1 (-1199 *4)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-108)) (-5 *1 (-1199 *4)))))
+(-10 -7 (-15 -2959 ((-108) (-1174 |#1|))) (-15 -4052 ((-3 (-1174 (-525)) "failed") (-1174 |#1|))) (-15 -2777 ((-3 (-1174 (-385 (-525))) "failed") (-1174 |#1|) |#1|)))
+((-4087 (((-108) $ $) NIL)) (-2414 (((-108) $) 11)) (-3222 (((-3 $ "failed") $ $) NIL)) (-1613 (((-713)) 8)) (-2475 (($) NIL T CONST)) (-3300 (((-3 $ "failed") $) 43)) (-1903 (($) 36)) (-2278 (((-108) $) NIL)) (-2878 (((-3 $ "failed") $) 29)) (-3685 (((-856) $) 15)) (-1289 (((-1075) $) NIL)) (-2948 (($) 25 T CONST)) (-1722 (($ (-856)) 37)) (-3993 (((-1039) $) NIL)) (-2069 (((-525) $) 13)) (-4100 (((-798) $) 22) (($ (-525)) 19)) (-2448 (((-713)) 9)) (-3706 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3364 (($) 23 T CONST)) (-3375 (($) 24 T CONST)) (-2775 (((-108) $ $) 27)) (-2871 (($ $) 38) (($ $ $) 35)) (-2860 (($ $ $) 26)) (** (($ $ (-856)) NIL) (($ $ (-713)) 40)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 32) (($ $ $) 31)))
(((-1200 |#1|) (-13 (-160) (-346) (-567 (-525)) (-1068)) (-856)) (T -1200))
NIL
(-13 (-160) (-346) (-567 (-525)) (-1068))
@@ -4930,4 +4930,4 @@ NIL
NIL
NIL
NIL
-((-3 3148819 3148824 3148829 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3148804 3148809 3148814 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3148789 3148794 3148799 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3148774 3148779 3148784 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1200 3147904 3148649 3148726 "ZMOD" 3148731 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1199 3147014 3147178 3147387 "ZLINDEP" 3147736 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1198 3136418 3138163 3140115 "ZDSOLVE" 3145163 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1197 3135664 3135805 3135994 "YSTREAM" 3136264 NIL YSTREAM (NIL T) -7 NIL NIL) (-1196 3133433 3134969 3135172 "XRPOLY" 3135507 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1195 3129895 3131224 3131806 "XPR" 3132897 NIL XPR (NIL T T) -8 NIL NIL) (-1194 3127609 3129230 3129433 "XPOLY" 3129726 NIL XPOLY (NIL T) -8 NIL NIL) (-1193 3125423 3126801 3126855 "XPOLYC" 3127140 NIL XPOLYC (NIL T T) -9 NIL 3127253) (-1192 3121795 3123940 3124328 "XPBWPOLY" 3125081 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1191 3117723 3120036 3120078 "XF" 3120699 NIL XF (NIL T) -9 NIL 3121098) (-1190 3117344 3117432 3117601 "XF-" 3117606 NIL XF- (NIL T T) -8 NIL NIL) (-1189 3112724 3114023 3114077 "XFALG" 3116225 NIL XFALG (NIL T T) -9 NIL 3117012) (-1188 3111861 3111965 3112169 "XEXPPKG" 3112616 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1187 3109960 3111712 3111807 "XDPOLY" 3111812 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1186 3108839 3109449 3109491 "XALG" 3109553 NIL XALG (NIL T) -9 NIL 3109672) (-1185 3102315 3106823 3107316 "WUTSET" 3108431 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1184 3100127 3100934 3101285 "WP" 3102097 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1183 3099013 3099211 3099506 "WFFINTBS" 3099924 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1182 3096917 3097344 3097806 "WEIER" 3098585 NIL WEIER (NIL T) -7 NIL NIL) (-1181 3096066 3096490 3096532 "VSPACE" 3096668 NIL VSPACE (NIL T) -9 NIL 3096742) (-1180 3095904 3095931 3096022 "VSPACE-" 3096027 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1179 3095650 3095693 3095764 "VOID" 3095855 T VOID (NIL) -8 NIL NIL) (-1178 3093786 3094145 3094551 "VIEW" 3095266 T VIEW (NIL) -7 NIL NIL) (-1177 3090211 3090849 3091586 "VIEWDEF" 3093071 T VIEWDEF (NIL) -7 NIL NIL) (-1176 3079549 3081759 3083932 "VIEW3D" 3088060 T VIEW3D (NIL) -8 NIL NIL) (-1175 3071831 3073460 3075039 "VIEW2D" 3077992 T VIEW2D (NIL) -8 NIL NIL) (-1174 3067240 3071601 3071693 "VECTOR" 3071774 NIL VECTOR (NIL T) -8 NIL NIL) (-1173 3065817 3066076 3066394 "VECTOR2" 3066970 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1172 3059357 3063609 3063652 "VECTCAT" 3064640 NIL VECTCAT (NIL T) -9 NIL 3065224) (-1171 3058371 3058625 3059015 "VECTCAT-" 3059020 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1170 3057852 3058022 3058142 "VARIABLE" 3058286 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1169 3057785 3057790 3057820 "UTYPE" 3057825 T UTYPE (NIL) -9 NIL NIL) (-1168 3056620 3056774 3057035 "UTSODETL" 3057611 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1167 3054060 3054520 3055044 "UTSODE" 3056161 NIL UTSODE (NIL T T) -7 NIL NIL) (-1166 3045904 3051700 3052188 "UTS" 3053629 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1165 3037249 3042614 3042656 "UTSCAT" 3043757 NIL UTSCAT (NIL T) -9 NIL 3044514) (-1164 3034604 3035320 3036308 "UTSCAT-" 3036313 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1163 3034235 3034278 3034409 "UTS2" 3034555 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1162 3028511 3031076 3031119 "URAGG" 3033189 NIL URAGG (NIL T) -9 NIL 3033911) (-1161 3025450 3026313 3027436 "URAGG-" 3027441 NIL URAGG- (NIL T T) -8 NIL NIL) (-1160 3021136 3024067 3024538 "UPXSSING" 3025114 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1159 3013027 3020257 3020537 "UPXS" 3020913 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1158 3006056 3012932 3013003 "UPXSCONS" 3013008 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1157 2996345 3003175 3003236 "UPXSCCA" 3003885 NIL UPXSCCA (NIL T T) -9 NIL 3004126) (-1156 2995984 2996069 2996242 "UPXSCCA-" 2996247 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1155 2986195 2992798 2992840 "UPXSCAT" 2993483 NIL UPXSCAT (NIL T) -9 NIL 2994091) (-1154 2985629 2985708 2985885 "UPXS2" 2986110 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1153 2984283 2984536 2984887 "UPSQFREE" 2985372 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1152 2978174 2981229 2981283 "UPSCAT" 2982432 NIL UPSCAT (NIL T T) -9 NIL 2983206) (-1151 2977379 2977586 2977912 "UPSCAT-" 2977917 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1150 2963465 2971502 2971544 "UPOLYC" 2973622 NIL UPOLYC (NIL T) -9 NIL 2974843) (-1149 2954795 2957220 2960366 "UPOLYC-" 2960371 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1148 2954426 2954469 2954600 "UPOLYC2" 2954746 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1147 2945845 2953995 2954132 "UP" 2954336 NIL UP (NIL NIL T) -8 NIL NIL) (-1146 2945188 2945295 2945458 "UPMP" 2945734 NIL UPMP (NIL T T) -7 NIL NIL) (-1145 2944741 2944822 2944961 "UPDIVP" 2945101 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1144 2943309 2943558 2943874 "UPDECOMP" 2944490 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1143 2942544 2942656 2942841 "UPCDEN" 2943193 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1142 2942067 2942136 2942283 "UP2" 2942469 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1141 2940584 2941271 2941548 "UNISEG" 2941825 NIL UNISEG (NIL T) -8 NIL NIL) (-1140 2939799 2939926 2940131 "UNISEG2" 2940427 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1139 2938859 2939039 2939265 "UNIFACT" 2939615 NIL UNIFACT (NIL T) -7 NIL NIL) (-1138 2922755 2938040 2938290 "ULS" 2938666 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1137 2910720 2922660 2922731 "ULSCONS" 2922736 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1136 2893470 2905483 2905544 "ULSCCAT" 2906256 NIL ULSCCAT (NIL T T) -9 NIL 2906552) (-1135 2892521 2892766 2893153 "ULSCCAT-" 2893158 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1134 2882511 2889028 2889070 "ULSCAT" 2889926 NIL ULSCAT (NIL T) -9 NIL 2890656) (-1133 2881945 2882024 2882201 "ULS2" 2882426 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1132 2880343 2881310 2881340 "UFD" 2881552 T UFD (NIL) -9 NIL 2881666) (-1131 2880137 2880183 2880278 "UFD-" 2880283 NIL UFD- (NIL T) -8 NIL NIL) (-1130 2879219 2879402 2879618 "UDVO" 2879943 T UDVO (NIL) -7 NIL NIL) (-1129 2877035 2877444 2877915 "UDPO" 2878783 NIL UDPO (NIL T) -7 NIL NIL) (-1128 2876968 2876973 2877003 "TYPE" 2877008 T TYPE (NIL) -9 NIL NIL) (-1127 2875939 2876141 2876381 "TWOFACT" 2876762 NIL TWOFACT (NIL T) -7 NIL NIL) (-1126 2874877 2875214 2875477 "TUPLE" 2875711 NIL TUPLE (NIL T) -8 NIL NIL) (-1125 2872568 2873087 2873626 "TUBETOOL" 2874360 T TUBETOOL (NIL) -7 NIL NIL) (-1124 2871417 2871622 2871863 "TUBE" 2872361 NIL TUBE (NIL T) -8 NIL NIL) (-1123 2866141 2870395 2870677 "TS" 2871169 NIL TS (NIL T) -8 NIL NIL) (-1122 2854845 2858937 2859033 "TSETCAT" 2864267 NIL TSETCAT (NIL T T T T) -9 NIL 2865798) (-1121 2849580 2851178 2853068 "TSETCAT-" 2853073 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1120 2843843 2844689 2845631 "TRMANIP" 2848716 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1119 2843284 2843347 2843510 "TRIMAT" 2843775 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1118 2841090 2841327 2841690 "TRIGMNIP" 2843033 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1117 2840610 2840723 2840753 "TRIGCAT" 2840966 T TRIGCAT (NIL) -9 NIL NIL) (-1116 2840279 2840358 2840499 "TRIGCAT-" 2840504 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1115 2837178 2839139 2839419 "TREE" 2840034 NIL TREE (NIL T) -8 NIL NIL) (-1114 2836452 2836980 2837010 "TRANFUN" 2837045 T TRANFUN (NIL) -9 NIL 2837111) (-1113 2835731 2835922 2836202 "TRANFUN-" 2836207 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1112 2835535 2835567 2835628 "TOPSP" 2835692 T TOPSP (NIL) -7 NIL NIL) (-1111 2834887 2835002 2835155 "TOOLSIGN" 2835416 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1110 2833548 2834064 2834303 "TEXTFILE" 2834670 T TEXTFILE (NIL) -8 NIL NIL) (-1109 2831413 2831927 2832365 "TEX" 2833132 T TEX (NIL) -8 NIL NIL) (-1108 2831194 2831225 2831297 "TEX1" 2831376 NIL TEX1 (NIL T) -7 NIL NIL) (-1107 2830842 2830905 2830995 "TEMUTL" 2831126 T TEMUTL (NIL) -7 NIL NIL) (-1106 2828996 2829276 2829601 "TBCMPPK" 2830565 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1105 2820885 2827157 2827213 "TBAGG" 2827613 NIL TBAGG (NIL T T) -9 NIL 2827824) (-1104 2815955 2817443 2819197 "TBAGG-" 2819202 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1103 2815339 2815446 2815591 "TANEXP" 2815844 NIL TANEXP (NIL T) -7 NIL NIL) (-1102 2808840 2815196 2815289 "TABLE" 2815294 NIL TABLE (NIL T T) -8 NIL NIL) (-1101 2808252 2808351 2808489 "TABLEAU" 2808737 NIL TABLEAU (NIL T) -8 NIL NIL) (-1100 2802860 2804080 2805328 "TABLBUMP" 2807038 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1099 2802288 2802388 2802516 "SYSTEM" 2802754 T SYSTEM (NIL) -7 NIL NIL) (-1098 2798751 2799446 2800229 "SYSSOLP" 2801539 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1097 2795042 2795750 2796484 "SYNTAX" 2798039 T SYNTAX (NIL) -8 NIL NIL) (-1096 2792176 2792784 2793422 "SYMTAB" 2794426 T SYMTAB (NIL) -8 NIL NIL) (-1095 2787425 2788327 2789310 "SYMS" 2791215 T SYMS (NIL) -8 NIL NIL) (-1094 2784658 2786885 2787114 "SYMPOLY" 2787230 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1093 2784178 2784253 2784375 "SYMFUNC" 2784570 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1092 2780155 2781415 2782237 "SYMBOL" 2783378 T SYMBOL (NIL) -8 NIL NIL) (-1091 2773694 2775383 2777103 "SWITCH" 2778457 T SWITCH (NIL) -8 NIL NIL) (-1090 2766924 2772521 2772823 "SUTS" 2773449 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1089 2758814 2766045 2766325 "SUPXS" 2766701 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1088 2750306 2758435 2758560 "SUP" 2758723 NIL SUP (NIL T) -8 NIL NIL) (-1087 2749465 2749592 2749809 "SUPFRACF" 2750174 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1086 2749090 2749149 2749260 "SUP2" 2749400 NIL SUP2 (NIL T T) -7 NIL NIL) (-1085 2747508 2747782 2748144 "SUMRF" 2748789 NIL SUMRF (NIL T) -7 NIL NIL) (-1084 2746825 2746891 2747089 "SUMFS" 2747429 NIL SUMFS (NIL T T) -7 NIL NIL) (-1083 2730761 2746006 2746256 "SULS" 2746632 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1082 2730083 2730286 2730426 "SUCH" 2730669 NIL SUCH (NIL T T) -8 NIL NIL) (-1081 2724010 2725022 2725980 "SUBSPACE" 2729171 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1080 2723440 2723530 2723694 "SUBRESP" 2723898 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1079 2716809 2718105 2719416 "STTF" 2722176 NIL STTF (NIL T) -7 NIL NIL) (-1078 2710982 2712102 2713249 "STTFNC" 2715709 NIL STTFNC (NIL T) -7 NIL NIL) (-1077 2702333 2704200 2705993 "STTAYLOR" 2709223 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1076 2695577 2702197 2702280 "STRTBL" 2702285 NIL STRTBL (NIL T) -8 NIL NIL) (-1075 2690968 2695532 2695563 "STRING" 2695568 T STRING (NIL) -8 NIL NIL) (-1074 2685857 2690342 2690372 "STRICAT" 2690431 T STRICAT (NIL) -9 NIL 2690493) (-1073 2678571 2683380 2684000 "STREAM" 2685272 NIL STREAM (NIL T) -8 NIL NIL) (-1072 2678081 2678158 2678302 "STREAM3" 2678488 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1071 2677063 2677246 2677481 "STREAM2" 2677894 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1070 2676751 2676803 2676896 "STREAM1" 2677005 NIL STREAM1 (NIL T) -7 NIL NIL) (-1069 2675767 2675948 2676179 "STINPROD" 2676567 NIL STINPROD (NIL T) -7 NIL NIL) (-1068 2675346 2675530 2675560 "STEP" 2675640 T STEP (NIL) -9 NIL 2675718) (-1067 2668889 2675245 2675322 "STBL" 2675327 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1066 2664065 2668112 2668155 "STAGG" 2668308 NIL STAGG (NIL T) -9 NIL 2668397) (-1065 2661767 2662369 2663241 "STAGG-" 2663246 NIL STAGG- (NIL T T) -8 NIL NIL) (-1064 2659962 2661537 2661629 "STACK" 2661710 NIL STACK (NIL T) -8 NIL NIL) (-1063 2652693 2658109 2658564 "SREGSET" 2659592 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1062 2645133 2646501 2648013 "SRDCMPK" 2651299 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1061 2638101 2642574 2642604 "SRAGG" 2643907 T SRAGG (NIL) -9 NIL 2644515) (-1060 2637118 2637373 2637752 "SRAGG-" 2637757 NIL SRAGG- (NIL T) -8 NIL NIL) (-1059 2631567 2636037 2636464 "SQMATRIX" 2636737 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1058 2625319 2628287 2629013 "SPLTREE" 2630913 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1057 2621309 2621975 2622621 "SPLNODE" 2624745 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1056 2620356 2620589 2620619 "SPFCAT" 2621063 T SPFCAT (NIL) -9 NIL NIL) (-1055 2619093 2619303 2619567 "SPECOUT" 2620114 T SPECOUT (NIL) -7 NIL NIL) (-1054 2618854 2618894 2618963 "SPADPRSR" 2619046 T SPADPRSR (NIL) -7 NIL NIL) (-1053 2610877 2612624 2612666 "SPACEC" 2616989 NIL SPACEC (NIL T) -9 NIL 2618805) (-1052 2609048 2610810 2610858 "SPACE3" 2610863 NIL SPACE3 (NIL T) -8 NIL NIL) (-1051 2607800 2607971 2608262 "SORTPAK" 2608853 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1050 2605856 2606159 2606577 "SOLVETRA" 2607464 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1049 2604867 2605089 2605363 "SOLVESER" 2605629 NIL SOLVESER (NIL T) -7 NIL NIL) (-1048 2600087 2600968 2601970 "SOLVERAD" 2603919 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1047 2595902 2596511 2597240 "SOLVEFOR" 2599454 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1046 2590202 2595254 2595350 "SNTSCAT" 2595355 NIL SNTSCAT (NIL T T T T) -9 NIL 2595425) (-1045 2584306 2588533 2588923 "SMTS" 2589892 NIL SMTS (NIL T T T) -8 NIL NIL) (-1044 2578716 2584195 2584271 "SMP" 2584276 NIL SMP (NIL T T) -8 NIL NIL) (-1043 2576875 2577176 2577574 "SMITH" 2578413 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1042 2569840 2574036 2574138 "SMATCAT" 2575478 NIL SMATCAT (NIL NIL T T T) -9 NIL 2576027) (-1041 2566781 2567604 2568781 "SMATCAT-" 2568786 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1040 2564495 2566018 2566061 "SKAGG" 2566322 NIL SKAGG (NIL T) -9 NIL 2566457) (-1039 2560553 2563599 2563877 "SINT" 2564239 T SINT (NIL) -8 NIL NIL) (-1038 2560325 2560363 2560429 "SIMPAN" 2560509 T SIMPAN (NIL) -7 NIL NIL) (-1037 2559841 2560027 2560126 "SIG" 2560248 T SIG (NIL) -8 NIL NIL) (-1036 2558679 2558900 2559175 "SIGNRF" 2559600 NIL SIGNRF (NIL T) -7 NIL NIL) (-1035 2557488 2557639 2557929 "SIGNEF" 2558508 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1034 2555178 2555632 2556138 "SHP" 2557029 NIL SHP (NIL T NIL) -7 NIL NIL) (-1033 2549031 2555079 2555155 "SHDP" 2555160 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1032 2548521 2548713 2548743 "SGROUP" 2548895 T SGROUP (NIL) -9 NIL 2548982) (-1031 2548291 2548343 2548447 "SGROUP-" 2548452 NIL SGROUP- (NIL T) -8 NIL NIL) (-1030 2545127 2545824 2546547 "SGCF" 2547590 T SGCF (NIL) -7 NIL NIL) (-1029 2539526 2544578 2544674 "SFRTCAT" 2544679 NIL SFRTCAT (NIL T T T T) -9 NIL 2544717) (-1028 2532986 2534001 2535135 "SFRGCD" 2538509 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1027 2526152 2527223 2528407 "SFQCMPK" 2531919 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1026 2525774 2525863 2525973 "SFORT" 2526093 NIL SFORT (NIL T T) -8 NIL NIL) (-1025 2524919 2525614 2525735 "SEXOF" 2525740 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1024 2524053 2524800 2524868 "SEX" 2524873 T SEX (NIL) -8 NIL NIL) (-1023 2518830 2519519 2519614 "SEXCAT" 2523385 NIL SEXCAT (NIL T T T T T) -9 NIL 2524004) (-1022 2516010 2518764 2518812 "SET" 2518817 NIL SET (NIL T) -8 NIL NIL) (-1021 2514261 2514723 2515028 "SETMN" 2515751 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1020 2513869 2513995 2514025 "SETCAT" 2514142 T SETCAT (NIL) -9 NIL 2514226) (-1019 2513649 2513701 2513800 "SETCAT-" 2513805 NIL SETCAT- (NIL T) -8 NIL NIL) (-1018 2510037 2512111 2512154 "SETAGG" 2513024 NIL SETAGG (NIL T) -9 NIL 2513364) (-1017 2509495 2509611 2509848 "SETAGG-" 2509853 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1016 2508699 2508992 2509053 "SEGXCAT" 2509339 NIL SEGXCAT (NIL T T) -9 NIL 2509459) (-1015 2507755 2508365 2508547 "SEG" 2508552 NIL SEG (NIL T) -8 NIL NIL) (-1014 2506662 2506875 2506918 "SEGCAT" 2507500 NIL SEGCAT (NIL T) -9 NIL 2507738) (-1013 2505711 2506041 2506241 "SEGBIND" 2506497 NIL SEGBIND (NIL T) -8 NIL NIL) (-1012 2505332 2505391 2505504 "SEGBIND2" 2505646 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1011 2504551 2504677 2504881 "SEG2" 2505176 NIL SEG2 (NIL T T) -7 NIL NIL) (-1010 2503988 2504486 2504533 "SDVAR" 2504538 NIL SDVAR (NIL T) -8 NIL NIL) (-1009 2496240 2503761 2503889 "SDPOL" 2503894 NIL SDPOL (NIL T) -8 NIL NIL) (-1008 2494833 2495099 2495418 "SCPKG" 2495955 NIL SCPKG (NIL T) -7 NIL NIL) (-1007 2493969 2494149 2494349 "SCOPE" 2494655 T SCOPE (NIL) -8 NIL NIL) (-1006 2493190 2493323 2493502 "SCACHE" 2493824 NIL SCACHE (NIL T) -7 NIL NIL) (-1005 2492629 2492950 2493035 "SAOS" 2493127 T SAOS (NIL) -8 NIL NIL) (-1004 2492194 2492229 2492402 "SAERFFC" 2492588 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1003 2486088 2492091 2492171 "SAE" 2492176 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1002 2485681 2485716 2485875 "SAEFACT" 2486047 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1001 2484002 2484316 2484717 "RURPK" 2485347 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1000 2482650 2482927 2483236 "RULESET" 2483838 NIL RULESET (NIL T T T) -8 NIL NIL) (-999 2479858 2480361 2480822 "RULE" 2482332 NIL RULE (NIL T T T) -8 NIL NIL) (-998 2479500 2479655 2479736 "RULECOLD" 2479810 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-997 2474392 2475186 2476102 "RSETGCD" 2478699 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-996 2463707 2468759 2468853 "RSETCAT" 2472918 NIL RSETCAT (NIL T T T T) -9 NIL 2474015) (-995 2461638 2462177 2462997 "RSETCAT-" 2463002 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-994 2454068 2455443 2456959 "RSDCMPK" 2460237 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-993 2452086 2452527 2452599 "RRCC" 2453675 NIL RRCC (NIL T T) -9 NIL 2454019) (-992 2451440 2451614 2451890 "RRCC-" 2451895 NIL RRCC- (NIL T T T) -8 NIL NIL) (-991 2425807 2435432 2435496 "RPOLCAT" 2445998 NIL RPOLCAT (NIL T T T) -9 NIL 2449156) (-990 2417311 2419649 2422767 "RPOLCAT-" 2422772 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-989 2408377 2415541 2416021 "ROUTINE" 2416851 T ROUTINE (NIL) -8 NIL NIL) (-988 2405082 2407933 2408080 "ROMAN" 2408250 T ROMAN (NIL) -8 NIL NIL) (-987 2403368 2403953 2404210 "ROIRC" 2404888 NIL ROIRC (NIL T T) -8 NIL NIL) (-986 2399773 2402077 2402105 "RNS" 2402401 T RNS (NIL) -9 NIL 2402671) (-985 2398287 2398670 2399201 "RNS-" 2399274 NIL RNS- (NIL T) -8 NIL NIL) (-984 2397713 2398121 2398149 "RNG" 2398154 T RNG (NIL) -9 NIL 2398175) (-983 2397111 2397473 2397513 "RMODULE" 2397573 NIL RMODULE (NIL T) -9 NIL 2397615) (-982 2395963 2396057 2396387 "RMCAT2" 2397012 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-981 2392677 2395146 2395467 "RMATRIX" 2395698 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-980 2385674 2387908 2388020 "RMATCAT" 2391329 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2392311) (-979 2385053 2385200 2385503 "RMATCAT-" 2385508 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-978 2384623 2384698 2384824 "RINTERP" 2384972 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-977 2383674 2384238 2384266 "RING" 2384376 T RING (NIL) -9 NIL 2384470) (-976 2383469 2383513 2383607 "RING-" 2383612 NIL RING- (NIL T) -8 NIL NIL) (-975 2382317 2382554 2382810 "RIDIST" 2383233 T RIDIST (NIL) -7 NIL NIL) (-974 2373639 2381791 2381994 "RGCHAIN" 2382166 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-973 2370644 2371258 2371926 "RF" 2373003 NIL RF (NIL T) -7 NIL NIL) (-972 2370293 2370356 2370457 "RFFACTOR" 2370575 NIL RFFACTOR (NIL T) -7 NIL NIL) (-971 2370021 2370056 2370151 "RFFACT" 2370252 NIL RFFACT (NIL T) -7 NIL NIL) (-970 2368151 2368515 2368895 "RFDIST" 2369661 T RFDIST (NIL) -7 NIL NIL) (-969 2367609 2367701 2367861 "RETSOL" 2368053 NIL RETSOL (NIL T T) -7 NIL NIL) (-968 2367202 2367282 2367323 "RETRACT" 2367513 NIL RETRACT (NIL T) -9 NIL NIL) (-967 2367054 2367079 2367163 "RETRACT-" 2367168 NIL RETRACT- (NIL T T) -8 NIL NIL) (-966 2359912 2366711 2366836 "RESULT" 2366949 T RESULT (NIL) -8 NIL NIL) (-965 2358497 2359186 2359383 "RESRING" 2359815 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-964 2358137 2358186 2358282 "RESLATC" 2358434 NIL RESLATC (NIL T) -7 NIL NIL) (-963 2357846 2357880 2357985 "REPSQ" 2358096 NIL REPSQ (NIL T) -7 NIL NIL) (-962 2355277 2355857 2356457 "REP" 2357266 T REP (NIL) -7 NIL NIL) (-961 2354978 2355012 2355121 "REPDB" 2355236 NIL REPDB (NIL T) -7 NIL NIL) (-960 2348923 2350302 2351522 "REP2" 2353790 NIL REP2 (NIL T) -7 NIL NIL) (-959 2345329 2346010 2346815 "REP1" 2348150 NIL REP1 (NIL T) -7 NIL NIL) (-958 2338075 2343490 2343942 "REGSET" 2344960 NIL REGSET (NIL T T T T) -8 NIL NIL) (-957 2336896 2337231 2337479 "REF" 2337860 NIL REF (NIL T) -8 NIL NIL) (-956 2336277 2336380 2336545 "REDORDER" 2336780 NIL REDORDER (NIL T T) -7 NIL NIL) (-955 2332246 2335511 2335732 "RECLOS" 2336108 NIL RECLOS (NIL T) -8 NIL NIL) (-954 2331303 2331484 2331697 "REALSOLV" 2332053 T REALSOLV (NIL) -7 NIL NIL) (-953 2331151 2331192 2331220 "REAL" 2331225 T REAL (NIL) -9 NIL 2331260) (-952 2327642 2328444 2329326 "REAL0Q" 2330316 NIL REAL0Q (NIL T) -7 NIL NIL) (-951 2323253 2324241 2325300 "REAL0" 2326623 NIL REAL0 (NIL T) -7 NIL NIL) (-950 2322661 2322733 2322938 "RDIV" 2323175 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-949 2321734 2321908 2322119 "RDIST" 2322483 NIL RDIST (NIL T) -7 NIL NIL) (-948 2320338 2320625 2320994 "RDETRS" 2321442 NIL RDETRS (NIL T T) -7 NIL NIL) (-947 2318159 2318613 2319148 "RDETR" 2319880 NIL RDETR (NIL T T) -7 NIL NIL) (-946 2316775 2317053 2317454 "RDEEFS" 2317875 NIL RDEEFS (NIL T T) -7 NIL NIL) (-945 2315275 2315581 2316010 "RDEEF" 2316463 NIL RDEEF (NIL T T) -7 NIL NIL) (-944 2309560 2312492 2312520 "RCFIELD" 2313797 T RCFIELD (NIL) -9 NIL 2314527) (-943 2307629 2308133 2308826 "RCFIELD-" 2308899 NIL RCFIELD- (NIL T) -8 NIL NIL) (-942 2303961 2305746 2305787 "RCAGG" 2306858 NIL RCAGG (NIL T) -9 NIL 2307323) (-941 2303592 2303686 2303846 "RCAGG-" 2303851 NIL RCAGG- (NIL T T) -8 NIL NIL) (-940 2302936 2303048 2303210 "RATRET" 2303476 NIL RATRET (NIL T) -7 NIL NIL) (-939 2302493 2302560 2302679 "RATFACT" 2302864 NIL RATFACT (NIL T) -7 NIL NIL) (-938 2301808 2301928 2302078 "RANDSRC" 2302363 T RANDSRC (NIL) -7 NIL NIL) (-937 2301545 2301589 2301660 "RADUTIL" 2301757 T RADUTIL (NIL) -7 NIL NIL) (-936 2294552 2300288 2300605 "RADIX" 2301260 NIL RADIX (NIL NIL) -8 NIL NIL) (-935 2286122 2294396 2294524 "RADFF" 2294529 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-934 2285774 2285849 2285877 "RADCAT" 2286034 T RADCAT (NIL) -9 NIL NIL) (-933 2285559 2285607 2285704 "RADCAT-" 2285709 NIL RADCAT- (NIL T) -8 NIL NIL) (-932 2283710 2285334 2285423 "QUEUE" 2285503 NIL QUEUE (NIL T) -8 NIL NIL) (-931 2280207 2283647 2283692 "QUAT" 2283697 NIL QUAT (NIL T) -8 NIL NIL) (-930 2279845 2279888 2280015 "QUATCT2" 2280158 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-929 2273639 2277019 2277059 "QUATCAT" 2277838 NIL QUATCAT (NIL T) -9 NIL 2278603) (-928 2269783 2270820 2272207 "QUATCAT-" 2272301 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-927 2267304 2268868 2268909 "QUAGG" 2269284 NIL QUAGG (NIL T) -9 NIL 2269459) (-926 2266229 2266702 2266874 "QFORM" 2267176 NIL QFORM (NIL NIL T) -8 NIL NIL) (-925 2257526 2262784 2262824 "QFCAT" 2263482 NIL QFCAT (NIL T) -9 NIL 2264475) (-924 2253098 2254299 2255890 "QFCAT-" 2255984 NIL QFCAT- (NIL T T) -8 NIL NIL) (-923 2252736 2252779 2252906 "QFCAT2" 2253049 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-922 2252196 2252306 2252436 "QEQUAT" 2252626 T QEQUAT (NIL) -8 NIL NIL) (-921 2245382 2246453 2247635 "QCMPACK" 2251129 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-920 2242958 2243379 2243807 "QALGSET" 2245037 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-919 2242203 2242377 2242609 "QALGSET2" 2242778 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-918 2240894 2241117 2241434 "PWFFINTB" 2241976 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-917 2239082 2239250 2239603 "PUSHVAR" 2240708 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-916 2235000 2236054 2236095 "PTRANFN" 2237979 NIL PTRANFN (NIL T) -9 NIL NIL) (-915 2233412 2233703 2234024 "PTPACK" 2234711 NIL PTPACK (NIL T) -7 NIL NIL) (-914 2233048 2233105 2233212 "PTFUNC2" 2233349 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-913 2227525 2231866 2231906 "PTCAT" 2232274 NIL PTCAT (NIL T) -9 NIL 2232436) (-912 2227183 2227218 2227342 "PSQFR" 2227484 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-911 2225778 2226076 2226410 "PSEUDLIN" 2226881 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-910 2212585 2214950 2217273 "PSETPK" 2223538 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-909 2205672 2208386 2208480 "PSETCAT" 2211461 NIL PSETCAT (NIL T T T T) -9 NIL 2212275) (-908 2203510 2204144 2204963 "PSETCAT-" 2204968 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-907 2202859 2203024 2203052 "PSCURVE" 2203320 T PSCURVE (NIL) -9 NIL 2203487) (-906 2199311 2200837 2200901 "PSCAT" 2201737 NIL PSCAT (NIL T T T) -9 NIL 2201977) (-905 2198375 2198591 2198990 "PSCAT-" 2198995 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-904 2197027 2197660 2197874 "PRTITION" 2198181 T PRTITION (NIL) -8 NIL NIL) (-903 2186125 2188331 2190519 "PRS" 2194889 NIL PRS (NIL T T) -7 NIL NIL) (-902 2183984 2185476 2185516 "PRQAGG" 2185699 NIL PRQAGG (NIL T) -9 NIL 2185801) (-901 2183555 2183657 2183685 "PROPLOG" 2183870 T PROPLOG (NIL) -9 NIL NIL) (-900 2180678 2181243 2181770 "PROPFRML" 2183060 NIL PROPFRML (NIL T) -8 NIL NIL) (-899 2180138 2180248 2180378 "PROPERTY" 2180568 T PROPERTY (NIL) -8 NIL NIL) (-898 2173912 2178304 2179124 "PRODUCT" 2179364 NIL PRODUCT (NIL T T) -8 NIL NIL) (-897 2171188 2173372 2173605 "PR" 2173723 NIL PR (NIL T T) -8 NIL NIL) (-896 2170984 2171016 2171075 "PRINT" 2171149 T PRINT (NIL) -7 NIL NIL) (-895 2170324 2170441 2170593 "PRIMES" 2170864 NIL PRIMES (NIL T) -7 NIL NIL) (-894 2168389 2168790 2169256 "PRIMELT" 2169903 NIL PRIMELT (NIL T) -7 NIL NIL) (-893 2168118 2168167 2168195 "PRIMCAT" 2168319 T PRIMCAT (NIL) -9 NIL NIL) (-892 2164279 2168056 2168101 "PRIMARR" 2168106 NIL PRIMARR (NIL T) -8 NIL NIL) (-891 2163286 2163464 2163692 "PRIMARR2" 2164097 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-890 2162929 2162985 2163096 "PREASSOC" 2163224 NIL PREASSOC (NIL T T) -7 NIL NIL) (-889 2162404 2162537 2162565 "PPCURVE" 2162770 T PPCURVE (NIL) -9 NIL 2162906) (-888 2159763 2160162 2160754 "POLYROOT" 2161985 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-887 2153669 2159369 2159528 "POLY" 2159636 NIL POLY (NIL T) -8 NIL NIL) (-886 2153054 2153112 2153345 "POLYLIFT" 2153605 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-885 2149339 2149788 2150416 "POLYCATQ" 2152599 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-884 2136380 2141777 2141841 "POLYCAT" 2145326 NIL POLYCAT (NIL T T T) -9 NIL 2147253) (-883 2129831 2131692 2134075 "POLYCAT-" 2134080 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-882 2129420 2129488 2129607 "POLY2UP" 2129757 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-881 2129056 2129113 2129220 "POLY2" 2129357 NIL POLY2 (NIL T T) -7 NIL NIL) (-880 2127741 2127980 2128256 "POLUTIL" 2128830 NIL POLUTIL (NIL T T) -7 NIL NIL) (-879 2126103 2126380 2126710 "POLTOPOL" 2127463 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-878 2121626 2126040 2126085 "POINT" 2126090 NIL POINT (NIL T) -8 NIL NIL) (-877 2119813 2120170 2120545 "PNTHEORY" 2121271 T PNTHEORY (NIL) -7 NIL NIL) (-876 2118241 2118538 2118947 "PMTOOLS" 2119511 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-875 2117834 2117912 2118029 "PMSYM" 2118157 NIL PMSYM (NIL T) -7 NIL NIL) (-874 2117344 2117413 2117587 "PMQFCAT" 2117759 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-873 2116699 2116809 2116965 "PMPRED" 2117221 NIL PMPRED (NIL T) -7 NIL NIL) (-872 2116095 2116181 2116342 "PMPREDFS" 2116600 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-871 2114741 2114949 2115333 "PMPLCAT" 2115857 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-870 2114273 2114352 2114504 "PMLSAGG" 2114656 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-869 2113750 2113826 2114006 "PMKERNEL" 2114191 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-868 2113367 2113442 2113555 "PMINS" 2113669 NIL PMINS (NIL T) -7 NIL NIL) (-867 2112797 2112866 2113081 "PMFS" 2113292 NIL PMFS (NIL T T T) -7 NIL NIL) (-866 2112028 2112146 2112350 "PMDOWN" 2112674 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-865 2111191 2111350 2111532 "PMASS" 2111866 T PMASS (NIL) -7 NIL NIL) (-864 2110465 2110576 2110739 "PMASSFS" 2111077 NIL PMASSFS (NIL T T) -7 NIL NIL) (-863 2110120 2110188 2110282 "PLOTTOOL" 2110391 T PLOTTOOL (NIL) -7 NIL NIL) (-862 2104742 2105931 2107079 "PLOT" 2108992 T PLOT (NIL) -8 NIL NIL) (-861 2100556 2101590 2102511 "PLOT3D" 2103841 T PLOT3D (NIL) -8 NIL NIL) (-860 2099468 2099645 2099880 "PLOT1" 2100360 NIL PLOT1 (NIL T) -7 NIL NIL) (-859 2074862 2079534 2084385 "PLEQN" 2094734 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-858 2074180 2074302 2074482 "PINTERP" 2074727 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-857 2073873 2073920 2074023 "PINTERPA" 2074127 NIL PINTERPA (NIL T T) -7 NIL NIL) (-856 2073112 2073679 2073766 "PI" 2073806 T PI (NIL) -8 NIL NIL) (-855 2071504 2072489 2072517 "PID" 2072699 T PID (NIL) -9 NIL 2072833) (-854 2071229 2071266 2071354 "PICOERCE" 2071461 NIL PICOERCE (NIL T) -7 NIL NIL) (-853 2070549 2070688 2070864 "PGROEB" 2071085 NIL PGROEB (NIL T) -7 NIL NIL) (-852 2066136 2066950 2067855 "PGE" 2069664 T PGE (NIL) -7 NIL NIL) (-851 2064260 2064506 2064872 "PGCD" 2065853 NIL PGCD (NIL T T T T) -7 NIL NIL) (-850 2063598 2063701 2063862 "PFRPAC" 2064144 NIL PFRPAC (NIL T) -7 NIL NIL) (-849 2060213 2062146 2062499 "PFR" 2063277 NIL PFR (NIL T) -8 NIL NIL) (-848 2058602 2058846 2059171 "PFOTOOLS" 2059960 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-847 2057135 2057374 2057725 "PFOQ" 2058359 NIL PFOQ (NIL T T T) -7 NIL NIL) (-846 2055612 2055824 2056186 "PFO" 2056919 NIL PFO (NIL T T T T T) -7 NIL NIL) (-845 2052135 2055501 2055570 "PF" 2055575 NIL PF (NIL NIL) -8 NIL NIL) (-844 2049564 2050845 2050873 "PFECAT" 2051458 T PFECAT (NIL) -9 NIL 2051842) (-843 2049009 2049163 2049377 "PFECAT-" 2049382 NIL PFECAT- (NIL T) -8 NIL NIL) (-842 2047613 2047864 2048165 "PFBRU" 2048758 NIL PFBRU (NIL T T) -7 NIL NIL) (-841 2045480 2045831 2046263 "PFBR" 2047264 NIL PFBR (NIL T T T T) -7 NIL NIL) (-840 2041331 2042856 2043532 "PERM" 2044837 NIL PERM (NIL T) -8 NIL NIL) (-839 2036596 2037538 2038408 "PERMGRP" 2040494 NIL PERMGRP (NIL T) -8 NIL NIL) (-838 2034667 2035660 2035701 "PERMCAT" 2036147 NIL PERMCAT (NIL T) -9 NIL 2036452) (-837 2034322 2034363 2034486 "PERMAN" 2034620 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-836 2031762 2033891 2034022 "PENDTREE" 2034224 NIL PENDTREE (NIL T) -8 NIL NIL) (-835 2029835 2030613 2030654 "PDRING" 2031311 NIL PDRING (NIL T) -9 NIL 2031596) (-834 2028938 2029156 2029518 "PDRING-" 2029523 NIL PDRING- (NIL T T) -8 NIL NIL) (-833 2026079 2026830 2027521 "PDEPROB" 2028267 T PDEPROB (NIL) -8 NIL NIL) (-832 2023650 2024146 2024695 "PDEPACK" 2025550 T PDEPACK (NIL) -7 NIL NIL) (-831 2022562 2022752 2023003 "PDECOMP" 2023449 NIL PDECOMP (NIL T T) -7 NIL NIL) (-830 2020174 2020989 2021017 "PDECAT" 2021802 T PDECAT (NIL) -9 NIL 2022513) (-829 2019927 2019960 2020049 "PCOMP" 2020135 NIL PCOMP (NIL T T) -7 NIL NIL) (-828 2018134 2018730 2019026 "PBWLB" 2019657 NIL PBWLB (NIL T) -8 NIL NIL) (-827 2010642 2012211 2013547 "PATTERN" 2016819 NIL PATTERN (NIL T) -8 NIL NIL) (-826 2010274 2010331 2010440 "PATTERN2" 2010579 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-825 2008031 2008419 2008876 "PATTERN1" 2009863 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-824 2005426 2005980 2006461 "PATRES" 2007596 NIL PATRES (NIL T T) -8 NIL NIL) (-823 2004990 2005057 2005189 "PATRES2" 2005353 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-822 2002887 2003287 2003692 "PATMATCH" 2004659 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-821 2002424 2002607 2002648 "PATMAB" 2002755 NIL PATMAB (NIL T) -9 NIL 2002838) (-820 2000969 2001278 2001536 "PATLRES" 2002229 NIL PATLRES (NIL T T T) -8 NIL NIL) (-819 2000515 2000638 2000679 "PATAB" 2000684 NIL PATAB (NIL T) -9 NIL 2000856) (-818 1997996 1998528 1999101 "PARTPERM" 1999962 T PARTPERM (NIL) -7 NIL NIL) (-817 1997617 1997680 1997782 "PARSURF" 1997927 NIL PARSURF (NIL T) -8 NIL NIL) (-816 1997249 1997306 1997415 "PARSU2" 1997554 NIL PARSU2 (NIL T T) -7 NIL NIL) (-815 1997013 1997053 1997120 "PARSER" 1997202 T PARSER (NIL) -7 NIL NIL) (-814 1996634 1996697 1996799 "PARSCURV" 1996944 NIL PARSCURV (NIL T) -8 NIL NIL) (-813 1996266 1996323 1996432 "PARSC2" 1996571 NIL PARSC2 (NIL T T) -7 NIL NIL) (-812 1995905 1995963 1996060 "PARPCURV" 1996202 NIL PARPCURV (NIL T) -8 NIL NIL) (-811 1995537 1995594 1995703 "PARPC2" 1995842 NIL PARPC2 (NIL T T) -7 NIL NIL) (-810 1995057 1995143 1995262 "PAN2EXPR" 1995438 T PAN2EXPR (NIL) -7 NIL NIL) (-809 1993863 1994178 1994406 "PALETTE" 1994849 T PALETTE (NIL) -8 NIL NIL) (-808 1992331 1992868 1993228 "PAIR" 1993549 NIL PAIR (NIL T T) -8 NIL NIL) (-807 1986181 1991590 1991784 "PADICRC" 1992186 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-806 1979389 1985527 1985711 "PADICRAT" 1986029 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-805 1977693 1979326 1979371 "PADIC" 1979376 NIL PADIC (NIL NIL) -8 NIL NIL) (-804 1974898 1976472 1976512 "PADICCT" 1977093 NIL PADICCT (NIL NIL) -9 NIL 1977375) (-803 1973855 1974055 1974323 "PADEPAC" 1974685 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-802 1973067 1973200 1973406 "PADE" 1973717 NIL PADE (NIL T T T) -7 NIL NIL) (-801 1971078 1971910 1972225 "OWP" 1972835 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-800 1970187 1970683 1970855 "OVAR" 1970946 NIL OVAR (NIL NIL) -8 NIL NIL) (-799 1969451 1969572 1969733 "OUT" 1970046 T OUT (NIL) -7 NIL NIL) (-798 1958505 1960676 1962846 "OUTFORM" 1967301 T OUTFORM (NIL) -8 NIL NIL) (-797 1957913 1958234 1958323 "OSI" 1958436 T OSI (NIL) -8 NIL NIL) (-796 1957444 1957782 1957810 "OSGROUP" 1957815 T OSGROUP (NIL) -9 NIL 1957837) (-795 1956189 1956416 1956701 "ORTHPOL" 1957191 NIL ORTHPOL (NIL T) -7 NIL NIL) (-794 1953560 1955850 1955988 "OREUP" 1956132 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-793 1950956 1953253 1953379 "ORESUP" 1953502 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-792 1948491 1948991 1949551 "OREPCTO" 1950445 NIL OREPCTO (NIL T T) -7 NIL NIL) (-791 1942401 1944607 1944647 "OREPCAT" 1946968 NIL OREPCAT (NIL T) -9 NIL 1948071) (-790 1939549 1940331 1941388 "OREPCAT-" 1941393 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-789 1938727 1938999 1939027 "ORDSET" 1939336 T ORDSET (NIL) -9 NIL 1939500) (-788 1938246 1938368 1938561 "ORDSET-" 1938566 NIL ORDSET- (NIL T) -8 NIL NIL) (-787 1936860 1937661 1937689 "ORDRING" 1937891 T ORDRING (NIL) -9 NIL 1938015) (-786 1936505 1936599 1936743 "ORDRING-" 1936748 NIL ORDRING- (NIL T) -8 NIL NIL) (-785 1935868 1936349 1936377 "ORDMON" 1936382 T ORDMON (NIL) -9 NIL 1936403) (-784 1935030 1935177 1935372 "ORDFUNS" 1935717 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-783 1934542 1934901 1934929 "ORDFIN" 1934934 T ORDFIN (NIL) -9 NIL 1934955) (-782 1931054 1933128 1933537 "ORDCOMP" 1934166 NIL ORDCOMP (NIL T) -8 NIL NIL) (-781 1930320 1930447 1930633 "ORDCOMP2" 1930914 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-780 1926827 1927710 1928547 "OPTPROB" 1929503 T OPTPROB (NIL) -8 NIL NIL) (-779 1923669 1924298 1924992 "OPTPACK" 1926153 T OPTPACK (NIL) -7 NIL NIL) (-778 1921395 1922131 1922159 "OPTCAT" 1922974 T OPTCAT (NIL) -9 NIL 1923620) (-777 1921163 1921202 1921268 "OPQUERY" 1921349 T OPQUERY (NIL) -7 NIL NIL) (-776 1918299 1919490 1919990 "OP" 1920695 NIL OP (NIL T) -8 NIL NIL) (-775 1915064 1917096 1917465 "ONECOMP" 1917963 NIL ONECOMP (NIL T) -8 NIL NIL) (-774 1914369 1914484 1914658 "ONECOMP2" 1914936 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-773 1913788 1913894 1914024 "OMSERVER" 1914259 T OMSERVER (NIL) -7 NIL NIL) (-772 1910677 1913229 1913269 "OMSAGG" 1913330 NIL OMSAGG (NIL T) -9 NIL 1913394) (-771 1909300 1909563 1909845 "OMPKG" 1910415 T OMPKG (NIL) -7 NIL NIL) (-770 1908730 1908833 1908861 "OM" 1909160 T OM (NIL) -9 NIL NIL) (-769 1907269 1908282 1908450 "OMLO" 1908611 NIL OMLO (NIL T T) -8 NIL NIL) (-768 1906199 1906346 1906572 "OMEXPR" 1907095 NIL OMEXPR (NIL T) -7 NIL NIL) (-767 1905517 1905745 1905881 "OMERR" 1906083 T OMERR (NIL) -8 NIL NIL) (-766 1904695 1904938 1905098 "OMERRK" 1905377 T OMERRK (NIL) -8 NIL NIL) (-765 1904173 1904372 1904480 "OMENC" 1904607 T OMENC (NIL) -8 NIL NIL) (-764 1898068 1899253 1900424 "OMDEV" 1903022 T OMDEV (NIL) -8 NIL NIL) (-763 1897137 1897308 1897502 "OMCONN" 1897894 T OMCONN (NIL) -8 NIL NIL) (-762 1895753 1896739 1896767 "OINTDOM" 1896772 T OINTDOM (NIL) -9 NIL 1896793) (-761 1891515 1892745 1893460 "OFMONOID" 1895070 NIL OFMONOID (NIL T) -8 NIL NIL) (-760 1890953 1891452 1891497 "ODVAR" 1891502 NIL ODVAR (NIL T) -8 NIL NIL) (-759 1888078 1890450 1890635 "ODR" 1890828 NIL ODR (NIL T T NIL) -8 NIL NIL) (-758 1880384 1887857 1887981 "ODPOL" 1887986 NIL ODPOL (NIL T) -8 NIL NIL) (-757 1874207 1880256 1880361 "ODP" 1880366 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-756 1872973 1873188 1873463 "ODETOOLS" 1873981 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-755 1869942 1870598 1871314 "ODESYS" 1872306 NIL ODESYS (NIL T T) -7 NIL NIL) (-754 1864846 1865754 1866777 "ODERTRIC" 1869017 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-753 1864272 1864354 1864548 "ODERED" 1864758 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-752 1861174 1861722 1862397 "ODERAT" 1863695 NIL ODERAT (NIL T T) -7 NIL NIL) (-751 1858142 1858606 1859202 "ODEPRRIC" 1860703 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-750 1856011 1856580 1857089 "ODEPROB" 1857653 T ODEPROB (NIL) -8 NIL NIL) (-749 1852543 1853026 1853672 "ODEPRIM" 1855490 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-748 1851796 1851898 1852156 "ODEPAL" 1852435 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-747 1847998 1848779 1849633 "ODEPACK" 1850962 T ODEPACK (NIL) -7 NIL NIL) (-746 1847035 1847142 1847370 "ODEINT" 1847887 NIL ODEINT (NIL T T) -7 NIL NIL) (-745 1841136 1842561 1844008 "ODEIFTBL" 1845608 T ODEIFTBL (NIL) -8 NIL NIL) (-744 1836480 1837266 1838224 "ODEEF" 1840295 NIL ODEEF (NIL T T) -7 NIL NIL) (-743 1835817 1835906 1836135 "ODECONST" 1836385 NIL ODECONST (NIL T T T) -7 NIL NIL) (-742 1833975 1834608 1834636 "ODECAT" 1835239 T ODECAT (NIL) -9 NIL 1835768) (-741 1830847 1833687 1833806 "OCT" 1833888 NIL OCT (NIL T) -8 NIL NIL) (-740 1830485 1830528 1830655 "OCTCT2" 1830798 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-739 1825319 1827757 1827797 "OC" 1828893 NIL OC (NIL T) -9 NIL 1829750) (-738 1822546 1823294 1824284 "OC-" 1824378 NIL OC- (NIL T T) -8 NIL NIL) (-737 1821925 1822367 1822395 "OCAMON" 1822400 T OCAMON (NIL) -9 NIL 1822421) (-736 1821483 1821798 1821826 "OASGP" 1821831 T OASGP (NIL) -9 NIL 1821851) (-735 1820771 1821234 1821262 "OAMONS" 1821302 T OAMONS (NIL) -9 NIL 1821345) (-734 1820212 1820619 1820647 "OAMON" 1820652 T OAMON (NIL) -9 NIL 1820672) (-733 1819517 1820009 1820037 "OAGROUP" 1820042 T OAGROUP (NIL) -9 NIL 1820062) (-732 1819207 1819257 1819345 "NUMTUBE" 1819461 NIL NUMTUBE (NIL T) -7 NIL NIL) (-731 1812780 1814298 1815834 "NUMQUAD" 1817691 T NUMQUAD (NIL) -7 NIL NIL) (-730 1808536 1809524 1810549 "NUMODE" 1811775 T NUMODE (NIL) -7 NIL NIL) (-729 1805940 1806786 1806814 "NUMINT" 1807731 T NUMINT (NIL) -9 NIL 1808487) (-728 1804888 1805085 1805303 "NUMFMT" 1805742 T NUMFMT (NIL) -7 NIL NIL) (-727 1791267 1794204 1796734 "NUMERIC" 1802397 NIL NUMERIC (NIL T) -7 NIL NIL) (-726 1785668 1790720 1790814 "NTSCAT" 1790819 NIL NTSCAT (NIL T T T T) -9 NIL 1790857) (-725 1784862 1785027 1785220 "NTPOLFN" 1785507 NIL NTPOLFN (NIL T) -7 NIL NIL) (-724 1772678 1781704 1782514 "NSUP" 1784084 NIL NSUP (NIL T) -8 NIL NIL) (-723 1772314 1772371 1772478 "NSUP2" 1772615 NIL NSUP2 (NIL T T) -7 NIL NIL) (-722 1762276 1772093 1772223 "NSMP" 1772228 NIL NSMP (NIL T T) -8 NIL NIL) (-721 1760708 1761009 1761366 "NREP" 1761964 NIL NREP (NIL T) -7 NIL NIL) (-720 1759299 1759551 1759909 "NPCOEF" 1760451 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-719 1758365 1758480 1758696 "NORMRETR" 1759180 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-718 1756418 1756708 1757115 "NORMPK" 1758073 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-717 1756103 1756131 1756255 "NORMMA" 1756384 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-716 1755930 1756060 1756089 "NONE" 1756094 T NONE (NIL) -8 NIL NIL) (-715 1755719 1755748 1755817 "NONE1" 1755894 NIL NONE1 (NIL T) -7 NIL NIL) (-714 1755204 1755266 1755451 "NODE1" 1755651 NIL NODE1 (NIL T T) -7 NIL NIL) (-713 1753498 1754367 1754622 "NNI" 1754969 T NNI (NIL) -8 NIL NIL) (-712 1751918 1752231 1752595 "NLINSOL" 1753166 NIL NLINSOL (NIL T) -7 NIL NIL) (-711 1748085 1749053 1749975 "NIPROB" 1751016 T NIPROB (NIL) -8 NIL NIL) (-710 1746842 1747076 1747378 "NFINTBAS" 1747847 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-709 1745550 1745781 1746062 "NCODIV" 1746610 NIL NCODIV (NIL T T) -7 NIL NIL) (-708 1745312 1745349 1745424 "NCNTFRAC" 1745507 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-707 1743492 1743856 1744276 "NCEP" 1744937 NIL NCEP (NIL T) -7 NIL NIL) (-706 1742404 1743143 1743171 "NASRING" 1743281 T NASRING (NIL) -9 NIL 1743355) (-705 1742199 1742243 1742337 "NASRING-" 1742342 NIL NASRING- (NIL T) -8 NIL NIL) (-704 1741353 1741852 1741880 "NARNG" 1741997 T NARNG (NIL) -9 NIL 1742088) (-703 1741045 1741112 1741246 "NARNG-" 1741251 NIL NARNG- (NIL T) -8 NIL NIL) (-702 1739924 1740131 1740366 "NAGSP" 1740830 T NAGSP (NIL) -7 NIL NIL) (-701 1731348 1732994 1734629 "NAGS" 1738309 T NAGS (NIL) -7 NIL NIL) (-700 1729912 1730216 1730543 "NAGF07" 1731041 T NAGF07 (NIL) -7 NIL NIL) (-699 1724494 1725774 1727070 "NAGF04" 1728636 T NAGF04 (NIL) -7 NIL NIL) (-698 1717526 1719124 1720741 "NAGF02" 1722897 T NAGF02 (NIL) -7 NIL NIL) (-697 1712790 1713880 1714987 "NAGF01" 1716439 T NAGF01 (NIL) -7 NIL NIL) (-696 1706450 1708008 1709585 "NAGE04" 1711233 T NAGE04 (NIL) -7 NIL NIL) (-695 1697691 1699794 1701906 "NAGE02" 1704358 T NAGE02 (NIL) -7 NIL NIL) (-694 1693684 1694621 1695575 "NAGE01" 1696757 T NAGE01 (NIL) -7 NIL NIL) (-693 1691491 1692022 1692577 "NAGD03" 1693149 T NAGD03 (NIL) -7 NIL NIL) (-692 1683277 1685196 1687141 "NAGD02" 1689566 T NAGD02 (NIL) -7 NIL NIL) (-691 1677136 1678549 1679977 "NAGD01" 1681869 T NAGD01 (NIL) -7 NIL NIL) (-690 1673393 1674203 1675028 "NAGC06" 1676331 T NAGC06 (NIL) -7 NIL NIL) (-689 1671870 1672199 1672552 "NAGC05" 1673060 T NAGC05 (NIL) -7 NIL NIL) (-688 1671254 1671371 1671513 "NAGC02" 1671748 T NAGC02 (NIL) -7 NIL NIL) (-687 1670316 1670873 1670913 "NAALG" 1670992 NIL NAALG (NIL T) -9 NIL 1671053) (-686 1670151 1670180 1670270 "NAALG-" 1670275 NIL NAALG- (NIL T T) -8 NIL NIL) (-685 1664101 1665209 1666396 "MULTSQFR" 1669047 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-684 1663420 1663495 1663679 "MULTFACT" 1664013 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-683 1656614 1660525 1660577 "MTSCAT" 1661637 NIL MTSCAT (NIL T T) -9 NIL 1662151) (-682 1656326 1656380 1656472 "MTHING" 1656554 NIL MTHING (NIL T) -7 NIL NIL) (-681 1656118 1656151 1656211 "MSYSCMD" 1656286 T MSYSCMD (NIL) -7 NIL NIL) (-680 1652230 1654873 1655193 "MSET" 1655831 NIL MSET (NIL T) -8 NIL NIL) (-679 1649326 1651792 1651833 "MSETAGG" 1651838 NIL MSETAGG (NIL T) -9 NIL 1651872) (-678 1645182 1646724 1647465 "MRING" 1648629 NIL MRING (NIL T T) -8 NIL NIL) (-677 1644752 1644819 1644948 "MRF2" 1645109 NIL MRF2 (NIL T T T) -7 NIL NIL) (-676 1644370 1644405 1644549 "MRATFAC" 1644711 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-675 1641982 1642277 1642708 "MPRFF" 1644075 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-674 1636002 1641837 1641933 "MPOLY" 1641938 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-673 1635492 1635527 1635735 "MPCPF" 1635961 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-672 1635008 1635051 1635234 "MPC3" 1635443 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-671 1634209 1634290 1634509 "MPC2" 1634923 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-670 1632510 1632847 1633237 "MONOTOOL" 1633869 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-669 1631635 1631970 1631998 "MONOID" 1632275 T MONOID (NIL) -9 NIL 1632447) (-668 1631013 1631176 1631419 "MONOID-" 1631424 NIL MONOID- (NIL T) -8 NIL NIL) (-667 1621994 1627980 1628039 "MONOGEN" 1628713 NIL MONOGEN (NIL T T) -9 NIL 1629169) (-666 1619212 1619947 1620947 "MONOGEN-" 1621066 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-665 1618072 1618492 1618520 "MONADWU" 1618912 T MONADWU (NIL) -9 NIL 1619150) (-664 1617444 1617603 1617851 "MONADWU-" 1617856 NIL MONADWU- (NIL T) -8 NIL NIL) (-663 1616830 1617048 1617076 "MONAD" 1617283 T MONAD (NIL) -9 NIL 1617395) (-662 1616515 1616593 1616725 "MONAD-" 1616730 NIL MONAD- (NIL T) -8 NIL NIL) (-661 1614766 1615428 1615707 "MOEBIUS" 1616268 NIL MOEBIUS (NIL T) -8 NIL NIL) (-660 1614160 1614538 1614578 "MODULE" 1614583 NIL MODULE (NIL T) -9 NIL 1614609) (-659 1613728 1613824 1614014 "MODULE-" 1614019 NIL MODULE- (NIL T T) -8 NIL NIL) (-658 1611399 1612094 1612420 "MODRING" 1613553 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-657 1608355 1609520 1610037 "MODOP" 1610931 NIL MODOP (NIL T T) -8 NIL NIL) (-656 1606542 1606994 1607335 "MODMONOM" 1608154 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-655 1596221 1604746 1605168 "MODMON" 1606170 NIL MODMON (NIL T T) -8 NIL NIL) (-654 1593347 1595065 1595341 "MODFIELD" 1596096 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-653 1592351 1592628 1592818 "MMLFORM" 1593177 T MMLFORM (NIL) -8 NIL NIL) (-652 1591877 1591920 1592099 "MMAP" 1592302 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-651 1590114 1590891 1590931 "MLO" 1591348 NIL MLO (NIL T) -9 NIL 1591589) (-650 1587481 1587996 1588598 "MLIFT" 1589595 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-649 1586872 1586956 1587110 "MKUCFUNC" 1587392 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-648 1586471 1586541 1586664 "MKRECORD" 1586795 NIL MKRECORD (NIL T T) -7 NIL NIL) (-647 1585519 1585680 1585908 "MKFUNC" 1586282 NIL MKFUNC (NIL T) -7 NIL NIL) (-646 1584907 1585011 1585167 "MKFLCFN" 1585402 NIL MKFLCFN (NIL T) -7 NIL NIL) (-645 1584333 1584700 1584789 "MKCHSET" 1584851 NIL MKCHSET (NIL T) -8 NIL NIL) (-644 1583610 1583712 1583897 "MKBCFUNC" 1584226 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-643 1580294 1583164 1583300 "MINT" 1583494 T MINT (NIL) -8 NIL NIL) (-642 1579106 1579349 1579626 "MHROWRED" 1580049 NIL MHROWRED (NIL T) -7 NIL NIL) (-641 1574377 1577551 1577975 "MFLOAT" 1578702 T MFLOAT (NIL) -8 NIL NIL) (-640 1573734 1573810 1573981 "MFINFACT" 1574289 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-639 1570049 1570897 1571781 "MESH" 1572870 T MESH (NIL) -7 NIL NIL) (-638 1568439 1568751 1569104 "MDDFACT" 1569736 NIL MDDFACT (NIL T) -7 NIL NIL) (-637 1565282 1567599 1567640 "MDAGG" 1567895 NIL MDAGG (NIL T) -9 NIL 1568038) (-636 1554980 1564575 1564782 "MCMPLX" 1565095 T MCMPLX (NIL) -8 NIL NIL) (-635 1554121 1554267 1554467 "MCDEN" 1554829 NIL MCDEN (NIL T T) -7 NIL NIL) (-634 1552011 1552281 1552661 "MCALCFN" 1553851 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-633 1549633 1550156 1550717 "MATSTOR" 1551482 NIL MATSTOR (NIL T) -7 NIL NIL) (-632 1545642 1549008 1549255 "MATRIX" 1549418 NIL MATRIX (NIL T) -8 NIL NIL) (-631 1541411 1542115 1542851 "MATLIN" 1544999 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-630 1531609 1534747 1534823 "MATCAT" 1539661 NIL MATCAT (NIL T T T) -9 NIL 1541078) (-629 1527974 1528987 1530342 "MATCAT-" 1530347 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-628 1526576 1526729 1527060 "MATCAT2" 1527809 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-627 1524688 1525012 1525396 "MAPPKG3" 1526251 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-626 1523669 1523842 1524064 "MAPPKG2" 1524512 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-625 1522168 1522452 1522779 "MAPPKG1" 1523375 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-624 1521779 1521837 1521960 "MAPHACK3" 1522104 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-623 1521371 1521432 1521546 "MAPHACK2" 1521711 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-622 1520809 1520912 1521054 "MAPHACK1" 1521262 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-621 1518917 1519511 1519814 "MAGMA" 1520538 NIL MAGMA (NIL T) -8 NIL NIL) (-620 1515391 1517161 1517621 "M3D" 1518490 NIL M3D (NIL T) -8 NIL NIL) (-619 1509547 1513762 1513803 "LZSTAGG" 1514585 NIL LZSTAGG (NIL T) -9 NIL 1514880) (-618 1505520 1506678 1508135 "LZSTAGG-" 1508140 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-617 1502636 1503413 1503899 "LWORD" 1505066 NIL LWORD (NIL T) -8 NIL NIL) (-616 1495796 1502407 1502541 "LSQM" 1502546 NIL LSQM (NIL NIL T) -8 NIL NIL) (-615 1495020 1495159 1495387 "LSPP" 1495651 NIL LSPP (NIL T T T T) -7 NIL NIL) (-614 1492832 1493133 1493589 "LSMP" 1494709 NIL LSMP (NIL T T T T) -7 NIL NIL) (-613 1489611 1490285 1491015 "LSMP1" 1492134 NIL LSMP1 (NIL T) -7 NIL NIL) (-612 1483538 1488780 1488821 "LSAGG" 1488883 NIL LSAGG (NIL T) -9 NIL 1488961) (-611 1480233 1481157 1482370 "LSAGG-" 1482375 NIL LSAGG- (NIL T T) -8 NIL NIL) (-610 1477859 1479377 1479626 "LPOLY" 1480028 NIL LPOLY (NIL T T) -8 NIL NIL) (-609 1477441 1477526 1477649 "LPEFRAC" 1477768 NIL LPEFRAC (NIL T) -7 NIL NIL) (-608 1475788 1476535 1476788 "LO" 1477273 NIL LO (NIL T T T) -8 NIL NIL) (-607 1475442 1475554 1475582 "LOGIC" 1475693 T LOGIC (NIL) -9 NIL 1475773) (-606 1475304 1475327 1475398 "LOGIC-" 1475403 NIL LOGIC- (NIL T) -8 NIL NIL) (-605 1474497 1474637 1474830 "LODOOPS" 1475160 NIL LODOOPS (NIL T T) -7 NIL NIL) (-604 1471915 1474414 1474479 "LODO" 1474484 NIL LODO (NIL T NIL) -8 NIL NIL) (-603 1470461 1470696 1471047 "LODOF" 1471662 NIL LODOF (NIL T T) -7 NIL NIL) (-602 1466881 1469317 1469357 "LODOCAT" 1469789 NIL LODOCAT (NIL T) -9 NIL 1470000) (-601 1466615 1466673 1466799 "LODOCAT-" 1466804 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-600 1463929 1466456 1466574 "LODO2" 1466579 NIL LODO2 (NIL T T) -8 NIL NIL) (-599 1461358 1463866 1463911 "LODO1" 1463916 NIL LODO1 (NIL T) -8 NIL NIL) (-598 1460221 1460386 1460697 "LODEEF" 1461181 NIL LODEEF (NIL T T T) -7 NIL NIL) (-597 1455508 1458352 1458393 "LNAGG" 1459340 NIL LNAGG (NIL T) -9 NIL 1459784) (-596 1454655 1454869 1455211 "LNAGG-" 1455216 NIL LNAGG- (NIL T T) -8 NIL NIL) (-595 1450820 1451582 1452220 "LMOPS" 1454071 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-594 1450218 1450580 1450620 "LMODULE" 1450680 NIL LMODULE (NIL T) -9 NIL 1450722) (-593 1447464 1449863 1449986 "LMDICT" 1450128 NIL LMDICT (NIL T) -8 NIL NIL) (-592 1440691 1446410 1446708 "LIST" 1447199 NIL LIST (NIL T) -8 NIL NIL) (-591 1440216 1440290 1440429 "LIST3" 1440611 NIL LIST3 (NIL T T T) -7 NIL NIL) (-590 1439223 1439401 1439629 "LIST2" 1440034 NIL LIST2 (NIL T T) -7 NIL NIL) (-589 1437357 1437669 1438068 "LIST2MAP" 1438870 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-588 1436070 1436750 1436790 "LINEXP" 1437043 NIL LINEXP (NIL T) -9 NIL 1437191) (-587 1434717 1434977 1435274 "LINDEP" 1435822 NIL LINDEP (NIL T T) -7 NIL NIL) (-586 1431484 1432203 1432980 "LIMITRF" 1433972 NIL LIMITRF (NIL T) -7 NIL NIL) (-585 1429764 1430059 1430474 "LIMITPS" 1431179 NIL LIMITPS (NIL T T) -7 NIL NIL) (-584 1424219 1429275 1429503 "LIE" 1429585 NIL LIE (NIL T T) -8 NIL NIL) (-583 1423270 1423713 1423753 "LIECAT" 1423893 NIL LIECAT (NIL T) -9 NIL 1424044) (-582 1423111 1423138 1423226 "LIECAT-" 1423231 NIL LIECAT- (NIL T T) -8 NIL NIL) (-581 1415723 1422560 1422725 "LIB" 1422966 T LIB (NIL) -8 NIL NIL) (-580 1411360 1412241 1413176 "LGROBP" 1414840 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-579 1409226 1409500 1409862 "LF" 1411081 NIL LF (NIL T T) -7 NIL NIL) (-578 1408066 1408758 1408786 "LFCAT" 1408993 T LFCAT (NIL) -9 NIL 1409132) (-577 1404978 1405604 1406290 "LEXTRIPK" 1407432 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-576 1401684 1402548 1403051 "LEXP" 1404558 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-575 1400082 1400395 1400796 "LEADCDET" 1401366 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-574 1399278 1399352 1399579 "LAZM3PK" 1400003 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-573 1394195 1397357 1397894 "LAUPOL" 1398791 NIL LAUPOL (NIL T T) -8 NIL NIL) (-572 1393762 1393806 1393973 "LAPLACE" 1394145 NIL LAPLACE (NIL T T) -7 NIL NIL) (-571 1391690 1392863 1393114 "LA" 1393595 NIL LA (NIL T T T) -8 NIL NIL) (-570 1390753 1391347 1391387 "LALG" 1391448 NIL LALG (NIL T) -9 NIL 1391506) (-569 1390468 1390527 1390662 "LALG-" 1390667 NIL LALG- (NIL T T) -8 NIL NIL) (-568 1389378 1389565 1389862 "KOVACIC" 1390268 NIL KOVACIC (NIL T T) -7 NIL NIL) (-567 1389213 1389237 1389278 "KONVERT" 1389340 NIL KONVERT (NIL T) -9 NIL NIL) (-566 1389048 1389072 1389113 "KOERCE" 1389175 NIL KOERCE (NIL T) -9 NIL NIL) (-565 1386782 1387542 1387935 "KERNEL" 1388687 NIL KERNEL (NIL T) -8 NIL NIL) (-564 1386284 1386365 1386495 "KERNEL2" 1386696 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-563 1380136 1384824 1384878 "KDAGG" 1385255 NIL KDAGG (NIL T T) -9 NIL 1385461) (-562 1379665 1379789 1379994 "KDAGG-" 1379999 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-561 1372840 1379326 1379481 "KAFILE" 1379543 NIL KAFILE (NIL T) -8 NIL NIL) (-560 1367295 1372351 1372579 "JORDAN" 1372661 NIL JORDAN (NIL T T) -8 NIL NIL) (-559 1367024 1367083 1367170 "JAVACODE" 1367228 T JAVACODE (NIL) -8 NIL NIL) (-558 1363324 1365230 1365284 "IXAGG" 1366213 NIL IXAGG (NIL T T) -9 NIL 1366672) (-557 1362243 1362549 1362968 "IXAGG-" 1362973 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-556 1357828 1362165 1362224 "IVECTOR" 1362229 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-555 1356594 1356831 1357097 "ITUPLE" 1357595 NIL ITUPLE (NIL T) -8 NIL NIL) (-554 1355030 1355207 1355513 "ITRIGMNP" 1356416 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-553 1353775 1353979 1354262 "ITFUN3" 1354806 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-552 1353407 1353464 1353573 "ITFUN2" 1353712 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-551 1351209 1352280 1352577 "ITAYLOR" 1353142 NIL ITAYLOR (NIL T) -8 NIL NIL) (-550 1340197 1345395 1346554 "ISUPS" 1350082 NIL ISUPS (NIL T) -8 NIL NIL) (-549 1339301 1339441 1339677 "ISUMP" 1340044 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-548 1334565 1339102 1339181 "ISTRING" 1339254 NIL ISTRING (NIL NIL) -8 NIL NIL) (-547 1333778 1333859 1334074 "IRURPK" 1334479 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-546 1332714 1332915 1333155 "IRSN" 1333558 T IRSN (NIL) -7 NIL NIL) (-545 1330749 1331104 1331539 "IRRF2F" 1332352 NIL IRRF2F (NIL T) -7 NIL NIL) (-544 1330496 1330534 1330610 "IRREDFFX" 1330705 NIL IRREDFFX (NIL T) -7 NIL NIL) (-543 1329111 1329370 1329669 "IROOT" 1330229 NIL IROOT (NIL T) -7 NIL NIL) (-542 1325749 1326800 1327490 "IR" 1328453 NIL IR (NIL T) -8 NIL NIL) (-541 1323362 1323857 1324423 "IR2" 1325227 NIL IR2 (NIL T T) -7 NIL NIL) (-540 1322438 1322551 1322771 "IR2F" 1323245 NIL IR2F (NIL T T) -7 NIL NIL) (-539 1322229 1322263 1322323 "IPRNTPK" 1322398 T IPRNTPK (NIL) -7 NIL NIL) (-538 1318783 1322118 1322187 "IPF" 1322192 NIL IPF (NIL NIL) -8 NIL NIL) (-537 1317100 1318708 1318765 "IPADIC" 1318770 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-536 1316599 1316657 1316846 "INVLAPLA" 1317036 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-535 1306248 1308601 1310987 "INTTR" 1314263 NIL INTTR (NIL T T) -7 NIL NIL) (-534 1302596 1303337 1304200 "INTTOOLS" 1305434 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-533 1302182 1302273 1302390 "INTSLPE" 1302499 T INTSLPE (NIL) -7 NIL NIL) (-532 1300132 1302105 1302164 "INTRVL" 1302169 NIL INTRVL (NIL T) -8 NIL NIL) (-531 1297739 1298251 1298825 "INTRF" 1299617 NIL INTRF (NIL T) -7 NIL NIL) (-530 1297154 1297251 1297392 "INTRET" 1297637 NIL INTRET (NIL T) -7 NIL NIL) (-529 1295156 1295545 1296014 "INTRAT" 1296762 NIL INTRAT (NIL T T) -7 NIL NIL) (-528 1292389 1292972 1293597 "INTPM" 1294641 NIL INTPM (NIL T T) -7 NIL NIL) (-527 1289098 1289697 1290441 "INTPAF" 1291775 NIL INTPAF (NIL T T T) -7 NIL NIL) (-526 1284341 1285287 1286322 "INTPACK" 1288083 T INTPACK (NIL) -7 NIL NIL) (-525 1281195 1284070 1284197 "INT" 1284234 T INT (NIL) -8 NIL NIL) (-524 1280447 1280599 1280807 "INTHERTR" 1281037 NIL INTHERTR (NIL T T) -7 NIL NIL) (-523 1279886 1279966 1280154 "INTHERAL" 1280361 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-522 1277732 1278175 1278632 "INTHEORY" 1279449 T INTHEORY (NIL) -7 NIL NIL) (-521 1269054 1270675 1272453 "INTG0" 1276084 NIL INTG0 (NIL T T T) -7 NIL NIL) (-520 1249627 1254417 1259227 "INTFTBL" 1264264 T INTFTBL (NIL) -8 NIL NIL) (-519 1248876 1249014 1249187 "INTFACT" 1249486 NIL INTFACT (NIL T) -7 NIL NIL) (-518 1246267 1246713 1247276 "INTEF" 1248430 NIL INTEF (NIL T T) -7 NIL NIL) (-517 1244729 1245478 1245506 "INTDOM" 1245807 T INTDOM (NIL) -9 NIL 1246014) (-516 1244098 1244272 1244514 "INTDOM-" 1244519 NIL INTDOM- (NIL T) -8 NIL NIL) (-515 1240591 1242523 1242577 "INTCAT" 1243376 NIL INTCAT (NIL T) -9 NIL 1243695) (-514 1240064 1240166 1240294 "INTBIT" 1240483 T INTBIT (NIL) -7 NIL NIL) (-513 1238739 1238893 1239206 "INTALG" 1239909 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-512 1238196 1238286 1238456 "INTAF" 1238643 NIL INTAF (NIL T T) -7 NIL NIL) (-511 1231650 1238006 1238146 "INTABL" 1238151 NIL INTABL (NIL T T T) -8 NIL NIL) (-510 1226601 1229330 1229358 "INS" 1230326 T INS (NIL) -9 NIL 1231007) (-509 1223841 1224612 1225586 "INS-" 1225659 NIL INS- (NIL T) -8 NIL NIL) (-508 1222620 1222847 1223144 "INPSIGN" 1223594 NIL INPSIGN (NIL T T) -7 NIL NIL) (-507 1221738 1221855 1222052 "INPRODPF" 1222500 NIL INPRODPF (NIL T T) -7 NIL NIL) (-506 1220632 1220749 1220986 "INPRODFF" 1221618 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-505 1219632 1219784 1220044 "INNMFACT" 1220468 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-504 1218829 1218926 1219114 "INMODGCD" 1219531 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-503 1217338 1217582 1217906 "INFSP" 1218574 NIL INFSP (NIL T T T) -7 NIL NIL) (-502 1216522 1216639 1216822 "INFPROD0" 1217218 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-501 1213533 1214691 1215182 "INFORM" 1216039 T INFORM (NIL) -8 NIL NIL) (-500 1213143 1213203 1213301 "INFORM1" 1213468 NIL INFORM1 (NIL T) -7 NIL NIL) (-499 1212666 1212755 1212869 "INFINITY" 1213049 T INFINITY (NIL) -7 NIL NIL) (-498 1211283 1211532 1211853 "INEP" 1212414 NIL INEP (NIL T T T) -7 NIL NIL) (-497 1210559 1211180 1211245 "INDE" 1211250 NIL INDE (NIL T) -8 NIL NIL) (-496 1210123 1210191 1210308 "INCRMAPS" 1210486 NIL INCRMAPS (NIL T) -7 NIL NIL) (-495 1205434 1206359 1207303 "INBFF" 1209211 NIL INBFF (NIL T) -7 NIL NIL) (-494 1201929 1205279 1205382 "IMATRIX" 1205387 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-493 1200641 1200764 1201079 "IMATQF" 1201785 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-492 1198861 1199088 1199425 "IMATLIN" 1200397 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-491 1193487 1198785 1198843 "ILIST" 1198848 NIL ILIST (NIL T NIL) -8 NIL NIL) (-490 1191440 1193347 1193460 "IIARRAY2" 1193465 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-489 1186808 1191351 1191415 "IFF" 1191420 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-488 1181851 1186100 1186288 "IFARRAY" 1186665 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-487 1181058 1181755 1181828 "IFAMON" 1181833 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-486 1180642 1180707 1180761 "IEVALAB" 1180968 NIL IEVALAB (NIL T T) -9 NIL NIL) (-485 1180317 1180385 1180545 "IEVALAB-" 1180550 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-484 1179975 1180231 1180294 "IDPO" 1180299 NIL IDPO (NIL T T) -8 NIL NIL) (-483 1179252 1179864 1179939 "IDPOAMS" 1179944 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-482 1178586 1179141 1179216 "IDPOAM" 1179221 NIL IDPOAM (NIL T T) -8 NIL NIL) (-481 1177672 1177922 1177975 "IDPC" 1178388 NIL IDPC (NIL T T) -9 NIL 1178537) (-480 1177168 1177564 1177637 "IDPAM" 1177642 NIL IDPAM (NIL T T) -8 NIL NIL) (-479 1176571 1177060 1177133 "IDPAG" 1177138 NIL IDPAG (NIL T T) -8 NIL NIL) (-478 1172826 1173674 1174569 "IDECOMP" 1175728 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-477 1165699 1166749 1167796 "IDEAL" 1171862 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-476 1164863 1164975 1165174 "ICDEN" 1165583 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-475 1163962 1164343 1164490 "ICARD" 1164736 T ICARD (NIL) -8 NIL NIL) (-474 1162034 1162347 1162750 "IBPTOOLS" 1163639 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-473 1157648 1161654 1161767 "IBITS" 1161953 NIL IBITS (NIL NIL) -8 NIL NIL) (-472 1154371 1154947 1155642 "IBATOOL" 1157065 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-471 1152151 1152612 1153145 "IBACHIN" 1153906 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-470 1150028 1151997 1152100 "IARRAY2" 1152105 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-469 1146181 1149954 1150011 "IARRAY1" 1150016 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-468 1140119 1144599 1145077 "IAN" 1145723 T IAN (NIL) -8 NIL NIL) (-467 1139630 1139687 1139860 "IALGFACT" 1140056 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-466 1139158 1139271 1139299 "HYPCAT" 1139506 T HYPCAT (NIL) -9 NIL NIL) (-465 1138696 1138813 1138999 "HYPCAT-" 1139004 NIL HYPCAT- (NIL T) -8 NIL NIL) (-464 1135376 1136707 1136748 "HOAGG" 1137729 NIL HOAGG (NIL T) -9 NIL 1138408) (-463 1133970 1134369 1134895 "HOAGG-" 1134900 NIL HOAGG- (NIL T T) -8 NIL NIL) (-462 1127800 1133411 1133577 "HEXADEC" 1133824 T HEXADEC (NIL) -8 NIL NIL) (-461 1126548 1126770 1127033 "HEUGCD" 1127577 NIL HEUGCD (NIL T) -7 NIL NIL) (-460 1125651 1126385 1126515 "HELLFDIV" 1126520 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-459 1123879 1125428 1125516 "HEAP" 1125595 NIL HEAP (NIL T) -8 NIL NIL) (-458 1117746 1123794 1123856 "HDP" 1123861 NIL HDP (NIL NIL T) -8 NIL NIL) (-457 1111458 1117383 1117534 "HDMP" 1117647 NIL HDMP (NIL NIL T) -8 NIL NIL) (-456 1110783 1110922 1111086 "HB" 1111314 T HB (NIL) -7 NIL NIL) (-455 1104280 1110629 1110733 "HASHTBL" 1110738 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-454 1102033 1103908 1104087 "HACKPI" 1104121 T HACKPI (NIL) -8 NIL NIL) (-453 1097729 1101887 1101999 "GTSET" 1102004 NIL GTSET (NIL T T T T) -8 NIL NIL) (-452 1091255 1097607 1097705 "GSTBL" 1097710 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-451 1083488 1090291 1090555 "GSERIES" 1091046 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-450 1082511 1082964 1082992 "GROUP" 1083253 T GROUP (NIL) -9 NIL 1083412) (-449 1081627 1081850 1082194 "GROUP-" 1082199 NIL GROUP- (NIL T) -8 NIL NIL) (-448 1079996 1080315 1080702 "GROEBSOL" 1081304 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-447 1078937 1079199 1079250 "GRMOD" 1079779 NIL GRMOD (NIL T T) -9 NIL 1079947) (-446 1078705 1078741 1078869 "GRMOD-" 1078874 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-445 1074031 1075059 1076059 "GRIMAGE" 1077725 T GRIMAGE (NIL) -8 NIL NIL) (-444 1072498 1072758 1073082 "GRDEF" 1073727 T GRDEF (NIL) -7 NIL NIL) (-443 1071942 1072058 1072199 "GRAY" 1072377 T GRAY (NIL) -7 NIL NIL) (-442 1071176 1071556 1071607 "GRALG" 1071760 NIL GRALG (NIL T T) -9 NIL 1071852) (-441 1070837 1070910 1071073 "GRALG-" 1071078 NIL GRALG- (NIL T T T) -8 NIL NIL) (-440 1067645 1070426 1070602 "GPOLSET" 1070744 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-439 1067001 1067058 1067315 "GOSPER" 1067582 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-438 1062760 1063439 1063965 "GMODPOL" 1066700 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-437 1061765 1061949 1062187 "GHENSEL" 1062572 NIL GHENSEL (NIL T T) -7 NIL NIL) (-436 1055831 1056674 1057700 "GENUPS" 1060849 NIL GENUPS (NIL T T) -7 NIL NIL) (-435 1055528 1055579 1055668 "GENUFACT" 1055774 NIL GENUFACT (NIL T) -7 NIL NIL) (-434 1054940 1055017 1055182 "GENPGCD" 1055446 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-433 1054414 1054449 1054662 "GENMFACT" 1054899 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-432 1052982 1053237 1053544 "GENEEZ" 1054157 NIL GENEEZ (NIL T T) -7 NIL NIL) (-431 1046856 1052595 1052756 "GDMP" 1052905 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-430 1036233 1040627 1041733 "GCNAALG" 1045839 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-429 1034655 1035527 1035555 "GCDDOM" 1035810 T GCDDOM (NIL) -9 NIL 1035967) (-428 1034125 1034252 1034467 "GCDDOM-" 1034472 NIL GCDDOM- (NIL T) -8 NIL NIL) (-427 1032797 1032982 1033286 "GB" 1033904 NIL GB (NIL T T T T) -7 NIL NIL) (-426 1021417 1023743 1026135 "GBINTERN" 1030488 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-425 1019254 1019546 1019967 "GBF" 1021092 NIL GBF (NIL T T T T) -7 NIL NIL) (-424 1018035 1018200 1018467 "GBEUCLID" 1019070 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-423 1017384 1017509 1017658 "GAUSSFAC" 1017906 T GAUSSFAC (NIL) -7 NIL NIL) (-422 1015761 1016063 1016376 "GALUTIL" 1017103 NIL GALUTIL (NIL T) -7 NIL NIL) (-421 1014078 1014352 1014675 "GALPOLYU" 1015488 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-420 1011467 1011757 1012162 "GALFACTU" 1013775 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-419 1003273 1004772 1006380 "GALFACT" 1009899 NIL GALFACT (NIL T) -7 NIL NIL) (-418 1000661 1001319 1001347 "FVFUN" 1002503 T FVFUN (NIL) -9 NIL 1003223) (-417 999927 1000109 1000137 "FVC" 1000428 T FVC (NIL) -9 NIL 1000611) (-416 999569 999724 999805 "FUNCTION" 999879 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-415 997239 997790 998279 "FT" 999100 T FT (NIL) -8 NIL NIL) (-414 996057 996540 996743 "FTEM" 997056 T FTEM (NIL) -8 NIL NIL) (-413 994322 994610 995012 "FSUPFACT" 995749 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-412 992719 993008 993340 "FST" 994010 T FST (NIL) -8 NIL NIL) (-411 991894 992000 992194 "FSRED" 992601 NIL FSRED (NIL T T) -7 NIL NIL) (-410 990573 990828 991182 "FSPRMELT" 991609 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-409 987658 988096 988595 "FSPECF" 990136 NIL FSPECF (NIL T T) -7 NIL NIL) (-408 970032 978589 978629 "FS" 982467 NIL FS (NIL T) -9 NIL 984749) (-407 958682 961672 965728 "FS-" 966025 NIL FS- (NIL T T) -8 NIL NIL) (-406 958198 958252 958428 "FSINT" 958623 NIL FSINT (NIL T T) -7 NIL NIL) (-405 956479 957191 957494 "FSERIES" 957977 NIL FSERIES (NIL T T) -8 NIL NIL) (-404 955497 955613 955843 "FSCINT" 956359 NIL FSCINT (NIL T T) -7 NIL NIL) (-403 951732 954442 954483 "FSAGG" 954853 NIL FSAGG (NIL T) -9 NIL 955112) (-402 949494 950095 950891 "FSAGG-" 950986 NIL FSAGG- (NIL T T) -8 NIL NIL) (-401 948536 948679 948906 "FSAGG2" 949347 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-400 946195 946474 947027 "FS2UPS" 948254 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-399 945781 945824 945977 "FS2" 946146 NIL FS2 (NIL T T T T) -7 NIL NIL) (-398 944641 944812 945120 "FS2EXPXP" 945606 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-397 944067 944182 944334 "FRUTIL" 944521 NIL FRUTIL (NIL T) -7 NIL NIL) (-396 935487 939566 940922 "FR" 942743 NIL FR (NIL T) -8 NIL NIL) (-395 930564 933207 933247 "FRNAALG" 934643 NIL FRNAALG (NIL T) -9 NIL 935250) (-394 926242 927313 928588 "FRNAALG-" 929338 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-393 925880 925923 926050 "FRNAAF2" 926193 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-392 924245 924737 925031 "FRMOD" 925693 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-391 921967 922636 922952 "FRIDEAL" 924036 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-390 921166 921253 921540 "FRIDEAL2" 921874 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-389 920424 920832 920873 "FRETRCT" 920878 NIL FRETRCT (NIL T) -9 NIL 921049) (-388 919536 919767 920118 "FRETRCT-" 920123 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-387 916746 917966 918025 "FRAMALG" 918907 NIL FRAMALG (NIL T T) -9 NIL 919199) (-386 914879 915335 915965 "FRAMALG-" 916188 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-385 908781 914354 914630 "FRAC" 914635 NIL FRAC (NIL T) -8 NIL NIL) (-384 908417 908474 908581 "FRAC2" 908718 NIL FRAC2 (NIL T T) -7 NIL NIL) (-383 908053 908110 908217 "FR2" 908354 NIL FR2 (NIL T T) -7 NIL NIL) (-382 902727 905640 905668 "FPS" 906787 T FPS (NIL) -9 NIL 907343) (-381 902176 902285 902449 "FPS-" 902595 NIL FPS- (NIL T) -8 NIL NIL) (-380 899625 901322 901350 "FPC" 901575 T FPC (NIL) -9 NIL 901717) (-379 899418 899458 899555 "FPC-" 899560 NIL FPC- (NIL T) -8 NIL NIL) (-378 898297 898907 898948 "FPATMAB" 898953 NIL FPATMAB (NIL T) -9 NIL 899105) (-377 895997 896473 896899 "FPARFRAC" 897934 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-376 891390 891889 892571 "FORTRAN" 895429 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-375 889106 889606 890145 "FORT" 890871 T FORT (NIL) -7 NIL NIL) (-374 886782 887344 887372 "FORTFN" 888432 T FORTFN (NIL) -9 NIL 889056) (-373 886546 886596 886624 "FORTCAT" 886683 T FORTCAT (NIL) -9 NIL 886745) (-372 884606 885089 885488 "FORMULA" 886167 T FORMULA (NIL) -8 NIL NIL) (-371 884394 884424 884493 "FORMULA1" 884570 NIL FORMULA1 (NIL T) -7 NIL NIL) (-370 883917 883969 884142 "FORDER" 884336 NIL FORDER (NIL T T T T) -7 NIL NIL) (-369 883013 883177 883370 "FOP" 883744 T FOP (NIL) -7 NIL NIL) (-368 881621 882293 882467 "FNLA" 882895 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-367 880290 880679 880707 "FNCAT" 881279 T FNCAT (NIL) -9 NIL 881572) (-366 879856 880249 880277 "FNAME" 880282 T FNAME (NIL) -8 NIL NIL) (-365 878516 879489 879517 "FMTC" 879522 T FMTC (NIL) -9 NIL 879557) (-364 874834 876041 876669 "FMONOID" 877921 NIL FMONOID (NIL T) -8 NIL NIL) (-363 874054 874577 874725 "FM" 874730 NIL FM (NIL T T) -8 NIL NIL) (-362 871478 872124 872152 "FMFUN" 873296 T FMFUN (NIL) -9 NIL 874004) (-361 870747 870928 870956 "FMC" 871246 T FMC (NIL) -9 NIL 871428) (-360 867977 868811 868864 "FMCAT" 870046 NIL FMCAT (NIL T T) -9 NIL 870540) (-359 866872 867745 867844 "FM1" 867922 NIL FM1 (NIL T T) -8 NIL NIL) (-358 864646 865062 865556 "FLOATRP" 866423 NIL FLOATRP (NIL T) -7 NIL NIL) (-357 858132 862302 862932 "FLOAT" 864036 T FLOAT (NIL) -8 NIL NIL) (-356 855570 856070 856648 "FLOATCP" 857599 NIL FLOATCP (NIL T) -7 NIL NIL) (-355 854359 855207 855247 "FLINEXP" 855252 NIL FLINEXP (NIL T) -9 NIL 855345) (-354 853514 853749 854076 "FLINEXP-" 854081 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-353 852590 852734 852958 "FLASORT" 853366 NIL FLASORT (NIL T T) -7 NIL NIL) (-352 849809 850651 850703 "FLALG" 851930 NIL FLALG (NIL T T) -9 NIL 852397) (-351 843594 847296 847337 "FLAGG" 848599 NIL FLAGG (NIL T) -9 NIL 849251) (-350 842320 842659 843149 "FLAGG-" 843154 NIL FLAGG- (NIL T T) -8 NIL NIL) (-349 841362 841505 841732 "FLAGG2" 842173 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-348 838335 839353 839412 "FINRALG" 840540 NIL FINRALG (NIL T T) -9 NIL 841048) (-347 837495 837724 838063 "FINRALG-" 838068 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-346 836902 837115 837143 "FINITE" 837339 T FINITE (NIL) -9 NIL 837446) (-345 829362 831523 831563 "FINAALG" 835230 NIL FINAALG (NIL T) -9 NIL 836683) (-344 824703 825744 826888 "FINAALG-" 828267 NIL FINAALG- (NIL T T) -8 NIL NIL) (-343 824098 824458 824561 "FILE" 824633 NIL FILE (NIL T) -8 NIL NIL) (-342 822783 823095 823149 "FILECAT" 823833 NIL FILECAT (NIL T T) -9 NIL 824049) (-341 820646 822202 822230 "FIELD" 822270 T FIELD (NIL) -9 NIL 822350) (-340 819266 819651 820162 "FIELD-" 820167 NIL FIELD- (NIL T) -8 NIL NIL) (-339 817081 817903 818249 "FGROUP" 818953 NIL FGROUP (NIL T) -8 NIL NIL) (-338 816171 816335 816555 "FGLMICPK" 816913 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-337 811973 816096 816153 "FFX" 816158 NIL FFX (NIL T NIL) -8 NIL NIL) (-336 811574 811635 811770 "FFSLPE" 811906 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-335 807567 808346 809142 "FFPOLY" 810810 NIL FFPOLY (NIL T) -7 NIL NIL) (-334 807071 807107 807316 "FFPOLY2" 807525 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-333 802892 806990 807053 "FFP" 807058 NIL FFP (NIL T NIL) -8 NIL NIL) (-332 798260 802803 802867 "FF" 802872 NIL FF (NIL NIL NIL) -8 NIL NIL) (-331 793356 797603 797793 "FFNBX" 798114 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-330 788265 792491 792749 "FFNBP" 793210 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-329 782868 787549 787760 "FFNB" 788098 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-328 781700 781898 782213 "FFINTBAS" 782665 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-327 777924 780164 780192 "FFIELDC" 780812 T FFIELDC (NIL) -9 NIL 781188) (-326 776587 776957 777454 "FFIELDC-" 777459 NIL FFIELDC- (NIL T) -8 NIL NIL) (-325 776157 776202 776326 "FFHOM" 776529 NIL FFHOM (NIL T T T) -7 NIL NIL) (-324 773855 774339 774856 "FFF" 775672 NIL FFF (NIL T) -7 NIL NIL) (-323 769443 773597 773698 "FFCGX" 773798 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-322 765045 769175 769282 "FFCGP" 769386 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-321 760198 764772 764880 "FFCG" 764981 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-320 742144 751267 751353 "FFCAT" 756518 NIL FFCAT (NIL T T T) -9 NIL 758005) (-319 737342 738389 739703 "FFCAT-" 740933 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-318 736753 736796 737031 "FFCAT2" 737293 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-317 725953 729743 730960 "FEXPR" 735608 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-316 724953 725388 725429 "FEVALAB" 725513 NIL FEVALAB (NIL T) -9 NIL 725774) (-315 724112 724322 724660 "FEVALAB-" 724665 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-314 722705 723495 723698 "FDIV" 724011 NIL FDIV (NIL T T T T) -8 NIL NIL) (-313 719772 720487 720602 "FDIVCAT" 722170 NIL FDIVCAT (NIL T T T T) -9 NIL 722607) (-312 719534 719561 719731 "FDIVCAT-" 719736 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-311 718754 718841 719118 "FDIV2" 719441 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-310 717440 717699 717988 "FCPAK1" 718485 T FCPAK1 (NIL) -7 NIL NIL) (-309 716568 716940 717081 "FCOMP" 717331 NIL FCOMP (NIL T) -8 NIL NIL) (-308 700203 703617 707178 "FC" 713027 T FC (NIL) -8 NIL NIL) (-307 692799 696845 696885 "FAXF" 698687 NIL FAXF (NIL T) -9 NIL 699378) (-306 690078 690733 691558 "FAXF-" 692023 NIL FAXF- (NIL T T) -8 NIL NIL) (-305 685178 689454 689630 "FARRAY" 689935 NIL FARRAY (NIL T) -8 NIL NIL) (-304 680569 682640 682692 "FAMR" 683704 NIL FAMR (NIL T T) -9 NIL 684164) (-303 679460 679762 680196 "FAMR-" 680201 NIL FAMR- (NIL T T T) -8 NIL NIL) (-302 678656 679382 679435 "FAMONOID" 679440 NIL FAMONOID (NIL T) -8 NIL NIL) (-301 676489 677173 677226 "FAMONC" 678167 NIL FAMONC (NIL T T) -9 NIL 678552) (-300 675181 676243 676380 "FAGROUP" 676385 NIL FAGROUP (NIL T) -8 NIL NIL) (-299 672984 673303 673705 "FACUTIL" 674862 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-298 672083 672268 672490 "FACTFUNC" 672794 NIL FACTFUNC (NIL T) -7 NIL NIL) (-297 664403 671334 671546 "EXPUPXS" 671939 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-296 661886 662426 663012 "EXPRTUBE" 663837 T EXPRTUBE (NIL) -7 NIL NIL) (-295 658080 658672 659409 "EXPRODE" 661225 NIL EXPRODE (NIL T T) -7 NIL NIL) (-294 643239 656739 657165 "EXPR" 657686 NIL EXPR (NIL T) -8 NIL NIL) (-293 637667 638254 639066 "EXPR2UPS" 642537 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-292 637303 637360 637467 "EXPR2" 637604 NIL EXPR2 (NIL T T) -7 NIL NIL) (-291 628657 636440 636735 "EXPEXPAN" 637141 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-290 628484 628614 628643 "EXIT" 628648 T EXIT (NIL) -8 NIL NIL) (-289 628111 628173 628286 "EVALCYC" 628416 NIL EVALCYC (NIL T) -7 NIL NIL) (-288 627652 627770 627811 "EVALAB" 627981 NIL EVALAB (NIL T) -9 NIL 628085) (-287 627133 627255 627476 "EVALAB-" 627481 NIL EVALAB- (NIL T T) -8 NIL NIL) (-286 624596 625908 625936 "EUCDOM" 626491 T EUCDOM (NIL) -9 NIL 626841) (-285 623001 623443 624033 "EUCDOM-" 624038 NIL EUCDOM- (NIL T) -8 NIL NIL) (-284 610579 613327 616067 "ESTOOLS" 620281 T ESTOOLS (NIL) -7 NIL NIL) (-283 610215 610272 610379 "ESTOOLS2" 610516 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-282 609966 610008 610088 "ESTOOLS1" 610167 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-281 603904 605628 605656 "ES" 608420 T ES (NIL) -9 NIL 609826) (-280 598851 600138 601955 "ES-" 602119 NIL ES- (NIL T) -8 NIL NIL) (-279 595226 595986 596766 "ESCONT" 598091 T ESCONT (NIL) -7 NIL NIL) (-278 594971 595003 595085 "ESCONT1" 595188 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-277 594646 594696 594796 "ES2" 594915 NIL ES2 (NIL T T) -7 NIL NIL) (-276 594276 594334 594443 "ES1" 594582 NIL ES1 (NIL T T) -7 NIL NIL) (-275 593492 593621 593797 "ERROR" 594120 T ERROR (NIL) -7 NIL NIL) (-274 586995 593351 593442 "EQTBL" 593447 NIL EQTBL (NIL T T) -8 NIL NIL) (-273 579432 582313 583760 "EQ" 585581 NIL -2604 (NIL T) -8 NIL NIL) (-272 579064 579121 579230 "EQ2" 579369 NIL EQ2 (NIL T T) -7 NIL NIL) (-271 574356 575402 576495 "EP" 578003 NIL EP (NIL T) -7 NIL NIL) (-270 572938 573239 573556 "ENV" 574059 T ENV (NIL) -8 NIL NIL) (-269 572098 572662 572690 "ENTIRER" 572695 T ENTIRER (NIL) -9 NIL 572740) (-268 568554 570053 570423 "EMR" 571897 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-267 567698 567883 567937 "ELTAGG" 568317 NIL ELTAGG (NIL T T) -9 NIL 568528) (-266 567417 567479 567620 "ELTAGG-" 567625 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-265 567206 567235 567289 "ELTAB" 567373 NIL ELTAB (NIL T T) -9 NIL NIL) (-264 566332 566478 566677 "ELFUTS" 567057 NIL ELFUTS (NIL T T) -7 NIL NIL) (-263 566074 566130 566158 "ELEMFUN" 566263 T ELEMFUN (NIL) -9 NIL NIL) (-262 565944 565965 566033 "ELEMFUN-" 566038 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-261 560836 564045 564086 "ELAGG" 565026 NIL ELAGG (NIL T) -9 NIL 565489) (-260 559121 559555 560218 "ELAGG-" 560223 NIL ELAGG- (NIL T T) -8 NIL NIL) (-259 557778 558058 558353 "ELABEXPR" 558846 T ELABEXPR (NIL) -8 NIL NIL) (-258 550646 552445 553272 "EFUPXS" 557054 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-257 544096 545897 546707 "EFULS" 549922 NIL EFULS (NIL T T T) -8 NIL NIL) (-256 541527 541885 542363 "EFSTRUC" 543728 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-255 530599 532164 533724 "EF" 540042 NIL EF (NIL T T) -7 NIL NIL) (-254 529700 530084 530233 "EAB" 530470 T EAB (NIL) -8 NIL NIL) (-253 528913 529659 529687 "E04UCFA" 529692 T E04UCFA (NIL) -8 NIL NIL) (-252 528126 528872 528900 "E04NAFA" 528905 T E04NAFA (NIL) -8 NIL NIL) (-251 527339 528085 528113 "E04MBFA" 528118 T E04MBFA (NIL) -8 NIL NIL) (-250 526552 527298 527326 "E04JAFA" 527331 T E04JAFA (NIL) -8 NIL NIL) (-249 525767 526511 526539 "E04GCFA" 526544 T E04GCFA (NIL) -8 NIL NIL) (-248 524982 525726 525754 "E04FDFA" 525759 T E04FDFA (NIL) -8 NIL NIL) (-247 524195 524941 524969 "E04DGFA" 524974 T E04DGFA (NIL) -8 NIL NIL) (-246 518380 519725 521087 "E04AGNT" 522853 T E04AGNT (NIL) -7 NIL NIL) (-245 517107 517587 517627 "DVARCAT" 518102 NIL DVARCAT (NIL T) -9 NIL 518300) (-244 516311 516523 516837 "DVARCAT-" 516842 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-243 509173 516113 516240 "DSMP" 516245 NIL DSMP (NIL T T T) -8 NIL NIL) (-242 503983 505118 506186 "DROPT" 508125 T DROPT (NIL) -8 NIL NIL) (-241 503648 503707 503805 "DROPT1" 503918 NIL DROPT1 (NIL T) -7 NIL NIL) (-240 498763 499889 501026 "DROPT0" 502531 T DROPT0 (NIL) -7 NIL NIL) (-239 497108 497433 497819 "DRAWPT" 498397 T DRAWPT (NIL) -7 NIL NIL) (-238 491695 492618 493697 "DRAW" 496082 NIL DRAW (NIL T) -7 NIL NIL) (-237 491328 491381 491499 "DRAWHACK" 491636 NIL DRAWHACK (NIL T) -7 NIL NIL) (-236 490059 490328 490619 "DRAWCX" 491057 T DRAWCX (NIL) -7 NIL NIL) (-235 489577 489645 489795 "DRAWCURV" 489985 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-234 480048 482007 484122 "DRAWCFUN" 487482 T DRAWCFUN (NIL) -7 NIL NIL) (-233 476862 478744 478785 "DQAGG" 479414 NIL DQAGG (NIL T) -9 NIL 479687) (-232 465369 472107 472189 "DPOLCAT" 474027 NIL DPOLCAT (NIL T T T T) -9 NIL 474571) (-231 460209 461555 463512 "DPOLCAT-" 463517 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-230 453005 460071 460168 "DPMO" 460173 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-229 445704 452786 452952 "DPMM" 452957 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-228 445124 445327 445441 "DOMAIN" 445610 T DOMAIN (NIL) -8 NIL NIL) (-227 438836 444761 444912 "DMP" 445025 NIL DMP (NIL NIL T) -8 NIL NIL) (-226 438436 438492 438636 "DLP" 438774 NIL DLP (NIL T) -7 NIL NIL) (-225 432080 437537 437764 "DLIST" 438241 NIL DLIST (NIL T) -8 NIL NIL) (-224 428927 430936 430977 "DLAGG" 431527 NIL DLAGG (NIL T) -9 NIL 431756) (-223 427637 428329 428357 "DIVRING" 428507 T DIVRING (NIL) -9 NIL 428615) (-222 426625 426878 427271 "DIVRING-" 427276 NIL DIVRING- (NIL T) -8 NIL NIL) (-221 424727 425084 425490 "DISPLAY" 426239 T DISPLAY (NIL) -7 NIL NIL) (-220 418616 424641 424704 "DIRPROD" 424709 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-219 417464 417667 417932 "DIRPROD2" 418409 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-218 406983 412988 413041 "DIRPCAT" 413449 NIL DIRPCAT (NIL NIL T) -9 NIL 414288) (-217 404309 404951 405832 "DIRPCAT-" 406169 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-216 403596 403756 403942 "DIOSP" 404143 T DIOSP (NIL) -7 NIL NIL) (-215 400299 402509 402550 "DIOPS" 402984 NIL DIOPS (NIL T) -9 NIL 403213) (-214 399848 399962 400153 "DIOPS-" 400158 NIL DIOPS- (NIL T T) -8 NIL NIL) (-213 398720 399358 399386 "DIFRING" 399573 T DIFRING (NIL) -9 NIL 399682) (-212 398366 398443 398595 "DIFRING-" 398600 NIL DIFRING- (NIL T) -8 NIL NIL) (-211 396156 397438 397478 "DIFEXT" 397837 NIL DIFEXT (NIL T) -9 NIL 398130) (-210 394442 394870 395535 "DIFEXT-" 395540 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-209 391765 393975 394016 "DIAGG" 394021 NIL DIAGG (NIL T) -9 NIL 394041) (-208 391149 391306 391558 "DIAGG-" 391563 NIL DIAGG- (NIL T T) -8 NIL NIL) (-207 386614 390108 390385 "DHMATRIX" 390918 NIL DHMATRIX (NIL T) -8 NIL NIL) (-206 382226 383135 384145 "DFSFUN" 385624 T DFSFUN (NIL) -7 NIL NIL) (-205 377012 380940 381305 "DFLOAT" 381881 T DFLOAT (NIL) -8 NIL NIL) (-204 375245 375526 375921 "DFINTTLS" 376720 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-203 372278 373280 373678 "DERHAM" 374912 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-202 370127 372053 372142 "DEQUEUE" 372222 NIL DEQUEUE (NIL T) -8 NIL NIL) (-201 369345 369478 369673 "DEGRED" 369989 NIL DEGRED (NIL T T) -7 NIL NIL) (-200 365745 366490 367342 "DEFINTRF" 368573 NIL DEFINTRF (NIL T) -7 NIL NIL) (-199 363276 363745 364343 "DEFINTEF" 365264 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-198 357106 362717 362883 "DECIMAL" 363130 T DECIMAL (NIL) -8 NIL NIL) (-197 354618 355076 355582 "DDFACT" 356650 NIL DDFACT (NIL T T) -7 NIL NIL) (-196 354214 354257 354408 "DBLRESP" 354569 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-195 351924 352258 352627 "DBASE" 353972 NIL DBASE (NIL T) -8 NIL NIL) (-194 351059 351883 351911 "D03FAFA" 351916 T D03FAFA (NIL) -8 NIL NIL) (-193 350195 351018 351046 "D03EEFA" 351051 T D03EEFA (NIL) -8 NIL NIL) (-192 348145 348611 349100 "D03AGNT" 349726 T D03AGNT (NIL) -7 NIL NIL) (-191 347463 348104 348132 "D02EJFA" 348137 T D02EJFA (NIL) -8 NIL NIL) (-190 346781 347422 347450 "D02CJFA" 347455 T D02CJFA (NIL) -8 NIL NIL) (-189 346099 346740 346768 "D02BHFA" 346773 T D02BHFA (NIL) -8 NIL NIL) (-188 345417 346058 346086 "D02BBFA" 346091 T D02BBFA (NIL) -8 NIL NIL) (-187 338615 340203 341809 "D02AGNT" 343831 T D02AGNT (NIL) -7 NIL NIL) (-186 336384 336906 337452 "D01WGTS" 338089 T D01WGTS (NIL) -7 NIL NIL) (-185 335487 336343 336371 "D01TRNS" 336376 T D01TRNS (NIL) -8 NIL NIL) (-184 334590 335446 335474 "D01GBFA" 335479 T D01GBFA (NIL) -8 NIL NIL) (-183 333693 334549 334577 "D01FCFA" 334582 T D01FCFA (NIL) -8 NIL NIL) (-182 332796 333652 333680 "D01ASFA" 333685 T D01ASFA (NIL) -8 NIL NIL) (-181 331899 332755 332783 "D01AQFA" 332788 T D01AQFA (NIL) -8 NIL NIL) (-180 331002 331858 331886 "D01APFA" 331891 T D01APFA (NIL) -8 NIL NIL) (-179 330105 330961 330989 "D01ANFA" 330994 T D01ANFA (NIL) -8 NIL NIL) (-178 329208 330064 330092 "D01AMFA" 330097 T D01AMFA (NIL) -8 NIL NIL) (-177 328311 329167 329195 "D01ALFA" 329200 T D01ALFA (NIL) -8 NIL NIL) (-176 327414 328270 328298 "D01AKFA" 328303 T D01AKFA (NIL) -8 NIL NIL) (-175 326517 327373 327401 "D01AJFA" 327406 T D01AJFA (NIL) -8 NIL NIL) (-174 319821 321370 322929 "D01AGNT" 324978 T D01AGNT (NIL) -7 NIL NIL) (-173 319158 319286 319438 "CYCLOTOM" 319689 T CYCLOTOM (NIL) -7 NIL NIL) (-172 315893 316606 317333 "CYCLES" 318451 T CYCLES (NIL) -7 NIL NIL) (-171 315205 315339 315510 "CVMP" 315754 NIL CVMP (NIL T) -7 NIL NIL) (-170 312986 313244 313619 "CTRIGMNP" 314933 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-169 312497 312686 312785 "CTORCALL" 312907 T CTORCALL (NIL) -8 NIL NIL) (-168 311871 311970 312123 "CSTTOOLS" 312394 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-167 307670 308327 309085 "CRFP" 311183 NIL CRFP (NIL T T) -7 NIL NIL) (-166 306717 306902 307130 "CRAPACK" 307474 NIL CRAPACK (NIL T) -7 NIL NIL) (-165 306101 306202 306406 "CPMATCH" 306593 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-164 305826 305854 305960 "CPIMA" 306067 NIL CPIMA (NIL T T T) -7 NIL NIL) (-163 302190 302862 303580 "COORDSYS" 305161 NIL COORDSYS (NIL T) -7 NIL NIL) (-162 301574 301703 301853 "CONTOUR" 302060 T CONTOUR (NIL) -8 NIL NIL) (-161 297435 299577 300069 "CONTFRAC" 301114 NIL CONTFRAC (NIL T) -8 NIL NIL) (-160 296589 297153 297181 "COMRING" 297186 T COMRING (NIL) -9 NIL 297237) (-159 295670 295947 296131 "COMPPROP" 296425 T COMPPROP (NIL) -8 NIL NIL) (-158 295331 295366 295494 "COMPLPAT" 295629 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-157 285312 295140 295249 "COMPLEX" 295254 NIL COMPLEX (NIL T) -8 NIL NIL) (-156 284948 285005 285112 "COMPLEX2" 285249 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-155 284666 284701 284799 "COMPFACT" 284907 NIL COMPFACT (NIL T T) -7 NIL NIL) (-154 269001 279295 279335 "COMPCAT" 280337 NIL COMPCAT (NIL T) -9 NIL 281730) (-153 258516 261440 265067 "COMPCAT-" 265423 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-152 258247 258275 258377 "COMMUPC" 258482 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-151 258042 258075 258134 "COMMONOP" 258208 T COMMONOP (NIL) -7 NIL NIL) (-150 257625 257793 257880 "COMM" 257975 T COMM (NIL) -8 NIL NIL) (-149 256874 257068 257096 "COMBOPC" 257434 T COMBOPC (NIL) -9 NIL 257609) (-148 255770 255980 256222 "COMBINAT" 256664 NIL COMBINAT (NIL T) -7 NIL NIL) (-147 251968 252541 253181 "COMBF" 255192 NIL COMBF (NIL T T) -7 NIL NIL) (-146 250754 251084 251319 "COLOR" 251753 T COLOR (NIL) -8 NIL NIL) (-145 250394 250441 250566 "CMPLXRT" 250701 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-144 245896 246924 248004 "CLIP" 249334 T CLIP (NIL) -7 NIL NIL) (-143 244234 245004 245242 "CLIF" 245724 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-142 240457 242381 242422 "CLAGG" 243351 NIL CLAGG (NIL T) -9 NIL 243887) (-141 238879 239336 239919 "CLAGG-" 239924 NIL CLAGG- (NIL T T) -8 NIL NIL) (-140 238423 238508 238648 "CINTSLPE" 238788 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-139 235924 236395 236943 "CHVAR" 237951 NIL CHVAR (NIL T T T) -7 NIL NIL) (-138 235147 235711 235739 "CHARZ" 235744 T CHARZ (NIL) -9 NIL 235758) (-137 234901 234941 235019 "CHARPOL" 235101 NIL CHARPOL (NIL T) -7 NIL NIL) (-136 234008 234605 234633 "CHARNZ" 234680 T CHARNZ (NIL) -9 NIL 234735) (-135 232033 232698 233033 "CHAR" 233693 T CHAR (NIL) -8 NIL NIL) (-134 231759 231820 231848 "CFCAT" 231959 T CFCAT (NIL) -9 NIL NIL) (-133 231004 231115 231297 "CDEN" 231643 NIL CDEN (NIL T T T) -7 NIL NIL) (-132 226996 230157 230437 "CCLASS" 230744 T CCLASS (NIL) -8 NIL NIL) (-131 226915 226941 226976 "CATEGORY" 226981 T -10 (NIL) -8 NIL NIL) (-130 221967 222944 223697 "CARTEN" 226218 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-129 221075 221223 221444 "CARTEN2" 221814 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-128 219373 220227 220483 "CARD" 220839 T CARD (NIL) -8 NIL NIL) (-127 218746 219074 219102 "CACHSET" 219234 T CACHSET (NIL) -9 NIL 219311) (-126 218243 218539 218567 "CABMON" 218617 T CABMON (NIL) -9 NIL 218673) (-125 217411 217790 217933 "BYTE" 218120 T BYTE (NIL) -8 NIL NIL) (-124 213359 217358 217392 "BYTEARY" 217397 T BYTEARY (NIL) -8 NIL NIL) (-123 210916 213051 213158 "BTREE" 213285 NIL BTREE (NIL T) -8 NIL NIL) (-122 208414 210564 210686 "BTOURN" 210826 NIL BTOURN (NIL T) -8 NIL NIL) (-121 205833 207886 207927 "BTCAT" 207995 NIL BTCAT (NIL T) -9 NIL 208072) (-120 205500 205580 205729 "BTCAT-" 205734 NIL BTCAT- (NIL T T) -8 NIL NIL) (-119 200721 204592 204620 "BTAGG" 204876 T BTAGG (NIL) -9 NIL 205055) (-118 200144 200288 200518 "BTAGG-" 200523 NIL BTAGG- (NIL T) -8 NIL NIL) (-117 197188 199422 199637 "BSTREE" 199961 NIL BSTREE (NIL T) -8 NIL NIL) (-116 196326 196452 196636 "BRILL" 197044 NIL BRILL (NIL T) -7 NIL NIL) (-115 193028 195055 195096 "BRAGG" 195745 NIL BRAGG (NIL T) -9 NIL 196002) (-114 191557 191963 192518 "BRAGG-" 192523 NIL BRAGG- (NIL T T) -8 NIL NIL) (-113 184765 190903 191087 "BPADICRT" 191405 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-112 183069 184702 184747 "BPADIC" 184752 NIL BPADIC (NIL NIL) -8 NIL NIL) (-111 182769 182799 182912 "BOUNDZRO" 183033 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-110 178284 179375 180242 "BOP" 181922 T BOP (NIL) -8 NIL NIL) (-109 175905 176349 176869 "BOP1" 177797 NIL BOP1 (NIL T) -7 NIL NIL) (-108 174540 175245 175463 "BOOLEAN" 175707 T BOOLEAN (NIL) -8 NIL NIL) (-107 173907 174285 174337 "BMODULE" 174342 NIL BMODULE (NIL T T) -9 NIL 174406) (-106 169717 173705 173778 "BITS" 173854 T BITS (NIL) -8 NIL NIL) (-105 168814 169249 169401 "BINFILE" 169585 T BINFILE (NIL) -8 NIL NIL) (-104 168226 168348 168490 "BINDING" 168692 T BINDING (NIL) -8 NIL NIL) (-103 162060 167670 167835 "BINARY" 168081 T BINARY (NIL) -8 NIL NIL) (-102 159888 161316 161357 "BGAGG" 161617 NIL BGAGG (NIL T) -9 NIL 161754) (-101 159719 159751 159842 "BGAGG-" 159847 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158817 159103 159308 "BFUNCT" 159534 T BFUNCT (NIL) -8 NIL NIL) (-99 157518 157696 157981 "BEZOUT" 158641 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 154043 156378 156706 "BBTREE" 157221 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153781 153834 153860 "BASTYPE" 153977 T BASTYPE (NIL) -9 NIL NIL) (-96 153636 153665 153735 "BASTYPE-" 153740 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 153074 153150 153300 "BALFACT" 153547 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151896 152493 152678 "AUTOMOR" 152919 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151622 151627 151653 "ATTREG" 151658 T ATTREG (NIL) -9 NIL NIL) (-92 149901 150319 150671 "ATTRBUT" 151288 T ATTRBUT (NIL) -8 NIL NIL) (-91 149437 149550 149576 "ATRIG" 149777 T ATRIG (NIL) -9 NIL NIL) (-90 149246 149287 149374 "ATRIG-" 149379 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147443 149022 149110 "ASTACK" 149189 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145948 146245 146610 "ASSOCEQ" 147125 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144980 145607 145731 "ASP9" 145855 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144744 144928 144967 "ASP8" 144972 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143613 144349 144491 "ASP80" 144633 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142512 143248 143380 "ASP7" 143512 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141466 142189 142307 "ASP78" 142425 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140435 141146 141263 "ASP77" 141380 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139347 140073 140204 "ASP74" 140335 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 138247 138982 139114 "ASP73" 139246 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 137202 137924 138042 "ASP6" 138160 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 136150 136879 136997 "ASP55" 137115 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 135100 135824 135943 "ASP50" 136062 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 134188 134801 134911 "ASP4" 135021 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 133276 133889 133999 "ASP49" 134109 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 132061 132815 132983 "ASP42" 133165 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130838 131594 131764 "ASP41" 131948 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129788 130515 130633 "ASP35" 130751 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129553 129736 129775 "ASP34" 129780 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129290 129357 129433 "ASP33" 129508 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 128185 128925 129057 "ASP31" 129189 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127950 128133 128172 "ASP30" 128177 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127685 127754 127830 "ASP29" 127905 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127450 127633 127672 "ASP28" 127677 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 127215 127398 127437 "ASP27" 127442 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126299 126913 127024 "ASP24" 127135 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125215 125940 126070 "ASP20" 126200 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124303 124916 125026 "ASP1" 125136 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 123247 123977 124096 "ASP19" 124215 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122984 123051 123127 "ASP12" 123202 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121836 122583 122727 "ASP10" 122871 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119735 121680 121771 "ARRAY2" 121776 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115551 119383 119497 "ARRAY1" 119652 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114583 114756 114977 "ARRAY12" 115374 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108943 110814 110889 "ARR2CAT" 113519 NIL ARR2CAT (NIL T T T) -9 NIL 114277) (-54 106377 107121 108075 "ARR2CAT-" 108080 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105137 105287 105590 "APPRULE" 106215 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104790 104838 104956 "APPLYORE" 105083 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103764 104055 104250 "ANY" 104613 T ANY (NIL) -8 NIL NIL) (-50 103042 103165 103322 "ANY1" 103638 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100574 101492 101817 "ANTISYM" 102767 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100089 100278 100375 "ANON" 100495 T ANON (NIL) -8 NIL NIL) (-47 94166 98634 99085 "AN" 99656 T AN (NIL) -8 NIL NIL) (-46 90520 91918 91968 "AMR" 92707 NIL AMR (NIL T T) -9 NIL 93306) (-45 89633 89854 90216 "AMR-" 90221 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74183 89550 89611 "ALIST" 89616 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71020 73777 73946 "ALGSC" 74101 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67576 68130 68737 "ALGPKG" 70460 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66853 66954 67138 "ALGMFACT" 67462 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62602 63283 63937 "ALGMANIP" 66377 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53921 62228 62378 "ALGFF" 62535 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53117 53248 53427 "ALGFACT" 53779 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52108 52718 52756 "ALGEBRA" 52816 NIL ALGEBRA (NIL T) -9 NIL 52874) (-36 51826 51885 52017 "ALGEBRA-" 52022 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34087 49830 49882 "ALAGG" 50018 NIL ALAGG (NIL T T) -9 NIL 50179) (-34 33623 33736 33762 "AHYP" 33963 T AHYP (NIL) -9 NIL NIL) (-33 32554 32802 32828 "AGG" 33327 T AGG (NIL) -9 NIL 33606) (-32 31988 32150 32364 "AGG-" 32369 NIL AGG- (NIL T) -8 NIL NIL) (-31 29675 30093 30510 "AF" 31631 NIL AF (NIL T T) -7 NIL NIL) (-30 28944 29202 29358 "ACPLOT" 29537 T ACPLOT (NIL) -8 NIL NIL) (-29 18411 26357 26408 "ACFS" 27119 NIL ACFS (NIL T) -9 NIL 27358) (-28 16425 16915 17690 "ACFS-" 17695 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12693 14649 14675 "ACF" 15554 T ACF (NIL) -9 NIL 15966) (-26 11397 11731 12224 "ACF-" 12229 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11191 "ABELSG" 11283 T ABELSG (NIL) -9 NIL 11348) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10233 10494 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9897 9981 10119 "ABELMON-" 10124 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9232 9578 9604 "ABELGRP" 9729 T ABELGRP (NIL) -9 NIL 9811) (-20 8695 8824 9040 "ABELGRP-" 9045 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
+((-3 3148819 3148824 3148829 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3148804 3148809 3148814 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3148789 3148794 3148799 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3148774 3148779 3148784 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1200 3147904 3148649 3148726 "ZMOD" 3148731 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1199 3147014 3147178 3147387 "ZLINDEP" 3147736 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1198 3136418 3138163 3140115 "ZDSOLVE" 3145163 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1197 3135664 3135805 3135994 "YSTREAM" 3136264 NIL YSTREAM (NIL T) -7 NIL NIL) (-1196 3133433 3134969 3135172 "XRPOLY" 3135507 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1195 3129895 3131224 3131806 "XPR" 3132897 NIL XPR (NIL T T) -8 NIL NIL) (-1194 3127609 3129230 3129433 "XPOLY" 3129726 NIL XPOLY (NIL T) -8 NIL NIL) (-1193 3125423 3126801 3126855 "XPOLYC" 3127140 NIL XPOLYC (NIL T T) -9 NIL 3127253) (-1192 3121795 3123940 3124328 "XPBWPOLY" 3125081 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1191 3117723 3120036 3120078 "XF" 3120699 NIL XF (NIL T) -9 NIL 3121098) (-1190 3117344 3117432 3117601 "XF-" 3117606 NIL XF- (NIL T T) -8 NIL NIL) (-1189 3112724 3114023 3114077 "XFALG" 3116225 NIL XFALG (NIL T T) -9 NIL 3117012) (-1188 3111861 3111965 3112169 "XEXPPKG" 3112616 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1187 3109960 3111712 3111807 "XDPOLY" 3111812 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1186 3108839 3109449 3109491 "XALG" 3109553 NIL XALG (NIL T) -9 NIL 3109672) (-1185 3102315 3106823 3107316 "WUTSET" 3108431 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1184 3100127 3100934 3101285 "WP" 3102097 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1183 3099013 3099211 3099506 "WFFINTBS" 3099924 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1182 3096917 3097344 3097806 "WEIER" 3098585 NIL WEIER (NIL T) -7 NIL NIL) (-1181 3096066 3096490 3096532 "VSPACE" 3096668 NIL VSPACE (NIL T) -9 NIL 3096742) (-1180 3095904 3095931 3096022 "VSPACE-" 3096027 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1179 3095650 3095693 3095764 "VOID" 3095855 T VOID (NIL) -8 NIL NIL) (-1178 3093786 3094145 3094551 "VIEW" 3095266 T VIEW (NIL) -7 NIL NIL) (-1177 3090211 3090849 3091586 "VIEWDEF" 3093071 T VIEWDEF (NIL) -7 NIL NIL) (-1176 3079549 3081759 3083932 "VIEW3D" 3088060 T VIEW3D (NIL) -8 NIL NIL) (-1175 3071831 3073460 3075039 "VIEW2D" 3077992 T VIEW2D (NIL) -8 NIL NIL) (-1174 3067240 3071601 3071693 "VECTOR" 3071774 NIL VECTOR (NIL T) -8 NIL NIL) (-1173 3065817 3066076 3066394 "VECTOR2" 3066970 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1172 3059357 3063609 3063652 "VECTCAT" 3064640 NIL VECTCAT (NIL T) -9 NIL 3065224) (-1171 3058371 3058625 3059015 "VECTCAT-" 3059020 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1170 3057852 3058022 3058142 "VARIABLE" 3058286 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1169 3057785 3057790 3057820 "UTYPE" 3057825 T UTYPE (NIL) -9 NIL NIL) (-1168 3056620 3056774 3057035 "UTSODETL" 3057611 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1167 3054060 3054520 3055044 "UTSODE" 3056161 NIL UTSODE (NIL T T) -7 NIL NIL) (-1166 3045904 3051700 3052188 "UTS" 3053629 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1165 3037249 3042614 3042656 "UTSCAT" 3043757 NIL UTSCAT (NIL T) -9 NIL 3044514) (-1164 3034604 3035320 3036308 "UTSCAT-" 3036313 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1163 3034235 3034278 3034409 "UTS2" 3034555 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1162 3028511 3031076 3031119 "URAGG" 3033189 NIL URAGG (NIL T) -9 NIL 3033911) (-1161 3025450 3026313 3027436 "URAGG-" 3027441 NIL URAGG- (NIL T T) -8 NIL NIL) (-1160 3021136 3024067 3024538 "UPXSSING" 3025114 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1159 3013027 3020257 3020537 "UPXS" 3020913 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1158 3006056 3012932 3013003 "UPXSCONS" 3013008 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1157 2996345 3003175 3003236 "UPXSCCA" 3003885 NIL UPXSCCA (NIL T T) -9 NIL 3004126) (-1156 2995984 2996069 2996242 "UPXSCCA-" 2996247 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1155 2986195 2992798 2992840 "UPXSCAT" 2993483 NIL UPXSCAT (NIL T) -9 NIL 2994091) (-1154 2985629 2985708 2985885 "UPXS2" 2986110 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1153 2984283 2984536 2984887 "UPSQFREE" 2985372 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1152 2978174 2981229 2981283 "UPSCAT" 2982432 NIL UPSCAT (NIL T T) -9 NIL 2983206) (-1151 2977379 2977586 2977912 "UPSCAT-" 2977917 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1150 2963465 2971502 2971544 "UPOLYC" 2973622 NIL UPOLYC (NIL T) -9 NIL 2974843) (-1149 2954795 2957220 2960366 "UPOLYC-" 2960371 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1148 2954426 2954469 2954600 "UPOLYC2" 2954746 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1147 2945845 2953995 2954132 "UP" 2954336 NIL UP (NIL NIL T) -8 NIL NIL) (-1146 2945188 2945295 2945458 "UPMP" 2945734 NIL UPMP (NIL T T) -7 NIL NIL) (-1145 2944741 2944822 2944961 "UPDIVP" 2945101 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1144 2943309 2943558 2943874 "UPDECOMP" 2944490 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1143 2942544 2942656 2942841 "UPCDEN" 2943193 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1142 2942067 2942136 2942283 "UP2" 2942469 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1141 2940584 2941271 2941548 "UNISEG" 2941825 NIL UNISEG (NIL T) -8 NIL NIL) (-1140 2939799 2939926 2940131 "UNISEG2" 2940427 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1139 2938859 2939039 2939265 "UNIFACT" 2939615 NIL UNIFACT (NIL T) -7 NIL NIL) (-1138 2922755 2938040 2938290 "ULS" 2938666 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1137 2910720 2922660 2922731 "ULSCONS" 2922736 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1136 2893470 2905483 2905544 "ULSCCAT" 2906256 NIL ULSCCAT (NIL T T) -9 NIL 2906552) (-1135 2892521 2892766 2893153 "ULSCCAT-" 2893158 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1134 2882511 2889028 2889070 "ULSCAT" 2889926 NIL ULSCAT (NIL T) -9 NIL 2890656) (-1133 2881945 2882024 2882201 "ULS2" 2882426 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1132 2880343 2881310 2881340 "UFD" 2881552 T UFD (NIL) -9 NIL 2881666) (-1131 2880137 2880183 2880278 "UFD-" 2880283 NIL UFD- (NIL T) -8 NIL NIL) (-1130 2879219 2879402 2879618 "UDVO" 2879943 T UDVO (NIL) -7 NIL NIL) (-1129 2877035 2877444 2877915 "UDPO" 2878783 NIL UDPO (NIL T) -7 NIL NIL) (-1128 2876968 2876973 2877003 "TYPE" 2877008 T TYPE (NIL) -9 NIL NIL) (-1127 2875939 2876141 2876381 "TWOFACT" 2876762 NIL TWOFACT (NIL T) -7 NIL NIL) (-1126 2874877 2875214 2875477 "TUPLE" 2875711 NIL TUPLE (NIL T) -8 NIL NIL) (-1125 2872568 2873087 2873626 "TUBETOOL" 2874360 T TUBETOOL (NIL) -7 NIL NIL) (-1124 2871417 2871622 2871863 "TUBE" 2872361 NIL TUBE (NIL T) -8 NIL NIL) (-1123 2866141 2870395 2870677 "TS" 2871169 NIL TS (NIL T) -8 NIL NIL) (-1122 2854845 2858937 2859033 "TSETCAT" 2864267 NIL TSETCAT (NIL T T T T) -9 NIL 2865798) (-1121 2849580 2851178 2853068 "TSETCAT-" 2853073 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1120 2843843 2844689 2845631 "TRMANIP" 2848716 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1119 2843284 2843347 2843510 "TRIMAT" 2843775 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1118 2841090 2841327 2841690 "TRIGMNIP" 2843033 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1117 2840610 2840723 2840753 "TRIGCAT" 2840966 T TRIGCAT (NIL) -9 NIL NIL) (-1116 2840279 2840358 2840499 "TRIGCAT-" 2840504 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1115 2837178 2839139 2839419 "TREE" 2840034 NIL TREE (NIL T) -8 NIL NIL) (-1114 2836452 2836980 2837010 "TRANFUN" 2837045 T TRANFUN (NIL) -9 NIL 2837111) (-1113 2835731 2835922 2836202 "TRANFUN-" 2836207 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1112 2835535 2835567 2835628 "TOPSP" 2835692 T TOPSP (NIL) -7 NIL NIL) (-1111 2834887 2835002 2835155 "TOOLSIGN" 2835416 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1110 2833548 2834064 2834303 "TEXTFILE" 2834670 T TEXTFILE (NIL) -8 NIL NIL) (-1109 2831413 2831927 2832365 "TEX" 2833132 T TEX (NIL) -8 NIL NIL) (-1108 2831194 2831225 2831297 "TEX1" 2831376 NIL TEX1 (NIL T) -7 NIL NIL) (-1107 2830842 2830905 2830995 "TEMUTL" 2831126 T TEMUTL (NIL) -7 NIL NIL) (-1106 2828996 2829276 2829601 "TBCMPPK" 2830565 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1105 2820885 2827157 2827213 "TBAGG" 2827613 NIL TBAGG (NIL T T) -9 NIL 2827824) (-1104 2815955 2817443 2819197 "TBAGG-" 2819202 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1103 2815339 2815446 2815591 "TANEXP" 2815844 NIL TANEXP (NIL T) -7 NIL NIL) (-1102 2808840 2815196 2815289 "TABLE" 2815294 NIL TABLE (NIL T T) -8 NIL NIL) (-1101 2808252 2808351 2808489 "TABLEAU" 2808737 NIL TABLEAU (NIL T) -8 NIL NIL) (-1100 2802860 2804080 2805328 "TABLBUMP" 2807038 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1099 2802288 2802388 2802516 "SYSTEM" 2802754 T SYSTEM (NIL) -7 NIL NIL) (-1098 2798751 2799446 2800229 "SYSSOLP" 2801539 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1097 2795042 2795750 2796484 "SYNTAX" 2798039 T SYNTAX (NIL) -8 NIL NIL) (-1096 2792176 2792784 2793422 "SYMTAB" 2794426 T SYMTAB (NIL) -8 NIL NIL) (-1095 2787425 2788327 2789310 "SYMS" 2791215 T SYMS (NIL) -8 NIL NIL) (-1094 2784658 2786885 2787114 "SYMPOLY" 2787230 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1093 2784178 2784253 2784375 "SYMFUNC" 2784570 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1092 2780155 2781415 2782237 "SYMBOL" 2783378 T SYMBOL (NIL) -8 NIL NIL) (-1091 2773694 2775383 2777103 "SWITCH" 2778457 T SWITCH (NIL) -8 NIL NIL) (-1090 2766924 2772521 2772823 "SUTS" 2773449 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1089 2758814 2766045 2766325 "SUPXS" 2766701 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1088 2750306 2758435 2758560 "SUP" 2758723 NIL SUP (NIL T) -8 NIL NIL) (-1087 2749465 2749592 2749809 "SUPFRACF" 2750174 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1086 2749090 2749149 2749260 "SUP2" 2749400 NIL SUP2 (NIL T T) -7 NIL NIL) (-1085 2747508 2747782 2748144 "SUMRF" 2748789 NIL SUMRF (NIL T) -7 NIL NIL) (-1084 2746825 2746891 2747089 "SUMFS" 2747429 NIL SUMFS (NIL T T) -7 NIL NIL) (-1083 2730761 2746006 2746256 "SULS" 2746632 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1082 2730083 2730286 2730426 "SUCH" 2730669 NIL SUCH (NIL T T) -8 NIL NIL) (-1081 2724010 2725022 2725980 "SUBSPACE" 2729171 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1080 2723440 2723530 2723694 "SUBRESP" 2723898 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1079 2716809 2718105 2719416 "STTF" 2722176 NIL STTF (NIL T) -7 NIL NIL) (-1078 2710982 2712102 2713249 "STTFNC" 2715709 NIL STTFNC (NIL T) -7 NIL NIL) (-1077 2702333 2704200 2705993 "STTAYLOR" 2709223 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1076 2695577 2702197 2702280 "STRTBL" 2702285 NIL STRTBL (NIL T) -8 NIL NIL) (-1075 2690968 2695532 2695563 "STRING" 2695568 T STRING (NIL) -8 NIL NIL) (-1074 2685857 2690342 2690372 "STRICAT" 2690431 T STRICAT (NIL) -9 NIL 2690493) (-1073 2678571 2683380 2684000 "STREAM" 2685272 NIL STREAM (NIL T) -8 NIL NIL) (-1072 2678081 2678158 2678302 "STREAM3" 2678488 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1071 2677063 2677246 2677481 "STREAM2" 2677894 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1070 2676751 2676803 2676896 "STREAM1" 2677005 NIL STREAM1 (NIL T) -7 NIL NIL) (-1069 2675767 2675948 2676179 "STINPROD" 2676567 NIL STINPROD (NIL T) -7 NIL NIL) (-1068 2675346 2675530 2675560 "STEP" 2675640 T STEP (NIL) -9 NIL 2675718) (-1067 2668889 2675245 2675322 "STBL" 2675327 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1066 2664065 2668112 2668155 "STAGG" 2668308 NIL STAGG (NIL T) -9 NIL 2668397) (-1065 2661767 2662369 2663241 "STAGG-" 2663246 NIL STAGG- (NIL T T) -8 NIL NIL) (-1064 2659962 2661537 2661629 "STACK" 2661710 NIL STACK (NIL T) -8 NIL NIL) (-1063 2652693 2658109 2658564 "SREGSET" 2659592 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1062 2645133 2646501 2648013 "SRDCMPK" 2651299 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1061 2638101 2642574 2642604 "SRAGG" 2643907 T SRAGG (NIL) -9 NIL 2644515) (-1060 2637118 2637373 2637752 "SRAGG-" 2637757 NIL SRAGG- (NIL T) -8 NIL NIL) (-1059 2631567 2636037 2636464 "SQMATRIX" 2636737 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1058 2625319 2628287 2629013 "SPLTREE" 2630913 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1057 2621309 2621975 2622621 "SPLNODE" 2624745 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1056 2620356 2620589 2620619 "SPFCAT" 2621063 T SPFCAT (NIL) -9 NIL NIL) (-1055 2619093 2619303 2619567 "SPECOUT" 2620114 T SPECOUT (NIL) -7 NIL NIL) (-1054 2618854 2618894 2618963 "SPADPRSR" 2619046 T SPADPRSR (NIL) -7 NIL NIL) (-1053 2610877 2612624 2612666 "SPACEC" 2616989 NIL SPACEC (NIL T) -9 NIL 2618805) (-1052 2609048 2610810 2610858 "SPACE3" 2610863 NIL SPACE3 (NIL T) -8 NIL NIL) (-1051 2607800 2607971 2608262 "SORTPAK" 2608853 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1050 2605856 2606159 2606577 "SOLVETRA" 2607464 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1049 2604867 2605089 2605363 "SOLVESER" 2605629 NIL SOLVESER (NIL T) -7 NIL NIL) (-1048 2600087 2600968 2601970 "SOLVERAD" 2603919 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1047 2595902 2596511 2597240 "SOLVEFOR" 2599454 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1046 2590202 2595254 2595350 "SNTSCAT" 2595355 NIL SNTSCAT (NIL T T T T) -9 NIL 2595425) (-1045 2584306 2588533 2588923 "SMTS" 2589892 NIL SMTS (NIL T T T) -8 NIL NIL) (-1044 2578716 2584195 2584271 "SMP" 2584276 NIL SMP (NIL T T) -8 NIL NIL) (-1043 2576875 2577176 2577574 "SMITH" 2578413 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1042 2569840 2574036 2574138 "SMATCAT" 2575478 NIL SMATCAT (NIL NIL T T T) -9 NIL 2576027) (-1041 2566781 2567604 2568781 "SMATCAT-" 2568786 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1040 2564495 2566018 2566061 "SKAGG" 2566322 NIL SKAGG (NIL T) -9 NIL 2566457) (-1039 2560553 2563599 2563877 "SINT" 2564239 T SINT (NIL) -8 NIL NIL) (-1038 2560325 2560363 2560429 "SIMPAN" 2560509 T SIMPAN (NIL) -7 NIL NIL) (-1037 2559841 2560027 2560126 "SIG" 2560248 T SIG (NIL) -8 NIL NIL) (-1036 2558679 2558900 2559175 "SIGNRF" 2559600 NIL SIGNRF (NIL T) -7 NIL NIL) (-1035 2557488 2557639 2557929 "SIGNEF" 2558508 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1034 2555178 2555632 2556138 "SHP" 2557029 NIL SHP (NIL T NIL) -7 NIL NIL) (-1033 2549031 2555079 2555155 "SHDP" 2555160 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1032 2548521 2548713 2548743 "SGROUP" 2548895 T SGROUP (NIL) -9 NIL 2548982) (-1031 2548291 2548343 2548447 "SGROUP-" 2548452 NIL SGROUP- (NIL T) -8 NIL NIL) (-1030 2545127 2545824 2546547 "SGCF" 2547590 T SGCF (NIL) -7 NIL NIL) (-1029 2539526 2544578 2544674 "SFRTCAT" 2544679 NIL SFRTCAT (NIL T T T T) -9 NIL 2544717) (-1028 2532986 2534001 2535135 "SFRGCD" 2538509 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1027 2526152 2527223 2528407 "SFQCMPK" 2531919 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1026 2525774 2525863 2525973 "SFORT" 2526093 NIL SFORT (NIL T T) -8 NIL NIL) (-1025 2524919 2525614 2525735 "SEXOF" 2525740 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1024 2524053 2524800 2524868 "SEX" 2524873 T SEX (NIL) -8 NIL NIL) (-1023 2518830 2519519 2519614 "SEXCAT" 2523385 NIL SEXCAT (NIL T T T T T) -9 NIL 2524004) (-1022 2516010 2518764 2518812 "SET" 2518817 NIL SET (NIL T) -8 NIL NIL) (-1021 2514261 2514723 2515028 "SETMN" 2515751 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1020 2513869 2513995 2514025 "SETCAT" 2514142 T SETCAT (NIL) -9 NIL 2514226) (-1019 2513649 2513701 2513800 "SETCAT-" 2513805 NIL SETCAT- (NIL T) -8 NIL NIL) (-1018 2510037 2512111 2512154 "SETAGG" 2513024 NIL SETAGG (NIL T) -9 NIL 2513364) (-1017 2509495 2509611 2509848 "SETAGG-" 2509853 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1016 2508699 2508992 2509053 "SEGXCAT" 2509339 NIL SEGXCAT (NIL T T) -9 NIL 2509459) (-1015 2507755 2508365 2508547 "SEG" 2508552 NIL SEG (NIL T) -8 NIL NIL) (-1014 2506662 2506875 2506918 "SEGCAT" 2507500 NIL SEGCAT (NIL T) -9 NIL 2507738) (-1013 2505711 2506041 2506241 "SEGBIND" 2506497 NIL SEGBIND (NIL T) -8 NIL NIL) (-1012 2505332 2505391 2505504 "SEGBIND2" 2505646 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1011 2504551 2504677 2504881 "SEG2" 2505176 NIL SEG2 (NIL T T) -7 NIL NIL) (-1010 2503988 2504486 2504533 "SDVAR" 2504538 NIL SDVAR (NIL T) -8 NIL NIL) (-1009 2496240 2503761 2503889 "SDPOL" 2503894 NIL SDPOL (NIL T) -8 NIL NIL) (-1008 2494833 2495099 2495418 "SCPKG" 2495955 NIL SCPKG (NIL T) -7 NIL NIL) (-1007 2493969 2494149 2494349 "SCOPE" 2494655 T SCOPE (NIL) -8 NIL NIL) (-1006 2493190 2493323 2493502 "SCACHE" 2493824 NIL SCACHE (NIL T) -7 NIL NIL) (-1005 2492629 2492950 2493035 "SAOS" 2493127 T SAOS (NIL) -8 NIL NIL) (-1004 2492194 2492229 2492402 "SAERFFC" 2492588 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1003 2486088 2492091 2492171 "SAE" 2492176 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1002 2485681 2485716 2485875 "SAEFACT" 2486047 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1001 2484002 2484316 2484717 "RURPK" 2485347 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1000 2482650 2482927 2483236 "RULESET" 2483838 NIL RULESET (NIL T T T) -8 NIL NIL) (-999 2479858 2480361 2480822 "RULE" 2482332 NIL RULE (NIL T T T) -8 NIL NIL) (-998 2479500 2479655 2479736 "RULECOLD" 2479810 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-997 2474392 2475186 2476102 "RSETGCD" 2478699 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-996 2463707 2468759 2468853 "RSETCAT" 2472918 NIL RSETCAT (NIL T T T T) -9 NIL 2474015) (-995 2461638 2462177 2462997 "RSETCAT-" 2463002 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-994 2454068 2455443 2456959 "RSDCMPK" 2460237 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-993 2452086 2452527 2452599 "RRCC" 2453675 NIL RRCC (NIL T T) -9 NIL 2454019) (-992 2451440 2451614 2451890 "RRCC-" 2451895 NIL RRCC- (NIL T T T) -8 NIL NIL) (-991 2425807 2435432 2435496 "RPOLCAT" 2445998 NIL RPOLCAT (NIL T T T) -9 NIL 2449156) (-990 2417311 2419649 2422767 "RPOLCAT-" 2422772 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-989 2408377 2415541 2416021 "ROUTINE" 2416851 T ROUTINE (NIL) -8 NIL NIL) (-988 2405082 2407933 2408080 "ROMAN" 2408250 T ROMAN (NIL) -8 NIL NIL) (-987 2403368 2403953 2404210 "ROIRC" 2404888 NIL ROIRC (NIL T T) -8 NIL NIL) (-986 2399773 2402077 2402105 "RNS" 2402401 T RNS (NIL) -9 NIL 2402671) (-985 2398287 2398670 2399201 "RNS-" 2399274 NIL RNS- (NIL T) -8 NIL NIL) (-984 2397713 2398121 2398149 "RNG" 2398154 T RNG (NIL) -9 NIL 2398175) (-983 2397111 2397473 2397513 "RMODULE" 2397573 NIL RMODULE (NIL T) -9 NIL 2397615) (-982 2395963 2396057 2396387 "RMCAT2" 2397012 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-981 2392677 2395146 2395467 "RMATRIX" 2395698 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-980 2385674 2387908 2388020 "RMATCAT" 2391329 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2392311) (-979 2385053 2385200 2385503 "RMATCAT-" 2385508 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-978 2384623 2384698 2384824 "RINTERP" 2384972 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-977 2383674 2384238 2384266 "RING" 2384376 T RING (NIL) -9 NIL 2384470) (-976 2383469 2383513 2383607 "RING-" 2383612 NIL RING- (NIL T) -8 NIL NIL) (-975 2382317 2382554 2382810 "RIDIST" 2383233 T RIDIST (NIL) -7 NIL NIL) (-974 2373639 2381791 2381994 "RGCHAIN" 2382166 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-973 2370644 2371258 2371926 "RF" 2373003 NIL RF (NIL T) -7 NIL NIL) (-972 2370293 2370356 2370457 "RFFACTOR" 2370575 NIL RFFACTOR (NIL T) -7 NIL NIL) (-971 2370021 2370056 2370151 "RFFACT" 2370252 NIL RFFACT (NIL T) -7 NIL NIL) (-970 2368151 2368515 2368895 "RFDIST" 2369661 T RFDIST (NIL) -7 NIL NIL) (-969 2367609 2367701 2367861 "RETSOL" 2368053 NIL RETSOL (NIL T T) -7 NIL NIL) (-968 2367202 2367282 2367323 "RETRACT" 2367513 NIL RETRACT (NIL T) -9 NIL NIL) (-967 2367054 2367079 2367163 "RETRACT-" 2367168 NIL RETRACT- (NIL T T) -8 NIL NIL) (-966 2359912 2366711 2366836 "RESULT" 2366949 T RESULT (NIL) -8 NIL NIL) (-965 2358497 2359186 2359383 "RESRING" 2359815 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-964 2358137 2358186 2358282 "RESLATC" 2358434 NIL RESLATC (NIL T) -7 NIL NIL) (-963 2357846 2357880 2357985 "REPSQ" 2358096 NIL REPSQ (NIL T) -7 NIL NIL) (-962 2355277 2355857 2356457 "REP" 2357266 T REP (NIL) -7 NIL NIL) (-961 2354978 2355012 2355121 "REPDB" 2355236 NIL REPDB (NIL T) -7 NIL NIL) (-960 2348923 2350302 2351522 "REP2" 2353790 NIL REP2 (NIL T) -7 NIL NIL) (-959 2345329 2346010 2346815 "REP1" 2348150 NIL REP1 (NIL T) -7 NIL NIL) (-958 2338075 2343490 2343942 "REGSET" 2344960 NIL REGSET (NIL T T T T) -8 NIL NIL) (-957 2336896 2337231 2337479 "REF" 2337860 NIL REF (NIL T) -8 NIL NIL) (-956 2336277 2336380 2336545 "REDORDER" 2336780 NIL REDORDER (NIL T T) -7 NIL NIL) (-955 2332246 2335511 2335732 "RECLOS" 2336108 NIL RECLOS (NIL T) -8 NIL NIL) (-954 2331303 2331484 2331697 "REALSOLV" 2332053 T REALSOLV (NIL) -7 NIL NIL) (-953 2331151 2331192 2331220 "REAL" 2331225 T REAL (NIL) -9 NIL 2331260) (-952 2327642 2328444 2329326 "REAL0Q" 2330316 NIL REAL0Q (NIL T) -7 NIL NIL) (-951 2323253 2324241 2325300 "REAL0" 2326623 NIL REAL0 (NIL T) -7 NIL NIL) (-950 2322661 2322733 2322938 "RDIV" 2323175 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-949 2321734 2321908 2322119 "RDIST" 2322483 NIL RDIST (NIL T) -7 NIL NIL) (-948 2320338 2320625 2320994 "RDETRS" 2321442 NIL RDETRS (NIL T T) -7 NIL NIL) (-947 2318159 2318613 2319148 "RDETR" 2319880 NIL RDETR (NIL T T) -7 NIL NIL) (-946 2316775 2317053 2317454 "RDEEFS" 2317875 NIL RDEEFS (NIL T T) -7 NIL NIL) (-945 2315275 2315581 2316010 "RDEEF" 2316463 NIL RDEEF (NIL T T) -7 NIL NIL) (-944 2309560 2312492 2312520 "RCFIELD" 2313797 T RCFIELD (NIL) -9 NIL 2314527) (-943 2307629 2308133 2308826 "RCFIELD-" 2308899 NIL RCFIELD- (NIL T) -8 NIL NIL) (-942 2303961 2305746 2305787 "RCAGG" 2306858 NIL RCAGG (NIL T) -9 NIL 2307323) (-941 2303592 2303686 2303846 "RCAGG-" 2303851 NIL RCAGG- (NIL T T) -8 NIL NIL) (-940 2302936 2303048 2303210 "RATRET" 2303476 NIL RATRET (NIL T) -7 NIL NIL) (-939 2302493 2302560 2302679 "RATFACT" 2302864 NIL RATFACT (NIL T) -7 NIL NIL) (-938 2301808 2301928 2302078 "RANDSRC" 2302363 T RANDSRC (NIL) -7 NIL NIL) (-937 2301545 2301589 2301660 "RADUTIL" 2301757 T RADUTIL (NIL) -7 NIL NIL) (-936 2294552 2300288 2300605 "RADIX" 2301260 NIL RADIX (NIL NIL) -8 NIL NIL) (-935 2286122 2294396 2294524 "RADFF" 2294529 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-934 2285774 2285849 2285877 "RADCAT" 2286034 T RADCAT (NIL) -9 NIL NIL) (-933 2285559 2285607 2285704 "RADCAT-" 2285709 NIL RADCAT- (NIL T) -8 NIL NIL) (-932 2283710 2285334 2285423 "QUEUE" 2285503 NIL QUEUE (NIL T) -8 NIL NIL) (-931 2280207 2283647 2283692 "QUAT" 2283697 NIL QUAT (NIL T) -8 NIL NIL) (-930 2279845 2279888 2280015 "QUATCT2" 2280158 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-929 2273639 2277019 2277059 "QUATCAT" 2277838 NIL QUATCAT (NIL T) -9 NIL 2278603) (-928 2269783 2270820 2272207 "QUATCAT-" 2272301 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-927 2267304 2268868 2268909 "QUAGG" 2269284 NIL QUAGG (NIL T) -9 NIL 2269459) (-926 2266229 2266702 2266874 "QFORM" 2267176 NIL QFORM (NIL NIL T) -8 NIL NIL) (-925 2257526 2262784 2262824 "QFCAT" 2263482 NIL QFCAT (NIL T) -9 NIL 2264475) (-924 2253098 2254299 2255890 "QFCAT-" 2255984 NIL QFCAT- (NIL T T) -8 NIL NIL) (-923 2252736 2252779 2252906 "QFCAT2" 2253049 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-922 2252196 2252306 2252436 "QEQUAT" 2252626 T QEQUAT (NIL) -8 NIL NIL) (-921 2245382 2246453 2247635 "QCMPACK" 2251129 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-920 2242958 2243379 2243807 "QALGSET" 2245037 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-919 2242203 2242377 2242609 "QALGSET2" 2242778 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-918 2240894 2241117 2241434 "PWFFINTB" 2241976 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-917 2239082 2239250 2239603 "PUSHVAR" 2240708 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-916 2235000 2236054 2236095 "PTRANFN" 2237979 NIL PTRANFN (NIL T) -9 NIL NIL) (-915 2233412 2233703 2234024 "PTPACK" 2234711 NIL PTPACK (NIL T) -7 NIL NIL) (-914 2233048 2233105 2233212 "PTFUNC2" 2233349 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-913 2227525 2231866 2231906 "PTCAT" 2232274 NIL PTCAT (NIL T) -9 NIL 2232436) (-912 2227183 2227218 2227342 "PSQFR" 2227484 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-911 2225778 2226076 2226410 "PSEUDLIN" 2226881 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-910 2212585 2214950 2217273 "PSETPK" 2223538 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-909 2205672 2208386 2208480 "PSETCAT" 2211461 NIL PSETCAT (NIL T T T T) -9 NIL 2212275) (-908 2203510 2204144 2204963 "PSETCAT-" 2204968 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-907 2202859 2203024 2203052 "PSCURVE" 2203320 T PSCURVE (NIL) -9 NIL 2203487) (-906 2199311 2200837 2200901 "PSCAT" 2201737 NIL PSCAT (NIL T T T) -9 NIL 2201977) (-905 2198375 2198591 2198990 "PSCAT-" 2198995 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-904 2197027 2197660 2197874 "PRTITION" 2198181 T PRTITION (NIL) -8 NIL NIL) (-903 2186125 2188331 2190519 "PRS" 2194889 NIL PRS (NIL T T) -7 NIL NIL) (-902 2183984 2185476 2185516 "PRQAGG" 2185699 NIL PRQAGG (NIL T) -9 NIL 2185801) (-901 2183555 2183657 2183685 "PROPLOG" 2183870 T PROPLOG (NIL) -9 NIL NIL) (-900 2180678 2181243 2181770 "PROPFRML" 2183060 NIL PROPFRML (NIL T) -8 NIL NIL) (-899 2180138 2180248 2180378 "PROPERTY" 2180568 T PROPERTY (NIL) -8 NIL NIL) (-898 2173912 2178304 2179124 "PRODUCT" 2179364 NIL PRODUCT (NIL T T) -8 NIL NIL) (-897 2171188 2173372 2173605 "PR" 2173723 NIL PR (NIL T T) -8 NIL NIL) (-896 2170984 2171016 2171075 "PRINT" 2171149 T PRINT (NIL) -7 NIL NIL) (-895 2170324 2170441 2170593 "PRIMES" 2170864 NIL PRIMES (NIL T) -7 NIL NIL) (-894 2168389 2168790 2169256 "PRIMELT" 2169903 NIL PRIMELT (NIL T) -7 NIL NIL) (-893 2168118 2168167 2168195 "PRIMCAT" 2168319 T PRIMCAT (NIL) -9 NIL NIL) (-892 2164279 2168056 2168101 "PRIMARR" 2168106 NIL PRIMARR (NIL T) -8 NIL NIL) (-891 2163286 2163464 2163692 "PRIMARR2" 2164097 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-890 2162929 2162985 2163096 "PREASSOC" 2163224 NIL PREASSOC (NIL T T) -7 NIL NIL) (-889 2162404 2162537 2162565 "PPCURVE" 2162770 T PPCURVE (NIL) -9 NIL 2162906) (-888 2159763 2160162 2160754 "POLYROOT" 2161985 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-887 2153669 2159369 2159528 "POLY" 2159636 NIL POLY (NIL T) -8 NIL NIL) (-886 2153054 2153112 2153345 "POLYLIFT" 2153605 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-885 2149339 2149788 2150416 "POLYCATQ" 2152599 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-884 2136380 2141777 2141841 "POLYCAT" 2145326 NIL POLYCAT (NIL T T T) -9 NIL 2147253) (-883 2129831 2131692 2134075 "POLYCAT-" 2134080 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-882 2129420 2129488 2129607 "POLY2UP" 2129757 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-881 2129056 2129113 2129220 "POLY2" 2129357 NIL POLY2 (NIL T T) -7 NIL NIL) (-880 2127741 2127980 2128256 "POLUTIL" 2128830 NIL POLUTIL (NIL T T) -7 NIL NIL) (-879 2126103 2126380 2126710 "POLTOPOL" 2127463 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-878 2121626 2126040 2126085 "POINT" 2126090 NIL POINT (NIL T) -8 NIL NIL) (-877 2119813 2120170 2120545 "PNTHEORY" 2121271 T PNTHEORY (NIL) -7 NIL NIL) (-876 2118241 2118538 2118947 "PMTOOLS" 2119511 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-875 2117834 2117912 2118029 "PMSYM" 2118157 NIL PMSYM (NIL T) -7 NIL NIL) (-874 2117344 2117413 2117587 "PMQFCAT" 2117759 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-873 2116699 2116809 2116965 "PMPRED" 2117221 NIL PMPRED (NIL T) -7 NIL NIL) (-872 2116095 2116181 2116342 "PMPREDFS" 2116600 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-871 2114741 2114949 2115333 "PMPLCAT" 2115857 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-870 2114273 2114352 2114504 "PMLSAGG" 2114656 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-869 2113750 2113826 2114006 "PMKERNEL" 2114191 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-868 2113367 2113442 2113555 "PMINS" 2113669 NIL PMINS (NIL T) -7 NIL NIL) (-867 2112797 2112866 2113081 "PMFS" 2113292 NIL PMFS (NIL T T T) -7 NIL NIL) (-866 2112028 2112146 2112350 "PMDOWN" 2112674 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-865 2111191 2111350 2111532 "PMASS" 2111866 T PMASS (NIL) -7 NIL NIL) (-864 2110465 2110576 2110739 "PMASSFS" 2111077 NIL PMASSFS (NIL T T) -7 NIL NIL) (-863 2110120 2110188 2110282 "PLOTTOOL" 2110391 T PLOTTOOL (NIL) -7 NIL NIL) (-862 2104742 2105931 2107079 "PLOT" 2108992 T PLOT (NIL) -8 NIL NIL) (-861 2100556 2101590 2102511 "PLOT3D" 2103841 T PLOT3D (NIL) -8 NIL NIL) (-860 2099468 2099645 2099880 "PLOT1" 2100360 NIL PLOT1 (NIL T) -7 NIL NIL) (-859 2074862 2079534 2084385 "PLEQN" 2094734 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-858 2074180 2074302 2074482 "PINTERP" 2074727 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-857 2073873 2073920 2074023 "PINTERPA" 2074127 NIL PINTERPA (NIL T T) -7 NIL NIL) (-856 2073112 2073679 2073766 "PI" 2073806 T PI (NIL) -8 NIL NIL) (-855 2071504 2072489 2072517 "PID" 2072699 T PID (NIL) -9 NIL 2072833) (-854 2071229 2071266 2071354 "PICOERCE" 2071461 NIL PICOERCE (NIL T) -7 NIL NIL) (-853 2070549 2070688 2070864 "PGROEB" 2071085 NIL PGROEB (NIL T) -7 NIL NIL) (-852 2066136 2066950 2067855 "PGE" 2069664 T PGE (NIL) -7 NIL NIL) (-851 2064260 2064506 2064872 "PGCD" 2065853 NIL PGCD (NIL T T T T) -7 NIL NIL) (-850 2063598 2063701 2063862 "PFRPAC" 2064144 NIL PFRPAC (NIL T) -7 NIL NIL) (-849 2060213 2062146 2062499 "PFR" 2063277 NIL PFR (NIL T) -8 NIL NIL) (-848 2058602 2058846 2059171 "PFOTOOLS" 2059960 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-847 2057135 2057374 2057725 "PFOQ" 2058359 NIL PFOQ (NIL T T T) -7 NIL NIL) (-846 2055612 2055824 2056186 "PFO" 2056919 NIL PFO (NIL T T T T T) -7 NIL NIL) (-845 2052135 2055501 2055570 "PF" 2055575 NIL PF (NIL NIL) -8 NIL NIL) (-844 2049564 2050845 2050873 "PFECAT" 2051458 T PFECAT (NIL) -9 NIL 2051842) (-843 2049009 2049163 2049377 "PFECAT-" 2049382 NIL PFECAT- (NIL T) -8 NIL NIL) (-842 2047613 2047864 2048165 "PFBRU" 2048758 NIL PFBRU (NIL T T) -7 NIL NIL) (-841 2045480 2045831 2046263 "PFBR" 2047264 NIL PFBR (NIL T T T T) -7 NIL NIL) (-840 2041331 2042856 2043532 "PERM" 2044837 NIL PERM (NIL T) -8 NIL NIL) (-839 2036596 2037538 2038408 "PERMGRP" 2040494 NIL PERMGRP (NIL T) -8 NIL NIL) (-838 2034667 2035660 2035701 "PERMCAT" 2036147 NIL PERMCAT (NIL T) -9 NIL 2036452) (-837 2034322 2034363 2034486 "PERMAN" 2034620 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-836 2031762 2033891 2034022 "PENDTREE" 2034224 NIL PENDTREE (NIL T) -8 NIL NIL) (-835 2029835 2030613 2030654 "PDRING" 2031311 NIL PDRING (NIL T) -9 NIL 2031596) (-834 2028938 2029156 2029518 "PDRING-" 2029523 NIL PDRING- (NIL T T) -8 NIL NIL) (-833 2026079 2026830 2027521 "PDEPROB" 2028267 T PDEPROB (NIL) -8 NIL NIL) (-832 2023650 2024146 2024695 "PDEPACK" 2025550 T PDEPACK (NIL) -7 NIL NIL) (-831 2022562 2022752 2023003 "PDECOMP" 2023449 NIL PDECOMP (NIL T T) -7 NIL NIL) (-830 2020174 2020989 2021017 "PDECAT" 2021802 T PDECAT (NIL) -9 NIL 2022513) (-829 2019927 2019960 2020049 "PCOMP" 2020135 NIL PCOMP (NIL T T) -7 NIL NIL) (-828 2018134 2018730 2019026 "PBWLB" 2019657 NIL PBWLB (NIL T) -8 NIL NIL) (-827 2010642 2012211 2013547 "PATTERN" 2016819 NIL PATTERN (NIL T) -8 NIL NIL) (-826 2010274 2010331 2010440 "PATTERN2" 2010579 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-825 2008031 2008419 2008876 "PATTERN1" 2009863 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-824 2005426 2005980 2006461 "PATRES" 2007596 NIL PATRES (NIL T T) -8 NIL NIL) (-823 2004990 2005057 2005189 "PATRES2" 2005353 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-822 2002887 2003287 2003692 "PATMATCH" 2004659 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-821 2002424 2002607 2002648 "PATMAB" 2002755 NIL PATMAB (NIL T) -9 NIL 2002838) (-820 2000969 2001278 2001536 "PATLRES" 2002229 NIL PATLRES (NIL T T T) -8 NIL NIL) (-819 2000515 2000638 2000679 "PATAB" 2000684 NIL PATAB (NIL T) -9 NIL 2000856) (-818 1997996 1998528 1999101 "PARTPERM" 1999962 T PARTPERM (NIL) -7 NIL NIL) (-817 1997617 1997680 1997782 "PARSURF" 1997927 NIL PARSURF (NIL T) -8 NIL NIL) (-816 1997249 1997306 1997415 "PARSU2" 1997554 NIL PARSU2 (NIL T T) -7 NIL NIL) (-815 1997013 1997053 1997120 "PARSER" 1997202 T PARSER (NIL) -7 NIL NIL) (-814 1996634 1996697 1996799 "PARSCURV" 1996944 NIL PARSCURV (NIL T) -8 NIL NIL) (-813 1996266 1996323 1996432 "PARSC2" 1996571 NIL PARSC2 (NIL T T) -7 NIL NIL) (-812 1995905 1995963 1996060 "PARPCURV" 1996202 NIL PARPCURV (NIL T) -8 NIL NIL) (-811 1995537 1995594 1995703 "PARPC2" 1995842 NIL PARPC2 (NIL T T) -7 NIL NIL) (-810 1995057 1995143 1995262 "PAN2EXPR" 1995438 T PAN2EXPR (NIL) -7 NIL NIL) (-809 1993863 1994178 1994406 "PALETTE" 1994849 T PALETTE (NIL) -8 NIL NIL) (-808 1992331 1992868 1993228 "PAIR" 1993549 NIL PAIR (NIL T T) -8 NIL NIL) (-807 1986181 1991590 1991784 "PADICRC" 1992186 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-806 1979389 1985527 1985711 "PADICRAT" 1986029 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-805 1977693 1979326 1979371 "PADIC" 1979376 NIL PADIC (NIL NIL) -8 NIL NIL) (-804 1974898 1976472 1976512 "PADICCT" 1977093 NIL PADICCT (NIL NIL) -9 NIL 1977375) (-803 1973855 1974055 1974323 "PADEPAC" 1974685 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-802 1973067 1973200 1973406 "PADE" 1973717 NIL PADE (NIL T T T) -7 NIL NIL) (-801 1971078 1971910 1972225 "OWP" 1972835 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-800 1970187 1970683 1970855 "OVAR" 1970946 NIL OVAR (NIL NIL) -8 NIL NIL) (-799 1969451 1969572 1969733 "OUT" 1970046 T OUT (NIL) -7 NIL NIL) (-798 1958505 1960676 1962846 "OUTFORM" 1967301 T OUTFORM (NIL) -8 NIL NIL) (-797 1957913 1958234 1958323 "OSI" 1958436 T OSI (NIL) -8 NIL NIL) (-796 1957444 1957782 1957810 "OSGROUP" 1957815 T OSGROUP (NIL) -9 NIL 1957837) (-795 1956189 1956416 1956701 "ORTHPOL" 1957191 NIL ORTHPOL (NIL T) -7 NIL NIL) (-794 1953560 1955850 1955988 "OREUP" 1956132 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-793 1950956 1953253 1953379 "ORESUP" 1953502 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-792 1948491 1948991 1949551 "OREPCTO" 1950445 NIL OREPCTO (NIL T T) -7 NIL NIL) (-791 1942401 1944607 1944647 "OREPCAT" 1946968 NIL OREPCAT (NIL T) -9 NIL 1948071) (-790 1939549 1940331 1941388 "OREPCAT-" 1941393 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-789 1938727 1938999 1939027 "ORDSET" 1939336 T ORDSET (NIL) -9 NIL 1939500) (-788 1938246 1938368 1938561 "ORDSET-" 1938566 NIL ORDSET- (NIL T) -8 NIL NIL) (-787 1936860 1937661 1937689 "ORDRING" 1937891 T ORDRING (NIL) -9 NIL 1938015) (-786 1936505 1936599 1936743 "ORDRING-" 1936748 NIL ORDRING- (NIL T) -8 NIL NIL) (-785 1935868 1936349 1936377 "ORDMON" 1936382 T ORDMON (NIL) -9 NIL 1936403) (-784 1935030 1935177 1935372 "ORDFUNS" 1935717 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-783 1934542 1934901 1934929 "ORDFIN" 1934934 T ORDFIN (NIL) -9 NIL 1934955) (-782 1931054 1933128 1933537 "ORDCOMP" 1934166 NIL ORDCOMP (NIL T) -8 NIL NIL) (-781 1930320 1930447 1930633 "ORDCOMP2" 1930914 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-780 1926827 1927710 1928547 "OPTPROB" 1929503 T OPTPROB (NIL) -8 NIL NIL) (-779 1923669 1924298 1924992 "OPTPACK" 1926153 T OPTPACK (NIL) -7 NIL NIL) (-778 1921395 1922131 1922159 "OPTCAT" 1922974 T OPTCAT (NIL) -9 NIL 1923620) (-777 1921163 1921202 1921268 "OPQUERY" 1921349 T OPQUERY (NIL) -7 NIL NIL) (-776 1918299 1919490 1919990 "OP" 1920695 NIL OP (NIL T) -8 NIL NIL) (-775 1915064 1917096 1917465 "ONECOMP" 1917963 NIL ONECOMP (NIL T) -8 NIL NIL) (-774 1914369 1914484 1914658 "ONECOMP2" 1914936 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-773 1913788 1913894 1914024 "OMSERVER" 1914259 T OMSERVER (NIL) -7 NIL NIL) (-772 1910677 1913229 1913269 "OMSAGG" 1913330 NIL OMSAGG (NIL T) -9 NIL 1913394) (-771 1909300 1909563 1909845 "OMPKG" 1910415 T OMPKG (NIL) -7 NIL NIL) (-770 1908730 1908833 1908861 "OM" 1909160 T OM (NIL) -9 NIL NIL) (-769 1907269 1908282 1908450 "OMLO" 1908611 NIL OMLO (NIL T T) -8 NIL NIL) (-768 1906199 1906346 1906572 "OMEXPR" 1907095 NIL OMEXPR (NIL T) -7 NIL NIL) (-767 1905517 1905745 1905881 "OMERR" 1906083 T OMERR (NIL) -8 NIL NIL) (-766 1904695 1904938 1905098 "OMERRK" 1905377 T OMERRK (NIL) -8 NIL NIL) (-765 1904173 1904372 1904480 "OMENC" 1904607 T OMENC (NIL) -8 NIL NIL) (-764 1898068 1899253 1900424 "OMDEV" 1903022 T OMDEV (NIL) -8 NIL NIL) (-763 1897137 1897308 1897502 "OMCONN" 1897894 T OMCONN (NIL) -8 NIL NIL) (-762 1895753 1896739 1896767 "OINTDOM" 1896772 T OINTDOM (NIL) -9 NIL 1896793) (-761 1891515 1892745 1893460 "OFMONOID" 1895070 NIL OFMONOID (NIL T) -8 NIL NIL) (-760 1890953 1891452 1891497 "ODVAR" 1891502 NIL ODVAR (NIL T) -8 NIL NIL) (-759 1888078 1890450 1890635 "ODR" 1890828 NIL ODR (NIL T T NIL) -8 NIL NIL) (-758 1880384 1887857 1887981 "ODPOL" 1887986 NIL ODPOL (NIL T) -8 NIL NIL) (-757 1874207 1880256 1880361 "ODP" 1880366 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-756 1872973 1873188 1873463 "ODETOOLS" 1873981 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-755 1869942 1870598 1871314 "ODESYS" 1872306 NIL ODESYS (NIL T T) -7 NIL NIL) (-754 1864846 1865754 1866777 "ODERTRIC" 1869017 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-753 1864272 1864354 1864548 "ODERED" 1864758 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-752 1861174 1861722 1862397 "ODERAT" 1863695 NIL ODERAT (NIL T T) -7 NIL NIL) (-751 1858142 1858606 1859202 "ODEPRRIC" 1860703 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-750 1856011 1856580 1857089 "ODEPROB" 1857653 T ODEPROB (NIL) -8 NIL NIL) (-749 1852543 1853026 1853672 "ODEPRIM" 1855490 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-748 1851796 1851898 1852156 "ODEPAL" 1852435 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-747 1847998 1848779 1849633 "ODEPACK" 1850962 T ODEPACK (NIL) -7 NIL NIL) (-746 1847035 1847142 1847370 "ODEINT" 1847887 NIL ODEINT (NIL T T) -7 NIL NIL) (-745 1841136 1842561 1844008 "ODEIFTBL" 1845608 T ODEIFTBL (NIL) -8 NIL NIL) (-744 1836480 1837266 1838224 "ODEEF" 1840295 NIL ODEEF (NIL T T) -7 NIL NIL) (-743 1835817 1835906 1836135 "ODECONST" 1836385 NIL ODECONST (NIL T T T) -7 NIL NIL) (-742 1833975 1834608 1834636 "ODECAT" 1835239 T ODECAT (NIL) -9 NIL 1835768) (-741 1830847 1833687 1833806 "OCT" 1833888 NIL OCT (NIL T) -8 NIL NIL) (-740 1830485 1830528 1830655 "OCTCT2" 1830798 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-739 1825319 1827757 1827797 "OC" 1828893 NIL OC (NIL T) -9 NIL 1829750) (-738 1822546 1823294 1824284 "OC-" 1824378 NIL OC- (NIL T T) -8 NIL NIL) (-737 1821925 1822367 1822395 "OCAMON" 1822400 T OCAMON (NIL) -9 NIL 1822421) (-736 1821483 1821798 1821826 "OASGP" 1821831 T OASGP (NIL) -9 NIL 1821851) (-735 1820771 1821234 1821262 "OAMONS" 1821302 T OAMONS (NIL) -9 NIL 1821345) (-734 1820212 1820619 1820647 "OAMON" 1820652 T OAMON (NIL) -9 NIL 1820672) (-733 1819517 1820009 1820037 "OAGROUP" 1820042 T OAGROUP (NIL) -9 NIL 1820062) (-732 1819207 1819257 1819345 "NUMTUBE" 1819461 NIL NUMTUBE (NIL T) -7 NIL NIL) (-731 1812780 1814298 1815834 "NUMQUAD" 1817691 T NUMQUAD (NIL) -7 NIL NIL) (-730 1808536 1809524 1810549 "NUMODE" 1811775 T NUMODE (NIL) -7 NIL NIL) (-729 1805940 1806786 1806814 "NUMINT" 1807731 T NUMINT (NIL) -9 NIL 1808487) (-728 1804888 1805085 1805303 "NUMFMT" 1805742 T NUMFMT (NIL) -7 NIL NIL) (-727 1791267 1794204 1796734 "NUMERIC" 1802397 NIL NUMERIC (NIL T) -7 NIL NIL) (-726 1785668 1790720 1790814 "NTSCAT" 1790819 NIL NTSCAT (NIL T T T T) -9 NIL 1790857) (-725 1784862 1785027 1785220 "NTPOLFN" 1785507 NIL NTPOLFN (NIL T) -7 NIL NIL) (-724 1772678 1781704 1782514 "NSUP" 1784084 NIL NSUP (NIL T) -8 NIL NIL) (-723 1772314 1772371 1772478 "NSUP2" 1772615 NIL NSUP2 (NIL T T) -7 NIL NIL) (-722 1762276 1772093 1772223 "NSMP" 1772228 NIL NSMP (NIL T T) -8 NIL NIL) (-721 1760708 1761009 1761366 "NREP" 1761964 NIL NREP (NIL T) -7 NIL NIL) (-720 1759299 1759551 1759909 "NPCOEF" 1760451 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-719 1758365 1758480 1758696 "NORMRETR" 1759180 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-718 1756418 1756708 1757115 "NORMPK" 1758073 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-717 1756103 1756131 1756255 "NORMMA" 1756384 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-716 1755930 1756060 1756089 "NONE" 1756094 T NONE (NIL) -8 NIL NIL) (-715 1755719 1755748 1755817 "NONE1" 1755894 NIL NONE1 (NIL T) -7 NIL NIL) (-714 1755204 1755266 1755451 "NODE1" 1755651 NIL NODE1 (NIL T T) -7 NIL NIL) (-713 1753498 1754367 1754622 "NNI" 1754969 T NNI (NIL) -8 NIL NIL) (-712 1751918 1752231 1752595 "NLINSOL" 1753166 NIL NLINSOL (NIL T) -7 NIL NIL) (-711 1748085 1749053 1749975 "NIPROB" 1751016 T NIPROB (NIL) -8 NIL NIL) (-710 1746842 1747076 1747378 "NFINTBAS" 1747847 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-709 1745550 1745781 1746062 "NCODIV" 1746610 NIL NCODIV (NIL T T) -7 NIL NIL) (-708 1745312 1745349 1745424 "NCNTFRAC" 1745507 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-707 1743492 1743856 1744276 "NCEP" 1744937 NIL NCEP (NIL T) -7 NIL NIL) (-706 1742404 1743143 1743171 "NASRING" 1743281 T NASRING (NIL) -9 NIL 1743355) (-705 1742199 1742243 1742337 "NASRING-" 1742342 NIL NASRING- (NIL T) -8 NIL NIL) (-704 1741353 1741852 1741880 "NARNG" 1741997 T NARNG (NIL) -9 NIL 1742088) (-703 1741045 1741112 1741246 "NARNG-" 1741251 NIL NARNG- (NIL T) -8 NIL NIL) (-702 1739924 1740131 1740366 "NAGSP" 1740830 T NAGSP (NIL) -7 NIL NIL) (-701 1731348 1732994 1734629 "NAGS" 1738309 T NAGS (NIL) -7 NIL NIL) (-700 1729912 1730216 1730543 "NAGF07" 1731041 T NAGF07 (NIL) -7 NIL NIL) (-699 1724494 1725774 1727070 "NAGF04" 1728636 T NAGF04 (NIL) -7 NIL NIL) (-698 1717526 1719124 1720741 "NAGF02" 1722897 T NAGF02 (NIL) -7 NIL NIL) (-697 1712790 1713880 1714987 "NAGF01" 1716439 T NAGF01 (NIL) -7 NIL NIL) (-696 1706450 1708008 1709585 "NAGE04" 1711233 T NAGE04 (NIL) -7 NIL NIL) (-695 1697691 1699794 1701906 "NAGE02" 1704358 T NAGE02 (NIL) -7 NIL NIL) (-694 1693684 1694621 1695575 "NAGE01" 1696757 T NAGE01 (NIL) -7 NIL NIL) (-693 1691491 1692022 1692577 "NAGD03" 1693149 T NAGD03 (NIL) -7 NIL NIL) (-692 1683277 1685196 1687141 "NAGD02" 1689566 T NAGD02 (NIL) -7 NIL NIL) (-691 1677136 1678549 1679977 "NAGD01" 1681869 T NAGD01 (NIL) -7 NIL NIL) (-690 1673393 1674203 1675028 "NAGC06" 1676331 T NAGC06 (NIL) -7 NIL NIL) (-689 1671870 1672199 1672552 "NAGC05" 1673060 T NAGC05 (NIL) -7 NIL NIL) (-688 1671254 1671371 1671513 "NAGC02" 1671748 T NAGC02 (NIL) -7 NIL NIL) (-687 1670316 1670873 1670913 "NAALG" 1670992 NIL NAALG (NIL T) -9 NIL 1671053) (-686 1670151 1670180 1670270 "NAALG-" 1670275 NIL NAALG- (NIL T T) -8 NIL NIL) (-685 1664101 1665209 1666396 "MULTSQFR" 1669047 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-684 1663420 1663495 1663679 "MULTFACT" 1664013 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-683 1656614 1660525 1660577 "MTSCAT" 1661637 NIL MTSCAT (NIL T T) -9 NIL 1662151) (-682 1656326 1656380 1656472 "MTHING" 1656554 NIL MTHING (NIL T) -7 NIL NIL) (-681 1656118 1656151 1656211 "MSYSCMD" 1656286 T MSYSCMD (NIL) -7 NIL NIL) (-680 1652230 1654873 1655193 "MSET" 1655831 NIL MSET (NIL T) -8 NIL NIL) (-679 1649326 1651792 1651833 "MSETAGG" 1651838 NIL MSETAGG (NIL T) -9 NIL 1651872) (-678 1645182 1646724 1647465 "MRING" 1648629 NIL MRING (NIL T T) -8 NIL NIL) (-677 1644752 1644819 1644948 "MRF2" 1645109 NIL MRF2 (NIL T T T) -7 NIL NIL) (-676 1644370 1644405 1644549 "MRATFAC" 1644711 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-675 1641982 1642277 1642708 "MPRFF" 1644075 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-674 1636002 1641837 1641933 "MPOLY" 1641938 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-673 1635492 1635527 1635735 "MPCPF" 1635961 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-672 1635008 1635051 1635234 "MPC3" 1635443 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-671 1634209 1634290 1634509 "MPC2" 1634923 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-670 1632510 1632847 1633237 "MONOTOOL" 1633869 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-669 1631635 1631970 1631998 "MONOID" 1632275 T MONOID (NIL) -9 NIL 1632447) (-668 1631013 1631176 1631419 "MONOID-" 1631424 NIL MONOID- (NIL T) -8 NIL NIL) (-667 1621994 1627980 1628039 "MONOGEN" 1628713 NIL MONOGEN (NIL T T) -9 NIL 1629169) (-666 1619212 1619947 1620947 "MONOGEN-" 1621066 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-665 1618072 1618492 1618520 "MONADWU" 1618912 T MONADWU (NIL) -9 NIL 1619150) (-664 1617444 1617603 1617851 "MONADWU-" 1617856 NIL MONADWU- (NIL T) -8 NIL NIL) (-663 1616830 1617048 1617076 "MONAD" 1617283 T MONAD (NIL) -9 NIL 1617395) (-662 1616515 1616593 1616725 "MONAD-" 1616730 NIL MONAD- (NIL T) -8 NIL NIL) (-661 1614766 1615428 1615707 "MOEBIUS" 1616268 NIL MOEBIUS (NIL T) -8 NIL NIL) (-660 1614160 1614538 1614578 "MODULE" 1614583 NIL MODULE (NIL T) -9 NIL 1614609) (-659 1613728 1613824 1614014 "MODULE-" 1614019 NIL MODULE- (NIL T T) -8 NIL NIL) (-658 1611399 1612094 1612420 "MODRING" 1613553 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-657 1608355 1609520 1610037 "MODOP" 1610931 NIL MODOP (NIL T T) -8 NIL NIL) (-656 1606542 1606994 1607335 "MODMONOM" 1608154 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-655 1596221 1604746 1605168 "MODMON" 1606170 NIL MODMON (NIL T T) -8 NIL NIL) (-654 1593347 1595065 1595341 "MODFIELD" 1596096 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-653 1592351 1592628 1592818 "MMLFORM" 1593177 T MMLFORM (NIL) -8 NIL NIL) (-652 1591877 1591920 1592099 "MMAP" 1592302 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-651 1590114 1590891 1590931 "MLO" 1591348 NIL MLO (NIL T) -9 NIL 1591589) (-650 1587481 1587996 1588598 "MLIFT" 1589595 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-649 1586872 1586956 1587110 "MKUCFUNC" 1587392 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-648 1586471 1586541 1586664 "MKRECORD" 1586795 NIL MKRECORD (NIL T T) -7 NIL NIL) (-647 1585519 1585680 1585908 "MKFUNC" 1586282 NIL MKFUNC (NIL T) -7 NIL NIL) (-646 1584907 1585011 1585167 "MKFLCFN" 1585402 NIL MKFLCFN (NIL T) -7 NIL NIL) (-645 1584333 1584700 1584789 "MKCHSET" 1584851 NIL MKCHSET (NIL T) -8 NIL NIL) (-644 1583610 1583712 1583897 "MKBCFUNC" 1584226 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-643 1580294 1583164 1583300 "MINT" 1583494 T MINT (NIL) -8 NIL NIL) (-642 1579106 1579349 1579626 "MHROWRED" 1580049 NIL MHROWRED (NIL T) -7 NIL NIL) (-641 1574377 1577551 1577975 "MFLOAT" 1578702 T MFLOAT (NIL) -8 NIL NIL) (-640 1573734 1573810 1573981 "MFINFACT" 1574289 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-639 1570049 1570897 1571781 "MESH" 1572870 T MESH (NIL) -7 NIL NIL) (-638 1568439 1568751 1569104 "MDDFACT" 1569736 NIL MDDFACT (NIL T) -7 NIL NIL) (-637 1565282 1567599 1567640 "MDAGG" 1567895 NIL MDAGG (NIL T) -9 NIL 1568038) (-636 1554980 1564575 1564782 "MCMPLX" 1565095 T MCMPLX (NIL) -8 NIL NIL) (-635 1554121 1554267 1554467 "MCDEN" 1554829 NIL MCDEN (NIL T T) -7 NIL NIL) (-634 1552011 1552281 1552661 "MCALCFN" 1553851 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-633 1549633 1550156 1550717 "MATSTOR" 1551482 NIL MATSTOR (NIL T) -7 NIL NIL) (-632 1545642 1549008 1549255 "MATRIX" 1549418 NIL MATRIX (NIL T) -8 NIL NIL) (-631 1541411 1542115 1542851 "MATLIN" 1544999 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-630 1531609 1534747 1534823 "MATCAT" 1539661 NIL MATCAT (NIL T T T) -9 NIL 1541078) (-629 1527974 1528987 1530342 "MATCAT-" 1530347 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-628 1526576 1526729 1527060 "MATCAT2" 1527809 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-627 1524688 1525012 1525396 "MAPPKG3" 1526251 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-626 1523669 1523842 1524064 "MAPPKG2" 1524512 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-625 1522168 1522452 1522779 "MAPPKG1" 1523375 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-624 1521779 1521837 1521960 "MAPHACK3" 1522104 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-623 1521371 1521432 1521546 "MAPHACK2" 1521711 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-622 1520809 1520912 1521054 "MAPHACK1" 1521262 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-621 1518917 1519511 1519814 "MAGMA" 1520538 NIL MAGMA (NIL T) -8 NIL NIL) (-620 1515391 1517161 1517621 "M3D" 1518490 NIL M3D (NIL T) -8 NIL NIL) (-619 1509547 1513762 1513803 "LZSTAGG" 1514585 NIL LZSTAGG (NIL T) -9 NIL 1514880) (-618 1505520 1506678 1508135 "LZSTAGG-" 1508140 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-617 1502636 1503413 1503899 "LWORD" 1505066 NIL LWORD (NIL T) -8 NIL NIL) (-616 1495796 1502407 1502541 "LSQM" 1502546 NIL LSQM (NIL NIL T) -8 NIL NIL) (-615 1495020 1495159 1495387 "LSPP" 1495651 NIL LSPP (NIL T T T T) -7 NIL NIL) (-614 1492832 1493133 1493589 "LSMP" 1494709 NIL LSMP (NIL T T T T) -7 NIL NIL) (-613 1489611 1490285 1491015 "LSMP1" 1492134 NIL LSMP1 (NIL T) -7 NIL NIL) (-612 1483538 1488780 1488821 "LSAGG" 1488883 NIL LSAGG (NIL T) -9 NIL 1488961) (-611 1480233 1481157 1482370 "LSAGG-" 1482375 NIL LSAGG- (NIL T T) -8 NIL NIL) (-610 1477859 1479377 1479626 "LPOLY" 1480028 NIL LPOLY (NIL T T) -8 NIL NIL) (-609 1477441 1477526 1477649 "LPEFRAC" 1477768 NIL LPEFRAC (NIL T) -7 NIL NIL) (-608 1475788 1476535 1476788 "LO" 1477273 NIL LO (NIL T T T) -8 NIL NIL) (-607 1475442 1475554 1475582 "LOGIC" 1475693 T LOGIC (NIL) -9 NIL 1475773) (-606 1475304 1475327 1475398 "LOGIC-" 1475403 NIL LOGIC- (NIL T) -8 NIL NIL) (-605 1474497 1474637 1474830 "LODOOPS" 1475160 NIL LODOOPS (NIL T T) -7 NIL NIL) (-604 1471915 1474414 1474479 "LODO" 1474484 NIL LODO (NIL T NIL) -8 NIL NIL) (-603 1470461 1470696 1471047 "LODOF" 1471662 NIL LODOF (NIL T T) -7 NIL NIL) (-602 1466881 1469317 1469357 "LODOCAT" 1469789 NIL LODOCAT (NIL T) -9 NIL 1470000) (-601 1466615 1466673 1466799 "LODOCAT-" 1466804 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-600 1463929 1466456 1466574 "LODO2" 1466579 NIL LODO2 (NIL T T) -8 NIL NIL) (-599 1461358 1463866 1463911 "LODO1" 1463916 NIL LODO1 (NIL T) -8 NIL NIL) (-598 1460221 1460386 1460697 "LODEEF" 1461181 NIL LODEEF (NIL T T T) -7 NIL NIL) (-597 1455508 1458352 1458393 "LNAGG" 1459340 NIL LNAGG (NIL T) -9 NIL 1459784) (-596 1454655 1454869 1455211 "LNAGG-" 1455216 NIL LNAGG- (NIL T T) -8 NIL NIL) (-595 1450820 1451582 1452220 "LMOPS" 1454071 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-594 1450218 1450580 1450620 "LMODULE" 1450680 NIL LMODULE (NIL T) -9 NIL 1450722) (-593 1447464 1449863 1449986 "LMDICT" 1450128 NIL LMDICT (NIL T) -8 NIL NIL) (-592 1440691 1446410 1446708 "LIST" 1447199 NIL LIST (NIL T) -8 NIL NIL) (-591 1440216 1440290 1440429 "LIST3" 1440611 NIL LIST3 (NIL T T T) -7 NIL NIL) (-590 1439223 1439401 1439629 "LIST2" 1440034 NIL LIST2 (NIL T T) -7 NIL NIL) (-589 1437357 1437669 1438068 "LIST2MAP" 1438870 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-588 1436070 1436750 1436790 "LINEXP" 1437043 NIL LINEXP (NIL T) -9 NIL 1437191) (-587 1434717 1434977 1435274 "LINDEP" 1435822 NIL LINDEP (NIL T T) -7 NIL NIL) (-586 1431484 1432203 1432980 "LIMITRF" 1433972 NIL LIMITRF (NIL T) -7 NIL NIL) (-585 1429764 1430059 1430474 "LIMITPS" 1431179 NIL LIMITPS (NIL T T) -7 NIL NIL) (-584 1424219 1429275 1429503 "LIE" 1429585 NIL LIE (NIL T T) -8 NIL NIL) (-583 1423270 1423713 1423753 "LIECAT" 1423893 NIL LIECAT (NIL T) -9 NIL 1424044) (-582 1423111 1423138 1423226 "LIECAT-" 1423231 NIL LIECAT- (NIL T T) -8 NIL NIL) (-581 1415723 1422560 1422725 "LIB" 1422966 T LIB (NIL) -8 NIL NIL) (-580 1411360 1412241 1413176 "LGROBP" 1414840 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-579 1409226 1409500 1409862 "LF" 1411081 NIL LF (NIL T T) -7 NIL NIL) (-578 1408066 1408758 1408786 "LFCAT" 1408993 T LFCAT (NIL) -9 NIL 1409132) (-577 1404978 1405604 1406290 "LEXTRIPK" 1407432 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-576 1401684 1402548 1403051 "LEXP" 1404558 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-575 1400082 1400395 1400796 "LEADCDET" 1401366 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-574 1399278 1399352 1399579 "LAZM3PK" 1400003 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-573 1394195 1397357 1397894 "LAUPOL" 1398791 NIL LAUPOL (NIL T T) -8 NIL NIL) (-572 1393762 1393806 1393973 "LAPLACE" 1394145 NIL LAPLACE (NIL T T) -7 NIL NIL) (-571 1391690 1392863 1393114 "LA" 1393595 NIL LA (NIL T T T) -8 NIL NIL) (-570 1390753 1391347 1391387 "LALG" 1391448 NIL LALG (NIL T) -9 NIL 1391506) (-569 1390468 1390527 1390662 "LALG-" 1390667 NIL LALG- (NIL T T) -8 NIL NIL) (-568 1389378 1389565 1389862 "KOVACIC" 1390268 NIL KOVACIC (NIL T T) -7 NIL NIL) (-567 1389213 1389237 1389278 "KONVERT" 1389340 NIL KONVERT (NIL T) -9 NIL NIL) (-566 1389048 1389072 1389113 "KOERCE" 1389175 NIL KOERCE (NIL T) -9 NIL NIL) (-565 1386782 1387542 1387935 "KERNEL" 1388687 NIL KERNEL (NIL T) -8 NIL NIL) (-564 1386284 1386365 1386495 "KERNEL2" 1386696 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-563 1380136 1384824 1384878 "KDAGG" 1385255 NIL KDAGG (NIL T T) -9 NIL 1385461) (-562 1379665 1379789 1379994 "KDAGG-" 1379999 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-561 1372840 1379326 1379481 "KAFILE" 1379543 NIL KAFILE (NIL T) -8 NIL NIL) (-560 1367295 1372351 1372579 "JORDAN" 1372661 NIL JORDAN (NIL T T) -8 NIL NIL) (-559 1367024 1367083 1367170 "JAVACODE" 1367228 T JAVACODE (NIL) -8 NIL NIL) (-558 1363324 1365230 1365284 "IXAGG" 1366213 NIL IXAGG (NIL T T) -9 NIL 1366672) (-557 1362243 1362549 1362968 "IXAGG-" 1362973 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-556 1357828 1362165 1362224 "IVECTOR" 1362229 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-555 1356594 1356831 1357097 "ITUPLE" 1357595 NIL ITUPLE (NIL T) -8 NIL NIL) (-554 1355030 1355207 1355513 "ITRIGMNP" 1356416 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-553 1353775 1353979 1354262 "ITFUN3" 1354806 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-552 1353407 1353464 1353573 "ITFUN2" 1353712 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-551 1351209 1352280 1352577 "ITAYLOR" 1353142 NIL ITAYLOR (NIL T) -8 NIL NIL) (-550 1340197 1345395 1346554 "ISUPS" 1350082 NIL ISUPS (NIL T) -8 NIL NIL) (-549 1339301 1339441 1339677 "ISUMP" 1340044 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-548 1334565 1339102 1339181 "ISTRING" 1339254 NIL ISTRING (NIL NIL) -8 NIL NIL) (-547 1333778 1333859 1334074 "IRURPK" 1334479 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-546 1332714 1332915 1333155 "IRSN" 1333558 T IRSN (NIL) -7 NIL NIL) (-545 1330749 1331104 1331539 "IRRF2F" 1332352 NIL IRRF2F (NIL T) -7 NIL NIL) (-544 1330496 1330534 1330610 "IRREDFFX" 1330705 NIL IRREDFFX (NIL T) -7 NIL NIL) (-543 1329111 1329370 1329669 "IROOT" 1330229 NIL IROOT (NIL T) -7 NIL NIL) (-542 1325749 1326800 1327490 "IR" 1328453 NIL IR (NIL T) -8 NIL NIL) (-541 1323362 1323857 1324423 "IR2" 1325227 NIL IR2 (NIL T T) -7 NIL NIL) (-540 1322438 1322551 1322771 "IR2F" 1323245 NIL IR2F (NIL T T) -7 NIL NIL) (-539 1322229 1322263 1322323 "IPRNTPK" 1322398 T IPRNTPK (NIL) -7 NIL NIL) (-538 1318783 1322118 1322187 "IPF" 1322192 NIL IPF (NIL NIL) -8 NIL NIL) (-537 1317100 1318708 1318765 "IPADIC" 1318770 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-536 1316599 1316657 1316846 "INVLAPLA" 1317036 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-535 1306248 1308601 1310987 "INTTR" 1314263 NIL INTTR (NIL T T) -7 NIL NIL) (-534 1302596 1303337 1304200 "INTTOOLS" 1305434 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-533 1302182 1302273 1302390 "INTSLPE" 1302499 T INTSLPE (NIL) -7 NIL NIL) (-532 1300132 1302105 1302164 "INTRVL" 1302169 NIL INTRVL (NIL T) -8 NIL NIL) (-531 1297739 1298251 1298825 "INTRF" 1299617 NIL INTRF (NIL T) -7 NIL NIL) (-530 1297154 1297251 1297392 "INTRET" 1297637 NIL INTRET (NIL T) -7 NIL NIL) (-529 1295156 1295545 1296014 "INTRAT" 1296762 NIL INTRAT (NIL T T) -7 NIL NIL) (-528 1292389 1292972 1293597 "INTPM" 1294641 NIL INTPM (NIL T T) -7 NIL NIL) (-527 1289098 1289697 1290441 "INTPAF" 1291775 NIL INTPAF (NIL T T T) -7 NIL NIL) (-526 1284341 1285287 1286322 "INTPACK" 1288083 T INTPACK (NIL) -7 NIL NIL) (-525 1281195 1284070 1284197 "INT" 1284234 T INT (NIL) -8 NIL NIL) (-524 1280447 1280599 1280807 "INTHERTR" 1281037 NIL INTHERTR (NIL T T) -7 NIL NIL) (-523 1279886 1279966 1280154 "INTHERAL" 1280361 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-522 1277732 1278175 1278632 "INTHEORY" 1279449 T INTHEORY (NIL) -7 NIL NIL) (-521 1269054 1270675 1272453 "INTG0" 1276084 NIL INTG0 (NIL T T T) -7 NIL NIL) (-520 1249627 1254417 1259227 "INTFTBL" 1264264 T INTFTBL (NIL) -8 NIL NIL) (-519 1248876 1249014 1249187 "INTFACT" 1249486 NIL INTFACT (NIL T) -7 NIL NIL) (-518 1246267 1246713 1247276 "INTEF" 1248430 NIL INTEF (NIL T T) -7 NIL NIL) (-517 1244729 1245478 1245506 "INTDOM" 1245807 T INTDOM (NIL) -9 NIL 1246014) (-516 1244098 1244272 1244514 "INTDOM-" 1244519 NIL INTDOM- (NIL T) -8 NIL NIL) (-515 1240591 1242523 1242577 "INTCAT" 1243376 NIL INTCAT (NIL T) -9 NIL 1243695) (-514 1240064 1240166 1240294 "INTBIT" 1240483 T INTBIT (NIL) -7 NIL NIL) (-513 1238739 1238893 1239206 "INTALG" 1239909 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-512 1238196 1238286 1238456 "INTAF" 1238643 NIL INTAF (NIL T T) -7 NIL NIL) (-511 1231650 1238006 1238146 "INTABL" 1238151 NIL INTABL (NIL T T T) -8 NIL NIL) (-510 1226601 1229330 1229358 "INS" 1230326 T INS (NIL) -9 NIL 1231007) (-509 1223841 1224612 1225586 "INS-" 1225659 NIL INS- (NIL T) -8 NIL NIL) (-508 1222620 1222847 1223144 "INPSIGN" 1223594 NIL INPSIGN (NIL T T) -7 NIL NIL) (-507 1221738 1221855 1222052 "INPRODPF" 1222500 NIL INPRODPF (NIL T T) -7 NIL NIL) (-506 1220632 1220749 1220986 "INPRODFF" 1221618 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-505 1219632 1219784 1220044 "INNMFACT" 1220468 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-504 1218829 1218926 1219114 "INMODGCD" 1219531 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-503 1217338 1217582 1217906 "INFSP" 1218574 NIL INFSP (NIL T T T) -7 NIL NIL) (-502 1216522 1216639 1216822 "INFPROD0" 1217218 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-501 1213533 1214691 1215182 "INFORM" 1216039 T INFORM (NIL) -8 NIL NIL) (-500 1213143 1213203 1213301 "INFORM1" 1213468 NIL INFORM1 (NIL T) -7 NIL NIL) (-499 1212666 1212755 1212869 "INFINITY" 1213049 T INFINITY (NIL) -7 NIL NIL) (-498 1211283 1211532 1211853 "INEP" 1212414 NIL INEP (NIL T T T) -7 NIL NIL) (-497 1210559 1211180 1211245 "INDE" 1211250 NIL INDE (NIL T) -8 NIL NIL) (-496 1210123 1210191 1210308 "INCRMAPS" 1210486 NIL INCRMAPS (NIL T) -7 NIL NIL) (-495 1205434 1206359 1207303 "INBFF" 1209211 NIL INBFF (NIL T) -7 NIL NIL) (-494 1201929 1205279 1205382 "IMATRIX" 1205387 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-493 1200641 1200764 1201079 "IMATQF" 1201785 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-492 1198861 1199088 1199425 "IMATLIN" 1200397 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-491 1193487 1198785 1198843 "ILIST" 1198848 NIL ILIST (NIL T NIL) -8 NIL NIL) (-490 1191440 1193347 1193460 "IIARRAY2" 1193465 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-489 1186808 1191351 1191415 "IFF" 1191420 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-488 1181851 1186100 1186288 "IFARRAY" 1186665 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-487 1181058 1181755 1181828 "IFAMON" 1181833 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-486 1180642 1180707 1180761 "IEVALAB" 1180968 NIL IEVALAB (NIL T T) -9 NIL NIL) (-485 1180317 1180385 1180545 "IEVALAB-" 1180550 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-484 1179975 1180231 1180294 "IDPO" 1180299 NIL IDPO (NIL T T) -8 NIL NIL) (-483 1179252 1179864 1179939 "IDPOAMS" 1179944 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-482 1178586 1179141 1179216 "IDPOAM" 1179221 NIL IDPOAM (NIL T T) -8 NIL NIL) (-481 1177672 1177922 1177975 "IDPC" 1178388 NIL IDPC (NIL T T) -9 NIL 1178537) (-480 1177168 1177564 1177637 "IDPAM" 1177642 NIL IDPAM (NIL T T) -8 NIL NIL) (-479 1176571 1177060 1177133 "IDPAG" 1177138 NIL IDPAG (NIL T T) -8 NIL NIL) (-478 1172826 1173674 1174569 "IDECOMP" 1175728 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-477 1165699 1166749 1167796 "IDEAL" 1171862 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-476 1164863 1164975 1165174 "ICDEN" 1165583 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-475 1163962 1164343 1164490 "ICARD" 1164736 T ICARD (NIL) -8 NIL NIL) (-474 1162034 1162347 1162750 "IBPTOOLS" 1163639 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-473 1157648 1161654 1161767 "IBITS" 1161953 NIL IBITS (NIL NIL) -8 NIL NIL) (-472 1154371 1154947 1155642 "IBATOOL" 1157065 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-471 1152151 1152612 1153145 "IBACHIN" 1153906 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-470 1150028 1151997 1152100 "IARRAY2" 1152105 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-469 1146181 1149954 1150011 "IARRAY1" 1150016 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-468 1140119 1144599 1145077 "IAN" 1145723 T IAN (NIL) -8 NIL NIL) (-467 1139630 1139687 1139860 "IALGFACT" 1140056 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-466 1139158 1139271 1139299 "HYPCAT" 1139506 T HYPCAT (NIL) -9 NIL NIL) (-465 1138696 1138813 1138999 "HYPCAT-" 1139004 NIL HYPCAT- (NIL T) -8 NIL NIL) (-464 1135376 1136707 1136748 "HOAGG" 1137729 NIL HOAGG (NIL T) -9 NIL 1138408) (-463 1133970 1134369 1134895 "HOAGG-" 1134900 NIL HOAGG- (NIL T T) -8 NIL NIL) (-462 1127800 1133411 1133577 "HEXADEC" 1133824 T HEXADEC (NIL) -8 NIL NIL) (-461 1126548 1126770 1127033 "HEUGCD" 1127577 NIL HEUGCD (NIL T) -7 NIL NIL) (-460 1125651 1126385 1126515 "HELLFDIV" 1126520 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-459 1123879 1125428 1125516 "HEAP" 1125595 NIL HEAP (NIL T) -8 NIL NIL) (-458 1117746 1123794 1123856 "HDP" 1123861 NIL HDP (NIL NIL T) -8 NIL NIL) (-457 1111458 1117383 1117534 "HDMP" 1117647 NIL HDMP (NIL NIL T) -8 NIL NIL) (-456 1110783 1110922 1111086 "HB" 1111314 T HB (NIL) -7 NIL NIL) (-455 1104280 1110629 1110733 "HASHTBL" 1110738 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-454 1102033 1103908 1104087 "HACKPI" 1104121 T HACKPI (NIL) -8 NIL NIL) (-453 1097729 1101887 1101999 "GTSET" 1102004 NIL GTSET (NIL T T T T) -8 NIL NIL) (-452 1091255 1097607 1097705 "GSTBL" 1097710 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-451 1083488 1090291 1090555 "GSERIES" 1091046 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-450 1082511 1082964 1082992 "GROUP" 1083253 T GROUP (NIL) -9 NIL 1083412) (-449 1081627 1081850 1082194 "GROUP-" 1082199 NIL GROUP- (NIL T) -8 NIL NIL) (-448 1079996 1080315 1080702 "GROEBSOL" 1081304 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-447 1078937 1079199 1079250 "GRMOD" 1079779 NIL GRMOD (NIL T T) -9 NIL 1079947) (-446 1078705 1078741 1078869 "GRMOD-" 1078874 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-445 1074031 1075059 1076059 "GRIMAGE" 1077725 T GRIMAGE (NIL) -8 NIL NIL) (-444 1072498 1072758 1073082 "GRDEF" 1073727 T GRDEF (NIL) -7 NIL NIL) (-443 1071942 1072058 1072199 "GRAY" 1072377 T GRAY (NIL) -7 NIL NIL) (-442 1071176 1071556 1071607 "GRALG" 1071760 NIL GRALG (NIL T T) -9 NIL 1071852) (-441 1070837 1070910 1071073 "GRALG-" 1071078 NIL GRALG- (NIL T T T) -8 NIL NIL) (-440 1067645 1070426 1070602 "GPOLSET" 1070744 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-439 1067001 1067058 1067315 "GOSPER" 1067582 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-438 1062760 1063439 1063965 "GMODPOL" 1066700 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-437 1061765 1061949 1062187 "GHENSEL" 1062572 NIL GHENSEL (NIL T T) -7 NIL NIL) (-436 1055831 1056674 1057700 "GENUPS" 1060849 NIL GENUPS (NIL T T) -7 NIL NIL) (-435 1055528 1055579 1055668 "GENUFACT" 1055774 NIL GENUFACT (NIL T) -7 NIL NIL) (-434 1054940 1055017 1055182 "GENPGCD" 1055446 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-433 1054414 1054449 1054662 "GENMFACT" 1054899 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-432 1052982 1053237 1053544 "GENEEZ" 1054157 NIL GENEEZ (NIL T T) -7 NIL NIL) (-431 1046856 1052595 1052756 "GDMP" 1052905 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-430 1036233 1040627 1041733 "GCNAALG" 1045839 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-429 1034655 1035527 1035555 "GCDDOM" 1035810 T GCDDOM (NIL) -9 NIL 1035967) (-428 1034125 1034252 1034467 "GCDDOM-" 1034472 NIL GCDDOM- (NIL T) -8 NIL NIL) (-427 1032797 1032982 1033286 "GB" 1033904 NIL GB (NIL T T T T) -7 NIL NIL) (-426 1021417 1023743 1026135 "GBINTERN" 1030488 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-425 1019254 1019546 1019967 "GBF" 1021092 NIL GBF (NIL T T T T) -7 NIL NIL) (-424 1018035 1018200 1018467 "GBEUCLID" 1019070 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-423 1017384 1017509 1017658 "GAUSSFAC" 1017906 T GAUSSFAC (NIL) -7 NIL NIL) (-422 1015761 1016063 1016376 "GALUTIL" 1017103 NIL GALUTIL (NIL T) -7 NIL NIL) (-421 1014078 1014352 1014675 "GALPOLYU" 1015488 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-420 1011467 1011757 1012162 "GALFACTU" 1013775 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-419 1003273 1004772 1006380 "GALFACT" 1009899 NIL GALFACT (NIL T) -7 NIL NIL) (-418 1000661 1001319 1001347 "FVFUN" 1002503 T FVFUN (NIL) -9 NIL 1003223) (-417 999927 1000109 1000137 "FVC" 1000428 T FVC (NIL) -9 NIL 1000611) (-416 999569 999724 999805 "FUNCTION" 999879 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-415 997239 997790 998279 "FT" 999100 T FT (NIL) -8 NIL NIL) (-414 996057 996540 996743 "FTEM" 997056 T FTEM (NIL) -8 NIL NIL) (-413 994322 994610 995012 "FSUPFACT" 995749 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-412 992719 993008 993340 "FST" 994010 T FST (NIL) -8 NIL NIL) (-411 991894 992000 992194 "FSRED" 992601 NIL FSRED (NIL T T) -7 NIL NIL) (-410 990573 990828 991182 "FSPRMELT" 991609 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-409 987658 988096 988595 "FSPECF" 990136 NIL FSPECF (NIL T T) -7 NIL NIL) (-408 970032 978589 978629 "FS" 982467 NIL FS (NIL T) -9 NIL 984749) (-407 958682 961672 965728 "FS-" 966025 NIL FS- (NIL T T) -8 NIL NIL) (-406 958198 958252 958428 "FSINT" 958623 NIL FSINT (NIL T T) -7 NIL NIL) (-405 956479 957191 957494 "FSERIES" 957977 NIL FSERIES (NIL T T) -8 NIL NIL) (-404 955497 955613 955843 "FSCINT" 956359 NIL FSCINT (NIL T T) -7 NIL NIL) (-403 951732 954442 954483 "FSAGG" 954853 NIL FSAGG (NIL T) -9 NIL 955112) (-402 949494 950095 950891 "FSAGG-" 950986 NIL FSAGG- (NIL T T) -8 NIL NIL) (-401 948536 948679 948906 "FSAGG2" 949347 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-400 946195 946474 947027 "FS2UPS" 948254 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-399 945781 945824 945977 "FS2" 946146 NIL FS2 (NIL T T T T) -7 NIL NIL) (-398 944641 944812 945120 "FS2EXPXP" 945606 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-397 944067 944182 944334 "FRUTIL" 944521 NIL FRUTIL (NIL T) -7 NIL NIL) (-396 935487 939566 940922 "FR" 942743 NIL FR (NIL T) -8 NIL NIL) (-395 930564 933207 933247 "FRNAALG" 934643 NIL FRNAALG (NIL T) -9 NIL 935250) (-394 926242 927313 928588 "FRNAALG-" 929338 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-393 925880 925923 926050 "FRNAAF2" 926193 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-392 924245 924737 925031 "FRMOD" 925693 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-391 921967 922636 922952 "FRIDEAL" 924036 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-390 921166 921253 921540 "FRIDEAL2" 921874 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-389 920424 920832 920873 "FRETRCT" 920878 NIL FRETRCT (NIL T) -9 NIL 921049) (-388 919536 919767 920118 "FRETRCT-" 920123 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-387 916746 917966 918025 "FRAMALG" 918907 NIL FRAMALG (NIL T T) -9 NIL 919199) (-386 914879 915335 915965 "FRAMALG-" 916188 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-385 908781 914354 914630 "FRAC" 914635 NIL FRAC (NIL T) -8 NIL NIL) (-384 908417 908474 908581 "FRAC2" 908718 NIL FRAC2 (NIL T T) -7 NIL NIL) (-383 908053 908110 908217 "FR2" 908354 NIL FR2 (NIL T T) -7 NIL NIL) (-382 902727 905640 905668 "FPS" 906787 T FPS (NIL) -9 NIL 907343) (-381 902176 902285 902449 "FPS-" 902595 NIL FPS- (NIL T) -8 NIL NIL) (-380 899625 901322 901350 "FPC" 901575 T FPC (NIL) -9 NIL 901717) (-379 899418 899458 899555 "FPC-" 899560 NIL FPC- (NIL T) -8 NIL NIL) (-378 898297 898907 898948 "FPATMAB" 898953 NIL FPATMAB (NIL T) -9 NIL 899105) (-377 895997 896473 896899 "FPARFRAC" 897934 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-376 891390 891889 892571 "FORTRAN" 895429 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-375 889106 889606 890145 "FORT" 890871 T FORT (NIL) -7 NIL NIL) (-374 886782 887344 887372 "FORTFN" 888432 T FORTFN (NIL) -9 NIL 889056) (-373 886546 886596 886624 "FORTCAT" 886683 T FORTCAT (NIL) -9 NIL 886745) (-372 884606 885089 885488 "FORMULA" 886167 T FORMULA (NIL) -8 NIL NIL) (-371 884394 884424 884493 "FORMULA1" 884570 NIL FORMULA1 (NIL T) -7 NIL NIL) (-370 883917 883969 884142 "FORDER" 884336 NIL FORDER (NIL T T T T) -7 NIL NIL) (-369 883013 883177 883370 "FOP" 883744 T FOP (NIL) -7 NIL NIL) (-368 881621 882293 882467 "FNLA" 882895 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-367 880290 880679 880707 "FNCAT" 881279 T FNCAT (NIL) -9 NIL 881572) (-366 879856 880249 880277 "FNAME" 880282 T FNAME (NIL) -8 NIL NIL) (-365 878516 879489 879517 "FMTC" 879522 T FMTC (NIL) -9 NIL 879557) (-364 874834 876041 876669 "FMONOID" 877921 NIL FMONOID (NIL T) -8 NIL NIL) (-363 874054 874577 874725 "FM" 874730 NIL FM (NIL T T) -8 NIL NIL) (-362 871478 872124 872152 "FMFUN" 873296 T FMFUN (NIL) -9 NIL 874004) (-361 870747 870928 870956 "FMC" 871246 T FMC (NIL) -9 NIL 871428) (-360 867977 868811 868864 "FMCAT" 870046 NIL FMCAT (NIL T T) -9 NIL 870540) (-359 866872 867745 867844 "FM1" 867922 NIL FM1 (NIL T T) -8 NIL NIL) (-358 864646 865062 865556 "FLOATRP" 866423 NIL FLOATRP (NIL T) -7 NIL NIL) (-357 858132 862302 862932 "FLOAT" 864036 T FLOAT (NIL) -8 NIL NIL) (-356 855570 856070 856648 "FLOATCP" 857599 NIL FLOATCP (NIL T) -7 NIL NIL) (-355 854359 855207 855247 "FLINEXP" 855252 NIL FLINEXP (NIL T) -9 NIL 855345) (-354 853514 853749 854076 "FLINEXP-" 854081 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-353 852590 852734 852958 "FLASORT" 853366 NIL FLASORT (NIL T T) -7 NIL NIL) (-352 849809 850651 850703 "FLALG" 851930 NIL FLALG (NIL T T) -9 NIL 852397) (-351 843594 847296 847337 "FLAGG" 848599 NIL FLAGG (NIL T) -9 NIL 849251) (-350 842320 842659 843149 "FLAGG-" 843154 NIL FLAGG- (NIL T T) -8 NIL NIL) (-349 841362 841505 841732 "FLAGG2" 842173 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-348 838335 839353 839412 "FINRALG" 840540 NIL FINRALG (NIL T T) -9 NIL 841048) (-347 837495 837724 838063 "FINRALG-" 838068 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-346 836902 837115 837143 "FINITE" 837339 T FINITE (NIL) -9 NIL 837446) (-345 829362 831523 831563 "FINAALG" 835230 NIL FINAALG (NIL T) -9 NIL 836683) (-344 824703 825744 826888 "FINAALG-" 828267 NIL FINAALG- (NIL T T) -8 NIL NIL) (-343 824098 824458 824561 "FILE" 824633 NIL FILE (NIL T) -8 NIL NIL) (-342 822783 823095 823149 "FILECAT" 823833 NIL FILECAT (NIL T T) -9 NIL 824049) (-341 820646 822202 822230 "FIELD" 822270 T FIELD (NIL) -9 NIL 822350) (-340 819266 819651 820162 "FIELD-" 820167 NIL FIELD- (NIL T) -8 NIL NIL) (-339 817081 817903 818249 "FGROUP" 818953 NIL FGROUP (NIL T) -8 NIL NIL) (-338 816171 816335 816555 "FGLMICPK" 816913 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-337 811973 816096 816153 "FFX" 816158 NIL FFX (NIL T NIL) -8 NIL NIL) (-336 811574 811635 811770 "FFSLPE" 811906 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-335 807567 808346 809142 "FFPOLY" 810810 NIL FFPOLY (NIL T) -7 NIL NIL) (-334 807071 807107 807316 "FFPOLY2" 807525 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-333 802892 806990 807053 "FFP" 807058 NIL FFP (NIL T NIL) -8 NIL NIL) (-332 798260 802803 802867 "FF" 802872 NIL FF (NIL NIL NIL) -8 NIL NIL) (-331 793356 797603 797793 "FFNBX" 798114 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-330 788265 792491 792749 "FFNBP" 793210 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-329 782868 787549 787760 "FFNB" 788098 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-328 781700 781898 782213 "FFINTBAS" 782665 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-327 777924 780164 780192 "FFIELDC" 780812 T FFIELDC (NIL) -9 NIL 781188) (-326 776587 776957 777454 "FFIELDC-" 777459 NIL FFIELDC- (NIL T) -8 NIL NIL) (-325 776157 776202 776326 "FFHOM" 776529 NIL FFHOM (NIL T T T) -7 NIL NIL) (-324 773855 774339 774856 "FFF" 775672 NIL FFF (NIL T) -7 NIL NIL) (-323 769443 773597 773698 "FFCGX" 773798 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-322 765045 769175 769282 "FFCGP" 769386 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-321 760198 764772 764880 "FFCG" 764981 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-320 742144 751267 751353 "FFCAT" 756518 NIL FFCAT (NIL T T T) -9 NIL 758005) (-319 737342 738389 739703 "FFCAT-" 740933 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-318 736753 736796 737031 "FFCAT2" 737293 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-317 725953 729743 730960 "FEXPR" 735608 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-316 724953 725388 725429 "FEVALAB" 725513 NIL FEVALAB (NIL T) -9 NIL 725774) (-315 724112 724322 724660 "FEVALAB-" 724665 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-314 722705 723495 723698 "FDIV" 724011 NIL FDIV (NIL T T T T) -8 NIL NIL) (-313 719772 720487 720602 "FDIVCAT" 722170 NIL FDIVCAT (NIL T T T T) -9 NIL 722607) (-312 719534 719561 719731 "FDIVCAT-" 719736 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-311 718754 718841 719118 "FDIV2" 719441 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-310 717440 717699 717988 "FCPAK1" 718485 T FCPAK1 (NIL) -7 NIL NIL) (-309 716568 716940 717081 "FCOMP" 717331 NIL FCOMP (NIL T) -8 NIL NIL) (-308 700203 703617 707178 "FC" 713027 T FC (NIL) -8 NIL NIL) (-307 692799 696845 696885 "FAXF" 698687 NIL FAXF (NIL T) -9 NIL 699378) (-306 690078 690733 691558 "FAXF-" 692023 NIL FAXF- (NIL T T) -8 NIL NIL) (-305 685178 689454 689630 "FARRAY" 689935 NIL FARRAY (NIL T) -8 NIL NIL) (-304 680569 682640 682692 "FAMR" 683704 NIL FAMR (NIL T T) -9 NIL 684164) (-303 679460 679762 680196 "FAMR-" 680201 NIL FAMR- (NIL T T T) -8 NIL NIL) (-302 678656 679382 679435 "FAMONOID" 679440 NIL FAMONOID (NIL T) -8 NIL NIL) (-301 676489 677173 677226 "FAMONC" 678167 NIL FAMONC (NIL T T) -9 NIL 678552) (-300 675181 676243 676380 "FAGROUP" 676385 NIL FAGROUP (NIL T) -8 NIL NIL) (-299 672984 673303 673705 "FACUTIL" 674862 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-298 672083 672268 672490 "FACTFUNC" 672794 NIL FACTFUNC (NIL T) -7 NIL NIL) (-297 664403 671334 671546 "EXPUPXS" 671939 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-296 661886 662426 663012 "EXPRTUBE" 663837 T EXPRTUBE (NIL) -7 NIL NIL) (-295 658080 658672 659409 "EXPRODE" 661225 NIL EXPRODE (NIL T T) -7 NIL NIL) (-294 643239 656739 657165 "EXPR" 657686 NIL EXPR (NIL T) -8 NIL NIL) (-293 637667 638254 639066 "EXPR2UPS" 642537 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-292 637303 637360 637467 "EXPR2" 637604 NIL EXPR2 (NIL T T) -7 NIL NIL) (-291 628657 636440 636735 "EXPEXPAN" 637141 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-290 628484 628614 628643 "EXIT" 628648 T EXIT (NIL) -8 NIL NIL) (-289 628111 628173 628286 "EVALCYC" 628416 NIL EVALCYC (NIL T) -7 NIL NIL) (-288 627652 627770 627811 "EVALAB" 627981 NIL EVALAB (NIL T) -9 NIL 628085) (-287 627133 627255 627476 "EVALAB-" 627481 NIL EVALAB- (NIL T T) -8 NIL NIL) (-286 624596 625908 625936 "EUCDOM" 626491 T EUCDOM (NIL) -9 NIL 626841) (-285 623001 623443 624033 "EUCDOM-" 624038 NIL EUCDOM- (NIL T) -8 NIL NIL) (-284 610579 613327 616067 "ESTOOLS" 620281 T ESTOOLS (NIL) -7 NIL NIL) (-283 610215 610272 610379 "ESTOOLS2" 610516 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-282 609966 610008 610088 "ESTOOLS1" 610167 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-281 603904 605628 605656 "ES" 608420 T ES (NIL) -9 NIL 609826) (-280 598851 600138 601955 "ES-" 602119 NIL ES- (NIL T) -8 NIL NIL) (-279 595226 595986 596766 "ESCONT" 598091 T ESCONT (NIL) -7 NIL NIL) (-278 594971 595003 595085 "ESCONT1" 595188 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-277 594646 594696 594796 "ES2" 594915 NIL ES2 (NIL T T) -7 NIL NIL) (-276 594276 594334 594443 "ES1" 594582 NIL ES1 (NIL T T) -7 NIL NIL) (-275 593492 593621 593797 "ERROR" 594120 T ERROR (NIL) -7 NIL NIL) (-274 586995 593351 593442 "EQTBL" 593447 NIL EQTBL (NIL T T) -8 NIL NIL) (-273 579432 582313 583760 "EQ" 585581 NIL -1369 (NIL T) -8 NIL NIL) (-272 579064 579121 579230 "EQ2" 579369 NIL EQ2 (NIL T T) -7 NIL NIL) (-271 574356 575402 576495 "EP" 578003 NIL EP (NIL T) -7 NIL NIL) (-270 572938 573239 573556 "ENV" 574059 T ENV (NIL) -8 NIL NIL) (-269 572098 572662 572690 "ENTIRER" 572695 T ENTIRER (NIL) -9 NIL 572740) (-268 568554 570053 570423 "EMR" 571897 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-267 567698 567883 567937 "ELTAGG" 568317 NIL ELTAGG (NIL T T) -9 NIL 568528) (-266 567417 567479 567620 "ELTAGG-" 567625 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-265 567206 567235 567289 "ELTAB" 567373 NIL ELTAB (NIL T T) -9 NIL NIL) (-264 566332 566478 566677 "ELFUTS" 567057 NIL ELFUTS (NIL T T) -7 NIL NIL) (-263 566074 566130 566158 "ELEMFUN" 566263 T ELEMFUN (NIL) -9 NIL NIL) (-262 565944 565965 566033 "ELEMFUN-" 566038 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-261 560836 564045 564086 "ELAGG" 565026 NIL ELAGG (NIL T) -9 NIL 565489) (-260 559121 559555 560218 "ELAGG-" 560223 NIL ELAGG- (NIL T T) -8 NIL NIL) (-259 557778 558058 558353 "ELABEXPR" 558846 T ELABEXPR (NIL) -8 NIL NIL) (-258 550646 552445 553272 "EFUPXS" 557054 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-257 544096 545897 546707 "EFULS" 549922 NIL EFULS (NIL T T T) -8 NIL NIL) (-256 541527 541885 542363 "EFSTRUC" 543728 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-255 530599 532164 533724 "EF" 540042 NIL EF (NIL T T) -7 NIL NIL) (-254 529700 530084 530233 "EAB" 530470 T EAB (NIL) -8 NIL NIL) (-253 528913 529659 529687 "E04UCFA" 529692 T E04UCFA (NIL) -8 NIL NIL) (-252 528126 528872 528900 "E04NAFA" 528905 T E04NAFA (NIL) -8 NIL NIL) (-251 527339 528085 528113 "E04MBFA" 528118 T E04MBFA (NIL) -8 NIL NIL) (-250 526552 527298 527326 "E04JAFA" 527331 T E04JAFA (NIL) -8 NIL NIL) (-249 525767 526511 526539 "E04GCFA" 526544 T E04GCFA (NIL) -8 NIL NIL) (-248 524982 525726 525754 "E04FDFA" 525759 T E04FDFA (NIL) -8 NIL NIL) (-247 524195 524941 524969 "E04DGFA" 524974 T E04DGFA (NIL) -8 NIL NIL) (-246 518380 519725 521087 "E04AGNT" 522853 T E04AGNT (NIL) -7 NIL NIL) (-245 517107 517587 517627 "DVARCAT" 518102 NIL DVARCAT (NIL T) -9 NIL 518300) (-244 516311 516523 516837 "DVARCAT-" 516842 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-243 509173 516113 516240 "DSMP" 516245 NIL DSMP (NIL T T T) -8 NIL NIL) (-242 503983 505118 506186 "DROPT" 508125 T DROPT (NIL) -8 NIL NIL) (-241 503648 503707 503805 "DROPT1" 503918 NIL DROPT1 (NIL T) -7 NIL NIL) (-240 498763 499889 501026 "DROPT0" 502531 T DROPT0 (NIL) -7 NIL NIL) (-239 497108 497433 497819 "DRAWPT" 498397 T DRAWPT (NIL) -7 NIL NIL) (-238 491695 492618 493697 "DRAW" 496082 NIL DRAW (NIL T) -7 NIL NIL) (-237 491328 491381 491499 "DRAWHACK" 491636 NIL DRAWHACK (NIL T) -7 NIL NIL) (-236 490059 490328 490619 "DRAWCX" 491057 T DRAWCX (NIL) -7 NIL NIL) (-235 489577 489645 489795 "DRAWCURV" 489985 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-234 480048 482007 484122 "DRAWCFUN" 487482 T DRAWCFUN (NIL) -7 NIL NIL) (-233 476862 478744 478785 "DQAGG" 479414 NIL DQAGG (NIL T) -9 NIL 479687) (-232 465369 472107 472189 "DPOLCAT" 474027 NIL DPOLCAT (NIL T T T T) -9 NIL 474571) (-231 460209 461555 463512 "DPOLCAT-" 463517 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-230 453005 460071 460168 "DPMO" 460173 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-229 445704 452786 452952 "DPMM" 452957 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-228 445124 445327 445441 "DOMAIN" 445610 T DOMAIN (NIL) -8 NIL NIL) (-227 438836 444761 444912 "DMP" 445025 NIL DMP (NIL NIL T) -8 NIL NIL) (-226 438436 438492 438636 "DLP" 438774 NIL DLP (NIL T) -7 NIL NIL) (-225 432080 437537 437764 "DLIST" 438241 NIL DLIST (NIL T) -8 NIL NIL) (-224 428927 430936 430977 "DLAGG" 431527 NIL DLAGG (NIL T) -9 NIL 431756) (-223 427637 428329 428357 "DIVRING" 428507 T DIVRING (NIL) -9 NIL 428615) (-222 426625 426878 427271 "DIVRING-" 427276 NIL DIVRING- (NIL T) -8 NIL NIL) (-221 424727 425084 425490 "DISPLAY" 426239 T DISPLAY (NIL) -7 NIL NIL) (-220 418616 424641 424704 "DIRPROD" 424709 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-219 417464 417667 417932 "DIRPROD2" 418409 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-218 406983 412988 413041 "DIRPCAT" 413449 NIL DIRPCAT (NIL NIL T) -9 NIL 414288) (-217 404309 404951 405832 "DIRPCAT-" 406169 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-216 403596 403756 403942 "DIOSP" 404143 T DIOSP (NIL) -7 NIL NIL) (-215 400299 402509 402550 "DIOPS" 402984 NIL DIOPS (NIL T) -9 NIL 403213) (-214 399848 399962 400153 "DIOPS-" 400158 NIL DIOPS- (NIL T T) -8 NIL NIL) (-213 398720 399358 399386 "DIFRING" 399573 T DIFRING (NIL) -9 NIL 399682) (-212 398366 398443 398595 "DIFRING-" 398600 NIL DIFRING- (NIL T) -8 NIL NIL) (-211 396156 397438 397478 "DIFEXT" 397837 NIL DIFEXT (NIL T) -9 NIL 398130) (-210 394442 394870 395535 "DIFEXT-" 395540 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-209 391765 393975 394016 "DIAGG" 394021 NIL DIAGG (NIL T) -9 NIL 394041) (-208 391149 391306 391558 "DIAGG-" 391563 NIL DIAGG- (NIL T T) -8 NIL NIL) (-207 386614 390108 390385 "DHMATRIX" 390918 NIL DHMATRIX (NIL T) -8 NIL NIL) (-206 382226 383135 384145 "DFSFUN" 385624 T DFSFUN (NIL) -7 NIL NIL) (-205 377012 380940 381305 "DFLOAT" 381881 T DFLOAT (NIL) -8 NIL NIL) (-204 375245 375526 375921 "DFINTTLS" 376720 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-203 372278 373280 373678 "DERHAM" 374912 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-202 370127 372053 372142 "DEQUEUE" 372222 NIL DEQUEUE (NIL T) -8 NIL NIL) (-201 369345 369478 369673 "DEGRED" 369989 NIL DEGRED (NIL T T) -7 NIL NIL) (-200 365745 366490 367342 "DEFINTRF" 368573 NIL DEFINTRF (NIL T) -7 NIL NIL) (-199 363276 363745 364343 "DEFINTEF" 365264 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-198 357106 362717 362883 "DECIMAL" 363130 T DECIMAL (NIL) -8 NIL NIL) (-197 354618 355076 355582 "DDFACT" 356650 NIL DDFACT (NIL T T) -7 NIL NIL) (-196 354214 354257 354408 "DBLRESP" 354569 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-195 351924 352258 352627 "DBASE" 353972 NIL DBASE (NIL T) -8 NIL NIL) (-194 351059 351883 351911 "D03FAFA" 351916 T D03FAFA (NIL) -8 NIL NIL) (-193 350195 351018 351046 "D03EEFA" 351051 T D03EEFA (NIL) -8 NIL NIL) (-192 348145 348611 349100 "D03AGNT" 349726 T D03AGNT (NIL) -7 NIL NIL) (-191 347463 348104 348132 "D02EJFA" 348137 T D02EJFA (NIL) -8 NIL NIL) (-190 346781 347422 347450 "D02CJFA" 347455 T D02CJFA (NIL) -8 NIL NIL) (-189 346099 346740 346768 "D02BHFA" 346773 T D02BHFA (NIL) -8 NIL NIL) (-188 345417 346058 346086 "D02BBFA" 346091 T D02BBFA (NIL) -8 NIL NIL) (-187 338615 340203 341809 "D02AGNT" 343831 T D02AGNT (NIL) -7 NIL NIL) (-186 336384 336906 337452 "D01WGTS" 338089 T D01WGTS (NIL) -7 NIL NIL) (-185 335487 336343 336371 "D01TRNS" 336376 T D01TRNS (NIL) -8 NIL NIL) (-184 334590 335446 335474 "D01GBFA" 335479 T D01GBFA (NIL) -8 NIL NIL) (-183 333693 334549 334577 "D01FCFA" 334582 T D01FCFA (NIL) -8 NIL NIL) (-182 332796 333652 333680 "D01ASFA" 333685 T D01ASFA (NIL) -8 NIL NIL) (-181 331899 332755 332783 "D01AQFA" 332788 T D01AQFA (NIL) -8 NIL NIL) (-180 331002 331858 331886 "D01APFA" 331891 T D01APFA (NIL) -8 NIL NIL) (-179 330105 330961 330989 "D01ANFA" 330994 T D01ANFA (NIL) -8 NIL NIL) (-178 329208 330064 330092 "D01AMFA" 330097 T D01AMFA (NIL) -8 NIL NIL) (-177 328311 329167 329195 "D01ALFA" 329200 T D01ALFA (NIL) -8 NIL NIL) (-176 327414 328270 328298 "D01AKFA" 328303 T D01AKFA (NIL) -8 NIL NIL) (-175 326517 327373 327401 "D01AJFA" 327406 T D01AJFA (NIL) -8 NIL NIL) (-174 319821 321370 322929 "D01AGNT" 324978 T D01AGNT (NIL) -7 NIL NIL) (-173 319158 319286 319438 "CYCLOTOM" 319689 T CYCLOTOM (NIL) -7 NIL NIL) (-172 315893 316606 317333 "CYCLES" 318451 T CYCLES (NIL) -7 NIL NIL) (-171 315205 315339 315510 "CVMP" 315754 NIL CVMP (NIL T) -7 NIL NIL) (-170 312986 313244 313619 "CTRIGMNP" 314933 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-169 312497 312686 312785 "CTORCALL" 312907 T CTORCALL (NIL) -8 NIL NIL) (-168 311871 311970 312123 "CSTTOOLS" 312394 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-167 307670 308327 309085 "CRFP" 311183 NIL CRFP (NIL T T) -7 NIL NIL) (-166 306717 306902 307130 "CRAPACK" 307474 NIL CRAPACK (NIL T) -7 NIL NIL) (-165 306101 306202 306406 "CPMATCH" 306593 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-164 305826 305854 305960 "CPIMA" 306067 NIL CPIMA (NIL T T T) -7 NIL NIL) (-163 302190 302862 303580 "COORDSYS" 305161 NIL COORDSYS (NIL T) -7 NIL NIL) (-162 301574 301703 301853 "CONTOUR" 302060 T CONTOUR (NIL) -8 NIL NIL) (-161 297435 299577 300069 "CONTFRAC" 301114 NIL CONTFRAC (NIL T) -8 NIL NIL) (-160 296589 297153 297181 "COMRING" 297186 T COMRING (NIL) -9 NIL 297237) (-159 295670 295947 296131 "COMPPROP" 296425 T COMPPROP (NIL) -8 NIL NIL) (-158 295331 295366 295494 "COMPLPAT" 295629 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-157 285312 295140 295249 "COMPLEX" 295254 NIL COMPLEX (NIL T) -8 NIL NIL) (-156 284948 285005 285112 "COMPLEX2" 285249 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-155 284666 284701 284799 "COMPFACT" 284907 NIL COMPFACT (NIL T T) -7 NIL NIL) (-154 269001 279295 279335 "COMPCAT" 280337 NIL COMPCAT (NIL T) -9 NIL 281730) (-153 258516 261440 265067 "COMPCAT-" 265423 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-152 258247 258275 258377 "COMMUPC" 258482 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-151 258042 258075 258134 "COMMONOP" 258208 T COMMONOP (NIL) -7 NIL NIL) (-150 257625 257793 257880 "COMM" 257975 T COMM (NIL) -8 NIL NIL) (-149 256874 257068 257096 "COMBOPC" 257434 T COMBOPC (NIL) -9 NIL 257609) (-148 255770 255980 256222 "COMBINAT" 256664 NIL COMBINAT (NIL T) -7 NIL NIL) (-147 251968 252541 253181 "COMBF" 255192 NIL COMBF (NIL T T) -7 NIL NIL) (-146 250754 251084 251319 "COLOR" 251753 T COLOR (NIL) -8 NIL NIL) (-145 250394 250441 250566 "CMPLXRT" 250701 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-144 245896 246924 248004 "CLIP" 249334 T CLIP (NIL) -7 NIL NIL) (-143 244234 245004 245242 "CLIF" 245724 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-142 240457 242381 242422 "CLAGG" 243351 NIL CLAGG (NIL T) -9 NIL 243887) (-141 238879 239336 239919 "CLAGG-" 239924 NIL CLAGG- (NIL T T) -8 NIL NIL) (-140 238423 238508 238648 "CINTSLPE" 238788 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-139 235924 236395 236943 "CHVAR" 237951 NIL CHVAR (NIL T T T) -7 NIL NIL) (-138 235147 235711 235739 "CHARZ" 235744 T CHARZ (NIL) -9 NIL 235758) (-137 234901 234941 235019 "CHARPOL" 235101 NIL CHARPOL (NIL T) -7 NIL NIL) (-136 234008 234605 234633 "CHARNZ" 234680 T CHARNZ (NIL) -9 NIL 234735) (-135 232033 232698 233033 "CHAR" 233693 T CHAR (NIL) -8 NIL NIL) (-134 231759 231820 231848 "CFCAT" 231959 T CFCAT (NIL) -9 NIL NIL) (-133 231004 231115 231297 "CDEN" 231643 NIL CDEN (NIL T T T) -7 NIL NIL) (-132 226996 230157 230437 "CCLASS" 230744 T CCLASS (NIL) -8 NIL NIL) (-131 226915 226941 226976 "CATEGORY" 226981 T -10 (NIL) -8 NIL NIL) (-130 221967 222944 223697 "CARTEN" 226218 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-129 221075 221223 221444 "CARTEN2" 221814 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-128 219373 220227 220483 "CARD" 220839 T CARD (NIL) -8 NIL NIL) (-127 218746 219074 219102 "CACHSET" 219234 T CACHSET (NIL) -9 NIL 219311) (-126 218243 218539 218567 "CABMON" 218617 T CABMON (NIL) -9 NIL 218673) (-125 217411 217790 217933 "BYTE" 218120 T BYTE (NIL) -8 NIL NIL) (-124 213359 217358 217392 "BYTEARY" 217397 T BYTEARY (NIL) -8 NIL NIL) (-123 210916 213051 213158 "BTREE" 213285 NIL BTREE (NIL T) -8 NIL NIL) (-122 208414 210564 210686 "BTOURN" 210826 NIL BTOURN (NIL T) -8 NIL NIL) (-121 205833 207886 207927 "BTCAT" 207995 NIL BTCAT (NIL T) -9 NIL 208072) (-120 205500 205580 205729 "BTCAT-" 205734 NIL BTCAT- (NIL T T) -8 NIL NIL) (-119 200721 204592 204620 "BTAGG" 204876 T BTAGG (NIL) -9 NIL 205055) (-118 200144 200288 200518 "BTAGG-" 200523 NIL BTAGG- (NIL T) -8 NIL NIL) (-117 197188 199422 199637 "BSTREE" 199961 NIL BSTREE (NIL T) -8 NIL NIL) (-116 196326 196452 196636 "BRILL" 197044 NIL BRILL (NIL T) -7 NIL NIL) (-115 193028 195055 195096 "BRAGG" 195745 NIL BRAGG (NIL T) -9 NIL 196002) (-114 191557 191963 192518 "BRAGG-" 192523 NIL BRAGG- (NIL T T) -8 NIL NIL) (-113 184765 190903 191087 "BPADICRT" 191405 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-112 183069 184702 184747 "BPADIC" 184752 NIL BPADIC (NIL NIL) -8 NIL NIL) (-111 182769 182799 182912 "BOUNDZRO" 183033 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-110 178284 179375 180242 "BOP" 181922 T BOP (NIL) -8 NIL NIL) (-109 175905 176349 176869 "BOP1" 177797 NIL BOP1 (NIL T) -7 NIL NIL) (-108 174540 175245 175463 "BOOLEAN" 175707 T BOOLEAN (NIL) -8 NIL NIL) (-107 173907 174285 174337 "BMODULE" 174342 NIL BMODULE (NIL T T) -9 NIL 174406) (-106 169717 173705 173778 "BITS" 173854 T BITS (NIL) -8 NIL NIL) (-105 168814 169249 169401 "BINFILE" 169585 T BINFILE (NIL) -8 NIL NIL) (-104 168226 168348 168490 "BINDING" 168692 T BINDING (NIL) -8 NIL NIL) (-103 162060 167670 167835 "BINARY" 168081 T BINARY (NIL) -8 NIL NIL) (-102 159888 161316 161357 "BGAGG" 161617 NIL BGAGG (NIL T) -9 NIL 161754) (-101 159719 159751 159842 "BGAGG-" 159847 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158817 159103 159308 "BFUNCT" 159534 T BFUNCT (NIL) -8 NIL NIL) (-99 157518 157696 157981 "BEZOUT" 158641 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 154043 156378 156706 "BBTREE" 157221 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153781 153834 153860 "BASTYPE" 153977 T BASTYPE (NIL) -9 NIL NIL) (-96 153636 153665 153735 "BASTYPE-" 153740 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 153074 153150 153300 "BALFACT" 153547 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151896 152493 152678 "AUTOMOR" 152919 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151622 151627 151653 "ATTREG" 151658 T ATTREG (NIL) -9 NIL NIL) (-92 149901 150319 150671 "ATTRBUT" 151288 T ATTRBUT (NIL) -8 NIL NIL) (-91 149437 149550 149576 "ATRIG" 149777 T ATRIG (NIL) -9 NIL NIL) (-90 149246 149287 149374 "ATRIG-" 149379 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147443 149022 149110 "ASTACK" 149189 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145948 146245 146610 "ASSOCEQ" 147125 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144980 145607 145731 "ASP9" 145855 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144744 144928 144967 "ASP8" 144972 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143613 144349 144491 "ASP80" 144633 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142512 143248 143380 "ASP7" 143512 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141466 142189 142307 "ASP78" 142425 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140435 141146 141263 "ASP77" 141380 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139347 140073 140204 "ASP74" 140335 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 138247 138982 139114 "ASP73" 139246 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 137202 137924 138042 "ASP6" 138160 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 136150 136879 136997 "ASP55" 137115 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 135100 135824 135943 "ASP50" 136062 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 134188 134801 134911 "ASP4" 135021 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 133276 133889 133999 "ASP49" 134109 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 132061 132815 132983 "ASP42" 133165 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130838 131594 131764 "ASP41" 131948 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129788 130515 130633 "ASP35" 130751 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129553 129736 129775 "ASP34" 129780 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129290 129357 129433 "ASP33" 129508 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 128185 128925 129057 "ASP31" 129189 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127950 128133 128172 "ASP30" 128177 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127685 127754 127830 "ASP29" 127905 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127450 127633 127672 "ASP28" 127677 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 127215 127398 127437 "ASP27" 127442 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126299 126913 127024 "ASP24" 127135 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125215 125940 126070 "ASP20" 126200 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124303 124916 125026 "ASP1" 125136 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 123247 123977 124096 "ASP19" 124215 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122984 123051 123127 "ASP12" 123202 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121836 122583 122727 "ASP10" 122871 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119735 121680 121771 "ARRAY2" 121776 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115551 119383 119497 "ARRAY1" 119652 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114583 114756 114977 "ARRAY12" 115374 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108943 110814 110889 "ARR2CAT" 113519 NIL ARR2CAT (NIL T T T) -9 NIL 114277) (-54 106377 107121 108075 "ARR2CAT-" 108080 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105137 105287 105590 "APPRULE" 106215 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104790 104838 104956 "APPLYORE" 105083 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103764 104055 104250 "ANY" 104613 T ANY (NIL) -8 NIL NIL) (-50 103042 103165 103322 "ANY1" 103638 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100574 101492 101817 "ANTISYM" 102767 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100089 100278 100375 "ANON" 100495 T ANON (NIL) -8 NIL NIL) (-47 94166 98634 99085 "AN" 99656 T AN (NIL) -8 NIL NIL) (-46 90520 91918 91968 "AMR" 92707 NIL AMR (NIL T T) -9 NIL 93306) (-45 89633 89854 90216 "AMR-" 90221 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74183 89550 89611 "ALIST" 89616 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71020 73777 73946 "ALGSC" 74101 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67576 68130 68737 "ALGPKG" 70460 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66853 66954 67138 "ALGMFACT" 67462 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62602 63283 63937 "ALGMANIP" 66377 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53921 62228 62378 "ALGFF" 62535 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53117 53248 53427 "ALGFACT" 53779 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52108 52718 52756 "ALGEBRA" 52816 NIL ALGEBRA (NIL T) -9 NIL 52874) (-36 51826 51885 52017 "ALGEBRA-" 52022 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34087 49830 49882 "ALAGG" 50018 NIL ALAGG (NIL T T) -9 NIL 50179) (-34 33623 33736 33762 "AHYP" 33963 T AHYP (NIL) -9 NIL NIL) (-33 32554 32802 32828 "AGG" 33327 T AGG (NIL) -9 NIL 33606) (-32 31988 32150 32364 "AGG-" 32369 NIL AGG- (NIL T) -8 NIL NIL) (-31 29675 30093 30510 "AF" 31631 NIL AF (NIL T T) -7 NIL NIL) (-30 28944 29202 29358 "ACPLOT" 29537 T ACPLOT (NIL) -8 NIL NIL) (-29 18411 26357 26408 "ACFS" 27119 NIL ACFS (NIL T) -9 NIL 27358) (-28 16425 16915 17690 "ACFS-" 17695 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12693 14649 14675 "ACF" 15554 T ACF (NIL) -9 NIL 15966) (-26 11397 11731 12224 "ACF-" 12229 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11191 "ABELSG" 11283 T ABELSG (NIL) -9 NIL 11348) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10233 10494 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9897 9981 10119 "ABELMON-" 10124 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9232 9578 9604 "ABELGRP" 9729 T ABELGRP (NIL) -9 NIL 9811) (-20 8695 8824 9040 "ABELGRP-" 9045 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index faa43fdd..d79ec738 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,271 +1,808 @@
-(726500 . 3425075213)
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (|has| *1 (-6 -4259)) (-4 *1 (-1162 *3))
- (-4 *3 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
- ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))
- ((*1 *1 *1 *1) (-5 *1 (-798))))
-(((*1 *1 *1) (-5 *1 (-108))))
+(726502 . 3427192339)
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1020)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1174 *4)) (-4 *4 (-1128)) (-4 *1 (-218 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-735)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789))
- (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))))
-(((*1 *1) (-5 *1 (-1175))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938))))
- ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
- (-4 *3 (-13 (-1020) (-33))))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))
+ (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
+(((*1 *2)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1092))
+ (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-4 *4 (-13 (-29 *6) (-1114) (-893)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2103 (-592 *4))))
+ (-5 *1 (-743 *6 *4 *3)) (-4 *3 (-602 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))
((*1 *2 *3)
- (-12 (-5 *2 (-1088 (-385 (-525)))) (-5 *1 (-877)) (-5 *3 (-525)))))
+ (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-294 *4))
+ (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 (-157 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1618 *4))))
+ (-4 *3 (-1020)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
(((*1 *2 *3 *4 *5 *6 *5)
(-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1075))
(-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-1103 *2)) (-4 *2 (-341)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1150 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-525)) (-5 *1 (-221)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205))
- (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205))
- (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))
- (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205))
- (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205))
- (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))
- (-5 *1 (-242))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-525)) (-5 *4 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176))))
- ((*1 *2 *1 *3)
- (-12
- (-5 *3
- (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205))
- (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205))
- (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))
- (-5 *2 (-1179)) (-5 *1 (-1176))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2778 (-205))
- (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205))
- (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))
- (-5 *1 (-1176))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-977)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -1742 (-525)) (|:| -3843 (-592 *3))))
- (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2589 *3)))
- (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1092))
+ (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-174))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1092))
+ (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1020))
+ (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))
+ (-5 *2 (-592 (-1092))) (-5 *1 (-999 *3 *4 *5))
+ (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-517))
- (-4 *7 (-884 *3 *5 *6))
- (-5 *2 (-2 (|:| -4193 (-713)) (|:| -3244 *8) (|:| |radicand| *8)))
- (-5 *1 (-888 *5 *6 *3 *7 *8)) (-5 *4 (-713))
- (-4 *8
- (-13 (-341)
- (-10 -8 (-15 -3114 (*7 $)) (-15 -3123 (*7 $)) (-15 -1217 ($ *7))))))))
+ (-12 (-4 *5 (-1020)) (-4 *3 (-835 *5)) (-5 *2 (-632 *3))
+ (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3))
+ (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4259)))))))
+(((*1 *2)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2))
+ (-4 *2 (-1150 *4)))))
+(((*1 *1 *1) (-4 *1 (-510))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-1110)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1150 (-385 (-525)))) (-5 *1 (-848 *3 *2))
+ (-4 *2 (-1150 (-385 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-294 *4))
+ (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 (-157 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
+ ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1124 *3)) (-4 *3 (-907)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-910 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-700)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3))
+ (-4 *3 (-901)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-297 *3 *4 *5))
+ (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1092)) (-14 *5 *3))))
+(((*1 *1) (-5 *1 (-765))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
+ (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525))))
+ ((*1 *1 *1) (-4 *1 (-934)))
+ ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-944))))
+ ((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-944))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-856))))
+ ((*1 *1 *1) (-4 *1 (-944))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
- ((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-205) (-205) (-205)))
- (-5 *4 (-1 (-205) (-205) (-205) (-205)))
- (-5 *2 (-1 (-878 (-205)) (-205) (-205))) (-5 *1 (-639)))))
-(((*1 *1 *1) (-4 *1 (-517))))
-(((*1 *1) (-5 *1 (-205))) ((*1 *1) (-5 *1 (-357))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
+ (-12 (-4 *4 (-789)) (-5 *2 (-1101 (-592 *4))) (-5 *1 (-1100 *4))
+ (-5 *3 (-592 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-396 (-1088 *7)))
+ (-5 *1 (-841 *4 *5 *6 *7)) (-5 *3 (-1088 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-4 *5 (-1150 *4)) (-5 *2 (-396 (-1088 *5)))
+ (-5 *1 (-842 *4 *5)) (-5 *3 (-1088 *5)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-824 *4 *3))
+ (-4 *3 (-1020)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1020)) (-5 *2 (-108)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4259)) (-4 *1 (-215 *3))
+ (-4 *3 (-1020))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4259)) (-4 *1 (-215 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128)) (-4 *2 (-1020))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1128))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1020))
+ (-5 *1 (-680 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
+ (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1058 *3 *4)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-697)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-142 *2))
+ (-4 *2 (-1128)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-47))) (-5 *2 (-396 *3)) (-5 *1 (-38 *3))
+ (-4 *3 (-1150 (-47)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1150 (-47)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735))
+ (-5 *2 (-396 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-884 (-47) *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735))
+ (-4 *7 (-884 (-47) *6 *5)) (-5 *2 (-396 (-1088 *7)))
+ (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1088 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-155 *4 *3))
+ (-4 *3 (-1150 (-157 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3))
+ (-4 *3 (-1150 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
+ (-4 *3 (-1150 (-525)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
+ (-4 *3 (-1150 (-525)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3))
+ (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
+ (-4 *3 (-1150 (-525)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-396 (-157 (-525)))) (-5 *1 (-423))
+ (-5 *3 (-157 (-525)))))
+ ((*1 *2 *3)
+ (-12
+ (-4 *4
+ (-13 (-789)
+ (-10 -8 (-15 -2069 ((-1092) $))
+ (-15 -3469 ((-3 $ "failed") (-1092))))))
+ (-4 *5 (-735)) (-4 *7 (-517)) (-5 *2 (-396 *3))
+ (-5 *1 (-433 *4 *5 *6 *7 *3)) (-4 *6 (-517))
+ (-4 *3 (-884 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-286)) (-5 *2 (-396 (-1088 *4))) (-5 *1 (-435 *4))
+ (-5 *3 (-1088 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341))
+ (-4 *7 (-13 (-341) (-138) (-667 *5 *6))) (-5 *2 (-396 *3))
+ (-5 *1 (-467 *5 *6 *7 *3)) (-4 *3 (-1150 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-396 (-1088 *7)) (-1088 *7)))
+ (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735))
+ (-5 *2 (-396 *3)) (-5 *1 (-505 *5 *6 *7 *3))
+ (-4 *3 (-884 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-396 (-1088 *7)) (-1088 *7)))
+ (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735))
+ (-4 *8 (-884 *7 *6 *5)) (-5 *2 (-396 (-1088 *8)))
+ (-5 *1 (-505 *5 *6 *7 *8)) (-5 *3 (-1088 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-592 *5) *6))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *6 (-1150 *5)) (-5 *2 (-592 (-599 (-385 *6))))
+ (-5 *1 (-603 *5 *6)) (-5 *3 (-599 (-385 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *5 (-1150 *4)) (-5 *2 (-592 (-599 (-385 *5))))
+ (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-617 *4)))
+ (-5 *1 (-617 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-525)) (-5 *2 (-592 *3)) (-5 *1 (-638 *3))
+ (-4 *3 (-1150 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327)) (-5 *2 (-396 *3))
+ (-5 *1 (-640 *4 *5 *6 *3)) (-4 *3 (-884 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327))
+ (-4 *7 (-884 *6 *5 *4)) (-5 *2 (-396 (-1088 *7)))
+ (-5 *1 (-640 *4 *5 *6 *7)) (-5 *3 (-1088 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-735))
+ (-4 *5
+ (-13 (-789)
+ (-10 -8 (-15 -2069 ((-1092) $))
+ (-15 -3469 ((-3 $ "failed") (-1092))))))
+ (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-673 *4 *5 *6 *3))
+ (-4 *3 (-884 (-887 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-735))
+ (-4 *5 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $))))) (-4 *6 (-517))
+ (-5 *2 (-396 *3)) (-5 *1 (-675 *4 *5 *6 *3))
+ (-4 *3 (-884 (-385 (-887 *6)) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-13 (-286) (-138)))
+ (-5 *2 (-396 *3)) (-5 *1 (-676 *4 *5 *6 *3))
+ (-4 *3 (-884 (-385 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138)))
+ (-5 *2 (-396 *3)) (-5 *1 (-684 *4 *5 *6 *3))
+ (-4 *3 (-884 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138)))
+ (-4 *7 (-884 *6 *5 *4)) (-5 *2 (-396 (-1088 *7)))
+ (-5 *1 (-684 *4 *5 *6 *7)) (-5 *3 (-1088 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-396 *3)) (-5 *1 (-939 *3))
+ (-4 *3 (-1150 (-385 (-525))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-396 *3)) (-5 *1 (-971 *3))
+ (-4 *3 (-1150 (-385 (-887 (-525)))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1150 (-385 (-525))))
+ (-4 *5 (-13 (-341) (-138) (-667 (-385 (-525)) *4)))
+ (-5 *2 (-396 *3)) (-5 *1 (-1002 *4 *5 *3)) (-4 *3 (-1150 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1150 (-385 (-887 (-525)))))
+ (-4 *5 (-13 (-341) (-138) (-667 (-385 (-887 (-525))) *4)))
+ (-5 *2 (-396 *3)) (-5 *1 (-1004 *4 *5 *3)) (-4 *3 (-1150 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429))
+ (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-396 (-1088 (-385 *7))))
+ (-5 *1 (-1087 *4 *5 *6 *7)) (-5 *3 (-1088 (-385 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1132))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-396 *3)) (-5 *1 (-1139 *3)) (-4 *3 (-1150 (-525))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-977)) (-4 *3 (-1020)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1174 *5)) (-4 *5 (-734)) (-5 *2 (-108))
- (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))))
-(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-745)))))
+ (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-4 *1 (-352 *3 *4))
+ (-4 *4 (-160)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3377 *4)))
+ (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3801 *4)))
(-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1090 *4 *5 *6))
- (-4 *4 (-977)) (-14 *5 (-1092)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1166 *4 *5 *6))
- (-4 *4 (-977)) (-14 *5 (-1092)) (-14 *6 *4))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-977))
- (-4 *2 (-1165 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
- (-4 *3 (-13 (-1020) (-33))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
- (-5 *2
- (-2 (|:| -3284 *4) (|:| -1213 *4) (|:| |totalpts| (-525))
- (|:| |success| (-108))))
- (-5 *1 (-731)) (-5 *5 (-525)))))
-(((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))))
(((*1 *2)
- (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
- (-4 *3 (-991 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4))))))
- (-5 *1 (-994 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7))
+ (-12 (-5 *2 (-632 (-845 *3))) (-5 *1 (-329 *3 *4)) (-14 *3 (-856))
+ (-14 *4 (-856))))
+ ((*1 *2)
+ (-12 (-5 *2 (-632 *3)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327))
+ (-14 *4
+ (-3 (-1088 *3)
+ (-1174 (-592 (-2 (|:| -2219 *3) (|:| -1722 (-1039)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-632 *3)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327))
+ (-14 *4 (-856)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
+ (-14 *6 (-592 (-1092)))
(-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4))))))
- (-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1029 *5 *6 *7 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-856)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-242)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
- (-4 *2 (-408 *3)))))
+ (-592 (-1063 *5 (-497 (-800 *6)) (-800 *6) (-722 *5 (-800 *6)))))
+ (-5 *1 (-577 *5 *6)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1073 (-205)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -3196
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-520)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4259)) (-4 *1 (-224 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-798)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
+ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))
+ (-5 *2 (-357)) (-5 *1 (-246))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1174 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-284)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-884 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-429))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *3 (-991 *4 *5 *6))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *1))))
+ (-4 *1 (-996 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1132)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-517)) (-5 *1 (-1153 *3 *2))
+ (-4 *2 (-13 (-1150 *3) (-517) (-10 -8 (-15 -2772 ($ $ $))))))))
+(((*1 *2) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-100)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4260)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
+ (-4 *3 (-13 (-341) (-1114) (-934))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-108))))
+ (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977))
+ (-5 *2 (-592 (-592 (-592 (-713))))))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4260)) (-4 *1 (-224 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4260)) (-4 *1 (-1162 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4260)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
+ (-4 *4 (-13 (-789) (-517))))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834)))) (-5 *2 (-966))
+ (-5 *1 (-691)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
+ (-5 *2 (-632 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 *5)) (-4 *5 (-1150 *3)) (-4 *3 (-286))
+ (-5 *2 (-108)) (-5 *1 (-432 *3 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1092))
+ (-4 *5 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-2 (|:| -3991 *3) (|:| |coeff| *3))) (-5 *1 (-518 *5 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *5))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-632 *3))
+ (-4 *3 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $)))))
+ (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-1134 *4)) (-4 *4 (-977)) (-4 *4 (-517))
+ (-5 *2 (-385 (-887 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-1134 *4)) (-4 *4 (-977)) (-4 *4 (-517))
+ (-5 *2 (-385 (-887 *4))))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-3 *3 (-592 *1)))
+ (-4 *1 (-996 *4 *5 *6 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1088 *1)) (-5 *4 (-1092)) (-4 *1 (-27))
+ (-5 *2 (-592 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1088 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1))
+ (-4 *1 (-29 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-975)))))
-(((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-51)) (-5 *1 (-773)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1159 *3 *4 *5)) (-5 *1 (-297 *3 *4 *5))
- (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1092)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641))))
+ (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2 (-592 *4)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-1150 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2 (-592 *3)) (-5 *1 (-1047 *4 *3)) (-4 *4 (-1150 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-977))
+ (-5 *2 (-887 *5)) (-5 *1 (-879 *4 *5)))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-977))
+ (-5 *1 (-633 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4))))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-838 *3)) (-4 *3 (-1020)) (-5 *2 (-1022 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1020)) (-5 *2 (-1022 (-592 *4))) (-5 *1 (-839 *4))
+ (-5 *3 (-592 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1020)) (-5 *2 (-1022 (-1022 *4))) (-5 *1 (-839 *4))
+ (-5 *3 (-1022 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1022 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-1198 *5 *6 *7))
+ (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-1198 *5 *6 *7))
+ (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-887 *4)))
+ (-4 *4 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-592 (-974 *4 *5))) (-5 *1 (-1198 *4 *5 *6))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-108) *7 (-592 *7))) (-4 *1 (-1122 *4 *5 *6 *7))
+ (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6))
+ (-5 *2 (-108)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-565 *1)) (-4 *1 (-408 *4)) (-4 *4 (-789))
+ (-4 *4 (-517)) (-5 *2 (-385 (-1088 *1)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1114)))
+ (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2 (-1088 (-385 (-1088 *3)))) (-5 *1 (-521 *6 *3 *7))
+ (-5 *5 (-1088 *3)) (-4 *7 (-1020))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1170 *5)) (-14 *5 (-1092)) (-4 *6 (-977))
+ (-5 *2 (-1147 *5 (-887 *6))) (-5 *1 (-882 *5 *6)) (-5 *3 (-887 *6))))
((*1 *2 *1)
- (-12 (-4 *2 (-1020)) (-5 *1 (-656 *3 *2 *4)) (-4 *3 (-789))
- (-14 *4
- (-1 (-108) (-2 (|:| -3555 *3) (|:| -4193 *2))
- (-2 (|:| -3555 *3) (|:| -4193 *2)))))))
+ (-12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-1088 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-1088 *1))
+ (-4 *1 (-884 *4 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-977))
+ (-4 *7 (-884 *6 *5 *4)) (-5 *2 (-385 (-1088 *3)))
+ (-5 *1 (-885 *5 *4 *6 *7 *3))
+ (-4 *3
+ (-13 (-341)
+ (-10 -8 (-15 -4100 ($ *7)) (-15 -4066 (*7 $)) (-15 -4080 (*7 $)))))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1088 *3))
+ (-4 *3
+ (-13 (-341)
+ (-10 -8 (-15 -4100 ($ *7)) (-15 -4066 (*7 $)) (-15 -4080 (*7 $)))))
+ (-4 *7 (-884 *6 *5 *4)) (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-977))
+ (-5 *1 (-885 *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1092)) (-4 *5 (-517))
+ (-5 *2 (-385 (-1088 (-385 (-887 *5))))) (-5 *1 (-973 *5))
+ (-5 *3 (-385 (-887 *5))))))
+(((*1 *1 *1) (-5 *1 (-989))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -2868 (-592 (-2 (|:| |irr| *10) (|:| -3750 (-525)))))))
+ (-5 *6 (-592 *3)) (-5 *7 (-592 *8)) (-4 *8 (-789)) (-4 *3 (-286))
+ (-4 *10 (-884 *3 *9 *8)) (-4 *9 (-735))
+ (-5 *2
+ (-2 (|:| |polfac| (-592 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-592 (-1088 *3)))))
+ (-5 *1 (-575 *8 *9 *3 *10)) (-5 *4 (-592 (-1088 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-259)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1128))
- (-4 *5 (-1128)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-220 *6 *7)) (-14 *6 (-713))
- (-4 *7 (-1128)) (-4 *5 (-1128)) (-5 *2 (-220 *6 *5))
- (-5 *1 (-219 *6 *7 *5))))
+ (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1175)) (-5 *1 (-234))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1128)) (-4 *5 (-1128))
- (-4 *2 (-351 *5)) (-5 *1 (-349 *6 *4 *5 *2)) (-4 *4 (-351 *6))))
+ (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1175)) (-5 *1 (-234))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1020)) (-4 *5 (-1020))
- (-4 *2 (-403 *5)) (-5 *1 (-401 *6 *4 *5 *2)) (-4 *4 (-403 *6))))
+ (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1176)) (-5 *1 (-234))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-592 *6)) (-4 *6 (-1128))
- (-4 *5 (-1128)) (-5 *2 (-592 *5)) (-5 *1 (-590 *6 *5))))
+ (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1176)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1176)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1176)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1176)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-273 *7)) (-5 *4 (-1092)) (-5 *5 (-592 (-242)))
+ (-4 *7 (-408 *6)) (-4 *6 (-13 (-517) (-789) (-968 (-525))))
+ (-5 *2 (-1175)) (-5 *1 (-235 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-892 *6)) (-4 *6 (-1128))
- (-4 *5 (-1128)) (-5 *2 (-892 *5)) (-5 *1 (-891 *6 *5))))
+ (-12 (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1175))
+ (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1013 (-357))) (-5 *2 (-1175)) (-5 *1 (-238 *3))
+ (-4 *3 (-13 (-567 (-501)) (-1020)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1073 *6)) (-4 *6 (-1128))
- (-4 *3 (-1128)) (-5 *2 (-1073 *3)) (-5 *1 (-1071 *6 *3))))
+ (-12 (-5 *3 (-812 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242)))
+ (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1175))
+ (-5 *1 (-238 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-812 *5)) (-5 *4 (-1013 (-357)))
+ (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1175))
+ (-5 *1 (-238 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1174 *6)) (-4 *6 (-1128))
- (-4 *5 (-1128)) (-5 *2 (-1174 *5)) (-5 *1 (-1173 *6 *5)))))
+ (-12 (-5 *3 (-814 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242)))
+ (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1176))
+ (-5 *1 (-238 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-814 *5)) (-5 *4 (-1013 (-357)))
+ (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1176))
+ (-5 *1 (-238 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1176))
+ (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1013 (-357))) (-5 *2 (-1176)) (-5 *1 (-238 *3))
+ (-4 *3 (-13 (-567 (-501)) (-1020)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-817 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242)))
+ (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1176))
+ (-5 *1 (-238 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-817 *5)) (-5 *4 (-1013 (-357)))
+ (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1176))
+ (-5 *1 (-238 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1175)) (-5 *1 (-239))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1175))
+ (-5 *1 (-239))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-878 (-205)))) (-5 *2 (-1175)) (-5 *1 (-239))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-878 (-205)))) (-5 *4 (-592 (-242)))
+ (-5 *2 (-1175)) (-5 *1 (-239))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1176)) (-5 *1 (-239))))
+ ((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1176))
+ (-5 *1 (-239)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1092))
+ (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3))
+ (-4 *3 (-13 (-1114) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-517) (-968 (-525)) (-138)))
+ (-5 *2 (-542 (-385 (-887 *5)))) (-5 *1 (-531 *5))
+ (-5 *3 (-385 (-887 *5))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))
+ (-5 *2 (-1088 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179))
+ (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179))
+ (-5 *1 (-1028 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-525))
+ (-5 *6
+ (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -1286 (-357))))
+ (-5 *7 (-1 (-1179) (-1174 *5) (-1174 *5) (-357)))
+ (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179))
+ (-5 *1 (-730))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-525))
+ (-5 *6
+ (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -1286 (-357))))
+ (-5 *7 (-1 (-1179) (-1174 *5) (-1174 *5) (-357)))
+ (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179))
+ (-5 *1 (-730)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-856)) (-5 *2 (-445)) (-5 *1 (-1175)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-273 *6)) (-5 *4 (-110)) (-4 *6 (-408 *5))
+ (-4 *5 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
+ (-5 *1 (-295 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-592 *7))
+ (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501))))
+ (-5 *2 (-51)) (-5 *1 (-295 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-592 (-273 *7))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7))
+ (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501))))
+ (-5 *2 (-51)) (-5 *1 (-295 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-592 (-273 *8))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *8))
+ (-5 *6 (-592 *8)) (-4 *8 (-408 *7))
+ (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
+ (-5 *1 (-295 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7))
+ (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501))))
+ (-5 *2 (-51)) (-5 *1 (-295 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-110))) (-5 *6 (-592 (-273 *8)))
+ (-4 *8 (-408 *7)) (-5 *5 (-273 *8))
+ (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
+ (-5 *1 (-295 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-273 *5)) (-5 *4 (-110)) (-4 *5 (-408 *6))
+ (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
+ (-5 *1 (-295 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6))
+ (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
+ (-5 *1 (-295 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6))
+ (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
+ (-5 *1 (-295 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-5 *6 (-592 *3))
+ (-4 *3 (-408 *7)) (-4 *7 (-13 (-789) (-517) (-567 (-501))))
+ (-5 *2 (-51)) (-5 *1 (-295 *7 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-878 *4)) (-4 *4 (-977)) (-5 *1 (-1081 *3 *4))
+ (-14 *3 (-856)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-565 *3)) (-4 *3 (-789))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-110)) (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-789))
+ (-5 *1 (-565 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789)) (-4 *5 (-991 *3 *4 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-341)) (-5 *2 (-2 (|:| -1416 *3) (|:| -3681 *3)))
+ (-5 *1 (-709 *3 *4)) (-4 *3 (-651 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-341)) (-4 *3 (-977))
+ (-5 *2 (-2 (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-791 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-977))
+ (-5 *2 (-2 (|:| -1416 *3) (|:| -3681 *3))) (-5 *1 (-792 *5 *3))
+ (-4 *3 (-791 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-259))) (-5 *1 (-259))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 (-1097))) (-5 *1 (-1097)))))
+(((*1 *1 *1 *1) (-4 *1 (-704))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1020))
+ (-4 *6 (-1020)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-627 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1092)))))
+(((*1 *1 *2) (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-308))))
+ ((*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-308))))
+ ((*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-308))))
+ ((*1 *1 *2) (-12 (-5 *2 (-294 (-636))) (-5 *1 (-308))))
+ ((*1 *1 *2) (-12 (-5 *2 (-294 (-643))) (-5 *1 (-308))))
+ ((*1 *1 *2) (-12 (-5 *2 (-294 (-641))) (-5 *1 (-308))))
+ ((*1 *1) (-5 *1 (-308))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1134 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1020)) (-4 *6 (-821 *5)) (-5 *2 (-820 *5 *6 (-592 *6)))
+ (-5 *1 (-822 *5 *6 *4)) (-5 *3 (-592 *6)) (-4 *4 (-567 (-827 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1020)) (-5 *2 (-592 (-273 *3))) (-5 *1 (-822 *5 *3 *4))
+ (-4 *3 (-968 (-1092))) (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1020)) (-5 *2 (-592 (-273 (-887 *3))))
+ (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-977))
+ (-3272 (-4 *3 (-968 (-1092)))) (-4 *3 (-821 *5))
+ (-4 *4 (-567 (-827 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1020)) (-5 *2 (-824 *5 *3)) (-5 *1 (-822 *5 *3 *4))
+ (-3272 (-4 *3 (-968 (-1092)))) (-3272 (-4 *3 (-977)))
+ (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1020)) (-4 *2 (-789))
+ (-5 *1 (-109 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1020)) (-4 *2 (-835 *4)) (-5 *1 (-634 *4 *2 *5 *3))
+ (-4 *5 (-351 *2)) (-4 *3 (-13 (-351 *4) (-10 -7 (-6 -4259)))))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| -2673 (-592 (-798))) (|:| -3167 (-592 (-798)))
- (|:| |presup| (-592 (-798))) (|:| -2990 (-592 (-798)))
+ (-2 (|:| -3626 (-592 (-798))) (|:| -1525 (-592 (-798)))
+ (|:| |presup| (-592 (-798))) (|:| -3563 (-592 (-798)))
(|:| |args| (-592 (-798)))))
(-5 *1 (-1092)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1174 (-3 (-445) "undefined"))) (-5 *1 (-1175)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
-(((*1 *1 *2)
- (-12 (-4 *3 (-977)) (-5 *1 (-769 *2 *3)) (-4 *2 (-651 *3)))))
-(((*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-899))) (-5 *1 (-104)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-385 *4)) (-4 *4 (-1150 *3)) (-4 *3 (-13 (-341) (-138)))
- (-5 *1 (-377 *3 *4)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-798))) ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1) (-5 *1 (-798))))
(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5))
+ (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-1185 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1185 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *4 *3)
(-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-698)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-856)) (-5 *2 (-1174 (-1174 (-525)))) (-5 *1 (-443)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
- (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-884 *4 *3 *5)))))
-(((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-5 *2 (-632 (-385 *4))))))
+ (-5 *1 (-695)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-713)) (-5 *4 (-1174 *2)) (-4 *5 (-286))
+ (-4 *6 (-925 *5)) (-4 *2 (-13 (-387 *6 *7) (-968 *6)))
+ (-5 *1 (-391 *5 *6 *7 *2)) (-4 *7 (-1150 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-5 *1 (-831 *2 *4))
+ (-4 *2 (-1150 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-592 *2) *2 *2 *2)) (-4 *2 (-1020))
+ (-5 *1 (-98 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1020)) (-5 *1 (-98 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-592 *2))) (-5 *4 (-592 *5))
+ (-4 *5 (-37 (-385 (-525)))) (-4 *2 (-1165 *5))
+ (-5 *1 (-1167 *5 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -1466 (-391 *4 (-385 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -2392 (-385 *6))
+ (|:| |special| (-385 *6))))
+ (-5 *1 (-670 *5 *6)) (-5 *3 (-385 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-831 *3 *4))
+ (-4 *3 (-1150 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-713)) (-4 *5 (-341))
+ (-5 *2 (-2 (|:| -3436 *3) (|:| -3446 *3))) (-5 *1 (-831 *3 *5))
+ (-4 *3 (-1150 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108))
+ (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-994 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108))
+ (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-994 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108))
+ (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1062 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108))
+ (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))))
(((*1 *2 *3)
(-12 (-4 *4 (-977))
(-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263)))
@@ -280,309 +817,2590 @@
((*1 *2 *1)
(-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-934))
(-4 *2 (-977)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-5 *2 (-108))
+ (-5 *1 (-824 *4 *5)) (-4 *5 (-1020))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-5 *2 (-108))
+ (-5 *1 (-825 *5 *3)) (-4 *3 (-1128))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *6)) (-5 *4 (-827 *5)) (-4 *5 (-1020))
+ (-4 *6 (-1128)) (-5 *2 (-108)) (-5 *1 (-825 *5 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-525)) (-5 *5 (-108)) (-5 *6 (-632 (-205)))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))
+ (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-696)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1134 *3))
- (-5 *2 (-385 (-525))))))
+ (-12 (-5 *2 (-878 *4)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1128)))))
+(((*1 *2) (-12 (-5 *2 (-775 (-525))) (-5 *1 (-499))))
+ ((*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3801 *4)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-308)))))
+(((*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-153 *3 *2)) (-4 *3 (-154 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *2 *4)) (-4 *4 (-1150 *2))
+ (-4 *2 (-160))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1150 *2)) (-4 *2 (-160)) (-5 *1 (-386 *3 *2 *4))
+ (-4 *3 (-387 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1150 *2)) (-4 *2 (-160))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1150 *2)) (-5 *2 (-525)) (-5 *1 (-710 *3 *4))
+ (-4 *4 (-387 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789)) (-4 *3 (-160))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-517)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1150 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-160)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-4 *1 (-142 *3))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-592 (-2 (|:| -2168 (-713)) (|:| -1423 *4) (|:| |num| *4))))
+ (-4 *4 (-1150 *3)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-108)) (-5 *1 (-415))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-5 *3 (-592 (-1092))) (-5 *4 (-108)) (-5 *1 (-415))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1073 *3)) (-5 *1 (-555 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-160))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4))
+ (-4 *4 (-160))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4))
+ (-4 *4 (-160))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4))
+ (-4 *4 (-160))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 (-592 *3)))) (-4 *3 (-1020))
+ (-5 *1 (-620 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-656 *2 *3 *4)) (-4 *2 (-789)) (-4 *3 (-1020))
+ (-14 *4
+ (-1 (-108) (-2 (|:| -1722 *2) (|:| -2168 *3))
+ (-2 (|:| -1722 *2) (|:| -2168 *3))))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 *4))))
+ (-4 *4 (-1020)) (-5 *1 (-824 *3 *4)) (-4 *3 (-1020))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 *5)) (-4 *5 (-13 (-1020) (-33)))
+ (-5 *2 (-592 (-1057 *3 *5))) (-5 *1 (-1057 *3 *5))
+ (-4 *3 (-13 (-1020) (-33)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-2 (|:| |val| *4) (|:| -1285 *5))))
+ (-4 *4 (-13 (-1020) (-33))) (-4 *5 (-13 (-1020) (-33)))
+ (-5 *2 (-592 (-1057 *4 *5))) (-5 *1 (-1057 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1285 *4)))
+ (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33)))
+ (-5 *1 (-1057 *3 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33)))))
+ ((*1 *1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-1020) (-33)))
+ (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1020) (-33)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-1057 *2 *3))) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33))) (-5 *1 (-1058 *2 *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-1058 *2 *3))) (-5 *1 (-1058 *2 *3))
+ (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
+ (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1058 *3 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-827 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1020))
+ (-4 *5 (-1128)) (-5 *1 (-825 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-827 *4)) (-5 *3 (-592 (-1 (-108) *5))) (-4 *4 (-1020))
+ (-4 *5 (-1128)) (-5 *1 (-825 *4 *5))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-827 *5)) (-5 *3 (-592 (-1092)))
+ (-5 *4 (-1 (-108) (-592 *6))) (-4 *5 (-1020)) (-4 *6 (-1128))
+ (-5 *1 (-825 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1128)) (-4 *4 (-789))
+ (-5 *1 (-872 *4 *2 *5)) (-4 *2 (-408 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 (-1 (-108) *5))) (-4 *5 (-1128)) (-4 *4 (-789))
+ (-5 *1 (-872 *4 *2 *5)) (-4 *2 (-408 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1092)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1128))
+ (-5 *2 (-294 (-525))) (-5 *1 (-873 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1092)) (-5 *4 (-592 (-1 (-108) *5))) (-4 *5 (-1128))
+ (-5 *2 (-294 (-525))) (-5 *1 (-873 *5))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-1 (-108) (-592 *6)))
+ (-4 *6 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))) (-4 *4 (-1020))
+ (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4))))
+ (-5 *1 (-999 *4 *5 *6)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-878 (-205))) (-5 *4 (-809)) (-5 *2 (-1179))
+ (-5 *1 (-445))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-977)) (-4 *1 (-913 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-878 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-977)) (-4 *1 (-1053 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1053 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *1 (-1053 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-878 *3)) (-4 *1 (-1053 *3)) (-4 *3 (-977))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1125)) (-5 *3 (-205)))))
+(((*1 *1) (-5 *1 (-1007))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-592 (-1088 *7))) (-5 *3 (-1088 *7))
+ (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-844)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-5 *1 (-841 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-592 (-1088 *5))) (-5 *3 (-1088 *5))
+ (-4 *5 (-1150 *4)) (-4 *4 (-844)) (-5 *1 (-842 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-1101 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-599 *4)) (-4 *4 (-320 *5 *6 *7))
- (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
- (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6)))
+ (-12 (-5 *3 (-592 (-205))) (-5 *4 (-713)) (-5 *2 (-632 (-205)))
+ (-5 *1 (-284)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-160))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-1193 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-977)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-408 *3) (-934))) (-5 *1 (-255 *3 *2))
+ (-4 *3 (-13 (-789) (-517)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
+ (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
+ ((*1 *1) (-5 *1 (-454))) ((*1 *1) (-4 *1 (-1114))))
+(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-887 (-357))) (-5 *1 (-317 *3 *4 *5))
+ (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1092)))
+ (-14 *4 (-592 (-1092))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-385 (-887 (-357)))) (-5 *1 (-317 *3 *4 *5))
+ (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1092)))
+ (-14 *4 (-592 (-1092))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5))
+ (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1092)))
+ (-14 *4 (-592 (-1092))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-887 (-525))) (-5 *1 (-317 *3 *4 *5))
+ (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1092)))
+ (-14 *4 (-592 (-1092))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-385 (-887 (-525)))) (-5 *1 (-317 *3 *4 *5))
+ (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1092)))
+ (-14 *4 (-592 (-1092))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5))
+ (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1092)))
+ (-14 *4 (-592 (-1092))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1092)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 *2))
+ (-14 *4 (-592 *2)) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-294 *5)) (-4 *5 (-365)) (-5 *1 (-317 *3 *4 *5))
+ (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-887 (-525))))) (-4 *1 (-362))))
+ ((*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-887 (-357))))) (-4 *1 (-362))))
+ ((*1 *1 *2) (-12 (-5 *2 (-632 (-887 (-525)))) (-4 *1 (-362))))
+ ((*1 *1 *2) (-12 (-5 *2 (-632 (-887 (-357)))) (-4 *1 (-362))))
+ ((*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-4 *1 (-362))))
+ ((*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-357)))) (-4 *1 (-362))))
+ ((*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-525)))) (-4 *1 (-374))))
+ ((*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-357)))) (-4 *1 (-374))))
+ ((*1 *1 *2) (-12 (-5 *2 (-887 (-525))) (-4 *1 (-374))))
+ ((*1 *1 *2) (-12 (-5 *2 (-887 (-357))) (-4 *1 (-374))))
+ ((*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-4 *1 (-374))))
+ ((*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-4 *1 (-374))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1174 (-385 (-887 (-525))))) (-4 *1 (-418))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1174 (-385 (-887 (-357))))) (-4 *1 (-418))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1174 (-887 (-525)))) (-4 *1 (-418))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1174 (-887 (-357)))) (-4 *1 (-418))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1174 (-294 (-525)))) (-4 *1 (-418))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1174 (-294 (-357)))) (-4 *1 (-418))))
+ ((*1 *2 *1)
+ (-12
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3094 (-592 *4))))
- (-5 *1 (-748 *5 *6 *7 *4)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-695)))))
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-592 (-1015 (-782 (-205)))))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
+ (-5 *1 (-711))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
+ (-5 *1 (-750))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205)))
+ (|:| |lb| (-592 (-782 (-205))))
+ (|:| |cf| (-592 (-294 (-205))))
+ (|:| |ub| (-592 (-782 (-205))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-592 (-294 (-205))))
+ (|:| -2948 (-592 (-205)))))))
+ (-5 *1 (-780))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |pde| (-592 (-294 (-205))))
+ (|:| |constraints|
+ (-592
+ (-2 (|:| |start| (-205)) (|:| |finish| (-205))
+ (|:| |grid| (-713)) (|:| |boundaryType| (-525))
+ (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205))))))
+ (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075))
+ (|:| |tol| (-205))))
+ (-5 *1 (-833))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *1 (-909 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2)
+ (-2067
+ (-12 (-5 *2 (-887 *3))
+ (-12 (-3272 (-4 *3 (-37 (-385 (-525)))))
+ (-3272 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1092))))
+ (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735))
+ (-4 *5 (-789)))
+ (-12 (-5 *2 (-887 *3))
+ (-12 (-3272 (-4 *3 (-510))) (-3272 (-4 *3 (-37 (-385 (-525)))))
+ (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1092))))
+ (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735))
+ (-4 *5 (-789)))
+ (-12 (-5 *2 (-887 *3))
+ (-12 (-3272 (-4 *3 (-925 (-525)))) (-4 *3 (-37 (-385 (-525))))
+ (-4 *5 (-567 (-1092))))
+ (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735))
+ (-4 *5 (-789)))))
+ ((*1 *1 *2)
+ (-2067
+ (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5))
+ (-12 (-3272 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525)))
+ (-4 *5 (-567 (-1092))))
+ (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))
+ (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092))))
+ (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-887 (-385 (-525)))) (-4 *1 (-991 *3 *4 *5))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092))) (-4 *3 (-977))
+ (-4 *4 (-735)) (-4 *5 (-789)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-525)) (-5 *2 (-592 (-2 (|:| -4201 *3) (|:| -3529 *4))))
+ (-5 *1 (-638 *3)) (-4 *3 (-1150 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-108))
+ (-5 *1 (-617 *4)))))
+(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-160))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1174 *3)) (-4 *3 (-341)) (-14 *6 (-1174 (-632 *3)))
+ (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-856)) (-14 *5 (-592 (-1092)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1044 (-525) (-565 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1174 (-317 (-4114 'JINT 'X 'ELAM) (-4114) (-641))))
+ (-5 *1 (-59 *3)) (-14 *3 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1174 (-317 (-4114) (-4114 'XC) (-641))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-317 (-4114 'X) (-4114) (-641))) (-5 *1 (-62 *3))
+ (-14 *3 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-632 (-317 (-4114) (-4114 'X 'HESS) (-641))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-317 (-4114) (-4114 'XC) (-641))) (-5 *1 (-64 *3))
+ (-14 *3 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1174 (-317 (-4114 'X) (-4114 '-1499) (-641))))
+ (-5 *1 (-69 *3)) (-14 *3 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1174 (-317 (-4114) (-4114 'X) (-641))))
+ (-5 *1 (-72 *3)) (-14 *3 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1174 (-317 (-4114 'X 'EPS) (-4114 '-1499) (-641))))
+ (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1092)) (-14 *4 (-1092))
+ (-14 *5 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1174 (-317 (-4114 'EPS) (-4114 'YA 'YB) (-641))))
+ (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1092)) (-14 *4 (-1092))
+ (-14 *5 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-317 (-4114) (-4114 'X) (-641))) (-5 *1 (-75 *3))
+ (-14 *3 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-317 (-4114) (-4114 'X) (-641))) (-5 *1 (-76 *3))
+ (-14 *3 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1174 (-317 (-4114) (-4114 'XC) (-641))))
+ (-5 *1 (-77 *3)) (-14 *3 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1174 (-317 (-4114) (-4114 'X) (-641))))
+ (-5 *1 (-78 *3)) (-14 *3 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1174 (-317 (-4114) (-4114 'X) (-641))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1174 (-317 (-4114 'X '-1499) (-4114) (-641))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-632 (-317 (-4114 'X '-1499) (-4114) (-641))))
+ (-5 *1 (-81 *3)) (-14 *3 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-632 (-317 (-4114 'X) (-4114) (-641)))) (-5 *1 (-82 *3))
+ (-14 *3 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1174 (-317 (-4114 'X) (-4114) (-641))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1174 (-317 (-4114 'X) (-4114 '-1499) (-641))))
+ (-5 *1 (-84 *3)) (-14 *3 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-632 (-317 (-4114 'XL 'XR 'ELAM) (-4114) (-641))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1092))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-317 (-4114 'X) (-4114 '-1499) (-641))) (-5 *1 (-87 *3))
+ (-14 *3 (-1092))))
+ ((*1 *2 *1) (-12 (-5 *2 (-936 2)) (-5 *1 (-103))))
+ ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103))))
+ ((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-130 *3 *4 *5))) (-5 *1 (-130 *3 *4 *5))
+ (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5))
+ (-14 *3 (-525)) (-14 *4 (-713))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1059 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160))
+ (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-220 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160))
+ (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1174 (-632 *4))) (-4 *4 (-160))
+ (-5 *2 (-1174 (-632 (-385 (-887 *4))))) (-5 *1 (-171 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *3))
+ (-4 *3
+ (-13 (-789)
+ (-10 -8 (-15 -3431 ((-1075) $ (-1092))) (-15 -2701 ((-1179) $))
+ (-15 -3686 ((-1179) $)))))
+ (-5 *1 (-195 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-936 10)) (-5 *1 (-198))))
+ ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-225 *3)) (-4 *3 (-789))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1013 (-294 *4)))
+ (-4 *4 (-13 (-789) (-517) (-567 (-357)))) (-5 *2 (-1013 (-357)))
+ (-5 *1 (-237 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1150 *3)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7))
+ (-4 *3 (-160)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1159 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-408 *3)))
+ (-14 *5 (-1092)) (-14 *6 *4)
+ (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429)))
+ (-5 *1 (-291 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-308))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-294 *5)) (-5 *1 (-317 *3 *4 *5))
+ (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *3 *4 *2))
+ (-4 *3 (-307 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *2 *4 *3))
+ (-4 *3 (-307 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
+ (-5 *2 (-1196 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
+ (-5 *2 (-1187 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308)))))
+ (-4 *1 (-361))))
+ ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-361))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-361))))
+ ((*1 *1 *2) (-12 (-5 *2 (-632 (-641))) (-4 *1 (-361))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308)))))
+ (-4 *1 (-362))))
+ ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-362))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-362))))
+ ((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1075))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-367))))
+ ((*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-371 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-372))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308)))))
+ (-4 *1 (-374))))
+ ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-374))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-374))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-273 (-294 (-157 (-357))))) (-5 *1 (-376 *3 *4 *5 *6))
+ (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-273 (-294 (-357)))) (-5 *1 (-376 *3 *4 *5 *6))
+ (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-273 (-294 (-525)))) (-5 *1 (-376 *3 *4 *5 *6))
+ (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-376 *3 *4 *5 *6))
+ (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-294 (-357))) (-5 *1 (-376 *3 *4 *5 *6))
+ (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-294 (-525))) (-5 *1 (-376 *3 *4 *5 *6))
+ (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-273 (-294 (-636)))) (-5 *1 (-376 *3 *4 *5 *6))
+ (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-273 (-294 (-641)))) (-5 *1 (-376 *3 *4 *5 *6))
+ (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-273 (-294 (-643)))) (-5 *1 (-376 *3 *4 *5 *6))
+ (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-294 (-636))) (-5 *1 (-376 *3 *4 *5 *6))
+ (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-294 (-641))) (-5 *1 (-376 *3 *4 *5 *6))
+ (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-294 (-643))) (-5 *1 (-376 *3 *4 *5 *6))
+ (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308)))))
+ (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092))
+ (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-308))) (-5 *1 (-376 *3 *4 *5 *6))
+ (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-308)) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092))
+ (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-309 *4)) (-4 *4 (-13 (-789) (-21)))
+ (-5 *1 (-405 *3 *4)) (-4 *3 (-13 (-160) (-37 (-385 (-525)))))))
+ ((*1 *1 *2)
+ (-12 (-5 *1 (-405 *2 *3)) (-4 *2 (-13 (-160) (-37 (-385 (-525)))))
+ (-4 *3 (-13 (-789) (-21)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-385 (-887 (-385 *3)))) (-4 *3 (-517)) (-4 *3 (-789))
+ (-4 *1 (-408 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-887 (-385 *3))) (-4 *3 (-517)) (-4 *3 (-789))
+ (-4 *1 (-408 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-385 *3)) (-4 *3 (-517)) (-4 *3 (-789))
+ (-4 *1 (-408 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1044 *3 (-565 *1))) (-4 *3 (-977)) (-4 *3 (-789))
+ (-4 *1 (-408 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-412))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-412))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-412))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-412))))
+ ((*1 *1 *2) (-12 (-5 *2 (-412)) (-5 *1 (-415))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-415))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308)))))
+ (-4 *1 (-417))))
+ ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-417))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-417))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1174 (-641))) (-4 *1 (-417))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -1582 (-592 (-308)))))
+ (-4 *1 (-418))))
+ ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-418))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-418))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1174 (-385 (-887 *3)))) (-4 *3 (-160))
+ (-14 *6 (-1174 (-632 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-14 *4 (-856)) (-14 *5 (-592 (-1092)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-445))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-445))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-977)) (-14 *4 (-1092))
+ (-14 *5 *3) (-5 *1 (-451 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-451 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-5 *2 (-936 16)) (-5 *1 (-462))))
+ ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1044 (-525) (-565 (-468)))) (-5 *1 (-468))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-475))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-341))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-125)) (-5 *1 (-559))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-160)) (-5 *1 (-560 *3 *2)) (-4 *2 (-687 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2) (-12 (-4 *1 (-570 *2)) (-4 *2 (-977))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1192 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
+ (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1187 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
+ (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-160)) (-5 *1 (-584 *3 *2)) (-4 *2 (-687 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-892 (-892 (-892 *3)))) (-5 *1 (-620 *3))
+ (-4 *3 (-1020))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-892 (-892 (-892 *3)))) (-4 *3 (-1020))
+ (-5 *1 (-620 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *2)) (-4 *4 (-351 *3))
+ (-4 *2 (-351 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-636))))
+ ((*1 *1 *2) (-12 (-5 *2 (-157 (-643))) (-5 *1 (-636))))
+ ((*1 *1 *2) (-12 (-5 *2 (-157 (-641))) (-5 *1 (-636))))
+ ((*1 *1 *2) (-12 (-5 *2 (-157 (-525))) (-5 *1 (-636))))
+ ((*1 *1 *2) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-636))))
+ ((*1 *1 *2) (-12 (-5 *2 (-643)) (-5 *1 (-641))))
+ ((*1 *2 *1) (-12 (-5 *2 (-357)) (-5 *1 (-641))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-294 (-525))) (-5 *2 (-294 (-643))) (-5 *1 (-643))))
+ ((*1 *1 *2) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1020))))
+ ((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1075)) (-5 *1 (-653))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-160)) (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-977)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1150 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -1722 *3) (|:| -2168 *4)))
+ (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-1020))
+ (-14 *5 (-1 (-108) *2 *2))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| -1722 *3) (|:| -2168 *4))) (-4 *3 (-789))
+ (-4 *4 (-1020)) (-5 *1 (-656 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-160)) (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-2 (|:| -2681 *3) (|:| -2885 *4)))) (-4 *3 (-977))
+ (-4 *4 (-669)) (-5 *1 (-678 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-706))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-592 (-1015 (-782 (-205)))))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
+ (-5 *1 (-711))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *1 (-711))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *1 (-711))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-711))))
+ ((*1 *2 *3) (-12 (-5 *2 (-716)) (-5 *1 (-715 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
+ (-5 *1 (-750))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-750))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-835 *3)) (-5 *1 (-759 *3 *2 *4)) (-4 *3 (-1020))
+ (-14 *4 *3)))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1020)) (-14 *4 *3) (-5 *1 (-759 *3 *2 *4))
+ (-4 *2 (-835 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-766))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205)))
+ (|:| |lb| (-592 (-782 (-205))))
+ (|:| |cf| (-592 (-294 (-205))))
+ (|:| |ub| (-592 (-782 (-205))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-592 (-294 (-205))))
+ (|:| -2948 (-592 (-205)))))))
+ (-5 *1 (-780))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))
+ (-5 *1 (-780))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205)))
+ (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205))))
+ (|:| |ub| (-592 (-782 (-205))))))
+ (-5 *1 (-780))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-780))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1170 *3)) (-14 *3 (-1092)) (-5 *1 (-794 *3 *4 *5 *6))
+ (-4 *4 (-977)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-887 *3)) (-4 *3 (-977)) (-5 *1 (-801 *3 *4 *5 *6))
+ (-14 *4 (-592 (-1092))) (-14 *5 (-592 (-713))) (-14 *6 (-713))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-887 *3)) (-5 *1 (-801 *3 *4 *5 *6)) (-4 *3 (-977))
+ (-14 *4 (-592 (-1092))) (-14 *5 (-592 (-713))) (-14 *6 (-713))))
+ ((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-887 (-47))) (-5 *2 (-294 (-525))) (-5 *1 (-810))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-385 (-887 (-47)))) (-5 *2 (-294 (-525)))
+ (-5 *1 (-810))))
+ ((*1 *1 *2) (-12 (-5 *1 (-828 *2)) (-4 *2 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-828 *3)) (-4 *3 (-789))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |pde| (-592 (-294 (-205))))
+ (|:| |constraints|
+ (-592
+ (-2 (|:| |start| (-205)) (|:| |finish| (-205))
+ (|:| |grid| (-713)) (|:| |boundaryType| (-525))
+ (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205))))))
+ (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075))
+ (|:| |tol| (-205))))
+ (-5 *1 (-833))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-833))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1115 *3)) (-5 *1 (-836 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-840 *3))) (-4 *3 (-1020)) (-5 *1 (-839 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-840 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-385 (-396 *3))) (-4 *3 (-286)) (-5 *1 (-849 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-385 *3)) (-5 *1 (-849 *3)) (-4 *3 (-286))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-454)) (-5 *2 (-294 *4)) (-5 *1 (-854 *4))
+ (-4 *4 (-13 (-789) (-517)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-900 *3)) (-4 *3 (-901))))
+ ((*1 *1 *2) (-12 (-5 *1 (-900 *2)) (-4 *2 (-901))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-904))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *1 (-964 *3)) (-4 *3 (-1128))))
+ ((*1 *2 *3) (-12 (-5 *3 (-290)) (-5 *1 (-964 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-965 *3 *4 *5 *2 *6)) (-4 *2 (-884 *3 *4 *5))
+ (-14 *6 (-592 *2))))
+ ((*1 *1 *2) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-973 *3)) (-4 *3 (-517))))
+ ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-977))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-632 *5)) (-5 *1 (-981 *3 *4 *5)) (-14 *3 (-713))
+ (-14 *4 (-713)) (-4 *5 (-977))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-977)) (-4 *4 (-789)) (-5 *1 (-1045 *3 *4 *2))
+ (-4 *2 (-884 *3 (-497 *4) *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-977)) (-4 *2 (-789)) (-5 *1 (-1045 *3 *2 *4))
+ (-4 *4 (-884 *3 (-497 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-798))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-632 *4)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-713))
+ (-4 *4 (-977))))
+ ((*1 *1 *2) (-12 (-5 *2 (-135)) (-4 *1 (-1061))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1073 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-977))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1083 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1089 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1090 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-977)) (-14 *4 (-1092))
+ (-14 *5 *3) (-5 *1 (-1090 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1091))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1092))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1102 (-1092) (-415))) (-5 *1 (-1096))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1097))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1097))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1097))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1097))))
+ ((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1097))))
+ ((*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1097))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1097))))
+ ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1097))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1101 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1109)) (-5 *1 (-1108 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1109))))
+ ((*1 *1 *2) (-12 (-5 *2 (-887 *3)) (-4 *3 (-977)) (-5 *1 (-1123 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1123 *3)) (-4 *3 (-977))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-892 *3)) (-4 *3 (-1128)) (-5 *1 (-1126 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-977)) (-4 *1 (-1136 *3 *2)) (-4 *2 (-1165 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1138 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1015 *3)) (-4 *3 (-1128)) (-5 *1 (-1141 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1170 *3)) (-14 *3 (-1092)) (-5 *1 (-1147 *3 *4))
+ (-4 *4 (-977))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-977)) (-4 *1 (-1157 *3 *2)) (-4 *2 (-1134 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1159 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1166 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-977)) (-14 *4 (-1092))
+ (-14 *5 *3) (-5 *1 (-1166 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1170 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1175))))
+ ((*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-1175)) (-5 *1 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1179))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4))
+ (-5 *1 (-1184 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-884 *3 *5 *4))
+ (-14 *7 (-592 (-713))) (-14 *8 (-713))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-884 *3 *5 *4)) (-5 *1 (-1184 *3 *4 *5 *2 *6 *7 *8))
+ (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4))
+ (-14 *7 (-592 (-713))) (-14 *8 (-713))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1186 *2)) (-4 *2 (-977))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-160))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1187 *3 *4)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-160))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
+ (-5 *1 (-1192 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1195 *3 *2)) (-4 *3 (-977)) (-4 *2 (-785)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1073 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-856)) (-4 *5 (-517)) (-5 *2 (-632 *5))
+ (-5 *1 (-890 *5 *3)) (-4 *3 (-602 *5)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
(-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-856))
- (-5 *2 (-1174 (-592 (-2 (|:| -3284 *4) (|:| -3555 (-1039))))))
- (-5 *1 (-324 *4)) (-4 *4 (-327)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108))
+ (-5 *2
+ (-2 (|:| |contp| (-525))
+ (|:| -2868 (-592 (-2 (|:| |irr| *3) (|:| -3750 (-525)))))))
+ (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108))
+ (-5 *2
+ (-2 (|:| |contp| (-525))
+ (|:| -2868 (-592 (-2 (|:| |irr| *3) (|:| -3750 (-525)))))))
+ (-5 *1 (-1139 *3)) (-4 *3 (-1150 (-525))))))
+(((*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499))))
+ ((*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1020)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
- (-5 *2 (-761 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1195 *3 *2)) (-4 *3 (-977)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789))
- (-5 *2 (-2 (|:| -3244 *1) (|:| |gap| (-713)) (|:| -1607 *1)))
- (-4 *1 (-991 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-2 (|:| -3244 *1) (|:| |gap| (-713)) (|:| -1607 *1)))
- (-4 *1 (-991 *3 *4 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))))
+ (-12 (-5 *2 (-592 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-542 *3)) (-4 *3 (-341)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))))
- (-4 *4 (-1150 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-848 *4 *5))
- (-4 *5 (-1150 (-385 *4))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525))))
- (-4 *2 (-160)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4))))
- (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
+ (-4 *4 (-13 (-789) (-517))))))
+(((*1 *2)
+ (-12
+ (-5 *2 (-2 (|:| -1805 (-592 (-1092))) (|:| -3736 (-592 (-1092)))))
+ (-5 *1 (-1130)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-1092))) (-5 *2 (-1179)) (-5 *1 (-1130))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 (-1092))) (-5 *2 (-1179)) (-5 *1 (-1130)))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4260)) (-4 *1 (-115 *2)) (-4 *2 (-1128)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *6)) (-4 *5 (-1020))
- (-4 *6 (-1128)) (-5 *2 (-1 *6 *5)) (-5 *1 (-589 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1020))
- (-4 *2 (-1128)) (-5 *1 (-589 *5 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 *5)) (-4 *6 (-1020))
- (-4 *5 (-1128)) (-5 *2 (-1 *5 *6)) (-5 *1 (-589 *6 *5))))
- ((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1020))
- (-4 *2 (-1128)) (-5 *1 (-589 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-592 *5)) (-5 *4 (-592 *6))
- (-4 *5 (-1020)) (-4 *6 (-1128)) (-5 *1 (-589 *5 *6))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1020)) (-4 *2 (-1128)) (-5 *1 (-589 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1061)) (-5 *3 (-135)) (-5 *2 (-713)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))))
-(((*1 *1) (-5 *1 (-132))))
+ (-12 (-5 *3 (-385 (-525))) (-5 *4 (-525)) (-5 *2 (-51))
+ (-5 *1 (-937)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))
+ ((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
+ (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1618 *4))))
+ (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))))
+(((*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499))))
+ ((*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1162 *3)) (-4 *3 (-1128)) (-5 *2 (-713)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-632 *3))
+ (-4 *3 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $)))))
+ (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-632 *3))
+ (-4 *3 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $)))))
+ (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1044 (-525) (-565 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-925 *2)) (-4 *4 (-1150 *3)) (-4 *2 (-286))
+ (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-968 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-517)) (-4 *3 (-789)) (-5 *2 (-1044 *3 (-565 *1)))
+ (-4 *1 (-408 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1044 (-525) (-565 (-468)))) (-5 *1 (-468))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4))
+ (-5 *1 (-571 *3 *4 *2)) (-4 *3 (-37 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4))
+ (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-660 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856))
- (-14 *4 (-856)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-592 (-632 *6))) (-5 *4 (-108)) (-5 *5 (-525))
- (-5 *2 (-632 *6)) (-5 *1 (-960 *6)) (-4 *6 (-341)) (-4 *6 (-977))))
+ (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1114))) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341)))
+ (-4 *3 (-1150 *4)) (-5 *2 (-108)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1013 (-887 (-525)))) (-5 *3 (-887 (-525)))
+ (-5 *1 (-308))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1013 (-887 (-525)))) (-5 *1 (-308)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-110)) (-5 *4 (-592 *2)) (-5 *1 (-109 *2))
+ (-4 *2 (-1020))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-592 *4))) (-4 *4 (-1020))
+ (-5 *1 (-109 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1020))
+ (-5 *1 (-109 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-592 *4)))
+ (-5 *1 (-109 *4)) (-4 *4 (-1020))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-977))
+ (-5 *1 (-657 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-776 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-999 *3 *4 *5))) (-4 *3 (-1020))
+ (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))
+ (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3))))
+ (-5 *1 (-1000 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-789))
+ (-5 *2
+ (-2 (|:| |f1| (-592 *4)) (|:| |f2| (-592 (-592 (-592 *4))))
+ (|:| |f3| (-592 (-592 *4))) (|:| |f4| (-592 (-592 (-592 *4))))))
+ (-5 *1 (-1100 *4)) (-5 *3 (-592 (-592 (-592 *4)))))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834)))) (-5 *2 (-966))
+ (-5 *1 (-691)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934)))
+ (-5 *1 (-163 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-113 *3)) (-14 *3 (-525))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1073 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-385 *3)) (-4 *3 (-286)) (-5 *1 (-161 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-161 (-525))) (-5 *1 (-708 *3)) (-4 *3 (-382))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-806 *3)) (-14 *3 (-525))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-525)) (-5 *2 (-161 (-385 (-525))))
+ (-5 *1 (-807 *3 *4)) (-4 *4 (-804 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1007))) (-5 *1 (-270)))))
+(((*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-787)) (-5 *1 (-282 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-169)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1044 (-525) (-565 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1150 *4))
+ (-5 *2 (-1174 *6)) (-5 *1 (-391 *3 *4 *5 *6))
+ (-4 *6 (-13 (-387 *4 *5) (-968 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-977)) (-4 *3 (-789)) (-5 *2 (-1044 *3 (-565 *1)))
+ (-4 *1 (-408 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1044 (-525) (-565 (-468)))) (-5 *1 (-468))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-160)) (-4 *2 (-37 *3)) (-5 *1 (-571 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-669) *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-160)) (-4 *2 (-660 *3)) (-5 *1 (-608 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-669) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-1174 (-592 (-525)))) (-5 *1 (-456))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-555 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2 *3 *4)) (-4 *2 (-789))
+ (-4 *3 (-13 (-160) (-660 (-385 (-525))))) (-14 *4 (-856))))
+ ((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-856))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1174 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517))
+ (-5 *2 (-108)) (-5 *1 (-587 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-592 (-385 (-887 *6))))
+ (-5 *3 (-385 (-887 *6)))
+ (-4 *6 (-13 (-517) (-968 (-525)) (-138)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-531 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2))
+ (-4 *2 (-1165 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1150 *3))
+ (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1165 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2))
+ (-4 *2 (-1165 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-517) (-138)))
+ (-5 *1 (-1069 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1174 (-641))) (-5 *1 (-284)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1088 *2)) (-4 *2 (-884 (-385 (-887 *6)) *5 *4))
+ (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-735))
+ (-4 *4 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $)))))
+ (-4 *6 (-517)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1147 *4 *5)) (-5 *3 (-592 *5)) (-14 *4 (-1092))
+ (-4 *5 (-341)) (-5 *1 (-858 *4 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 (-632 *4))) (-5 *2 (-632 *4)) (-5 *1 (-960 *4))
- (-4 *4 (-341)) (-4 *4 (-977))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-525)) (-5 *2 (-632 *5))
- (-5 *1 (-960 *5)) (-4 *5 (-341)) (-4 *5 (-977)))))
-(((*1 *1)
- (-12 (-4 *3 (-1020)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1020))
- (-4 *4 (-612 *3))))
- ((*1 *1) (-12 (-5 *1 (-824 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-510))))
+ (-12 (-5 *3 (-592 *5)) (-4 *5 (-341)) (-5 *2 (-1088 *5))
+ (-5 *1 (-858 *4 *5)) (-14 *4 (-1092))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-592 *6)) (-5 *4 (-713)) (-4 *6 (-341))
+ (-5 *2 (-385 (-887 *6))) (-5 *1 (-978 *5 *6)) (-14 *5 (-1092)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-798)))) (-5 *1 (-798))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1059 *3 *4)) (-5 *1 (-926 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-341))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 *5))) (-4 *5 (-977))
+ (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *6 (-218 *4 *5))
+ (-4 *7 (-218 *3 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1174 *4)) (-4 *4 (-588 (-525)))
+ (-5 *2 (-1174 (-525))) (-5 *1 (-1199 *4)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1174 *5)) (-5 *3 (-713)) (-5 *4 (-1039)) (-4 *5 (-327))
+ (-5 *1 (-495 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-284)))))
+(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177))))
+ ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))))
+(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176))))
+ ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))))
(((*1 *2 *1)
- (-12
+ (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517))
+ (-5 *2 (-1088 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-3 (-385 (-887 *5)) (-1082 (-1092) (-887 *5))))
+ (-4 *5 (-429)) (-5 *2 (-592 (-632 (-385 (-887 *5)))))
+ (-5 *1 (-271 *5)) (-5 *4 (-632 (-385 (-887 *5)))))))
+(((*1 *1 *1) (-5 *1 (-989))))
+(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-966)) (-5 *1 (-779))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357)))
+ (-5 *2 (-966)) (-5 *1 (-779)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-304 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-734)) (-4 *3 (-160)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 (-157 (-385 (-525)))))
(-5 *2
(-592
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-525)))))
- (-5 *1 (-396 *3)) (-4 *3 (-517))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-713)) (-4 *3 (-327)) (-4 *5 (-1150 *3))
- (-5 *2 (-592 (-1088 *3))) (-5 *1 (-471 *3 *5 *6))
- (-4 *6 (-1150 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327))
- (-4 *2
- (-13 (-380)
- (-10 -7 (-15 -1217 (*2 *4)) (-15 -3005 ((-856) *2))
- (-15 -3094 ((-1174 *2) (-856))) (-15 -3127 (*2 *2)))))
- (-5 *1 (-334 *2 *4)))))
+ (-2 (|:| |outval| (-157 *4)) (|:| |outmult| (-525))
+ (|:| |outvect| (-592 (-632 (-157 *4)))))))
+ (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-592 *1)) (-4 *1 (-408 *4))
+ (-4 *4 (-789))))
+ ((*1 *1 *2 *1 *1 *1 *1)
+ (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789))))
+ ((*1 *1 *2 *1 *1 *1)
+ (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789)))))
+(((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-592
+ (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8))
+ (|:| |wcond| (-592 (-887 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1174 (-385 (-887 *5))))
+ (|:| -2103 (-592 (-1174 (-385 (-887 *5))))))))))
+ (-5 *4 (-1075)) (-4 *5 (-13 (-286) (-138))) (-4 *8 (-884 *5 *7 *6))
+ (-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-525))
+ (-5 *1 (-859 *5 *6 *7 *8)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-4 *3 (-1150 *4)) (-5 *1 (-751 *4 *3 *2 *5)) (-4 *2 (-602 *3))
+ (-4 *5 (-602 (-385 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-385 *5))
+ (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-1150 *4))
+ (-5 *1 (-751 *4 *5 *2 *6)) (-4 *2 (-602 *5)) (-4 *6 (-602 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-762)) (-14 *5 (-1092)) (-5 *2 (-592 (-1147 *5 *4)))
+ (-5 *1 (-1034 *4 *5)) (-5 *3 (-1147 *5 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1094 (-385 (-525)))) (-5 *2 (-385 (-525)))
+ (-5 *1 (-172)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1075)) (-5 *1 (-284)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1015 (-205)))
+ (-5 *5 (-108)) (-5 *2 (-1176)) (-5 *1 (-236)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-789)) (-5 *1 (-864 *3 *2)) (-4 *2 (-408 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1092)) (-5 *2 (-294 (-525))) (-5 *1 (-865)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-592 *4)) (-5 *1 (-1058 *3 *4))
- (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-385 *6))
- (-5 *1 (-802 *5 *4 *6)) (-4 *4 (-1165 *5)) (-4 *6 (-1150 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1166 *5 *6 *7)) (-4 *5 (-341))
- (-14 *6 (-1092)) (-14 *7 *5) (-5 *2 (-385 (-1147 *6 *5)))
- (-5 *1 (-803 *5 *6 *7))))
+ (-12 (-5 *2 (-592 (-2 (|:| |k| (-617 *3)) (|:| |c| *4))))
+ (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
+ (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
+ (|:| |Conditional| "conditional") (|:| |Return| "return")
+ (|:| |Block| "block") (|:| |Comment| "comment")
+ (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
+ (|:| |Repeat| "repeat") (|:| |Goto| "goto")
+ (|:| |Continue| "continue")
+ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
+ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
+ (-5 *1 (-308)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1129 *3)) (-4 *3 (-1020))))
((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1166 *5 *6 *7)) (-4 *5 (-341))
- (-14 *6 (-1092)) (-14 *7 *5) (-5 *2 (-385 (-1147 *6 *5)))
- (-5 *1 (-803 *5 *6 *7)))))
+ (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1020)) (-5 *2 (-108))
+ (-5 *1 (-1129 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1088 (-887 *6))) (-4 *6 (-517))
- (-4 *2 (-884 (-385 (-887 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2))
- (-4 *5 (-735))
- (-4 *4 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $))))))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-341)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 (-385 *3)))
- (-4 *1 (-313 *4 *3 *5 *2)) (-4 *2 (-320 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-525)) (-4 *2 (-341)) (-4 *4 (-1150 *2))
- (-4 *5 (-1150 (-385 *4))) (-4 *1 (-313 *2 *4 *5 *6))
- (-4 *6 (-320 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-341)) (-4 *3 (-1150 *2)) (-4 *4 (-1150 (-385 *3)))
- (-4 *1 (-313 *2 *3 *4 *5)) (-4 *5 (-320 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4)))
- (-4 *1 (-313 *3 *4 *5 *2)) (-4 *2 (-320 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-391 *4 (-385 *4) *5 *6)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-4 *3 (-341))
- (-4 *1 (-313 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-1092)) (-5 *4 (-887 (-525))) (-5 *2 (-308))
+ (-5 *1 (-310)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1020)) (-5 *2 (-108)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-592 (-592 *3)))))
+ (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
+ (-5 *2 (-713))))
((*1 *2 *1)
- (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-592 (-592 *5)))))
+ (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020))
+ (-5 *2 (-713))))
((*1 *2 *1)
- (-12 (-5 *2 (-592 (-592 *3))) (-5 *1 (-1101 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *1 *1)
- (-12
+ (-12 (-5 *2 (-713)) (-5 *1 (-678 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-669)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-700)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1073 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-5 *2 (-1075)))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-308)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-110))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789))
+ (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789))
+ (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-205) (-205) (-205)))
+ (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined"))
+ (-5 *5 (-1015 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1052 (-205)))
+ (-5 *1 (-639)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1039)) (-5 *1 (-105))))
+ ((*1 *2 *1) (|partial| -12 (-5 *1 (-343 *2)) (-4 *2 (-1020))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-1110)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -1509 *1) (|:| -4246 *1) (|:| |associate| *1)))
+ (-4 *1 (-517)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1150 *9)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-286))
+ (-4 *10 (-884 *9 *7 *8))
(-5 *2
- (-2 (|:| -3377 *3) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3))))
- (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))))
+ (-2 (|:| |deter| (-592 (-1088 *10)))
+ (|:| |dterm|
+ (-592 (-592 (-2 (|:| -2801 (-713)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-592 *6)) (|:| |nlead| (-592 *10))))
+ (-5 *1 (-720 *6 *7 *8 *9 *10)) (-5 *3 (-1088 *10)) (-5 *4 (-592 *6))
+ (-5 *5 (-592 *10)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1015 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1141 *2)) (-4 *2 (-1128)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1020) (-968 *5)))
- (-4 *5 (-821 *4)) (-4 *4 (-1020)) (-5 *2 (-1 (-108) *5))
- (-5 *1 (-866 *4 *5 *6)))))
+ (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2 (-1073 (-205))) (-5 *1 (-174))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1092)))
+ (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-1073 (-205))) (-5 *1 (-279))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1174 (-294 (-205)))) (-5 *4 (-592 (-1092)))
+ (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-1073 (-205))) (-5 *1 (-279)))))
+(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1099)))))
+(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-789)) (-4 *5 (-844)) (-4 *6 (-735))
+ (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-396 (-1088 *8)))
+ (-5 *1 (-841 *5 *6 *7 *8)) (-5 *4 (-1088 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-4 *5 (-1150 *4)) (-5 *2 (-396 (-1088 *5)))
+ (-5 *1 (-842 *4 *5)) (-5 *3 (-1088 *5)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |c| (-385 *6))
+ (|:| -3252 *6)))
+ (-5 *1 (-947 *5 *6)) (-5 *3 (-385 *6)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4259)) (-4 *1 (-464 *3)) (-4 *3 (-1128))
+ (-4 *3 (-1020)) (-5 *2 (-713))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4259)) (-4 *1 (-464 *4))
+ (-4 *4 (-1128)) (-5 *2 (-713)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-2 (|:| -4201 *4) (|:| -3529 (-525)))))
+ (-4 *4 (-1150 (-525))) (-5 *2 (-680 (-713))) (-5 *1 (-419 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-396 *5)) (-4 *5 (-1150 *4)) (-4 *4 (-977))
+ (-5 *2 (-680 (-713))) (-5 *1 (-421 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789))
+ (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789))
+ (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-856))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-314 *4 *5 *6 *7)) (-4 *4 (-13 (-346) (-341)))
+ (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5))) (-4 *7 (-320 *4 *5 *6))
+ (-5 *2 (-713)) (-5 *1 (-370 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-775 (-856)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-977))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-977))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4))
+ (-4 *4 (-1150 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-683 *4 *3)) (-4 *4 (-977))
+ (-4 *3 (-789))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-683 *4 *3)) (-4 *4 (-977)) (-4 *3 (-789))
+ (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-840 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4))
+ (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6)))
+ (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-968 (-525))))
+ (-5 *2 (-713)) (-5 *1 (-846 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6))
+ (-4 *4 (-1150 (-385 (-525)))) (-4 *5 (-1150 (-385 *4)))
+ (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-713))
+ (-5 *1 (-847 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-314 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-341))
+ (-4 *7 (-1150 *6)) (-4 *4 (-1150 (-385 *7))) (-4 *8 (-320 *6 *7 *4))
+ (-4 *9 (-13 (-346) (-341))) (-5 *2 (-713))
+ (-5 *1 (-950 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1150 *3)) (-4 *3 (-977)) (-4 *3 (-517)) (-5 *2 (-713))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-925 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-133 *4 *5 *3))
+ (-4 *3 (-351 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-925 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-476 *4 *5 *6 *3)) (-4 *6 (-351 *4)) (-4 *3 (-351 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-632 *5)) (-4 *5 (-925 *4)) (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |num| (-632 *4)) (|:| |den| *4)))
+ (-5 *1 (-635 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-4 *6 (-1150 *5))
+ (-5 *2 (-2 (|:| -1537 *7) (|:| |rh| (-592 (-385 *6)))))
+ (-5 *1 (-749 *5 *6 *7 *3)) (-5 *4 (-592 (-385 *6)))
+ (-4 *7 (-602 *6)) (-4 *3 (-602 (-385 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-925 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1143 *4 *5 *3))
+ (-4 *3 (-1150 *5)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3519 *6) (|:| |sol?| (-108))) (-525)
- *6))
+ (-5 *5 (-1 (-3 (-2 (|:| -3991 *6) (|:| |coeff| *6)) "failed") *6))
(-4 *6 (-341)) (-4 *7 (-1150 *6))
(-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6)))
(-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-301 *4 *2)) (-4 *4 (-1020))
- (-4 *2 (-126)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1073 *4)) (-5 *3 (-525)) (-4 *4 (-977))
+ (-5 *1 (-1077 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-525)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-977))
+ (-14 *4 (-1092)) (-14 *5 *3))))
+(((*1 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-510)))))
+(((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-970)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-592 *1)) (-4 *1 (-942 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-205))))
+ ((*1 *1 *1) (-4 *1 (-510)))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-548 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1020)) (-5 *2 (-1039)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7))))
+ (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
+(((*1 *2 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-799))))
+ ((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-799))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-798)) (-5 *2 (-1179)) (-5 *1 (-799))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-1073 *4))
+ (-4 *4 (-1020)) (-4 *4 (-1128)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-856)) (-5 *1 (-1021 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -3875 *4))) (-5 *1 (-903 *4 *3))
+ (-4 *3 (-1150 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-396 *6)) (-4 *6 (-1150 *5))
+ (-4 *5 (-977)) (-5 *2 (-592 *6)) (-5 *1 (-421 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-887 (-525)))) (-5 *1 (-415))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1092)) (-5 *4 (-632 (-205))) (-5 *2 (-1024))
+ (-5 *1 (-702))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1092)) (-5 *4 (-632 (-525))) (-5 *2 (-1024))
+ (-5 *1 (-702)))))
+(((*1 *1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-242))))
+ ((*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-161 *6))
+ (-5 *1 (-802 *5 *4 *6)) (-4 *4 (-1165 *5)) (-4 *6 (-1150 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1020)) (-4 *5 (-1020))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-429)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1150 *6))
+ (-4 *6 (-13 (-27) (-408 *5)))
+ (-4 *5 (-13 (-789) (-517) (-968 (-525)))) (-4 *8 (-1150 (-385 *7)))
+ (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3))
+ (-4 *3 (-320 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1150 *4)) (-5 *1 (-751 *4 *2 *3 *5))
+ (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2))
+ (-4 *5 (-602 (-385 *2))))))
+(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-690)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-51)) (-5 *1 (-771)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1196 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-160))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-761 *3)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1088 *1)) (-5 *4 (-1092)) (-4 *1 (-27))
+ (-5 *2 (-592 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1088 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1092)))
+ (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-1073 (-205))) (-5 *1 (-279)))))
(((*1 *2)
- (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5)))
- (-5 *2 (-592 (-592 *4))) (-5 *1 (-319 *3 *4 *5 *6))
- (-4 *3 (-320 *4 *5 *6))))
+ (-12 (-4 *4 (-160)) (-5 *2 (-592 (-1174 *4))) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-4 *3 (-346)) (-5 *2 (-592 (-592 *3))))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4259)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
+ (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517))
+ (-5 *2 (-592 (-1174 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-610 *4 *5)))
+ (-5 *1 (-576 *4 *5 *6)) (-4 *5 (-13 (-160) (-660 (-385 (-525)))))
+ (-14 *6 (-856)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-242))) (-5 *4 (-1092)) (-5 *2 (-108))
+ (-5 *1 (-242)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-592 (-1092))) (-14 *5 (-713))
+ (-5 *2
+ (-592
+ (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4)
+ (-227 *4 (-385 (-525))))))
+ (-5 *1 (-478 *4 *5))
+ (-5 *3
+ (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4)
+ (-227 *4 (-385 (-525))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))))
+(((*1 *1 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-592 *1))
- (-4 *1 (-360 *3 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-678 *3 *4))) (-5 *1 (-678 *3 *4)) (-4 *3 (-977))
- (-4 *4 (-669))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-884 *3 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-517))))
- ((*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-205)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1092)) (-5 *6 (-108))
- (-4 *7 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
- (-4 *3 (-13 (-1114) (-893) (-29 *7)))
+ (-12 (-5 *2 (-1022 (-1022 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *2 *2)
+ (-12
(-5 *2
- (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-199 *7 *3)) (-5 *5 (-782 *3)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2))
- (-4 *2 (-1150 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-341)) (-4 *3 (-977))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3409 *1)))
- (-4 *1 (-791 *3)))))
+ (-2 (|:| -2103 (-632 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-632 *3))))
+ (-4 *3 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $)))))
+ (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1020)) (-5 *1 (-898 *3 *2)) (-4 *3 (-1020)))))
+(((*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-977)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1122 *5 *6 *7 *3))
+ (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-108)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789)) (-4 *5 (-991 *3 *4 *2)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-966)) (-5 *3 (-1092)) (-5 *1 (-246)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
(-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735))
+ (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-994 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735))
+ (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525))
+ (-5 *2 (-966)) (-5 *1 (-699)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1174 *4)) (-5 *1 (-495 *4))
+ (-4 *4 (-327)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205))
+ (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))
+ (-5 *2 (-1088 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))
+ (-5 *2 (-1088 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *4 (-1020)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-543 *2)) (-4 *2 (-510)))))
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
+ (-5 *1 (-31 *4 *5)) (-4 *5 (-408 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
+ (-5 *1 (-147 *4 *5)) (-4 *5 (-408 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
+ (-5 *1 (-255 *4 *5)) (-4 *5 (-13 (-408 *4) (-934)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-280 *4)) (-4 *4 (-281))))
+ ((*1 *2 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *5 (-789)) (-5 *2 (-108))
+ (-5 *1 (-407 *4 *5)) (-4 *4 (-408 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
+ (-5 *1 (-409 *4 *5)) (-4 *5 (-408 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
+ (-5 *1 (-579 *4 *5)) (-4 *5 (-13 (-408 *4) (-934) (-1114))))))
+(((*1 *2 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-1020)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
(-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
+ ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
+ ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-592 (-592 (-525)))) (-5 *1 (-904))
+ (-5 *3 (-592 (-525))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-713)) (-4 *6 (-1020)) (-4 *3 (-835 *6))
+ (-5 *2 (-632 *3)) (-5 *1 (-634 *6 *3 *7 *4)) (-4 *7 (-351 *3))
+ (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4259)))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3))
+ (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-991 *4 *5 *6)) (-4 *4 (-517))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-592 *7) (-592 *7))) (-5 *2 (-592 *7))
+ (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *1 (-910 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132))
+ (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1165 *4)) (-5 *1 (-1167 *4 *2))
+ (-4 *4 (-37 (-385 (-525)))))))
+(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1 *1) (-4 *1 (-901))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-501))) (-5 *1 (-501)))))
+ (|partial| -12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -3771 *3) (|:| -2168 (-713)))) (-5 *1 (-543 *3))
+ (-4 *3 (-510)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-1176))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1092))))
+ (-4 *5 (-735)) (-5 *1 (-859 *3 *4 *5 *2)) (-4 *2 (-884 *3 *5 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-305 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1128)) (-14 *4 *2))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-592 (-294 (-205)))) (-5 *3 (-205)) (-5 *2 (-108))
+ (-5 *1 (-192)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-632 (-385 (-887 (-525)))))
- (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-962)))))
+ (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-108))
+ (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 (-157 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-108)) (-5 *1 (-1118 *4 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *4))))))
(((*1 *2)
- (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
- (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179))
- (-5 *1 (-921 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6))))
+ (-12 (-14 *4 (-713)) (-4 *5 (-1128)) (-5 *2 (-128))
+ (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5))))
((*1 *2)
- (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
- (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179))
- (-5 *1 (-1027 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))))
+ (-12 (-4 *4 (-341)) (-5 *2 (-128)) (-5 *1 (-306 *3 *4))
+ (-4 *3 (-307 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-160))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525))
+ (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735))
+ (-5 *2 (-525)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-977)) (-5 *2 (-856))))
+ ((*1 *2) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-341)) (-5 *2 (-128)))))
+(((*1 *1) (-4 *1 (-327)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4))
+ (-4 *4 (-13 (-517) (-789) (-138)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-592 (-1088 *5)))
+ (|:| |prim| (-1088 *5))))
+ (-5 *1 (-410 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-517) (-789) (-138)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1088 *3))
+ (|:| |pol2| (-1088 *3)) (|:| |prim| (-1088 *3))))
+ (-5 *1 (-410 *4 *3)) (-4 *3 (-27)) (-4 *3 (-408 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-887 *5)) (-5 *4 (-1092)) (-4 *5 (-13 (-341) (-138)))
+ (-5 *2
+ (-2 (|:| |coef1| (-525)) (|:| |coef2| (-525))
+ (|:| |prim| (-1088 *5))))
+ (-5 *1 (-894 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-592 (-1092)))
+ (-4 *5 (-13 (-341) (-138)))
+ (-5 *2
+ (-2 (|:| -2681 (-592 (-525))) (|:| |poly| (-592 (-1088 *5)))
+ (|:| |prim| (-1088 *5))))
+ (-5 *1 (-894 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-592 (-887 *6))) (-5 *4 (-592 (-1092))) (-5 *5 (-1092))
+ (-4 *6 (-13 (-341) (-138)))
+ (-5 *2
+ (-2 (|:| -2681 (-592 (-525))) (|:| |poly| (-592 (-1088 *6)))
+ (|:| |prim| (-1088 *6))))
+ (-5 *1 (-894 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1073 (-887 *4)) (-1073 (-887 *4))))
- (-5 *1 (-1182 *4)) (-4 *4 (-341)))))
-(((*1 *2 *1) (-12 (-5 *2 (-904)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))))
+ (|partial| -12 (-5 *3 (-565 *4)) (-4 *4 (-789)) (-4 *2 (-789))
+ (-5 *1 (-564 *2 *4)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
+(((*1 *1) (-5 *1 (-108))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
+ (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-884 *4 *3 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))
+ ((*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1) (-4 *1 (-804 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-906 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-734))
+ (-4 *4 (-789)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *4 (-13 (-977) (-660 (-385 (-525)))))
+ (-4 *5 (-789)) (-5 *1 (-1188 *4 *5 *2)) (-4 *2 (-1193 *5 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132))
+ (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))))))
+(((*1 *1 *1 *1) (-5 *1 (-150)))
+ ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-150)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1128)) (-5 *2 (-525)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205))
+ (-5 *2 (-966)) (-5 *1 (-698)))))
+(((*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327)) (-5 *2 (-108))
+ (-5 *1 (-335 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1088 *7)) (-5 *3 (-525)) (-4 *7 (-884 *6 *4 *5))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977))
+ (-5 *1 (-299 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128)))))
+(((*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-500 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-501)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-713)) (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-694)))))
+(((*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))
+ (-14 *4 (-713)) (-4 *5 (-160)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-4 *5 (-1150 *4)) (-5 *2 (-1179))
+ (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1150 (-385 *5))) (-14 *7 *6))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1092)) (-5 *5 (-1015 (-205))) (-5 *2 (-862))
+ (-5 *1 (-860 *3)) (-4 *3 (-567 (-501)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1092)) (-5 *2 (-862)) (-5 *1 (-860 *3))
+ (-4 *3 (-567 (-501)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-862))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-862)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-4 *1 (-102 *3)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2 (-592 (-205))) (-5 *1 (-186)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-592
+ (-2 (|:| -3085 (-713))
+ (|:| |eqns|
+ (-592
+ (-2 (|:| |det| *7) (|:| |rows| (-592 (-525)))
+ (|:| |cols| (-592 (-525))))))
+ (|:| |fgb| (-592 *7)))))
+ (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138)))
+ (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-713))
+ (-5 *1 (-859 *4 *5 *6 *7)))))
(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020))
- (-4 *4 (-1020)))))
+ (-12 (-4 *1 (-327))
+ (-5 *2 (-592 (-2 (|:| -4201 (-525)) (|:| -2168 (-525))))))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1159 *4 *5 *6))
+ (|:| |%expon| (-297 *4 *5 *6))
+ (|:| |%expTerms|
+ (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4))))))
+ (|:| |%type| (-1075))))
+ (-5 *1 (-1160 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-408 *3)))
+ (-14 *5 (-1092)) (-14 *6 *4))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-138) (-27) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *5 (-1150 *4)) (-5 *2 (-1088 (-385 *5))) (-5 *1 (-568 *4 *5))
+ (-5 *3 (-385 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1150 *5))
+ (-4 *5 (-13 (-138) (-27) (-968 (-525)) (-968 (-385 (-525)))))
+ (-5 *2 (-1088 (-385 *6))) (-5 *1 (-568 *5 *6)) (-5 *3 (-385 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-205)) (-5 *5 (-525)) (-5 *2 (-1124 *3))
+ (-5 *1 (-732 *3)) (-4 *3 (-907))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-108))
+ (-5 *1 (-1124 *2)) (-4 *2 (-907)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-884 *4 *6 *5)) (-4 *4 (-429))
+ (-4 *5 (-789)) (-4 *6 (-735)) (-5 *1 (-920 *4 *5 *6 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-592 (-887 *3))) (-4 *3 (-429))
+ (-5 *1 (-338 *3 *4)) (-14 *4 (-592 (-1092)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-592 (-722 *3 (-800 *4)))) (-4 *3 (-429))
+ (-14 *4 (-592 (-1092))) (-5 *1 (-577 *3 *4)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *2 (-966)) (-5 *1 (-694)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1179) (-1174 *5) (-1174 *5) (-357)))
+ (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179))
+ (-5 *1 (-730)))))
+(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
(((*1 *2 *3 *2)
- (-12 (-5 *1 (-623 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))))
-(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1128)))))
+ (-12 (-5 *3 (-592 (-999 *4 *5 *2))) (-4 *4 (-1020))
+ (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4))))
+ (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4))))
+ (-5 *1 (-53 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-592 (-999 *5 *6 *2))) (-5 *4 (-856)) (-4 *5 (-1020))
+ (-4 *6 (-13 (-977) (-821 *5) (-789) (-567 (-827 *5))))
+ (-4 *2 (-13 (-408 *6) (-821 *5) (-567 (-827 *5))))
+ (-5 *1 (-53 *5 *6 *2)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-286))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-592 (-159)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-632 (-385 (-887 *4)))) (-4 *4 (-429))
+ (-5 *2 (-592 (-3 (-385 (-887 *4)) (-1082 (-1092) (-887 *4)))))
+ (-5 *1 (-271 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1150 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-517)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-227 *5 *6))) (-4 *6 (-429))
+ (-5 *2 (-227 *5 *6)) (-14 *5 (-592 (-1092))) (-5 *1 (-580 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1174 *5)) (-4 *5 (-734)) (-5 *2 (-108))
+ (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))))
+(((*1 *2)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-565 *3))
+ (-4 *3 (-13 (-408 *5) (-27) (-1114)))
+ (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2 (-2 (|:| -3991 *3) (|:| |coeff| *3)))
+ (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1020)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -1285 *7))))
+ (-4 *6 (-991 *3 *4 *5)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-921 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -1285 *7))))
+ (-4 *6 (-991 *3 *4 *5)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1027 *3 *4 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-415))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-517)) (-4 *2 (-429)) (-5 *1 (-903 *2 *3))
+ (-4 *3 (-1150 *2)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-862)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
(-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -3519 *7) (|:| |sol?| (-108)))
- (-525) *7))
- (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1150 *7))
- (-5 *3 (-385 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-535 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-197 *4 *3))
- (-4 *3 (-1150 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-286))
- (-5 *2 (-385 (-396 (-887 *4)))) (-5 *1 (-972 *4)))))
+ (-12 (-5 *3 (-525)) (|has| *1 (-6 -4250)) (-4 *1 (-382))
+ (-5 *2 (-856)))))
+(((*1 *1 *1) (-4 *1 (-986))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-567 (-827 (-525))))
+ (-4 *5 (-821 (-525)))
+ (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-528 *5 *3)) (-4 *3 (-578))
+ (-4 *3 (-13 (-27) (-1114) (-408 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1092)) (-5 *4 (-782 *2)) (-4 *2 (-1056))
+ (-4 *2 (-13 (-27) (-1114) (-408 *5)))
+ (-4 *5 (-567 (-827 (-525)))) (-4 *5 (-821 (-525)))
+ (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525))))
+ (-5 *1 (-528 *5 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1039)) (-5 *2 (-108)) (-5 *1 (-763)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-827 *6)))
+ (-5 *5 (-1 (-824 *6 *8) *8 (-827 *6) (-824 *6 *8))) (-4 *6 (-1020))
+ (-4 *8 (-13 (-977) (-567 (-827 *6)) (-968 *7))) (-5 *2 (-824 *6 *8))
+ (-4 *7 (-13 (-977) (-789))) (-5 *1 (-876 *6 *7 *8)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
+(((*1 *2 *1) (-12 (-4 *1 (-968 (-525))) (-4 *1 (-281)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1092)))
- (-14 *4 (-592 (-1092))) (-4 *5 (-365))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-1057 *4 *5))) (-5 *3 (-1 (-108) *5 *5))
+ (-4 *4 (-13 (-1020) (-33))) (-4 *5 (-13 (-1020) (-33)))
+ (-5 *1 (-1058 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-1057 *3 *4))) (-4 *3 (-13 (-1020) (-33)))
+ (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1058 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-986)) (-4 *3 (-1114))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *2 *3 *2 *3)
+ (-12 (-5 *2 (-415)) (-5 *3 (-1092)) (-5 *1 (-1095))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-415)) (-5 *3 (-1092)) (-5 *1 (-1095))))
+ ((*1 *2 *3 *2 *4 *1)
+ (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1092))) (-5 *4 (-1092))
+ (-5 *1 (-1095))))
+ ((*1 *2 *3 *2 *3 *1)
+ (-12 (-5 *2 (-415)) (-5 *3 (-1092)) (-5 *1 (-1095))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-415)) (-5 *3 (-1092)) (-5 *1 (-1096))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1092))) (-5 *1 (-1096)))))
+(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-856)) (-5 *1 (-419 *2))
+ (-4 *2 (-1150 (-525)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-856)) (-5 *4 (-713)) (-5 *1 (-419 *2))
+ (-4 *2 (-1150 (-525)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-856)) (-5 *4 (-592 (-713))) (-5 *1 (-419 *2))
+ (-4 *2 (-1150 (-525)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-856)) (-5 *4 (-592 (-713))) (-5 *5 (-713))
+ (-5 *1 (-419 *2)) (-4 *2 (-1150 (-525)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-856)) (-5 *4 (-592 (-713))) (-5 *5 (-713))
+ (-5 *6 (-108)) (-5 *1 (-419 *2)) (-4 *2 (-1150 (-525)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-396 *2)) (-4 *2 (-1150 *5))
+ (-5 *1 (-421 *5 *2)) (-4 *5 (-977)))))
+(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1177)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-105))))
+ ((*1 *2 *1) (-12 (-4 *1 (-127)) (-5 *2 (-713))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *2 (-525)) (-4 *1 (-351 *3)) (-4 *3 (-1128))
+ (-4 *3 (-1020))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-351 *3)) (-4 *3 (-1128)) (-4 *3 (-1020))
+ (-5 *2 (-525))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-351 *4)) (-4 *4 (-1128))
+ (-5 *2 (-525))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-525)) (-5 *3 (-132))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-525)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160))
+ (-4 *5 (-1150 *4)) (-5 *2 (-632 *4))))
((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1092)))
- (-14 *4 (-592 (-1092))) (-4 *5 (-365)))))
+ (-12 (-4 *4 (-160)) (-4 *5 (-1150 *4)) (-5 *2 (-632 *4))
+ (-5 *1 (-386 *3 *4 *5)) (-4 *3 (-387 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1150 *3))
+ (-5 *2 (-632 *3)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1015 (-205)))
+ (-5 *2 (-1176)) (-5 *1 (-236)))))
+(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-205)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
+ (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
+ ((*1 *1 *1 *1) (-5 *1 (-357)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4)))
+ (-5 *2 (-1174 *6)) (-5 *1 (-314 *3 *4 *5 *6))
+ (-4 *6 (-320 *3 *4 *5)))))
+(((*1 *1 *1) (-5 *1 (-989))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-812 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-814 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-817 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-525)) (-5 *5 (-108)) (-5 *6 (-632 (-205)))
+ (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-698)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834)))) (-5 *3 (-205))
+ (-5 *2 (-966)) (-5 *1 (-691)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-839 *4))
+ (-4 *4 (-1020))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
+(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-221)))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1007)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-174))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-279))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-284)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-592 (-157 *4))) (-5 *1 (-145 *3 *4))
+ (-4 *3 (-1150 (-157 (-525)))) (-4 *4 (-13 (-341) (-787)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4)))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4)))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-767)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-698)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *1 *1 *1) (-4 *1 (-607))) ((*1 *1 *1 *1) (-5 *1 (-1039))))
+(((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2))
- (-4 *2 (-630 *3 *4 *5)))))
+ (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2))
+ (-4 *2 (-1165 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1150 *3))
+ (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1165 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2))
+ (-4 *2 (-1165 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-517) (-138)))
+ (-5 *1 (-1069 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-126))
+ (-4 *3 (-734)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-977)) (-4 *2 (-630 *4 *5 *6))
+ (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1150 *4)) (-4 *5 (-351 *4))
+ (-4 *6 (-351 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-989)) (-5 *3 (-1075)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517))
+ (-5 *2 (-2 (|:| -2681 *4) (|:| -1416 *3) (|:| -3681 *3)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-2 (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-991 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-517)) (-4 *3 (-977))
+ (-5 *2 (-2 (|:| -2681 *3) (|:| -1416 *1) (|:| -3681 *1)))
+ (-4 *1 (-1150 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-525)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-977))
- (-5 *1 (-299 *4 *5 *2 *6)) (-4 *6 (-884 *2 *4 *5)))))
+ (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 (-227 *4 *5))) (-5 *2 (-227 *4 *5))
+ (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-1179))
- (-5 *1 (-411 *3 *4)) (-4 *4 (-408 *3)))))
+ (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-977) (-789)))
+ (-14 *3 (-592 (-1092))))))
+(((*1 *1 *1 *1) (-4 *1 (-607))) ((*1 *1 *1 *1) (-5 *1 (-1039))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-592 *5) *6))
+ (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *6 (-1150 *5))
+ (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -1537 *3))))
+ (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6))
+ (-4 *7 (-602 (-385 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-592 *5) *6))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *6 (-1150 *5))
+ (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -1537 (-600 *6 (-385 *6))))))
+ (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6))))))
+(((*1 *1) (-4 *1 (-327))))
+(((*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-308))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-308)))))
+(((*1 *1 *1) (-4 *1 (-91)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
+ (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1075)) (-5 *1 (-92))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1075)) (-5 *1 (-92)))))
+(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977))
+ (-14 *4 (-592 (-1092)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789)))
+ (-14 *4 (-592 (-1092)))))
+ ((*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-313 *3 *4 *5 *2)) (-4 *3 (-341))
+ (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4)))
+ (-4 *2 (-320 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-160))))
+ ((*1 *1) (-12 (-4 *2 (-160)) (-4 *1 (-667 *2 *3)) (-4 *3 (-1150 *2)))))
+(((*1 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1177))))
+ ((*1 *2 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1177)))))
+(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-520)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 *8)) (-5 *4 (-713)) (-4 *8 (-884 *5 *7 *6))
+ (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092))))
+ (-4 *7 (-735))
+ (-5 *2
+ (-592
+ (-2 (|:| |det| *8) (|:| |rows| (-592 (-525)))
+ (|:| |cols| (-592 (-525))))))
+ (-5 *1 (-859 *5 *6 *7 *8)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429))
+ (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-910 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1150 (-385 (-525))))
+ (-5 *2 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))))
+ (-5 *1 (-848 *3 *4)) (-4 *4 (-1150 (-385 *3)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1150 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-848 *4 *3))
+ (-4 *3 (-1150 (-385 *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-957 (-782 (-525)))) (-5 *1 (-550 *3)) (-4 *3 (-977)))))
(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020))
- (-4 *4 (-1020)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 *6)) (-4 *5 (-1132)) (-4 *6 (-1150 *5))
+ (-5 *2 (-2 (|:| -2168 (-713)) (|:| -2681 *3) (|:| |radicand| *6)))
+ (-5 *1 (-139 *5 *6 *7)) (-5 *4 (-713)) (-4 *7 (-1150 *3)))))
+(((*1 *1 *1) (-4 *1 (-91)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
+ (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-565 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1092))) (-5 *5 (-1088 *2))
+ (-4 *2 (-13 (-408 *6) (-27) (-1114)))
+ (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1020))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-565 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1092)))
+ (-5 *5 (-385 (-1088 *2))) (-4 *2 (-13 (-408 *6) (-27) (-1114)))
+ (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1020)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
+ (-4 *3 (-13 (-341) (-1114) (-934))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-957 (-782 (-525))))
+ (-5 *3 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *4)))) (-4 *4 (-977))
+ (-5 *1 (-550 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-592 *6) "failed") (-525) *6 *6)) (-4 *6 (-341))
+ (-4 *7 (-1150 *6))
+ (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6)))
+ (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
+(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176))))
+ ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1179))
+ (-5 *1 (-426 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789)) (-4 *3 (-160))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-517)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1150 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-160)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-138)) (-4 *2 (-286)) (-4 *2 (-429)) (-4 *3 (-789))
+ (-4 *4 (-735)) (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-884 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-294 (-525))) (-5 *1 (-1038))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9))
+ (-4 *9 (-991 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735))
+ (-4 *8 (-789)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3490 (-592 *9))))
+ (-5 *3 (-592 *9)) (-4 *1 (-1122 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3490 (-592 *8))))
+ (-5 *3 (-592 *8)) (-4 *1 (-1122 *5 *6 *7 *8)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3))))
+ ((*1 *1 *1) (-4 *1 (-1117))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-809)) (-5 *2 (-1179)) (-5 *1 (-1175))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-713)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-592 (-108))) (-5 *5 (-632 (-205)))
+ (-5 *6 (-632 (-525))) (-5 *7 (-205)) (-5 *3 (-525)) (-5 *2 (-966))
+ (-5 *1 (-697)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1075)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525))))
+ (-5 *1 (-1030)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *6 (-205))
+ (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-445)) (-5 *4 (-856)) (-5 *2 (-1179)) (-5 *1 (-1175)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-205))
+ (-5 *2 (-966)) (-5 *1 (-698))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-366))
+ (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-698)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-395 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-887 *6))) (-5 *4 (-592 (-1092)))
+ (-4 *6 (-13 (-517) (-968 *5))) (-4 *5 (-517))
+ (-5 *2 (-592 (-592 (-273 (-385 (-887 *6)))))) (-5 *1 (-969 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-146))))
+ ((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-565 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1092)))
+ (-4 *2 (-13 (-408 *5) (-27) (-1114)))
+ (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *1 (-527 *5 *2 *6)) (-4 *6 (-1020)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -1285 *9))))
+ (-5 *4 (-713)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8))
+ (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1179))
+ (-5 *1 (-994 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -1285 *9))))
+ (-5 *4 (-713)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8))
+ (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1179))
+ (-5 *1 (-1062 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-856)) (-5 *1 (-961 *2))
+ (-4 *2 (-13 (-1020) (-10 -8 (-15 -2860 ($ $ $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1020)) (-4 *3 (-835 *5)) (-5 *2 (-1174 *3))
+ (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3))
+ (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4259)))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-525)) (-5 *1 (-1073 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4260)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-517) (-789))) (-5 *2 (-157 *5))
+ (-5 *1 (-554 *4 *5 *3)) (-4 *5 (-13 (-408 *4) (-934) (-1114)))
+ (-4 *3 (-13 (-408 (-157 *4)) (-934) (-1114))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1073 *3))) (-5 *2 (-1073 *3)) (-5 *1 (-1077 *3))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856)))) ((*1 *1) (-4 *1 (-510)))
+ ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641))))
+ ((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
(-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
(-5 *2
- (-2 (|:| -3284 *4) (|:| -1213 *4) (|:| |totalpts| (-525))
+ (-2 (|:| -2219 *4) (|:| -2188 *4) (|:| |totalpts| (-525))
(|:| |success| (-108))))
(-5 *1 (-731)) (-5 *5 (-525)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *1 (-623 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-637 *3)) (-4 *3 (-1020))
- (-5 *2 (-592 (-2 (|:| -4201 *3) (|:| -2110 (-713))))))))
+(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1075)) (-5 *1 (-174))))
+ ((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1075)) (-5 *1 (-279))))
+ ((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1075)) (-5 *1 (-284)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-592 (-592 (-205)))) (-5 *4 (-205))
+ (-5 *2 (-592 (-878 *4))) (-5 *1 (-1125)) (-5 *3 (-878 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-932 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1015 *3)) (-4 *3 (-884 *7 *6 *4)) (-4 *6 (-735))
+ (-4 *4 (-789)) (-4 *7 (-517))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525))))
+ (-5 *1 (-549 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-517))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525))))
+ (-5 *1 (-549 *5 *4 *6 *3)) (-4 *3 (-884 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-798))) ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1) (-5 *1 (-798)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092))
+ (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-1084 *4 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1114)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1013 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1114)))
+ (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-1084 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-517) (-789) (-968 (-525))))
+ (-5 *2 (-385 (-887 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-887 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-517) (-789) (-968 (-525))))
+ (-5 *2 (-3 (-385 (-887 *5)) (-294 *5))) (-5 *1 (-1085 *5))
+ (-5 *3 (-385 (-887 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1013 (-887 *5))) (-5 *3 (-887 *5))
+ (-4 *5 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-385 *3))
+ (-5 *1 (-1085 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1013 (-385 (-887 *5)))) (-5 *3 (-385 (-887 *5)))
+ (-4 *5 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-3 *3 (-294 *5)))
+ (-5 *1 (-1085 *5)))))
(((*1 *2 *1)
(-12 (-5 *2 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *3))))
(-5 *1 (-550 *3)) (-4 *3 (-977)))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-782 *4)) (-5 *3 (-565 *4)) (-5 *5 (-108))
+ (-4 *4 (-13 (-1114) (-29 *6)))
+ (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-204 *6 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977))
+ (-5 *2
+ (-2 (|:| -2764 (-713)) (|:| |curves| (-713))
+ (|:| |polygons| (-713)) (|:| |constructs| (-713)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1020))
+ (-4 *6 (-1020)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -3991 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1150 *7))
+ (-5 *3 (-385 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-535 *7 *8)))))
+(((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-970)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1150 *3)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))))
(((*1 *1 *1 *1)
(|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-713)) (-5 *1 (-110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1092)) (-5 *6 (-592 (-565 *3)))
+ (-5 *5 (-565 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *7)))
+ (-4 *7 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-2 (|:| -3991 *3) (|:| |coeff| *3)))
+ (-5 *1 (-518 *7 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-977)) (-5 *2 (-892 (-655 *3 *4))) (-5 *1 (-655 *3 *4))
+ (-4 *4 (-1150 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205)))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2))))
+ (-5 *2 (-966)) (-5 *1 (-696)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-205) (-205) (-205)))
+ (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined"))
+ (-5 *5 (-1015 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1052 (-205)))
+ (-5 *1 (-639))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-205)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-639))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1052 (-205))) (-5 *3 (-1 (-878 (-205)) (-205) (-205)))
+ (-5 *4 (-1015 (-205))) (-5 *5 (-592 (-242))) (-5 *1 (-639)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1059 *4 *2)) (-14 *4 (-856))
+ (-4 *2 (-13 (-977) (-10 -7 (-6 (-4261 "*"))))) (-5 *1 (-837 *4 *2)))))
(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-89 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1100 *4))
+ (-5 *3 (-592 *4)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-713)) (-4 *3 (-517)) (-5 *1 (-903 *3 *2))
+ (-4 *2 (-1150 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525))
+ (-14 *6 (-713)) (-4 *7 (-160)) (-4 *8 (-160))
+ (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *9)) (-4 *9 (-977)) (-4 *5 (-789)) (-4 *6 (-735))
+ (-4 *8 (-977)) (-4 *2 (-884 *9 *7 *5))
+ (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-735))
+ (-4 *4 (-884 *8 *6 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-192)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-327)) (-5 *2 (-1174 *1))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-136)) (-4 *1 (-844))
+ (-5 *2 (-1174 *1)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
(((*1 *2 *3 *3)
(-12 (-5 *3 (-592 *2)) (-5 *1 (-166 *2)) (-4 *2 (-286))))
((*1 *2 *3 *2)
@@ -592,60 +3410,889 @@
(-12 (-5 *3 (-592 *8))
(-5 *4
(-592
- (-2 (|:| -3094 (-632 *7)) (|:| |basisDen| *7)
+ (-2 (|:| -2103 (-632 *7)) (|:| |basisDen| *7)
(|:| |basisInv| (-632 *7)))))
(-5 *5 (-713)) (-4 *8 (-1150 *7)) (-4 *7 (-1150 *6)) (-4 *6 (-327))
(-5 *2
- (-2 (|:| -3094 (-632 *7)) (|:| |basisDen| *7)
+ (-2 (|:| -2103 (-632 *7)) (|:| |basisDen| *7)
(|:| |basisInv| (-632 *7))))
(-5 *1 (-471 *6 *7 *8))))
((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-592 (-1092))) (-4 *4 (-160))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -1722 *5) (|:| -2168 *2))
+ (-2 (|:| -1722 *5) (|:| -2168 *2))))
+ (-4 *2 (-218 (-2827 *3) (-713))) (-5 *1 (-438 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-789)) (-4 *7 (-884 *4 *2 (-800 *3))))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2103 (-592 *1))))
+ (-4 *1 (-345 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-430 *3 *4 *5 *6))
+ (|:| -2103 (-592 (-430 *3 *4 *5 *6)))))
+ (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 *5)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))
+ (-14 *4 (-713)) (-4 *5 (-160)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-887 (-157 *4))) (-4 *4 (-160))
+ (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-887 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-160))
+ (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 (-357)))
+ (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977))
+ (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517))
+ (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517))
+ (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-385 (-887 (-157 *4)))) (-4 *4 (-517))
+ (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-385 (-887 (-157 *5)))) (-5 *4 (-856))
+ (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357)))
+ (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789))
+ (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517))
+ (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357)))
+ (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789))
+ (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-517))
+ (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357)))
+ (-5 *1 (-727 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-713)) (-4 *6 (-341)) (-5 *4 (-1123 *6))
(-5 *2 (-1 (-1073 *4) (-1073 *4))) (-5 *1 (-1182 *6))
(-5 *5 (-1073 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-977)) (-5 *1 (-829 *2 *3)) (-4 *2 (-1150 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))))
+(((*1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1177))))
+ ((*1 *2 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1177)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-824 *4 *3))
+ (-4 *3 (-1020)))))
+(((*1 *2)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-765)) (-5 *1 (-764)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1174 (-592 (-2 (|:| -2219 *4) (|:| -1722 (-1039))))))
+ (-4 *4 (-327)) (-5 *2 (-632 *4)) (-5 *1 (-324 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966))
+ (-5 *1 (-691)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-632 *5)) (-4 *5 (-977)) (-5 *1 (-981 *3 *4 *5))
+ (-14 *3 (-713)) (-14 *4 (-713)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-525)) (-4 *5 (-341))
(-4 *5 (-977)) (-5 *2 (-108)) (-5 *1 (-960 *5))))
((*1 *2 *3)
(-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) (-4 *4 (-977))
(-5 *2 (-108)) (-5 *1 (-960 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-809))))
+ ((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-4 *2 (-1150 *4))
+ (-5 *1 (-857 *4 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))))
+(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205)))
+ (|:| |lb| (-592 (-782 (-205))))
+ (|:| |cf| (-592 (-294 (-205))))
+ (|:| |ub| (-592 (-782 (-205))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-592 (-294 (-205))))
+ (|:| -2948 (-592 (-205)))))))
+ (-5 *2 (-592 (-1075))) (-5 *1 (-246)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128)))))
(((*1 *1 *1)
(|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517))))
((*1 *1 *1) (|partial| -4 *1 (-665))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-899))) (-5 *1 (-270)))))
+(((*1 *2 *1) (-12 (-4 *3 (-977)) (-5 *2 (-592 *1)) (-4 *1 (-1053 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)) (-4 *2 (-341))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2))
+ (-4 *2 (-602 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-273 (-782 *3))) (-4 *3 (-13 (-27) (-1114) (-408 *5)))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2
+ (-3 (-782 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-782 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-782 *3) "failed")))
+ "failed"))
+ (-5 *1 (-585 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-273 *3)) (-5 *5 (-1075))
+ (-4 *3 (-13 (-27) (-1114) (-408 *6)))
+ (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-782 *3)) (-5 *1 (-585 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-273 (-782 (-887 *5)))) (-4 *5 (-429))
+ (-5 *2
+ (-3 (-782 (-385 (-887 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-782 (-385 (-887 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-586 *5)) (-5 *3 (-385 (-887 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-273 (-385 (-887 *5)))) (-5 *3 (-385 (-887 *5)))
+ (-4 *5 (-429))
+ (-5 *2
+ (-3 (-782 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-782 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-782 *3) "failed")))
+ "failed"))
+ (-5 *1 (-586 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-273 (-385 (-887 *6)))) (-5 *5 (-1075))
+ (-5 *3 (-385 (-887 *6))) (-4 *6 (-429)) (-5 *2 (-782 *3))
+ (-5 *1 (-586 *6)))))
+(((*1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1) (-4 *1 (-119)))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-856)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3))
+ (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2))
+ (-4 *2 (-630 *3 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *4)) (-4 *4 (-1020)) (-5 *2 (-1179))
+ (-5 *1 (-1129 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *4)) (-4 *4 (-1020)) (-5 *2 (-1179))
+ (-5 *1 (-1129 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-335 *3)) (-4 *3 (-327)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-281)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-565 *1))) (-5 *3 (-592 *1)) (-4 *1 (-281))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *1))) (-4 *1 (-281))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-273 *1)) (-4 *1 (-281)))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-1174 *5))) (-5 *4 (-525)) (-5 *2 (-1174 *5))
+ (-5 *1 (-960 *5)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-977)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3))))
+ ((*1 *1 *1) (-4 *1 (-1117))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))
+ (-5 *2 (-385 (-525))) (-5 *1 (-951 *4)) (-4 *4 (-1150 (-525))))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114))))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-510))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-1088 *9)) (-5 *4 (-592 *7)) (-4 *7 (-789))
(-4 *9 (-884 *8 *6 *7)) (-4 *6 (-735)) (-4 *8 (-286))
(-5 *2 (-592 (-713))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *5 (-713)))))
+(((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-335 *3)) (-4 *3 (-327)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
+ (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
+ (-4 *7 (-925 *4)) (-4 *2 (-630 *7 *8 *9))
+ (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6))
+ (-4 *8 (-351 *7)) (-4 *9 (-351 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
+ (-4 *4 (-351 *2)) (-4 *2 (-286))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2))
+ (-4 *2 (-630 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-980 *2 *3 *4 *5 *6)) (-4 *4 (-977))
+ (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *2 *4)) (-4 *4 (-286)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |var| (-592 (-1092))) (|:| |pred| (-51))))
+ (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-830))
+ (-5 *3
+ (-2 (|:| |pde| (-592 (-294 (-205))))
+ (|:| |constraints|
+ (-592
+ (-2 (|:| |start| (-205)) (|:| |finish| (-205))
+ (|:| |grid| (-713)) (|:| |boundaryType| (-525))
+ (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205))))))
+ (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075))
+ (|:| |tol| (-205))))
+ (-5 *2 (-966)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-592 *3)) (-5 *5 (-856)) (-4 *3 (-1150 *4))
+ (-4 *4 (-286)) (-5 *1 (-437 *4 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1179)) (-5 *1 (-195 *4))
+ (-4 *4
+ (-13 (-789)
+ (-10 -8 (-15 -3431 ((-1075) $ (-1092))) (-15 -2701 (*2 $))
+ (-15 -3686 (*2 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1179)) (-5 *1 (-195 *3))
+ (-4 *3
+ (-13 (-789)
+ (-10 -8 (-15 -3431 ((-1075) $ (-1092))) (-15 -2701 (*2 $))
+ (-15 -3686 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-475)))))
+(((*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-856))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1174 *4)) (-4 *4 (-327)) (-5 *2 (-856))
+ (-5 *1 (-495 *4)))))
(((*1 *2 *3 *4)
(-12 (-4 *5 (-341)) (-4 *5 (-517))
(-5 *2
- (-2 (|:| |minor| (-592 (-856))) (|:| -3025 *3)
+ (-2 (|:| |minor| (-592 (-856))) (|:| -1537 *3)
(|:| |minors| (-592 (-592 (-856)))) (|:| |ops| (-592 *3))))
(-5 *1 (-88 *5 *3)) (-5 *4 (-856)) (-4 *3 (-602 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-592 *1)) (-4 *1 (-991 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-592 (-1092))) (-4 *4 (-160))
+ (-4 *5 (-218 (-2827 *3) (-713)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -1722 *2) (|:| -2168 *5))
+ (-2 (|:| -1722 *2) (|:| -2168 *5))))
+ (-4 *2 (-789)) (-5 *1 (-438 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-884 *4 *5 (-800 *3))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-909 *4 *5 *6 *3)) (-4 *4 (-977)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-968 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *2 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-2 (|:| |deg| (-713)) (|:| -4138 *5))))
+ (-4 *5 (-1150 *4)) (-4 *4 (-327)) (-5 *2 (-592 *5))
+ (-5 *1 (-197 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-2 (|:| -4201 *5) (|:| -3529 (-525)))))
+ (-5 *4 (-525)) (-4 *5 (-1150 *4)) (-5 *2 (-592 *5))
+ (-5 *1 (-638 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3))))
+ ((*1 *1 *1) (-4 *1 (-1117))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-690)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
(((*1 *2 *2)
(-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
(-4 *6 (-991 *3 *4 *5)) (-5 *1 (-574 *3 *4 *5 *6 *7 *2))
(-4 *7 (-996 *3 *4 *5 *6)) (-4 *2 (-1029 *3 *4 *5 *6)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327))
+ (-5 *2 (-1174 (-592 (-2 (|:| -2219 *4) (|:| -1722 (-1039))))))
+ (-5 *1 (-324 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-157 (-205))))
+ (-5 *2 (-966)) (-5 *1 (-698)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 *3)) (-4 *3 (-884 *5 *6 *7)) (-4 *5 (-429))
+ (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-426 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4261 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2))
+ (-4 *2 (-977)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1150 *2))
+ (-4 *4 (-630 *2 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934)))
+ (-5 *1 (-163 *3)))))
(((*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))))
+(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-988))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-988)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-592 (-592 *7)))
+ (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735))
+ (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-592 (-592 *8)))
+ (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *2 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-968 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-294 *4)) (-4 *4 (-13 (-770) (-789) (-977)))
+ (-5 *2 (-1075)) (-5 *1 (-768 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-294 *5)) (-5 *4 (-108))
+ (-4 *5 (-13 (-770) (-789) (-977))) (-5 *2 (-1075))
+ (-5 *1 (-768 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-764)) (-5 *4 (-294 *5))
+ (-4 *5 (-13 (-770) (-789) (-977))) (-5 *2 (-1179))
+ (-5 *1 (-768 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-764)) (-5 *4 (-294 *6)) (-5 *5 (-108))
+ (-4 *6 (-13 (-770) (-789) (-977))) (-5 *2 (-1179))
+ (-5 *1 (-768 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-770)) (-5 *2 (-1075))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-108)) (-5 *2 (-1075))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *2 (-1179))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *4 (-108)) (-5 *2 (-1179)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
+ (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3))))
+ ((*1 *1 *1) (-4 *1 (-1117))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429)))
+ (-5 *2 (-782 *4)) (-5 *1 (-291 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1114) (-408 *3))) (-14 *5 (-1092))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429)))
+ (-5 *2 (-782 *4)) (-5 *1 (-1160 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1114) (-408 *3))) (-14 *5 (-1092))
+ (-14 *6 *4))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 (-592 *6))) (-4 *6 (-884 *3 *5 *4))
+ (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1092))))
+ (-4 *5 (-735)) (-5 *1 (-859 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1174 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517))
+ (-5 *2 (-1174 *4)) (-5 *1 (-587 *4 *5)))))
(((*1 *2 *3)
(-12 (-4 *4 (-977)) (-4 *5 (-1150 *4)) (-5 *2 (-1 *6 (-592 *6)))
(-5 *1 (-1168 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-1165 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-991 *3 *4 *5)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-713)) (-5 *1 (-724 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-897 *3 *2)) (-4 *2 (-126)) (-4 *3 (-517))
+ (-4 *3 (-977)) (-4 *2 (-734))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-713)) (-5 *1 (-1088 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-904)) (-4 *2 (-126)) (-5 *1 (-1094 *3)) (-4 *3 (-517))
+ (-4 *3 (-977))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-713)) (-5 *1 (-1147 *4 *3)) (-14 *4 (-1092))
+ (-4 *3 (-977)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4)))
+ (-5 *2 (-2 (|:| |num| (-1174 *4)) (|:| |den| *4))))))
+(((*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1174 *1)) (-4 *1 (-345 *3)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-592 (-1092))) (-4 *4 (-1020))
+ (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4))))
+ (-5 *1 (-999 *4 *5 *2))
+ (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1020))
+ (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))
+ (-5 *1 (-999 *3 *4 *2))
+ (-4 *2 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
+ (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3))))
+ ((*1 *1 *1) (-4 *1 (-1117))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357)))
+ (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091))))
+ (-5 *1 (-1091)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-468)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-429) (-138))) (-5 *2 (-396 *3))
+ (-5 *1 (-95 *4 *3)) (-4 *3 (-1150 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-13 (-429) (-138)))
+ (-5 *2 (-396 *3)) (-5 *1 (-95 *5 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-341) (-281)
+ (-10 -8 (-15 -4066 ((-1044 *3 (-565 $)) $))
+ (-15 -4080 ((-1044 *3 (-565 $)) $))
+ (-15 -4100 ($ (-1044 *3 (-565 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-341) (-281)
+ (-10 -8 (-15 -4066 ((-1044 *3 (-565 $)) $))
+ (-15 -4080 ((-1044 *3 (-565 $)) $))
+ (-15 -4100 ($ (-1044 *3 (-565 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 *2))
+ (-4 *2
+ (-13 (-341) (-281)
+ (-10 -8 (-15 -4066 ((-1044 *4 (-565 $)) $))
+ (-15 -4080 ((-1044 *4 (-565 $)) $))
+ (-15 -4100 ($ (-1044 *4 (-565 $)))))))
+ (-4 *4 (-517)) (-5 *1 (-40 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 (-565 *2)))
+ (-4 *2
+ (-13 (-341) (-281)
+ (-10 -8 (-15 -4066 ((-1044 *4 (-565 $)) $))
+ (-15 -4080 ((-1044 *4 (-565 $)) $))
+ (-15 -4100 ($ (-1044 *4 (-565 $)))))))
+ (-4 *4 (-517)) (-5 *1 (-40 *4 *2)))))
(((*1 *2 *3)
(-12 (-5 *2 (-396 (-1088 *1))) (-5 *1 (-294 *4)) (-5 *3 (-1088 *1))
(-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789))))
((*1 *2 *3)
(-12 (-4 *1 (-844)) (-5 *2 (-396 (-1088 *1))) (-5 *3 (-1088 *1)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-742))
+ (-5 *3
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
+ (-5 *2 (-966)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1174 (-525))) (-5 *3 (-525)) (-5 *1 (-1030))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1174 (-525))) (-5 *3 (-592 (-525))) (-5 *4 (-525))
+ (-5 *1 (-1030)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1174 (-592 *3))) (-4 *4 (-286))
+ (-5 *2 (-592 *3)) (-5 *1 (-432 *4 *3)) (-4 *3 (-1150 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-542 *2)) (-4 *2 (-13 (-29 *4) (-1114)))
+ (-5 *1 (-540 *4 *2))
+ (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-542 (-385 (-887 *4))))
+ (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))
+ (-5 *2 (-294 *4)) (-5 *1 (-545 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
+ (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3))))
+ ((*1 *1 *1) (-4 *1 (-1117))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357)))
+ (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091))))
+ (-5 *1 (-1091)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-5 *2 (-592 *5))
+ (-5 *1 (-825 *4 *5)) (-4 *5 (-1128)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1088 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))) (-5 *2 (-966))
+ (-5 *1 (-689)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (|has| *1 (-6 -4259)) (-4 *1 (-351 *3))
+ (-12 (-5 *2 (-525)) (|has| *1 (-6 -4260)) (-4 *1 (-351 *3))
(-4 *3 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-861)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1285 *4))))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357)))
+ (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091))))
+ (-5 *1 (-1091)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-977)) (-5 *1 (-1146 *3 *2)) (-4 *2 (-1150 *3)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-286)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1073 *4)) (-5 *3 (-525)) (-4 *4 (-977))
+ (-5 *1 (-1077 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-525)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-977))
+ (-14 *4 (-1092)) (-14 *5 *3))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4)
+ (-227 *4 (-385 (-525)))))
+ (-14 *4 (-592 (-1092))) (-14 *5 (-713)) (-5 *2 (-108))
+ (-5 *1 (-478 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-309 *3)) (-4 *3 (-789)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-308)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-809)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-108)) (-5 *3 (-887 *6)) (-5 *4 (-1092))
+ (-5 *5 (-782 *7))
+ (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-4 *7 (-13 (-1114) (-29 *6))) (-5 *1 (-204 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1088 *6)) (-5 *4 (-782 *6))
+ (-4 *6 (-13 (-1114) (-29 *5)))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-204 *5 *6)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357)))
+ (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091))))
+ (-5 *1 (-1091)))))
+(((*1 *1 *1) (-4 *1 (-578)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934) (-1114))))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1092))
+ (-5 *2
+ (-2 (|:| |zeros| (-1073 (-205))) (|:| |ones| (-1073 (-205)))
+ (|:| |singularities| (-1073 (-205)))))
+ (-5 *1 (-100)))))
+(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-92)))))
(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-878 *3))) (-4 *3 (-977)) (-4 *1 (-1053 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-878 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-525)) (-5 *1 (-461 *4))
+ (-4 *4 (-1150 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1030)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-1088 *3)) (-5 *1 (-40 *4 *3))
+ (-4 *3
+ (-13 (-341) (-281)
+ (-10 -8 (-15 -4066 ((-1044 *4 (-565 $)) $))
+ (-15 -4080 ((-1044 *4 (-565 $)) $))
+ (-15 -4100 ($ (-1044 *4 (-565 $))))))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-996 *4 *5 *6 *7))
+ (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1))
+ (-4 *1 (-996 *4 *5 *6 *3)))))
+(((*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177))))
+ ((*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2))
+ (-4 *2 (-630 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *2 (-966)) (-5 *1 (-695)))))
(((*1 *2 *3)
(-12 (-4 *4 (-977)) (-4 *3 (-1150 *4)) (-4 *2 (-1165 *4))
(-5 *1 (-1168 *4 *3 *5 *2)) (-4 *5 (-602 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
+ (-5 *2 (-592 (-887 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-592 (-887 *4))) (-5 *1 (-394 *3 *4))
+ (-4 *3 (-395 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-592 (-887 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-592 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1174 (-430 *4 *5 *6 *7))) (-5 *2 (-592 (-887 *4)))
+ (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-517)) (-4 *4 (-160))
+ (-14 *5 (-856)) (-14 *6 (-592 (-1092))) (-14 *7 (-1174 (-632 *4))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-339 (-110))) (-4 *2 (-977)) (-5 *1 (-657 *2 *4))
+ (-4 *4 (-594 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-339 (-110))) (-5 *1 (-776 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-157 *5)) (-4 *5 (-13 (-408 *4) (-934) (-1114)))
+ (-4 *4 (-13 (-517) (-789)))
+ (-4 *2 (-13 (-408 (-157 *4)) (-934) (-1114)))
+ (-5 *1 (-554 *4 *5 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-766)) (-5 *3 (-592 (-1092))) (-5 *1 (-767)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1075)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-778))
+ (-5 *3
+ (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205)))
+ (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205))))
+ (|:| |ub| (-592 (-782 (-205))))))
+ (-5 *2 (-966))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-778))
+ (-5 *3
+ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))
+ (-5 *2 (-966)))))
(((*1 *1 *1 *1) (-4 *1 (-901))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-525)) (-5 *5 (-1075)) (-5 *6 (-632 (-205)))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))))
+ (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108))
+ (-5 *2 (-966)) (-5 *1 (-688)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
+ (-4 *3 (-991 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4))))))
+ (-5 *1 (-994 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4))))))
+ (-5 *1 (-994 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
+ (-4 *3 (-991 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4))))))
+ (-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1029 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4))))))
+ (-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1029 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
+ (-4 *3 (-13 (-341) (-1114) (-934))))))
+(((*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3))
+ (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-884 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286))
+ (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-396 (-1088 *7)))
+ (-5 *1 (-685 *4 *5 *6 *7)) (-5 *3 (-1088 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-429)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-396 *1)) (-4 *1 (-884 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-429)) (-5 *2 (-396 *3))
+ (-5 *1 (-912 *4 *5 *6 *3)) (-4 *3 (-884 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429))
+ (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-396 (-1088 (-385 *7))))
+ (-5 *1 (-1087 *4 *5 *6 *7)) (-5 *3 (-1088 (-385 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1132))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-1153 *4 *3))
+ (-4 *3 (-13 (-1150 *4) (-517) (-10 -8 (-15 -2772 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953)))
+ (-14 *5 (-592 (-1092)))
+ (-5 *2
+ (-592 (-1063 *4 (-497 (-800 *6)) (-800 *6) (-722 *4 (-800 *6)))))
+ (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-592 (-1092))))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-592 (-2 (|:| |totdeg| (-713)) (|:| -2158 *3))))
+ (-5 *4 (-713)) (-4 *3 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735))
+ (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1128)) (-4 *2 (-977))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-798))))
+ ((*1 *1 *1) (-5 *1 (-798)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-878 (-205))) (-5 *2 (-205)) (-5 *1 (-1125))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-977)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-910 *5 *6 *7 *8)))))
(((*1 *2 *3)
(-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *6 *5))
(-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092))))
@@ -654,62 +4301,952 @@
(-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-13 (-286) (-138)))
(-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-108))
(-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-3 (-108) (-592 *1)))
+ (-4 *1 (-996 *4 *5 *6 *3)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-592
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-735)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789))
+ (-5 *1 (-426 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-592 *1)) (-4 *1 (-942 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4))
+ (-14 *3 (-856)) (-4 *4 (-977)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-429)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |h| *6)
+ (|:| |c1| (-385 *6)) (|:| |c2| (-385 *6)) (|:| -3252 *6)))
+ (-5 *1 (-948 *5 *6)) (-5 *3 (-385 *6)))))
(((*1 *1 *1)
(-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
(((*1 *2 *3)
+ (-12 (-4 *2 (-341)) (-4 *2 (-787)) (-5 *1 (-880 *2 *3))
+ (-4 *3 (-1150 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-4 *3 (-1020))
+ (-5 *2 (-108)))))
+(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1130)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2 (-525)) (-5 *1 (-186)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-989)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-977))
+ (-4 *5 (-789)) (-5 *2 (-887 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-977))
+ (-4 *5 (-789)) (-5 *2 (-887 *4))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-1165 *4)) (-4 *4 (-977))
+ (-5 *2 (-887 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-1165 *4)) (-4 *4 (-977))
+ (-5 *2 (-887 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-713)) (-4 *5 (-517))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-903 *5 *3)) (-4 *3 (-1150 *5)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
+ (-5 *2
+ (-2 (|:| -2219 *4) (|:| -2188 *4) (|:| |totalpts| (-525))
+ (|:| |success| (-108))))
+ (-5 *1 (-731)) (-5 *5 (-525)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-966)) (-5 *3 (-1092)) (-5 *1 (-174)))))
+(((*1 *2 *3)
(-12 (-5 *2 (-592 (-1088 (-525)))) (-5 *1 (-173)) (-5 *3 (-525)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-592
+ (-2
+ (|:| -1556
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1174 (-294 (-205))))
+ (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205)))
+ (|:| |g| (-294 (-205))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (|:| -3448
+ (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357))
+ (|:| |expense| (-357)) (|:| |accuracy| (-357))
+ (|:| |intermediateResults| (-357)))))))
+ (-5 *1 (-745)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -1285 *8)))
+ (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-996 *4 *5 *6 *7)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-921 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -1285 *8)))
+ (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-996 *4 *5 *6 *7)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-341) (-968 (-385 *2)))) (-5 *2 (-525))
+ (-5 *1 (-111 *4 *3)) (-4 *3 (-1150 *4)))))
+(((*1 *1) (-5 *1 (-135)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1052 (-205))) (-5 *1 (-242)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-840 (-525))) (-5 *4 (-525)) (-5 *2 (-632 *4))
+ (-5 *1 (-959 *5)) (-4 *5 (-977))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-959 *4))
+ (-4 *4 (-977))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-840 (-525)))) (-5 *4 (-525))
+ (-5 *2 (-592 (-632 *4))) (-5 *1 (-959 *5)) (-4 *5 (-977))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-592 (-525)))) (-5 *2 (-592 (-632 (-525))))
+ (-5 *1 (-959 *4)) (-4 *4 (-977)))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
((*1 *2 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
(-4 *2 (-408 *3))))
((*1 *1 *1 *1) (-4 *1 (-1056))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-824 *5 *3)) (-5 *4 (-827 *5)) (-4 *5 (-1020))
+ (-4 *3 (-154 *6)) (-4 (-887 *6) (-821 *5))
+ (-4 *6 (-13 (-821 *5) (-160))) (-5 *1 (-165 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-824 *4 *1)) (-5 *3 (-827 *4)) (-4 *1 (-821 *4))
+ (-4 *4 (-1020))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-824 *5 *6)) (-5 *4 (-827 *5)) (-4 *5 (-1020))
+ (-4 *6 (-13 (-1020) (-968 *3))) (-4 *3 (-821 *5))
+ (-5 *1 (-866 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-824 *5 *3)) (-4 *5 (-1020))
+ (-4 *3 (-13 (-408 *6) (-567 *4) (-821 *5) (-968 (-565 $))))
+ (-5 *4 (-827 *5)) (-4 *6 (-13 (-517) (-789) (-821 *5)))
+ (-5 *1 (-867 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-824 (-525) *3)) (-5 *4 (-827 (-525))) (-4 *3 (-510))
+ (-5 *1 (-868 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-824 *5 *6)) (-5 *3 (-565 *6)) (-4 *5 (-1020))
+ (-4 *6 (-13 (-789) (-968 (-565 $)) (-567 *4) (-821 *5)))
+ (-5 *4 (-827 *5)) (-5 *1 (-869 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-820 *5 *6 *3)) (-5 *4 (-827 *5)) (-4 *5 (-1020))
+ (-4 *6 (-821 *5)) (-4 *3 (-612 *6)) (-5 *1 (-870 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-824 *6 *3) *8 (-827 *6) (-824 *6 *3)))
+ (-4 *8 (-789)) (-5 *2 (-824 *6 *3)) (-5 *4 (-827 *6))
+ (-4 *6 (-1020)) (-4 *3 (-13 (-884 *9 *7 *8) (-567 *4)))
+ (-4 *7 (-735)) (-4 *9 (-13 (-977) (-789) (-821 *6)))
+ (-5 *1 (-871 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-824 *5 *3)) (-4 *5 (-1020))
+ (-4 *3 (-13 (-884 *8 *6 *7) (-567 *4))) (-5 *4 (-827 *5))
+ (-4 *7 (-821 *5)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *8 (-13 (-977) (-789) (-821 *5))) (-5 *1 (-871 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-824 *5 *3)) (-4 *5 (-1020)) (-4 *3 (-925 *6))
+ (-4 *6 (-13 (-517) (-821 *5) (-567 *4))) (-5 *4 (-827 *5))
+ (-5 *1 (-874 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-824 *5 (-1092))) (-5 *3 (-1092)) (-5 *4 (-827 *5))
+ (-4 *5 (-1020)) (-5 *1 (-875 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-592 (-827 *7))) (-5 *5 (-1 *9 (-592 *9)))
+ (-5 *6 (-1 (-824 *7 *9) *9 (-827 *7) (-824 *7 *9))) (-4 *7 (-1020))
+ (-4 *9 (-13 (-977) (-567 (-827 *7)) (-968 *8))) (-5 *2 (-824 *7 *9))
+ (-5 *3 (-592 *9)) (-4 *8 (-13 (-977) (-789)))
+ (-5 *1 (-876 *7 *8 *9)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
+ (-5 *2 (-1174 (-632 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-1174 (-632 *4))) (-5 *1 (-394 *3 *4))
+ (-4 *3 (-395 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1174 (-632 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-1092))) (-4 *5 (-341))
+ (-5 *2 (-1174 (-632 (-385 (-887 *5))))) (-5 *1 (-1008 *5))
+ (-5 *4 (-632 (-385 (-887 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-1092))) (-4 *5 (-341))
+ (-5 *2 (-1174 (-632 (-887 *5)))) (-5 *1 (-1008 *5))
+ (-5 *4 (-632 (-887 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341))
+ (-5 *2 (-1174 (-632 *4))) (-5 *1 (-1008 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-357))))
+ ((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-357)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1075))
+ (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-108)) (-5 *1 (-204 *4 *5)) (-4 *5 (-13 (-1114) (-29 *4))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-565 *5))) (-4 *4 (-789)) (-5 *2 (-565 *5))
+ (-5 *1 (-534 *4 *5)) (-4 *5 (-408 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2 (-592 *4)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-1150 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2 (-592 *3)) (-5 *1 (-1047 *4 *3)) (-4 *4 (-1150 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
(((*1 *2 *1)
(-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
(-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
(-5 *2 (-108)))))
+(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *1 *1) (-4 *1 (-1056))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33))))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108))
+ (-5 *6 (-205)) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE))))
+ (-5 *2 (-966)) (-5 *1 (-699)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-301 *2 *4)) (-4 *4 (-126))
+ (-4 *2 (-1020))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1020))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-364 *2)) (-4 *2 (-1020))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *2 (-1020)) (-5 *1 (-595 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-761 *2)) (-4 *2 (-789)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-856)) (-4 *1 (-382))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-382))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *2 *6)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-1150 *4)) (-5 *1 (-504 *4 *2 *5 *6))
+ (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934)))
+ (-5 *1 (-163 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-904)))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))
((*1 *2 *3)
(-12 (-5 *2 (-1088 (-385 (-525)))) (-5 *1 (-877)) (-5 *3 (-525)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977))
+ (-14 *4 (-592 (-1092)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-525)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789)))
+ (-14 *4 (-592 (-1092)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789))
+ (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-254))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1088 *8)) (-5 *4 (-592 *6)) (-4 *6 (-789))
+ (-4 *8 (-884 *7 *5 *6)) (-4 *5 (-735)) (-4 *7 (-977))
+ (-5 *2 (-592 (-713))) (-5 *1 (-299 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-856))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
+ (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-160)) (-4 *2 (-23))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4))
+ (-4 *4 (-1150 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-977)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-977)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-840 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *6)) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-884 *4 *5 *3)) (-4 *4 (-977)) (-4 *5 (-735))
+ (-4 *3 (-789)) (-5 *2 (-713))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-906 *3 *2 *4)) (-4 *3 (-977)) (-4 *4 (-789))
+ (-4 *2 (-734))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-713))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1136 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1165 *3))
+ (-5 *2 (-525))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1134 *3))
+ (-5 *2 (-385 (-525)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-856)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1193 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
+ (-5 *2 (-713)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-1075)) (-5 *1 (-174))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
+(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177))))
+ ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 *1)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-977)) (-5 *1 (-632 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *4)) (-4 *4 (-977)) (-4 *1 (-1042 *3 *4 *5 *6))
+ (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-308))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-308)))))
+(((*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789)) (-4 *5 (-991 *3 *4 *2)))))
+(((*1 *1)
+ (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *6)) (-5 *4 (-1092)) (-4 *6 (-408 *5))
+ (-4 *5 (-789)) (-5 *2 (-592 (-565 *6))) (-5 *1 (-534 *5 *6)))))
(((*1 *1) (-5 *1 (-415))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1174 *6)) (-5 *4 (-1174 (-525))) (-5 *5 (-525))
+ (-4 *6 (-1020)) (-5 *2 (-1 *6)) (-5 *1 (-949 *6)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1061)) (-5 *3 (-135)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966))
+ (-5 *1 (-698)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-959 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-977)) (-5 *1 (-959 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-959 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-977)) (-5 *1 (-959 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1092)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1150 *5))
+ (-5 *2 (-592 *3)) (-5 *1 (-719 *4 *5 *6 *3 *7)) (-4 *3 (-1150 *6))
+ (-14 *7 (-856)))))
(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-385 (-525)))
+ (-5 *1 (-411 *4 *3)) (-4 *3 (-408 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-565 *3)) (-4 *3 (-408 *5))
+ (-4 *5 (-13 (-789) (-517) (-968 (-525))))
+ (-5 *2 (-1088 (-385 (-525)))) (-5 *1 (-411 *5 *3)))))
+(((*1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1177)))))
+(((*1 *2 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-824 *4 *3))
+ (-4 *3 (-1020)))))
+(((*1 *1 *1) (-5 *1 (-47)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1128))
+ (-4 *2 (-1128)) (-5 *1 (-56 *5 *2))))
+ ((*1 *2 *3 *1 *2 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1020)) (|has| *1 (-6 -4259))
+ (-4 *1 (-142 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4259)) (-4 *1 (-142 *2))
+ (-4 *2 (-1128))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4259)) (-4 *1 (-142 *2))
+ (-4 *2 (-1128))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-977))
+ (-5 *2 (-2 (|:| -2158 (-1088 *4)) (|:| |deg| (-856))))
+ (-5 *1 (-201 *4 *5)) (-5 *3 (-1088 *4)) (-4 *5 (-13 (-517) (-789)))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-220 *5 *6)) (-14 *5 (-713))
+ (-4 *6 (-1128)) (-4 *2 (-1128)) (-5 *1 (-219 *5 *6 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-160)) (-5 *1 (-268 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1150 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-517)) (-4 *2 (-789))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-313 *2 *3 *4 *5)) (-4 *2 (-341)) (-4 *3 (-1150 *2))
+ (-4 *4 (-1150 (-385 *3))) (-4 *5 (-320 *2 *3 *4))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1128)) (-4 *2 (-1128))
+ (-5 *1 (-349 *5 *4 *2 *6)) (-4 *4 (-351 *5)) (-4 *6 (-351 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1020)) (-4 *2 (-1020))
+ (-5 *1 (-401 *5 *4 *2 *6)) (-4 *4 (-403 *5)) (-4 *6 (-403 *2))))
+ ((*1 *1 *1) (-5 *1 (-468)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-592 *5)) (-4 *5 (-1128))
+ (-4 *2 (-1128)) (-5 *1 (-590 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-977)) (-4 *2 (-977))
+ (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *8 (-351 *2))
+ (-4 *9 (-351 *2)) (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-630 *5 *6 *7)) (-4 *10 (-630 *2 *8 *9))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-977)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1150 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1150 *3)) (-4 *3 (-341))
+ (-4 *3 (-160)) (-4 *1 (-667 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-160)) (-4 *1 (-667 *3 *2)) (-4 *2 (-1150 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-892 *5)) (-4 *5 (-1128))
+ (-4 *2 (-1128)) (-5 *1 (-891 *5 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-965 *3 *4 *5 *2 *6)) (-4 *2 (-884 *3 *4 *5))
+ (-14 *6 (-592 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-977)) (-4 *2 (-977))
+ (-14 *5 (-713)) (-14 *6 (-713)) (-4 *8 (-218 *6 *7))
+ (-4 *9 (-218 *5 *7)) (-4 *10 (-218 *6 *2)) (-4 *11 (-218 *5 *2))
+ (-5 *1 (-982 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-980 *5 *6 *7 *8 *9)) (-4 *12 (-980 *5 *6 *2 *10 *11))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1073 *5)) (-4 *5 (-1128))
+ (-4 *2 (-1128)) (-5 *1 (-1071 *5 *2))))
+ ((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2))
+ (-4 *1 (-1122 *5 *6 *7 *2)) (-4 *5 (-517)) (-4 *6 (-735))
+ (-4 *7 (-789)) (-4 *2 (-991 *5 *6 *7))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1174 *5)) (-4 *5 (-1128))
+ (-4 *2 (-1128)) (-5 *1 (-1173 *5 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1179))
+ (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-308)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-122 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-108)) (-5 *1 (-771)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1128)) (-5 *1 (-168 *3 *2)) (-4 *2 (-619 *3)))))
+(((*1 *2 *2)
(-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-968 (-525)))
(-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3))
(-4 *2
(-13 (-341) (-281)
- (-10 -8 (-15 -3114 ((-1044 *3 (-565 $)) $))
- (-15 -3123 ((-1044 *3 (-565 $)) $))
- (-15 -1217 ($ (-1044 *3 (-565 $))))))))))
+ (-10 -8 (-15 -4066 ((-1044 *3 (-565 $)) $))
+ (-15 -4080 ((-1044 *3 (-565 $)) $))
+ (-15 -4100 ($ (-1044 *3 (-565 $))))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 (-1 *6 (-592 *6))))
+ (-4 *5 (-37 (-385 (-525)))) (-4 *6 (-1165 *5)) (-5 *2 (-592 *6))
+ (-5 *1 (-1167 *5 *6)))))
+(((*1 *1 *1) (-5 *1 (-205)))
+ ((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *1 *1) (-4 *1 (-1056))) ((*1 *1 *1 *1) (-4 *1 (-1056))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735))
+ (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-884 *2 *4 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1165 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-135))))
+ ((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-135)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-565 *6)) (-4 *6 (-13 (-408 *5) (-27) (-1114)))
+ (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2 (-1088 (-385 (-1088 *6)))) (-5 *1 (-521 *5 *6 *7))
+ (-5 *3 (-1088 *6)) (-4 *7 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1150 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-977))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1150 *3))))
+ ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
+ (|partial| -12 (-5 *4 (-1088 *11)) (-5 *6 (-592 *10))
+ (-5 *7 (-592 (-713))) (-5 *8 (-592 *11)) (-4 *10 (-789))
+ (-4 *11 (-286)) (-4 *9 (-735)) (-4 *5 (-884 *11 *9 *10))
+ (-5 *2 (-592 (-1088 *5))) (-5 *1 (-685 *9 *10 *11 *5))
+ (-5 *3 (-1088 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-884 *3 *4 *5)) (-5 *1 (-965 *3 *4 *5 *2 *6))
+ (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-14 *6 (-592 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-525)) (-4 *5 (-327)) (-5 *2 (-396 (-1088 (-1088 *5))))
+ (-5 *1 (-1127 *5)) (-5 *3 (-1088 (-1088 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1128)))))
+(((*1 *1) (-5 *1 (-135))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966))
+ (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-51)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-592 (-592 *8))) (-5 *3 (-592 *8))
(-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138)))
(-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-108))
(-5 *1 (-859 *5 *6 *7 *8)))))
+(((*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1075)) (-5 *1 (-51)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7))))
+ (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020))
+ (-5 *2 (-592 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-2 (|:| |k| (-828 *3)) (|:| |c| *4))))
+ (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
+ (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-617 *3))) (-5 *1 (-828 *3)) (-4 *3 (-789)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-232 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-789))
+ (-4 *5 (-735)) (-4 *2 (-245 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-395 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-108))
+ (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
+ (-4 *4 (-13 (-1020) (-33))))))
+(((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-991 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-592 (-565 *5))) (-5 *3 (-1092)) (-4 *5 (-408 *4))
+ (-4 *4 (-789)) (-5 *1 (-534 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1150 *3)) (-4 *3 (-977)))))
(((*1 *1 *2)
(-12 (-5 *2 (-856)) (-4 *1 (-218 *3 *4)) (-4 *4 (-977))
(-4 *4 (-1128))))
((*1 *1 *2)
(-12 (-14 *3 (-592 (-1092))) (-4 *4 (-160))
- (-4 *5 (-218 (-3522 *3) (-713)))
+ (-4 *5 (-218 (-2827 *3) (-713)))
(-14 *6
- (-1 (-108) (-2 (|:| -3555 *2) (|:| -4193 *5))
- (-2 (|:| -3555 *2) (|:| -4193 *5))))
+ (-1 (-108) (-2 (|:| -1722 *2) (|:| -2168 *5))
+ (-2 (|:| -1722 *2) (|:| -2168 *5))))
(-5 *1 (-438 *3 *4 *2 *5 *6 *7)) (-4 *2 (-789))
(-4 *7 (-884 *4 *5 (-800 *3)))))
((*1 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1125)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-108))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1092))
+ (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-746 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1114) (-893))))))
+(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-800 *3)) (-14 *3 (-592 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-900 *3)) (-4 *3 (-901))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-922))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1013 *3)) (-4 *3 (-1128))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1152 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
+ (-5 *2 (-1092))))
+ ((*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1170 *3)) (-14 *3 *2))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-525)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-286))
+ (-4 *9 (-884 *8 *6 *7))
+ (-5 *2 (-2 (|:| -2158 (-1088 *9)) (|:| |polval| (-1088 *8))))
+ (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1088 *9)) (-5 *4 (-1088 *8)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3))
+ (-4 *3 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 *3)) (-4 *3 (-996 *5 *6 *7 *8)) (-4 *5 (-429))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-108))
+ (-5 *1 (-921 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 *3)) (-4 *3 (-996 *5 *6 *7 *8)) (-4 *5 (-429))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-108))
+ (-5 *1 (-1027 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525))
+ (-5 *2 (-966)) (-5 *1 (-697)))))
+(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
+ ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-592 (-1092))) (-4 *5 (-429))
+ (-5 *2
+ (-2 (|:| |glbase| (-592 (-227 *4 *5))) (|:| |glval| (-592 (-525)))))
+ (-5 *1 (-580 *4 *5)) (-5 *3 (-592 (-227 *4 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-327))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -2868 (-592 (-2 (|:| |irr| *3) (|:| -3750 (-525)))))))
+ (-5 *1 (-197 *5 *3)) (-4 *3 (-1150 *5)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
(-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1128))
+ (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-396 (-1088 *7)))
+ (-5 *1 (-841 *4 *5 *6 *7)) (-5 *3 (-1088 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-4 *5 (-1150 *4)) (-5 *2 (-396 (-1088 *5)))
+ (-5 *1 (-842 *4 *5)) (-5 *3 (-1088 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966))
+ (-5 *1 (-699)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4))))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-510))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-305 *3)) (-4 *3 (-1128))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1128))
+ (-14 *4 (-525)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1128)) (-4 *3 (-351 *2))
+ (-4 *4 (-351 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4260)) (-4 *1 (-558 *3 *2)) (-4 *3 (-1020))
+ (-4 *2 (-1128)))))
(((*1 *2 *1)
(-12 (-5 *2 (-798)) (-5 *1 (-1073 *3)) (-4 *3 (-1020))
(-4 *3 (-1128)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-632 *2)) (-4 *4 (-1150 *2))
+ (-4 *2 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $)))))
+ (-5 *1 (-472 *2 *4 *5)) (-4 *5 (-387 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
+ (-4 *5 (-218 *3 *2)) (-4 *2 (-977)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-856)) (-5 *1 (-1021 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1073 (-205)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1777
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-520)))))
+(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))))
+(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3))
+ (-4 *3 (-1150 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
+(((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-381 *3)) (-4 *3 (-382))))
+ ((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-381 *3)) (-4 *3 (-382))))
+ ((*1 *2 *2) (-12 (-5 *2 (-856)) (|has| *1 (-6 -4250)) (-4 *1 (-382))))
+ ((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856))))
+ ((*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-1073 (-525))))))
+(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-92)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-699)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-698)))))
(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-716)) (-5 *1 (-110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
+ (-4 *4 (-13 (-789) (-517))))))
+(((*1 *2 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))))
+(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3))
+ (-4 *3 (-1150 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-422 *3)) (-4 *3 (-977)))))
+(((*1 *2 *3)
+ (-12 (|has| *2 (-6 (-4261 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2))
+ (-4 *2 (-977)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1150 *2))
+ (-4 *4 (-630 *2 *5 *6)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1128))
+ (-4 *4 (-351 *2)) (-4 *5 (-351 *2))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2))
+ (-4 *5 (-351 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1128))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 (-525))) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2))
+ (-14 *4 (-525)) (-14 *5 (-713))))
+ ((*1 *2 *1 *3 *3 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-713))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-713))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-713))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-713))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-160)) (-5 *1 (-130 *3 *4 *2)) (-14 *3 (-525))
+ (-14 *4 (-713))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1092)) (-5 *2 (-225 (-1075))) (-5 *1 (-195 *4))
+ (-4 *4
+ (-13 (-789)
+ (-10 -8 (-15 -3431 ((-1075) $ *3)) (-15 -2701 ((-1179) $))
+ (-15 -3686 ((-1179) $)))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-922)) (-5 *1 (-195 *3))
+ (-4 *3
+ (-13 (-789)
+ (-10 -8 (-15 -3431 ((-1075) $ (-1092))) (-15 -2701 ((-1179) $))
+ (-15 -3686 ((-1179) $)))))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "count") (-5 *2 (-713)) (-5 *1 (-225 *4)) (-4 *4 (-789))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-225 *3)) (-4 *3 (-789))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 "unique") (-5 *1 (-225 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1128))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1128))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *3 (-160)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7))
+ (-4 *2 (-1150 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281))))
+ ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110))))
+ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110))))
+ ((*1 *2 *1 *2 *2)
+ (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1150 *2))
+ (-4 *4 (-1150 (-385 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-395 *2)) (-4 *2 (-160))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1075)) (-5 *1 (-475))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-51)) (-5 *1 (-581))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1141 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1128))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-592 (-827 *4))) (-5 *1 (-827 *4))
+ (-4 *4 (-1020))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1020))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-840 *4)) (-5 *1 (-839 *4))
+ (-4 *4 (-1020))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-220 *4 *2)) (-14 *4 (-856)) (-4 *2 (-341))
+ (-5 *1 (-926 *4 *2))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "value") (-4 *1 (-942 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *2 *6 *7)) (-4 *2 (-977))
+ (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *2 *6 *7))
+ (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-977))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-856)) (-4 *4 (-1020))
+ (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4))))
+ (-5 *1 (-999 *4 *5 *2))
+ (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4))))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-856)) (-4 *4 (-1020))
+ (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4))))
+ (-5 *1 (-1000 *4 *5 *2))
+ (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-525))) (-4 *1 (-1023 *3 *4 *5 *6 *7))
+ (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020))
+ (-4 *7 (-1020))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020))
+ (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020))))
+ ((*1 *1 *1 *1) (-4 *1 (-1061)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1092))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-385 *1)) (-4 *1 (-1150 *2)) (-4 *2 (-977))
+ (-4 *2 (-341))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-385 *1)) (-4 *1 (-1150 *3)) (-4 *3 (-977))
+ (-4 *3 (-517))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1152 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "last") (-4 *1 (-1162 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 "rest") (-4 *1 (-1162 *3)) (-4 *3 (-1128))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "first") (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
+ (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
(((*1 *2 *3)
(-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
(-4 *3 (-395 *4)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-632 *2)) (-5 *4 (-525))
+ (-4 *2 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $)))))
+ (-4 *5 (-1150 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1092)))
+ (-4 *5 (-429))
+ (-5 *2
+ (-2 (|:| |gblist| (-592 (-227 *4 *5)))
+ (|:| |gvlist| (-592 (-525)))))
+ (-5 *1 (-580 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3))))))
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *2)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4))))
+ (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-763)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-4 *1 (-838 *3)))))
(((*1 *2 *3 *4 *4 *5 *6)
(-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-809))
(-5 *5 (-856)) (-5 *6 (-592 (-242))) (-5 *2 (-445)) (-5 *1 (-1178))))
@@ -719,13 +5256,2782 @@
((*1 *2 *3 *4)
(-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-592 (-242)))
(-5 *2 (-445)) (-5 *1 (-1178)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641))))
+ ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1088 *6)) (-4 *6 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-1088 *7)) (-5 *1 (-299 *4 *5 *6 *7))
+ (-4 *7 (-884 *6 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-592 (-887 *4))) (-5 *3 (-592 (-1092))) (-4 *4 (-429))
+ (-5 *1 (-853 *4)))))
+(((*1 *1 *1) (-5 *1 (-798))))
+(((*1 *1) (-5 *1 (-989))))
+(((*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160))))
+ ((*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2))))
+ ((*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))))
+(((*1 *1 *1 *1) (-4 *1 (-510))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735))
+ (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -1537 (-592 *9)) (|:| -1285 *4) (|:| |ineq| (-592 *9))))
+ (-5 *1 (-921 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9))
+ (-4 *4 (-996 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735))
+ (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -1537 (-592 *9)) (|:| -1285 *4) (|:| |ineq| (-592 *9))))
+ (-5 *1 (-1027 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9))
+ (-4 *4 (-996 *6 *7 *8 *9)))))
+(((*1 *1) (-5 *1 (-1179))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *1) (-5 *1 (-415))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-357))))
+ ((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-357)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-996 *6 *7 *8 *9))
+ (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8))
+ (-5 *2
+ (-592
+ (-2 (|:| -1537 (-592 *9)) (|:| -1285 *10) (|:| |ineq| (-592 *9)))))
+ (-5 *1 (-921 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-996 *6 *7 *8 *9))
+ (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8))
+ (-5 *2
+ (-592
+ (-2 (|:| -1537 (-592 *9)) (|:| -1285 *10) (|:| |ineq| (-592 *9)))))
+ (-5 *1 (-1027 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-697)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2 (-592 *4)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-1150 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2 (-592 *3)) (-5 *1 (-1047 *4 *3)) (-4 *4 (-1150 *3)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-620 (-205)))
+ (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-693)))))
+(((*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-423)) (-5 *3 (-525)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735))
+ (-5 *1 (-477 *4 *5 *6 *2)) (-4 *2 (-884 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-884 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-849 *3)) (-4 *3 (-286)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-327)) (-5 *3 (-525)) (-5 *2 (-1102 (-856) (-713))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-789)) (-5 *1 (-864 *3 *2)) (-4 *2 (-408 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1092)) (-5 *2 (-294 (-525))) (-5 *1 (-865)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286))
+ (-5 *2 (-592 (-713))) (-5 *1 (-720 *3 *4 *5 *6 *7))
+ (-4 *3 (-1150 *6)) (-4 *7 (-884 *6 *4 *5)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-525)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-396 *2)) (-4 *2 (-517)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-429))
+ (-5 *2
+ (-592
+ (-2 (|:| |eigval| (-3 (-385 (-887 *4)) (-1082 (-1092) (-887 *4))))
+ (|:| |geneigvec| (-592 (-632 (-385 (-887 *4))))))))
+ (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-887 *4)))))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -3991 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-341)) (-4 *7 (-1150 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6))
+ (-2 (|:| -3991 (-385 *7)) (|:| |coeff| (-385 *7))) "failed"))
+ (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-977)) (-4 *3 (-789))
+ (-4 *4 (-245 *3)) (-4 *5 (-735)))))
+(((*1 *1) (-5 *1 (-132))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092)) (-4 *4 (-429)) (-4 *4 (-789))
+ (-5 *1 (-534 *4 *2)) (-4 *2 (-263)) (-4 *2 (-408 *4)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1150 *3))
+ (-4 *3 (-13 (-341) (-138) (-968 (-525)))) (-5 *1 (-529 *3 *4)))))
+(((*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177))))
+ ((*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 *1)) (|has| *1 (-6 -4260)) (-4 *1 (-942 *3))
+ (-4 *3 (-1128)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))) ((*1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1088 (-525))) (-5 *3 (-525)) (-4 *1 (-804 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-641)) (-5 *1 (-284)))))
+(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))))
+(((*1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-501))) ((*1 *1) (-4 *1 (-665)))
+ ((*1 *1) (-4 *1 (-669)))
+ ((*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020))))
+ ((*1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-789)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1107)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-592 (-1088 *5))) (-5 *3 (-1088 *5))
+ (-4 *5 (-154 *4)) (-4 *4 (-510)) (-5 *1 (-140 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-592 *3)) (-4 *3 (-1150 *5))
+ (-4 *5 (-1150 *4)) (-4 *4 (-327)) (-5 *1 (-336 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-592 (-1088 (-525)))) (-5 *3 (-1088 (-525)))
+ (-5 *1 (-533))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-592 (-1088 *1))) (-5 *3 (-1088 *1))
+ (-4 *1 (-844)))))
+(((*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2))
+ (-4 *2 (-1150 (-157 *3))))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-695)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-592 (-525))) (-5 *3 (-108)) (-5 *1 (-1030)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-690)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *7)) (-4 *7 (-789))
+ (-4 *8 (-884 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1174 (-385 *8)) "failed"))
+ (|:| -2103 (-592 (-1174 (-385 *8))))))
+ (-5 *1 (-615 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-542 *3) *3 (-1092)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1092)))
+ (-4 *3 (-263)) (-4 *3 (-578)) (-4 *3 (-968 *4)) (-4 *3 (-408 *7))
+ (-5 *4 (-1092)) (-4 *7 (-567 (-827 (-525)))) (-4 *7 (-429))
+ (-4 *7 (-821 (-525))) (-4 *7 (-789)) (-5 *2 (-542 *3))
+ (-5 *1 (-534 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
+ (-4 *3 (-13 (-341) (-1114) (-934))))))
+(((*1 *1) (-4 *1 (-23)))
+ ((*1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-501)))
+ ((*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-592 (-713)))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735))
+ (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-592 *3))
+ (-5 *1 (-547 *5 *6 *7 *8 *3)) (-4 *3 (-1029 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138)))
+ (-5 *2
+ (-592 (-2 (|:| -2729 (-1088 *5)) (|:| -2754 (-592 (-887 *5))))))
+ (-5 *1 (-1001 *5 *6)) (-5 *3 (-592 (-887 *5)))
+ (-14 *6 (-592 (-1092)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-286) (-138)))
+ (-5 *2
+ (-592 (-2 (|:| -2729 (-1088 *4)) (|:| -2754 (-592 (-887 *4))))))
+ (-5 *1 (-1001 *4 *5)) (-5 *3 (-592 (-887 *4)))
+ (-14 *5 (-592 (-1092)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138)))
+ (-5 *2
+ (-592 (-2 (|:| -2729 (-1088 *5)) (|:| -2754 (-592 (-887 *5))))))
+ (-5 *1 (-1001 *5 *6)) (-5 *3 (-592 (-887 *5)))
+ (-14 *6 (-592 (-1092))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-632 *4))
+ (-5 *1 (-756 *4 *5)) (-4 *5 (-602 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-341))
+ (-5 *2 (-632 *5)) (-5 *1 (-756 *5 *6)) (-4 *6 (-602 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-426 *3 *4 *5 *2)) (-4 *2 (-884 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-525))
+ (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4))
+ (-4 *4 (-327)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341))
+ (-4 *7 (-1150 (-385 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -1974 *3)))
+ (-5 *1 (-523 *5 *6 *7 *3)) (-4 *3 (-320 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341))
+ (-5 *2
+ (-2 (|:| |answer| (-385 *6)) (|:| -1974 (-385 *6))
+ (|:| |specpart| (-385 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-524 *5 *6)) (-5 *3 (-385 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-108)) (-5 *1 (-1097))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1092))) (-5 *2 (-108)) (-5 *1 (-1097))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-205))) (-5 *2 (-108)) (-5 *1 (-1097))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-108)) (-5 *1 (-1097)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-975)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-713)) (-4 *5 (-327)) (-4 *6 (-1150 *5))
+ (-5 *2
+ (-592
+ (-2 (|:| -2103 (-632 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-632 *6)))))
+ (-5 *1 (-471 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -2103 (-632 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-632 *6))))
+ (-4 *7 (-1150 *6)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
+ (-5 *5 (-1015 (-205))) (-5 *6 (-525)) (-5 *2 (-1124 (-861)))
+ (-5 *1 (-296))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
+ (-5 *5 (-1015 (-205))) (-5 *6 (-525)) (-5 *7 (-1075))
+ (-5 *2 (-1124 (-861))) (-5 *1 (-296))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
+ (-5 *5 (-1015 (-205))) (-5 *6 (-205)) (-5 *7 (-525))
+ (-5 *2 (-1124 (-861))) (-5 *1 (-296))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
+ (-5 *5 (-1015 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) (-5 *8 (-1075))
+ (-5 *2 (-1124 (-861))) (-5 *1 (-296)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205))))
+ (-5 *2 (-966)) (-5 *1 (-697)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *10))
+ (-5 *1 (-574 *5 *6 *7 *8 *9 *10)) (-4 *9 (-996 *5 *6 *7 *8))
+ (-4 *10 (-1029 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
+ (-14 *6 (-592 (-1092))) (-5 *2 (-592 (-974 *5 *6)))
+ (-5 *1 (-577 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
+ (-14 *6 (-592 (-1092)))
+ (-5 *2
+ (-592 (-1063 *5 (-497 (-800 *6)) (-800 *6) (-722 *5 (-800 *6)))))
+ (-5 *1 (-577 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-592 (-958 *5 *6 *7 *8))) (-5 *1 (-958 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-592 (-958 *5 *6 *7 *8))) (-5 *1 (-958 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
+ (-14 *6 (-592 (-1092))) (-5 *2 (-592 (-974 *5 *6)))
+ (-5 *1 (-974 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-996 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-592 (-1063 *5 *6 *7 *8))) (-5 *1 (-1063 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-592 (-1063 *5 *6 *7 *8))) (-5 *1 (-1063 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-1122 *4 *5 *6 *7)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-259)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3))
+ (-4 *3 (-1150 *2)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-353 *4 *2))
+ (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4260)))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-977)) (-4 *3 (-789))
+ (-4 *4 (-245 *3)) (-4 *5 (-735)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-592 *3)) (-4 *3 (-1128)))))
+(((*1 *2) (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1177))))
+ ((*1 *2 *2) (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1177)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-987 (-955 *3) (-1088 (-955 *3))))
+ (-5 *1 (-955 *3)) (-4 *3 (-13 (-787) (-341) (-953))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *3 *2))
+ (-4 *2 (-13 (-27) (-1114) (-408 (-157 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-517) (-789) (-968 (-525))))
+ (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 (-157 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092))
+ (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-735))
+ (-4 *3 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $))))) (-4 *5 (-517))
+ (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-884 (-385 (-887 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-977)) (-4 *5 (-735))
+ (-4 *3
+ (-13 (-789)
+ (-10 -8 (-15 -2069 ((-1092) $))
+ (-15 -3469 ((-3 $ "failed") (-1092))))))
+ (-5 *1 (-917 *4 *5 *3 *2)) (-4 *2 (-884 (-887 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 *6))
+ (-4 *6
+ (-13 (-789)
+ (-10 -8 (-15 -2069 ((-1092) $))
+ (-15 -3469 ((-3 $ "failed") (-1092))))))
+ (-4 *4 (-977)) (-4 *5 (-735)) (-5 *1 (-917 *4 *5 *6 *2))
+ (-4 *2 (-884 (-887 *4) *5 *6)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-565 *4)) (-5 *6 (-1088 *4))
+ (-4 *4 (-13 (-408 *7) (-27) (-1114)))
+ (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2103 (-592 *4))))
+ (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1020))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-565 *4)) (-5 *6 (-385 (-1088 *4)))
+ (-4 *4 (-13 (-408 *7) (-27) (-1114)))
+ (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2103 (-592 *4))))
+ (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-856)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-242)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205))
+ (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1092))) (-4 *6 (-341))
+ (-5 *2 (-592 (-273 (-887 *6)))) (-5 *1 (-503 *5 *6 *7))
+ (-4 *5 (-429)) (-4 *7 (-13 (-341) (-787))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-632 (-385 (-887 (-525)))))
+ (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-962))
+ (-5 *3 (-294 (-525))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8))))
+ (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-592 *8)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-682 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 *8)) (-4 *8 (-884 *5 *7 *6))
+ (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092))))
+ (-4 *7 (-735))
+ (-5 *2
+ (-592
+ (-2 (|:| -3085 (-713))
+ (|:| |eqns|
+ (-592
+ (-2 (|:| |det| *8) (|:| |rows| (-592 (-525)))
+ (|:| |cols| (-592 (-525))))))
+ (|:| |fgb| (-592 *8)))))
+ (-5 *1 (-859 *5 *6 *7 *8)) (-5 *4 (-713)))))
+(((*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114)))))
+ ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
+(((*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1037)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-977)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1150 *3)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-713)) (-4 *3 (-1128)) (-4 *1 (-55 *3 *4 *5))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *1) (-5 *1 (-159)))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-367))))
+ ((*1 *1) (-5 *1 (-372)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-4 *1 (-597 *3)) (-4 *3 (-1128))))
+ ((*1 *1)
+ (-12 (-4 *3 (-1020)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1020))
+ (-4 *4 (-612 *3))))
+ ((*1 *1) (-12 (-5 *1 (-824 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020))))
+ ((*1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977))))
+ ((*1 *1 *1) (-5 *1 (-1092))) ((*1 *1) (-5 *1 (-1092)))
+ ((*1 *1) (-5 *1 (-1109))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1088 *3)) (-4 *3 (-346)) (-4 *1 (-307 *3))
+ (-4 *3 (-341)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517))))
+ ((*1 *1 *1) (|partial| -4 *1 (-665))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1092))
+ (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525))))
+ (-5 *2 (-2 (|:| -2518 *3) (|:| |nconst| *3))) (-5 *1 (-528 *5 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *5))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-968 (-525)))
+ (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3))
+ (-4 *2
+ (-13 (-341) (-281)
+ (-10 -8 (-15 -4066 ((-1044 *3 (-565 $)) $))
+ (-15 -4080 ((-1044 *3 (-565 $)) $))
+ (-15 -4100 ($ (-1044 *3 (-565 $))))))))))
+(((*1 *2)
+ (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179))
+ (-5 *1 (-997 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179))
+ (-5 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3801 *4)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1088 *1)) (-5 *3 (-1092)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1088 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-887 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1092)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1088 *2)) (-5 *4 (-1092)) (-4 *2 (-408 *5))
+ (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-789) (-517)))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1088 *1)) (-5 *3 (-856)) (-4 *1 (-944))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1088 *1)) (-5 *3 (-856)) (-5 *4 (-798))
+ (-4 *1 (-944))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-856)) (-4 *4 (-13 (-787) (-341)))
+ (-4 *1 (-993 *4 *2)) (-4 *2 (-1150 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242))))
+ ((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))
+ ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))))
+(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1075)) (-5 *1 (-653)))))
+(((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-51)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-2 (|:| -1556 *3) (|:| -3448 *4))))
+ (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *1 (-1105 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1105 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1020)) (-4 *6 (-1020))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-1020)))))
+(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-592 *6)) (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
+ (-4 *3 (-517)))))
+(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1 *1) (-4 *1 (-901))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510))
+ (-5 *2 (-385 (-525)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510))
+ (-4 *3 (-517))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-510)) (-5 *2 (-385 (-525)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510))
+ (-5 *2 (-385 (-525)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510))
+ (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510))
+ (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-929 *3)) (-4 *3 (-160)) (-4 *3 (-510))
+ (-5 *2 (-385 (-525)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-940 *3))
+ (-4 *3 (-968 *2)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-290)) (-5 *1 (-771)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-353 *4 *2))
+ (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4260)))))))
+(((*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1095)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1174 (-1174 *4))) (-4 *4 (-977)) (-5 *2 (-632 *4))
+ (-5 *1 (-960 *4)))))
+(((*1 *1) (-5 *1 (-1176))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-143 *2 *3 *4)) (-14 *2 (-856)) (-4 *3 (-341))
+ (-14 *4 (-926 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1150 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
+ ((*1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
+ ((*1 *1 *1) (|partial| -4 *1 (-665)))
+ ((*1 *1 *1) (|partial| -4 *1 (-669)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-993 *3 *2)) (-4 *3 (-13 (-787) (-341)))
+ (-4 *2 (-1150 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-385 *5)) (-4 *5 (-1150 *4)) (-4 *4 (-517))
+ (-4 *4 (-977)) (-4 *2 (-1165 *4)) (-5 *1 (-1168 *4 *5 *6 *2))
+ (-4 *6 (-602 *5)))))
+(((*1 *1 *1) (-5 *1 (-798)))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020))))
+ ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1074))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1092)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1020)))))
+(((*1 *2)
+ (-12
+ (-5 *2
+ (-1174 (-592 (-2 (|:| -2219 (-845 *3)) (|:| -1722 (-1039))))))
+ (-5 *1 (-329 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1174 (-592 (-2 (|:| -2219 *3) (|:| -1722 (-1039))))))
+ (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1088 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1174 (-592 (-2 (|:| -2219 *3) (|:| -1722 (-1039))))))
+ (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-856)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4)))
+ (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $)))))
+ (-4 *4 (-1150 *3))
+ (-5 *2
+ (-2 (|:| -2103 (-632 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-632 *3))))
+ (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1150 (-525)))
+ (-5 *2
+ (-2 (|:| -2103 (-632 (-525))) (|:| |basisDen| (-525))
+ (|:| |basisInv| (-632 (-525)))))
+ (-5 *1 (-710 *3 *4)) (-4 *4 (-387 (-525) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-327)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 *4))
+ (-5 *2
+ (-2 (|:| -2103 (-632 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-632 *4))))
+ (-5 *1 (-918 *3 *4 *5 *6)) (-4 *6 (-667 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-327)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 *4))
+ (-5 *2
+ (-2 (|:| -2103 (-632 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-632 *4))))
+ (-5 *1 (-1183 *3 *4 *5 *6)) (-4 *6 (-387 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-294 (-357))) (-5 *1 (-284)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3801 *3) (|:| |coef1| (-724 *3))))
+ (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))))
+(((*1 *1) (-5 *1 (-146))))
+(((*1 *2 *2) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4260)) (-4 *1 (-558 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1128)) (-5 *2 (-1179)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-728)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1099)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1144 *3 *2))
+ (-4 *2 (-1150 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *1 *1) (-4 *1 (-1056))))
+(((*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1020))
+ (-4 *2 (-13 (-408 *4) (-821 *3) (-567 (-827 *3))))
+ (-5 *1 (-999 *3 *4 *2))
+ (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1020)) (-5 *1 (-1082 *3 *2)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525))
+ (-5 *2 (-966)) (-5 *1 (-699)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-977)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1150 *3)))))
+(((*1 *1 *1) (-4 *1 (-510))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-108))
+ (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-4 *3 (-13 (-27) (-1114) (-408 *6) (-10 -8 (-15 -4100 ($ *7)))))
+ (-4 *7 (-787))
+ (-4 *8
+ (-13 (-1152 *3 *7) (-341) (-1114)
+ (-10 -8 (-15 -2702 ($ $)) (-15 -2367 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))))
+ (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1075)) (-4 *9 (-916 *8))
+ (-14 *10 (-1092)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977))
+ (-14 *4 (-592 (-1092)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1128))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789)))
+ (-14 *4 (-592 (-1092)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-828 *3)) (-4 *3 (-789)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *6))))
+ (-5 *4 (-957 (-782 (-525)))) (-5 *5 (-1092)) (-5 *7 (-385 (-525)))
+ (-4 *6 (-977)) (-5 *2 (-798)) (-5 *1 (-550 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977))
+ (-5 *2 (-592 (-592 (-878 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-592 (-592 (-878 *4)))) (-5 *3 (-108)) (-4 *4 (-977))
+ (-4 *1 (-1053 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 (-878 *3)))) (-4 *3 (-977))
+ (-4 *1 (-1053 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-108))
+ (-4 *1 (-1053 *4)) (-4 *4 (-977))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-592 (-592 (-878 *4)))) (-5 *3 (-108))
+ (-4 *1 (-1053 *4)) (-4 *4 (-977))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-592 (-159)))
+ (-5 *4 (-159)) (-4 *1 (-1053 *5)) (-4 *5 (-977))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-592 (-592 (-878 *5)))) (-5 *3 (-592 (-159)))
+ (-5 *4 (-159)) (-4 *1 (-1053 *5)) (-4 *5 (-977)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))))
+(((*1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1) (-4 *1 (-901))) ((*1 *1 *1) (-5 *1 (-1039))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1150 *5))
+ (-4 *5 (-13 (-27) (-408 *4)))
+ (-4 *4 (-13 (-789) (-517) (-968 (-525))))
+ (-4 *7 (-1150 (-385 *6))) (-5 *1 (-513 *4 *5 *6 *7 *2))
+ (-4 *2 (-320 *5 *6 *7)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-1095)) (-5 *3 (-1092)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128)) (-4 *2 (-789))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-261 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-789)))))
+(((*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1020))
+ (-4 *2 (-13 (-408 *4) (-821 *3) (-567 (-827 *3))))
+ (-5 *1 (-999 *3 *4 *2))
+ (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1020)) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1020)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-294 (-205))) (-5 *2 (-385 (-525))) (-5 *1 (-284)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-763)) (-5 *4 (-51)) (-5 *2 (-1179)) (-5 *1 (-773)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
+ (-4 *4 (-351 *2)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-713)) (-5 *3 (-878 *5)) (-4 *5 (-977))
+ (-5 *1 (-1081 *4 *5)) (-14 *4 (-856))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1081 *4 *5))
+ (-14 *4 (-856)) (-4 *5 (-977))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-713))) (-5 *3 (-878 *5)) (-4 *5 (-977))
+ (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)))))
+(((*1 *2 *3)
+ (-12 (|has| *6 (-6 -4260)) (-4 *4 (-341)) (-4 *5 (-351 *4))
+ (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-492 *4 *5 *6 *3))
+ (-4 *3 (-630 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (|has| *9 (-6 -4260)) (-4 *4 (-517)) (-4 *5 (-351 *4))
+ (-4 *6 (-351 *4)) (-4 *7 (-925 *4)) (-4 *8 (-351 *7))
+ (-4 *9 (-351 *7)) (-5 *2 (-592 *6))
+ (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-630 *4 *5 *6))
+ (-4 *10 (-630 *7 *8 *9))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-592 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4))
+ (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-631 *4 *5 *6 *3))
+ (-4 *3 (-630 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517))
+ (-5 *2 (-592 *7)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179))
+ (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179))
+ (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1175))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1175))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1176))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1176)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-169))) (-5 *1 (-1037)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4))))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-771)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4115 *4)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1165 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1073 *4)) (-5 *3 (-1 *4 (-525))) (-4 *4 (-977))
+ (-5 *1 (-1077 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-525)) (-5 *5 (-157 (-205))) (-5 *6 (-1075))
+ (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1174 *4)) (-4 *4 (-588 *5)) (-4 *5 (-341))
+ (-4 *5 (-517)) (-5 *2 (-1174 *5)) (-5 *1 (-587 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1174 *4)) (-4 *4 (-588 *5))
+ (-3272 (-4 *5 (-341))) (-4 *5 (-517)) (-5 *2 (-1174 (-385 *5)))
+ (-5 *1 (-587 *5 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4))
+ (-4 *4 (-327)))))
+(((*1 *2 *3) (-12 (-5 *3 (-764)) (-5 *2 (-51)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-542 *3)) (-4 *3 (-341)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-261 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -1556
+ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (|:| -3448
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1073 (-205)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1777
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-520))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-637 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -1556
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
+ (|:| -3448
+ (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357))
+ (|:| |expense| (-357)) (|:| |accuracy| (-357))
+ (|:| |intermediateResults| (-357))))))
+ (-5 *1 (-745))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1179)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-713)) (-5 *5 (-592 *3)) (-4 *3 (-286)) (-4 *6 (-789))
+ (-4 *7 (-735)) (-5 *2 (-108)) (-5 *1 (-575 *6 *7 *3 *8))
+ (-4 *8 (-884 *3 *7 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3))
+ (-4 *3 (-1150 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
+ (-4 *3 (-1150 (-525)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
+ (-4 *3 (-1150 (-525)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3))
+ (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
+ (-4 *3 (-1150 (-525)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-396 *3)) (-5 *1 (-939 *3))
+ (-4 *3 (-1150 (-385 (-525))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-396 *3)) (-5 *1 (-1139 *3)) (-4 *3 (-1150 (-525))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-517) (-789)))
+ (-4 *2 (-13 (-408 (-157 *4)) (-934) (-1114)))
+ (-5 *1 (-554 *4 *3 *2)) (-4 *3 (-13 (-408 *4) (-934) (-1114))))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-838 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2))
+ (|has| *2 (-6 (-4261 "*"))) (-4 *2 (-977))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160))
+ (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
+ (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4261 "*"))) (-4 *2 (-977)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1088 *1)) (-5 *3 (-1092)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1088 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-887 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1092)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517))))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1075)) (-5 *1 (-922))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-1015 *4)) (-4 *4 (-1128))
+ (-5 *1 (-1013 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1124 *3)) (-4 *3 (-907)))))
+(((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-764)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *3 (-592 (-809)))
+ (-5 *4 (-592 (-856))) (-5 *5 (-592 (-242))) (-5 *1 (-445))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *3 (-592 (-809)))
+ (-5 *4 (-592 (-856))) (-5 *1 (-445))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-445))))
+ ((*1 *1 *1) (-5 *1 (-445))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-880 *4 *3))
+ (-4 *3 (-1150 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *1) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-977)) (-4 *7 (-977))
+ (-4 *6 (-1150 *5)) (-5 *2 (-1088 (-1088 *7)))
+ (-5 *1 (-474 *5 *6 *4 *7)) (-4 *4 (-1150 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3))
+ (-4 *3 (-901)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-977))
+ (-5 *1 (-657 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-776 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-798)))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-592
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-525)))))
+ (-4 *2 (-517)) (-5 *1 (-396 *2))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-525))
+ (|:| -2868 (-592 (-2 (|:| |irr| *4) (|:| -3750 (-525)))))))
+ (-4 *4 (-1150 (-525))) (-5 *2 (-396 *4)) (-5 *1 (-419 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1150 (-47)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3))))
+ (-5 *1 (-117 *3)) (-4 *3 (-789))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-542 *4)) (-4 *4 (-13 (-29 *3) (-1114)))
+ (-4 *3 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))
+ (-5 *1 (-540 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-542 (-385 (-887 *3))))
+ (-4 *3 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))
+ (-5 *1 (-545 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-341))
+ (-5 *2 (-2 (|:| -2392 *3) (|:| |special| *3))) (-5 *1 (-670 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1174 *5)) (-4 *5 (-341)) (-4 *5 (-977))
+ (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5))
+ (-5 *3 (-592 (-632 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1174 (-1174 *5))) (-4 *5 (-341)) (-4 *5 (-977))
+ (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5))
+ (-5 *3 (-592 (-632 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-592 *1)) (-4 *1 (-1061))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-592 *1)) (-4 *1 (-1061)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092))
+ (-14 *4 *2))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-126))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *1) (-5 *1 (-132))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-632 (-887 *4))) (-5 *1 (-959 *4))
+ (-4 *4 (-977)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1020)) (-4 *4 (-1020))
+ (-4 *6 (-1020)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *5 *4 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-1150 *4)) (-4 *4 (-977))
+ (-5 *2 (-1174 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-887 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-944))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-887 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-944))))
+ ((*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-944)) (-5 *2 (-592 *1))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1088 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-944))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1088 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-944))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1088 *1)) (-4 *1 (-944)) (-5 *2 (-592 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1150 *4)) (-5 *2 (-592 *1))
+ (-4 *1 (-993 *4 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1128)) (-4 *2 (-789))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-977))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1053 *3)) (-4 *3 (-977))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4))
+ (-14 *3 (-856)) (-4 *4 (-977))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-501)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-525))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1128))
+ (-4 *5 (-351 *4)) (-4 *2 (-351 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *6 *2 *7)) (-4 *6 (-977))
+ (-4 *7 (-218 *4 *6)) (-4 *2 (-218 *5 *6)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)) (-4 *2 (-341))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2))
+ (-4 *2 (-602 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-977))
+ (-5 *2 (-227 *4 *5)) (-5 *1 (-879 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
+ (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4))
+ (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3))
+ (-4 *3 (-630 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517))
+ (-5 *2 (-713)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092))
+ (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-294 *5)))
+ (-5 *1 (-1048 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1092)))
+ (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-294 *5))))
+ (-5 *1 (-1048 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-278 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1015 (-782 (-205)))) (-5 *3 (-205)) (-5 *2 (-108))
+ (-5 *1 (-284))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
+ (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734))
+ (-4 *2 (-429))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1150 *2))
+ (-4 *4 (-1150 (-385 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-429))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789)) (-4 *3 (-429))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-884 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-429))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-286)) (-4 *3 (-517)) (-5 *1 (-1080 *3 *2))
+ (-4 *2 (-1150 *3)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-592 *11)) (-5 *5 (-592 (-1088 *9)))
+ (-5 *6 (-592 *9)) (-5 *7 (-592 *12)) (-5 *8 (-592 (-713)))
+ (-4 *11 (-789)) (-4 *9 (-286)) (-4 *12 (-884 *9 *10 *11))
+ (-4 *10 (-735)) (-5 *2 (-592 (-1088 *12)))
+ (-5 *1 (-650 *10 *11 *9 *12)) (-5 *3 (-1088 *12)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-398 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1114) (-408 *3)))
+ (-14 *4 (-1092)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-4 *2 (-13 (-27) (-1114) (-408 *3) (-10 -8 (-15 -4100 ($ *4)))))
+ (-4 *4 (-787))
+ (-4 *5
+ (-13 (-1152 *2 *4) (-341) (-1114)
+ (-10 -8 (-15 -2702 ($ $)) (-15 -2367 ($ $)))))
+ (-5 *1 (-400 *3 *2 *4 *5 *6 *7)) (-4 *6 (-916 *5)) (-14 *7 (-1092)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4259)) (-4 *1 (-464 *3)) (-4 *3 (-1128))
+ (-4 *3 (-1020)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-840 *4)) (-4 *4 (-1020)) (-5 *2 (-108))
+ (-5 *1 (-839 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-856)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1092))
+ (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-5 *1 (-1095)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
+(((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-525))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-713)) (-4 *6 (-1020)) (-4 *7 (-835 *6))
+ (-5 *2 (-632 *7)) (-5 *1 (-634 *6 *7 *3 *4)) (-4 *3 (-351 *7))
+ (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4259)))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-592 (-1092)))
+ (-5 *2 (-592 (-592 (-357)))) (-5 *1 (-954)) (-5 *5 (-357))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953)))
+ (-14 *5 (-592 (-1092))) (-5 *2 (-592 (-592 (-955 (-385 *4)))))
+ (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-592 (-1092)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1198 *5 *6 *7))
+ (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1198 *5 *6 *7))
+ (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1198 *5 *6 *7))
+ (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-887 *4)))
+ (-4 *4 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-592 (-592 (-955 (-385 *4))))) (-5 *1 (-1198 *4 *5 *6))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1073 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *3 (-205))
+ (-5 *2 (-966)) (-5 *1 (-692)))))
+(((*1 *1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1020)) (-4 *2 (-346)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-146)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3)) (-4 *3 (-1020))
+ (-4 *3 (-1128)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
+ (-5 *2 (-357)) (-5 *1 (-187)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-592 (-1088 *7))) (-5 *3 (-1088 *7))
+ (-4 *7 (-884 *5 *6 *4)) (-4 *5 (-844)) (-4 *6 (-735))
+ (-4 *4 (-789)) (-5 *1 (-841 *5 *6 *4 *7)))))
+(((*1 *1) (-5 *1 (-415))))
+(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-236)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1094 (-385 (-525))))
+ (-5 *1 (-172)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
+ (-4 *4 (-13 (-789) (-517))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977))
+ (-5 *2 (-592 (-592 (-592 (-878 *3))))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 *2))
+ (-5 *2 (-357)) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977))
+ (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517))
+ (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517))
+ (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789))
+ (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517))
+ (-4 *5 (-789)) (-4 *5 (-567 *2)) (-5 *2 (-357))
+ (-5 *1 (-727 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1128))
+ (-5 *2 (-592 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-341) (-281)
+ (-10 -8 (-15 -4066 ((-1044 *3 (-565 $)) $))
+ (-15 -4080 ((-1044 *3 (-565 $)) $))
+ (-15 -4100 ($ (-1044 *3 (-565 $))))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
+ (-5 *5 (-1015 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1052 (-205)))
+ (-5 *1 (-639)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-565 *3)) (-5 *5 (-1088 *3))
+ (-4 *3 (-13 (-408 *6) (-27) (-1114)))
+ (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1088 *3)))
+ (-4 *3 (-13 (-408 *6) (-27) (-1114)))
+ (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020)))))
+(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176))))
+ ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
+(((*1 *2 *3 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |cycle?| (-108)) (|:| -2093 (-713)) (|:| |period| (-713))))
+ (-5 *1 (-1073 *4)) (-4 *4 (-1128)) (-5 *3 (-713)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7))))
+ (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-5 *1 (-415)))))
+(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1075)) (-5 *1 (-728)))))
+(((*1 *2 *3) (-12 (-5 *3 (-887 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-408 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3))
+ (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-592 *1)) (-4 *1 (-884 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977))
+ (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-592 *3))
+ (-5 *1 (-885 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-341)
+ (-10 -8 (-15 -4100 ($ *7)) (-15 -4066 (*7 $))
+ (-15 -4080 (*7 $))))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357))))
+ ((*1 *1 *1 *1) (-4 *1 (-510)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
+ ((*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-713)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1073 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-174))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1073 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-279))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1073 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-284)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1174 (-1021 *3 *4))) (-5 *1 (-1021 *3 *4))
+ (-14 *3 (-856)) (-14 *4 (-856)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-977)) (-4 *3 (-789))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -2168 (-525)))) (-4 *1 (-408 *3))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-827 *3)) (|:| -2168 (-827 *3))))
+ (-5 *1 (-827 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977))
+ (-4 *7 (-884 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -2168 (-525))))
+ (-5 *1 (-885 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-341)
+ (-10 -8 (-15 -4100 ($ *7)) (-15 -4066 (*7 $))
+ (-15 -4080 (*7 $))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4))
+ (-4 *4 (-327)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-975)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525))))
+ (-4 *2 (-160)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-341)) (-4 *3 (-977))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3817 *1)))
+ (-4 *1 (-791 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1051 *4 *2))
+ (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4259) (-6 -4260))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-789)) (-4 *3 (-1128)) (-5 *1 (-1051 *3 *2))
+ (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4259) (-6 -4260)))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-632 *2)) (-4 *2 (-160)) (-5 *1 (-137 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-160)) (-4 *2 (-1150 *4)) (-5 *1 (-164 *4 *2 *3))
+ (-4 *3 (-667 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 (-385 (-887 *5)))) (-5 *4 (-1092))
+ (-5 *2 (-887 *5)) (-5 *1 (-271 *5)) (-4 *5 (-429))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-632 (-385 (-887 *4)))) (-5 *2 (-887 *4))
+ (-5 *1 (-271 *4)) (-4 *4 (-429))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1150 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-632 (-157 (-385 (-525)))))
+ (-5 *2 (-887 (-157 (-385 (-525))))) (-5 *1 (-707 *4))
+ (-4 *4 (-13 (-341) (-787)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *4 (-1092))
+ (-5 *2 (-887 (-157 (-385 (-525))))) (-5 *1 (-707 *5))
+ (-4 *5 (-13 (-341) (-787)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-887 (-385 (-525))))
+ (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *4 (-1092))
+ (-5 *2 (-887 (-385 (-525)))) (-5 *1 (-721 *5))
+ (-4 *5 (-13 (-341) (-787))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2)
+ (-12 (-5 *2 (-1179)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
+ (-5 *2
+ (-2 (|:| -2219 *4) (|:| -2188 *4) (|:| |totalpts| (-525))
+ (|:| |success| (-108))))
+ (-5 *1 (-731)) (-5 *5 (-525)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1020)) (-5 *2 (-824 *3 *5)) (-5 *1 (-820 *3 *4 *5))
+ (-4 *3 (-1020)) (-4 *5 (-612 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
+(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-702)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-1175))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-698)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-1088 (-887 *4))) (-5 *1 (-394 *3 *4))
+ (-4 *3 (-395 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341))
+ (-5 *2 (-1088 (-887 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1088 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-856))
+ (-5 *2 (-1174 (-592 (-2 (|:| -2219 *4) (|:| -1722 (-1039))))))
+ (-5 *1 (-324 *4)) (-4 *4 (-327)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-632 *7)) (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *6 *5))
+ (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092))))
+ (-4 *6 (-735)) (-5 *1 (-859 *4 *5 *6 *7)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-4 *2 (-1020))
+ (-5 *1 (-824 *4 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
+ (-5 *2 (-592 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020))
+ (-5 *2 (-592 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-551 *3)) (-4 *3 (-977))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 *3)) (-5 *1 (-678 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-669))))
+ ((*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-977)) (-5 *2 (-592 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1165 *3)) (-4 *3 (-977)) (-5 *2 (-1073 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-977)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1092)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 (-856))) (-4 *2 (-341)) (-5 *1 (-143 *4 *2 *5))
+ (-14 *4 (-856)) (-14 *5 (-926 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4))
+ (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1092)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-126))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1020)) (-4 *2 (-977))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4))
+ (-4 *4 (-1150 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-977))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-977)) (-5 *1 (-678 *2 *3)) (-4 *3 (-669))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5))
+ (-4 *4 (-977)) (-4 *5 (-789))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-977))
+ (-4 *2 (-789))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-977))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-884 *4 *5 *6))
+ (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-884 *4 *5 *2)) (-4 *4 (-977))
+ (-4 *5 (-735)) (-4 *2 (-789))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-4 *2 (-884 *4 (-497 *5) *5))
+ (-5 *1 (-1045 *4 *5 *2)) (-4 *4 (-977)) (-4 *5 (-789))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-887 *4)) (-5 *1 (-1123 *4))
+ (-4 *4 (-977)))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3))
+ (-4 *3 (-901)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-704))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1150 *4)) (-5 *1 (-749 *4 *2 *3 *5))
+ (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2))
+ (-4 *5 (-602 (-385 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1150 *4)) (-5 *1 (-749 *4 *2 *5 *3))
+ (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-602 *2))
+ (-4 *3 (-602 (-385 *2))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
+ (-5 *2 (-761 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1195 *3 *2)) (-4 *3 (-977)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-228)))))
+(((*1 *1 *1) (-4 *1 (-1061))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-108)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
+ (-4 *4 (-160))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2))
+ (-4 *2 (-408 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1013 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517)))
+ (-5 *1 (-147 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1013 *1)) (-4 *1 (-149))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1092))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-160)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429))
+ (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-910 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-991 *4 *5 *6))
+ (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *1 (-910 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-1 (-108) *5 *5))
+ (-5 *4 (-592 *5)) (-4 *5 (-789)) (-5 *1 (-1100 *5)))))
+(((*1 *1) (-5 *1 (-1005))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789))
+ (-5 *2 (-2 (|:| -2681 *1) (|:| |gap| (-713)) (|:| -3681 *1)))
+ (-4 *1 (-991 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-2 (|:| -2681 *1) (|:| |gap| (-713)) (|:| -3681 *1)))
+ (-4 *1 (-991 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
+ ((*1 *1 *1) (-5 *1 (-798))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8))))
+ (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-592 *8)))))
+(((*1 *1) (-5 *1 (-308))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-429)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-592
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-713)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-735)) (-4 *6 (-884 *4 *3 *5)) (-4 *4 (-429)) (-4 *5 (-789))
+ (-5 *1 (-426 *4 *3 *5 *6)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-157 (-205))) (-5 *5 (-525))
+ (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-456)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-856)) (-5 *1 (-728)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *3 *2))
+ (-4 *2 (-13 (-27) (-1114) (-408 (-157 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-517) (-789) (-968 (-525))))
+ (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 (-157 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092))
+ (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281))))
+ ((*1 *1 *1) (-4 *1 (-281)))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
+ ((*1 *1 *1) (-5 *1 (-798))))
+(((*1 *1) (-5 *1 (-1007))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-1075)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-690)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
+ (-5 *2 (-357)) (-5 *1 (-187)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-592 (-1092))) (-4 *2 (-160))
+ (-4 *4 (-218 (-2827 *5) (-713)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -1722 *3) (|:| -2168 *4))
+ (-2 (|:| -1722 *3) (|:| -2168 *4))))
+ (-5 *1 (-438 *5 *2 *3 *4 *6 *7)) (-4 *3 (-789))
+ (-4 *7 (-884 *2 *4 (-800 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-173)) (-5 *3 (-525))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-160))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1075)) (-5 *2 (-525)) (-5 *1 (-1111 *4))
+ (-4 *4 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))))
+ (-4 *4 (-1150 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-848 *4 *5))
+ (-4 *5 (-1150 (-385 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1092)) (-5 *4 (-887 (-525))) (-5 *2 (-308))
+ (-5 *1 (-310))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1092)) (-5 *4 (-1013 (-887 (-525)))) (-5 *2 (-308))
+ (-5 *1 (-310))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-977)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-695)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-5 *2 (-108)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-1075)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-690)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-395 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 *1)) (-5 *4 (-1174 *1)) (-4 *1 (-588 *5))
+ (-4 *5 (-977))
+ (-5 *2 (-2 (|:| -4108 (-632 *5)) (|:| |vec| (-1174 *5))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-632 *1)) (-4 *1 (-588 *4)) (-4 *4 (-977))
+ (-5 *2 (-632 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-844)) (-5 *2 (-396 (-1088 *1))) (-5 *3 (-1088 *1)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525))))
+ (-4 *2 (-160)))))
+(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-525))) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-517)) (-4 *8 (-884 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2168 (-713)) (|:| -2681 *9) (|:| |radicand| *9)))
+ (-5 *1 (-888 *5 *6 *7 *8 *9)) (-5 *4 (-713))
+ (-4 *9
+ (-13 (-341)
+ (-10 -8 (-15 -4066 (*8 $)) (-15 -4080 (*8 $)) (-15 -4100 ($ *8))))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-713)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))
+ (-14 *4 *2) (-4 *5 (-160))))
+ ((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-856)) (-5 *1 (-153 *3 *4))
+ (-4 *3 (-154 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-856))))
+ ((*1 *2)
+ (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1150 *3))
+ (-5 *2 (-856))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
+ (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-341))
+ (-5 *2 (-713)) (-5 *1 (-613 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4260))))
+ (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4260)))) (-5 *2 (-713))
+ (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4))
+ (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3))
+ (-4 *3 (-630 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517))
+ (-5 *2 (-713)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-713)) (-5 *3 (-878 *4)) (-4 *1 (-1053 *4))
+ (-4 *4 (-977))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-713)) (-5 *4 (-878 (-205))) (-5 *2 (-1179))
+ (-5 *1 (-1176)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1128))
+ (-4 *4 (-351 *2)) (-4 *5 (-351 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4260)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1020))
+ (-4 *2 (-1128)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6))
+ (-4 *5 (-13 (-1020) (-33))) (-4 *6 (-13 (-1020) (-33)))
+ (-5 *2 (-108)) (-5 *1 (-1057 *5 *6)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1092)) (-5 *2 (-592 (-899))) (-5 *1 (-270)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761 *3)) (-4 *3 (-789)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1030)) (-5 *3 (-525)))))
+(((*1 *1 *1) (-4 *1 (-578)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934) (-1114))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *4)) (-4 *4 (-787)) (-4 *4 (-341)) (-5 *2 (-713))
+ (-5 *1 (-880 *4 *5)) (-4 *5 (-1150 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2 (-592 *4)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-1150 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2 (-592 *3)) (-5 *1 (-1047 *4 *3)) (-4 *4 (-1150 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1053 *3)) (-4 *3 (-977))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-385 *1)) (-4 *1 (-1150 *3)) (-4 *3 (-977))
+ (-4 *3 (-517))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-517)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4260)) (-4 *1 (-464 *3))
+ (-4 *3 (-1128)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-341) (-138)))
+ (-5 *2 (-592 (-2 (|:| -2168 (-713)) (|:| -1423 *4) (|:| |num| *4))))
+ (-5 *1 (-377 *3 *4)) (-4 *4 (-1150 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818))
+ (-5 *3 (-592 (-525))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1088 (-1088 *4))))
+ (-5 *1 (-1127 *4)) (-5 *3 (-1088 (-1088 *4))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4))))
+ (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-510))))
+ ((*1 *1 *1) (-4 *1 (-986))))
+(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-357)) (-5 *1 (-970)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))))
+(((*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-1015 (-205))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-592 *3)) (-5 *1 (-895 *3)) (-4 *3 (-510)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-695)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5))
+ (-14 *3 (-525)) (-14 *4 (-713)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-592 (-724 *3))) (-5 *1 (-724 *3)) (-4 *3 (-517))
+ (-4 *3 (-977)))))
+(((*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))
+ ((*1 *1 *1 *1) (-4 *1 (-450)))
+ ((*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
+ ((*1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-818))))
+ ((*1 *1 *1) (-5 *1 (-904)))
+ ((*1 *1 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))))
+(((*1 *2 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-510)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33))))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1150 (-385 *2)))
+ (-4 *2 (-1150 *4)) (-5 *1 (-319 *3 *4 *2 *5))
+ (-4 *3 (-320 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1132))
+ (-4 *4 (-1150 (-385 *2))) (-4 *2 (-1150 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4259)) (-4 *1 (-215 *3))
+ (-4 *3 (-1020))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1128)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1015 (-205)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-1015 (-205))))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-800 *4))
+ (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-592
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-735)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789))
+ (-5 *1 (-426 *3 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-132))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2681 *3) (|:| |gap| (-713)) (|:| -1416 (-724 *3))
+ (|:| -3681 (-724 *3))))
+ (-5 *1 (-724 *3)) (-4 *3 (-977))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789))
+ (-5 *2
+ (-2 (|:| -2681 *1) (|:| |gap| (-713)) (|:| -1416 *1)
+ (|:| -3681 *1)))
+ (-4 *1 (-991 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2
+ (-2 (|:| -2681 *1) (|:| |gap| (-713)) (|:| -1416 *1)
+ (|:| -3681 *1)))
+ (-4 *1 (-991 *3 *4 *5)))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-861))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-861))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-862))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-862)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1020) (-33))) (-5 *1 (-1057 *3 *2))
+ (-4 *3 (-13 (-1020) (-33))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
+(((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1015 (-205)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-1015 (-205))))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-242))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-414)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-550 *3)) (-4 *3 (-37 *2))
+ (-4 *3 (-977)))))
+(((*1 *1)
+ (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
+ (-4 *4 (-160)))))
+(((*1 *1)
+ (-12 (-4 *1 (-382)) (-3272 (|has| *1 (-6 -4250)))
+ (-3272 (|has| *1 (-6 -4242)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1020)) (-4 *2 (-789))))
+ ((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1 *1) (-4 *1 (-789))) ((*1 *1) (-5 *1 (-1039))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-977))
+ (-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263)))
+ (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1150 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-856)) (-4 *5 (-977))
+ (-4 *2 (-13 (-382) (-968 *5) (-341) (-1114) (-263)))
+ (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1150 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1075)) (-5 *5 (-632 (-205))) (-5 *6 (-205))
+ (-5 *7 (-632 (-525))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *1) (-12 (-4 *1 (-968 (-525))) (-4 *1 (-281)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1092))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-592 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -3991 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1114) (-27) (-408 *8)))
+ (-4 *8 (-13 (-429) (-789) (-138) (-968 *3) (-588 *3)))
+ (-5 *3 (-525))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3446 *4) (|:| |sol?| (-108))))
+ (-5 *1 (-945 *8 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
+ (-4 *4 (-13 (-789) (-517))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1092)) (-4 *5 (-1132)) (-4 *6 (-1150 *5))
+ (-4 *7 (-1150 (-385 *6))) (-5 *2 (-592 (-887 *5)))
+ (-5 *1 (-319 *4 *5 *6 *7)) (-4 *4 (-320 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1092)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1132))
+ (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5))) (-4 *4 (-341))
+ (-5 *2 (-592 (-887 *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856))
+ (-14 *4 (-856)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *3 (-991 *4 *5 *6))
+ (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1285 *1))))
+ (-4 *1 (-996 *4 *5 *6 *3)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789))
+ (-5 *2 (-2 (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-884 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-977)) (-5 *2 (-2 (|:| -1416 *1) (|:| -3681 *1)))
+ (-4 *1 (-1150 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-713)) (-4 *5 (-977)) (-5 *2 (-525))
+ (-5 *1 (-420 *5 *3 *6)) (-4 *3 (-1150 *5))
+ (-4 *6 (-13 (-382) (-968 *5) (-341) (-1114) (-263)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5))
+ (-4 *3 (-1150 *4))
+ (-4 *5 (-13 (-382) (-968 *4) (-341) (-1114) (-263))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-787) (-341))) (-5 *2 (-108)) (-5 *1 (-987 *4 *3))
+ (-4 *3 (-1150 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1075)) (-5 *2 (-592 (-1097))) (-5 *1 (-815)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2))
+ (-4 *5 (-351 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1128))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *2 *6 *7))
+ (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2 (-2 (|:| -1534 (-110)) (|:| |w| (-205)))) (-5 *1 (-186)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4)) (-4 *4 (-13 (-789) (-517)))
+ (-5 *2 (-798)) (-5 *1 (-31 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1106 *4 *5))
+ (-4 *4 (-1020)) (-4 *5 (-1020)))))
+(((*1 *1 *1) (-5 *1 (-989))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-592 (-632 *6))) (-5 *4 (-108)) (-5 *5 (-525))
+ (-5 *2 (-632 *6)) (-5 *1 (-960 *6)) (-4 *6 (-341)) (-4 *6 (-977))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 (-632 *4))) (-5 *2 (-632 *4)) (-5 *1 (-960 *4))
+ (-4 *4 (-341)) (-4 *4 (-977))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-525)) (-5 *2 (-632 *5))
+ (-5 *1 (-960 *5)) (-4 *5 (-341)) (-4 *5 (-977)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -3736 (-592 *3)) (|:| -1805 (-592 *3))))
+ (-5 *1 (-1129 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1174 (-294 (-205)))) (-5 *2 (-1174 (-294 (-357))))
+ (-5 *1 (-284)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-525))) (-5 *5 (-1 (-1073 *4))) (-4 *4 (-341))
+ (-4 *4 (-977)) (-5 *2 (-1073 *4)) (-5 *1 (-1077 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3))
+ (-5 *1 (-685 *5 *4 *6 *3)) (-4 *3 (-884 *6 *5 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525))))
+ (-5 *2 (-157 (-294 *4))) (-5 *1 (-170 *4 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 (-157 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-157 *3)) (-5 *1 (-1118 *4 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *4))))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-510))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246))))
+ ((*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-789)) (-5 *3 (-592 *6)) (-5 *5 (-592 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-592 *5)) (|:| |f3| *5)
+ (|:| |f4| (-592 *5))))
+ (-5 *1 (-1100 *6)) (-5 *4 (-592 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-977))))
+ ((*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-632 *5))) (-4 *5 (-286)) (-4 *5 (-977))
+ (-5 *2 (-1174 (-1174 *5))) (-5 *1 (-960 *5)) (-5 *4 (-1174 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1092))
+ (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *4 *5))
+ (-4 *5 (-13 (-27) (-1114) (-408 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *4 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-385 (-525)))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *5 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5)))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525)))
+ (-4 *3 (-13 (-27) (-1114) (-408 *6)))
+ (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6))
+ (-4 *6 (-13 (-27) (-1114) (-408 *5)))
+ (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *6)))
+ (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1141 (-525)))
+ (-4 *7 (-13 (-27) (-1114) (-408 *6)))
+ (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-525)))
+ (-4 *3 (-13 (-27) (-1114) (-408 *7)))
+ (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8))
+ (-5 *5 (-1141 (-385 (-525)))) (-5 *6 (-385 (-525)))
+ (-4 *8 (-13 (-27) (-1114) (-408 *7)))
+ (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-385 (-525))))
+ (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1114) (-408 *8)))
+ (-4 *8 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *8 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *3))))
+ (-4 *3 (-977)) (-5 *1 (-550 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-551 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *3))))
+ (-4 *3 (-977)) (-4 *1 (-1134 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-713))
+ (-5 *3 (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4))))
+ (-4 *4 (-977)) (-4 *1 (-1155 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-4 *1 (-1165 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1073 (-2 (|:| |k| (-713)) (|:| |c| *3))))
+ (-4 *3 (-977)) (-4 *1 (-1165 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4))
+ (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6)))
+ (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-968 (-525))))
+ (-5 *2 (-2 (|:| -4000 (-713)) (|:| -2626 *8)))
+ (-5 *1 (-846 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6))
+ (-4 *4 (-1150 (-385 (-525)))) (-4 *5 (-1150 (-385 *4)))
+ (-4 *6 (-320 (-385 (-525)) *4 *5))
+ (-5 *2 (-2 (|:| -4000 (-713)) (|:| -2626 *6)))
+ (-5 *1 (-847 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-592
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-525)))))
+ (-5 *1 (-396 *3)) (-4 *3 (-517))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-713)) (-4 *3 (-327)) (-4 *5 (-1150 *3))
+ (-5 *2 (-592 (-1088 *3))) (-5 *1 (-471 *3 *5 *6))
+ (-4 *6 (-1150 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1051 *4 *2))
+ (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4259) (-6 -4260))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-789)) (-4 *3 (-1128)) (-5 *1 (-1051 *3 *2))
+ (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4259) (-6 -4260)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-909 *4 *5 *6 *3)) (-4 *4 (-977)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-429)) (-4 *4 (-789))
+ (-4 *5 (-735)) (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-713)) (-4 *5 (-517))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-903 *5 *3)) (-4 *3 (-1150 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-157 (-205))) (-5 *4 (-525)) (-5 *2 (-966))
+ (-5 *1 (-701)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-51)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 (-1092))) (-4 *4 (-1020))
+ (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4))))
+ (-5 *1 (-53 *4 *5 *2))
+ (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-1174 *5)) (-4 *5 (-286))
+ (-4 *5 (-977)) (-5 *2 (-632 *5)) (-5 *1 (-960 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327))
+ (-4 *2
+ (-13 (-380)
+ (-10 -7 (-15 -4100 (*2 *4)) (-15 -3685 ((-856) *2))
+ (-15 -2103 ((-1174 *2) (-856))) (-15 -2363 (*2 *2)))))
+ (-5 *1 (-334 *2 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-977))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092))))
+ (-4 *6 (-735)) (-5 *2 (-592 (-592 (-525))))
+ (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-525)) (-4 *7 (-884 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
+ (-4 *3 (-13 (-341) (-1114) (-934)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1150 (-385 *2)))
+ (-4 *2 (-1150 *4)) (-5 *1 (-319 *3 *4 *2 *5))
+ (-4 *3 (-320 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1132))
+ (-4 *4 (-1150 (-385 *2))) (-4 *2 (-1150 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2772 (-724 *3)) (|:| |coef2| (-724 *3))))
+ (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-2 (|:| -2772 *1) (|:| |coef2| *1)))
+ (-4 *1 (-991 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1092)) (-5 *2 (-1 (-205) (-205))) (-5 *1 (-646 *3))
+ (-4 *3 (-567 (-501)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1092)) (-5 *2 (-1 (-205) (-205) (-205)))
+ (-5 *1 (-646 *3)) (-4 *3 (-567 (-501))))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1032)) (-4 *3 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-408 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3))
+ (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-592 *1)) (-4 *1 (-884 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977))
+ (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-592 *3))
+ (-5 *1 (-885 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-341)
+ (-10 -8 (-15 -4100 ($ *7)) (-15 -4066 (*7 $))
+ (-15 -4080 (*7 $))))))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-385 *6))
+ (-5 *1 (-802 *5 *4 *6)) (-4 *4 (-1165 *5)) (-4 *6 (-1150 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1166 *5 *6 *7)) (-4 *5 (-341))
+ (-14 *6 (-1092)) (-14 *7 *5) (-5 *2 (-385 (-1147 *6 *5)))
+ (-5 *1 (-803 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1166 *5 *6 *7)) (-4 *5 (-341))
+ (-14 *6 (-1092)) (-14 *7 *5) (-5 *2 (-385 (-1147 *6 *5)))
+ (-5 *1 (-803 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-481 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-789)))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-146))))
+ ((*1 *2 *1) (-12 (-5 *2 (-146)) (-5 *1 (-809))))
+ ((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
+(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1015 (-782 (-357)))) (-5 *2 (-1015 (-782 (-205))))
+ (-5 *1 (-284)))))
+(((*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-525))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-840 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341)))
+ (-4 *3 (-1150 *4)) (-5 *2 (-525))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-517) (-789) (-968 *2) (-588 *2) (-429)))
+ (-5 *2 (-525)) (-5 *1 (-1035 *4 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-782 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *6)))
+ (-4 *6 (-13 (-517) (-789) (-968 *2) (-588 *2) (-429)))
+ (-5 *2 (-525)) (-5 *1 (-1035 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-1075))
+ (-4 *6 (-13 (-517) (-789) (-968 *2) (-588 *2) (-429)))
+ (-5 *2 (-525)) (-5 *1 (-1035 *6 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-429)) (-5 *2 (-525))
+ (-5 *1 (-1036 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-782 (-385 (-887 *6))))
+ (-5 *3 (-385 (-887 *6))) (-4 *6 (-429)) (-5 *2 (-525))
+ (-5 *1 (-1036 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-385 (-887 *6))) (-5 *4 (-1092))
+ (-5 *5 (-1075)) (-4 *6 (-429)) (-5 *2 (-525)) (-5 *1 (-1036 *6))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1111 *3)) (-4 *3 (-977)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1088 *1)) (-4 *1 (-944)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-780)) (-5 *4 (-989)) (-5 *2 (-966)) (-5 *1 (-779))))
+ ((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-966)) (-5 *1 (-779))))
+ ((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-592 (-357))) (-5 *5 (-592 (-782 (-357))))
+ (-5 *6 (-592 (-294 (-357)))) (-5 *3 (-294 (-357))) (-5 *2 (-966))
+ (-5 *1 (-779))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357)))
+ (-5 *5 (-592 (-782 (-357)))) (-5 *2 (-966)) (-5 *1 (-779))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357))) (-5 *2 (-966))
+ (-5 *1 (-779))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357)))
+ (-5 *2 (-966)) (-5 *1 (-779)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1088 (-887 *6))) (-4 *6 (-517))
+ (-4 *2 (-884 (-385 (-887 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2))
+ (-4 *5 (-735))
+ (-4 *4 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $))))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1015 (-782 (-205)))) (-5 *1 (-284)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
+ ((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))))
+ (-5 *2 (-592 (-205))) (-5 *1 (-284)))))
+(((*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-938)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
+ (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1174 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-108))
+ (-5 *1 (-1199 *4)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-341)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 (-385 *3)))
+ (-4 *1 (-313 *4 *3 *5 *2)) (-4 *2 (-320 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-525)) (-4 *2 (-341)) (-4 *4 (-1150 *2))
+ (-4 *5 (-1150 (-385 *4))) (-4 *1 (-313 *2 *4 *5 *6))
+ (-4 *6 (-320 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-341)) (-4 *3 (-1150 *2)) (-4 *4 (-1150 (-385 *3)))
+ (-4 *1 (-313 *2 *3 *4 *5)) (-4 *5 (-320 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4)))
+ (-4 *1 (-313 *3 *4 *5 *2)) (-4 *2 (-320 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-391 *4 (-385 *4) *5 *6)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-4 *3 (-341))
+ (-4 *1 (-313 *3 *4 *5 *6)))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-1024)) (-5 *1 (-270)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-1092))) (-4 *4 (-13 (-286) (-138)))
+ (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735))
+ (-5 *2 (-592 (-385 (-887 *4)))) (-5 *1 (-859 *4 *5 *6 *7))
+ (-4 *7 (-884 *4 *6 *5)))))
+(((*1 *2)
+ (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1088 *3)) (-4 *3 (-977)) (-4 *1 (-1150 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-1124 *3))
+ (-4 *3 (-907)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1150 *4)) (-4 *4 (-1132))
+ (-4 *6 (-1150 (-385 *5)))
+ (-5 *2
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-320 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1150 *3)) (-4 *3 (-977)) (-5 *2 (-1088 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-592 (-592 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-592 (-592 *5)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-592 *3))) (-5 *1 (-1101 *3)) (-4 *3 (-1020)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789))))
+ ((*1 *1) (-4 *1 (-1068))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
+ (-5 *2 (-632 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4))
+ (-4 *3 (-395 *4))))
+ ((*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -1257 (-357)) (|:| -2411 (-1075))
+ (|:| |explanations| (-592 (-1075)))))
+ (-5 *2 (-966)) (-5 *1 (-284))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -1257 (-357)) (|:| -2411 (-1075))
+ (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))))
+ (-5 *2 (-966)) (-5 *1 (-284)))))
+(((*1 *2)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 (-385 (-525))))
+ (-5 *2
+ (-592
+ (-2 (|:| |outval| *4) (|:| |outmult| (-525))
+ (|:| |outvect| (-592 (-632 *4))))))
+ (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-1103 *2)) (-4 *2 (-341)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966))
+ (-5 *1 (-691)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -3801 *3) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3))))
+ (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-525)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *2 (-1179)) (-5 *1 (-426 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *1) (-12 (-4 *1 (-233 *3)) (-4 *3 (-1128)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-713))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-977))
+ (-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263)))
+ (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1150 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-565 *3)) (-4 *3 (-789))))
+ ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-255 *4 *3))
+ (-4 *3 (-13 (-408 *4) (-934))))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1057 *5 *6)) (-5 *4 (-1 (-108) *6 *6))
+ (-4 *5 (-13 (-1020) (-33))) (-4 *6 (-13 (-1020) (-33)))
+ (-5 *2 (-108)) (-5 *1 (-1058 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1020) (-968 *5)))
+ (-4 *5 (-821 *4)) (-4 *4 (-1020)) (-5 *2 (-1 (-108) *5))
+ (-5 *1 (-866 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *1 (-327))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-798)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713))
+ (-14 *4 (-713)) (-4 *5 (-160)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-385 (-525)))
+ (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-856)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))))
+ ((*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1150 *2)) (-4 *2 (-160))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1174 *4)) (-5 *3 (-856)) (-4 *4 (-327))
+ (-5 *1 (-495 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
+ (-4 *5 (-218 *3 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-517) (-138))) (-5 *2 (-592 *3))
+ (-5 *1 (-1144 *4 *3)) (-4 *3 (-1150 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-117 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-1088 *4)) (-5 *1 (-495 *4))
+ (-4 *4 (-327)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1150 *5))
+ (-4 *7 (-1150 (-385 *6))) (-4 *8 (-320 *5 *6 *7))
+ (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-108))
+ (-5 *1 (-846 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6))
+ (-4 *4 (-1150 (-385 (-525)))) (-4 *5 (-1150 (-385 *4)))
+ (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-108))
+ (-5 *1 (-847 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3446 *6) (|:| |sol?| (-108))) (-525)
+ *6))
+ (-4 *6 (-341)) (-4 *7 (-1150 *6))
+ (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6)))
+ (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-108)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205)))
+ (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205))))
+ (|:| |ub| (-592 (-782 (-205))))))
+ (-5 *1 (-246)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1092)) (-5 *2 (-501)) (-5 *1 (-500 *4))
+ (-4 *4 (-1128)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092))
+ (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-893)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-798))) ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1) (-5 *1 (-798)))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1073 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-977)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092))))
+ (-4 *6 (-735)) (-5 *2 (-385 (-887 *4))) (-5 *1 (-859 *4 *5 *6 *3))
+ (-4 *3 (-884 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-632 *7)) (-4 *7 (-884 *4 *6 *5))
+ (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092))))
+ (-4 *6 (-735)) (-5 *2 (-632 (-385 (-887 *4))))
+ (-5 *1 (-859 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *6 *5))
+ (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092))))
+ (-4 *6 (-735)) (-5 *2 (-592 (-385 (-887 *4))))
+ (-5 *1 (-859 *4 *5 *6 *7)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-477 *3 *4 *5 *6))) (-4 *3 (-341)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
+ (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-996 *4 *5 *6 *7))
+ (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1))
+ (-4 *1 (-996 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525)))))
+ (-4 *2 (-13 (-789) (-21))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-301 *4 *2)) (-4 *4 (-1020))
+ (-4 *2 (-126)))))
+(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-357))))
+ ((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-357)))))
+(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
+ (-4 *3 (-13 (-341) (-1114) (-934))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-445)) (-5 *4 (-856)) (-5 *2 (-1179)) (-5 *1 (-1175)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-308)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138)))
+ (-5 *1 (-1144 *4 *2)) (-4 *2 (-1150 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5)))
+ (-5 *2 (-592 (-592 *4))) (-5 *1 (-319 *3 *4 *5 *6))
+ (-4 *3 (-320 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-4 *3 (-346)) (-5 *2 (-592 (-592 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525)))))
+ (-4 *2 (-13 (-789) (-21))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-592 (-592 *7)))
+ (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735))
+ (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-592 (-592 *8)))
+ (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-592 (-592 *7)))
+ (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735))
+ (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-592 (-592 *8)))
+ (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-798) (-798) (-798))) (-5 *4 (-525)) (-5 *2 (-798))
+ (-5 *1 (-595 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-798)) (-5 *1 (-793 *3 *4 *5)) (-4 *3 (-977))
+ (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-798))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-798))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-798))))
+ ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1088 *3)) (-4 *3 (-977)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341))
+ (-4 *1 (-667 *5 *6)) (-4 *5 (-160)) (-4 *6 (-1150 *5))
+ (-5 *2 (-632 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))))
+(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-827 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1128)) (-5 *2 (-713)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4260)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *1 *1 *1) (-5 *1 (-205)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970))))
+ ((*1 *1 *1 *1) (-4 *1 (-1056))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-341))
+ (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *1 (-427 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-341))
+ (-5 *2
+ (-2 (|:| R (-632 *6)) (|:| A (-632 *6)) (|:| |Ainv| (-632 *6))))
+ (-5 *1 (-911 *6)) (-5 *3 (-632 *6)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-284))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |num| (-827 *3)) (|:| |den| (-827 *3))))
+ (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3446 *6) (|:| |sol?| (-108))) (-525)
+ *6))
+ (-4 *6 (-341)) (-4 *7 (-1150 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6))
+ (-2 (|:| -3991 (-385 *7)) (|:| |coeff| (-385 *7))) "failed"))
+ (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-187))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 (-357))) (-5 *2 (-357)) (-5 *1 (-187)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-713)) (-4 *5 (-517))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-903 *5 *3)) (-4 *3 (-1150 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1020))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-525)) (-5 *2 (-1073 *3)) (-5 *1 (-1077 *3))
+ (-4 *3 (-977))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-761 *4)) (-4 *4 (-789)) (-4 *1 (-1189 *4 *3))
+ (-4 *3 (-977)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-592 *1))
+ (-4 *1 (-360 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-678 *3 *4))) (-5 *1 (-678 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-669))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-884 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-592
+ (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 *2))
+ (|:| |logand| (-1088 *2)))))
+ (-5 *4 (-592 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-341)) (-5 *1 (-542 *2)))))
+(((*1 *2)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
(((*1 *1 *1 *2)
(-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734))
(-4 *2 (-341))))
((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-205))))
((*1 *1 *1 *1)
- (-3254 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1128)))
+ (-2067 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1128)))
(-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1128)))))
((*1 *1 *1 *1) (-4 *1 (-341)))
((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357))))
@@ -773,53 +8079,44 @@
((*1 *1 *1 *2)
(-12 (-5 *1 (-1195 *2 *3)) (-4 *2 (-341)) (-4 *2 (-977))
(-4 *3 (-785)))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-849 *3)) (-4 *3 (-286)))))
-(((*1 *1) (-5 *1 (-132))))
-(((*1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1107)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
-(((*1 *1 *1) (-4 *1 (-510))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-975)))))
-(((*1 *2) (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1177))))
- ((*1 *2 *2) (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1177)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-138))
+ (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-910 *3 *4 *5 *6)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1068))))
+(((*1 *1) (-5 *1 (-132))) ((*1 *1 *1) (-5 *1 (-135)))
+ ((*1 *1 *1) (-4 *1 (-1061))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-98 *3)) (-4 *3 (-1020)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-991 *5 *6 *7))
- (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8))))
- (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-592 *8)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242))))
- ((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))
- ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))))
-(((*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1095)))))
-(((*1 *1) (-5 *1 (-146))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977))
- (-14 *4 (-592 (-1092)))))
+ (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-592 (-1092))) (-4 *5 (-517))
+ (-5 *2 (-592 (-592 (-273 (-385 (-887 *5)))))) (-5 *1 (-712 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1128))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789)))
- (-14 *4 (-592 (-1092)))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-828 *3)) (-4 *3 (-789)))))
-(((*1 *2 *2)
- (-12
+ (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-517))
+ (-5 *2 (-592 (-592 (-273 (-385 (-887 *4)))))) (-5 *1 (-712 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-632 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2103 (-592 *6)))
+ *7 *6))
+ (-4 *6 (-341)) (-4 *7 (-602 *6))
(-5 *2
- (-477 (-385 (-525)) (-220 *4 (-713)) (-800 *3)
- (-227 *3 (-385 (-525)))))
- (-14 *3 (-592 (-1092))) (-14 *4 (-713)) (-5 *1 (-478 *3 *4)))))
+ (-2 (|:| |particular| (-3 (-1174 *6) "failed"))
+ (|:| -2103 (-592 (-1174 *6)))))
+ (-5 *1 (-755 *6 *7)) (-5 *4 (-1174 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-517))))
+ ((*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1073 (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1077 *4))
+ (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-977)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-128)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-195 *2))
(-4 *2
(-13 (-789)
- (-10 -8 (-15 -3406 ((-1075) $ (-1092))) (-15 -2736 ((-1179) $))
- (-15 -1934 ((-1179) $)))))))
+ (-10 -8 (-15 -3431 ((-1075) $ (-1092))) (-15 -2701 ((-1179) $))
+ (-15 -3686 ((-1179) $)))))))
((*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1128))))
((*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1128))))
((*1 *1 *1 *1)
@@ -839,81 +8136,86 @@
((*1 *2 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1125))))
((*1 *1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-21))))
((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-21)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
- (-4 *4 (-351 *2)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1174 *4)) (-4 *4 (-588 *5)) (-4 *5 (-341))
- (-4 *5 (-517)) (-5 *2 (-1174 *5)) (-5 *1 (-587 *5 *4))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-385 (-887 *6)) (-1082 (-1092) (-887 *6))))
+ (-5 *5 (-713)) (-4 *6 (-429)) (-5 *2 (-592 (-632 (-385 (-887 *6)))))
+ (-5 *1 (-271 *6)) (-5 *4 (-632 (-385 (-887 *6))))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1174 *4)) (-4 *4 (-588 *5))
- (-1850 (-4 *5 (-341))) (-4 *5 (-517)) (-5 *2 (-1174 (-385 *5)))
- (-5 *1 (-587 *5 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1088 *1)) (-5 *3 (-1092)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1088 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-887 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1092)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517))))))
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-385 (-887 *5)) (-1082 (-1092) (-887 *5))))
+ (|:| |eigmult| (-713)) (|:| |eigvec| (-592 *4))))
+ (-4 *5 (-429)) (-5 *2 (-592 (-632 (-385 (-887 *5)))))
+ (-5 *1 (-271 *5)) (-5 *4 (-632 (-385 (-887 *5)))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-1174 (-632 *4))) (-5 *1 (-88 *4 *5))
+ (-5 *3 (-632 *4)) (-4 *5 (-602 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3))
- (-4 *3 (-901)))))
+ (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1618 (-525)))))
+ (-5 *1 (-339 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1618 (-713)))))
+ (-5 *1 (-364 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-2 (|:| -4201 *3) (|:| -2168 (-525)))))
+ (-5 *1 (-396 *3)) (-4 *3 (-517))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1618 (-713)))))
+ (-5 *1 (-761 *3)) (-4 *3 (-789)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1088 *6)) (-5 *3 (-525)) (-4 *6 (-286)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-221))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-1179)) (-5 *1 (-221)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-205)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1020)) (-4 *4 (-1020))
- (-4 *6 (-1020)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *5 *4 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-592 (-1088 *7))) (-5 *3 (-1088 *7))
- (-4 *7 (-884 *5 *6 *4)) (-4 *5 (-844)) (-4 *6 (-735))
- (-4 *4 (-789)) (-5 *1 (-841 *5 *6 *4 *7)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-565 *3)) (-5 *5 (-1088 *3))
- (-4 *3 (-13 (-408 *6) (-27) (-1114)))
- (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1088 *3)))
- (-4 *3 (-13 (-408 *6) (-27) (-1114)))
- (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-517)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1150 *2)))))
+ (-12 (-5 *4 (-525)) (-4 *2 (-408 *3)) (-5 *1 (-31 *3 *2))
+ (-4 *3 (-968 *4)) (-4 *3 (-13 (-789) (-517))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *4 (-713))
- (-5 *2 (-632 (-205))) (-5 *1 (-246)))))
-(((*1 *2 *3) (-12 (-5 *2 (-357)) (-5 *1 (-727 *3)) (-4 *3 (-567 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-856)) (-5 *2 (-357)) (-5 *1 (-727 *3))
- (-4 *3 (-567 *2))))
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092))
+ (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5))))
+ (-5 *1 (-1048 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 *2))
- (-5 *2 (-357)) (-5 *1 (-727 *4))))
+ (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-13 (-286) (-789) (-138)))
+ (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1048 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977))
- (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5))))
+ (-12 (-5 *3 (-273 (-385 (-887 *5)))) (-5 *4 (-1092))
+ (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5))))
+ (-5 *1 (-1048 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-4 *4 (-567 *2))
- (-5 *2 (-357)) (-5 *1 (-727 *4))))
+ (-12 (-5 *3 (-273 (-385 (-887 *4))))
+ (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *4))))
+ (-5 *1 (-1048 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517))
- (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5))))
+ (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1092)))
+ (-4 *5 (-13 (-286) (-789) (-138)))
+ (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1048 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789))
- (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4))))
+ (-12 (-5 *3 (-592 (-385 (-887 *4))))
+ (-4 *4 (-13 (-286) (-789) (-138)))
+ (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1048 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789))
- (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-764)))))
+ (-12 (-5 *3 (-592 (-273 (-385 (-887 *5))))) (-5 *4 (-592 (-1092)))
+ (-4 *5 (-13 (-286) (-789) (-138)))
+ (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1048 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-273 (-385 (-887 *4)))))
+ (-4 *4 (-13 (-286) (-789) (-138)))
+ (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1048 *4)))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-146)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-195 *2))
(-4 *2
(-13 (-789)
- (-10 -8 (-15 -3406 ((-1075) $ (-1092))) (-15 -2736 ((-1179) $))
- (-15 -1934 ((-1179) $)))))))
+ (-10 -8 (-15 -3431 ((-1075) $ (-1092))) (-15 -2701 ((-1179) $))
+ (-15 -3686 ((-1179) $)))))))
((*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1128))))
((*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1128))))
((*1 *1 *2 *1)
@@ -936,515 +8238,1772 @@
(-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3))))
((*1 *2 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1125))))
((*1 *1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-25)))))
+(((*1 *1 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-901)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-395 *4)))))
+ (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
+ (-5 *1 (-921 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
+ (-5 *1 (-1027 *3 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-138))
+ (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-910 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-341)) (-4 *3 (-977))
+ (-5 *1 (-1077 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-551 *3)) (-4 *3 (-977))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-906 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-734))
+ (-4 *5 (-789)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |cd| (-1075)) (|:| -2411 (-1075))))
+ (-5 *1 (-764)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1092)) (-4 *5 (-341)) (-5 *2 (-592 (-1123 *5)))
- (-5 *1 (-1182 *5)) (-5 *4 (-1123 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1092)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-308))))
- ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-308)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861))))
- ((*1 *2 *1) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862)))))
-(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205)))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))) (-5 *4 (-205))
- (-5 *2 (-966)) (-5 *1 (-699)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (-5 *2 (-357)) (-5 *1 (-187)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4))
+ (-12 (-4 *7 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517))
+ (-4 *8 (-884 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2168 (-713)) (|:| -2681 *3) (|:| |radicand| *3)))
+ (-5 *1 (-888 *5 *6 *7 *8 *3)) (-5 *4 (-713))
+ (-4 *3
+ (-13 (-341)
+ (-10 -8 (-15 -4066 (*8 $)) (-15 -4080 (*8 $)) (-15 -4100 ($ *8))))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1092)) (-5 *6 (-108))
+ (-4 *7 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-4 *3 (-13 (-1114) (-893) (-29 *7)))
(-5 *2
- (-3 (|:| |overq| (-1088 (-385 (-525))))
- (|:| |overan| (-1088 (-47))) (|:| -4159 (-108))))
- (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1150 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
+ (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-199 *7 *3)) (-5 *5 (-782 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-530 *3)) (-4 *3 (-968 (-525)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-690)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
+ (-4 *4 (-351 *2)))))
+(((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-977))
+ (-5 *1 (-792 *5 *2)) (-4 *2 (-791 *5)))))
+(((*1 *1 *1) (-4 *1 (-510))))
+(((*1 *2)
+ (-12 (-5 *2 (-1179)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1165 *4))
- (-4 *4 (-37 (-385 (-525))))
- (-5 *2 (-1 (-1073 *4) (-1073 *4) (-1073 *4))) (-5 *1 (-1167 *4 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1150 (-385 (-525)))) (-5 *1 (-848 *3 *2))
- (-4 *2 (-1150 (-385 *3))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))))
+ (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1092))
+ (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))))
+(((*1 *1) (-5 *1 (-1095))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-782 (-205)))) (-5 *4 (-205)) (-5 *2 (-592 *4))
+ (-5 *1 (-246)))))
+(((*1 *1 *1) (-4 *1 (-804 *2))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2))
+ (-4 *2 (-1150 *4)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641))))
+ ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -1534 (-110)) (|:| |arg| (-592 (-827 *3)))))
+ (-5 *1 (-827 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-827 *4)))
+ (-5 *1 (-827 *4)) (-4 *4 (-1020)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-798)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1020)) (-5 *2 (-108)) (-5 *1 (-820 *3 *4 *5))
+ (-4 *3 (-1020)) (-4 *5 (-612 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-824 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-341)) (-4 *3 (-977))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3817 *1)))
+ (-4 *1 (-791 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205))
+ (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-385 (-887 (-157 (-525))))))
+ (-5 *2 (-592 (-592 (-273 (-887 (-157 *4)))))) (-5 *1 (-356 *4))
+ (-4 *4 (-13 (-341) (-787)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-273 (-385 (-887 (-157 (-525)))))))
+ (-5 *2 (-592 (-592 (-273 (-887 (-157 *4)))))) (-5 *1 (-356 *4))
+ (-4 *4 (-13 (-341) (-787)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 (-157 (-525)))))
+ (-5 *2 (-592 (-273 (-887 (-157 *4))))) (-5 *1 (-356 *4))
+ (-4 *4 (-13 (-341) (-787)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-273 (-385 (-887 (-157 (-525))))))
+ (-5 *2 (-592 (-273 (-887 (-157 *4))))) (-5 *1 (-356 *4))
+ (-4 *4 (-13 (-341) (-787))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108))))
+ ((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-809)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))
- (-5 *2 (-357)) (-5 *1 (-246))))
+ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-174)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4259)) (-4 *1 (-33)) (-5 *2 (-713))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-525))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-713)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-785)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3))
+ (-4 *3 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-385 *5)) (-4 *4 (-1132)) (-4 *5 (-1150 *4))
+ (-5 *1 (-139 *4 *5 *2)) (-4 *2 (-1150 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1174 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-284)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4259)) (-4 *1 (-224 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128))))
+ (-12 (-5 *3 (-1094 (-385 (-525)))) (-5 *2 (-385 (-525)))
+ (-5 *1 (-172))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-632 (-294 (-205)))) (-5 *3 (-592 (-1092)))
+ (-5 *4 (-1174 (-294 (-205)))) (-5 *1 (-187))))
((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4259)) (-4 *1 (-1162 *2)) (-4 *2 (-1128))))
+ (-12 (-5 *2 (-592 (-273 *3))) (-4 *3 (-288 *3)) (-4 *3 (-1020))
+ (-4 *3 (-1128)) (-5 *1 (-273 *3))))
((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4259)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-3 *3 (-592 *1)))
- (-4 *1 (-996 *4 *5 *6 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-108) *7 (-592 *7))) (-4 *1 (-1122 *4 *5 *6 *7))
- (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6))
- (-5 *2 (-108)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-308))))
- ((*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-308))))
- ((*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-308))))
- ((*1 *1 *2) (-12 (-5 *2 (-294 (-636))) (-5 *1 (-308))))
- ((*1 *1 *2) (-12 (-5 *2 (-294 (-643))) (-5 *1 (-308))))
- ((*1 *1 *2) (-12 (-5 *2 (-294 (-641))) (-5 *1 (-308))))
- ((*1 *1) (-5 *1 (-308))))
-(((*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-592 (-1088 *7))) (-5 *3 (-1088 *7))
- (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-844)) (-4 *5 (-735))
- (-4 *6 (-789)) (-5 *1 (-841 *4 *5 *6 *7))))
+ (-12 (-4 *2 (-288 *2)) (-4 *2 (-1020)) (-4 *2 (-1128))
+ (-5 *1 (-273 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-592 *1))) (-4 *1 (-281))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 (-1 *1 (-592 *1))))
+ (-4 *1 (-281))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-1 *1 (-592 *1))) (-4 *1 (-281))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-592 (-1 *1 (-592 *1))))
+ (-4 *1 (-281))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-273 *3))) (-4 *1 (-288 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-273 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-525))) (-5 *4 (-1094 (-385 (-525))))
+ (-5 *1 (-289 *2)) (-4 *2 (-37 (-385 (-525))))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 *1)) (-4 *1 (-352 *4 *5))
+ (-4 *4 (-789)) (-4 *5 (-160))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-713)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-977))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-713)) (-5 *4 (-1 *1 (-592 *1)))
+ (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-977))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-592 (-713)))
+ (-5 *4 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-408 *5)) (-4 *5 (-789))
+ (-4 *5 (-977))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-592 (-713)))
+ (-5 *4 (-592 (-1 *1 *1))) (-4 *1 (-408 *5)) (-4 *5 (-789))
+ (-4 *5 (-977))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 *1)) (-5 *4 (-1092))
+ (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-567 (-501)))))
+ ((*1 *1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-1092)) (-4 *1 (-408 *4)) (-4 *4 (-789))
+ (-4 *4 (-567 (-501)))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-567 (-501)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-1092))) (-4 *1 (-408 *3)) (-4 *3 (-789))
+ (-4 *3 (-567 (-501)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789))
+ (-4 *3 (-567 (-501)))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 *5)) (-4 *1 (-486 *4 *5))
+ (-4 *4 (-1020)) (-4 *5 (-1128))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-775 *3)) (-4 *3 (-341)) (-5 *1 (-661 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1020))))
+ ((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-385 (-887 *4))) (-5 *3 (-1092)) (-4 *4 (-517))
+ (-5 *1 (-973 *4))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-1092))) (-5 *4 (-592 (-385 (-887 *5))))
+ (-5 *2 (-385 (-887 *5))) (-4 *5 (-517)) (-5 *1 (-973 *5))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-592 (-1088 *5))) (-5 *3 (-1088 *5))
- (-4 *5 (-1150 *4)) (-4 *4 (-844)) (-5 *1 (-842 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-525))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819)))) (-5 *2 (-966))
- (-5 *1 (-691)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2))
- (-4 *2 (-1165 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1150 *3))
- (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1165 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2))
- (-4 *2 (-1165 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-517) (-138)))
- (-5 *1 (-1069 *3)))))
-(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177))))
- ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525)))))
- (-4 *3 (-1150 *4)) (-5 *1 (-751 *4 *3 *2 *5)) (-4 *2 (-602 *3))
- (-4 *5 (-602 (-385 *3)))))
+ (-12 (-5 *3 (-273 (-385 (-887 *4)))) (-5 *2 (-385 (-887 *4)))
+ (-4 *4 (-517)) (-5 *1 (-973 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-385 *5))
- (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-1150 *4))
- (-5 *1 (-751 *4 *5 *2 *6)) (-4 *2 (-602 *5)) (-4 *6 (-602 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1092)) (-5 *4 (-887 (-525))) (-5 *2 (-308))
- (-5 *1 (-310)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-308)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2 (-1073 (-205))) (-5 *1 (-174))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1092)))
- (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-1073 (-205))) (-5 *1 (-279))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1174 (-294 (-205)))) (-5 *4 (-592 (-1092)))
- (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-1073 (-205))) (-5 *1 (-279)))))
-(((*1 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-510)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108))))
- ((*1 *1 *1 *1) (-5 *1 (-798))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-161 *6))
- (-5 *1 (-802 *5 *4 *6)) (-4 *4 (-1165 *5)) (-4 *6 (-1150 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-242))) (-5 *4 (-1092)) (-5 *2 (-108))
- (-5 *1 (-242)))))
+ (-12 (-5 *3 (-592 (-273 (-385 (-887 *4))))) (-5 *2 (-385 (-887 *4)))
+ (-4 *4 (-517)) (-5 *1 (-973 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1152 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1073 *3)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1075)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
+ (-4 *4 (-991 *6 *7 *8)) (-5 *2 (-1179))
+ (-5 *1 (-718 *6 *7 *8 *4 *5)) (-4 *5 (-996 *6 *7 *8 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4)))
+ (-5 *2 (-2 (|:| |num| (-1174 *4)) (|:| |den| *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-308)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *2 (-789)) (-4 *5 (-991 *3 *4 *2)))))
+ (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
- (-4 *4 (-977)))))
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2 (-592 (-205))) (-5 *1 (-186)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1150 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-517)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1141 (-525))) (-4 *1 (-261 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1128)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108))))
((*1 *1 *1 *1) (-5 *1 (-798)))
((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))))
-(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-221)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-977)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429))
- (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-910 *3 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176))))
- ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *6 (-205))
- (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-695)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-525))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966))
- (-5 *1 (-691)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-1092))
+ (-4 *2 (-13 (-27) (-1114) (-408 *5)))
+ (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-256 *5 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-254)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))))
+(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-146)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1285 *4))))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-592 (-294 (-205))))
- (|:| |constraints|
- (-592
- (-2 (|:| |start| (-205)) (|:| |finish| (-205))
- (|:| |grid| (-713)) (|:| |boundaryType| (-525))
- (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205))))))
- (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075))
- (|:| |tol| (-205))))
- (-5 *2 (-108)) (-5 *1 (-192)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *4 (-1020)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205)))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1))))
+ (-5 *2 (-966)) (-5 *1 (-696)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25))))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108))))
((*1 *1 *1 *1) (-5 *1 (-798))))
-(((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-501))) (-5 *1 (-501)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1150 *2)) (-4 *2 (-1132)) (-5 *1 (-139 *2 *4 *3))
- (-4 *3 (-1150 (-385 *4))))))
-(((*1 *1 *1 *1) (-4 *1 (-134)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-517))
- (-5 *2 (-2 (|:| -3407 (-632 *5)) (|:| |vec| (-1174 (-592 (-856))))))
- (-5 *1 (-88 *5 *3)) (-5 *4 (-856)) (-4 *3 (-602 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-1018 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1128)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *3 (-592 (-809)))
- (-5 *1 (-445)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))
- (-5 *2 (-966)) (-5 *1 (-692))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))
- (-5 *8 (-366)) (-5 *2 (-966)) (-5 *1 (-692)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-110)) (-4 *4 (-977)) (-5 *1 (-657 *4 *2))
- (-4 *2 (-594 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-776 *2)) (-4 *2 (-977)))))
+ (-12 (-5 *3 (-856)) (-5 *1 (-963 *2))
+ (-4 *2 (-13 (-1020) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-977)) (-4 *2 (-1020)))))
+(((*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4))
+ (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-160)) (-4 *2 (-977)) (-5 *1 (-657 *2 *3))
+ (-4 *3 (-594 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-160)) (-4 *2 (-977)) (-5 *1 (-657 *2 *3))
+ (-4 *3 (-594 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-977))))
+ ((*1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-977)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-543 *2)) (-4 *2 (-510)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-798)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713))
- (-14 *4 (-713)) (-4 *5 (-160)))))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-525))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1174 *5)) (-4 *5 (-734)) (-5 *2 (-108))
+ (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108))))
((*1 *1 *1 *1) (-5 *1 (-798)))
((*1 *2 *1 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1020)) (-5 *2 (-108))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1020)) (-5 *2 (-108)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-977)) (-5 *2 (-1174 *3)) (-5 *1 (-655 *3 *4))
- (-4 *4 (-1150 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1150 *2)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4))))
- (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-713)) (-4 *5 (-517))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341))
+ (-5 *2 (-2 (|:| -3991 (-385 *6)) (|:| |coeff| (-385 *6))))
+ (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-690)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1024)) (-5 *1 (-259)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092))))
+ (-4 *6 (-735)) (-4 *7 (-884 *4 *6 *5))
(-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-903 *5 *3)) (-4 *3 (-1150 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128)) (-4 *2 (-1020))))
- ((*1 *1 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1020)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
+ (-2 (|:| |sysok| (-108)) (|:| |z0| (-592 *7)) (|:| |n0| (-592 *7))))
+ (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4260)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-977)) (-4 *4 (-1150 *3)) (-5 *1 (-152 *3 *4 *2))
+ (-4 *2 (-1150 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-592 *6))
+ (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1150 *5))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
(-5 *2
- (-2 (|:| -3284 *4) (|:| -1213 *4) (|:| |totalpts| (-525))
- (|:| |success| (-108))))
- (-5 *1 (-731)) (-5 *5 (-525)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1088 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8)))
- (-4 *7 (-789)) (-4 *8 (-286)) (-4 *9 (-884 *8 *6 *7)) (-4 *6 (-735))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2103 (-592 *4))))
+ (-5 *1 (-752 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-599 (-385 *6))) (-4 *6 (-1150 *5))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-5 *2 (-2 (|:| -2103 (-592 (-385 *6))) (|:| -4108 (-632 *5))))
+ (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1150 *5))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
(-5 *2
- (-2 (|:| |upol| (-1088 *8)) (|:| |Lval| (-592 *8))
- (|:| |Lfact|
- (-592 (-2 (|:| -2770 (-1088 *8)) (|:| -4193 (-525)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-685 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1039)) (-5 *2 (-1179)) (-5 *1 (-773)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-1092))) (-5 *2 (-1179)) (-5 *1 (-1095))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2103 (-592 *4))))
+ (-5 *1 (-752 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1179))
- (-5 *1 (-1095))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-592 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1179))
- (-5 *1 (-1095)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-713)) (-4 *5 (-160))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
- (-4 *4 (-160))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
- (-4 *4 (-351 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-977)) (-4 *1 (-630 *3 *2 *4)) (-4 *2 (-351 *3))
- (-4 *4 (-351 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-713)) (-4 *3 (-977)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1020)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-592 *5))) (-4 *5 (-1165 *4))
- (-4 *4 (-37 (-385 (-525))))
- (-5 *2 (-1 (-1073 *4) (-592 (-1073 *4)))) (-5 *1 (-1167 *4 *5)))))
+ (-12 (-5 *3 (-600 *6 (-385 *6))) (-4 *6 (-1150 *5))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-5 *2 (-2 (|:| -2103 (-592 (-385 *6))) (|:| -4108 (-632 *5))))
+ (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1122 *5 *6 *7 *8)) (-4 *5 (-517))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-544 *4))
- (-4 *4 (-327)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-429)))))
-(((*1 *1) (-5 *1 (-415))))
+ (-12 (-4 *4 (-1128)) (-5 *2 (-713)) (-5 *1 (-168 *4 *3))
+ (-4 *3 (-619 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *5)) (-5 *4 (-856)) (-4 *5 (-789))
+ (-5 *2 (-592 (-617 *5))) (-5 *1 (-617 *5)))))
+(((*1 *1) (-5 *1 (-108))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
- (-4 *4 (-13 (-789) (-517))))))
+ (-12 (-5 *3 (-632 (-385 (-887 (-525)))))
+ (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-962)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-286) (-138)))
- (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735))
- (-5 *2
- (-592
- (-2 (|:| |eqzro| (-592 *7)) (|:| |neqzro| (-592 *7))
- (|:| |wcond| (-592 (-887 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1174 (-385 (-887 *4))))
- (|:| -3094 (-592 (-1174 (-385 (-887 *4))))))))))
- (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
- (-5 *2
- (-2 (|:| -3284 *4) (|:| -1213 *4) (|:| |totalpts| (-525))
- (|:| |success| (-108))))
- (-5 *1 (-731)) (-5 *5 (-525)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-273 *3))) (-5 *1 (-273 *3)) (-4 *3 (-517))
- (-4 *3 (-1128)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1024)) (-5 *3 (-716)) (-5 *1 (-51)))))
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-910 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1174 *4)) (-4 *4 (-588 (-525)))
+ (-5 *2 (-1174 (-385 (-525)))) (-5 *1 (-1199 *4)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-205))
+ (-5 *2 (-966)) (-5 *1 (-692)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))
((*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128))))
((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))
((*1 *1 *1 *1) (-5 *1 (-798)))
((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-957 *3)) (-4 *3 (-1128)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429))))
+ ((*1 *1 *1 *1) (-4 *1 (-429)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1150 (-525)))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1150 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-713)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286))
+ (-5 *1 (-851 *3 *4 *5 *2)) (-4 *2 (-884 *5 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *6 *4 *5))
+ (-5 *1 (-851 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-4 *6 (-286))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1088 *6)) (-4 *6 (-884 *5 *3 *4)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-851 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-1088 *7))) (-4 *4 (-735)) (-4 *5 (-789))
+ (-4 *6 (-286)) (-5 *2 (-1088 *7)) (-5 *1 (-851 *4 *5 *6 *7))
+ (-4 *7 (-884 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-856)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-429)) (-4 *3 (-517)) (-5 *1 (-903 *3 *2))
+ (-4 *2 (-1150 *3))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-429)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1088 *1)) (-4 *1 (-944)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1088 *7))
+ (-4 *5 (-977)) (-4 *7 (-977)) (-4 *2 (-1150 *5))
+ (-5 *1 (-474 *5 *2 *6 *7)) (-4 *6 (-1150 *2)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1061)) (-5 *2 (-108)))))
(((*1 *2)
- (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5)))
- (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6))))
+ (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179))
+ (-5 *1 (-921 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-713)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-966))
- (-5 *1 (-697)))))
+ (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179))
+ (-5 *1 (-1027 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1052 (-205))) (-5 *3 (-592 (-242))) (-5 *1 (-1176))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1052 (-205))) (-5 *3 (-1075)) (-5 *1 (-1176))))
+ ((*1 *1 *1) (-5 *1 (-1176))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))))
+(((*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-1020)) (-5 *2 (-713)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128)))))
+(((*1 *1 *2) (-12 (-5 *2 (-366)) (-5 *1 (-581)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-517)) (-4 *3 (-977))
+ (-5 *2 (-2 (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-791 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-977))
+ (-5 *2 (-2 (|:| -1416 *3) (|:| -3681 *3))) (-5 *1 (-792 *5 *3))
+ (-4 *3 (-791 *5)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2) (-12 (-5 *2 (-1064 (-1075))) (-5 *1 (-369)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1088 (-1088 *4))))
- (-5 *1 (-1127 *4)) (-5 *3 (-1088 (-1088 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-632 *4)) (-5 *3 (-856)) (|has| *4 (-6 (-4260 "*")))
- (-4 *4 (-977)) (-5 *1 (-959 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-856))
- (|has| *4 (-6 (-4260 "*"))) (-4 *4 (-977)) (-5 *1 (-959 *4)))))
+ (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1073 (-887 *4)) (-1073 (-887 *4))))
+ (-5 *1 (-1182 *4)) (-4 *4 (-341)))))
+(((*1 *1) (-5 *1 (-765))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-878 (-205)) (-878 (-205)))) (-5 *1 (-242))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1174 *1)) (-4 *1 (-307 *4)) (-4 *4 (-341))
+ (-5 *2 (-632 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1174 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
+ (-5 *2 (-632 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
+ (-5 *2 (-1174 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160))
+ (-4 *5 (-1150 *4)) (-5 *2 (-632 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160))
+ (-4 *5 (-1150 *4)) (-5 *2 (-1174 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1174 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-160))
+ (-4 *5 (-1150 *4)) (-5 *2 (-632 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1150 *3))
+ (-5 *2 (-1174 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1174 *1)) (-4 *1 (-395 *4)) (-4 *4 (-160))
+ (-5 *2 (-632 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1174 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-632 *5))) (-5 *3 (-632 *5)) (-4 *5 (-341))
+ (-5 *2 (-1174 *5)) (-5 *1 (-1008 *5)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-453 *4 *5 *6 *7)) (|:| -3490 (-592 *7))))
+ (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1073 *4)) (-4 *4 (-37 *3)) (-4 *4 (-977))
+ (-5 *3 (-385 (-525))) (-5 *1 (-1077 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-887 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-415)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1129 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+ (|partial| -12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-632 *4)) (-4 *4 (-977)) (-5 *1 (-1059 *3 *4))
+ (-14 *3 (-713)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-1096)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4258)) (-4 *1 (-464 *4))
- (-4 *4 (-1128)) (-5 *2 (-108)))))
+ (|partial| -12 (-4 *4 (-13 (-517) (-789) (-968 (-525))))
+ (-4 *5 (-408 *4)) (-5 *2 (-396 (-1088 (-385 (-525)))))
+ (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1150 *5)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-525))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-735)) (-4 *4 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789))
+ (-5 *1 (-426 *5 *6 *7 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1061)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-904)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *2 (-966)) (-5 *1 (-694)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-762)) (-14 *5 (-1092)) (-5 *2 (-592 (-1147 *5 *4)))
+ (-5 *1 (-1034 *4 *5)) (-5 *3 (-1147 *5 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-632 (-385 (-887 (-525))))) (-5 *2 (-592 (-294 (-525))))
- (-5 *1 (-962)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-702)))))
+ (-12 (-5 *3 (-887 *5)) (-4 *5 (-977)) (-5 *2 (-457 *4 *5))
+ (-5 *1 (-879 *4 *5)) (-14 *4 (-592 (-1092))))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-286))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3817 *1)))
+ (-4 *1 (-286)))))
+(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1092)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429))))
+ ((*1 *1 *1 *1) (-4 *1 (-429))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-840 *4)) (-4 *4 (-1020)) (-5 *2 (-592 (-713)))
- (-5 *1 (-839 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-713)) (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1141 *3)) (-4 *3 (-1128)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-907)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
+ (-12 (-4 *1 (-1122 *4 *5 *3 *6)) (-4 *4 (-517)) (-4 *5 (-735))
+ (-4 *3 (-789)) (-4 *6 (-991 *4 *5 *3)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-108)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1056))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-977)) (-4 *4 (-160))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977))
+ (-4 *3 (-160)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-735))
+ (-4 *5 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $))))) (-4 *6 (-517))
+ (-5 *2 (-2 (|:| -1525 (-887 *6)) (|:| -1919 (-887 *6))))
+ (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-884 (-385 (-887 *6)) *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-997 *5 *6 *7 *3 *4))
- (-4 *4 (-996 *5 *6 *7 *3))))
+ (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-592 *5) *6))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *6 (-1150 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-599 (-385 *7))) (-5 *4 (-1 (-592 *6) *7))
+ (-5 *5 (-1 (-396 *7) *7))
+ (-4 *6 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *7 (-1150 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2563 *4))))
- (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1150 *4))
- (-4 *5 (-1150 (-385 *3))) (-5 *2 (-108))))
+ (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-592 *5) *6))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *6 (-1150 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-600 *7 (-385 *7))) (-5 *4 (-1 (-592 *6) *7))
+ (-5 *5 (-1 (-396 *7) *7))
+ (-4 *6 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *7 (-1150 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7))))
((*1 *2 *3)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
+ (-12 (-5 *3 (-599 (-385 *5))) (-4 *5 (-1150 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-396 *6) *6))
+ (-4 *6 (-1150 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-600 *5 (-385 *5))) (-4 *5 (-1150 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-396 *6) *6))
+ (-4 *6 (-1150 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108))))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-713))))
((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517))))
- ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108))))
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-713)))))
+(((*1 *1 *1) (-4 *1 (-986)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 (-157 (-525))))) (-5 *2 (-592 (-157 *4)))
+ (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-592 (-385 (-887 (-157 (-525))))))
+ (-5 *4 (-592 (-1092))) (-5 *2 (-592 (-592 (-157 *5))))
+ (-5 *1 (-356 *5)) (-4 *5 (-13 (-341) (-787))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2 (-357)) (-5 *1 (-174)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-5 *2 (-2 (|:| -1556 *3) (|:| -3448 *4))))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1061)) (-5 *3 (-525)) (-5 *2 (-108)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
+ (-4 *3 (-991 *6 *7 *8))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4))))
+ (-5 *1 (-997 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -1285 *9))))
+ (-5 *5 (-108)) (-4 *8 (-991 *6 *7 *4)) (-4 *9 (-996 *6 *7 *4 *8))
+ (-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789))
+ (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -1285 *9))))
+ (-5 *1 (-997 *6 *7 *4 *8 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
+ (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735))
+ (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-357)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-108))))
((*1 *2 *1)
- (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108))))
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-713))))
((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1020))))
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-713)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-903 *4 *2))
+ (-4 *2 (-1150 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128))))
((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1020))))
+ (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-1162 *3)) (-4 *3 (-1128))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-800 *5))
+ (-14 *5 (-592 (-1092))) (-5 *2 (-457 *5 *6)) (-5 *1 (-580 *5 *6))
+ (-4 *6 (-429))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-800 *5))
+ (-14 *5 (-592 (-1092))) (-5 *2 (-457 *5 *6)) (-5 *1 (-580 *5 *6))
+ (-4 *6 (-429)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-798)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
+ (-5 *2 (-632 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4))
+ (-4 *3 (-395 *4))))
+ ((*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1128)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-809))
+ (-5 *5 (-856)) (-5 *6 (-592 (-242))) (-5 *2 (-1175))
+ (-5 *1 (-1178))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-592 (-242)))
+ (-5 *2 (-1175)) (-5 *1 (-1178)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2
+ (-3 (|:| |%expansion| (-291 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))))
+ (-5 *1 (-398 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1114) (-408 *5)))
+ (-14 *6 (-1092)) (-14 *7 *3))))
+(((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-592 (-592 (-878 (-205)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-592 (-592 (-878 (-205))))))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -3446 *7) (|:| |sol?| (-108)))
+ (-525) *7))
+ (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1150 *7))
+ (-5 *3 (-385 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-535 *7 *8)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4259)) (-4 *1 (-464 *4))
+ (-4 *4 (-1128)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-789)) (-5 *4 (-592 *6))
+ (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-592 *4))))
+ (-5 *1 (-1100 *6)) (-5 *5 (-592 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-565 (-47)))) (-5 *1 (-47))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-565 (-47))) (-5 *1 (-47))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1088 (-47))) (-5 *3 (-592 (-565 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1088 (-47))) (-5 *3 (-565 (-47))) (-5 *1 (-47))))
+ ((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3))
+ (-4 *3 (-1150 (-157 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-856)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))))
+ ((*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341))))
((*1 *2 *1)
- (-12 (-4 *1 (-929 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108))))
+ (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1150 *2)) (-4 *2 (-160))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1150 *2)) (-4 *2 (-925 *3)) (-5 *1 (-391 *3 *2 *4 *5))
+ (-4 *3 (-286)) (-4 *5 (-13 (-387 *2 *4) (-968 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1150 *2)) (-4 *2 (-925 *3))
+ (-5 *1 (-392 *3 *2 *4 *5 *6)) (-4 *3 (-286)) (-4 *5 (-387 *2 *4))
+ (-14 *6 (-1174 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-856)) (-4 *5 (-977))
+ (-4 *2 (-13 (-382) (-968 *5) (-341) (-1114) (-263)))
+ (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1150 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-565 (-468)))) (-5 *1 (-468))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-565 (-468))) (-5 *1 (-468))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1088 (-468))) (-5 *3 (-592 (-565 (-468))))
+ (-5 *1 (-468))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1088 (-468))) (-5 *3 (-565 (-468))) (-5 *1 (-468))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1174 *4)) (-5 *3 (-856)) (-4 *4 (-327))
+ (-5 *1 (-495 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-940 *3)) (-4 *3 (-968 (-385 (-525)))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-161 *3)) (-4 *3 (-286))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-619 *3)) (-4 *3 (-1128))))
+ (-12 (-4 *4 (-429)) (-4 *5 (-667 *4 *2)) (-4 *2 (-1150 *4))
+ (-5 *1 (-717 *4 *2 *5 *3)) (-4 *3 (-1150 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
+ ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160))))
+ ((*1 *1 *1) (-4 *1 (-986))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1092))
+ (-4 *4 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-518 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4))
+ (-4 *4 (-977))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-683 *3 *4)) (-4 *3 (-977))
- (-4 *4 (-789))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713))))
+ ((*1 *1 *1) (-4 *1 (-213)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-245 *3)) (-4 *3 (-789))))
+ ((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *1 (-913 *3)) (-4 *3 (-977))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-996 *4 *5 *6 *7))
- (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-996 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1))
- (-4 *1 (-996 *4 *5 *6 *3))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132))
+ (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4)))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5))))
+ (-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4))
+ (-4 *4 (-1150 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3))
+ (-4 *3 (-1150 *2))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))))
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-451 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-341)) (-4 *2 (-835 *3)) (-5 *1 (-542 *2))
+ (-5 *3 (-1092))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-542 *2)) (-4 *2 (-341))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-798))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-835 *4))
+ (-4 *4 (-1020))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-835 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *1 (-835 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1083 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1089 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1090 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1138 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1150 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1159 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1166 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-798) (-798))) (-5 *1 (-110))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-798) (-592 (-798)))) (-5 *1 (-110))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-798) (-592 (-798)))) (-5 *1 (-110))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1179)) (-5 *1 (-195 *3))
+ (-4 *3
+ (-13 (-789)
+ (-10 -8 (-15 -3431 ((-1075) $ (-1092))) (-15 -2701 (*2 $))
+ (-15 -3686 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-372))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-372))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-475))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-653))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1109))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-1109)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-108)))))
+(((*1 *1) (-5 *1 (-146))))
+(((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4259)) (-4 *1 (-142 *2)) (-4 *2 (-1128))
+ (-4 *2 (-1020))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4259)) (-4 *1 (-142 *3))
+ (-4 *3 (-1128))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-619 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1020))
+ (-5 *1 (-680 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
+ (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1058 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-197 *4 *3))
+ (-4 *3 (-1150 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1128))
+ (-4 *3 (-351 *4)) (-4 *5 (-351 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 (-2 (|:| -4201 (-1088 *6)) (|:| -2168 (-525)))))
+ (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
+ (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-565 *3)) (-5 *5 (-1 (-1088 *3) (-1088 *3)))
+ (-4 *3 (-13 (-27) (-408 *6))) (-4 *6 (-13 (-789) (-517)))
+ (-5 *2 (-542 *3)) (-5 *1 (-512 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-429))
+ (-5 *2 (-457 *4 *5)) (-5 *1 (-580 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-1174 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3))
+ (-4 *3 (-901)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP))))
+ (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))))
+(((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-286))
+ (-5 *2 (-385 (-396 (-887 *4)))) (-5 *1 (-972 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))))
+ (-5 *2 (-592 (-385 (-525)))) (-5 *1 (-951 *4))
+ (-4 *4 (-1150 (-525))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1167 *3 *2))
+ (-4 *2 (-1165 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-31 *3 *4))
- (-4 *4 (-408 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-713)) (-5 *1 (-110))))
- ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-110))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *4))
- (-4 *4 (-408 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-110)) (-5 *1 (-151))))
+ (-12
+ (-5 *2
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-525))))
+ (-4 *4 (-13 (-1150 *3) (-517) (-10 -8 (-15 -2772 ($ $ $)))))
+ (-4 *3 (-517)) (-5 *1 (-1153 *3 *4)))))
+(((*1 *1) (-5 *1 (-445))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1175))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1196 *4 *2)) (-4 *1 (-352 *4 *2)) (-4 *4 (-789))
+ (-4 *2 (-160))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-789)) (-4 *2 (-977))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-761 *4)) (-4 *1 (-1189 *4 *2)) (-4 *4 (-789))
+ (-4 *2 (-977))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-977)) (-5 *1 (-1195 *2 *3)) (-4 *3 (-785)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1088 (-525))) (-5 *2 (-525)) (-5 *1 (-877)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *5)) (-5 *4 (-856)) (-4 *5 (-789))
+ (-5 *2 (-57 (-592 (-617 *5)))) (-5 *1 (-617 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4))
+ (-4 *4 (-327)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1092)))
+ (-14 *4 (-592 (-1092))) (-4 *5 (-365))))
+ ((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1092)))
+ (-14 *4 (-592 (-1092))) (-4 *5 (-365)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934)))
+ (-5 *1 (-163 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-51)) (-5 *1 (-1107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1088 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-713))) (-5 *3 (-159)) (-5 *1 (-1081 *4 *5))
+ (-14 *4 (-856)) (-4 *5 (-977)))))
+(((*1 *1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4260)) (-4 *1 (-351 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-713)) (-5 *2 (-592 (-1092))) (-5 *1 (-192))
+ (-5 *3 (-1092))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-294 (-205))) (-5 *4 (-713)) (-5 *2 (-592 (-1092)))
+ (-5 *1 (-246))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
+ (-5 *2 (-592 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 *3)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
+ (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-761 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-828 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
+ (-5 *2 (-592 *3)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-592
+ (-592
+ (-3 (|:| -2411 (-1092))
+ (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525))))))))))
+ (-5 *1 (-1096)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2))
+ (-4 *2 (-630 *3 *4 *5)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3))
+ (-4 *3 (-1020)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-341)) (-5 *2 (-592 (-1073 *4))) (-5 *1 (-264 *4 *5))
+ (-5 *3 (-1073 *4)) (-4 *5 (-1165 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-98 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-814 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242)))
+ (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1052 (-205)))
+ (-5 *1 (-238 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-814 *5)) (-5 *4 (-1013 (-357)))
+ (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1052 (-205)))
+ (-5 *1 (-238 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242)))
+ (-5 *2 (-1052 (-205))) (-5 *1 (-238 *3))
+ (-4 *3 (-13 (-567 (-501)) (-1020)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1013 (-357))) (-5 *2 (-1052 (-205))) (-5 *1 (-238 *3))
+ (-4 *3 (-13 (-567 (-501)) (-1020)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-817 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242)))
+ (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1052 (-205)))
+ (-5 *1 (-238 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-817 *5)) (-5 *4 (-1013 (-357)))
+ (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1052 (-205)))
+ (-5 *1 (-238 *5)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2103 (-592 *1))))
+ (-4 *1 (-345 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-430 *3 *4 *5 *6))
+ (|:| -2103 (-592 (-430 *3 *4 *5 *6)))))
+ (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
+(((*1 *1 *1) (-5 *1 (-205))) ((*1 *1 *1) (-5 *1 (-357)))
+ ((*1 *1) (-5 *1 (-357))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
+ (-4 *4 (-351 *2)))))
+(((*1 *1 *1) (-5 *1 (-989))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-525)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-977))
+ (-5 *1 (-299 *4 *5 *2 *6)) (-4 *6 (-884 *2 *4 *5)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1092))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-592 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -3991 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1114) (-27) (-408 *8)))
+ (-4 *8 (-13 (-429) (-789) (-138) (-968 *3) (-588 *3)))
+ (-5 *3 (-525)) (-5 *2 (-592 *4)) (-5 *1 (-946 *8 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-771)) (-5 *3 (-1075)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 *3 *4 *5))
+ (-5 *2 (-391 *4 (-385 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1174 *6)) (-4 *6 (-13 (-387 *4 *5) (-968 *4)))
+ (-4 *4 (-925 *3)) (-4 *5 (-1150 *4)) (-4 *3 (-286))
+ (-5 *1 (-391 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-341))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-1075)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-690)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1088 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-519 *2)) (-4 *2 (-510)))))
+(((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-767)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525))
+ (-5 *2 (-966)) (-5 *1 (-699)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-625 *2)) (-4 *2 (-1020))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-592 *5) (-592 *5))) (-5 *4 (-525))
+ (-5 *2 (-592 *5)) (-5 *1 (-625 *5)) (-4 *5 (-1020)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-305 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-488 *3 *4))
+ (-14 *4 (-525)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1024)) (-5 *3 (-716)) (-5 *1 (-51)))))
+(((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177))))
+ ((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-1179))
+ (-5 *1 (-411 *3 *4)) (-4 *4 (-408 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *5 (-968 (-47)))
+ (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4))
+ (-5 *2 (-396 (-1088 (-47)))) (-5 *1 (-413 *4 *5 *3))
+ (-4 *3 (-1150 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-215 *3))))
+ ((*1 *1) (-12 (-4 *1 (-215 *2)) (-4 *2 (-1020)))))
+(((*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177))))
+ ((*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-856)) (-5 *1 (-728)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1179) (-1174 *5) (-1174 *5) (-357)))
+ (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179))
+ (-5 *1 (-730))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1179) (-1174 *5) (-1174 *5) (-357)))
+ (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179))
+ (-5 *1 (-730)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934)))
+ (-5 *1 (-163 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
+ (-5 *1 (-921 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *4))
- (-4 *4 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-280 *3)) (-4 *3 (-281))))
- ((*1 *2 *2) (-12 (-4 *1 (-281)) (-5 *2 (-110))))
+ (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
+ (-5 *1 (-1027 *3 *4 *5 *6 *7)))))
+(((*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-904)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-1092)) (-5 *1 (-501))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1092)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501)))))
+ ((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-1092)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501)))))
+ ((*1 *2 *3 *2 *2 *2)
+ (-12 (-5 *2 (-1092)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-592 (-1092))) (-5 *2 (-1092)) (-5 *1 (-647 *3))
+ (-4 *3 (-567 (-501))))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-477 (-385 (-525)) (-220 *4 (-713)) (-800 *3)
+ (-227 *3 (-385 (-525)))))
+ (-14 *3 (-592 (-1092))) (-14 *4 (-713)) (-5 *1 (-478 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160))))
+ ((*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2))))
+ ((*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1073 *4)) (-5 *3 (-525)) (-4 *4 (-977))
+ (-5 *1 (-1077 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-525)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-977))
+ (-14 *4 (-1092)) (-14 *5 *3))))
+(((*1 *1 *1) (-4 *1 (-1061))))
+(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-135)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-133 *2 *4 *3))
+ (-4 *3 (-351 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-476 *2 *4 *5 *3))
+ (-4 *5 (-351 *2)) (-4 *3 (-351 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-632 *4)) (-4 *4 (-925 *2)) (-4 *2 (-517))
+ (-5 *1 (-635 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-1143 *2 *4 *3))
+ (-4 *3 (-1150 *4)))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4259)) (-4 *1 (-464 *3)) (-4 *3 (-1128))
+ (-5 *2 (-592 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *2 *3) (-12 (-5 *2 (-357)) (-5 *1 (-727 *3)) (-4 *3 (-567 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-856)) (-5 *2 (-357)) (-5 *1 (-727 *3))
+ (-4 *3 (-567 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 *2))
+ (-5 *2 (-357)) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977))
+ (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-4 *4 (-567 *2))
+ (-5 *2 (-357)) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517))
+ (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789))
+ (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789))
+ (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
+ (-5 *2
+ (-2 (|:| -2219 *4) (|:| -2188 *4) (|:| |totalpts| (-525))
+ (|:| |success| (-108))))
+ (-5 *1 (-731)) (-5 *5 (-525)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1174 (-632 *4))) (-4 *4 (-160))
+ (-5 *2 (-1174 (-632 (-887 *4)))) (-5 *1 (-171 *4)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1165 *4)) (-5 *1 (-1167 *4 *2))
+ (-4 *4 (-37 (-385 (-525)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-728)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762))
+ (-14 *5 (-1092)) (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *3 *3 *1)
+ (|partial| -12 (-5 *3 (-1092)) (-5 *2 (-1024)) (-5 *1 (-270)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-637 *3)) (-4 *3 (-1020))
+ (-5 *2 (-592 (-2 (|:| -3448 *3) (|:| -4002 (-713))))))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *4 (-160)) (-4 *5 (-351 *4))
+ (-4 *6 (-351 *4)) (-5 *1 (-631 *4 *5 *6 *2))
+ (-4 *2 (-630 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3))
+ (-4 *3 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-517)) (-4 *2 (-977))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1150 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *3 (-991 *4 *5 *6))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *1))))
+ (-4 *1 (-996 *4 *5 *6 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *2 (-966))
+ (-5 *1 (-692)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-286)) (-5 *1 (-432 *3 *2)) (-4 *2 (-1150 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-286)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1150 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-286)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-713)))
+ (-5 *1 (-504 *3 *2 *4 *5)) (-4 *2 (-1150 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-157 *4)) (-5 *1 (-167 *4 *3))
+ (-4 *4 (-13 (-341) (-787))) (-4 *3 (-1150 *2)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-525))) (-4 *3 (-977)) (-5 *1 (-550 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1134 *3)) (-4 *3 (-977))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1165 *3)) (-4 *3 (-977)))))
+(((*1 *1) (-5 *1 (-520))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-395 *4)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-691)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-597 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-592 (-958 *5 *6 *7 *8))) (-5 *1 (-958 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-592 (-1063 *5 *6 *7 *8))) (-5 *1 (-1063 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-162))) (-5 *1 (-1007)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-735)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789))
+ (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-308)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-395 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-60 *3)) (-14 *3 (-1092))))
+ ((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-67 *3)) (-14 *3 (-1092))))
+ ((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-70 *3)) (-14 *3 (-1092))))
+ ((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1179))))
+ ((*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1179)) (-5 *1 (-375))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-798)) (-5 *2 (-1179)) (-5 *1 (-1055))))
+ ((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-1055))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-798))) (-5 *2 (-1179)) (-5 *1 (-1055)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2))
+ (-4 *2 (-1165 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *4 (-789)) (-5 *1 (-407 *3 *4))
- (-4 *3 (-408 *4))))
+ (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1150 *3))
+ (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1165 *5))))
((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *4))
- (-4 *4 (-408 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-565 *3)) (-4 *3 (-789))))
+ (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2))
+ (-4 *2 (-1165 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *4))
- (-4 *4 (-13 (-408 *3) (-934) (-1114))))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1020)))))
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-517) (-138)))
+ (-5 *1 (-1069 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1174 (-592 (-2 (|:| -2219 *4) (|:| -1722 (-1039))))))
+ (-4 *4 (-327)) (-5 *2 (-1179)) (-5 *1 (-495 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-341)) (-4 *1 (-307 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1150 *4)) (-4 *4 (-1132))
+ (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1150 (-385 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1174 *4)) (-5 *3 (-1174 *1)) (-4 *4 (-160))
+ (-4 *1 (-345 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1174 *4)) (-5 *3 (-1174 *1)) (-4 *4 (-160))
+ (-4 *1 (-348 *4 *5)) (-4 *5 (-1150 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1174 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4))
+ (-4 *4 (-1150 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3)))))
+(((*1 *1) (-5 *1 (-1175))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (-4 *1 (-1014 *3)) (-4 *3 (-1128)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-991 *3 *4 *2)) (-4 *2 (-789))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-840 *3))) (-4 *3 (-1020)) (-5 *1 (-839 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-369)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 *3)) (-4 *3 (-1029 *5 *6 *7 *8))
+ (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-108))
+ (-5 *1 (-547 *5 *6 *7 *8 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
+(((*1 *1)
+ (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
+ (-4 *4 (-160)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938))))
+ ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *1) (-5 *1 (-135))) ((*1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-108)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-763)))))
+(((*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1179)) (-5 *1 (-369))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-369)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6))
+ (-5 *2 (-592 (-2 (|:| -2682 *1) (|:| -2046 (-592 *7)))))
+ (-5 *3 (-592 *7)) (-4 *1 (-1122 *4 *5 *6 *7)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-632 *3)) (|:| |invmval| (-632 *3))
+ (|:| |genIdeal| (-477 *3 *4 *5 *6))))
+ (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33))))))
+(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-5 *6 (-1088 *3))
+ (-4 *3 (-13 (-408 *7) (-27) (-1114)))
+ (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1020))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3))
+ (-5 *6 (-385 (-1088 *3))) (-4 *3 (-13 (-408 *7) (-27) (-1114)))
+ (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1020)))))
(((*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-132))))
((*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-135)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) (-5 *3 (-525))
+ (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1006 *3)) (-4 *3 (-127)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1088 (-385 (-525)))) (-5 *1 (-877)) (-5 *3 (-525)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-977))
+ (-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263)))
+ (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1150 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-977))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1125))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-977)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1030)) (-5 *3 (-525)))))
+(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-357)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 (-415)))))
+ (-5 *1 (-1096)))))
(((*1 *2 *2 *2)
(-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1075))
+ (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1 *1 *1) (-4 *1 (-281))) ((*1 *1 *1) (-4 *1 (-281))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1073 *7))) (-4 *6 (-789))
+ (-4 *7 (-884 *5 (-497 *6) *6)) (-4 *5 (-977))
+ (-5 *2 (-1 (-1073 *7) *7)) (-5 *1 (-1045 *5 *6 *7)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-127)) (-5 *1 (-1006 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-525) *2 *2)) (-4 *2 (-127)) (-5 *1 (-1006 *2)))))
(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| -2589 (-724 *3)) (|:| |coef1| (-724 *3))
+ (-2 (|:| -2772 (-724 *3)) (|:| |coef1| (-724 *3))
(|:| |coef2| (-724 *3))))
(-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977))))
((*1 *2 *1 *1)
(-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-2 (|:| -2589 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-5 *2 (-2 (|:| -2772 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
(-4 *1 (-991 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-213)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4))
+ (-4 *6 (-735)) (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735))
+ (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-245 *2)) (-4 *2 (-789)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-126)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1) (-4 *1 (-263)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-396 *4)) (-4 *4 (-517))
+ (-5 *2 (-592 (-2 (|:| -2681 (-713)) (|:| |logand| *4))))
+ (-5 *1 (-298 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
+ (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-610 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
+ (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *4 (-13 (-977) (-660 (-385 (-525)))))
+ (-4 *5 (-789)) (-5 *1 (-1188 *4 *5 *2)) (-4 *2 (-1193 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-1192 *3 *4))
+ (-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160)))))
+(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))
+ ((*1 *1 *1 *1) (-5 *1 (-1039))))
+(((*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-592 (-110))))))
+(((*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-1103 *2)) (-4 *2 (-341)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3))
+ (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2))
+ (-4 *2 (-630 *3 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092))
+ (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4)))))
+ ((*1 *1 *1) (-5 *1 (-357)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4))))
+ (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-205)) (-5 *3 (-713)) (-5 *1 (-206))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-157 (-205))) (-5 *3 (-713)) (-5 *1 (-206))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1056))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-592 (-800 *5))) (-14 *5 (-592 (-1092))) (-4 *6 (-429))
(-5 *2 (-592 (-592 (-227 *5 *6)))) (-5 *1 (-448 *5 *6 *7))
(-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1179)) (-5 *1 (-1175))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *2 *2) (-12 (-5 *2 (-856)) (|has| *1 (-6 -4250)) (-4 *1 (-382))))
+ ((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856))))
+ ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641))))
+ ((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1097))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1097))))
+ ((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1097))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1097)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1150 *3)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-525)) (-5 *1 (-357)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-1185 *4 *5 *6 *7)))
+ (-5 *1 (-1185 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-592 *9)) (-5 *4 (-1 (-108) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-991 *6 *7 *8)) (-4 *6 (-517))
+ (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-592 (-1185 *6 *7 *8 *9)))
+ (-5 *1 (-1185 *6 *7 *8 *9)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-626 *4 *3)) (-4 *4 (-1020))
+ (-4 *3 (-1020)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))))
(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108))))
((*1 *2 *3 *3)
(-12 (-5 *2 (-108)) (-5 *1 (-1129 *3)) (-4 *3 (-789))
(-4 *3 (-1020)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))))
+(((*1 *1 *1 *1) (-4 *1 (-901))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1020)) (-4 *5 (-1020))
+ (-5 *2 (-1 *5)) (-5 *1 (-626 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-525)) (-5 *1 (-221)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *6))
+ (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
+(((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-335 *3)) (-4 *3 (-327)))))
(((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1073 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-632 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))))
+(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-110)))
+ ((*1 *1 *1) (-5 *1 (-159))) ((*1 *1 *1) (-4 *1 (-510)))
+ ((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-977))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789))
+ (-5 *2 (-2 (|:| -2681 (-525)) (|:| |var| (-565 *1))))
+ (-4 *1 (-408 *3)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205))
+ (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205))
+ (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))
+ (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205))
+ (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205))
+ (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))
+ (-5 *1 (-242))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-525)) (-5 *4 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205))
+ (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205))
+ (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))
+ (-5 *2 (-1179)) (-5 *1 (-1176))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2201 (-205))
+ (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205))
+ (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))
+ (-5 *1 (-1176))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-602 *3)) (-4 *3 (-977)) (-4 *3 (-341))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-713)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341))
+ (-5 *1 (-605 *5 *2)) (-4 *2 (-602 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-798))))
+ ((*1 *1 *1) (-5 *1 (-798))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-592 (-385 (-887 (-525)))))
(-5 *2 (-592 (-592 (-273 (-887 *4))))) (-5 *1 (-358 *4))
@@ -1464,7 +10023,7 @@
(|partial| -12 (-5 *5 (-1092))
(-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
(-4 *4 (-13 (-29 *6) (-1114) (-893)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -3094 (-592 *4))))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2103 (-592 *4))))
(-5 *1 (-598 *6 *4 *3)) (-4 *3 (-602 *4))))
((*1 *2 *3 *2 *4 *2 *5)
(|partial| -12 (-5 *4 (-1092)) (-5 *5 (-592 *2))
@@ -1475,40 +10034,40 @@
(-12 (-5 *3 (-632 *5)) (-4 *5 (-341))
(-5 *2
(-2 (|:| |particular| (-3 (-1174 *5) "failed"))
- (|:| -3094 (-592 (-1174 *5)))))
+ (|:| -2103 (-592 (-1174 *5)))))
(-5 *1 (-613 *5)) (-5 *4 (-1174 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-592 (-592 *5))) (-4 *5 (-341))
(-5 *2
(-2 (|:| |particular| (-3 (-1174 *5) "failed"))
- (|:| -3094 (-592 (-1174 *5)))))
+ (|:| -2103 (-592 (-1174 *5)))))
(-5 *1 (-613 *5)) (-5 *4 (-1174 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-632 *5)) (-4 *5 (-341))
(-5 *2
(-592
(-2 (|:| |particular| (-3 (-1174 *5) "failed"))
- (|:| -3094 (-592 (-1174 *5))))))
+ (|:| -2103 (-592 (-1174 *5))))))
(-5 *1 (-613 *5)) (-5 *4 (-592 (-1174 *5)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-592 (-592 *5))) (-4 *5 (-341))
(-5 *2
(-592
(-2 (|:| |particular| (-3 (-1174 *5) "failed"))
- (|:| -3094 (-592 (-1174 *5))))))
+ (|:| -2103 (-592 (-1174 *5))))))
(-5 *1 (-613 *5)) (-5 *4 (-592 (-1174 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4259))))
- (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4259))))
+ (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4260))))
+ (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4260))))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3094 (-592 *4))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2103 (-592 *4))))
(-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4259))))
- (-4 *7 (-13 (-351 *5) (-10 -7 (-6 -4259))))
+ (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4260))))
+ (-4 *7 (-13 (-351 *5) (-10 -7 (-6 -4260))))
(-5 *2
(-592
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3094 (-592 *7)))))
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2103 (-592 *7)))))
(-5 *1 (-614 *5 *6 *7 *3)) (-5 *4 (-592 *7))
(-4 *3 (-630 *5 *6 *7))))
((*1 *2 *3 *4)
@@ -1526,7 +10085,7 @@
(-4 *7 (-13 (-29 *6) (-1114) (-893)))
(-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
(-5 *2
- (-2 (|:| |particular| (-1174 *7)) (|:| -3094 (-592 (-1174 *7)))))
+ (-2 (|:| |particular| (-1174 *7)) (|:| -2103 (-592 (-1174 *7)))))
(-5 *1 (-744 *6 *7)) (-5 *4 (-1174 *7))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-632 *6)) (-5 *4 (-1092))
@@ -1538,27 +10097,27 @@
(-5 *5 (-1092)) (-4 *7 (-13 (-29 *6) (-1114) (-893)))
(-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
(-5 *2
- (-2 (|:| |particular| (-1174 *7)) (|:| -3094 (-592 (-1174 *7)))))
+ (-2 (|:| |particular| (-1174 *7)) (|:| -2103 (-592 (-1174 *7)))))
(-5 *1 (-744 *6 *7))))
((*1 *2 *3 *4 *5)
(|partial| -12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110)))
(-5 *5 (-1092)) (-4 *7 (-13 (-29 *6) (-1114) (-893)))
(-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
(-5 *2
- (-2 (|:| |particular| (-1174 *7)) (|:| -3094 (-592 (-1174 *7)))))
+ (-2 (|:| |particular| (-1174 *7)) (|:| -2103 (-592 (-1174 *7)))))
(-5 *1 (-744 *6 *7))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-1092))
(-4 *7 (-13 (-29 *6) (-1114) (-893)))
(-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
(-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -3094 (-592 *7))) *7 "failed"))
+ (-3 (-2 (|:| |particular| *7) (|:| -2103 (-592 *7))) *7 "failed"))
(-5 *1 (-744 *6 *7))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-110)) (-5 *5 (-1092))
(-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
(-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -3094 (-592 *3))) *3 "failed"))
+ (-3 (-2 (|:| |particular| *3) (|:| -2103 (-592 *3))) *3 "failed"))
(-5 *1 (-744 *6 *3)) (-4 *3 (-13 (-29 *6) (-1114) (-893)))))
((*1 *2 *3 *4 *3 *5)
(|partial| -12 (-5 *3 (-273 *2)) (-5 *4 (-110)) (-5 *5 (-592 *2))
@@ -1594,10 +10153,10 @@
(|partial| -12
(-5 *5
(-1
- (-3 (-2 (|:| |particular| *6) (|:| -3094 (-592 *6))) "failed")
+ (-3 (-2 (|:| |particular| *6) (|:| -2103 (-592 *6))) "failed")
*7 *6))
(-4 *6 (-341)) (-4 *7 (-602 *6))
- (-5 *2 (-2 (|:| |particular| (-1174 *6)) (|:| -3094 (-632 *6))))
+ (-5 *2 (-2 (|:| |particular| (-1174 *6)) (|:| -2103 (-632 *6))))
(-5 *1 (-755 *6 *7)) (-5 *3 (-632 *6)) (-5 *4 (-1174 *6))))
((*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-966)) (-5 *1 (-832))))
((*1 *2 *3 *4)
@@ -1670,6 +10229,43 @@
((*1 *2 *3)
(-12 (-4 *4 (-517)) (-5 *2 (-592 (-273 (-385 (-887 *4)))))
(-5 *1 (-1098 *4)) (-5 *3 (-273 (-385 (-887 *4)))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-713)) (-5 *1 (-1021 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-286))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-364 *3)) (|:| |rm| (-364 *3))))
+ (-5 *1 (-364 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1416 (-713)) (|:| -3681 (-713))))
+ (-5 *1 (-713))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -1416 *3) (|:| -3681 *3)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-2 (|:| |k| (-1092)) (|:| |c| (-1194 *3)))))
+ (-5 *1 (-1194 *3)) (-4 *3 (-977))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-2 (|:| |k| *3) (|:| |c| (-1196 *3 *4)))))
+ (-5 *1 (-1196 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-798))))
+ ((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-896)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-977)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-13 (-341) (-789)))
+ (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-297 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-970)) (-5 *3 (-357)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
+(((*1 *2)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-856))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))))
(((*1 *2 *2)
(-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-286))
(-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-424 *3 *4 *5 *6))))
@@ -1681,13 +10277,131 @@
(-12 (-5 *2 (-592 *7)) (-5 *3 (-1075)) (-4 *7 (-884 *4 *5 *6))
(-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789))
(-5 *1 (-424 *4 *5 *6 *7)))))
+(((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-970)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-396 (-1088 (-525)))) (-5 *1 (-173)) (-5 *3 (-525)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-934))
+ (-4 *2 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -2497 (-525)) (|:| -2868 (-592 *3))))
+ (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
+(((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |partsol| (-1174 (-385 (-887 *4))))
+ (|:| -2103 (-592 (-1174 (-385 (-887 *4)))))))
+ (-5 *3 (-592 *7)) (-4 *4 (-13 (-286) (-138)))
+ (-4 *7 (-884 *4 *6 *5)) (-4 *5 (-13 (-789) (-567 (-1092))))
+ (-4 *6 (-735)) (-5 *1 (-859 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-517)))))
(((*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33)))
+ ((*1 *1)
+ (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
+ (-4 *4 (-160))))
+ ((*1 *1) (-4 *1 (-669))) ((*1 *1) (-5 *1 (-1092))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-364 *3)) (|:| |mm| (-364 *3)) (|:| |rm| (-364 *3))))
+ (-5 *1 (-364 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-761 *3)) (|:| |mm| (-761 *3)) (|:| |rm| (-761 *3))))
+ (-5 *1 (-761 *3)) (-4 *3 (-789)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2772 *3)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-632 (-385 (-887 (-525)))))
+ (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-962)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-110)))))
(((*1 *2 *3 *1)
(-12 (-4 *1 (-909 *4 *5 *3 *6)) (-4 *4 (-977)) (-4 *5 (-735))
(-4 *3 (-789)) (-4 *6 (-991 *4 *5 *3)) (-5 *2 (-108)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108))
+ (-5 *2 (-966)) (-5 *1 (-696)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-855)) (-5 *2 (-2 (|:| -2681 (-592 *1)) (|:| -3817 *1)))
+ (-5 *3 (-592 *1)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1150 *2)) (-4 *2 (-1150 *4)) (-5 *1 (-918 *4 *2 *3 *5))
+ (-4 *4 (-327)) (-4 *5 (-667 *2 *3)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1075)) (-5 *3 (-525)) (-5 *1 (-989)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-517))
+ (-4 *7 (-884 *3 *5 *6))
+ (-5 *2 (-2 (|:| -2168 (-713)) (|:| -2681 *8) (|:| |radicand| *8)))
+ (-5 *1 (-888 *5 *6 *3 *7 *8)) (-5 *4 (-713))
+ (-4 *8
+ (-13 (-341)
+ (-10 -8 (-15 -4066 (*7 $)) (-15 -4080 (*7 $)) (-15 -4100 ($ *7))))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-5 *2 (-108)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
+ (-5 *1 (-648 *3 *4)) (-4 *3 (-1128)) (-4 *4 (-1128)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1092)))
+ (-4 *5 (-429)) (-5 *2 (-592 (-227 *4 *5))) (-5 *1 (-580 *4 *5)))))
(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160))))
((*1 *2 *3 *3 *2)
(-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1092))
+ (-4 *4 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-1114) (-893) (-29 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
+ (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020))
+ (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-977))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-517)) (-5 *2 (-108)) (-5 *1 (-573 *3 *4))
+ (-4 *4 (-1150 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-678 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-669))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
+ (-5 *2 (-108)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4259)) (-4 *1 (-558 *4 *3)) (-4 *4 (-1020))
+ (-4 *3 (-1128)) (-4 *3 (-1020)) (-5 *2 (-108)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-259))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-3 (-525) (-205) (-1092) (-1075) (-1097)))
+ (-5 *1 (-1097)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *5 *6)) (-4 *6 (-567 (-1092)))
+ (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *2 (-1082 (-592 (-887 *4)) (-592 (-273 (-887 *4)))))
+ (-5 *1 (-477 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-1096)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-592 (-525))) (-5 *3 (-632 (-525))) (-5 *1 (-1030)))))
(((*1 *2)
(-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-153 *3 *4))
(-4 *3 (-154 *4))))
@@ -1711,605 +10425,222 @@
((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-943 *3)) (-4 *3 (-944))))
((*1 *2) (-12 (-4 *1 (-977)) (-5 *2 (-713))))
((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-985 *3)) (-4 *3 (-986)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-525) (-525))) (-5 *1 (-339 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-713) (-713))) (-5 *1 (-364 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-459 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1020))
+ (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))
+ (-5 *2 (-592 (-999 *3 *4 *5))) (-5 *1 (-1000 *3 *4 *5))
+ (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-205) (-205) (-205)))
+ (-5 *4 (-1 (-205) (-205) (-205) (-205)))
+ (-5 *2 (-1 (-878 (-205)) (-205) (-205))) (-5 *1 (-639)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-789)) (-4 *3 (-1020)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)))))
+(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-414)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-592 (-1088 *11))) (-5 *3 (-1088 *11))
+ (-5 *4 (-592 *10)) (-5 *5 (-592 *8)) (-5 *6 (-592 (-713)))
+ (-5 *7 (-1174 (-592 (-1088 *8)))) (-4 *10 (-789))
+ (-4 *8 (-286)) (-4 *11 (-884 *8 *9 *10)) (-4 *9 (-735))
+ (-5 *1 (-650 *9 *10 *8 *11)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1092)) (-5 *2 (-104)) (-5 *1 (-162))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1092)) (-5 *2 (-104)) (-5 *1 (-1007)))))
(((*1 *2 *1)
(-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789))
(-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-108)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-341)) (-5 *1 (-831 *2 *3))
+ (-4 *2 (-1150 *3)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4260)) (-4 *1 (-351 *2)) (-4 *2 (-1128))
+ (-4 *2 (-789))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4260))
+ (-4 *1 (-351 *3)) (-4 *3 (-1128)))))
+(((*1 *1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-242))))
+ ((*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517)))))
+(((*1 *1 *1) (-4 *1 (-517))))
+(((*1 *1 *1 *1) (-4 *1 (-510))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-632 *2)) (-5 *4 (-713))
+ (-4 *2 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $)))))
+ (-4 *5 (-1150 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-385 *2)) (-4 *2 (-1150 *5))
+ (-5 *1 (-749 *5 *2 *3 *6))
+ (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-4 *3 (-602 *2)) (-4 *6 (-602 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-385 *2))) (-4 *2 (-1150 *5))
+ (-5 *1 (-749 *5 *2 *3 *6))
+ (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2))
+ (-4 *6 (-602 (-385 *2))))))
(((*1 *2 *3 *3)
(-12 (-4 *4 (-517)) (-5 *2 (-892 *3)) (-5 *1 (-1080 *4 *3))
(-4 *3 (-1150 *4)))))
-(((*1 *1) (-5 *1 (-989))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092))
- (-14 *4 *2))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-782 (-357))) (-5 *2 (-782 (-205))) (-5 *1 (-284)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-729)) (-5 *2 (-966))
- (-5 *3
- (-2 (|:| |fn| (-294 (-205)))
- (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-729)) (-5 *2 (-966))
- (-5 *3
- (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205)))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-977)) (-5 *2 (-1174 *3)) (-5 *1 (-655 *3 *4))
- (-4 *4 (-1150 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-987 (-955 *4) (-1088 (-955 *4)))) (-5 *3 (-798))
- (-5 *1 (-955 *4)) (-4 *4 (-13 (-787) (-341) (-953))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525))))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-408 *3) (-934))) (-5 *1 (-255 *3 *2))
- (-4 *3 (-13 (-789) (-517))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
- (-4 *3 (-13 (-341) (-1114) (-934))))))
-(((*1 *1) (-5 *1 (-415))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1110)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1075)) (-4 *1 (-342 *3 *4)) (-4 *3 (-1020))
- (-4 *4 (-1020)))))
-(((*1 *2 *2) (-12 (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-962)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1088 *7)) (-4 *5 (-977))
- (-4 *7 (-977)) (-4 *2 (-1150 *5)) (-5 *1 (-474 *5 *2 *6 *7))
- (-4 *6 (-1150 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-977)) (-4 *7 (-977))
- (-4 *4 (-1150 *5)) (-5 *2 (-1088 *7)) (-5 *1 (-474 *5 *4 *6 *7))
- (-4 *6 (-1150 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-592 *7) *7 (-1088 *7))) (-5 *5 (-1 (-396 *7) *7))
- (-4 *7 (-1150 *6)) (-4 *6 (-13 (-341) (-138) (-968 (-385 (-525)))))
- (-5 *2 (-592 (-2 (|:| |frac| (-385 *7)) (|:| -3025 *3))))
- (-5 *1 (-751 *6 *7 *3 *8)) (-4 *3 (-602 *7))
- (-4 *8 (-602 (-385 *7)))))
+ (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-844))
+ (-5 *1 (-434 *3 *4 *2 *5)) (-4 *5 (-884 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-844))
+ (-5 *1 (-841 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-844)) (-5 *1 (-842 *2 *3)) (-4 *3 (-1150 *2)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-396 *2)) (-4 *2 (-286)) (-5 *1 (-849 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1150 *5))
- (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
- (-5 *2
- (-592 (-2 (|:| |frac| (-385 *6)) (|:| -3025 (-600 *6 (-385 *6))))))
- (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-977)) (-5 *2 (-108)) (-5 *1 (-421 *4 *3))
- (-4 *3 (-1150 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-592 (-1092))) (-4 *2 (-160))
- (-4 *3 (-218 (-3522 *4) (-713)))
- (-14 *6
- (-1 (-108) (-2 (|:| -3555 *5) (|:| -4193 *3))
- (-2 (|:| -3555 *5) (|:| -4193 *3))))
- (-5 *1 (-438 *4 *2 *5 *3 *6 *7)) (-4 *5 (-789))
- (-4 *7 (-884 *2 *3 (-800 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-273 (-887 (-525))))
- (-5 *2
- (-2 (|:| |varOrder| (-592 (-1092)))
- (|:| |inhom| (-3 (-592 (-1174 (-713))) "failed"))
- (|:| |hom| (-592 (-1174 (-713))))))
- (-5 *1 (-216)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
- (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))
- ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-1064 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-414)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-525))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819)))) (-5 *2 (-966))
- (-5 *1 (-689)))))
-(((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-977))
- (-4 *5 (-789)) (-5 *2 (-887 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-977))
- (-4 *5 (-789)) (-5 *2 (-887 *4))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-1165 *4)) (-4 *4 (-977))
- (-5 *2 (-887 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-1165 *4)) (-4 *4 (-977))
- (-5 *2 (-887 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-501)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1092))
- (-5 *2 (-592 *4)) (-5 *1 (-1034 *4 *5)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205))))
- (-5 *2 (-966)) (-5 *1 (-697)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1193 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
- (-5 *2 (-761 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1195 *3 *2)) (-4 *3 (-977)))))
-(((*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-713))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-380)) (-5 *2 (-713)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-782 *3)) (-4 *3 (-1020)))))
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092))
+ (-4 *5 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-850 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-396 (-887 *6))) (-5 *5 (-1092)) (-5 *3 (-887 *6))
+ (-4 *6 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-850 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-525)) (-4 *4 (-1150 (-385 *3))) (-5 *2 (-856))
- (-5 *1 (-848 *4 *5)) (-4 *5 (-1150 (-385 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2))
- (-4 *2 (-1150 (-157 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-396 *3)) (-4 *3 (-517))))
+ (-12 (-5 *2 (-396 (-1088 *1))) (-5 *1 (-294 *4)) (-5 *3 (-1088 *1))
+ (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 (-2 (|:| -2770 *4) (|:| -2343 (-525)))))
- (-4 *4 (-1150 (-525))) (-5 *2 (-713)) (-5 *1 (-419 *4)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-286)) (-4 *3 (-925 *2)) (-4 *4 (-1150 *3))
- (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-968 *3))))))
+ (-12 (-4 *1 (-844)) (-5 *2 (-396 (-1088 *1))) (-5 *3 (-1088 *1)))))
+(((*1 *1) (-5 *1 (-765))))
(((*1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-429)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-1075)) (-5 *5 (-632 (-205)))
- (-5 *2 (-966)) (-5 *1 (-690)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-395 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4))
- (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *2 (-592 *4)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-1150 *4))))
- ((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *2 (-592 *3)) (-5 *1 (-1047 *4 *3)) (-4 *4 (-1150 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *2 (-592 *4)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-1150 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *2 (-592 *3)) (-5 *1 (-1047 *4 *3)) (-4 *4 (-1150 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5))
- (-14 *3 (-525)) (-14 *4 (-713)))))
+ (-12 (-4 *2 (-327)) (-4 *2 (-977)) (-5 *1 (-655 *2 *3))
+ (-4 *3 (-1150 *2)))))
+(((*1 *1) (-5 *1 (-205))) ((*1 *1) (-5 *1 (-357))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
- (-4 *4 (-13 (-789) (-517))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4)) (-4 *4 (-13 (-789) (-517)))
- (-5 *2 (-798)) (-5 *1 (-31 *4 *5)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-977))))
- ((*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-713)) (-4 *5 (-517))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-903 *5 *3)) (-4 *3 (-1150 *5)))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-396 *4)) (-4 *4 (-517)))))
+(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-702)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-48)))))
+(((*1 *1) (-5 *1 (-989))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1092)) (-5 *2 (-1 (-205) (-205))) (-5 *1 (-646 *3))
- (-4 *3 (-567 (-501)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1092)) (-5 *2 (-1 (-205) (-205) (-205)))
- (-5 *1 (-646 *3)) (-4 *3 (-567 (-501))))))
-(((*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-525))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-840 *3)) (-4 *3 (-1020))))
+ (-12 (-4 *5 (-286)) (-4 *6 (-351 *5)) (-4 *4 (-351 *5))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2103 (-592 *4))))
+ (-5 *1 (-1043 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
+ (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
((*1 *2 *3 *1)
(-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341)))
- (-4 *3 (-1150 *4)) (-5 *2 (-525))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-517) (-789) (-968 *2) (-588 *2) (-429)))
- (-5 *2 (-525)) (-5 *1 (-1035 *4 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-782 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *6)))
- (-4 *6 (-13 (-517) (-789) (-968 *2) (-588 *2) (-429)))
- (-5 *2 (-525)) (-5 *1 (-1035 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-1075))
- (-4 *6 (-13 (-517) (-789) (-968 *2) (-588 *2) (-429)))
- (-5 *2 (-525)) (-5 *1 (-1035 *6 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *6)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-429)) (-5 *2 (-525))
- (-5 *1 (-1036 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-782 (-385 (-887 *6))))
- (-5 *3 (-385 (-887 *6))) (-4 *6 (-429)) (-5 *2 (-525))
- (-5 *1 (-1036 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-385 (-887 *6))) (-5 *4 (-1092))
- (-5 *5 (-1075)) (-4 *6 (-429)) (-5 *2 (-525)) (-5 *1 (-1036 *6))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1111 *3)) (-4 *3 (-977)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
+ (-4 *3 (-1150 *4)) (-5 *2 (-108)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-108)) (-5 *1 (-110))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1092)) (-5 *2 (-108))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1092)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1020)) (-5 *2 (-108)) (-5 *1 (-822 *5 *3 *4))
+ (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *6)) (-4 *6 (-821 *5)) (-4 *5 (-1020))
+ (-5 *2 (-108)) (-5 *1 (-822 *5 *6 *4)) (-4 *4 (-567 (-827 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-104))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-342 *2 *3)) (-4 *3 (-1020)) (-4 *2 (-1020))))
+ ((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1075))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-416 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-565 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-899))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-998 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-5 *1 (-1092))))
(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-1124 *3))
- (-4 *3 (-907)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 (-385 (-525))))
- (-5 *2
- (-592
- (-2 (|:| |outval| *4) (|:| |outmult| (-525))
- (|:| |outvect| (-592 (-632 *4))))))
- (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-648 *3 *4)) (-4 *3 (-1128)) (-4 *4 (-1128)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-255 *4 *3))
- (-4 *3 (-13 (-408 *4) (-934))))))
+ (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-565 *3)) (-4 *3 (-789)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-138))) (-5 *2 (-592 *3))
- (-5 *1 (-1144 *4 *3)) (-4 *3 (-1150 *4)))))
-(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-412)) (|:| -3408 "void")))
+ (-5 *2 (-1179)) (-5 *1 (-1095))))
+ ((*1 *2 *3 *4)
(-12 (-5 *3 (-1092))
- (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
- (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-893)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-798))) ((*1 *1 *1 *1) (-5 *1 (-798)))
- ((*1 *1 *1) (-5 *1 (-798)))
+ (-5 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-5 *2 (-1179))
+ (-5 *1 (-1095))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1092))
+ (-5 *4 (-3 (|:| |fst| (-412)) (|:| -3408 "void"))) (-5 *2 (-1179))
+ (-5 *1 (-1095)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-798)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-525))) (-5 *4 (-840 (-525)))
+ (-5 *2 (-632 (-525))) (-5 *1 (-546))))
((*1 *2 *3)
- (-12 (-5 *2 (-1073 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-977)))))
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525))))
+ (-5 *1 (-546))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-525))) (-5 *4 (-592 (-840 (-525))))
+ (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-546)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-445)) (-5 *4 (-856)) (-5 *2 (-1179)) (-5 *1 (-1175)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-798) (-798) (-798))) (-5 *4 (-525)) (-5 *2 (-798))
- (-5 *1 (-595 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-798)) (-5 *1 (-793 *3 *4 *5)) (-4 *3 (-977))
- (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-798))))
- ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-798))))
- ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-798))))
- ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1088 *3)) (-4 *3 (-977)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3519 *6) (|:| |sol?| (-108))) (-525)
- *6))
- (-4 *6 (-341)) (-4 *7 (-1150 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6))
- (-2 (|:| -1642 (-385 *7)) (|:| |coeff| (-385 *7))) "failed"))
- (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1068))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -3096 (-525)))))
- (-5 *1 (-339 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -3096 (-713)))))
- (-5 *1 (-364 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| -2770 *3) (|:| -4193 (-525)))))
- (-5 *1 (-396 *3)) (-4 *3 (-517))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -3096 (-713)))))
- (-5 *1 (-761 *3)) (-4 *3 (-789)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
- (-5 *1 (-921 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
- (-5 *1 (-1027 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-530 *3)) (-4 *3 (-968 (-525)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
- (|:| |Conditional| "conditional") (|:| |Return| "return")
- (|:| |Block| "block") (|:| |Comment| "comment")
- (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
- (|:| |Repeat| "repeat") (|:| |Goto| "goto")
- (|:| |Continue| "continue")
- (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
- (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-308)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3))
- (-4 *3 (-996 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
-(((*1 *2 *2) (-12 (-5 *2 (-856)) (|has| *1 (-6 -4249)) (-4 *1 (-382))))
- ((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856))))
- ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641))))
- ((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641)))))
-(((*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-690)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1128)) (-5 *2 (-713)) (-5 *1 (-168 *4 *3))
- (-4 *3 (-619 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-517)) (-4 *3 (-977))
- (-5 *2 (-2 (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-791 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-977))
- (-5 *2 (-2 (|:| -2829 *3) (|:| -1607 *3))) (-5 *1 (-792 *5 *3))
- (-4 *3 (-791 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-517) (-789) (-968 (-525))))
- (-4 *5 (-408 *4)) (-5 *2 (-396 (-1088 (-385 (-525)))))
- (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1150 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1092)))))
-(((*1 *1 *1) (-4 *1 (-986)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-903 *4 *2))
- (-4 *2 (-1150 *4)))))
+ (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-108))
- (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2
- (-3 (|:| |%expansion| (-291 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))))
- (-5 *1 (-398 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1114) (-408 *5)))
- (-14 *6 (-1092)) (-14 *7 *3))))
-(((*1 *1) (-5 *1 (-146))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3))
- (-4 *3 (-901)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-525))) (-5 *2 (-525)) (-5 *1 (-877)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-713))) (-5 *3 (-159)) (-5 *1 (-1081 *4 *5))
- (-14 *4 (-856)) (-4 *5 (-977)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -3094 (-592 *1))))
- (-4 *1 (-345 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-430 *3 *4 *5 *6))
- (|:| -3094 (-592 (-430 *3 *4 *5 *6)))))
- (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1088 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525))
- (-5 *2 (-966)) (-5 *1 (-699)))))
-(((*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177))))
- ((*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))))
-(((*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-904)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-133 *2 *4 *3))
- (-4 *3 (-351 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-476 *2 *4 *5 *3))
- (-4 *5 (-351 *2)) (-4 *3 (-351 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-632 *4)) (-4 *4 (-925 *2)) (-4 *2 (-517))
- (-5 *1 (-635 *2 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-1143 *2 *4 *3))
- (-4 *3 (-1150 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762))
- (-14 *5 (-1092)) (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-157 *4)) (-5 *1 (-167 *4 *3))
- (-4 *4 (-13 (-341) (-787))) (-4 *3 (-1150 *2)))))
-(((*1 *1 *1 *1) (-5 *1 (-798))))
+ (-12 (-5 *4 (-592 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-286))
+ (-5 *2 (-713)) (-5 *1 (-432 *5 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1174 (-592 (-2 (|:| -3284 *4) (|:| -3555 (-1039))))))
- (-4 *4 (-327)) (-5 *2 (-1179)) (-5 *1 (-495 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-887 (-157 *4))) (-4 *4 (-160))
- (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-887 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-160))
- (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 (-357)))
- (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977))
- (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517))
- (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517))
- (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-385 (-887 (-157 *4)))) (-4 *4 (-517))
- (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-385 (-887 (-157 *5)))) (-5 *4 (-856))
- (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357)))
- (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789))
- (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517))
- (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357)))
- (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789))
- (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-517))
- (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357)))
- (-5 *1 (-727 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1174 (-592 (-2 (|:| -3284 *4) (|:| -3555 (-1039))))))
- (-4 *4 (-327)) (-5 *2 (-632 *4)) (-5 *1 (-324 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))))
-(((*1 *2 *1) (-12 (-4 *3 (-977)) (-5 *2 (-592 *1)) (-4 *1 (-1053 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))
- (-5 *2 (-385 (-525))) (-5 *1 (-951 *4)) (-4 *4 (-1150 (-525))))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-830))
- (-5 *3
- (-2 (|:| |pde| (-592 (-294 (-205))))
- (|:| |constraints|
- (-592
- (-2 (|:| |start| (-205)) (|:| |finish| (-205))
- (|:| |grid| (-713)) (|:| |boundaryType| (-525))
- (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205))))))
- (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075))
- (|:| |tol| (-205))))
- (-5 *2 (-966)))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-690)))))
+ (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-592 (-157 *4)))
+ (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 *3)) (-4 *3 (-884 *5 *6 *7)) (-4 *5 (-429))
- (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-426 *5 *6 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 (-592 *6))) (-4 *6 (-884 *3 *5 *4))
- (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1092))))
- (-4 *5 (-735)) (-5 *1 (-859 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-341) (-281)
- (-10 -8 (-15 -3114 ((-1044 *3 (-565 $)) $))
- (-15 -3123 ((-1044 *3 (-565 $)) $))
- (-15 -1217 ($ (-1044 *3 (-565 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-341) (-281)
- (-10 -8 (-15 -3114 ((-1044 *3 (-565 $)) $))
- (-15 -3123 ((-1044 *3 (-565 $)) $))
- (-15 -1217 ($ (-1044 *3 (-565 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 *2))
- (-4 *2
- (-13 (-341) (-281)
- (-10 -8 (-15 -3114 ((-1044 *4 (-565 $)) $))
- (-15 -3123 ((-1044 *4 (-565 $)) $))
- (-15 -1217 ($ (-1044 *4 (-565 $)))))))
- (-4 *4 (-517)) (-5 *1 (-40 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 (-565 *2)))
- (-4 *2
- (-13 (-341) (-281)
- (-10 -8 (-15 -3114 ((-1044 *4 (-565 $)) $))
- (-15 -3123 ((-1044 *4 (-565 $)) $))
- (-15 -1217 ($ (-1044 *4 (-565 $)))))))
- (-4 *4 (-517)) (-5 *1 (-40 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-5 *2 (-592 *5))
- (-5 *1 (-825 *4 *5)) (-4 *5 (-1128)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-286)))))
+ (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-567 (-827 (-525))))
+ (-4 *5 (-821 (-525)))
+ (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-528 *5 *3)) (-4 *3 (-578))
+ (-4 *3 (-13 (-27) (-1114) (-408 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1092))
+ (-12 (-5 *3 (-1174 (-294 (-205))))
(-5 *2
- (-2 (|:| |zeros| (-1073 (-205))) (|:| |ones| (-1073 (-205)))
- (|:| |singularities| (-1073 (-205)))))
- (-5 *1 (-100)))))
-(((*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177))))
- ((*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-766)) (-5 *3 (-592 (-1092))) (-5 *1 (-767)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-592 (-2 (|:| |totdeg| (-713)) (|:| -3101 *3))))
- (-5 *4 (-713)) (-4 *3 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735))
- (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-592 *1)) (-4 *1 (-942 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4))
- (-14 *3 (-856)) (-4 *4 (-977)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2 (-525)) (-5 *1 (-186)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-968 (-385 *2)))) (-5 *2 (-525))
- (-5 *1 (-111 *4 *3)) (-4 *3 (-1150 *4)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934)))
- (-5 *1 (-163 *3)))))
-(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177))))
- ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-959 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-977)) (-5 *1 (-959 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-959 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-977)) (-5 *1 (-959 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
- (-4 *4 (-977)))))
+ (-2 (|:| |additions| (-525)) (|:| |multiplications| (-525))
+ (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))))
+ (-5 *1 (-284)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4))
+ (-4 *4 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713))))
+ ((*1 *1 *1) (-4 *1 (-213)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4))
+ (-4 *4 (-1150 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3))
+ (-4 *3 (-1150 *2))))
+ ((*1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-835 *4))
+ (-4 *4 (-1020))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-835 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *1 (-835 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4258)) (-4 *1 (-142 *3))
+ (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4259)) (-4 *1 (-142 *3))
(-4 *3 (-1128))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1128)) (-5 *1 (-555 *3))))
@@ -2320,139 +10651,316 @@
(-4 *5 (-735)) (-4 *3 (-789)) (-4 *2 (-991 *4 *5 *3))))
((*1 *2 *1 *3)
(-12 (-5 *3 (-713)) (-5 *1 (-1126 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1165 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525))
- (-5 *2 (-966)) (-5 *1 (-697)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4))))
- (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-381 *3)) (-4 *3 (-382))))
- ((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-381 *3)) (-4 *3 (-382))))
- ((*1 *2 *2) (-12 (-5 *2 (-856)) (|has| *1 (-6 -4249)) (-4 *1 (-382))))
- ((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856))))
- ((*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-1073 (-525))))))
-(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-422 *3)) (-4 *3 (-977)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4))))
- (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160))))
- ((*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2))))
- ((*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *2 (-592 *4)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-1150 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *2 (-592 *3)) (-5 *1 (-1047 *4 *3)) (-4 *4 (-1150 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1052 (-205))) (-5 *1 (-1112)))))
+(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-702)))))
+(((*1 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-510)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-694)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))))
+(((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-128)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-357))) (-5 *1 (-970)) (-5 *3 (-357)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-966)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-5 *2 (-108)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2))
+ (-4 *2 (-408 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1092))))
+ ((*1 *1 *1) (-4 *1 (-149))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-862)))))
(((*1 *1 *2 *1)
(-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1128)) (-5 *1 (-555 *3))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-641)) (-5 *1 (-284)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *7)) (-4 *7 (-789))
- (-4 *8 (-884 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-977)) (-4 *3 (-1020)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1106 *4 *5))
+ (-4 *4 (-1020)) (-4 *5 (-1020)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-632 *6)) (-5 *5 (-1 (-396 (-1088 *6)) (-1088 *6)))
+ (-4 *6 (-341))
(-5 *2
- (-2 (|:| |particular| (-3 (-1174 (-385 *8)) "failed"))
- (|:| -3094 (-592 (-1174 (-385 *8))))))
- (-5 *1 (-615 *5 *6 *7 *8)))))
+ (-592
+ (-2 (|:| |outval| *7) (|:| |outmult| (-525))
+ (|:| |outvect| (-592 (-632 *7))))))
+ (-5 *1 (-498 *6 *7 *4)) (-4 *7 (-341)) (-4 *4 (-13 (-341) (-787))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-862)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4))
- (-4 *4 (-327)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-353 *4 *2))
- (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4259)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1092))) (-4 *6 (-341))
- (-5 *2 (-592 (-273 (-887 *6)))) (-5 *1 (-503 *5 *6 *7))
- (-4 *5 (-429)) (-4 *7 (-13 (-341) (-787))))))
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713))
+ (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-968 (-525)))
- (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3))
- (-4 *2
- (-13 (-341) (-281)
- (-10 -8 (-15 -3114 ((-1044 *3 (-565 $)) $))
- (-15 -3123 ((-1044 *3 (-565 $)) $))
- (-15 -1217 ($ (-1044 *3 (-565 $))))))))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-592 *6)) (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
- (-4 *3 (-517)))))
-(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-294 (-357))) (-5 *1 (-284)))))
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092))
+ (-14 *4 *2))))
+(((*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-986))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
+ (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-986))))
+ ((*1 *1 *1) (-4 *1 (-787)))
+ ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)) (-4 *2 (-986))))
+ ((*1 *1 *1) (-4 *1 (-986))) ((*1 *1 *1) (-4 *1 (-1056))))
+(((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))))
+ (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525)))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))))
+ (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525)))
+ (-5 *4 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))))
+ (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525))) (-5 *4 (-385 (-525)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-385 (-525)))
+ (-5 *2 (-592 (-2 (|:| -3436 *5) (|:| -3446 *5)))) (-5 *1 (-951 *3))
+ (-4 *3 (-1150 (-525))) (-5 *4 (-2 (|:| -3436 *5) (|:| -3446 *5)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))))
+ (-5 *1 (-952 *3)) (-4 *3 (-1150 (-385 (-525))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-592 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525))))))
+ (-5 *1 (-952 *3)) (-4 *3 (-1150 (-385 (-525))))
+ (-5 *4 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-385 (-525)))
+ (-5 *2 (-592 (-2 (|:| -3436 *4) (|:| -3446 *4)))) (-5 *1 (-952 *3))
+ (-4 *3 (-1150 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-385 (-525)))
+ (-5 *2 (-592 (-2 (|:| -3436 *5) (|:| -3446 *5)))) (-5 *1 (-952 *3))
+ (-4 *3 (-1150 *5)) (-5 *4 (-2 (|:| -3436 *5) (|:| -3446 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1150 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-848 *4 *3))
+ (-4 *3 (-1150 (-385 *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7))))
+ (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-48)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1174 *5)) (-4 *5 (-734)) (-5 *2 (-108))
+ (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))))
(((*1 *1 *2 *1)
(-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1128)) (-5 *1 (-555 *3))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1144 *3 *2))
- (-4 *2 (-1150 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-1095)) (-5 *3 (-1092)))))
-(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-798)))
- ((*1 *1 *1 *1) (-4 *1 (-901))))
(((*1 *2 *3)
- (-12 (-4 *4 (-517))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1975 *4)))
- (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-789)))
- (-4 *2 (-13 (-408 (-157 *4)) (-934) (-1114)))
- (-5 *1 (-554 *4 *3 *2)) (-4 *3 (-13 (-408 *4) (-934) (-1114))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *1) (-5 *1 (-132))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-525))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-398 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1114) (-408 *3)))
- (-14 *4 (-1092)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-4 *2 (-13 (-27) (-1114) (-408 *3) (-10 -8 (-15 -1217 ($ *4)))))
- (-4 *4 (-787))
- (-4 *5
- (-13 (-1152 *2 *4) (-341) (-1114)
- (-10 -8 (-15 -3376 ($ $)) (-15 -1206 ($ $)))))
- (-5 *1 (-400 *3 *2 *4 *5 *6 *7)) (-4 *6 (-916 *5)) (-14 *7 (-1092)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-146)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+ (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-977))
+ (-5 *2 (-457 *4 *5)) (-5 *1 (-879 *4 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-108)) (-5 *1 (-110)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-385 (-525))) (-4 *1 (-515 *3))
+ (-4 *3 (-13 (-382) (-1114)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-98 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1020)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-357)) (-5 *1 (-989)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 *2))
- (-5 *2 (-357)) (-5 *1 (-727 *4))))
+ (-12 (-5 *3 (-782 (-357))) (-5 *2 (-782 (-205))) (-5 *1 (-284)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1013 (-782 *3))) (-4 *3 (-13 (-1114) (-893) (-29 *5)))
+ (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2
+ (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-199 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1013 (-782 *3))) (-5 *5 (-1075))
+ (-4 *3 (-13 (-1114) (-893) (-29 *6)))
+ (-4 *6 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2
+ (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-199 *6 *3))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977))
- (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517))
- (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4))))
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1013 (-782 (-294 *5))))
+ (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2
+ (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-200 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-385 (-887 *6))) (-5 *4 (-1013 (-782 (-294 *6))))
+ (-5 *5 (-1075))
+ (-4 *6 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2
+ (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-200 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517))
- (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5))))
+ (-12 (-5 *4 (-1013 (-782 (-385 (-887 *5))))) (-5 *3 (-385 (-887 *5)))
+ (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2
+ (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-200 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1013 (-782 (-385 (-887 *6))))) (-5 *5 (-1075))
+ (-5 *3 (-385 (-887 *6)))
+ (-4 *6 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2
+ (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-200 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1092))
+ (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-3 *3 (-592 *3))) (-5 *1 (-406 *5 *3))
+ (-4 *3 (-13 (-1114) (-893) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-451 *3 *4 *5))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357))))
+ (-5 *5 (-357)) (-5 *6 (-989)) (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3) (-12 (-5 *3 (-711)) (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357))))
+ (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357))))
+ (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357))))
+ (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357)))))
+ (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357)))))
+ (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357)))))
+ (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357)))))
+ (-5 *5 (-357)) (-5 *6 (-989)) (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-782 (-357))))
+ (-5 *5 (-1075)) (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-782 (-357))))
+ (-5 *5 (-1092)) (-5 *2 (-966)) (-5 *1 (-526))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789))
- (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4))))
+ (-12 (-4 *4 (-13 (-341) (-138) (-968 (-525)))) (-4 *5 (-1150 *4))
+ (-5 *2 (-542 (-385 *5))) (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517))
- (-4 *5 (-789)) (-4 *5 (-567 *2)) (-5 *2 (-357))
- (-5 *1 (-727 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1099)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-1014 *3)) (-4 *3 (-1128)))))
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092)) (-4 *5 (-138))
+ (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))
+ (-5 *2 (-3 (-294 *5) (-592 (-294 *5)))) (-5 *1 (-545 *5))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-683 *3 *2)) (-4 *3 (-977)) (-4 *2 (-789))
+ (-4 *3 (-37 (-385 (-525))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1092)) (-5 *1 (-887 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-4 *3 (-977))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-4 *2 (-789))
+ (-5 *1 (-1045 *3 *2 *4)) (-4 *4 (-884 *3 (-497 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977))
+ (-5 *1 (-1077 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1083 *3 *4 *5))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1089 *3 *4 *5))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1090 *3 *4 *5))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *1 (-1123 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-2067
+ (-12 (-5 *2 (-1092)) (-4 *1 (-1134 *3)) (-4 *3 (-977))
+ (-12 (-4 *3 (-29 (-525))) (-4 *3 (-893)) (-4 *3 (-1114))
+ (-4 *3 (-37 (-385 (-525))))))
+ (-12 (-5 *2 (-1092)) (-4 *1 (-1134 *3)) (-4 *3 (-977))
+ (-12 (|has| *3 (-15 -1296 ((-592 *2) *3)))
+ (|has| *3 (-15 -2367 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1134 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1138 *3 *4 *5))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525))))))
+ ((*1 *1 *1 *2)
+ (-2067
+ (-12 (-5 *2 (-1092)) (-4 *1 (-1155 *3)) (-4 *3 (-977))
+ (-12 (-4 *3 (-29 (-525))) (-4 *3 (-893)) (-4 *3 (-1114))
+ (-4 *3 (-37 (-385 (-525))))))
+ (-12 (-5 *2 (-1092)) (-4 *1 (-1155 *3)) (-4 *3 (-977))
+ (-12 (|has| *3 (-15 -1296 ((-592 *2) *3)))
+ (|has| *3 (-15 -2367 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1155 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1159 *3 *4 *5))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-2067
+ (-12 (-5 *2 (-1092)) (-4 *1 (-1165 *3)) (-4 *3 (-977))
+ (-12 (-4 *3 (-29 (-525))) (-4 *3 (-893)) (-4 *3 (-1114))
+ (-4 *3 (-37 (-385 (-525))))))
+ (-12 (-5 *2 (-1092)) (-4 *1 (-1165 *3)) (-4 *3 (-977))
+ (-12 (|has| *3 (-15 -1296 ((-592 *2) *3)))
+ (|has| *3 (-15 -2367 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1165 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1166 *3 *4 *5))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-1096)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-698)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-968 (-525)))
+ (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3))
+ (-4 *2
+ (-13 (-341) (-281)
+ (-10 -8 (-15 -4066 ((-1044 *3 (-565 $)) $))
+ (-15 -4080 ((-1044 *3 (-565 $)) $))
+ (-15 -4100 ($ (-1044 *3 (-565 $))))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-327)) (-4 *4 (-307 *3)) (-4 *5 (-1150 *4))
+ (-5 *1 (-719 *3 *4 *5 *2 *6)) (-4 *2 (-1150 *5)) (-14 *6 (-856))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-4 *3 (-346))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-341)) (-4 *2 (-346)))))
+(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-745)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-856)) (-4 *6 (-13 (-517) (-789)))
(-5 *2 (-592 (-294 *6))) (-5 *1 (-201 *5 *6)) (-5 *3 (-294 *6))
@@ -2479,624 +10987,194 @@
((*1 *2 *1)
(-12 (-5 *2 (-1187 *3 *4)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-789))
(-4 *4 (-977)))))
-(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1075)) (-5 *1 (-728)))))
-(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-798)))
- ((*1 *1 *1 *1) (-4 *1 (-901))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525))))
- (-4 *2 (-160)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-704))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-632 (-205))) (-5 *5 (-108)) (-5 *6 (-205))
- (-5 *7 (-632 (-525)))
- (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))
- (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-696)))))
-(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-599 (-385 *2))) (-4 *2 (-1150 *4)) (-5 *1 (-752 *4 *2))
- (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-517)) (-4 *4 (-925 *3)) (-5 *1 (-133 *3 *4 *2))
+ (-4 *2 (-351 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-600 *2 (-385 *2))) (-4 *2 (-1150 *4))
- (-5 *1 (-752 *4 *2))
- (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-174)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1045 *4 *3 *5))) (-4 *4 (-37 (-385 (-525))))
- (-4 *4 (-977)) (-4 *3 (-789)) (-5 *1 (-1045 *4 *3 *5))
- (-4 *5 (-884 *4 (-497 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1123 *4))) (-5 *3 (-1092)) (-5 *1 (-1123 *4))
- (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-977)))))
-(((*1 *1) (-5 *1 (-745))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977))
- (-14 *4 (-592 (-1092)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789)))
- (-14 *4 (-592 (-1092))))))
+ (-12 (-4 *4 (-517)) (-4 *5 (-925 *4)) (-4 *2 (-351 *4))
+ (-5 *1 (-476 *4 *5 *2 *3)) (-4 *3 (-351 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-632 *5)) (-4 *5 (-925 *4)) (-4 *4 (-517))
+ (-5 *2 (-632 *4)) (-5 *1 (-635 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-517)) (-4 *4 (-925 *3)) (-5 *1 (-1143 *3 *4 *2))
+ (-4 *2 (-1150 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-592 (-108))) (-5 *7 (-632 (-205)))
- (-5 *8 (-632 (-525))) (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108))
- (-5 *2 (-966)) (-5 *1 (-697)))))
+ (-12 (-4 *3 (-1020)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 *2)))
+ (-5 *2 (-827 *3)) (-5 *1 (-999 *3 *4 *5))
+ (-4 *5 (-13 (-408 *4) (-821 *3) (-567 *2))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *5 (-346))
- (-5 *2 (-713)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))
- ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))))
-(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1020)) (-4 *3 (-835 *5)) (-5 *2 (-632 *3))
- (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3))
- (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4258)))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
- (-4 *3 (-13 (-341) (-1114) (-934))))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1092))
- (-4 *5 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-2 (|:| -1642 *3) (|:| |coeff| *3))) (-5 *1 (-518 *5 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *5))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4))))
- (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+ (-12 (-4 *1 (-351 *3)) (-4 *3 (-1128)) (-4 *3 (-789)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-351 *4)) (-4 *4 (-1128))
+ (-5 *2 (-108)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
- (-4 *4 (-977)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-259))) (-5 *1 (-259))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 (-1097))) (-5 *1 (-1097)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-798))) ((*1 *1 *1 *1) (-5 *1 (-798)))
- ((*1 *1 *1) (-5 *1 (-798))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-5 *2 (-108))
- (-5 *1 (-824 *4 *5)) (-4 *5 (-1020))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-5 *2 (-108))
- (-5 *1 (-825 *5 *3)) (-4 *3 (-1128))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *6)) (-5 *4 (-827 *5)) (-4 *5 (-1020))
- (-4 *6 (-1128)) (-5 *2 (-108)) (-5 *1 (-825 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3377 *4)))
- (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-525)) (-5 *2 (-592 (-2 (|:| -2770 *3) (|:| -2343 *4))))
- (-5 *1 (-638 *3)) (-4 *3 (-1150 *4)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4259)) (-4 *1 (-115 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-110)) (-5 *4 (-592 *2)) (-5 *1 (-109 *2))
- (-4 *2 (-1020))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-592 *4))) (-4 *4 (-1020))
- (-5 *1 (-109 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1020))
- (-5 *1 (-109 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-592 *4)))
- (-5 *1 (-109 *4)) (-4 *4 (-1020))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-977))
- (-5 *1 (-657 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-776 *3)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-592 (-385 (-887 *6))))
- (-5 *3 (-385 (-887 *6)))
- (-4 *6 (-13 (-517) (-968 (-525)) (-138)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-531 *6)))))
+ (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517))
+ (-5 *2 (-1088 *3)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1174 *4)) (-4 *4 (-588 (-525)))
- (-5 *2 (-1174 (-525))) (-5 *1 (-1199 *4)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-304 *3 *4)) (-4 *3 (-977))
- (-4 *4 (-734)) (-4 *3 (-160)))))
+ (-12 (-5 *3 (-632 (-385 (-887 (-525)))))
+ (-5 *2
+ (-592
+ (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525))
+ (|:| |radvect| (-592 (-632 (-294 (-525))))))))
+ (-5 *1 (-962)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-729)) (-5 *2 (-966))
+ (-5 *3
+ (-2 (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-729)) (-5 *2 (-966))
+ (-5 *3
+ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205)))))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1174 (-592 (-525)))) (-5 *1 (-456))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-555 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1015 (-205)))
- (-5 *5 (-108)) (-5 *2 (-1176)) (-5 *1 (-236)))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1039)) (-5 *1 (-105))))
- ((*1 *2 *1) (|partial| -12 (-5 *1 (-343 *2)) (-4 *2 (-1020))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-1110)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-925 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-133 *4 *5 *3))
- (-4 *3 (-351 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-925 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-476 *4 *5 *6 *3)) (-4 *6 (-351 *4)) (-4 *3 (-351 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-632 *5)) (-4 *5 (-925 *4)) (-4 *4 (-517))
- (-5 *2 (-2 (|:| |num| (-632 *4)) (|:| |den| *4)))
- (-5 *1 (-635 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525)))))
- (-4 *6 (-1150 *5))
- (-5 *2 (-2 (|:| -3025 *7) (|:| |rh| (-592 (-385 *6)))))
- (-5 *1 (-749 *5 *6 *7 *3)) (-5 *4 (-592 (-385 *6)))
- (-4 *7 (-602 *6)) (-4 *3 (-602 (-385 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-925 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1143 *4 *5 *3))
- (-4 *3 (-1150 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-856)) (-5 *4 (-396 *6)) (-4 *6 (-1150 *5))
- (-4 *5 (-977)) (-5 *2 (-592 *6)) (-5 *1 (-421 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1088 *1)) (-5 *4 (-1092)) (-4 *1 (-27))
- (-5 *2 (-592 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1088 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1092)))
- (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-1073 (-205))) (-5 *1 (-279)))))
-(((*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-977)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205))
- (-5 *2 (-966)) (-5 *1 (-695)))))
+ (-12 (-4 *4 (-517)) (-5 *2 (-592 (-713))) (-5 *1 (-903 *4 *3))
+ (-4 *3 (-1150 *4)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -3379 *3) (|:| -4193 (-713)))) (-5 *1 (-543 *3))
- (-4 *3 (-510)))))
-(((*1 *2)
- (-12 (-14 *4 (-713)) (-4 *5 (-1128)) (-5 *2 (-128))
- (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-341)) (-5 *2 (-128)) (-5 *1 (-306 *3 *4))
- (-4 *3 (-307 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-160))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525))
- (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735))
- (-5 *2 (-525)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-977)) (-5 *2 (-856))))
- ((*1 *2) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-341)) (-5 *2 (-128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327)) (-5 *2 (-108))
- (-5 *1 (-335 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-205)) (-5 *5 (-525)) (-5 *2 (-1124 *3))
- (-5 *1 (-732 *3)) (-4 *3 (-907))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-108))
- (-5 *1 (-1124 *2)) (-4 *2 (-907)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-862)))))
-(((*1 *2 *1) (-12 (-4 *1 (-968 (-525))) (-4 *1 (-281)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))))
-(((*1 *1 *1) (-5 *1 (-989))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-767)))))
+ (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
+ (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-681)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-105)))))
(((*1 *2 *3 *3)
(-12 (-4 *4 (-517))
- (-5 *2 (-2 (|:| -3244 *4) (|:| -2829 *3) (|:| -1607 *3)))
- (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-2 (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-991 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-517)) (-4 *3 (-977))
- (-5 *2 (-2 (|:| -3244 *3) (|:| -2829 *1) (|:| -1607 *1)))
- (-4 *1 (-1150 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1128)))))
-(((*1 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1177))))
- ((*1 *2 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1177)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-565 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1092))) (-5 *5 (-1088 *2))
- (-4 *2 (-13 (-408 *6) (-27) (-1114)))
- (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1020))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-565 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1092)))
- (-5 *5 (-385 (-1088 *2))) (-4 *2 (-13 (-408 *6) (-27) (-1114)))
- (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1020)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-856)) (-5 *4 (-809)) (-5 *2 (-1179)) (-5 *1 (-1175))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-887 *6))) (-5 *4 (-592 (-1092)))
- (-4 *6 (-13 (-517) (-968 *5))) (-4 *5 (-517))
- (-5 *2 (-592 (-592 (-273 (-385 (-887 *6)))))) (-5 *1 (-969 *5 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-932 *3)))))
-(((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-970)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205)))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2))))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3801 *4)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205))
(-5 *2 (-966)) (-5 *1 (-696)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1020)) (-5 *2 (-824 *3 *5)) (-5 *1 (-820 *3 *4 *5))
- (-4 *3 (-1020)) (-4 *5 (-612 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-713)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1150 *3)) (-4 *3 (-977)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 (-887 *4))) (-5 *3 (-592 (-1092))) (-4 *4 (-429))
- (-5 *1 (-853 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-887 *4)) (-4 *4 (-13 (-286) (-138)))
- (-4 *2 (-884 *4 *6 *5)) (-5 *1 (-859 *4 *5 *6 *2))
- (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-632 (-1088 *8))) (-4 *5 (-977)) (-4 *8 (-977))
- (-4 *6 (-1150 *5)) (-5 *2 (-632 *6)) (-5 *1 (-474 *5 *6 *7 *8))
- (-4 *7 (-1150 *6)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1124 *3)) (-4 *3 (-907)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-690)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-341))
- (-5 *2 (-108)) (-5 *1 (-613 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4259))))
- (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4259)))) (-5 *2 (-108))
- (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-157 (-525))) (-5 *2 (-108)) (-5 *1 (-423))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4)
- (-227 *4 (-385 (-525)))))
- (-14 *4 (-592 (-1092))) (-14 *5 (-713)) (-5 *2 (-108))
- (-5 *1 (-478 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-895 *3)) (-4 *3 (-510))))
- ((*1 *2 *1) (-12 (-4 *1 (-1132)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-699)))))
-(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))))
-(((*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-798)))))
-(((*1 *2 *3) (-12 (-5 *3 (-385 (-525))) (-5 *2 (-205)) (-5 *1 (-284)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1110)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1020))
- (-4 *2 (-789)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-162)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-592 *5) *6))
- (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *6 (-1150 *5))
- (-5 *2 (-592 (-2 (|:| -2709 *5) (|:| -3025 *3))))
- (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6))
- (-4 *7 (-602 (-385 *6))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *1)
- (-12 (-4 *1 (-382)) (-1850 (|has| *1 (-6 -4249)))
- (-1850 (|has| *1 (-6 -4241)))))
- ((*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1020)) (-4 *2 (-789))))
- ((*1 *1 *1 *1) (-4 *1 (-789)))
- ((*1 *2 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-789))))
- ((*1 *1) (-5 *1 (-1039))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *2 (-966)) (-5 *1 (-695)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-735))
- (-4 *3 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $))))) (-4 *5 (-517))
- (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-884 (-385 (-887 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-977)) (-4 *5 (-735))
- (-4 *3
- (-13 (-789)
- (-10 -8 (-15 -3210 ((-1092) $))
- (-15 -2499 ((-3 $ "failed") (-1092))))))
- (-5 *1 (-917 *4 *5 *3 *2)) (-4 *2 (-884 (-887 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 *6))
- (-4 *6
- (-13 (-789)
- (-10 -8 (-15 -3210 ((-1092) $))
- (-15 -2499 ((-3 $ "failed") (-1092))))))
- (-4 *4 (-977)) (-4 *5 (-735)) (-5 *1 (-917 *4 *5 *6 *2))
- (-4 *2 (-884 (-887 *4) *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-977)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977))
- (-4 *2 (-429))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 *4)) (-4 *4 (-1150 (-525))) (-5 *2 (-592 (-525)))
- (-5 *1 (-461 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-429))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *2 (-789)) (-4 *3 (-429)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1075)) (-5 *5 (-632 (-205))) (-5 *6 (-205))
- (-5 *7 (-632 (-525))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-695)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1092)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-632 (-205))) (-5 *6 (-108)) (-5 *7 (-632 (-525)))
- (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS))))
- (-5 *3 (-525)) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-696)))))
-(((*1 *1 *1) (-4 *1 (-578)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934) (-1114))))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-690)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-824 *4 *5)) (-5 *3 (-824 *4 *6)) (-4 *4 (-1020))
- (-4 *5 (-1020)) (-4 *6 (-612 *5)) (-5 *1 (-820 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1092)) (-4 *4 (-517)) (-4 *4 (-789))
- (-5 *1 (-534 *4 *2)) (-4 *2 (-408 *4)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *2 (-966)) (-5 *1 (-694)))))
(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1132)) (-4 *5 (-1150 *3)) (-4 *6 (-1150 (-385 *5)))
- (-5 *2 (-108)) (-5 *1 (-319 *4 *3 *5 *6)) (-4 *4 (-320 *3 *5 *6))))
+ (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1165 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-884 *3 *5 *4)) (-5 *1 (-920 *3 *4 *5 *2))
- (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-592 (-958 *5 *6 *7 *3))) (-5 *1 (-958 *5 *6 *7 *3))
- (-4 *3 (-991 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-592 *6)) (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-996 *3 *4 *5 *2)) (-4 *3 (-429)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-592 (-1063 *5 *6 *7 *3))) (-5 *1 (-1063 *5 *6 *7 *3))
- (-4 *3 (-991 *5 *6 *7)))))
-(((*1 *1) (-5 *1 (-146))))
-(((*1 *1 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-308)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-48)))))
+ (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1))
+ (-4 *1 (-996 *4 *5 *6 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *2 (-592 *3)) (-5 *1 (-910 *4 *5 *6 *3))
- (-4 *3 (-991 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1006 *3)) (-4 *3 (-127)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1129 *2))
- (-4 *2 (-1020))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-789))
- (-5 *1 (-1129 *2)))))
-(((*1 *1 *1) (|partial| -4 *1 (-136))) ((*1 *1 *1) (-4 *1 (-327)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-136)) (-4 *1 (-844)))))
-(((*1 *1 *1 *1) (-4 *1 (-510))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3))
- (-4 *3 (-1150 (-157 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3))
- (-4 *3 (-1150 (-157 *2))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25))))))
(((*1 *2)
(-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
(-4 *4 (-395 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-294 (-357))) (-5 *2 (-294 (-205))) (-5 *1 (-284)))))
-(((*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977))))
- ((*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-4 *2 (-977)) (-4 *3 (-785)))))
-(((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103))))
- ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198))))
- ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462))))
- ((*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-286))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525))))
- ((*1 *1 *1) (-4 *1 (-986))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-525)) (-5 *5 (-1075)) (-5 *6 (-632 (-205)))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))))
- (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))
- (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1088 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6))
- (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-887 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6))
- (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-713))))
- ((*1 *1 *1) (-4 *1 (-380))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-626 *4 *3)) (-4 *4 (-1020))
- (-4 *3 (-1020)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))
- (-14 *4 *2) (-4 *5 (-160))))
- ((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-856)) (-5 *1 (-153 *3 *4))
- (-4 *3 (-154 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-856))))
- ((*1 *2)
- (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1150 *3))
- (-5 *2 (-856))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
- (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-341))
- (-5 *2 (-713)) (-5 *1 (-613 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4259))))
- (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4259)))) (-5 *2 (-713))
- (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4))
- (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3))
- (-4 *3 (-630 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517))
- (-5 *2 (-713)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
- ((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-13 (-341) (-789)))
- (-14 *4 (-1092)) (-14 *5 *3) (-5 *1 (-297 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-970)) (-5 *3 (-357)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-789))
+ (-12 (-4 *3 (-977)) (-5 *2 (-1174 *3)) (-5 *1 (-655 *3 *4))
+ (-4 *4 (-1150 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8))) (-4 *7 (-789))
+ (-4 *8 (-286)) (-4 *6 (-735)) (-4 *9 (-884 *8 *6 *7))
(-5 *2
- (-2 (|:| |f1| (-592 *4)) (|:| |f2| (-592 (-592 (-592 *4))))
- (|:| |f3| (-592 (-592 *4))) (|:| |f4| (-592 (-592 (-592 *4))))))
- (-5 *1 (-1100 *4)) (-5 *3 (-592 (-592 (-592 *4)))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1092)))
- (-4 *5 (-429)) (-5 *2 (-592 (-227 *4 *5))) (-5 *1 (-580 *4 *5)))))
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-592 (-2 (|:| -4201 (-1088 *9)) (|:| -2168 (-525)))))))
+ (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1088 *9)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1088 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 *8))
+ (-4 *7 (-789)) (-4 *8 (-977)) (-4 *9 (-884 *8 *6 *7)) (-4 *6 (-735))
+ (-5 *2 (-1088 *8)) (-5 *1 (-299 *6 *7 *8 *9)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *5 *6)) (-4 *6 (-567 (-1092)))
- (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *2 (-1082 (-592 (-887 *4)) (-592 (-273 (-887 *4)))))
- (-5 *1 (-477 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *2 (-789))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-632 *2)) (-5 *4 (-713))
- (-4 *2 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $)))))
- (-4 *5 (-1150 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))))
+ (-12 (-4 *4 (-327))
+ (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -4138 *3))))
+ (-5 *1 (-197 *4 *3)) (-4 *3 (-1150 *4)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-396 *4)) (-4 *4 (-517)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-525))) (-5 *4 (-840 (-525)))
- (-5 *2 (-632 (-525))) (-5 *1 (-546))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525))))
- (-5 *1 (-546))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-525))) (-5 *4 (-592 (-840 (-525))))
- (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-546)))))
-(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-702)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1106 *4 *5))
- (-4 *4 (-1020)) (-4 *5 (-1020)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-108)) (-5 *1 (-110)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-517)) (-4 *4 (-925 *3)) (-5 *1 (-133 *3 *4 *2))
- (-4 *2 (-351 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-925 *4)) (-4 *2 (-351 *4))
- (-5 *1 (-476 *4 *5 *2 *3)) (-4 *3 (-351 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-632 *5)) (-4 *5 (-925 *4)) (-4 *4 (-517))
- (-5 *2 (-632 *4)) (-5 *1 (-635 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-517)) (-4 *4 (-925 *3)) (-5 *1 (-1143 *3 *4 *2))
- (-4 *2 (-1150 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1))
- (-4 *1 (-996 *4 *5 *6 *3)))))
+ (-12 (-5 *3 (-713)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1090 *4 *5 *6))
+ (-4 *4 (-977)) (-14 *5 (-1092)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1166 *4 *5 *6))
+ (-4 *4 (-977)) (-14 *5 (-1092)) (-14 *6 *4))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-713)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-702)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1174 (-713))) (-5 *1 (-620 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1174 (-592 (-2 (|:| -2219 *4) (|:| -1722 (-1039))))))
+ (-4 *4 (-327)) (-5 *2 (-713)) (-5 *1 (-324 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-329 *3 *4)) (-14 *3 (-856))
+ (-14 *4 (-856))))
+ ((*1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327))
+ (-14 *4
+ (-3 (-1088 *3)
+ (-1174 (-592 (-2 (|:| -2219 *3) (|:| -1722 (-1039)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327))
+ (-14 *4 (-856)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-987 (-955 *4) (-1088 (-955 *4)))) (-5 *3 (-798))
+ (-5 *1 (-955 *4)) (-4 *4 (-13 (-787) (-341) (-953))))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-856)) (-5 *1 (-641))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-632 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-341)) (-5 *1 (-911 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
+(((*1 *1) (-5 *1 (-146))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-977))
+ (-4 *2 (-1165 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-341)) (-4 *3 (-977))
+ (-5 *2 (-2 (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-791 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-977))
+ (-5 *2 (-2 (|:| -1416 *3) (|:| -3681 *3))) (-5 *1 (-792 *5 *3))
+ (-4 *3 (-791 *5)))))
(((*1 *2 *3 *3)
(-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1607 *3)))
+ (-4 *5 (-351 *3)) (-5 *2 (-2 (|:| -1416 *3) (|:| -3681 *3)))
(-5 *1 (-631 *3 *4 *5 *6)) (-4 *6 (-630 *3 *4 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -2829 *3) (|:| -1607 *3))) (-5 *1 (-642 *3))
+ (-12 (-5 *2 (-2 (|:| -1416 *3) (|:| -3681 *3))) (-5 *1 (-642 *3))
(-4 *3 (-286)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3801 *3) (|:| |coef2| (-724 *3))))
+ (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
+ (-5 *2 (-2 (|:| |k| (-761 *3)) (|:| |c| *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1073 (-525))) (-5 *1 (-1077 *4)) (-4 *4 (-977))
+ (-5 *3 (-525)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-565 *4)) (-5 *1 (-564 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-789)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-57 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-57 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33))))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4260)) (-4 *1 (-115 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-880 *4 *3))
+ (-4 *3 (-1150 *4)))))
(((*1 *1 *2 *3)
(-12 (-5 *2 (-1174 (-1092))) (-5 *3 (-1174 (-430 *4 *5 *6 *7)))
(-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-160)) (-14 *5 (-856))
@@ -3119,27 +11197,186 @@
((*1 *1)
(-12 (-5 *1 (-430 *2 *3 *4 *5)) (-4 *2 (-160)) (-14 *3 (-856))
(-14 *4 (-592 (-1092))) (-14 *5 (-1174 (-632 *2))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1174 *3)) (-4 *3 (-977)) (-5 *1 (-655 *3 *4))
+ (-4 *4 (-1150 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1099)))))
+(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-273 (-385 (-887 *5)))) (-5 *4 (-1092))
+ (-4 *5 (-13 (-286) (-789) (-138)))
+ (-5 *2 (-1082 (-592 (-294 *5)) (-592 (-273 (-294 *5)))))
+ (-5 *1 (-1048 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092))
+ (-4 *5 (-13 (-286) (-789) (-138)))
+ (-5 *2 (-1082 (-592 (-294 *5)) (-592 (-273 (-294 *5)))))
+ (-5 *1 (-1048 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-525))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-966))
+ (-5 *1 (-699)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
+ (-5 *2
+ (-2 (|:| -2219 *4) (|:| -2188 *4) (|:| |totalpts| (-525))
+ (|:| |success| (-108))))
+ (-5 *1 (-731)) (-5 *5 (-525)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-592 *4)) (-4 *4 (-1020)) (-4 *4 (-1128)) (-5 *2 (-108))
+ (-5 *1 (-1073 *4)))))
(((*1 *2 *3 *4)
(-12 (-4 *5 (-341))
(-5 *2
(-2 (|:| A (-632 *5))
(|:| |eqs|
(-592
- (-2 (|:| C (-632 *5)) (|:| |g| (-1174 *5)) (|:| -3025 *6)
+ (-2 (|:| C (-632 *5)) (|:| |g| (-1174 *5)) (|:| -1537 *6)
(|:| |rh| *5))))))
(-5 *1 (-755 *5 *6)) (-5 *3 (-632 *5)) (-5 *4 (-1174 *5))
(-4 *6 (-602 *5))))
((*1 *2 *3 *4)
(-12 (-4 *5 (-341)) (-4 *6 (-602 *5))
- (-5 *2 (-2 (|:| -3407 (-632 *6)) (|:| |vec| (-1174 *5))))
+ (-5 *2 (-2 (|:| -4108 (-632 *6)) (|:| |vec| (-1174 *5))))
(-5 *1 (-755 *5 *6)) (-5 *3 (-632 *6)) (-5 *4 (-1174 *5)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3))
+ (-4 *3 (-13 (-408 *6) (-27) (-1114)))
+ (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1020)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *6 (-205))
+ (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-694)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-408 *3) (-934))) (-5 *1 (-255 *3 *2))
+ (-4 *3 (-13 (-789) (-517))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
+(((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3)))))
(((*1 *2 *3 *4 *3 *5)
(-12 (-5 *3 (-1075)) (-5 *4 (-157 (-205))) (-5 *5 (-525))
(-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4)
+ (-227 *4 (-385 (-525)))))
+ (-14 *4 (-592 (-1092))) (-14 *5 (-713)) (-5 *2 (-108))
+ (-5 *1 (-478 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1030)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-160)) (-4 *2 (-23)) (-5 *1 (-268 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1150 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-654 *3 *2 *4 *5 *6)) (-4 *3 (-160))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *2 (-1150 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-977))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-658 *3 *2 *4 *5 *6)) (-4 *3 (-160))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))))
+(((*1 *1 *1) (-12 (-5 *1 (-561 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1) (-5 *1 (-581))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-5 *2 (-1 (-108) *5))
+ (-5 *1 (-825 *4 *5)) (-4 *5 (-1128)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-592 (-1092)))
+ (-4 *2 (-13 (-408 (-157 *5)) (-934) (-1114)))
+ (-4 *5 (-13 (-517) (-789))) (-5 *1 (-554 *5 *6 *2))
+ (-4 *6 (-13 (-408 *5) (-934) (-1114))))))
+(((*1 *2)
+ (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
(((*1 *1 *1)
(-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
(-4 *4 (-789)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-862)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
+ (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-665)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-669)) (-5 *2 (-108)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1097))) (-5 *1 (-1097))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-1097))) (-5 *1 (-1097)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
+ (-5 *1 (-1043 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
+(((*1 *1) (-5 *1 (-270))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
+ (-4 *3 (-991 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4))))))
+ (-5 *1 (-994 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4))))))
+ (-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1029 *5 *6 *7 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1056))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525)))))
+(((*1 *1 *1 *1) (-5 *1 (-125))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-385 (-525))))
+ (-5 *1 (-284)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-856)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-242)))))
(((*1 *2 *3 *4 *5 *5)
(-12 (-5 *4 (-108)) (-5 *5 (-525)) (-4 *6 (-341)) (-4 *6 (-346))
(-4 *6 (-977)) (-5 *2 (-592 (-592 (-632 *6)))) (-5 *1 (-960 *6))
@@ -3156,1266 +11393,407 @@
(-12 (-5 *4 (-856)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-977))
(-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5))
(-5 *3 (-592 (-632 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1075)) (-5 *1 (-653)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1097)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-125))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1043 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1150 *5))
+ (-5 *1 (-670 *5 *2)) (-4 *5 (-341)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-698)))))
+(((*1 *1 *1) (-4 *1 (-578)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934) (-1114))))))
+(((*1 *2 *3) (-12 (-5 *3 (-592 (-51))) (-5 *2 (-1179)) (-5 *1 (-799)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
+ (-4 *3 (-13 (-341) (-1114) (-934))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
+ (-4 *2 (-408 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1020)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-626 *4 *5)) (-4 *4 (-1020))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-789)) (-5 *1 (-864 *3 *2)) (-4 *2 (-408 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1092)) (-5 *2 (-294 (-525))) (-5 *1 (-865))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-789)) (-4 *2 (-977))))
+ ((*1 *2 *1) (-12 (-4 *2 (-977)) (-5 *1 (-1195 *2 *3)) (-4 *3 (-785)))))
(((*1 *2 *3 *3 *4 *3)
(-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
(-5 *1 (-698)))))
+(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1095))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-456)))))
+(((*1 *1 *1) (-5 *1 (-205)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
+ (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
+ ((*1 *1 *1) (-5 *1 (-357))) ((*1 *1) (-5 *1 (-357))))
+(((*1 *1) (-5 *1 (-415))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-592 (-1 *4 (-592 *4)))) (-4 *4 (-1020))
+ (-5 *1 (-109 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1020))
+ (-5 *1 (-109 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-1 *4 (-592 *4))))
+ (-5 *1 (-109 *4)) (-4 *4 (-1020)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-341) (-138) (-968 (-525))))
+ (-4 *5 (-1150 *4)) (-5 *2 (-592 (-385 *5))) (-5 *1 (-948 *4 *5))
+ (-5 *3 (-385 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281))))
+ ((*1 *1 *1) (-4 *1 (-281))) ((*1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1174 *4)) (-5 *3 (-1039)) (-4 *4 (-327))
+ (-5 *1 (-495 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1128)) (-5 *1 (-808 *3 *2)) (-4 *3 (-1128))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4260)) (-4 *1 (-224 *2)) (-4 *2 (-1128)))))
(((*1 *2 *2)
(-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3))))
((*1 *1 *1)
(-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092))
(-14 *4 *2))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1020))
+ (-4 *2 (-789)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1110)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-977)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))))
(((*1 *2 *3 *3)
(-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-903 *4 *3))
(-4 *3 (-1150 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205))
- (-5 *2 (-966)) (-5 *1 (-693)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-592 *8))) (-5 *3 (-592 *8))
- (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-108)) (-5 *1 (-910 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525)))))
- (-4 *5 (-1150 *4)) (-5 *2 (-592 (-2 (|:| -1340 *5) (|:| -2011 *5))))
- (-5 *1 (-749 *4 *5 *3 *6)) (-4 *3 (-602 *5))
- (-4 *6 (-602 (-385 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525)))))
- (-4 *4 (-1150 *5)) (-5 *2 (-592 (-2 (|:| -1340 *4) (|:| -2011 *4))))
- (-5 *1 (-749 *5 *4 *3 *6)) (-4 *3 (-602 *4))
- (-4 *6 (-602 (-385 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525)))))
- (-4 *5 (-1150 *4)) (-5 *2 (-592 (-2 (|:| -1340 *5) (|:| -2011 *5))))
- (-5 *1 (-749 *4 *5 *6 *3)) (-4 *6 (-602 *5))
- (-4 *3 (-602 (-385 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525)))))
- (-4 *4 (-1150 *5)) (-5 *2 (-592 (-2 (|:| -1340 *4) (|:| -2011 *4))))
- (-5 *1 (-749 *5 *4 *6 *3)) (-4 *6 (-602 *4))
- (-4 *3 (-602 (-385 *4))))))
-(((*1 *2)
- (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5)))
- (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-5 *2 (-713)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-764)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-687 *3)) (-4 *3 (-160)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-840 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4))
- (-5 *2 (-396 *3)) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1150 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1075)) (-5 *1 (-728)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *2 (-592 (-205)))
- (-5 *1 (-445)))))
+ (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-977))
+ (-5 *2 (-887 *5)) (-5 *1 (-879 *4 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
+ (-5 *2 (-632 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327)) (-5 *2 (-892 (-1039)))
- (-5 *1 (-324 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1073 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
-(((*1 *2 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-375)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1128)) (-5 *2 (-525)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-517))
- (-5 *2 (-2 (|:| -2829 *3) (|:| -1607 *3))) (-5 *1 (-1145 *4 *3))
- (-4 *3 (-1150 *4)))))
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1075)) (-4 *1 (-342 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020)))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-899))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-922))))
+ ((*1 *2 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1020) (-33))) (-5 *1 (-1057 *2 *3))
+ (-4 *3 (-13 (-1020) (-33))))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-308)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1088 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517)))
+ (-5 *1 (-31 *4 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-385 (-887 *4))) (-5 *3 (-1092))
+ (-4 *4 (-13 (-517) (-968 (-525)) (-138))) (-5 *1 (-531 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-856)) (-5 *2 (-1088 *3)) (-5 *1 (-1103 *3))
- (-4 *3 (-341)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-592 *5)) (-5 *4 (-525)) (-4 *5 (-787)) (-4 *5 (-341))
- (-5 *2 (-713)) (-5 *1 (-880 *5 *6)) (-4 *6 (-1150 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1128)) (-5 *1 (-808 *3 *2)) (-4 *3 (-1128))))
- ((*1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-396 *3)) (-4 *3 (-517)) (-5 *1 (-397 *3)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1020) (-33)))
- (-5 *2 (-108)) (-5 *1 (-1057 *4 *5)) (-4 *4 (-13 (-1020) (-33))))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-525))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819)))) (-5 *2 (-966))
- (-5 *1 (-691)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1022 *4)) (-4 *4 (-1020)) (-5 *2 (-1 *4))
- (-5 *1 (-949 *4))))
+ (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1092))
+ (-5 *1 (-241 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1092)) (-5 *2 (-51))
+ (-5 *1 (-242)))))
+(((*1 *2 *2) (-12 (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-962)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-510))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-341) (-787)))
+ (-5 *2 (-592 (-2 (|:| -2868 (-592 *3)) (|:| -2188 *5))))
+ (-5 *1 (-167 *5 *3)) (-4 *3 (-1150 (-157 *5)))))
((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-357))) (-5 *1 (-970)) (-5 *3 (-357))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1015 (-525))) (-5 *2 (-1 (-525))) (-5 *1 (-975)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1020)) (-5 *2 (-824 *3 *4)) (-5 *1 (-820 *3 *4 *5))
- (-4 *3 (-1020)) (-4 *5 (-612 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))))
+ (-12 (-4 *4 (-13 (-341) (-787)))
+ (-5 *2 (-592 (-2 (|:| -2868 (-592 *3)) (|:| -2188 *4))))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-592
- (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 *3))
- (|:| |logand| (-1088 *3)))))
- (-5 *1 (-542 *3)) (-4 *3 (-341)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-825 *4 *3))
- (-4 *3 (-1128))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-357)) (-5 *1 (-970)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
- (-4 *3 (-13 (-1020) (-33))))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205)))
+ (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))))
+(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205))
+ (-5 *2 (-966)) (-5 *1 (-693)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1092)) (-5 *5 (-1015 (-205))) (-5 *2 (-862))
+ (-5 *1 (-860 *3)) (-4 *3 (-567 (-501)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1092)) (-5 *5 (-1015 (-205))) (-5 *2 (-862))
+ (-5 *1 (-860 *3)) (-4 *3 (-567 (-501)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
(-5 *1 (-861))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205)))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
(-5 *1 (-861))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-862))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-862))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1015 (-205)))
(-5 *1 (-862))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205)))
+ (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-862))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-862))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
(-5 *1 (-862)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1075)) (-5 *5 (-632 (-205))) (-5 *6 (-205))
- (-5 *7 (-632 (-525))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-695)))))
-(((*1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-346))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-856)) (-5 *2 (-1174 *4)) (-5 *1 (-495 *4))
- (-4 *4 (-327))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-789)) (-5 *1 (-656 *2 *3 *4)) (-4 *3 (-1020))
- (-14 *4
- (-1 (-108) (-2 (|:| -3555 *2) (|:| -4193 *3))
- (-2 (|:| -3555 *2) (|:| -4193 *3)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-713)) (-4 *5 (-977)) (-5 *2 (-525))
- (-5 *1 (-420 *5 *3 *6)) (-4 *3 (-1150 *5))
- (-4 *6 (-13 (-382) (-968 *5) (-341) (-1114) (-263)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
+ ((*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-357)) (-5 *2 (-1179)) (-5 *1 (-1175)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-110))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1075)) (-4 *4 (-789)) (-5 *1 (-864 *4 *2))
+ (-4 *2 (-408 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1092)) (-5 *4 (-1075)) (-5 *2 (-294 (-525)))
+ (-5 *1 (-865)))))
+(((*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525))))
((*1 *2 *3)
- (-12 (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5))
- (-4 *3 (-1150 *4))
- (-4 *5 (-13 (-382) (-968 *4) (-341) (-1114) (-263))))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -2235 (-592 *3)) (|:| -1519 (-592 *3))))
- (-5 *1 (-1129 *3)) (-4 *3 (-1020)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092))))
- (-4 *6 (-735)) (-5 *2 (-592 (-592 (-525))))
- (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-525)) (-4 *7 (-884 *4 *6 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
- ((*1 *1 *1 *1) (-5 *1 (-798))))
-(((*1 *2)
- (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-385 (-525)))
- (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))))
+ (-12 (-5 *2 (-1088 (-385 (-525)))) (-5 *1 (-877)) (-5 *3 (-525)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-975)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-108)))))
-(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-357))))
- ((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-357)))))
+ (-12 (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4)))
+ (-5 *2 (-1174 *6)) (-5 *1 (-314 *3 *4 *5 *6))
+ (-4 *6 (-320 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-341))
- (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *1 (-427 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-341))
+ (-12 (-5 *4 (-592 (-592 *8))) (-5 *3 (-592 *8))
+ (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-108)) (-5 *1 (-910 *5 *6 *7 *8)))))
+(((*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 (-878 *4))) (-4 *1 (-1053 *4)) (-4 *4 (-977))
+ (-5 *2 (-713)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517))
+ (-4 *3 (-884 *7 *5 *6))
(-5 *2
- (-2 (|:| R (-632 *6)) (|:| A (-632 *6)) (|:| |Ainv| (-632 *6))))
- (-5 *1 (-911 *6)) (-5 *3 (-632 *6)))))
-(((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-1174 (-632 *4))) (-5 *1 (-88 *4 *5))
- (-5 *3 (-632 *4)) (-4 *5 (-602 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
- (-4 *4 (-977)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1075)) (|:| -3257 (-1075))))
- (-5 *1 (-764)))))
-(((*1 *1) (-5 *1 (-1095))))
+ (-2 (|:| -2168 (-713)) (|:| -2681 *3) (|:| |radicand| (-592 *3))))
+ (-5 *1 (-888 *5 *6 *7 *3 *8)) (-5 *4 (-713))
+ (-4 *8
+ (-13 (-341)
+ (-10 -8 (-15 -4066 (*3 $)) (-15 -4080 (*3 $)) (-15 -4100 ($ *3))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-385 (-887 (-157 (-525))))))
- (-5 *2 (-592 (-592 (-273 (-887 (-157 *4)))))) (-5 *1 (-356 *4))
- (-4 *4 (-13 (-341) (-787)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-273 (-385 (-887 (-157 (-525)))))))
- (-5 *2 (-592 (-592 (-273 (-887 (-157 *4)))))) (-5 *1 (-356 *4))
- (-4 *4 (-13 (-341) (-787)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-887 (-157 (-525)))))
- (-5 *2 (-592 (-273 (-887 (-157 *4))))) (-5 *1 (-356 *4))
- (-4 *4 (-13 (-341) (-787)))))
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1088 *7)) (-4 *5 (-977))
+ (-4 *7 (-977)) (-4 *2 (-1150 *5)) (-5 *1 (-474 *5 *2 *6 *7))
+ (-4 *6 (-1150 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-273 (-385 (-887 (-157 (-525))))))
- (-5 *2 (-592 (-273 (-887 (-157 *4))))) (-5 *1 (-356 *4))
- (-4 *4 (-13 (-341) (-787))))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-1092))
- (-4 *2 (-13 (-27) (-1114) (-408 *5)))
- (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-256 *5 *2)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205)))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1))))
- (-5 *2 (-966)) (-5 *1 (-696)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1174 *5)) (-4 *5 (-734)) (-5 *2 (-108))
- (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-592 *6))
- (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1052 (-205))) (-5 *3 (-592 (-242))) (-5 *1 (-1176))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1052 (-205))) (-5 *3 (-1075)) (-5 *1 (-1176))))
- ((*1 *1 *1) (-5 *1 (-1176))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-453 *4 *5 *6 *7)) (|:| -3412 (-592 *7))))
- (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-887 *5)) (-4 *5 (-977)) (-5 *2 (-457 *4 *5))
- (-5 *1 (-879 *4 *5)) (-14 *4 (-592 (-1092))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-977)) (-4 *4 (-160))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977))
- (-4 *3 (-160)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-357)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4258)) (-4 *1 (-33)) (-5 *2 (-713))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-525))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-977))
- (-4 *4 (-785)))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-977)) (-4 *7 (-977))
+ (-4 *4 (-1150 *5)) (-5 *2 (-1088 *7)) (-5 *1 (-474 *5 *4 *6 *7))
+ (-4 *6 (-1150 *4)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-789)) (-5 *4 (-592 *6))
- (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-592 *4))))
- (-5 *1 (-1100 *6)) (-5 *5 (-592 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 (-2 (|:| -2770 (-1088 *6)) (|:| -4193 (-525)))))
- (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
- (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-977)))))
-(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789))))
- ((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
- ((*1 *1 *1) (-5 *1 (-798)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3))
- (-4 *3 (-1150 *2)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1167 *3 *2))
- (-4 *2 (-1165 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-51)) (-5 *1 (-1107)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *4 (-341)) (-5 *2 (-592 (-1073 *4))) (-5 *1 (-264 *4 *5))
- (-5 *3 (-1073 *4)) (-4 *5 (-1165 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-771)) (-5 *3 (-1075)))))
-(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-592 (-385 *7)))
+ (-4 *7 (-1150 *6)) (-5 *3 (-385 *7)) (-4 *6 (-341))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-535 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-290)) (-5 *1 (-275))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-968 (-47)))
- (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4))
- (-5 *2 (-396 (-1088 (-47)))) (-5 *1 (-413 *4 *5 *3))
- (-4 *3 (-1150 *5)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1179) (-1174 *5) (-1174 *5) (-357)))
- (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179))
- (-5 *1 (-730))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1179) (-1174 *5) (-1174 *5) (-357)))
- (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179))
- (-5 *1 (-730)))))
-(((*1 *1 *1) (-4 *1 (-1061))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1165 *4)) (-5 *1 (-1167 *4 *2))
- (-4 *4 (-37 (-385 (-525)))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1015 *3)) (-4 *3 (-884 *7 *6 *4)) (-4 *6 (-735))
- (-4 *4 (-789)) (-4 *7 (-517))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525))))
- (-5 *1 (-549 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-517))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525))))
- (-5 *1 (-549 *5 *4 *6 *3)) (-4 *3 (-884 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-798))) ((*1 *1 *1 *1) (-5 *1 (-798)))
- ((*1 *1 *1) (-5 *1 (-798)))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1092))
- (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-1084 *4 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1114)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1013 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1114)))
- (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-1084 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-517) (-789) (-968 (-525))))
- (-5 *2 (-385 (-887 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-887 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-517) (-789) (-968 (-525))))
- (-5 *2 (-3 (-385 (-887 *5)) (-294 *5))) (-5 *1 (-1085 *5))
- (-5 *3 (-385 (-887 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1013 (-887 *5))) (-5 *3 (-887 *5))
- (-4 *5 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-385 *3))
- (-5 *1 (-1085 *5))))
+ (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-290)) (-5 *1 (-275))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-290)) (-5 *1 (-275))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1013 (-385 (-887 *5)))) (-5 *3 (-385 (-887 *5)))
- (-4 *5 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-3 *3 (-294 *5)))
- (-5 *1 (-1085 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3))
- (-4 *3 (-996 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789))))
- ((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
- ((*1 *1 *1) (-5 *1 (-798)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3))
- (-4 *3 (-1150 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357))))
- ((*1 *1 *1 *1) (-4 *1 (-510)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
- ((*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-713)))))
-(((*1 *1) (-5 *1 (-520))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *1) (-5 *1 (-135))) ((*1 *1 *1) (-5 *1 (-798))))
+ (-12 (-5 *4 (-592 (-1075))) (-5 *3 (-1075)) (-5 *2 (-290))
+ (-5 *1 (-275)))))
+(((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-51)) (-5 *1 (-773)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
(-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1030)) (-5 *3 (-525)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *4)) (-4 *4 (-1020)) (-5 *2 (-1179))
- (-5 *1 (-1129 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *4)) (-4 *4 (-1020)) (-5 *2 (-1179))
- (-5 *1 (-1129 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-592 *1)) (-4 *1 (-991 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327))
- (-5 *2 (-1174 (-592 (-2 (|:| -3284 *4) (|:| -3555 (-1039))))))
- (-5 *1 (-324 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-988))))
- ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-988)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-724 *3)) (-4 *3 (-977))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-897 *3 *2)) (-4 *2 (-126)) (-4 *3 (-517))
- (-4 *3 (-977)) (-4 *2 (-734))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-1088 *3)) (-4 *3 (-977))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-904)) (-4 *2 (-126)) (-5 *1 (-1094 *3)) (-4 *3 (-517))
- (-4 *3 (-977))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-1147 *4 *3)) (-14 *4 (-1092))
- (-4 *3 (-977)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1174 (-592 *3))) (-4 *4 (-286))
- (-5 *2 (-592 *3)) (-5 *1 (-432 *4 *3)) (-4 *3 (-1150 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-861)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-1088 *3)) (-5 *1 (-40 *4 *3))
- (-4 *3
- (-13 (-341) (-281)
- (-10 -8 (-15 -3114 ((-1044 *4 (-565 $)) $))
- (-15 -3123 ((-1044 *4 (-565 $)) $))
- (-15 -1217 ($ (-1044 *4 (-565 $))))))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-339 (-110))) (-4 *2 (-977)) (-5 *1 (-657 *2 *4))
- (-4 *4 (-594 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-339 (-110))) (-5 *1 (-776 *2)) (-4 *2 (-977)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108))
- (-5 *2 (-966)) (-5 *1 (-688)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-3 (-108) (-592 *1)))
- (-4 *1 (-996 *4 *5 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-341)) (-4 *2 (-787)) (-5 *1 (-880 *2 *3))
- (-4 *3 (-1150 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
-(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1179)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
- (-5 *2 (-1174 (-632 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-1174 (-632 *4))) (-5 *1 (-394 *3 *4))
- (-4 *3 (-395 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1174 (-632 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-1092))) (-4 *5 (-341))
- (-5 *2 (-1174 (-632 (-385 (-887 *5))))) (-5 *1 (-1008 *5))
- (-5 *4 (-632 (-385 (-887 *5))))))
+ (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-4 *5 (-1150 *4)) (-5 *2 (-592 (-2 (|:| -1423 *5) (|:| -3237 *5))))
+ (-5 *1 (-749 *4 *5 *3 *6)) (-4 *3 (-602 *5))
+ (-4 *6 (-602 (-385 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-1092))) (-4 *5 (-341))
- (-5 *2 (-1174 (-632 (-887 *5)))) (-5 *1 (-1008 *5))
- (-5 *4 (-632 (-887 *5)))))
+ (-12 (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-4 *4 (-1150 *5)) (-5 *2 (-592 (-2 (|:| -1423 *4) (|:| -3237 *4))))
+ (-5 *1 (-749 *5 *4 *3 *6)) (-4 *3 (-602 *4))
+ (-4 *6 (-602 (-385 *4)))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341))
- (-5 *2 (-1174 (-632 *4))) (-5 *1 (-1008 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
- (-4 *3 (-13 (-1020) (-33))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-385 (-525)))
- (-5 *1 (-411 *4 *3)) (-4 *3 (-408 *4))))
+ (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-4 *5 (-1150 *4)) (-5 *2 (-592 (-2 (|:| -1423 *5) (|:| -3237 *5))))
+ (-5 *1 (-749 *4 *5 *6 *3)) (-4 *6 (-602 *5))
+ (-4 *3 (-602 (-385 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-565 *3)) (-4 *3 (-408 *5))
- (-4 *5 (-13 (-789) (-517) (-968 (-525))))
- (-5 *2 (-1088 (-385 (-525)))) (-5 *1 (-411 *5 *3)))))
-(((*1 *1 *1) (-5 *1 (-205)))
- ((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
- ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *1 *1) (-4 *1 (-1056))) ((*1 *1 *1 *1) (-4 *1 (-1056))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7))))
- (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-856)) (-5 *1 (-1021 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-632 *2)) (-5 *4 (-525))
- (-4 *2 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $)))))
- (-4 *5 (-1150 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1088 *6)) (-4 *6 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-1088 *7)) (-5 *1 (-299 *4 *5 *6 *7))
- (-4 *7 (-884 *6 *4 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))
- ((*1 *1 *1 *1) (-5 *1 (-1039))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1015 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-1128))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2) (-12 (-5 *1 (-1141 *2)) (-4 *2 (-1128)))))
+ (-12 (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-4 *4 (-1150 *5)) (-5 *2 (-592 (-2 (|:| -1423 *4) (|:| -3237 *4))))
+ (-5 *1 (-749 *5 *4 *6 *3)) (-4 *6 (-602 *4))
+ (-4 *3 (-602 (-385 *4))))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-855)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286))
- (-5 *2 (-592 (-713))) (-5 *1 (-720 *3 *4 *5 *6 *7))
- (-4 *3 (-1150 *6)) (-4 *7 (-884 *6 *4 *5)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1150 *3))
- (-4 *3 (-13 (-341) (-138) (-968 (-525)))) (-5 *1 (-529 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2))
- (-4 *2 (-1150 (-157 *3))))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
- (-5 *5 (-1015 (-205))) (-5 *6 (-525)) (-5 *2 (-1124 (-861)))
- (-5 *1 (-296))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
- (-5 *5 (-1015 (-205))) (-5 *6 (-525)) (-5 *7 (-1075))
- (-5 *2 (-1124 (-861))) (-5 *1 (-296))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
- (-5 *5 (-1015 (-205))) (-5 *6 (-205)) (-5 *7 (-525))
- (-5 *2 (-1124 (-861))) (-5 *1 (-296))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
- (-5 *5 (-1015 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) (-5 *8 (-1075))
- (-5 *2 (-1124 (-861))) (-5 *1 (-296)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *3 *2))
- (-4 *2 (-13 (-27) (-1114) (-408 (-157 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-517) (-789) (-968 (-525))))
- (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 (-157 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1092))
- (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 *8)) (-4 *8 (-884 *5 *7 *6))
- (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092))))
- (-4 *7 (-735))
+ (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762))
+ (-14 *5 (-1092)) (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-592 *7) *7 (-1088 *7))) (-5 *5 (-1 (-396 *7) *7))
+ (-4 *7 (-1150 *6)) (-4 *6 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-5 *2 (-592 (-2 (|:| |frac| (-385 *7)) (|:| -1537 *3))))
+ (-5 *1 (-751 *6 *7 *3 *8)) (-4 *3 (-602 *7))
+ (-4 *8 (-602 (-385 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1150 *5))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
(-5 *2
- (-592
- (-2 (|:| -3622 (-713))
- (|:| |eqns|
- (-592
- (-2 (|:| |det| *8) (|:| |rows| (-592 (-525)))
- (|:| |cols| (-592 (-525))))))
- (|:| |fgb| (-592 *8)))))
- (-5 *1 (-859 *5 *6 *7 *8)) (-5 *4 (-713)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1075)) (-4 *1 (-342 *2 *4)) (-4 *2 (-1020))
- (-4 *4 (-1020))))
+ (-592 (-2 (|:| |frac| (-385 *6)) (|:| -1537 (-600 *6 (-385 *6))))))
+ (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6))))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
+ ((*1 *1 *1) (-5 *1 (-798)))
((*1 *1 *2)
- (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-143 *2 *3 *4)) (-14 *2 (-856)) (-4 *3 (-341))
- (-14 *4 (-926 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1150 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
- ((*1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
- ((*1 *1 *1) (|partial| -4 *1 (-665)))
- ((*1 *1 *1) (|partial| -4 *1 (-669)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-993 *3 *2)) (-4 *3 (-13 (-787) (-341)))
- (-4 *2 (-1150 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4259)) (-4 *1 (-558 *3 *4)) (-4 *3 (-1020))
- (-4 *4 (-1128)) (-5 *2 (-1179)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-713)) (-5 *3 (-878 *5)) (-4 *5 (-977))
- (-5 *1 (-1081 *4 *5)) (-14 *4 (-856))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1081 *4 *5))
- (-14 *4 (-856)) (-4 *5 (-977))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-713))) (-5 *3 (-878 *5)) (-4 *5 (-977))
- (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-542 *3)) (-4 *3 (-341)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1020))
- (-4 *6 (-1020)) (-4 *2 (-1020)) (-5 *1 (-624 *5 *6 *2)))))
-(((*1 *1 *1 *1) (-4 *1 (-901))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-592
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-525)))))
- (-4 *2 (-517)) (-5 *1 (-396 *2))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-525))
- (|:| -3843 (-592 (-2 (|:| |irr| *4) (|:| -1616 (-525)))))))
- (-4 *4 (-1150 (-525))) (-5 *2 (-396 *4)) (-5 *1 (-419 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-525))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))))
-(((*1 *1) (-5 *1 (-415))))
-(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176))))
- ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))))
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-1018 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
-(((*1 *2)
- (-12 (-5 *2 (-1179)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020))
- (-4 *4 (-1020)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-4 *2 (-1020))
- (-5 *1 (-824 *4 *2)))))
+ (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-878 *3))) (-4 *3 (-977)) (-4 *1 (-1053 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-878 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159)))))
+(((*1 *1 *1) (-5 *1 (-989))))
(((*1 *2 *1)
(-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3))
(-4 *5 (-351 *3)) (-5 *2 (-592 *3))))
((*1 *2 *1)
- (-12 (|has| *1 (-6 -4258)) (-4 *1 (-464 *3)) (-4 *3 (-1128))
+ (-12 (|has| *1 (-6 -4259)) (-4 *1 (-464 *3)) (-4 *3 (-1128))
(-5 *2 (-592 *3)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
- ((*1 *1 *1) (-5 *1 (-798))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281))))
- ((*1 *1 *1) (-4 *1 (-281)))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
- ((*1 *1 *1) (-5 *1 (-798))))
-(((*1 *2 *3 *4)
+(((*1 *2 *3 *3 *3 *4)
(-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1174 *4)) (-5 *3 (-632 *4)) (-4 *4 (-341))
- (-5 *1 (-613 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-341))
- (-4 *5 (-13 (-351 *4) (-10 -7 (-6 -4259))))
- (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4259))))
- (-5 *1 (-614 *4 *5 *2 *3)) (-4 *3 (-630 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-592 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-341))
- (-5 *1 (-756 *2 *3)) (-4 *3 (-602 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5))
- (-4 *3 (-1150 *4))
- (-4 *5 (-13 (-382) (-968 *4) (-341) (-1114) (-263))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
- (-4 *4 (-13 (-1020) (-33))))))
-(((*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1128))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-977)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1150 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-695)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-202 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-4 *1 (-233 *3))))
- ((*1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-341) (-138) (-968 (-525))))
- (-4 *5 (-1150 *4))
- (-5 *2 (-2 (|:| -1642 (-385 *5)) (|:| |coeff| (-385 *5))))
- (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-138))
- (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-910 *3 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1075)) (-5 *2 (-592 (-1097))) (-5 *1 (-1054)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-910 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-844)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-396 (-1088 *7)))
- (-5 *1 (-841 *4 *5 *6 *7)) (-5 *3 (-1088 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-844)) (-4 *5 (-1150 *4)) (-5 *2 (-396 (-1088 *5)))
- (-5 *1 (-842 *4 *5)) (-5 *3 (-1088 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-308)))))
(((*1 *2)
- (-12 (-5 *2 (-632 (-845 *3))) (-5 *1 (-329 *3 *4)) (-14 *3 (-856))
- (-14 *4 (-856))))
- ((*1 *2)
- (-12 (-5 *2 (-632 *3)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327))
- (-14 *4
- (-3 (-1088 *3)
- (-1174 (-592 (-2 (|:| -3284 *3) (|:| -3555 (-1039)))))))))
+ (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5)))
+ (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6))))
((*1 *2)
- (-12 (-5 *2 (-632 *3)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327))
- (-14 *4 (-856)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
- (-5 *2 (-632 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1088 *1)) (-5 *4 (-1092)) (-4 *1 (-27))
- (-5 *2 (-592 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1088 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3)))))
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-5 *2 (-713)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1057 *3 *2)) (-4 *3 (-13 (-1020) (-33)))
+ (-4 *2 (-13 (-1020) (-33))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1073 *4) (-1073 *4))) (-5 *2 (-1073 *4))
- (-5 *1 (-1197 *4)) (-4 *4 (-1128))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-592 (-1073 *5)) (-592 (-1073 *5)))) (-5 *4 (-525))
- (-5 *2 (-592 (-1073 *5))) (-5 *1 (-1197 *5)) (-4 *5 (-1128)))))
-(((*1 *1 *1) (-5 *1 (-989))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-713)) (-4 *3 (-1128)) (-4 *1 (-55 *3 *4 *5))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1) (-5 *1 (-159)))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-367))))
- ((*1 *1) (-5 *1 (-372)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-4 *1 (-597 *3)) (-4 *3 (-1128))))
- ((*1 *1)
- (-12 (-4 *3 (-1020)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1020))
- (-4 *4 (-612 *3))))
- ((*1 *1) (-12 (-5 *1 (-824 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020))))
- ((*1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977))))
- ((*1 *1 *1) (-5 *1 (-1092))) ((*1 *1) (-5 *1 (-1092)))
- ((*1 *1) (-5 *1 (-1109))))
-(((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1020)) (-4 *6 (-821 *5)) (-5 *2 (-820 *5 *6 (-592 *6)))
- (-5 *1 (-822 *5 *6 *4)) (-5 *3 (-592 *6)) (-4 *4 (-567 (-827 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1020)) (-5 *2 (-592 (-273 *3))) (-5 *1 (-822 *5 *3 *4))
- (-4 *3 (-968 (-1092))) (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1020)) (-5 *2 (-592 (-273 (-887 *3))))
- (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-977))
- (-1850 (-4 *3 (-968 (-1092)))) (-4 *3 (-821 *5))
- (-4 *4 (-567 (-827 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1020)) (-5 *2 (-824 *5 *3)) (-5 *1 (-822 *5 *3 *4))
- (-1850 (-4 *3 (-968 (-1092)))) (-1850 (-4 *3 (-977)))
- (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1) (-4 *1 (-607))) ((*1 *1 *1) (-5 *1 (-1039))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-5 *1 (-831 *2 *4))
- (-4 *2 (-1150 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977))
- (-14 *4 (-592 (-1092)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789)))
- (-14 *4 (-592 (-1092)))))
- ((*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341))))
+ (-12 (-4 *4 (-977)) (-5 *2 (-108)) (-5 *1 (-421 *4 *3))
+ (-4 *3 (-1150 *4))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-313 *3 *4 *5 *2)) (-4 *3 (-341))
- (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4)))
- (-4 *2 (-320 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-160))))
- ((*1 *1) (-12 (-4 *2 (-160)) (-4 *1 (-667 *2 *3)) (-4 *3 (-1150 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-205))) (-5 *4 (-713)) (-5 *2 (-632 (-205)))
- (-5 *1 (-284)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1128))
- (-4 *4 (-351 *2)) (-4 *5 (-351 *2))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2))
- (-4 *5 (-351 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1128))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1128))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 (-525))) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2))
- (-14 *4 (-525)) (-14 *5 (-713))))
- ((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-713))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-713))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-713))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-713))))
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-108)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-415)) (-5 *1 (-1096)))))
+(((*1 *1) (-5 *1 (-270))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1159 *3 *4 *5)) (-5 *1 (-297 *3 *4 *5))
+ (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1092)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641))))
((*1 *2 *1)
- (-12 (-4 *2 (-160)) (-5 *1 (-130 *3 *4 *2)) (-14 *3 (-525))
- (-14 *4 (-713))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1092)) (-5 *2 (-225 (-1075))) (-5 *1 (-195 *4))
- (-4 *4
- (-13 (-789)
- (-10 -8 (-15 -3406 ((-1075) $ *3)) (-15 -2736 ((-1179) $))
- (-15 -1934 ((-1179) $)))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-922)) (-5 *1 (-195 *3))
- (-4 *3
- (-13 (-789)
- (-10 -8 (-15 -3406 ((-1075) $ (-1092))) (-15 -2736 ((-1179) $))
- (-15 -1934 ((-1179) $)))))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-713)) (-5 *1 (-225 *4)) (-4 *4 (-789))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-225 *3)) (-4 *3 (-789))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "unique") (-5 *1 (-225 *3)) (-4 *3 (-789))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1128))))
- ((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1128))))
- ((*1 *2 *1 *2)
- (-12 (-4 *3 (-160)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7))
- (-4 *2 (-1150 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281))))
- ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110))))
- ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110))))
- ((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1150 *2))
- (-4 *4 (-1150 (-385 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-395 *2)) (-4 *2 (-160))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1075)) (-5 *1 (-475))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-51)) (-5 *1 (-581))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1141 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1128))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1020))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-592 (-827 *4))) (-5 *1 (-827 *4))
- (-4 *4 (-1020))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1020))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-840 *4)) (-5 *1 (-839 *4))
- (-4 *4 (-1020))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-220 *4 *2)) (-14 *4 (-856)) (-4 *2 (-341))
- (-5 *1 (-926 *4 *2))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-942 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *2 *6 *7)) (-4 *2 (-977))
- (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *2 *6 *7))
- (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-977))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-856)) (-4 *4 (-1020))
- (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4))))
- (-5 *1 (-999 *4 *5 *2))
- (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4))))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-856)) (-4 *4 (-1020))
- (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4))))
- (-5 *1 (-1000 *4 *5 *2))
- (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-525))) (-4 *1 (-1023 *3 *4 *5 *6 *7))
- (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020))
- (-4 *7 (-1020))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020))
- (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020))))
- ((*1 *1 *1 *1) (-4 *1 (-1061)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1092))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-385 *1)) (-4 *1 (-1150 *2)) (-4 *2 (-977))
- (-4 *2 (-341))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-385 *1)) (-4 *1 (-1150 *3)) (-4 *3 (-977))
- (-4 *3 (-517))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1152 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1162 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1162 *3)) (-4 *3 (-1128))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-108))
- (-5 *2
- (-2 (|:| |contp| (-525))
- (|:| -3843 (-592 (-2 (|:| |irr| *3) (|:| -1616 (-525)))))))
- (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-108))
+ (-12 (-4 *2 (-1020)) (-5 *1 (-656 *3 *2 *4)) (-4 *3 (-789))
+ (-14 *4
+ (-1 (-108) (-2 (|:| -1722 *3) (|:| -2168 *2))
+ (-2 (|:| -1722 *3) (|:| -2168 *2)))))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-592 (-592 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-592 (-3 (|:| |array| (-592 *3)) (|:| |scalar| (-1092)))))
+ (-5 *6 (-592 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1024))
+ (-5 *1 (-375))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-592 (-592 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-592 (-3 (|:| |array| (-592 *3)) (|:| |scalar| (-1092)))))
+ (-5 *6 (-592 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1024))
+ (-5 *1 (-375))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-592 (-1092))) (-5 *5 (-1095)) (-5 *3 (-1092))
+ (-5 *2 (-1024)) (-5 *1 (-375)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-632 *11)) (-5 *4 (-592 (-385 (-887 *8))))
+ (-5 *5 (-713)) (-5 *6 (-1075)) (-4 *8 (-13 (-286) (-138)))
+ (-4 *11 (-884 *8 *10 *9)) (-4 *9 (-13 (-789) (-567 (-1092))))
+ (-4 *10 (-735))
(-5 *2
- (-2 (|:| |contp| (-525))
- (|:| -3843 (-592 (-2 (|:| |irr| *3) (|:| -1616 (-525)))))))
- (-5 *1 (-1139 *3)) (-4 *3 (-1150 (-525))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-632 *3))
- (-4 *3 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $)))))
- (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-632 *3))
- (-4 *3 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $)))))
- (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1007))) (-5 *1 (-270)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-385 (-887 *5)) (-1082 (-1092) (-887 *5))))
- (-4 *5 (-429)) (-5 *2 (-592 (-632 (-385 (-887 *5)))))
- (-5 *1 (-271 *5)) (-5 *4 (-632 (-385 (-887 *5)))))))
+ (-2
+ (|:| |rgl|
+ (-592
+ (-2 (|:| |eqzro| (-592 *11)) (|:| |neqzro| (-592 *11))
+ (|:| |wcond| (-592 (-887 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1174 (-385 (-887 *8))))
+ (|:| -2103 (-592 (-1174 (-385 (-887 *8))))))))))
+ (|:| |rgsz| (-525))))
+ (-5 *1 (-859 *8 *9 *10 *11)) (-5 *7 (-525)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-764)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-762)) (-14 *5 (-1092)) (-5 *2 (-592 (-1147 *5 *4)))
- (-5 *1 (-1034 *4 *5)) (-5 *3 (-1147 *5 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
- (-5 *2 (-713))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020))
- (-5 *2 (-713))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-678 *3 *4)) (-4 *3 (-977))
- (-4 *4 (-669)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-110))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789))
- (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789))
- (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713)))))
-(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-592 *1)) (-4 *1 (-942 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1150 *6))
- (-4 *6 (-13 (-27) (-408 *5)))
- (-4 *5 (-13 (-789) (-517) (-968 (-525)))) (-4 *8 (-1150 (-385 *7)))
- (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3))
- (-4 *3 (-320 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7))
- (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735))
- (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-994 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7))
- (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735))
- (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4))
- (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-367)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-592 (-294 (-205)))) (-5 *3 (-205)) (-5 *2 (-108))
- (-5 *1 (-192)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-13 (-977) (-660 (-385 (-525)))))
- (-4 *5 (-789)) (-5 *1 (-1188 *4 *5 *2)) (-4 *2 (-1193 *5 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4))
- (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-327))
- (-5 *2 (-592 (-2 (|:| -2770 (-525)) (|:| -4193 (-525))))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-592 (-999 *4 *5 *2))) (-4 *4 (-1020))
- (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4))))
- (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4))))
- (-5 *1 (-53 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-592 (-999 *5 *6 *2))) (-5 *4 (-856)) (-4 *5 (-1020))
- (-4 *6 (-13 (-977) (-821 *5) (-789) (-567 (-827 *5))))
- (-4 *2 (-13 (-408 *6) (-821 *5) (-567 (-827 *5))))
- (-5 *1 (-53 *5 *6 *2)))))
-(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
-(((*1 *1 *1) (-4 *1 (-986))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1015 (-205)))
- (-5 *2 (-1176)) (-5 *1 (-236)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1007)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2))
- (-4 *2 (-1165 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1150 *3))
- (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1165 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2))
- (-4 *2 (-1165 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-517) (-138)))
- (-5 *1 (-1069 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-592 *5) *6))
- (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *6 (-1150 *5))
- (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -3025 *3))))
- (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6))
- (-4 *7 (-602 (-385 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-592 *5) *6))
- (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
- (-4 *6 (-1150 *5))
- (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -3025 (-600 *6 (-385 *6))))))
- (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6))))))
-(((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856)))) ((*1 *1) (-4 *1 (-510)))
- ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641))))
- ((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-957 (-782 (-525)))) (-5 *1 (-550 *3)) (-4 *3 (-977)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *2 (-789)) (-4 *3 (-160))))
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-4 *2 (-517)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1150 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-160)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4))
- (-4 *4 (-977))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-977))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713))))
- ((*1 *1 *1) (-4 *1 (-213)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-245 *3)) (-4 *3 (-789))))
- ((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132))
- (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4))
- (-4 *4 (-1150 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3))
- (-4 *3 (-1150 *2))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-451 *3 *4 *5))
- (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-341)) (-4 *2 (-835 *3)) (-5 *1 (-542 *2))
- (-5 *3 (-1092))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-542 *2)) (-4 *2 (-341))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-798))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-835 *4))
- (-4 *4 (-1020))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-835 *2)) (-4 *2 (-1020))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *1 (-835 *3)) (-4 *3 (-1020))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1020))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1083 *3 *4 *5))
- (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1089 *3 *4 *5))
- (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1090 *3 *4 *5))
- (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1138 *3 *4 *5))
- (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1150 *3)) (-4 *3 (-977))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1159 *3 *4 *5))
- (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1166 *3 *4 *5))
- (-4 *3 (-977)) (-14 *5 *3))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1175))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1176))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1176)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517)))))
-(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1075)) (-5 *1 (-174))))
- ((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1075)) (-5 *1 (-279))))
- ((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1075)) (-5 *1 (-284)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1020))
- (-4 *6 (-1020)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977))
- (-5 *2
- (-2 (|:| -2388 (-713)) (|:| |curves| (-713))
- (|:| |polygons| (-713)) (|:| |constructs| (-713)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1100 *4))
- (-5 *3 (-592 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-1174 *3)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-592 (-1092))) (-4 *4 (-160))
- (-14 *6
- (-1 (-108) (-2 (|:| -3555 *5) (|:| -4193 *2))
- (-2 (|:| -3555 *5) (|:| -4193 *2))))
- (-4 *2 (-218 (-3522 *3) (-713))) (-5 *1 (-438 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-789)) (-4 *7 (-884 *4 *2 (-800 *3))))))
-(((*1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1177))))
- ((*1 *2 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1177)))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-445))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1176)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4))))
- (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
- (-4 *3 (-13 (-341) (-1114) (-934))))))
-(((*1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-501))) ((*1 *1) (-4 *1 (-665)))
- ((*1 *1) (-4 *1 (-669)))
- ((*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020))))
- ((*1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-789)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-539)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-51)) (-5 *1 (-827 *4))
- (-4 *4 (-1020)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1128)) (-5 *1 (-168 *3 *2))
- (-4 *2 (-619 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176))))
- ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))))
-(((*1 *1) (-5 *1 (-765))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |nullBranch| "null")
- (|:| |assignmentBranch|
- (-2 (|:| |var| (-1092))
- (|:| |arrayIndex| (-592 (-887 (-525))))
- (|:| |rand|
- (-2 (|:| |ints2Floats?| (-108)) (|:| -2465 (-798))))))
- (|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1092)) (|:| |rand| (-798))
- (|:| |ints2Floats?| (-108))))
- (|:| |conditionalBranch|
- (-2 (|:| |switch| (-1091)) (|:| |thenClause| (-308))
- (|:| |elseClause| (-308))))
- (|:| |returnBranch|
- (-2 (|:| -2659 (-108))
- (|:| -3284
- (-2 (|:| |ints2Floats?| (-108)) (|:| -2465 (-798))))))
- (|:| |blockBranch| (-592 (-308)))
- (|:| |commentBranch| (-592 (-1075))) (|:| |callBranch| (-1075))
- (|:| |forBranch|
- (-2 (|:| -3196 (-1013 (-887 (-525))))
- (|:| |span| (-887 (-525))) (|:| -3266 (-308))))
- (|:| |labelBranch| (-1039))
- (|:| |loopBranch| (-2 (|:| |switch| (-1091)) (|:| -3266 (-308))))
- (|:| |commonBranch|
- (-2 (|:| -3257 (-1092)) (|:| |contents| (-592 (-1092)))))
- (|:| |printBranch| (-592 (-798)))))
- (-5 *1 (-308)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-4 *3 (-1020))
- (-5 *2 (-108)))))
-(((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-5 *2 (-632 (-385 *4))))))
-(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-501)))
- ((*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))))
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-525))))
((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-713))))
((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-856))))
@@ -4447,10 +11825,10 @@
((*1 *1 *2 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020))))
((*1 *1 *2 *1)
(-12 (-14 *3 (-592 (-1092))) (-4 *4 (-160))
- (-4 *6 (-218 (-3522 *3) (-713)))
+ (-4 *6 (-218 (-2827 *3) (-713)))
(-14 *7
- (-1 (-108) (-2 (|:| -3555 *5) (|:| -4193 *6))
- (-2 (|:| -3555 *5) (|:| -4193 *6))))
+ (-1 (-108) (-2 (|:| -1722 *5) (|:| -2168 *6))
+ (-2 (|:| -1722 *5) (|:| -2168 *6))))
(-5 *1 (-438 *3 *4 *5 *6 *7 *2)) (-4 *5 (-789))
(-4 *2 (-884 *4 *6 (-800 *3)))))
((*1 *1 *1 *2)
@@ -4530,574 +11908,333 @@
((*1 *1 *1 *2)
(-12 (-5 *1 (-1195 *2 *3)) (-4 *2 (-977)) (-4 *3 (-785)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))))
-(((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *2 (-991 *4 *5 *6)) (-5 *1 (-718 *4 *5 *6 *2 *3))
+ (-4 *3 (-996 *4 *5 *6 *2)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4))))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1128))
+ (-4 *5 (-1128)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-220 *6 *7)) (-14 *6 (-713))
+ (-4 *7 (-1128)) (-4 *5 (-1128)) (-5 *2 (-220 *6 *5))
+ (-5 *1 (-219 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1128)) (-4 *5 (-1128))
+ (-4 *2 (-351 *5)) (-5 *1 (-349 *6 *4 *5 *2)) (-4 *4 (-351 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1020)) (-4 *5 (-1020))
+ (-4 *2 (-403 *5)) (-5 *1 (-401 *6 *4 *5 *2)) (-4 *4 (-403 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-592 *6)) (-4 *6 (-1128))
+ (-4 *5 (-1128)) (-5 *2 (-592 *5)) (-5 *1 (-590 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-892 *6)) (-4 *6 (-1128))
+ (-4 *5 (-1128)) (-5 *2 (-892 *5)) (-5 *1 (-891 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1073 *6)) (-4 *6 (-1128))
+ (-4 *3 (-1128)) (-5 *2 (-1073 *3)) (-5 *1 (-1071 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1174 *6)) (-4 *6 (-1128))
+ (-4 *5 (-1128)) (-5 *2 (-1174 *5)) (-5 *1 (-1173 *6 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-37 (-385 (-525))))
- (-5 *2 (-2 (|:| -1549 (-1073 *4)) (|:| -1562 (-1073 *4))))
- (-5 *1 (-1079 *4)) (-5 *3 (-1073 *4)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1179) (-1174 *5) (-1174 *5) (-357)))
- (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179))
- (-5 *1 (-730)))))
+ (-12 (-5 *3 (-1174 *4)) (-4 *4 (-327)) (-5 *2 (-1088 *4))
+ (-5 *1 (-495 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1099)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-687 *3)) (-4 *3 (-160)))))
+(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
+ ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1092)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *3 *5 *6 *7))
+ (-4 *3 (-567 (-501))) (-4 *5 (-1128)) (-4 *6 (-1128))
+ (-4 *7 (-1128))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *3 *5 *6))
+ (-4 *3 (-567 (-501))) (-4 *5 (-1128)) (-4 *6 (-1128)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-592 (-1092))) (-4 *2 (-160))
+ (-4 *3 (-218 (-2827 *4) (-713)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -1722 *5) (|:| -2168 *3))
+ (-2 (|:| -1722 *5) (|:| -2168 *3))))
+ (-5 *1 (-438 *4 *2 *5 *3 *6 *7)) (-4 *5 (-789))
+ (-4 *7 (-884 *2 *3 (-800 *4))))))
+(((*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-501))) (-5 *2 (-1092)) (-5 *1 (-501)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-592
- (-2
- (|:| -3364
- (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (|:| -4201
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1073 (-205)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -3196
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-520))))
+ (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))
((*1 *2 *1)
- (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1128))
- (-5 *2 (-592 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-5 *2 (-525)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
- (-5 *2 (-108)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-108)) (-5 *1 (-1097))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1092))) (-5 *2 (-108)) (-5 *1 (-1097))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-205))) (-5 *2 (-108)) (-5 *1 (-1097))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-108)) (-5 *1 (-1097)))))
-(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-415)) (-5 *3 (-1092)) (-5 *1 (-1095))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-415)) (-5 *3 (-1092)) (-5 *1 (-1095))))
- ((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1092))) (-5 *4 (-1092))
- (-5 *1 (-1095))))
- ((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-415)) (-5 *3 (-1092)) (-5 *1 (-1095))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-415)) (-5 *3 (-1092)) (-5 *1 (-1096))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1092))) (-5 *1 (-1096)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108))
- (-5 *2 (-966)) (-5 *1 (-688)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-680 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1020))))
- ((*1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1020)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-592 *6)) (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
- (-4 *3 (-517)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))))
- (-5 *1 (-187)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
- (-5 *2
- (-2 (|:| -3284 *4) (|:| -1213 *4) (|:| |totalpts| (-525))
- (|:| |success| (-108))))
- (-5 *1 (-731)) (-5 *5 (-525)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-862))
- (-5 *2
- (-2 (|:| |brans| (-592 (-592 (-878 (-205)))))
- (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))))
- (-5 *1 (-144))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-385 (-525)))
- (-5 *2
- (-2 (|:| |brans| (-592 (-592 (-878 (-205)))))
- (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))))
- (-5 *1 (-144)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-592 *3)) (-4 *3 (-1128)))))
-(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1075)) (-5 *1 (-653)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-713)) (|:| -3101 *4))) (-5 *5 (-713))
- (-4 *4 (-884 *6 *7 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-426 *6 *7 *8 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1150 *3)) (-4 *3 (-977))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-856)) (-4 *1 (-1152 *3 *4)) (-4 *3 (-977))
- (-4 *4 (-734))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-385 (-525))) (-4 *1 (-1155 *3)) (-4 *3 (-977)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-525))) (-4 *3 (-977)) (-5 *1 (-94 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-94 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-94 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
- (-4 *5 (-1150 *4)) (-5 *2 (-592 (-599 (-385 *5))))
- (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5))))))
+ (-12 (-5 *2 (-1174 (-3 (-445) "undefined"))) (-5 *1 (-1175)))))
(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-592 *7)) (-5 *3 (-525)) (-4 *7 (-884 *4 *5 *6))
- (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *1 (-426 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-1081 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1052 (-205))) (-5 *1 (-1176))))
- ((*1 *2 *1) (-12 (-5 *2 (-1052 (-205))) (-5 *1 (-1176)))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))
+ (-5 *2 (-966)) (-5 *1 (-691)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-353 *4 *2))
- (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4259)))))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-113 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-525))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-806 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-806 *2)) (-14 *2 (-525))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-525)) (-14 *3 *2) (-5 *1 (-807 *3 *4))
- (-4 *4 (-804 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-525)) (-5 *1 (-807 *2 *3)) (-4 *3 (-804 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-525)) (-4 *1 (-1136 *3 *4)) (-4 *3 (-977))
- (-4 *4 (-1165 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1136 *2 *3)) (-4 *2 (-977)) (-4 *3 (-1165 *2)))))
+ (-12 (-5 *2 (-856)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-242)))))
+(((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-273 (-887 (-525))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-592 (-1092)))
+ (|:| |inhom| (-3 (-592 (-1174 (-713))) "failed"))
+ (|:| |hom| (-592 (-1174 (-713))))))
+ (-5 *1 (-216)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-651 *3)) (-5 *1 (-769 *2 *3)) (-4 *3 (-977)))))
+ (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1092))
+ (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-592 (-565 *3)))
+ (|:| |vals| (-592 *3))))
+ (-5 *1 (-256 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-840 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
- (-4 *4 (-977)))))
+ (-12 (-5 *2 (-1141 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1128)))))
(((*1 *1 *1)
(-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
+(((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-1114))))
+ ((*1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-565 *3)) (-4 *3 (-789)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
+ (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-341))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-535 *5 *3)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-357)) (-5 *2 (-1179)) (-5 *1 (-1175))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *2)
+ (-12 (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-306 *3 *4))
+ (-4 *3 (-307 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-713)))))
+(((*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1110))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1110)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-962)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))
+ ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))))
+(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (-5 *2 (-357)) (-5 *1 (-187)))))
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-713))
+ (-4 *3 (-13 (-669) (-346) (-10 -7 (-15 ** (*3 *3 (-525))))))
+ (-5 *1 (-226 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-899))) (-5 *1 (-104))))
+ ((*1 *2 *1) (-12 (-5 *2 (-44 (-1075) (-716))) (-5 *1 (-110)))))
+(((*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177))))
+ ((*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-899))) (-5 *1 (-104)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5))
- (-4 *3 (-1150 *4))
- (-4 *5 (-13 (-382) (-968 *4) (-341) (-1114) (-263))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-281)) (-4 *2 (-1128))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-565 *1))) (-5 *3 (-592 *1)) (-4 *1 (-281))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *1))) (-4 *1 (-281))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-273 *1)) (-4 *1 (-281)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567 (-827 *3))) (-4 *3 (-821 *3))
- (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-567 (-827 *3))) (-4 *2 (-821 *3))
- (-4 *2 (-13 (-408 *3) (-1114))))))
+ (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4))
+ (-5 *2 (-396 *3)) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1150 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-991 *4 *5 *6)) (-4 *4 (-517))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-414)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-713)) (-5 *4 (-525)) (-5 *1 (-422 *2)) (-4 *2 (-977)))))
+ (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517))
+ (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8))))
+ (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-592 *8)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -3991 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-341)) (-5 *1 (-535 *4 *2)) (-4 *2 (-1150 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-573 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -3446 *4) (|:| |sol?| (-108)))
+ (-525) *4))
+ (-4 *4 (-341)) (-4 *5 (-1150 *4)) (-5 *1 (-535 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-385 *4)) (-4 *4 (-1150 *3)) (-4 *3 (-13 (-341) (-138)))
+ (-5 *1 (-377 *3 *4)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
+ (-4 *3 (-991 *6 *7 *8))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4))))
+ (-5 *1 (-1028 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -1285 *9))))
+ (-5 *5 (-108)) (-4 *8 (-991 *6 *7 *4)) (-4 *9 (-996 *6 *7 *4 *8))
+ (-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789))
+ (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -1285 *9))))
+ (-5 *1 (-1028 *6 *7 *4 *8 *9)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-592 (-878 (-205)))))
- (-5 *2 (-592 (-1015 (-205)))) (-5 *1 (-863)))))
+ (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *2 (-592 (-205)))
+ (-5 *1 (-445)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-396 *4) *4)) (-4 *4 (-517)) (-5 *2 (-396 *4))
+ (-5 *1 (-397 *4))))
+ ((*1 *1 *1) (-5 *1 (-861)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861))))
+ ((*1 *1 *1) (-5 *1 (-862)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))
+ (-5 *4 (-385 (-525))) (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))
+ (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))
+ (-5 *4 (-385 (-525))) (-5 *1 (-952 *3)) (-4 *3 (-1150 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3436 (-385 (-525))) (|:| -3446 (-385 (-525)))))
+ (-5 *1 (-952 *3)) (-4 *3 (-1150 (-385 (-525))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3))
+ (-4 *3 (-1150 *2)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834)))) (-5 *2 (-966))
+ (-5 *1 (-689)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1073 (-205)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1777
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-966)) (-5 *1 (-284)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1088 *3)) (-5 *1 (-849 *3)) (-4 *3 (-286)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 (-357))) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-856)) (-5 *4 (-809)) (-5 *2 (-1179)) (-5 *1 (-1175))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1056))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-764)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510))
- (-5 *2 (-385 (-525)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510))
- (-4 *3 (-517))))
- ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-385 (-525)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510))
- (-5 *2 (-385 (-525)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510))
- (-4 *3 (-1020))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510))
- (-4 *3 (-1020))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-929 *3)) (-4 *3 (-160)) (-4 *3 (-510))
- (-5 *2 (-385 (-525)))))
+ (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818))
+ (-5 *3 (-592 (-525)))))
((*1 *2 *3)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-940 *3)) (-4 *3 (-968 *2)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429))
- (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-910 *3 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856))
- (-14 *4 (-856)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-856)) (-4 *1 (-382))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-382))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1023 *3 *4 *5 *2 *6)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-108)) (-5 *1 (-827 *4))
- (-4 *4 (-1020)))))
-(((*1 *1 *1 *1) (-5 *1 (-798))))
+ (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818))
+ (-5 *3 (-592 (-525))))))
(((*1 *1 *2)
- (-12
- (-5 *2
- (-592
- (-2
- (|:| -3364
- (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (|:| -4201
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1073 (-205)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -3196
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-520)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1174 (-1174 (-525)))) (-5 *3 (-856)) (-5 *1 (-443)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-931 *3)) (-4 *3 (-160)) (-5 *1 (-741 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-108)) (-5 *1 (-106))))
- ((*1 *2 *2) (-12 (-5 *2 (-856)) (|has| *1 (-6 -4249)) (-4 *1 (-382))))
- ((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
- (-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1043 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2))
- (-4 *2 (-408 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1013 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517)))
- (-5 *1 (-147 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1013 *1)) (-4 *1 (-149))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1092)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-514)))))
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1092))
- (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-713)) (-5 *4 (-856)) (-5 *2 (-1179)) (-5 *1 (-1175))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-713)) (-5 *4 (-856)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (-5 *2
- (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357))
- (|:| |expense| (-357)) (|:| |accuracy| (-357))
- (|:| |intermediateResults| (-357))))
- (-5 *1 (-745)))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797))))
- ((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-899))))
- ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-922))))
- ((*1 *2 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-1128))))
+ (-12 (-5 *2 (-1174 *4)) (-4 *4 (-395 *3)) (-4 *3 (-286))
+ (-4 *3 (-517)) (-5 *1 (-42 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-856)) (-4 *4 (-341)) (-5 *2 (-1174 *1))
+ (-4 *1 (-307 *4))))
+ ((*1 *2) (-12 (-4 *3 (-341)) (-5 *2 (-1174 *1)) (-4 *1 (-307 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-160)) (-4 *4 (-1150 *3)) (-5 *2 (-1174 *1))
+ (-4 *1 (-387 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1020) (-33))) (-5 *1 (-1057 *2 *3))
- (-4 *3 (-13 (-1020) (-33))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2589 *3)))
- (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-1020) (-33)))
- (-4 *5 (-13 (-1020) (-33))) (-5 *2 (-108)) (-5 *1 (-1058 *4 *5)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179))
- (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179))
- (-5 *1 (-1028 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1075)) (-5 *2 (-716)) (-5 *1 (-110))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1024)) (-5 *1 (-899)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-565 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4)))
- (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-256 *4 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-205))
- (-5 *2
- (-2 (|:| |brans| (-592 (-592 (-878 *4))))
- (|:| |xValues| (-1015 *4)) (|:| |yValues| (-1015 *4))))
- (-5 *1 (-144)) (-5 *3 (-592 (-592 (-878 *4)))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-341))
- (-5 *2 (-592 (-2 (|:| C (-632 *5)) (|:| |g| (-1174 *5)))))
- (-5 *1 (-911 *5)) (-5 *3 (-632 *5)) (-5 *4 (-1174 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-856)) (-5 *1 (-961 *2))
- (-4 *2 (-13 (-1020) (-10 -8 (-15 -4047 ($ $ $))))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1020))
- (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))
- (-5 *2 (-592 (-1092))) (-5 *1 (-999 *3 *4 *5))
- (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3))
- (-4 *3 (-901)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4258)) (-4 *1 (-215 *3))
- (-4 *3 (-1020))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4258)) (-4 *1 (-215 *2)) (-4 *2 (-1020))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128)) (-4 *2 (-1020))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1128))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1020))
- (-5 *1 (-680 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1020))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
- (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1058 *3 *4)))))
-(((*1 *2) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-100)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+ (-12 (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1150 *4))
+ (-5 *2 (-1174 *6)) (-5 *1 (-391 *3 *4 *5 *6))
+ (-4 *6 (-13 (-387 *4 *5) (-968 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1150 *4))
+ (-5 *2 (-1174 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7))
+ (-4 *6 (-387 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1174 *1)) (-4 *1 (-395 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1174 (-1174 *4))) (-5 *1 (-495 *4))
+ (-4 *4 (-327)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *2 (-517)) (-5 *1 (-903 *2 *4))
+ (-4 *4 (-1150 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-977))
- (-5 *2 (-887 *5)) (-5 *1 (-879 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1092))
- (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3))
- (-4 *3 (-13 (-1114) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1092)) (-4 *5 (-13 (-517) (-968 (-525)) (-138)))
- (-5 *2 (-542 (-385 (-887 *5)))) (-5 *1 (-531 *5))
- (-5 *3 (-385 (-887 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-48)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357)))
- (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091))))
- (-5 *1 (-1091)))))
+ (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327)) (-5 *2 (-892 (-1039)))
+ (-5 *1 (-324 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))))
+(((*1 *2) (-12 (-5 *2 (-592 *3)) (-5 *1 (-1006 *3)) (-4 *3 (-127)))))
+(((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *2 (-789)) (-4 *5 (-991 *3 *4 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1020)) (-4 *2 (-835 *4)) (-5 *1 (-634 *4 *2 *5 *3))
- (-4 *5 (-351 *2)) (-4 *3 (-13 (-351 *4) (-10 -7 (-6 -4258)))))))
+ (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-901)))))
+(((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-698)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-525)) (-5 *4 (-396 *2)) (-4 *2 (-884 *7 *5 *6))
+ (-5 *1 (-685 *5 *6 *7 *2)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-286)))))
(((*1 *2 *1)
(-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 *3 *4 *5))
- (-5 *2
- (-2 (|:| -1653 (-391 *4 (-385 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341))
- (-5 *2
- (-2 (|:| |poly| *6) (|:| -2687 (-385 *6))
- (|:| |special| (-385 *6))))
- (-5 *1 (-670 *5 *6)) (-5 *3 (-385 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-831 *3 *4))
- (-4 *3 (-1150 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-713)) (-4 *5 (-341))
- (-5 *2 (-2 (|:| -3507 *3) (|:| -3519 *3))) (-5 *1 (-831 *3 *5))
- (-4 *3 (-1150 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108))
- (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429))
- (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-994 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108))
- (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429))
- (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-994 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108))
- (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429))
- (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1062 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108))
- (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429))
- (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-135))))
- ((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-135)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *2 (-789))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)))))
-(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -1519 (-592 (-1092))) (|:| -2235 (-592 (-1092)))))
- (-5 *1 (-1130)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-104))))
- ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-342 *2 *3)) (-4 *3 (-1020)) (-4 *2 (-1020))))
- ((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1075))))
- ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-416 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-565 *3)) (-4 *3 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-899))))
- ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-998 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-5 *1 (-1092))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1114))) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341)))
- (-4 *3 (-1150 *4)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-856))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357)))
- (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091))))
- (-5 *1 (-1091)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-60 *3)) (-14 *3 (-1092))))
- ((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-67 *3)) (-14 *3 (-1092))))
- ((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-70 *3)) (-14 *3 (-1092))))
- ((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1179))))
- ((*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1179)) (-5 *1 (-375))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1075)) (-5 *4 (-798)) (-5 *2 (-1179)) (-5 *1 (-1055))))
- ((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-1055))))
+ (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-108)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *1) (-12 (-5 *2 (-716)) (-5 *1 (-51)))))
+(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-1055))))
((*1 *2 *3)
(-12 (-5 *3 (-592 (-798))) (-5 *2 (-1179)) (-5 *1 (-1055)))))
-(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-966)) (-5 *1 (-779))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357)))
- (-5 *2 (-966)) (-5 *1 (-779)))))
-(((*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-5 *2 (-1075)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-501)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-1075)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-690)))))
+(((*1 *1 *1) (-5 *1 (-108))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-702)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966))
+ (-5 *1 (-698)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
+ (-12 (-5 *2 (-1073 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-592 (-800 *4)))
+ (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *1 (-448 *4 *5 *6))
+ (-4 *6 (-429)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-2 (|:| -2770 *4) (|:| -2343 (-525)))))
- (-4 *4 (-1150 (-525))) (-5 *2 (-680 (-713))) (-5 *1 (-419 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-396 *5)) (-4 *5 (-1150 *4)) (-4 *4 (-977))
- (-5 *2 (-680 (-713))) (-5 *1 (-421 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *4 (-517))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -2569 *4))) (-5 *1 (-903 *4 *3))
- (-4 *3 (-1150 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-51)) (-5 *1 (-771)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1196 *4 *2)) (-4 *1 (-352 *4 *2)) (-4 *4 (-789))
- (-4 *2 (-160))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-789)) (-4 *2 (-977))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-761 *4)) (-4 *1 (-1189 *4 *2)) (-4 *4 (-789))
- (-4 *2 (-977))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-977)) (-5 *1 (-1195 *2 *3)) (-4 *3 (-785)))))
-(((*1 *1 *1) (-5 *1 (-1091)))
- ((*1 *1 *2)
+ (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
+(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357)))
+ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357)))
(|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091))))
(-5 *1 (-1091)))))
(((*1 *2 *1)
@@ -5107,180 +12244,31 @@
((*1 *2 *1)
(-12 (-5 *2 (-108)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
(-4 *4 (-13 (-1020) (-33))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
- ((*1 *1 *1) (-5 *1 (-798)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-1018 *3))))
- ((*1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| -3094 (-632 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-632 *3))))
- (-4 *3 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $)))))
- (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3))
- (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-991 *4 *5 *6)) (-4 *4 (-517))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-592 *7) (-592 *7))) (-5 *2 (-592 *7))
- (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *1 (-910 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-369)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1075)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1092))
+ (-5 *2 (-592 *4)) (-5 *1 (-1034 *4 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-445)) (-5 *3 (-592 (-242))) (-5 *1 (-1175))))
+ ((*1 *1 *1) (-5 *1 (-1175))))
(((*1 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-4 *5 (-1150 *4)) (-5 *2 (-1179))
- (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1150 (-385 *5))) (-14 *7 *6))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-138) (-27) (-968 (-525)) (-968 (-385 (-525)))))
- (-4 *5 (-1150 *4)) (-5 *2 (-1088 (-385 *5))) (-5 *1 (-568 *4 *5))
- (-5 *3 (-385 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1150 *5))
- (-4 *5 (-13 (-138) (-27) (-968 (-525)) (-968 (-385 (-525)))))
- (-5 *2 (-1088 (-385 *6))) (-5 *1 (-568 *5 *6)) (-5 *3 (-385 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-286))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *2)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -2563 *7))))
- (-4 *6 (-991 *3 *4 *5)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-921 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -2563 *7))))
- (-4 *6 (-991 *3 *4 *5)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1027 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1179)) (-5 *1 (-369))))
- ((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-369)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-827 *6)))
- (-5 *5 (-1 (-824 *6 *8) *8 (-827 *6) (-824 *6 *8))) (-4 *6 (-1020))
- (-4 *8 (-13 (-977) (-567 (-827 *6)) (-968 *7))) (-5 *2 (-824 *6 *8))
- (-4 *7 (-13 (-977) (-789))) (-5 *1 (-876 *6 *7 *8)))))
+ (-12 (-5 *3 (-592 (-2 (|:| -4201 (-1088 *6)) (|:| -2168 (-525)))))
+ (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525))
+ (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *3 (-592 (-242)))
+ (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-242))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-445))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-445)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1174 (-1174 (-525)))) (-5 *1 (-443)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4)))
- (-5 *2 (-1174 *6)) (-5 *1 (-314 *3 *4 *5 *6))
- (-4 *6 (-320 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-592 (-157 *4))) (-5 *1 (-145 *3 *4))
- (-4 *3 (-1150 (-157 (-525)))) (-4 *4 (-13 (-341) (-787)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4)))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4)))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-989)) (-5 *3 (-1075)))))
-(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-856)) (-4 *5 (-286)) (-4 *3 (-1150 *5))
- (-5 *2 (-2 (|:| |plist| (-592 *3)) (|:| |modulo| *5)))
- (-5 *1 (-437 *5 *3)) (-5 *4 (-592 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1064 (-1075))) (-5 *1 (-369)))))
-(((*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1037)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357)))
- (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357)))
- (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357)))
- (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357)))
- (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357)))
- (-5 *2 (-1052 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-814 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242)))
- (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1052 (-205)))
- (-5 *1 (-238 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-814 *5)) (-5 *4 (-1013 (-357)))
- (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1052 (-205)))
- (-5 *1 (-238 *5))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242)))
- (-5 *2 (-1052 (-205))) (-5 *1 (-238 *3))
- (-4 *3 (-13 (-567 (-501)) (-1020)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1013 (-357))) (-5 *2 (-1052 (-205))) (-5 *1 (-238 *3))
- (-4 *3 (-13 (-567 (-501)) (-1020)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-817 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242)))
- (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1052 (-205)))
- (-5 *1 (-238 *6))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-817 *5)) (-5 *4 (-1013 (-357)))
- (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1052 (-205)))
- (-5 *1 (-238 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-713)) (-4 *5 (-160))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-713)) (-4 *5 (-160))))
- ((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4)
- (-227 *4 (-385 (-525)))))
- (-5 *3 (-592 (-800 *4))) (-14 *4 (-592 (-1092))) (-14 *5 (-713))
- (-5 *1 (-478 *4 *5)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-697)))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4259)) (-4 *1 (-942 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-800 *5))) (-14 *5 (-592 (-1092))) (-4 *6 (-429))
- (-5 *2
- (-2 (|:| |dpolys| (-592 (-227 *5 *6)))
- (|:| |coords| (-592 (-525)))))
- (-5 *1 (-448 *5 *6 *7)) (-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *6)) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-713)))))
-(((*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114))))))
+ (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-221)) (-5 *3 (-1075))))
+ ((*1 *2 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-221))))
+ ((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))))
(((*1 *2 *3)
(-12 (-4 *5 (-13 (-567 *2) (-160))) (-5 *2 (-827 *4))
(-5 *1 (-158 *4 *5 *3)) (-4 *4 (-1020)) (-4 *3 (-154 *5))))
@@ -5315,9 +12303,9 @@
(-12 (-5 *2 (-887 *3)) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5))
(-4 *5 (-567 (-1092))) (-4 *4 (-735)) (-4 *5 (-789))))
((*1 *1 *2)
- (-3254
+ (-2067
(-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5))
- (-12 (-1850 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525)))
+ (-12 (-3272 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525)))
(-4 *5 (-567 (-1092))))
(-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))
(-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5))
@@ -5328,7 +12316,7 @@
(-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092))) (-4 *3 (-977))
(-4 *4 (-735)) (-4 *5 (-789))))
((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -2563 *8)))
+ (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -1285 *8)))
(-4 *7 (-991 *4 *5 *6)) (-4 *8 (-996 *4 *5 *6 *7)) (-4 *4 (-429))
(-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1075))
(-5 *1 (-994 *4 *5 *6 *7 *8))))
@@ -5353,7 +12341,7 @@
(-12 (-5 *2 (-592 *1)) (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020))
(-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020))))
((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -2563 *8)))
+ (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -1285 *8)))
(-4 *7 (-991 *4 *5 *6)) (-4 *8 (-1029 *4 *5 *6 *7)) (-4 *4 (-429))
(-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1075))
(-5 *1 (-1062 *4 *5 *6 *7 *8))))
@@ -5385,279 +12373,234 @@
(-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *6 (-592 (-1092)))
(-5 *2 (-592 (-722 *4 (-800 *6)))) (-5 *1 (-1198 *4 *5 *6))
(-14 *5 (-592 (-1092))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357)))
+ (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091))))
+ (-5 *1 (-1091)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-227 *3 *4))
+ (-14 *3 (-592 (-1092))) (-4 *4 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-525))) (-14 *3 (-592 (-1092)))
+ (-5 *1 (-431 *3 *4 *5)) (-4 *4 (-977))
+ (-4 *5 (-218 (-2827 *3) (-713)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-457 *3 *4))
+ (-14 *3 (-592 (-1092))) (-4 *4 (-977)))))
+(((*1 *2 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-375)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205))))
+ (-5 *2 (-966)) (-5 *1 (-697)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934)))
+ (-5 *1 (-163 *3)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3))
- (-4 *3 (-1020)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 (-415)))))
- (-5 *1 (-1096)))))
+ (-12 (-5 *2 (-159)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1020)) (-5 *1 (-898 *2 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
+ (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-884 *4 *3 *5)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-517))
+ (-5 *2 (-2 (|:| -1416 *3) (|:| -3681 *3))) (-5 *1 (-1145 *4 *3))
+ (-4 *3 (-1150 *4)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1061)) (-5 *2 (-1141 (-525))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953)))
- (-14 *5 (-592 (-1092)))
+ (-12 (-4 *4 (-37 (-385 (-525))))
+ (-5 *2 (-2 (|:| -3638 (-1073 *4)) (|:| -3649 (-1073 *4))))
+ (-5 *1 (-1079 *4)) (-5 *3 (-1073 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-1088 (-887 *4))) (-5 *1 (-394 *3 *4))
+ (-4 *3 (-395 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341))
+ (-5 *2 (-1088 (-887 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1088 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
+(((*1 *1 *1) (-5 *1 (-1091)))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-592 (-2 (|:| -2706 (-1088 *4)) (|:| -2387 (-592 (-887 *4))))))
- (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-592 (-1092)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357)))
+ (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091))))
+ (-5 *1 (-1091)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1193 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
+ (-5 *2 (-761 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1195 *3 *2)) (-4 *3 (-977)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-966)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-592 (-273 *4))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
+ (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-592 (-592 *4)))) (-5 *2 (-592 (-592 *4)))
+ (-5 *1 (-1100 *4)) (-4 *4 (-789)))))
+(((*1 *2)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-5 *2 (-632 (-385 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-856)) (-5 *2 (-1088 *3)) (-5 *1 (-1103 *3))
+ (-4 *3 (-341)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1075)) (-4 *1 (-342 *2 *4)) (-4 *2 (-1020))
+ (-4 *4 (-1020))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1150 *4)) (-4 *4 (-1132))
+ (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1150 (-385 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-713))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-380)) (-5 *2 (-713)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-862))
(-5 *2
- (-592 (-2 (|:| -2706 (-1088 *5)) (|:| -2387 (-592 (-887 *5))))))
- (-5 *1 (-1198 *5 *6 *7)) (-5 *3 (-592 (-887 *5)))
- (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092)))))
+ (-2 (|:| |brans| (-592 (-592 (-878 (-205)))))
+ (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))))
+ (-5 *1 (-144))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-12 (-5 *3 (-862)) (-5 *4 (-385 (-525)))
(-5 *2
- (-592 (-2 (|:| -2706 (-1088 *5)) (|:| -2387 (-592 (-887 *5))))))
- (-5 *1 (-1198 *5 *6 *7)) (-5 *3 (-592 (-887 *5)))
- (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-2 (|:| |brans| (-592 (-592 (-878 (-205)))))
+ (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))))
+ (-5 *1 (-144))))
+ ((*1 *2 *3)
+ (-12
(-5 *2
- (-592 (-2 (|:| -2706 (-1088 *5)) (|:| -2387 (-592 (-887 *5))))))
- (-5 *1 (-1198 *5 *6 *7)) (-5 *3 (-592 (-887 *5)))
- (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092)))))
+ (-2 (|:| |brans| (-592 (-592 (-878 (-205)))))
+ (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))))
+ (-5 *1 (-144)) (-5 *3 (-592 (-878 (-205))))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-787) (-286) (-138) (-953)))
+ (-12
(-5 *2
- (-592 (-2 (|:| -2706 (-1088 *4)) (|:| -2387 (-592 (-887 *4))))))
- (-5 *1 (-1198 *4 *5 *6)) (-5 *3 (-592 (-887 *4)))
- (-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1092)) (-5 *1 (-542 *2)) (-4 *2 (-968 *3))
- (-4 *2 (-341))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2))
- (-4 *2 (-13 (-408 *4) (-934) (-1114)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1013 *2)) (-4 *2 (-13 (-408 *4) (-934) (-1114)))
- (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-893)) (-5 *2 (-1092))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1013 *1)) (-4 *1 (-893)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-977))
- (-5 *2 (-2 (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-1150 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
- ((*1 *1 *1 *1) (-5 *1 (-798))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-592 (-385 *6))) (-5 *3 (-385 *6))
- (-4 *6 (-1150 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-529 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1092)) (-5 *4 (-887 (-525))) (-5 *2 (-308))
- (-5 *1 (-310)))))
+ (-2 (|:| |brans| (-592 (-592 (-878 (-205)))))
+ (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))))
+ (-5 *1 (-144)) (-5 *3 (-592 (-592 (-878 (-205)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-242))))
+ ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))))
+(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
- (-4 *4 (-977)))))
-(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-735)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789))
- (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-385 (-525))))) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-242)))))
-(((*1 *1 *1) (-5 *1 (-798))) ((*1 *1 *1 *1) (-5 *1 (-798)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2) (-12 (-5 *1 (-1141 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1 *1) (-5 *1 (-798))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3))
- (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-884 *6 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1075)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-242)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN)))) (-5 *2 (-966))
- (-5 *1 (-689)))))
+ (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1134 *3))
+ (-5 *2 (-385 (-525))))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1092))
+ (-4 *5 (-13 (-517) (-968 (-525)) (-138)))
+ (-5 *2
+ (-2 (|:| -3991 (-385 (-887 *5))) (|:| |coeff| (-385 (-887 *5)))))
+ (-5 *1 (-531 *5)) (-5 *3 (-385 (-887 *5))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1030)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-592 *5)) (-5 *4 (-525)) (-4 *5 (-787)) (-4 *5 (-341))
+ (-5 *2 (-713)) (-5 *1 (-880 *5 *6)) (-4 *6 (-1150 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-878 (-205)))) (-5 *1 (-1175)))))
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092))
+ (-14 *4 *2))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-966)) (-5 *1 (-284))))
+ ((*1 *2 *3) (-12 (-5 *3 (-592 (-966))) (-5 *2 (-966)) (-5 *1 (-284))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-597 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *1) (-5 *1 (-989)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1073 (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1070 *4))
+ (-4 *4 (-1128))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-782 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-385 (-525))) (-5 *1 (-284)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1073 (-525))) (-5 *1 (-1077 *4)) (-4 *4 (-977))
- (-5 *3 (-525)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
- (-4 *4 (-977)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *4 *2 *5)) (-4 *4 (-977)) (-4 *5 (-218 *3 *4))
- (-4 *2 (-218 *3 *4)))))
+ (-12 (-5 *3 (-632 *4)) (-4 *4 (-341)) (-5 *2 (-1088 *4))
+ (-5 *1 (-498 *4 *5 *6)) (-4 *5 (-341)) (-4 *6 (-13 (-341) (-787))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-341)) (-4 *3 (-977))
+ (-5 *1 (-1077 *3)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-273 (-775 *3)))
- (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-775 *3)) (-5 *1 (-585 *5 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-273 (-775 (-887 *5)))) (-4 *5 (-429))
- (-5 *2 (-775 (-385 (-887 *5)))) (-5 *1 (-586 *5))
- (-5 *3 (-385 (-887 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-273 (-385 (-887 *5)))) (-5 *3 (-385 (-887 *5)))
- (-4 *5 (-429)) (-5 *2 (-775 *3)) (-5 *1 (-586 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))))
+ (-12 (-5 *3 (-599 *4)) (-4 *4 (-320 *5 *6 *7))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6)))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2103 (-592 *4))))
+ (-5 *1 (-748 *5 *6 *7 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
+(((*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))))
+(((*1 *1 *1) (-4 *1 (-607))) ((*1 *1 *1) (-5 *1 (-1039))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429))
+ (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-910 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1092)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *4 *5 *6 *7))
+ (-4 *4 (-567 (-501))) (-4 *5 (-1128)) (-4 *6 (-1128))
+ (-4 *7 (-1128)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4))))
- (-5 *1 (-1058 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
- (-4 *4 (-13 (-1020) (-33))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1015 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-234))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1015 (-357)))
- (-5 *2 (-1175)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-234))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357)))
- (-5 *2 (-1175)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357)))
- (-5 *2 (-1176)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357)))
- (-5 *2 (-1176)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357)))
- (-5 *2 (-1176)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357)))
- (-5 *2 (-1176)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1176)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357)))
- (-5 *2 (-1176)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-273 *7)) (-5 *4 (-1092)) (-5 *5 (-592 (-242)))
- (-4 *7 (-408 *6)) (-4 *6 (-13 (-517) (-789) (-968 (-525))))
- (-5 *2 (-1175)) (-5 *1 (-235 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1175))
- (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1013 (-357))) (-5 *2 (-1175)) (-5 *1 (-238 *3))
- (-4 *3 (-13 (-567 (-501)) (-1020)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-812 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242)))
- (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1175))
- (-5 *1 (-238 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-812 *5)) (-5 *4 (-1013 (-357)))
- (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1175))
- (-5 *1 (-238 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-814 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242)))
- (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1176))
- (-5 *1 (-238 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-814 *5)) (-5 *4 (-1013 (-357)))
- (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1176))
- (-5 *1 (-238 *5))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1176))
- (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1013 (-357))) (-5 *2 (-1176)) (-5 *1 (-238 *3))
- (-4 *3 (-13 (-567 (-501)) (-1020)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-817 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242)))
- (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1176))
- (-5 *1 (-238 *6))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-817 *5)) (-5 *4 (-1013 (-357)))
- (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1176))
- (-5 *1 (-238 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1175)) (-5 *1 (-239))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1175))
- (-5 *1 (-239))))
+ (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
+ (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-785)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-525)) (-4 *4 (-1150 (-385 *3))) (-5 *2 (-856))
+ (-5 *1 (-848 *4 *5)) (-4 *5 (-1150 (-385 *4))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-856)) (-4 *4 (-346)) (-4 *4 (-341)) (-5 *2 (-1088 *1))
+ (-4 *1 (-307 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1088 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *3 (-341))
+ (-4 *2 (-1150 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 (-878 (-205)))) (-5 *2 (-1175)) (-5 *1 (-239))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-878 (-205)))) (-5 *4 (-592 (-242)))
- (-5 *2 (-1175)) (-5 *1 (-239))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1176)) (-5 *1 (-239))))
- ((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1176))
- (-5 *1 (-239)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-357)) (-5 *1 (-989)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3377 *4)))
- (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-764)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-878 (-205))) (-5 *4 (-809)) (-5 *5 (-856))
- (-5 *2 (-1179)) (-5 *1 (-445))))
+ (-12 (-5 *3 (-1174 *4)) (-4 *4 (-327)) (-5 *2 (-1088 *4))
+ (-5 *1 (-495 *4)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-339 *3)) (-4 *3 (-1020))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-878 (-205))) (-5 *2 (-1179)) (-5 *1 (-445))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-592 (-878 (-205)))) (-5 *4 (-809)) (-5 *5 (-856))
- (-5 *2 (-1179)) (-5 *1 (-445)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-878 *5)) (-5 *3 (-713)) (-4 *5 (-977))
- (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-169))) (-5 *1 (-1037)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110))))
- ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-565 *3)) (-4 *3 (-789))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-110)) (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-789))
- (-5 *1 (-565 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-955 *3))
- (-4 *3 (-13 (-787) (-341) (-953)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3))
- (-4 *3 (-1150 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-993 *2 *3)) (-4 *2 (-13 (-787) (-341)))
- (-4 *3 (-1150 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-517) (-138)))
- (-5 *2 (-2 (|:| -3507 *3) (|:| -3519 *3))) (-5 *1 (-1144 *4 *3))
- (-4 *3 (-1150 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 (-457 *3 *4))) (-14 *3 (-592 (-1092)))
- (-4 *4 (-429)) (-5 *1 (-580 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-887 *5)) (-4 *5 (-977)) (-5 *2 (-227 *4 *5))
- (-5 *1 (-879 *4 *5)) (-14 *4 (-592 (-1092))))))
-(((*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114)))))
- ((*1 *1 *1 *1) (-4 *1 (-735))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+ (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-364 *4)) (-4 *4 (-1020))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *2 (-23)) (-5 *1 (-595 *4 *2 *5))
+ (-4 *4 (-1020)) (-14 *5 *2)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-761 *4)) (-4 *4 (-789)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-695)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-735)) (-4 *5 (-977)) (-4 *6 (-884 *5 *4 *2))
+ (-4 *2 (-789)) (-5 *1 (-885 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-341)
+ (-10 -8 (-15 -4100 ($ *6)) (-15 -4066 (*6 $))
+ (-15 -4080 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517))
+ (-5 *2 (-1092)) (-5 *1 (-973 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1150 *6))
+ (-4 *6 (-13 (-27) (-408 *5)))
+ (-4 *5 (-13 (-789) (-517) (-968 (-525)))) (-4 *8 (-1150 (-385 *7)))
+ (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3))
+ (-4 *3 (-320 *6 *7 *8)))))
(((*1 *1 *2 *1)
(-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-977))
(-4 *4 (-734))))
@@ -5765,9 +12708,9 @@
(-4 *6 (-341)) (-5 *2 (-542 *6)) (-5 *1 (-541 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -1642 *5) (|:| |coeff| *5)) "failed"))
+ (-5 *4 (-3 (-2 (|:| -3991 *5) (|:| |coeff| *5)) "failed"))
(-4 *5 (-341)) (-4 *6 (-341))
- (-5 *2 (-2 (|:| -1642 *6) (|:| |coeff| *6)))
+ (-5 *2 (-2 (|:| -3991 *6) (|:| |coeff| *6)))
(-5 *1 (-541 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
@@ -5886,7 +12829,7 @@
(-4 *8 (-977)) (-4 *6 (-735))
(-4 *2
(-13 (-1020)
- (-10 -8 (-15 -4047 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713))))))
+ (-10 -8 (-15 -2860 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713))))))
(-5 *1 (-886 *6 *7 *8 *5 *2)) (-4 *5 (-884 *8 *6 *7))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1128))
@@ -5899,8 +12842,8 @@
(-4 *2 (-884 (-887 *4) *5 *6)) (-4 *5 (-735))
(-4 *6
(-13 (-789)
- (-10 -8 (-15 -3210 ((-1092) $))
- (-15 -2499 ((-3 $ "failed") (-1092))))))
+ (-10 -8 (-15 -2069 ((-1092) $))
+ (-15 -3469 ((-3 $ "failed") (-1092))))))
(-5 *1 (-917 *4 *5 *6 *2))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-517)) (-4 *6 (-517))
@@ -5987,414 +12930,335 @@
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-1195 *3 *4))
(-4 *4 (-785)))))
-(((*1 *1 *1) (-5 *1 (-989))))
-(((*1 *1 *1 *1) (-4 *1 (-134)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510))))
- ((*1 *1 *1 *1) (-5 *1 (-798)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-975))
- (-5 *3 (-525)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2)
- (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-632 (-525))) (-5 *5 (-108)) (-5 *7 (-632 (-205)))
- (-5 *3 (-525)) (-5 *6 (-205)) (-5 *2 (-966)) (-5 *1 (-697)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735))
- (-5 *2
- (-2 (|:| |mval| (-632 *4)) (|:| |invmval| (-632 *4))
- (|:| |genIdeal| (-477 *4 *5 *6 *7))))
- (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-944)) (-5 *2 (-798)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1114))) (-5 *2 (-108)))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-991 *3 *4 *2)) (-4 *2 (-789))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *2 (-789)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
- ((*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
-(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))))
-(((*1 *1 *1 *1) (-5 *1 (-125))))
-(((*1 *2) (-12 (-5 *2 (-775 (-525))) (-5 *1 (-499))))
- ((*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1020)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-977))
- (-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263)))
- (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1150 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-281))) ((*1 *1 *1) (-4 *1 (-281))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3))
- (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2))
- (-4 *2 (-630 *3 *5 *6)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-525)) (-5 *1 (-357)))))
-(((*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-602 *3)) (-4 *3 (-977)) (-4 *3 (-341))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-713)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341))
- (-5 *1 (-605 *5 *2)) (-4 *2 (-602 *5)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *1 *1 *1) (-5 *1 (-125))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-408 *3) (-934))) (-5 *1 (-255 *3 *2))
- (-4 *3 (-13 (-789) (-517)))))
- ((*1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
- (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
- ((*1 *1) (-5 *1 (-454))) ((*1 *1) (-4 *1 (-1114))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-934))
- (-4 *2 (-977)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1020)))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1075)) (-5 *3 (-525)) (-5 *1 (-989)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-789)) (-4 *3 (-1020)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517)))))
-(((*1 *1 *1) (-5 *1 (-205)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
- (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
- ((*1 *1 *1) (-5 *1 (-357))) ((*1 *1) (-5 *1 (-357))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-108)) (-5 *1 (-110))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1092)) (-5 *2 (-108))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1092)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1020)) (-5 *2 (-108)) (-5 *1 (-822 *5 *3 *4))
- (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *6)) (-4 *6 (-821 *5)) (-4 *5 (-1020))
- (-5 *2 (-108)) (-5 *1 (-822 *5 *6 *4)) (-4 *4 (-567 (-827 *5))))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-694)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713))
- (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-98 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-593 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-396 *3)) (-4 *3 (-517)) (-5 *1 (-397 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-327)) (-4 *4 (-307 *3)) (-4 *5 (-1150 *4))
- (-5 *1 (-719 *3 *4 *5 *2 *6)) (-4 *2 (-1150 *5)) (-14 *6 (-856))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-4 *3 (-346))))
- ((*1 *1 *1) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-341)) (-4 *2 (-346)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205))
- (-5 *2 (-966)) (-5 *1 (-696)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1174 (-592 (-2 (|:| -3284 *4) (|:| -3555 (-1039))))))
- (-4 *4 (-327)) (-5 *2 (-713)) (-5 *1 (-324 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-329 *3 *4)) (-14 *3 (-856))
- (-14 *4 (-856))))
- ((*1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327))
- (-14 *4
- (-3 (-1088 *3)
- (-1174 (-592 (-2 (|:| -3284 *3) (|:| -3555 (-1039)))))))))
+ (-12 (-4 *3 (-968 (-525))) (-4 *3 (-13 (-789) (-517)))
+ (-5 *1 (-31 *3 *2)) (-4 *2 (-408 *3))))
((*1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327))
- (-14 *4 (-856)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1073 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1044 (-525) (-565 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-925 *2)) (-4 *4 (-1150 *3)) (-4 *2 (-286))
- (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-968 *3)))))
+ (-12 (-4 *4 (-160)) (-5 *2 (-1088 *4)) (-5 *1 (-153 *3 *4))
+ (-4 *3 (-154 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-977)) (-4 *1 (-281))))
+ ((*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1088 *3))))
+ ((*1 *2) (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1150 *3))))
((*1 *2 *1)
- (-12 (-4 *3 (-517)) (-4 *3 (-789)) (-5 *2 (-1044 *3 (-565 *1)))
- (-4 *1 (-408 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1044 (-525) (-565 (-468)))) (-5 *1 (-468))))
+ (-12 (-4 *1 (-993 *3 *2)) (-4 *3 (-13 (-787) (-341)))
+ (-4 *2 (-1150 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2))
+ (-4 *2 (-1150 (-157 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-713)) (-4 *5 (-977)) (-4 *2 (-1150 *5))
+ (-5 *1 (-1168 *5 *2 *6 *3)) (-4 *6 (-602 *2)) (-4 *3 (-1165 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-5 *2 (-592 *3)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1020) (-33)))
+ (-5 *2 (-108)) (-5 *1 (-1057 *4 *5)) (-4 *4 (-13 (-1020) (-33))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092))))
+ (-4 *6 (-735)) (-5 *2 (-592 *3)) (-5 *1 (-859 *4 *5 *6 *3))
+ (-4 *3 (-884 *4 *6 *5)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-1096)) (-5 *1 (-1095)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-126))
+ (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1618 *4))))))
((*1 *2 *1)
- (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4))
- (-5 *1 (-571 *3 *4 *2)) (-4 *3 (-37 *4))))
+ (-12 (-5 *2 (-592 (-2 (|:| -2681 *3) (|:| -2885 *4))))
+ (-5 *1 (-678 *3 *4)) (-4 *3 (-977)) (-4 *4 (-669))))
((*1 *2 *1)
- (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4))
- (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-660 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-341)) (-4 *3 (-977))
- (-5 *2 (-2 (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-791 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-977))
- (-5 *2 (-2 (|:| -2829 *3) (|:| -1607 *3))) (-5 *1 (-792 *5 *3))
- (-4 *3 (-791 *5)))))
+ (-12 (-4 *1 (-1152 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
+ (-5 *2 (-1073 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-396 *3)) (-4 *3 (-517))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-2 (|:| -4201 *4) (|:| -3529 (-525)))))
+ (-4 *4 (-1150 (-525))) (-5 *2 (-713)) (-5 *1 (-419 *4)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-856)) (-4 *5 (-286)) (-4 *3 (-1150 *5))
+ (-5 *2 (-2 (|:| |plist| (-592 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-437 *5 *3)) (-5 *4 (-592 *3)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-502 *4 *2))
+ (-4 *2 (-1165 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 *3)))
+ (-4 *5 (-1150 *4)) (-4 *6 (-667 *4 *5)) (-5 *1 (-506 *4 *5 *6 *2))
+ (-4 *2 (-1165 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 *3)))
+ (-5 *1 (-507 *4 *2)) (-4 *2 (-1165 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1073 *4)) (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138)))
+ (-5 *1 (-1069 *4)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1834)))) (-5 *2 (-966))
+ (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))))
(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4259)) (-4 *1 (-115 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-977)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-592 (-1092)))
- (-4 *2 (-13 (-408 (-157 *5)) (-934) (-1114)))
- (-4 *5 (-13 (-517) (-789))) (-5 *1 (-554 *5 *6 *2))
- (-4 *6 (-13 (-408 *5) (-934) (-1114))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1056))))
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1092)))
+ (-4 *5 (-517)) (-5 *2 (-592 (-592 (-887 *5)))) (-5 *1 (-1098 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1064 (-1075))) (-5 *1 (-369)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-385 (-525))))
- (-5 *1 (-284)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1044 (-525) (-565 (-47)))) (-5 *1 (-47))))
+ (-12 (-5 *3 (-1022 *4)) (-4 *4 (-1020)) (-5 *2 (-1 *4))
+ (-5 *1 (-949 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-357))) (-5 *1 (-970)) (-5 *3 (-357))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1015 (-525))) (-5 *2 (-1 (-525))) (-5 *1 (-975)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1150 *4))
+ (-4 *5 (-1150 (-385 *3))) (-5 *2 (-108))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108))))
((*1 *2 *1)
- (-12 (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1150 *4))
- (-5 *2 (-1174 *6)) (-5 *1 (-391 *3 *4 *5 *6))
- (-4 *6 (-13 (-387 *4 *5) (-968 *4)))))
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
+(((*1 *1) (-5 *1 (-308))))
+(((*1 *1 *1) (-4 *1 (-578)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934) (-1114))))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-286)) (-4 *3 (-925 *2)) (-4 *4 (-1150 *3))
+ (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-968 *3))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1030)) (-5 *3 (-525)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1092)) (-4 *4 (-977)) (-4 *4 (-789))
+ (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -2168 (-525))))
+ (-4 *1 (-408 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-110)) (-4 *4 (-977)) (-4 *4 (-789))
+ (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -2168 (-525))))
+ (-4 *1 (-408 *4))))
((*1 *2 *1)
- (-12 (-4 *3 (-977)) (-4 *3 (-789)) (-5 *2 (-1044 *3 (-565 *1)))
- (-4 *1 (-408 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1044 (-525) (-565 (-468)))) (-5 *1 (-468))))
+ (|partial| -12 (-4 *3 (-1032)) (-4 *3 (-789))
+ (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -2168 (-525))))
+ (-4 *1 (-408 *3))))
((*1 *2 *1)
- (-12 (-4 *3 (-160)) (-4 *2 (-37 *3)) (-5 *1 (-571 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-669) *3))))
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-827 *3)) (|:| -2168 (-713))))
+ (-5 *1 (-827 *3)) (-4 *3 (-1020))))
((*1 *2 *1)
- (-12 (-4 *3 (-160)) (-4 *2 (-660 *3)) (-5 *1 (-608 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-669) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-856)) (-5 *4 (-357)) (-5 *2 (-1179)) (-5 *1 (-1175))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-798))))
- ((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-896)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-341)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4)))
- (-5 *2 (-1174 *6)) (-5 *1 (-314 *3 *4 *5 *6))
- (-4 *6 (-320 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
+ (|partial| -12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-2 (|:| |var| *5) (|:| -2168 (-713))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977))
+ (-4 *7 (-884 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -2168 (-525))))
+ (-5 *1 (-885 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-341)
+ (-10 -8 (-15 -4100 ($ *7)) (-15 -4066 (*7 $))
+ (-15 -4080 (*7 $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-632 *4)) (-5 *3 (-856)) (-4 *4 (-977))
+ (-5 *1 (-959 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-856)) (-4 *4 (-977))
+ (-5 *1 (-959 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-878 *3))) (-4 *3 (-977)) (-4 *1 (-1053 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-878 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-592 (-592 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-592 (-3 (|:| |array| (-592 *3)) (|:| |scalar| (-1092)))))
- (-5 *6 (-592 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1024))
- (-5 *1 (-375))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-592 (-592 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-592 (-3 (|:| |array| (-592 *3)) (|:| |scalar| (-1092)))))
- (-5 *6 (-592 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1024))
- (-5 *1 (-375))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-592 (-1092))) (-5 *5 (-1095)) (-5 *3 (-1092))
- (-5 *2 (-1024)) (-5 *1 (-375)))))
-(((*1 *2 *3) (-12 (-5 *3 (-592 (-51))) (-5 *2 (-1179)) (-5 *1 (-799)))))
+ (-12 (-4 *4 (-1020)) (-5 *2 (-824 *3 *4)) (-5 *1 (-820 *3 *4 *5))
+ (-4 *3 (-1020)) (-4 *5 (-612 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1174 *4)) (-4 *4 (-327)) (-5 *2 (-1088 *4))
- (-5 *1 (-495 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1092))
- (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1073 (-887 *4)) (-1073 (-887 *4))))
+ (-5 *1 (-1182 *4)) (-4 *4 (-341)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-412))
(-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-592 (-565 *3)))
- (|:| |vals| (-592 *3))))
- (-5 *1 (-256 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5))))))
-(((*1 *2)
- (-12 (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-306 *3 *4))
- (-4 *3 (-307 *4))))
- ((*1 *2) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-713)))))
-(((*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177))))
- ((*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-49 *3 *4)) (-4 *3 (-977))
- (-14 *4 (-592 (-1092)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *1 *1) (-4 *1 (-263)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
- (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-5 *1 (-576 *3 *4 *5))
- (-14 *5 (-856))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-13 (-977) (-660 (-385 (-525)))))
- (-4 *5 (-789)) (-5 *1 (-1188 *4 *5 *2)) (-4 *2 (-1193 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-1192 *3 *4))
- (-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-573 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -3519 *4) (|:| |sol?| (-108)))
- (-525) *4))
- (-4 *4 (-341)) (-4 *5 (-1150 *4)) (-5 *1 (-535 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1174 *4)) (-4 *4 (-395 *3)) (-4 *3 (-286))
- (-4 *3 (-517)) (-5 *1 (-42 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-856)) (-4 *4 (-341)) (-5 *2 (-1174 *1))
- (-4 *1 (-307 *4))))
- ((*1 *2) (-12 (-4 *3 (-341)) (-5 *2 (-1174 *1)) (-4 *1 (-307 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-160)) (-4 *4 (-1150 *3)) (-5 *2 (-1174 *1))
- (-4 *1 (-387 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1150 *4))
- (-5 *2 (-1174 *6)) (-5 *1 (-391 *3 *4 *5 *6))
- (-4 *6 (-13 (-387 *4 *5) (-968 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1150 *4))
- (-5 *2 (-1174 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7))
- (-4 *6 (-387 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1174 *1)) (-4 *1 (-395 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-856)) (-5 *2 (-1174 (-1174 *4))) (-5 *1 (-495 *4))
- (-4 *4 (-327)))))
-(((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966))
+ (-592
+ (-3 (|:| -2411 (-1092))
+ (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525)))))))))
+ (-5 *1 (-1096)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1150 (-47))))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
(-5 *1 (-698)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *3 (-592 (-242)))
- (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-242))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-445))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-445)))))
-(((*1 *1) (-5 *1 (-270))))
-(((*1 *1 *1 *2)
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-713)) (-4 *5 (-160))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-713)) (-4 *5 (-160))))
+ ((*1 *2 *2 *3)
(-12
(-5 *2
- (-2 (|:| -2673 (-592 (-798))) (|:| -3167 (-592 (-798)))
- (|:| |presup| (-592 (-798))) (|:| -2990 (-592 (-798)))
- (|:| |args| (-592 (-798)))))
- (-5 *1 (-1092))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 (-798)))) (-5 *1 (-1092)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1020)) (-5 *1 (-898 *2 *3)) (-4 *3 (-1020)))))
+ (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4)
+ (-227 *4 (-385 (-525)))))
+ (-5 *3 (-592 (-800 *4))) (-14 *4 (-592 (-1092))) (-14 *5 (-713))
+ (-5 *1 (-478 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-592 (-592 *4)))) (-5 *2 (-592 (-592 *4)))
- (-5 *1 (-1100 *4)) (-4 *4 (-789)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1092))
- (-4 *5 (-13 (-517) (-968 (-525)) (-138)))
- (-5 *2
- (-2 (|:| -1642 (-385 (-887 *5))) (|:| |coeff| (-385 (-887 *5)))))
- (-5 *1 (-531 *5)) (-5 *3 (-385 (-887 *5))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-341)) (-4 *3 (-977))
- (-5 *1 (-1077 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-339 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-364 *4)) (-4 *4 (-1020))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *2 (-23)) (-5 *1 (-595 *4 *2 *5))
- (-4 *4 (-1020)) (-14 *5 *2)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-761 *4)) (-4 *4 (-789)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1051 *4 *2))
- (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4258) (-6 -4259))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-789)) (-4 *3 (-1128)) (-5 *1 (-1051 *3 *2))
- (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4258) (-6 -4259)))))))
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-592
+ (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 *3))
+ (|:| |logand| (-1088 *3)))))
+ (-5 *1 (-542 *3)) (-4 *3 (-341)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1088 *5)) (-4 *5 (-341)) (-5 *2 (-592 *6))
+ (-5 *1 (-498 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-592
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-735)) (-4 *3 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789))
+ (-5 *1 (-426 *4 *5 *6 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-592 (-385 (-887 (-525))))) (-5 *4 (-592 (-1092)))
+ (-5 *2 (-592 (-592 *5))) (-5 *1 (-358 *5))
+ (-4 *5 (-13 (-787) (-341)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-358 *4))
+ (-4 *4 (-13 (-787) (-341))))))
(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-1088 (-887 *4))) (-5 *1 (-394 *3 *4))
- (-4 *3 (-395 *4))))
+ (-12 (-5 *2 (-892 (-1039))) (-5 *1 (-321 *3 *4)) (-14 *3 (-856))
+ (-14 *4 (-856))))
((*1 *2)
- (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341))
- (-5 *2 (-1088 (-887 *3)))))
+ (-12 (-5 *2 (-892 (-1039))) (-5 *1 (-322 *3 *4)) (-4 *3 (-327))
+ (-14 *4 (-1088 *3))))
((*1 *2)
- (-12 (-5 *2 (-1088 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-228)))))
+ (-12 (-5 *2 (-892 (-1039))) (-5 *1 (-323 *3 *4)) (-4 *3 (-327))
+ (-14 *4 (-856)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-697)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-825 *4 *3))
+ (-4 *3 (-1128))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-765)) (-5 *1 (-764)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-856)) (-5 *4 (-205)) (-5 *5 (-525)) (-5 *6 (-809))
+ (-5 *2 (-1179)) (-5 *1 (-1175)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-327)) (-5 *2 (-892 (-1088 *4))) (-5 *1 (-335 *4))
+ (-5 *3 (-1088 *4)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966))
+ (-5 *1 (-691)))))
+(((*1 *1) (-5 *1 (-132))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *8 (-991 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-592 *8)) (|:| |towers| (-592 (-958 *5 *6 *7 *8)))))
+ (-5 *1 (-958 *5 *6 *7 *8)) (-5 *3 (-592 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *8 (-991 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-592 *8))
+ (|:| |towers| (-592 (-1063 *5 *6 *7 *8)))))
+ (-5 *1 (-1063 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1092)) (-5 *2 (-1 (-1088 (-887 *4)) (-887 *4)))
+ (-5 *1 (-1182 *4)) (-4 *4 (-341)))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1128)) (-5 *2 (-713)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-104))) (-5 *1 (-162)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1073 *3))) (-5 *1 (-1073 *3)) (-4 *3 (-1128)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-592 (-294 (-205))))
+ (|:| |constraints|
+ (-592
+ (-2 (|:| |start| (-205)) (|:| |finish| (-205))
+ (|:| |grid| (-713)) (|:| |boundaryType| (-525))
+ (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205))))))
+ (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075))
+ (|:| |tol| (-205))))
+ (-5 *2 (-108)) (-5 *1 (-192)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |polnum| (-724 *3)) (|:| |polden| *3) (|:| -2855 (-713))))
+ (-5 *1 (-724 *3)) (-4 *3 (-977))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2855 (-713))))
+ (-4 *1 (-991 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1285 *4))))
+ (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4260)) (-4 *1 (-942 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-632 (-525))) (-5 *3 (-592 (-525))) (-5 *1 (-1030)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1020)) (-4 *2 (-835 *5)) (-5 *1 (-634 *5 *2 *3 *4))
+ (-4 *3 (-351 *2)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4259)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1092)) (-5 *4 (-887 (-525))) (-5 *2 (-308))
+ (-5 *1 (-310)))))
+(((*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-713)) (-5 *1 (-546)))))
+(((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-501))) (-5 *1 (-501)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
+ (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5)))
+ (-5 *2 (-108)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-856)) (-5 *1 (-143 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-341)) (-14 *5 (-926 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-800 *5))) (-14 *5 (-592 (-1092))) (-4 *6 (-429))
+ (-5 *2
+ (-2 (|:| |dpolys| (-592 (-227 *5 *6)))
+ (|:| |coords| (-592 (-525)))))
+ (-5 *1 (-448 *5 *6 *7)) (-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *3 *2))
- (-4 *2 (-13 (-27) (-1114) (-408 (-157 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-517) (-789) (-968 (-525))))
- (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 (-157 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1092))
- (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1075)) (-5 *2 (-525)) (-5 *1 (-1111 *4))
- (-4 *4 (-977)))))
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1096)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
(((*1 *2 *3)
(|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1128))))
((*1 *1 *2)
@@ -6470,26 +13334,26 @@
(-4 *1 (-909 *3 *4 *5 *6))))
((*1 *2 *1) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1128))))
((*1 *1 *2)
- (|partial| -3254
+ (|partial| -2067
(-12 (-5 *2 (-887 *3))
- (-12 (-1850 (-4 *3 (-37 (-385 (-525)))))
- (-1850 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1092))))
+ (-12 (-3272 (-4 *3 (-37 (-385 (-525)))))
+ (-3272 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1092))))
(-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735))
(-4 *5 (-789)))
(-12 (-5 *2 (-887 *3))
- (-12 (-1850 (-4 *3 (-510))) (-1850 (-4 *3 (-37 (-385 (-525)))))
+ (-12 (-3272 (-4 *3 (-510))) (-3272 (-4 *3 (-37 (-385 (-525)))))
(-4 *3 (-37 (-525))) (-4 *5 (-567 (-1092))))
(-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735))
(-4 *5 (-789)))
(-12 (-5 *2 (-887 *3))
- (-12 (-1850 (-4 *3 (-925 (-525)))) (-4 *3 (-37 (-385 (-525))))
+ (-12 (-3272 (-4 *3 (-925 (-525)))) (-4 *3 (-37 (-385 (-525))))
(-4 *5 (-567 (-1092))))
(-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735))
(-4 *5 (-789)))))
((*1 *1 *2)
- (|partial| -3254
+ (|partial| -2067
(-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5))
- (-12 (-1850 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525)))
+ (-12 (-3272 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525)))
(-4 *5 (-567 (-1092))))
(-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))
(-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5))
@@ -6499,1225 +13363,306 @@
(|partial| -12 (-5 *2 (-887 (-385 (-525)))) (-4 *1 (-991 *3 *4 *5))
(-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092))) (-4 *3 (-977))
(-4 *4 (-735)) (-4 *5 (-789)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-844)) (-5 *2 (-396 (-1088 *1))) (-5 *3 (-1088 *1)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1030)) (-5 *3 (-525)))))
-(((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-510))))
- ((*1 *1 *1) (-4 *1 (-986))))
-(((*1 *2 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-510)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-592
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-735)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789))
- (-5 *1 (-426 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-977))
- (-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263)))
- (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1150 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-856)) (-4 *5 (-977))
- (-4 *2 (-13 (-382) (-968 *5) (-341) (-1114) (-263)))
- (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1150 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *3 (-991 *4 *5 *6))
- (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2563 *1))))
- (-4 *1 (-996 *4 *5 *6 *3)))))
-(((*1 *1 *1) (-5 *1 (-989))))
-(((*1 *1 *1) (-4 *1 (-510))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525))))
- (-5 *2 (-157 (-294 *4))) (-5 *1 (-170 *4 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 (-157 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-157 *3)) (-5 *1 (-1118 *4 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *4))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4))
- (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6)))
- (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-968 (-525))))
- (-5 *2 (-2 (|:| -2581 (-713)) (|:| -2459 *8)))
- (-5 *1 (-846 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6))
- (-4 *4 (-1150 (-385 (-525)))) (-4 *5 (-1150 (-385 *4)))
- (-4 *6 (-320 (-385 (-525)) *4 *5))
- (-5 *2 (-2 (|:| -2581 (-713)) (|:| -2459 *6)))
- (-5 *1 (-847 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-1174 *5)) (-4 *5 (-286))
- (-4 *5 (-977)) (-5 *2 (-632 *5)) (-5 *1 (-960 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-481 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-789)))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-977)) (-14 *3 (-592 (-1092)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-977) (-789)))
- (-14 *3 (-592 (-1092)))))
- ((*1 *1 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-977)) (-4 *3 (-1020))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-592 (-1092))) (-4 *3 (-160))
- (-4 *5 (-218 (-3522 *2) (-713)))
- (-14 *6
- (-1 (-108) (-2 (|:| -3555 *4) (|:| -4193 *5))
- (-2 (|:| -3555 *4) (|:| -4193 *5))))
- (-5 *1 (-438 *2 *3 *4 *5 *6 *7)) (-4 *4 (-789))
- (-4 *7 (-884 *3 *5 (-800 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-789))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1150 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-977))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-678 *2 *3)) (-4 *3 (-789)) (-4 *2 (-977))
- (-4 *3 (-669))))
- ((*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *2 (-789))))
- ((*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-4 *2 (-977)) (-4 *3 (-785)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1015 (-782 (-205)))) (-5 *1 (-284)))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-1092)) (-5 *3 (-1024)) (-5 *1 (-270)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
- (-5 *2 (-632 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4))
- (-4 *3 (-395 *4))))
- ((*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-221))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-1179)) (-5 *1 (-221)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-525)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *2 (-1179)) (-5 *1 (-426 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *1 (-327))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1150 *5))
- (-4 *7 (-1150 (-385 *6))) (-4 *8 (-320 *5 *6 *7))
- (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-108))
- (-5 *1 (-846 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6))
- (-4 *4 (-1150 (-385 (-525)))) (-4 *5 (-1150 (-385 *4)))
- (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-108))
- (-5 *1 (-847 *4 *5 *6)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525)))))
- (-4 *2 (-13 (-789) (-21))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138)))
- (-5 *1 (-1144 *4 *2)) (-4 *2 (-1150 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-884 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-525)) (-4 *2 (-408 *3)) (-5 *1 (-31 *3 *2))
- (-4 *3 (-968 *4)) (-4 *3 (-13 (-789) (-517))))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1020) (-33))) (-5 *1 (-1057 *3 *2))
- (-4 *3 (-13 (-1020) (-33))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-341)) (-4 *3 (-977))
- (-5 *1 (-1077 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-1179)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020))
- (-4 *4 (-1020)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1020)) (-5 *2 (-108)) (-5 *1 (-820 *3 *4 *5))
- (-4 *3 (-1020)) (-4 *5 (-612 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-824 *3 *4)) (-4 *3 (-1020))
- (-4 *4 (-1020)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-977)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1092)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4))
- (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1092)))))
- ((*1 *2 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1020)) (-4 *2 (-977))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-592 (-1092))) (-4 *5 (-218 (-3522 *3) (-713)))
- (-14 *6
- (-1 (-108) (-2 (|:| -3555 *4) (|:| -4193 *5))
- (-2 (|:| -3555 *4) (|:| -4193 *5))))
- (-4 *2 (-160)) (-5 *1 (-438 *3 *2 *4 *5 *6 *7)) (-4 *4 (-789))
- (-4 *7 (-884 *2 *5 (-800 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1020))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-525))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-735)) (-4 *4 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789))
+ (-5 *1 (-426 *5 *6 *7 *4)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-789)) (-4 *5 (-735))
+ (-4 *6 (-517)) (-4 *7 (-884 *6 *5 *3))
+ (-5 *1 (-439 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-968 (-385 (-525))) (-341)
+ (-10 -8 (-15 -4100 ($ *7)) (-15 -4066 (*7 $))
+ (-15 -4080 (*7 $))))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1150 *2)) (-4 *2 (-1132)) (-5 *1 (-139 *2 *4 *3))
+ (-4 *3 (-1150 (-385 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020))))
((*1 *2 *1)
- (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1150 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-977))))
+ (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
+ (-5 *2 (-108))))
((*1 *2 *1)
- (-12 (-4 *2 (-977)) (-5 *1 (-678 *2 *3)) (-4 *3 (-789))
- (-4 *3 (-669))))
- ((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-785)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-565 *6))) (-5 *4 (-1092)) (-5 *2 (-565 *6))
+ (-4 *6 (-408 *5)) (-4 *5 (-789)) (-5 *1 (-534 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *6)) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713))))
((*1 *2 *1)
- (-12 (-4 *1 (-906 *2 *3 *4)) (-4 *3 (-734)) (-4 *4 (-789))
- (-4 *2 (-977))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *2 (-789)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2563 *4))))
- (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4))
- (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-160)) (-4 *2 (-977)) (-5 *1 (-657 *2 *3))
- (-4 *3 (-594 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-160)) (-4 *2 (-977)) (-5 *1 (-657 *2 *3))
- (-4 *3 (-594 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-977))))
- ((*1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-977)))))
+ (-12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-713)))))
+(((*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-713)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-977)) (-4 *4 (-1150 *3)) (-5 *1 (-152 *3 *4 *2))
- (-4 *2 (-1150 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-205))
- (-5 *2 (-966)) (-5 *1 (-692)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1141 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1128))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-1020)) (-5 *2 (-713)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-713)) (-4 *2 (-1020))
- (-5 *1 (-622 *2)))))
-(((*1 *1) (-5 *1 (-765))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *2 (-966)) (-5 *1 (-694)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *5) (-27) (-1114)))
+ (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2 (-542 *3)) (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1020)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3))
+ (-4 *3 (-1150 (-157 *2))))))
+(((*1 *1 *1 *1) (-4 *1 (-134)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
(-4 *2 (-408 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1056))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
- (-4 *3 (-991 *6 *7 *8))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4))))
- (-5 *1 (-997 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -2563 *9))))
- (-5 *5 (-108)) (-4 *8 (-991 *6 *7 *4)) (-4 *9 (-996 *6 *7 *4 *8))
- (-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789))
- (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -2563 *9))))
- (-5 *1 (-997 *6 *7 *4 *8 *9)))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734))))
- ((*1 *2 *1) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1020))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-592 (-1092))) (-4 *4 (-160))
- (-4 *6 (-218 (-3522 *3) (-713)))
- (-14 *7
- (-1 (-108) (-2 (|:| -3555 *5) (|:| -4193 *6))
- (-2 (|:| -3555 *5) (|:| -4193 *6))))
- (-5 *2 (-656 *5 *6 *7)) (-5 *1 (-438 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-789)) (-4 *8 (-884 *4 *6 (-800 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-669)) (-4 *2 (-789)) (-5 *1 (-678 *3 *2))
- (-4 *3 (-977))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-906 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-734))
- (-4 *4 (-789)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-798)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4258)) (-4 *1 (-464 *4))
- (-4 *4 (-1128)) (-5 *2 (-108)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1128))
- (-4 *3 (-351 *4)) (-4 *5 (-351 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))))
- (-5 *2 (-592 (-385 (-525)))) (-5 *1 (-951 *4))
- (-4 *4 (-1150 (-525))))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934)))
- (-5 *1 (-163 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-592
- (-592
- (-3 (|:| -3257 (-1092))
- (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525))))))))))
- (-5 *1 (-1096)))))
-(((*1 *1 *1) (-5 *1 (-989))))
-(((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-767)))))
-(((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177))))
- ((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-856)) (-5 *1 (-728)))))
-(((*1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977))))
- ((*1 *2 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160))))
- ((*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2))))
- ((*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1174 (-632 *4))) (-4 *4 (-160))
- (-5 *2 (-1174 (-632 (-887 *4)))) (-5 *1 (-171 *4)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *4 (-160)) (-4 *5 (-351 *4))
- (-4 *6 (-351 *4)) (-5 *1 (-631 *4 *5 *6 *2))
- (-4 *2 (-630 *4 *5 *6)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-782 *4)) (-5 *3 (-565 *4)) (-5 *5 (-108))
- (-4 *4 (-13 (-1114) (-29 *6)))
- (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-204 *6 *4)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-713)) (-5 *1 (-110)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1059 *4 *2)) (-14 *4 (-856))
- (-4 *2 (-13 (-977) (-10 -7 (-6 (-4260 "*"))))) (-5 *1 (-837 *4 *2)))))
-(((*1 *1 *1 *1) (-5 *1 (-798))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-977)) (-5 *1 (-829 *2 *3)) (-4 *2 (-1150 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-632 *5)) (-4 *5 (-977)) (-5 *1 (-981 *3 *4 *5))
- (-14 *3 (-713)) (-14 *4 (-713)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3))
- (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2))
- (-4 *2 (-630 *3 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
- (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-108)))))
-(((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-335 *3)) (-4 *3 (-327)))))
-(((*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-856))))
+ (|partial| -12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
+ (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1174 *4)) (-4 *4 (-327)) (-5 *2 (-856))
- (-5 *1 (-495 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934)))
- (-5 *1 (-163 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-862)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-991 *3 *4 *5)))))
-(((*1 *1 *1) (-4 *1 (-578)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934) (-1114))))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-742))
- (-5 *3
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (-5 *2 (-966)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))) (-5 *2 (-966))
- (-5 *1 (-689)))))
-(((*1 *1 *1) (-4 *1 (-223)))
+ (|partial| -12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
+ (-4 *7 (-925 *4)) (-4 *2 (-630 *7 *8 *9))
+ (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6))
+ (-4 *8 (-351 *7)) (-4 *9 (-351 *7))))
((*1 *1 *1)
- (-12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1150 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977))
+ (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-341)) (-4 *3 (-160)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2))
+ (-4 *2 (-630 *3 *4 *5))))
((*1 *1 *1)
- (-3254 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1128)))
- (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1128)))))
- ((*1 *1 *1) (-4 *1 (-450)))
- ((*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3))))
+ (|partial| -12 (-5 *1 (-632 *2)) (-4 *2 (-341)) (-4 *2 (-977))))
((*1 *1 *1)
- (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-341)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4)
- (-227 *4 (-385 (-525)))))
- (-14 *4 (-592 (-1092))) (-14 *5 (-713)) (-5 *2 (-108))
- (-5 *1 (-478 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-525)) (-5 *1 (-461 *4))
- (-4 *4 (-1150 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))))
-(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5))
- (-4 *5 (-13 (-341) (-138) (-968 (-525))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |h| *6)
- (|:| |c1| (-385 *6)) (|:| |c2| (-385 *6)) (|:| -3200 *6)))
- (-5 *1 (-948 *5 *6)) (-5 *3 (-385 *6)))))
-(((*1 *1 *1 *1) (-5 *1 (-798))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-824 *5 *3)) (-5 *4 (-827 *5)) (-4 *5 (-1020))
- (-4 *3 (-154 *6)) (-4 (-887 *6) (-821 *5))
- (-4 *6 (-13 (-821 *5) (-160))) (-5 *1 (-165 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-824 *4 *1)) (-5 *3 (-827 *4)) (-4 *1 (-821 *4))
- (-4 *4 (-1020))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-824 *5 *6)) (-5 *4 (-827 *5)) (-4 *5 (-1020))
- (-4 *6 (-13 (-1020) (-968 *3))) (-4 *3 (-821 *5))
- (-5 *1 (-866 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-824 *5 *3)) (-4 *5 (-1020))
- (-4 *3 (-13 (-408 *6) (-567 *4) (-821 *5) (-968 (-565 $))))
- (-5 *4 (-827 *5)) (-4 *6 (-13 (-517) (-789) (-821 *5)))
- (-5 *1 (-867 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-824 (-525) *3)) (-5 *4 (-827 (-525))) (-4 *3 (-510))
- (-5 *1 (-868 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-824 *5 *6)) (-5 *3 (-565 *6)) (-4 *5 (-1020))
- (-4 *6 (-13 (-789) (-968 (-565 $)) (-567 *4) (-821 *5)))
- (-5 *4 (-827 *5)) (-5 *1 (-869 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-820 *5 *6 *3)) (-5 *4 (-827 *5)) (-4 *5 (-1020))
- (-4 *6 (-821 *5)) (-4 *3 (-612 *6)) (-5 *1 (-870 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-824 *6 *3) *8 (-827 *6) (-824 *6 *3)))
- (-4 *8 (-789)) (-5 *2 (-824 *6 *3)) (-5 *4 (-827 *6))
- (-4 *6 (-1020)) (-4 *3 (-13 (-884 *9 *7 *8) (-567 *4)))
- (-4 *7 (-735)) (-4 *9 (-13 (-977) (-789) (-821 *6)))
- (-5 *1 (-871 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-824 *5 *3)) (-4 *5 (-1020))
- (-4 *3 (-13 (-884 *8 *6 *7) (-567 *4))) (-5 *4 (-827 *5))
- (-4 *7 (-821 *5)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *8 (-13 (-977) (-789) (-821 *5))) (-5 *1 (-871 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-824 *5 *3)) (-4 *5 (-1020)) (-4 *3 (-925 *6))
- (-4 *6 (-13 (-517) (-821 *5) (-567 *4))) (-5 *4 (-827 *5))
- (-5 *1 (-874 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-824 *5 (-1092))) (-5 *3 (-1092)) (-5 *4 (-827 *5))
- (-4 *5 (-1020)) (-5 *1 (-875 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-592 (-827 *7))) (-5 *5 (-1 *9 (-592 *9)))
- (-5 *6 (-1 (-824 *7 *9) *9 (-827 *7) (-824 *7 *9))) (-4 *7 (-1020))
- (-4 *9 (-13 (-977) (-567 (-827 *7)) (-968 *8))) (-5 *2 (-824 *7 *9))
- (-5 *3 (-592 *9)) (-4 *8 (-13 (-977) (-789)))
- (-5 *1 (-876 *7 *8 *9)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108))
- (-5 *6 (-205)) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))))
- (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE))))
- (-5 *2 (-966)) (-5 *1 (-699)))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-904)))))
-(((*1 *1 *1) (-5 *1 (-798)))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020))))
- ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1074))))
- ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1092)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *6)) (-5 *4 (-1092)) (-4 *6 (-408 *5))
- (-4 *5 (-789)) (-5 *2 (-592 (-565 *6))) (-5 *1 (-534 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-308)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1128)) (-5 *1 (-168 *3 *2)) (-4 *2 (-619 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1075)) (-5 *1 (-51)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1150 *3)) (-4 *3 (-977)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-221)) (-5 *3 (-1075))))
- ((*1 *2 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-221))))
- ((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1128))
- (-5 *2 (-108)))))
+ (|partial| -12 (-4 *1 (-1042 *2 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-218 *2 *3)) (-4 *5 (-218 *2 *3)) (-4 *3 (-341))))
+ ((*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-1100 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-698)))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641))))
- ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1092))
- (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *4 *5))
- (-4 *5 (-13 (-27) (-1114) (-408 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *4 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-385 (-525)))
- (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *5 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5)))
- (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525)))
- (-4 *3 (-13 (-27) (-1114) (-408 *6)))
- (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8))
- (-5 *5 (-1141 (-385 (-525)))) (-5 *6 (-385 (-525)))
- (-4 *8 (-13 (-27) (-1114) (-408 *7)))
- (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-385 (-525))))
- (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1114) (-408 *8)))
- (-4 *8 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *8 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-385 (-525))) (-4 *4 (-977)) (-4 *1 (-1157 *4 *3))
- (-4 *3 (-1134 *4)))))
-(((*1 *1) (-5 *1 (-415))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-327)) (-5 *3 (-525)) (-5 *2 (-1102 (-856) (-713))))))
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4))
+ (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114))))))
(((*1 *1 *1)
- (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-977)) (-4 *3 (-789))
- (-4 *4 (-245 *3)) (-4 *5 (-735)))))
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-592 (-1088 *5))) (-5 *3 (-1088 *5))
- (-4 *5 (-154 *4)) (-4 *4 (-510)) (-5 *1 (-140 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-592 *3)) (-4 *3 (-1150 *5))
- (-4 *5 (-1150 *4)) (-4 *4 (-327)) (-5 *1 (-336 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-592 (-1088 (-525)))) (-5 *3 (-1088 (-525)))
- (-5 *1 (-533))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-592 (-1088 *1))) (-5 *3 (-1088 *1))
- (-4 *1 (-844)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-987 (-955 *3) (-1088 (-955 *3))))
- (-5 *1 (-955 *3)) (-4 *3 (-13 (-787) (-341) (-953))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-682 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1088 *1)) (-5 *3 (-1092)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1088 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-887 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1092)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1088 *2)) (-5 *4 (-1092)) (-4 *2 (-408 *5))
- (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-789) (-517)))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1088 *1)) (-5 *3 (-856)) (-4 *1 (-944))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1088 *1)) (-5 *3 (-856)) (-5 *4 (-798))
- (-4 *1 (-944))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-856)) (-4 *4 (-13 (-787) (-341)))
- (-4 *1 (-993 *4 *2)) (-4 *2 (-1150 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1174 (-1174 *4))) (-4 *4 (-977)) (-5 *2 (-632 *4))
- (-5 *1 (-960 *4)))))
-(((*1 *2 *3)
(-12 (-5 *3 (-1092))
- (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *4 *5))
- (-4 *5 (-13 (-27) (-1114) (-408 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *4 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-525)) (-4 *5 (-13 (-429) (-789) (-968 *4) (-588 *4)))
- (-5 *2 (-51)) (-5 *1 (-293 *5 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *5)))))
+ (-4 *4 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-404 *4 *2)) (-4 *2 (-13 (-1114) (-29 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5)))
- (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *6)))
- (-4 *6 (-13 (-429) (-789) (-968 *5) (-588 *5))) (-5 *5 (-525))
- (-5 *2 (-51)) (-5 *1 (-293 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1141 (-525)))
- (-4 *7 (-13 (-27) (-1114) (-408 *6)))
- (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-525)))
- (-4 *3 (-13 (-27) (-1114) (-408 *7)))
- (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *7 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-525)) (-4 *4 (-977)) (-4 *1 (-1136 *4 *3))
- (-4 *3 (-1165 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1134 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3377 *3) (|:| |coef1| (-724 *3))))
- (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1092)) (-5 *3 (-412)) (-4 *5 (-789))
- (-5 *1 (-1026 *5 *4)) (-4 *4 (-408 *5)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *6))))
- (-5 *4 (-957 (-782 (-525)))) (-5 *5 (-1092)) (-5 *7 (-385 (-525)))
- (-4 *6 (-977)) (-5 *2 (-798)) (-5 *1 (-550 *6)))))
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092)) (-4 *5 (-138))
+ (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))
+ (-5 *2 (-294 *5)) (-5 *1 (-545 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-369)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-878 *5)) (-4 *5 (-977)) (-5 *2 (-713))
+ (-5 *1 (-1081 *4 *5)) (-14 *4 (-856))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1081 *4 *5))
+ (-14 *4 (-856)) (-4 *5 (-977))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-713))) (-5 *3 (-878 *5)) (-4 *5 (-977))
+ (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-763)) (-5 *4 (-51)) (-5 *2 (-1179)) (-5 *1 (-773)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4))
- (-4 *4 (-327)))))
+ (-12 (-4 *5 (-517))
+ (-5 *2 (-2 (|:| -4108 (-632 *5)) (|:| |vec| (-1174 (-592 (-856))))))
+ (-5 *1 (-88 *5 *3)) (-5 *4 (-856)) (-4 *3 (-602 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1150 *3)) (-4 *3 (-977)))))
+(((*1 *2)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1174 *4)) (-5 *3 (-525)) (-4 *4 (-327))
+ (-5 *1 (-495 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-592 *5))
+ (|:| |maps| (-592 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1047 *3 *5)) (-4 *3 (-1150 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1165 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2))
- (|has| *2 (-6 (-4260 "*"))) (-4 *2 (-977))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160))
- (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
- (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4260 "*"))) (-4 *2 (-977)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-977))
- (-5 *1 (-657 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-776 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-632 (-887 *4))) (-5 *1 (-959 *4))
+ (-12 (-5 *2 (-592 (-878 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
(-4 *4 (-977)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *3 (-592 (-809)))
+ (-5 *1 (-445)))))
+(((*1 *1) (-5 *1 (-132))) ((*1 *1 *1) (-5 *1 (-135)))
+ ((*1 *1 *1) (-4 *1 (-1061))))
(((*1 *2 *3)
- (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-977))
- (-5 *2 (-227 *4 *5)) (-5 *1 (-879 *4 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-856)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))))
- ((*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1150 *2)) (-4 *2 (-160))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1174 *4)) (-5 *3 (-856)) (-4 *4 (-327))
- (-5 *1 (-495 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
- (-4 *5 (-218 *3 *2)) (-4 *2 (-977)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1092))
- (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *4 *5))
- (-4 *5 (-13 (-27) (-1114) (-408 *4)))))
+ (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4))
+ (-4 *4 (-327))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4))
+ (-4 *4 (-327))))
+ ((*1 *1) (-4 *1 (-346)))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *4 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-713))
- (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *5 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5)))
- (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-273 *3)) (-5 *5 (-713))
- (-4 *3 (-13 (-27) (-1114) (-408 *6)))
- (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6))
- (-4 *6 (-13 (-27) (-1114) (-408 *5)))
- (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *6)))
- (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1141 (-713)))
- (-4 *7 (-13 (-27) (-1114) (-408 *6)))
- (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-713)))
- (-4 *3 (-13 (-27) (-1114) (-408 *7)))
- (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *7 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1165 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
- (-5 *5 (-1015 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1052 (-205)))
- (-5 *1 (-639)))))
-(((*1 *2)
- (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525)))))
+ (-12 (-5 *3 (-856)) (-5 *2 (-1174 *4)) (-5 *1 (-495 *4))
+ (-4 *4 (-327))))
+ ((*1 *1 *1) (-4 *1 (-510))) ((*1 *1) (-4 *1 (-510)))
+ ((*1 *1 *1) (-5 *1 (-525))) ((*1 *1 *1) (-5 *1 (-713)))
+ ((*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-5 *2 (-840 *4)) (-5 *1 (-839 *4))
+ (-4 *4 (-1020))))
+ ((*1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-510)) (-4 *2 (-517)))))
+(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-429)) (-5 *2 (-108))
- (-5 *1 (-338 *4 *5)) (-14 *5 (-592 (-1092)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-722 *4 (-800 *5)))) (-4 *4 (-429))
- (-14 *5 (-592 (-1092))) (-5 *2 (-108)) (-5 *1 (-577 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-713) *2)) (-5 *4 (-713)) (-4 *2 (-1020))
- (-5 *1 (-622 *2))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-713) *3)) (-4 *3 (-1020)) (-5 *1 (-625 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-305 *3)) (-4 *3 (-1128))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1128))
- (-14 *4 (-525)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1075))
- (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *4 *5 *6))
- (-4 *4 (-567 (-501))) (-4 *5 (-1128)) (-4 *6 (-1128)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1020))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-525)) (-5 *2 (-1073 *3)) (-5 *1 (-1077 *3))
- (-4 *3 (-977))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-761 *4)) (-4 *4 (-789)) (-4 *1 (-1189 *4 *3))
- (-4 *3 (-977)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-887 (-385 (-525)))) (-5 *4 (-1092))
- (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279)))))
-(((*1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525)))))
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1092))
- (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4)))
- (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205))
- (-5 *2 (-966)) (-5 *1 (-695)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -3096 *4))))
- (-4 *3 (-1020)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-1110)))))
-(((*1 *1) (-5 *1 (-765))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-4 *1 (-352 *3 *4))
- (-4 *4 (-160)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
- (-4 *4 (-13 (-789) (-517))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-1134 *4)) (-4 *4 (-977)) (-4 *4 (-517))
- (-5 *2 (-385 (-887 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-1134 *4)) (-4 *4 (-977)) (-4 *4 (-517))
- (-5 *2 (-385 (-887 *4))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-787) (-286) (-138) (-953)))
- (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-1198 *5 *6 *7))
- (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-787) (-286) (-138) (-953)))
- (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-1198 *5 *6 *7))
- (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-887 *4)))
- (-4 *4 (-13 (-787) (-286) (-138) (-953)))
- (-5 *2 (-592 (-974 *4 *5))) (-5 *1 (-1198 *4 *5 *6))
- (-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-856)) (-5 *2 (-445)) (-5 *1 (-1175)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1092)))))
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-713)) (-5 *4 (-1174 *2)) (-4 *5 (-286))
- (-4 *6 (-925 *5)) (-4 *2 (-13 (-387 *6 *7) (-968 *6)))
- (-5 *1 (-391 *5 *6 *7 *2)) (-4 *7 (-1150 *6)))))
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4))))
+ (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
(-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *1) (-5 *1 (-1007))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-856)) (-4 *5 (-517)) (-5 *2 (-632 *5))
- (-5 *1 (-890 *5 *3)) (-4 *3 (-602 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -3096 *4))))
- (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934)))
- (-5 *1 (-163 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1174 (-641))) (-5 *1 (-284)))))
-(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176))))
- ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))))
-(((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-592
- (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8))
- (|:| |wcond| (-592 (-887 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1174 (-385 (-887 *5))))
- (|:| -3094 (-592 (-1174 (-385 (-887 *5))))))))))
- (-5 *4 (-1075)) (-4 *5 (-13 (-286) (-138))) (-4 *8 (-884 *5 *7 *6))
- (-4 *6 (-13 (-789) (-567 (-1092)))) (-4 *7 (-735)) (-5 *2 (-525))
- (-5 *1 (-859 *5 *6 *7 *8)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1129 *3)) (-4 *3 (-1020))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1020)) (-5 *2 (-108))
- (-5 *1 (-1129 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1073 *4)) (-5 *3 (-525)) (-4 *4 (-977))
- (-5 *1 (-1077 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-525)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-977))
- (-14 *4 (-1092)) (-14 *5 *3))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1020)) (-4 *5 (-1020))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-610 *4 *5)))
- (-5 *1 (-576 *4 *5 *6)) (-4 *5 (-13 (-160) (-660 (-385 (-525)))))
- (-14 *6 (-856)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-966)) (-5 *3 (-1092)) (-5 *1 (-246)))))
-(((*1 *2 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-1176))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
- (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-884 *4 *3 *5)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-713)) (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *2 (-966)) (-5 *1 (-694)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-227 *5 *6))) (-4 *6 (-429))
- (-5 *2 (-227 *5 *6)) (-14 *5 (-592 (-1092))) (-5 *1 (-580 *5 *6)))))
-(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-977))
- (-5 *1 (-792 *5 *2)) (-4 *2 (-791 *5)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))
- (-5 *2 (-592 (-1092))) (-5 *1 (-246))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1088 *7)) (-4 *7 (-884 *6 *4 *5)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-977)) (-5 *2 (-592 *5))
- (-5 *1 (-299 *4 *5 *6 *7))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-317 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 *2) (-4 *5 (-365))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-592 (-1092)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-592 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977))
- (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-592 *5))
- (-5 *1 (-885 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-341)
- (-10 -8 (-15 -1217 ($ *7)) (-15 -3114 (*7 $)) (-15 -3123 (*7 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1022 (-1092))) (-5 *1 (-900 *3)) (-4 *3 (-901))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-906 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-734))
- (-4 *5 (-789)) (-5 *2 (-592 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-1092)))
- (-5 *1 (-973 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-525)) (|has| *1 (-6 -4249)) (-4 *1 (-382))
- (-5 *2 (-856)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-856)) (-5 *1 (-419 *2))
- (-4 *2 (-1150 (-525)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-856)) (-5 *4 (-713)) (-5 *1 (-419 *2))
- (-4 *2 (-1150 (-525)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-856)) (-5 *4 (-592 (-713))) (-5 *1 (-419 *2))
- (-4 *2 (-1150 (-525)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-856)) (-5 *4 (-592 (-713))) (-5 *5 (-713))
- (-5 *1 (-419 *2)) (-4 *2 (-1150 (-525)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-856)) (-5 *4 (-592 (-713))) (-5 *5 (-713))
- (-5 *6 (-108)) (-5 *1 (-419 *2)) (-4 *2 (-1150 (-525)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-856)) (-5 *4 (-396 *2)) (-4 *2 (-1150 *5))
- (-5 *1 (-421 *5 *2)) (-4 *5 (-977)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-839 *4))
- (-4 *4 (-1020))))
- ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-126))
- (-4 *3 (-734)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1075)) (-5 *1 (-92))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1075)) (-5 *1 (-92)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1150 (-385 (-525))))
- (-5 *2 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))))
- (-5 *1 (-848 *3 *4)) (-4 *4 (-1150 (-385 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1150 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-848 *4 *3))
- (-4 *3 (-1150 (-385 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1179))
- (-5 *1 (-426 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525))))
- (-5 *1 (-1030)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1020)) (-4 *3 (-835 *5)) (-5 *2 (-1174 *3))
- (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3))
- (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4258)))))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1088 (-385 (-1088 *2)))) (-5 *4 (-565 *2))
- (-4 *2 (-13 (-408 *5) (-27) (-1114)))
- (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *1 (-521 *5 *2 *6)) (-4 *6 (-1020))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1088 *1)) (-4 *1 (-884 *4 *5 *3)) (-4 *4 (-977))
- (-4 *5 (-735)) (-4 *3 (-789))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1088 *4)) (-4 *4 (-977)) (-4 *1 (-884 *4 *5 *3))
- (-4 *5 (-735)) (-4 *3 (-789))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-1088 *2))) (-4 *5 (-735)) (-4 *4 (-789))
- (-4 *6 (-977))
- (-4 *2
- (-13 (-341)
- (-10 -8 (-15 -1217 ($ *7)) (-15 -3114 (*7 $)) (-15 -3123 (*7 $)))))
- (-5 *1 (-885 *5 *4 *6 *7 *2)) (-4 *7 (-884 *6 *5 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-1088 (-385 (-887 *5))))) (-5 *4 (-1092))
- (-5 *2 (-385 (-887 *5))) (-5 *1 (-973 *5)) (-4 *5 (-517)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-592
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-735)) (-4 *3 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789))
- (-5 *1 (-426 *4 *5 *6 *3)))))
-(((*1 *1) (-5 *1 (-132))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1073 *3))) (-5 *1 (-1073 *3)) (-4 *3 (-1128)))))
-(((*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-713)) (-5 *1 (-546)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-789)) (-4 *5 (-735))
- (-4 *6 (-517)) (-4 *7 (-884 *6 *5 *3))
- (-5 *1 (-439 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-968 (-385 (-525))) (-341)
- (-10 -8 (-15 -1217 ($ *7)) (-15 -3114 (*7 $))
- (-15 -3123 (*7 $))))))))
(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3))
- (-4 *3 (-1150 (-157 *2))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-878 *5)) (-4 *5 (-977)) (-5 *2 (-713))
- (-5 *1 (-1081 *4 *5)) (-14 *4 (-856))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1081 *4 *5))
- (-14 *4 (-856)) (-4 *5 (-977))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-713))) (-5 *3 (-878 *5)) (-4 *5 (-977))
- (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)))))
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1150 (-525))) (-5 *1 (-461 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-878 *4))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
- (-4 *4 (-977)))))
+ (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3))
+ (-4 *3 (-1020)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-592 (-887 *4))) (-5 *3 (-592 (-1092))) (-4 *4 (-429))
+ (-5 *1 (-853 *4)))))
+(((*1 *2)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-5 *2 (-632 (-385 *4))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-694)))))
(((*1 *2 *1)
(-12 (-5 *2 (-2 (|:| |preimage| (-592 *3)) (|:| |image| (-592 *3))))
(-5 *1 (-840 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))
+ (-5 *2 (-966)) (-5 *1 (-692))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))
+ (-5 *8 (-366)) (-5 *2 (-966)) (-5 *1 (-692)))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1020)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 *2)))
- (-5 *2 (-827 *3)) (-5 *1 (-999 *3 *4 *5))
- (-4 *5 (-13 (-408 *4) (-821 *3) (-567 *2))))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-592 (-856))) (-5 *1 (-143 *4 *2 *5)) (-14 *4 (-856))
- (-4 *2 (-341)) (-14 *5 (-926 *4 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-656 *5 *6 *7)) (-4 *5 (-789))
- (-4 *6 (-218 (-3522 *4) (-713)))
- (-14 *7
- (-1 (-108) (-2 (|:| -3555 *5) (|:| -4193 *6))
- (-2 (|:| -3555 *5) (|:| -4193 *6))))
- (-14 *4 (-592 (-1092))) (-4 *2 (-160))
- (-5 *1 (-438 *4 *2 *5 *6 *7 *8)) (-4 *8 (-884 *2 *6 (-800 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-789))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4))
- (-4 *4 (-1150 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-977))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-678 *2 *3)) (-4 *2 (-977)) (-4 *3 (-669))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5))
- (-4 *4 (-977)) (-4 *5 (-789))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-977))
- (-4 *2 (-789))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-977))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-884 *4 *5 *6))
- (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-884 *4 *5 *2)) (-4 *4 (-977))
- (-4 *5 (-735)) (-4 *2 (-789))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 *5)) (-4 *1 (-906 *4 *5 *6))
- (-4 *4 (-977)) (-4 *5 (-734)) (-4 *6 (-789))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-906 *4 *3 *2)) (-4 *4 (-977)) (-4 *3 (-734))
- (-4 *2 (-789)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1088 *7)) (-4 *7 (-884 *6 *4 *5)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-977)) (-5 *2 (-1088 *6))
- (-5 *1 (-299 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-429))
- (-5 *2
- (-592
- (-2 (|:| |eigval| (-3 (-385 (-887 *4)) (-1082 (-1092) (-887 *4))))
- (|:| |eigmult| (-713))
- (|:| |eigvec| (-592 (-632 (-385 (-887 *4))))))))
- (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-887 *4)))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
- (-4 *4 (-977)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1075))
- (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734))))
- ((*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-977)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-977)) (-5 *2 (-713))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *6)) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-884 *4 *5 *3)) (-4 *4 (-977)) (-4 *5 (-735))
- (-4 *3 (-789)) (-5 *2 (-713)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-341))
- (-5 *2 (-2 (|:| -2687 (-396 *3)) (|:| |special| (-396 *3))))
- (-5 *1 (-670 *5 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $)))))
- (-4 *4 (-1150 *3))
- (-5 *2
- (-2 (|:| -3094 (-632 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-632 *3))))
- (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-525)) (-4 *4 (-1150 *3))
- (-5 *2
- (-2 (|:| -3094 (-632 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-632 *3))))
- (-5 *1 (-710 *4 *5)) (-4 *5 (-387 *3 *4))))
+ (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-108))))
((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 *3))
- (-5 *2
- (-2 (|:| -3094 (-632 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-632 *3))))
- (-5 *1 (-918 *4 *3 *5 *6)) (-4 *6 (-667 *3 *5))))
+ (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327)) (-5 *2 (-108))
+ (-5 *1 (-335 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 *3))
- (-5 *2
- (-2 (|:| -3094 (-632 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-632 *3))))
- (-5 *1 (-1183 *4 *3 *5 *6)) (-4 *6 (-387 *3 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1073 (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1077 *4))
- (-4 *4 (-977)))))
+ (-12 (-5 *3 (-1174 *4)) (-4 *4 (-327)) (-5 *2 (-108))
+ (-5 *1 (-495 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789))
- (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789))
- (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-592 (-713)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789))
- (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 (-713))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-849 *3)) (-4 *3 (-286)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1020)) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1020)))))
+ (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1114))) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341)))
+ (-4 *3 (-1150 *4)) (-5 *2 (-108)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1059 *3 *4)) (-14 *3 (-856)) (-4 *4 (-341))
- (-5 *1 (-926 *3 *4)))))
+ (-12 (-5 *2 (-391 *3 *4 *5 *6)) (-4 *6 (-968 *4)) (-4 *3 (-286))
+ (-4 *4 (-925 *3)) (-4 *5 (-1150 *4)) (-4 *6 (-387 *4 *5))
+ (-14 *7 (-1174 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1174 *6)) (-4 *6 (-387 *4 *5)) (-4 *4 (-925 *3))
+ (-4 *5 (-1150 *4)) (-4 *3 (-286)) (-5 *1 (-392 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *1 *1) (-4 *1 (-578)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934) (-1114))))))
(((*1 *2)
(-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
(-4 *3 (-345 *4))))
((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-341) (-138) (-968 (-525)))) (-4 *5 (-1150 *4))
- (-5 *2 (-2 (|:| |ans| (-385 *5)) (|:| |nosol| (-108))))
- (-5 *1 (-947 *4 *5)) (-5 *3 (-385 *5)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))))
-(((*1 *2)
- (-12 (-4 *4 (-341)) (-5 *2 (-856)) (-5 *1 (-306 *3 *4))
- (-4 *3 (-307 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-341)) (-5 *2 (-775 (-856))) (-5 *1 (-306 *3 *4))
- (-4 *3 (-307 *4))))
- ((*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-856))))
- ((*1 *2)
- (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-856))))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-357)) (-5 *1 (-989)))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-699)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-977)) (-4 *2 (-1020)))))
-(((*1 *2 *1) (-12 (-5 *2 (-396 *3)) (-5 *1 (-849 *3)) (-4 *3 (-286)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-798))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1075))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-966))
- (-5 *1 (-693)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *4 (-517))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2569 *4)))
- (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-700)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-510)) (-5 *1 (-148 *2)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-735)) (-4 *2 (-884 *4 *5 *6)) (-5 *1 (-426 *4 *5 *6 *2))
- (-4 *4 (-429)) (-4 *6 (-789)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-694)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-242))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160))))
- ((*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))))
+ (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953)))
+ (-14 *5 (-592 (-1092)))
+ (-5 *2
+ (-592 (-2 (|:| -2729 (-1088 *4)) (|:| -2754 (-592 (-887 *4))))))
+ (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-592 (-1092)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2
+ (-592 (-2 (|:| -2729 (-1088 *5)) (|:| -2754 (-592 (-887 *5))))))
+ (-5 *1 (-1198 *5 *6 *7)) (-5 *3 (-592 (-887 *5)))
+ (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2
+ (-592 (-2 (|:| -2729 (-1088 *5)) (|:| -2754 (-592 (-887 *5))))))
+ (-5 *1 (-1198 *5 *6 *7)) (-5 *3 (-592 (-887 *5)))
+ (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2
+ (-592 (-2 (|:| -2729 (-1088 *5)) (|:| -2754 (-592 (-887 *5))))))
+ (-5 *1 (-1198 *5 *6 *7)) (-5 *3 (-592 (-887 *5)))
+ (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2
+ (-592 (-2 (|:| -2729 (-1088 *4)) (|:| -2754 (-592 (-887 *4))))))
+ (-5 *1 (-1198 *4 *5 *6)) (-5 *3 (-592 (-887 *4)))
+ (-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1092)))))
+(((*1 *1 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1128))
+ (-4 *5 (-351 *4)) (-4 *2 (-351 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *6 *7 *2)) (-4 *6 (-977))
+ (-4 *7 (-218 *5 *6)) (-4 *2 (-218 *4 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-1064 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *3 (-592 (-525)))
- (-5 *1 (-818)))))
+ (-12 (-5 *3 (-110)) (-4 *4 (-977)) (-5 *1 (-657 *4 *2))
+ (-4 *2 (-594 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-776 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1088 *7)) (-4 *7 (-884 *6 *4 *5)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-977)) (-5 *2 (-1088 *6))
+ (-5 *1 (-299 *4 *5 *6 *7)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-1018 *3))))
- ((*1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 *4))))
- (-5 *1 (-824 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020))
- (-4 *7 (-1020)) (-5 *2 (-592 *1)) (-4 *1 (-1023 *3 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-856))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))))
-(((*1 *2 *2)
+ (-12 (-5 *2 (-1081 3 *3)) (-4 *3 (-977)) (-4 *1 (-1053 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-977)))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
(-4 *2 (-13 (-408 *3) (-934)))))
((*1 *2 *2)
@@ -7731,81 +13676,55 @@
(-5 *1 (-1078 *3))))
((*1 *2 *2)
(-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3))))
- ((*1 *1 *1) (-4 *1 (-1117))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2589 (-724 *3)) (|:| |coef1| (-724 *3))))
- (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-2 (|:| -2589 *1) (|:| |coef1| *1)))
- (-4 *1 (-991 *3 *4 *5)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-878 (-205))) (-5 *2 (-1179)) (-5 *1 (-445)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1075) (-716))) (-5 *1 (-110)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138)))
- (-5 *1 (-1144 *4 *2)) (-4 *2 (-1150 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 (-592 *4))))
- (-5 *1 (-1100 *4)) (-5 *3 (-592 (-592 *4))))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-884 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
- (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1092))
- (-4 *5 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-542 *3)) (-5 *1 (-518 *5 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *5))))))
-(((*1 *1) (-5 *1 (-415))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) (-5 *3 (-525))
- (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))))
-(((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510)))))
+ (-5 *1 (-1079 *3)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-213)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4))
- (-4 *6 (-735)) (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735))
- (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-245 *2)) (-4 *2 (-789)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-205)) (-5 *3 (-713)) (-5 *1 (-206))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-157 (-205))) (-5 *3 (-713)) (-5 *1 (-206))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1056))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
+ (-4 *3 (-13 (-341) (-1114) (-934))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1092)) (-5 *1 (-542 *2)) (-4 *2 (-968 *3))
+ (-4 *2 (-341))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2))
+ (-4 *2 (-13 (-408 *4) (-934) (-1114)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1013 *2)) (-4 *2 (-13 (-408 *4) (-934) (-1114)))
+ (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-893)) (-5 *2 (-1092))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1013 *1)) (-4 *1 (-893)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-991 *4 *5 *6))
+ (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *1 (-910 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-887 *4)) (-4 *4 (-13 (-286) (-138)))
+ (-4 *2 (-884 *4 *6 *5)) (-5 *1 (-859 *4 *5 *6 *2))
+ (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1092))
+ (-4 *4 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-536 *4 *2))
+ (-4 *2 (-13 (-1114) (-893) (-1056) (-29 *4))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1073 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-286))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-364 *3)) (|:| |rm| (-364 *3))))
- (-5 *1 (-364 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2829 (-713)) (|:| -1607 (-713))))
- (-5 *1 (-713))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1607 *3)))
- (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-856))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1174 *4)) (-4 *4 (-1128)) (-4 *1 (-218 *3 *4)))))
-(((*1 *2 *2)
+ (-12 (-5 *2 (-798)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713))
+ (-14 *4 (-713)) (-4 *5 (-160)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-429))
+ (-5 *2
+ (-592
+ (-2 (|:| |eigval| (-3 (-385 (-887 *4)) (-1082 (-1092) (-887 *4))))
+ (|:| |eigmult| (-713))
+ (|:| |eigvec| (-592 (-632 (-385 (-887 *4))))))))
+ (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-887 *4)))))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
(-4 *2 (-13 (-408 *3) (-934)))))
((*1 *2 *2)
@@ -7819,43 +13738,43 @@
(-5 *1 (-1078 *3))))
((*1 *2 *2)
(-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3))))
- ((*1 *1 *1) (-4 *1 (-1117))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-517)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108))
- (-5 *2 (-966)) (-5 *1 (-696)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1092))
- (-4 *4 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-1114) (-893) (-29 *4))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-592 (-525))) (-5 *3 (-632 (-525))) (-5 *1 (-1030)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1092)) (-5 *2 (-104)) (-5 *1 (-162))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1092)) (-5 *2 (-104)) (-5 *1 (-1007)))))
-(((*1 *2)
- (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-844))
- (-5 *1 (-434 *3 *4 *2 *5)) (-4 *5 (-884 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-844))
- (-5 *1 (-841 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-844)) (-5 *1 (-842 *2 *3)) (-4 *3 (-1150 *2)))))
+ (-5 *1 (-1079 *3)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-694)))))
(((*1 *1 *1)
(-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-539)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4))))
+ (-5 *1 (-1058 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
+ (-4 *4 (-13 (-1020) (-33))))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-286))
- (-5 *2 (-713)) (-5 *1 (-432 *5 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-294 *4))
- (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 (-157 *4))))))
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-632 (-1088 *8))) (-4 *5 (-977)) (-4 *8 (-977))
+ (-4 *6 (-1150 *5)) (-5 *2 (-632 *6)) (-5 *1 (-474 *5 *6 *7 *8))
+ (-4 *7 (-1150 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735))
+ (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-994 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735))
+ (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-713)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-977)) (-5 *2 (-1174 *3)) (-5 *1 (-655 *3 *4))
+ (-4 *4 (-1150 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1095)))))
+(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))))
-(((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-128)))))
-(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
(-4 *2 (-13 (-408 *3) (-934)))))
((*1 *2 *2)
@@ -7864,59 +13783,52 @@
((*1 *2 *2)
(-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
(-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
- (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
((*1 *2 *2)
(-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
(-5 *1 (-1078 *3))))
((*1 *2 *2)
(-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3))))
- ((*1 *1 *1) (-4 *1 (-1117))))
-(((*1 *2 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-5 *2 (-592 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-986))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
- (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-986))))
- ((*1 *1 *1) (-4 *1 (-787)))
- ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)) (-4 *2 (-986))))
- ((*1 *1 *1) (-4 *1 (-986))) ((*1 *1 *1) (-4 *1 (-1056))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-357)) (-5 *1 (-989)))))
+ (-5 *1 (-1079 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1022 *3)) (-5 *1 (-840 *3)) (-4 *3 (-346))
+ (-4 *3 (-1020)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-51)) (-5 *1 (-827 *4))
+ (-4 *4 (-1020)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *6 (-517)) (-4 *2 (-884 *3 *5 *4))
+ (-5 *1 (-675 *5 *4 *6 *2)) (-5 *3 (-385 (-887 *6))) (-4 *5 (-735))
+ (-4 *4 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $))))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-4 *4 (-977))
+ (-5 *2 (-2 (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-1150 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-1177))))
+ ((*1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1177)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1124 *3)) (-4 *3 (-907)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-632 (-385 (-887 (-525)))))
- (-5 *2
- (-592
- (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525))
- (|:| |radvect| (-592 (-632 (-294 (-525))))))))
- (-5 *1 (-962)))))
+ (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4115 *4)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-327))
- (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -3724 *3))))
- (-5 *1 (-197 *4 *3)) (-4 *3 (-1150 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789))))
- ((*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-856)) (-5 *1 (-641))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-632 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-341)) (-5 *1 (-911 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-294 *4))
- (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 (-157 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
- ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160))))
+ (-12 (-5 *3 (-1174 *4)) (-4 *4 (-977)) (-4 *2 (-1150 *4))
+ (-5 *1 (-421 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-385 (-1088 (-294 *5)))) (-5 *3 (-1174 (-294 *5)))
+ (-5 *4 (-525)) (-4 *5 (-13 (-517) (-789))) (-5 *1 (-1049 *5)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1075))
+ (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1150 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1128)) (-4 *2 (-789))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1128))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))))
-(((*1 *1 *2) (-12 (-5 *2 (-366)) (-5 *1 (-581)))))
+ (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-840 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789))
+ (-4 *6 (-991 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -1340 *1) (|:| |upper| *1)))
+ (-4 *1 (-909 *4 *5 *3 *6)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
(-4 *2 (-13 (-408 *3) (-934)))))
@@ -7926,65 +13838,53 @@
((*1 *2 *2)
(-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
(-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
- (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
+ ((*1 *1 *1) (-4 *1 (-466)))
((*1 *2 *2)
(-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
(-5 *1 (-1078 *3))))
((*1 *2 *2)
(-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3))))
- ((*1 *1 *1) (-4 *1 (-1117))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-799))))
- ((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-799))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1075)) (-5 *4 (-798)) (-5 *2 (-1179)) (-5 *1 (-799))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-1073 *4))
- (-4 *4 (-1020)) (-4 *4 (-1128)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
- (-5 *2 (-2 (|:| |k| (-761 *3)) (|:| |c| *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *6 (-205))
- (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-694)))))
-(((*1 *1 *1) (-12 (-5 *1 (-561 *2)) (-4 *2 (-1020))))
- ((*1 *1 *1) (-5 *1 (-581))))
-(((*1 *1) (-5 *1 (-270))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1179)) (-5 *1 (-764)))))
+ (-5 *1 (-1079 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1150 *5))
- (-5 *1 (-670 *5 *2)) (-4 *5 (-341)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-592 (-1 *4 (-592 *4)))) (-4 *4 (-1020))
- (-5 *1 (-109 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1020))
- (-5 *1 (-109 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-1 *4 (-592 *4))))
- (-5 *1 (-109 *4)) (-4 *4 (-1020)))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341))
+ (-5 *2
+ (-2 (|:| |ir| (-542 (-385 *6))) (|:| |specpart| (-385 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
+ (|partial| -12 (-4 *3 (-1128)) (-5 *1 (-168 *3 *2))
+ (-4 *2 (-619 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
+ ((*1 *1 *1 *1) (-5 *1 (-798))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
- ((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
- (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525))))
- ((*1 *1 *1) (-4 *1 (-934)))
- ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-944))))
- ((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-944))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-856))))
- ((*1 *1 *1) (-4 *1 (-944))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-510))))
+ (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-127)) (-5 *3 (-713)) (-5 *2 (-1179)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-525)) (|has| *1 (-6 -4250)) (-4 *1 (-382))
+ (-5 *2 (-856)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1285 *4))))
+ (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-160)) (-4 *2 (-977)) (-5 *1 (-657 *2 *3))
+ (-4 *3 (-594 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-977)))))
+(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176))))
+ ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
(-4 *2 (-13 (-408 *3) (-934)))))
@@ -7994,1456 +13894,336 @@
((*1 *2 *2)
(-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
(-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
- (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
+ ((*1 *1 *1) (-4 *1 (-466)))
((*1 *2 *2)
(-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
(-5 *1 (-1078 *3))))
((*1 *2 *2)
(-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3))))
- ((*1 *1 *1) (-4 *1 (-1117))))
+ (-5 *1 (-1079 *3)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
- ((*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-856)) (-5 *4 (-357)) (-5 *2 (-1179)) (-5 *1 (-1175)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517))
- (-4 *3 (-884 *7 *5 *6))
- (-5 *2
- (-2 (|:| -4193 (-713)) (|:| -3244 *3) (|:| |radicand| (-592 *3))))
- (-5 *1 (-888 *5 *6 *7 *3 *8)) (-5 *4 (-713))
- (-4 *8
- (-13 (-341)
- (-10 -8 (-15 -3114 (*3 $)) (-15 -3123 (*3 $)) (-15 -1217 ($ *3))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762))
- (-14 *5 (-1092)) (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1057 *3 *2)) (-4 *3 (-13 (-1020) (-33)))
- (-4 *2 (-13 (-1020) (-33))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *2 (-991 *4 *5 *6)) (-5 *1 (-718 *4 *5 *6 *2 *3))
- (-4 *3 (-996 *4 *5 *6 *2)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1092)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *3 *5 *6 *7))
- (-4 *3 (-567 (-501))) (-4 *5 (-1128)) (-4 *6 (-1128))
- (-4 *7 (-1128))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *3 *5 *6))
- (-4 *3 (-567 (-501))) (-4 *5 (-1128)) (-4 *6 (-1128)))))
-(((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
-(((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-1114))))
- ((*1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-565 *3)) (-4 *3 (-789)))))
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-713)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1172 *3)) (-4 *3 (-1128)) (-4 *3 (-977))
+ (-5 *2 (-632 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-47))) (-5 *2 (-396 *3)) (-5 *1 (-38 *3))
- (-4 *3 (-1150 (-47)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1150 (-47)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735))
- (-5 *2 (-396 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-884 (-47) *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735))
- (-4 *7 (-884 (-47) *6 *5)) (-5 *2 (-396 (-1088 *7)))
- (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1088 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-155 *4 *3))
- (-4 *3 (-1150 (-157 *4)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3))
- (-4 *3 (-1150 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
- (-4 *3 (-1150 (-525)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
- (-4 *3 (-1150 (-525)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3))
- (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
- (-4 *3 (-1150 (-525)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-396 (-157 (-525)))) (-5 *1 (-423))
- (-5 *3 (-157 (-525)))))
- ((*1 *2 *3)
- (-12
- (-4 *4
- (-13 (-789)
- (-10 -8 (-15 -3210 ((-1092) $))
- (-15 -2499 ((-3 $ "failed") (-1092))))))
- (-4 *5 (-735)) (-4 *7 (-517)) (-5 *2 (-396 *3))
- (-5 *1 (-433 *4 *5 *6 *7 *3)) (-4 *6 (-517))
- (-4 *3 (-884 *7 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-286)) (-5 *2 (-396 (-1088 *4))) (-5 *1 (-435 *4))
- (-5 *3 (-1088 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341))
- (-4 *7 (-13 (-341) (-138) (-667 *5 *6))) (-5 *2 (-396 *3))
- (-5 *1 (-467 *5 *6 *7 *3)) (-4 *3 (-1150 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-396 (-1088 *7)) (-1088 *7)))
- (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735))
- (-5 *2 (-396 *3)) (-5 *1 (-505 *5 *6 *7 *3))
- (-4 *3 (-884 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-396 (-1088 *7)) (-1088 *7)))
- (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735))
- (-4 *8 (-884 *7 *6 *5)) (-5 *2 (-396 (-1088 *8)))
- (-5 *1 (-505 *5 *6 *7 *8)) (-5 *3 (-1088 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-592 *5) *6))
- (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
- (-4 *6 (-1150 *5)) (-5 *2 (-592 (-599 (-385 *6))))
- (-5 *1 (-603 *5 *6)) (-5 *3 (-599 (-385 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
- (-4 *5 (-1150 *4)) (-5 *2 (-592 (-599 (-385 *5))))
- (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-617 *4)))
- (-5 *1 (-617 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-525)) (-5 *2 (-592 *3)) (-5 *1 (-638 *3))
- (-4 *3 (-1150 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327)) (-5 *2 (-396 *3))
- (-5 *1 (-640 *4 *5 *6 *3)) (-4 *3 (-884 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327))
- (-4 *7 (-884 *6 *5 *4)) (-5 *2 (-396 (-1088 *7)))
- (-5 *1 (-640 *4 *5 *6 *7)) (-5 *3 (-1088 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-735))
- (-4 *5
- (-13 (-789)
- (-10 -8 (-15 -3210 ((-1092) $))
- (-15 -2499 ((-3 $ "failed") (-1092))))))
- (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-673 *4 *5 *6 *3))
- (-4 *3 (-884 (-887 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-735))
- (-4 *5 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $))))) (-4 *6 (-517))
- (-5 *2 (-396 *3)) (-5 *1 (-675 *4 *5 *6 *3))
- (-4 *3 (-884 (-385 (-887 *6)) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-13 (-286) (-138)))
- (-5 *2 (-396 *3)) (-5 *1 (-676 *4 *5 *6 *3))
- (-4 *3 (-884 (-385 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138)))
- (-5 *2 (-396 *3)) (-5 *1 (-684 *4 *5 *6 *3))
- (-4 *3 (-884 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138)))
- (-4 *7 (-884 *6 *5 *4)) (-5 *2 (-396 (-1088 *7)))
- (-5 *1 (-684 *4 *5 *6 *7)) (-5 *3 (-1088 *7))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-396 *3)) (-5 *1 (-939 *3))
- (-4 *3 (-1150 (-385 (-525))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-396 *3)) (-5 *1 (-971 *3))
- (-4 *3 (-1150 (-385 (-887 (-525)))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1150 (-385 (-525))))
- (-4 *5 (-13 (-341) (-138) (-667 (-385 (-525)) *4)))
- (-5 *2 (-396 *3)) (-5 *1 (-1002 *4 *5 *3)) (-4 *3 (-1150 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1150 (-385 (-887 (-525)))))
- (-4 *5 (-13 (-341) (-138) (-667 (-385 (-887 (-525))) *4)))
- (-5 *2 (-396 *3)) (-5 *1 (-1004 *4 *5 *3)) (-4 *3 (-1150 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429))
- (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-396 (-1088 (-385 *7))))
- (-5 *1 (-1087 *4 *5 *6 *7)) (-5 *3 (-1088 (-385 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1132))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-396 *3)) (-5 *1 (-1139 *3)) (-4 *3 (-1150 (-525))))))
-(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))))
-(((*1 *1 *1) (-4 *1 (-578)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934) (-1114))))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1073 (-205)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -3196
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-966)) (-5 *1 (-284)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-1055))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-798))) (-5 *2 (-1179)) (-5 *1 (-1055)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-2 (|:| -2770 (-1088 *6)) (|:| -4193 (-525)))))
- (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525))
- (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934)))
- (-5 *1 (-163 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-966)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-385 (-525))) (-5 *1 (-284)))))
+ (|partial| -12 (-5 *4 (-592 (-385 *6))) (-5 *3 (-385 *6))
+ (-4 *6 (-1150 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-529 *5 *6)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-690)))))
+(((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-5 *1 (-308)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734))))
+ ((*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-977)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-977)) (-5 *2 (-713))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *6)) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-884 *4 *5 *3)) (-4 *4 (-977)) (-4 *5 (-735))
+ (-4 *3 (-789)) (-5 *2 (-713)))))
+(((*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
- (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-977))
- (-4 *4 (-785)))))
+ (|partial| -12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-977))
+ (-4 *2 (-1134 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-968 (-525))) (-4 *3 (-13 (-789) (-517)))
- (-5 *1 (-31 *3 *2)) (-4 *2 (-408 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-1088 *4)) (-5 *1 (-153 *3 *4))
- (-4 *3 (-154 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-977)) (-4 *1 (-281))))
- ((*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1088 *3))))
- ((*1 *2) (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1150 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-993 *3 *2)) (-4 *3 (-13 (-787) (-341)))
- (-4 *2 (-1150 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-126))
- (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -3096 *4))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| -3244 *3) (|:| -2938 *4))))
- (-5 *1 (-678 *3 *4)) (-4 *3 (-977)) (-4 *4 (-669))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1152 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
- (-5 *2 (-1073 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1 *1) (-4 *1 (-578)))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934) (-1114))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (-5 *2 (-357)) (-5 *1 (-187)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
- (-5 *2 (-108)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-713)) (-5 *3 (-878 *4)) (-4 *1 (-1053 *4))
- (-4 *4 (-977))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-713)) (-5 *4 (-878 (-205))) (-5 *2 (-1179))
- (-5 *1 (-1176)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-341) (-138)))
- (-5 *2 (-592 (-2 (|:| -4193 (-713)) (|:| -1340 *4) (|:| |num| *4))))
- (-5 *1 (-377 *3 *4)) (-4 *4 (-1150 *3)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-695)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-800 *4))
- (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5)))))
-(((*1 *1)
- (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
- (-4 *4 (-160)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-565 *1)) (-4 *1 (-408 *4)) (-4 *4 (-789))
- (-4 *4 (-517)) (-5 *2 (-385 (-1088 *1)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1114)))
- (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2 (-1088 (-385 (-1088 *3)))) (-5 *1 (-521 *6 *3 *7))
- (-5 *5 (-1088 *3)) (-4 *7 (-1020))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170 *5)) (-14 *5 (-1092)) (-4 *6 (-977))
- (-5 *2 (-1147 *5 (-887 *6))) (-5 *1 (-882 *5 *6)) (-5 *3 (-887 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-1088 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-1088 *1))
- (-4 *1 (-884 *4 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-977))
- (-4 *7 (-884 *6 *5 *4)) (-5 *2 (-385 (-1088 *3)))
- (-5 *1 (-885 *5 *4 *6 *7 *3))
- (-4 *3
- (-13 (-341)
- (-10 -8 (-15 -1217 ($ *7)) (-15 -3114 (*7 $)) (-15 -3123 (*7 $)))))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1088 *3))
- (-4 *3
- (-13 (-341)
- (-10 -8 (-15 -1217 ($ *7)) (-15 -3114 (*7 $)) (-15 -3123 (*7 $)))))
- (-4 *7 (-884 *6 *5 *4)) (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-977))
- (-5 *1 (-885 *5 *4 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1092)) (-4 *5 (-517))
- (-5 *2 (-385 (-1088 (-385 (-887 *5))))) (-5 *1 (-973 *5))
- (-5 *3 (-385 (-887 *5))))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1092))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-592 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -1642 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1114) (-27) (-408 *8)))
- (-4 *8 (-13 (-429) (-789) (-138) (-968 *3) (-588 *3)))
- (-5 *3 (-525))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -3519 *4) (|:| |sol?| (-108))))
- (-5 *1 (-945 *8 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1075)) (-5 *2 (-592 (-1097))) (-5 *1 (-815)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1174 (-294 (-205)))) (-5 *2 (-1174 (-294 (-357))))
- (-5 *1 (-284)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-789)) (-5 *3 (-592 *6)) (-5 *5 (-592 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-592 *5)) (|:| |f3| *5)
- (|:| |f4| (-592 *5))))
- (-5 *1 (-1100 *6)) (-5 *4 (-592 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-429)) (-4 *4 (-789))
- (-4 *5 (-735)) (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2589 (-724 *3)) (|:| |coef2| (-724 *3))))
- (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-2 (|:| -2589 *1) (|:| |coef2| *1)))
- (-4 *1 (-991 *3 *4 *5)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1088 *1)) (-4 *1 (-944)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-798) (-798))) (-5 *1 (-110))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-798) (-592 (-798)))) (-5 *1 (-110))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-798) (-592 (-798)))) (-5 *1 (-110))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1179)) (-5 *1 (-195 *3))
- (-4 *3
- (-13 (-789)
- (-10 -8 (-15 -3406 ((-1075) $ (-1092))) (-15 -2736 (*2 $))
- (-15 -1934 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-372))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-372))))
- ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-475))))
- ((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-653))))
- ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1109))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-1109)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
- (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281)))))
-(((*1 *1 *1) (-4 *1 (-578)))
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934) (-1114))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-117 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092))))
- (-4 *6 (-735)) (-5 *2 (-385 (-887 *4))) (-5 *1 (-859 *4 *5 *6 *3))
- (-4 *3 (-884 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-632 *7)) (-4 *7 (-884 *4 *6 *5))
- (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092))))
- (-4 *6 (-735)) (-5 *2 (-632 (-385 (-887 *4))))
- (-5 *1 (-859 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *6 *5))
- (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092))))
- (-4 *6 (-735)) (-5 *2 (-592 (-385 (-887 *4))))
- (-5 *1 (-859 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-713)) (-5 *2 (-592 (-1092))) (-5 *1 (-192))
- (-5 *3 (-1092))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-205))) (-5 *4 (-713)) (-5 *2 (-592 (-1092)))
- (-5 *1 (-246))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
- (-5 *2 (-592 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 *3)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
- (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-761 *3)) (-4 *3 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-828 *3)) (-4 *3 (-789))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
- (-5 *2 (-592 *3)))))
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1) (-4 *1 (-466)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3)))))
+(((*1 *1) (-5 *1 (-765))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-242))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205) (-205))) (-5 *1 (-242))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-242)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341))
- (-4 *1 (-667 *5 *6)) (-4 *5 (-160)) (-4 *6 (-1150 *5))
- (-5 *2 (-632 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-187))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 (-357))) (-5 *2 (-357)) (-5 *1 (-187)))))
-(((*1 *1) (-5 *1 (-132))) ((*1 *1 *1) (-5 *1 (-135)))
- ((*1 *1 *1) (-4 *1 (-1061))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-138))
- (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-910 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-690)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159))))
- ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641))))
- ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))))
+ (-12 (-5 *3 (-1092)) (-5 *4 (-887 (-525))) (-5 *2 (-308))
+ (-5 *1 (-310)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-157 (-357))) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-856)) (-5 *2 (-157 (-357))) (-5 *1 (-727 *3))
- (-4 *3 (-567 (-357)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-157 *4)) (-4 *4 (-160)) (-4 *4 (-567 (-357)))
- (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-157 *5)) (-5 *4 (-856)) (-4 *5 (-160))
- (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-887 (-157 *4))) (-4 *4 (-160)) (-4 *4 (-567 (-357)))
- (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-887 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-160))
- (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 (-357)))
- (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977))
- (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357)))
- (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517))
- (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-385 (-887 (-157 *4)))) (-4 *4 (-517))
- (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-887 (-157 *5)))) (-5 *4 (-856)) (-4 *5 (-517))
- (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789))
- (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789))
- (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789))
- (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-517))
- (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357)))
- (-5 *1 (-727 *5)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1075)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
- (-4 *4 (-991 *6 *7 *8)) (-5 *2 (-1179))
- (-5 *1 (-718 *6 *7 *8 *4 *5)) (-4 *5 (-996 *6 *7 *8 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1122 *5 *6 *7 *8)) (-4 *5 (-517))
- (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1165 *4))
+ (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1073 *4) (-1073 *4)))
+ (-5 *1 (-1167 *4 *5)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1088 *7))
- (-4 *5 (-977)) (-4 *7 (-977)) (-4 *2 (-1150 *5))
- (-5 *1 (-474 *5 *2 *6 *7)) (-4 *6 (-1150 *2)))))
-(((*1 *2) (-12 (-5 *2 (-1064 (-1075))) (-5 *1 (-369)))))
+ (-12 (-5 *3 (-632 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-341))
+ (-5 *2 (-108)) (-5 *1 (-613 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4260))))
+ (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4260)))) (-5 *2 (-108))
+ (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1020)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-626 *4 *5)) (-4 *4 (-1020))))
+ (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525))))
((*1 *2 *2)
- (-12 (-4 *3 (-789)) (-5 *1 (-864 *3 *2)) (-4 *2 (-408 *3))))
+ (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
+ (-5 *1 (-1043 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-565 *5)) (-4 *5 (-408 *4)) (-4 *4 (-968 (-525)))
+ (-4 *4 (-13 (-789) (-517))) (-5 *2 (-1088 *5)) (-5 *1 (-31 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1092)) (-5 *2 (-294 (-525))) (-5 *1 (-865))))
- ((*1 *2 *1) (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-789)) (-4 *2 (-977))))
- ((*1 *2 *1) (-12 (-4 *2 (-977)) (-5 *1 (-1195 *2 *3)) (-4 *3 (-785)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-632 *4)) (-4 *4 (-977)) (-5 *1 (-1059 *3 *4))
- (-14 *3 (-713)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-887 (-157 (-525))))) (-5 *2 (-592 (-157 *4)))
- (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 (-385 (-887 (-157 (-525))))))
- (-5 *4 (-592 (-1092))) (-5 *2 (-592 (-592 (-157 *5))))
- (-5 *1 (-356 *5)) (-4 *5 (-13 (-341) (-787))))))
-(((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))))
+ (-12 (-5 *3 (-565 *1)) (-4 *1 (-977)) (-4 *1 (-281))
+ (-5 *2 (-1088 *1)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-713)) (-4 *5 (-517))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-903 *5 *3)) (-4 *3 (-1150 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205)))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP))))
- (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4))
- (-4 *4 (-327)))))
-(((*1 *1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4259)) (-4 *1 (-351 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *1) (-5 *1 (-205))) ((*1 *1 *1) (-5 *1 (-357)))
- ((*1 *1) (-5 *1 (-357))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-1075)) (-5 *5 (-632 (-205)))
- (-5 *2 (-966)) (-5 *1 (-690)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-625 *2)) (-4 *2 (-1020))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-592 *5) (-592 *5))) (-5 *4 (-525))
- (-5 *2 (-592 *5)) (-5 *1 (-625 *5)) (-4 *5 (-1020)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-341))
+ (-5 *2 (-2 (|:| -2392 (-396 *3)) (|:| |special| (-396 *3))))
+ (-5 *1 (-670 *5 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
- (-5 *1 (-921 *3 *4 *5 *6 *7))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
((*1 *2 *2)
- (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
- (-5 *1 (-1027 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4258)) (-4 *1 (-464 *3)) (-4 *3 (-1128))
- (-5 *2 (-592 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *3 *3 *1)
- (|partial| -12 (-5 *3 (-1092)) (-5 *2 (-1024)) (-5 *1 (-270)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-286)) (-5 *1 (-432 *3 *2)) (-4 *2 (-1150 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-286)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1150 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-286)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-713)))
- (-5 *1 (-504 *3 *2 *4 *5)) (-4 *2 (-1150 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-162))) (-5 *1 (-1007)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-132))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-135)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 *3)) (-4 *3 (-1029 *5 *6 *7 *8))
- (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-108))
- (-5 *1 (-547 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-357))) (-5 *1 (-970)) (-5 *3 (-357)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-765)) (-5 *1 (-764)))))
-(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)) (-4 *2 (-341))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2))
- (-4 *2 (-602 *4)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114))))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-592 *3)) (-5 *5 (-856)) (-4 *3 (-1150 *4))
- (-4 *4 (-286)) (-5 *1 (-437 *4 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-157 (-205))))
- (-5 *2 (-966)) (-5 *1 (-698)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-856)) (-5 *1 (-143 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-341)) (-14 *5 (-926 *3 *4)))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429)))
- (-5 *2 (-782 *4)) (-5 *1 (-291 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1114) (-408 *3))) (-14 *5 (-1092))
- (-14 *6 *4)))
- ((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429)))
- (-5 *2 (-782 *4)) (-5 *1 (-1160 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1114) (-408 *3))) (-14 *5 (-1092))
- (-14 *6 *4))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-132))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-135)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-468)))))
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
+ (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
+ ((*1 *1 *1) (-4 *1 (-466)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-698)))))
+(((*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-977))))
+ ((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-977)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1088 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
-(((*1 *1 *1 *1) (-5 *1 (-798))))
-(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-92)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2))
- (-4 *2 (-630 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1075)))))
-(((*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3))
- (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-884 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286))
- (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-396 (-1088 *7)))
- (-5 *1 (-685 *4 *5 *6 *7)) (-5 *3 (-1088 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-429)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-396 *1)) (-4 *1 (-884 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-429)) (-5 *2 (-396 *3))
- (-5 *1 (-912 *4 *5 *6 *3)) (-4 *3 (-884 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429))
- (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-396 (-1088 (-385 *7))))
- (-5 *1 (-1087 *4 *5 *6 *7)) (-5 *3 (-1088 (-385 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1132))))
+ (-12 (-5 *2 (-713)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *2 *3) (-12 (-5 *3 (-157 (-525))) (-5 *2 (-108)) (-5 *1 (-423))))
((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-1153 *4 *3))
- (-4 *3 (-13 (-1150 *4) (-517) (-10 -8 (-15 -2589 ($ $ $)))))))
+ (-12
+ (-5 *3
+ (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4)
+ (-227 *4 (-385 (-525)))))
+ (-14 *4 (-592 (-1092))) (-14 *5 (-713)) (-5 *2 (-108))
+ (-5 *1 (-478 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-895 *3)) (-4 *3 (-510))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1132)) (-5 *2 (-108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
((*1 *2 *3)
- (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953)))
- (-14 *5 (-592 (-1092)))
- (-5 *2
- (-592 (-1063 *4 (-497 (-800 *6)) (-800 *6) (-722 *4 (-800 *6)))))
- (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-592 (-1092))))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
-(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1130)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -2563 *8)))
- (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-996 *4 *5 *6 *7)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-921 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -2563 *8)))
- (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-996 *4 *5 *6 *7)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-1027 *4 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-565 *5))) (-4 *4 (-789)) (-5 *2 (-565 *5))
- (-5 *1 (-534 *4 *5)) (-4 *5 (-408 *4)))))
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-1150 *4)) (-5 *1 (-504 *4 *2 *5 *6))
- (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 *1)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-977)) (-5 *1 (-632 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *4)) (-4 *4 (-977)) (-4 *1 (-1042 *3 *4 *5 *6))
- (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1092)) (-5 *2 (-108))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-108)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-824 *4 *3))
- (-4 *3 (-1020)))))
-(((*1 *1) (-5 *1 (-135))))
-(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108))))
+ (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-341))
+ (-5 *1 (-492 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-108))
- (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4))))
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2))
+ (|has| *2 (-6 (-4261 "*"))) (-4 *2 (-977))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160))
+ (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
- (-4 *4 (-13 (-1020) (-33))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3))
- (-4 *3 (-996 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 *3)) (-4 *3 (-996 *5 *6 *7 *8)) (-4 *5 (-429))
- (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-108))
- (-5 *1 (-921 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 *3)) (-4 *3 (-996 *5 *6 *7 *8)) (-4 *5 (-429))
- (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-108))
- (-5 *1 (-1027 *5 *6 *7 *8 *3)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-510))))
-(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-92)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1075)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-242))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-763)))))
-(((*1 *1) (-5 *1 (-989))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-620 (-205)))
- (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-693)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)))))
-(((*1 *1 *1 *1) (-5 *1 (-798))) ((*1 *1 *1) (-5 *1 (-798)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1088 (-525))) (-5 *3 (-525)) (-4 *1 (-804 *4)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-542 *3) *3 (-1092)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1092)))
- (-4 *3 (-263)) (-4 *3 (-578)) (-4 *3 (-968 *4)) (-4 *3 (-408 *7))
- (-5 *4 (-1092)) (-4 *7 (-567 (-827 (-525)))) (-4 *7 (-429))
- (-4 *7 (-821 (-525))) (-4 *7 (-789)) (-5 *2 (-542 *3))
- (-5 *1 (-534 *7 *3)))))
+ (-12 (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
+ (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4261 "*"))) (-4 *2 (-977)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-341))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-525))
- (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))))
-(((*1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525))))
- ((*1 *1 *1) (-5 *1 (-1039))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3))
- (-4 *3 (-1150 *2)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205))
- (-5 *2 (-966)) (-5 *1 (-695)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1092))
- (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525))))
- (-5 *2 (-2 (|:| -3624 *3) (|:| |nconst| *3))) (-5 *1 (-528 *5 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *5))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-353 *4 *2))
- (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4259)))))))
-(((*1 *2)
- (-12 (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4)))
- (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $)))))
+ (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $)))))
(-4 *4 (-1150 *3))
(-5 *2
- (-2 (|:| -3094 (-632 *3)) (|:| |basisDen| *3)
+ (-2 (|:| -2103 (-632 *3)) (|:| |basisDen| *3)
(|:| |basisInv| (-632 *3))))
(-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1150 (-525)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-525)) (-4 *4 (-1150 *3))
(-5 *2
- (-2 (|:| -3094 (-632 (-525))) (|:| |basisDen| (-525))
- (|:| |basisInv| (-632 (-525)))))
- (-5 *1 (-710 *3 *4)) (-4 *4 (-387 (-525) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-327)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 *4))
+ (-2 (|:| -2103 (-632 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-632 *3))))
+ (-5 *1 (-710 *4 *5)) (-4 *5 (-387 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-327)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 *3))
(-5 *2
- (-2 (|:| -3094 (-632 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-632 *4))))
- (-5 *1 (-918 *3 *4 *5 *6)) (-4 *6 (-667 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-327)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 *4))
+ (-2 (|:| -2103 (-632 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-632 *3))))
+ (-5 *1 (-918 *4 *3 *5 *6)) (-4 *6 (-667 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-327)) (-4 *3 (-1150 *4)) (-4 *5 (-1150 *3))
(-5 *2
- (-2 (|:| -3094 (-632 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-632 *4))))
- (-5 *1 (-1183 *3 *4 *5 *6)) (-4 *6 (-387 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
- ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
+ (-2 (|:| -2103 (-632 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-632 *3))))
+ (-5 *1 (-1183 *4 *3 *5 *6)) (-4 *6 (-387 *3 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128)) (-4 *2 (-1020))))
+ ((*1 *1 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *1 *1) (-4 *1 (-1056))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1128)) (-4 *2 (-789))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-261 *3)) (-4 *3 (-1128))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-789)))))
-(((*1 *1)
- (-12 (-4 *1 (-382)) (-1850 (|has| *1 (-6 -4249)))
- (-1850 (|has| *1 (-6 -4241)))))
- ((*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1020)) (-4 *2 (-789))))
- ((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-789))))
- ((*1 *1 *1 *1) (-4 *1 (-789))) ((*1 *1) (-5 *1 (-1039))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525))))
- ((*1 *1 *1 *1) (-5 *1 (-1039))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1165 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3))
- (-4 *3 (-1150 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
- (-4 *3 (-1150 (-525)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
- (-4 *3 (-1150 (-525)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3))
- (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
- (-4 *3 (-1150 (-525)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-396 *3)) (-5 *1 (-939 *3))
- (-4 *3 (-1150 (-385 (-525))))))
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
+ (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
+ ((*1 *1 *1) (-4 *1 (-466)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-4 *3 (-1020))
+ (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-694)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))
+ (-5 *2 (-966)) (-5 *1 (-691)))))
+(((*1 *2 *3 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-735)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789))
+ (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-699)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-713)) (-5 *1 (-522)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-108)) (-5 *5 (-1022 (-713))) (-5 *6 (-713))
+ (-5 *2
+ (-2 (|:| |contp| (-525))
+ (|:| -2868 (-592 (-2 (|:| |irr| *3) (|:| -3750 (-525)))))))
+ (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-525)) (-5 *1 (-221))))
((*1 *2 *3)
- (-12 (-5 *2 (-396 *3)) (-5 *1 (-1139 *3)) (-4 *3 (-1150 (-525))))))
-(((*1 *1) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1020))))
- ((*1 *1 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1020)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1128))
- (-4 *5 (-351 *4)) (-4 *2 (-351 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *6 *2 *7)) (-4 *6 (-977))
- (-4 *7 (-218 *4 *6)) (-4 *2 (-218 *5 *6)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-592 *11)) (-5 *5 (-592 (-1088 *9)))
- (-5 *6 (-592 *9)) (-5 *7 (-592 *12)) (-5 *8 (-592 (-713)))
- (-4 *11 (-789)) (-4 *9 (-286)) (-4 *12 (-884 *9 *10 *11))
- (-4 *10 (-735)) (-5 *2 (-592 (-1088 *12)))
- (-5 *1 (-650 *10 *11 *9 *12)) (-5 *3 (-1088 *12)))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3)) (-4 *3 (-1020))
- (-4 *3 (-1128)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1128))
- (-5 *2 (-592 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525))))
- ((*1 *1 *1 *1) (-5 *1 (-1039))))
-(((*1 *2 *3) (-12 (-5 *3 (-887 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-975)))))
-(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-702)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3))
- (-4 *3 (-901)))))
-(((*1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-346)) (-4 *2 (-1020)))))
-(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177))))
- ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-713))) (-5 *3 (-108)) (-5 *1 (-1081 *4 *5))
- (-14 *4 (-856)) (-4 *5 (-977)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1020)) (-5 *2 (-1075)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))))
+ (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-525)) (-5 *1 (-221)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 *4)) (-4 *4 (-977)) (-5 *2 (-1174 *4))
- (-5 *1 (-1093 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-856)) (-5 *2 (-1174 *3)) (-5 *1 (-1093 *3))
- (-4 *3 (-977)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-592 (-632 *4))) (-5 *2 (-632 *4)) (-4 *4 (-977))
- (-5 *1 (-960 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))))
+ (-12 (-5 *3 (-1073 (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1077 *4))
+ (-4 *4 (-977)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
(-5 *2
- (-2 (|:| -3284 *4) (|:| -1213 *4) (|:| |totalpts| (-525))
+ (-2 (|:| -2219 *4) (|:| -2188 *4) (|:| |totalpts| (-525))
(|:| |success| (-108))))
(-5 *1 (-731)) (-5 *5 (-525)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2 (-108)) (-5 *1 (-279)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
-(((*1 *1) (-5 *1 (-108))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-713)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-1172 *3)) (-4 *3 (-23)) (-4 *3 (-1128)))))
-(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *2 (-966)) (-5 *1 (-697)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-51)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357)))
- (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091))))
- (-5 *1 (-1091)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4259)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-632 *3))
- (-4 *3 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $)))))
- (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-592 (-565 *4))) (-4 *4 (-408 *3)) (-4 *3 (-789))
- (-5 *1 (-534 *3 *4))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-824 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179))
- (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179))
- (-5 *1 (-1028 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1092))
- (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *4 *5))
- (-4 *5 (-13 (-27) (-1114) (-408 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *4 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-385 (-525)))
- (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *5 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5)))
- (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525)))
- (-4 *3 (-13 (-27) (-1114) (-408 *6)))
- (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6))
- (-4 *6 (-13 (-27) (-1114) (-408 *5)))
- (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *6)))
- (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1141 (-525)))
- (-4 *7 (-13 (-27) (-1114) (-408 *6)))
- (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-525)))
- (-4 *3 (-13 (-27) (-1114) (-408 *7)))
- (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8))
- (-5 *5 (-1141 (-385 (-525)))) (-5 *6 (-385 (-525)))
- (-4 *8 (-13 (-27) (-1114) (-408 *7)))
- (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-385 (-525))))
- (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1114) (-408 *8)))
- (-4 *8 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *8 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *3))))
- (-4 *3 (-977)) (-5 *1 (-550 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-551 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *3))))
- (-4 *3 (-977)) (-4 *1 (-1134 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-713))
- (-5 *3 (-1073 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4))))
- (-4 *4 (-977)) (-4 *1 (-1155 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-4 *1 (-1165 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1073 (-2 (|:| |k| (-713)) (|:| |c| *3))))
- (-4 *3 (-977)) (-4 *1 (-1165 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-704))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-695)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-525)) (-5 *5 (-108)) (-5 *6 (-632 (-205)))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))
- (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-696)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-308)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-108))
- (-5 *1 (-617 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020))
- (-4 *4 (-1020)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429))))
- ((*1 *1 *1 *1) (-4 *1 (-429)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1150 (-525)))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1150 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-713)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286))
- (-5 *1 (-851 *3 *4 *5 *2)) (-4 *2 (-884 *5 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *6 *4 *5))
- (-5 *1 (-851 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789))
- (-4 *6 (-286))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1088 *6)) (-4 *6 (-884 *5 *3 *4)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-851 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-1088 *7))) (-4 *4 (-735)) (-4 *5 (-789))
- (-4 *6 (-286)) (-5 *2 (-1088 *7)) (-5 *1 (-851 *4 *5 *6 *7))
- (-4 *7 (-884 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-856)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-429)) (-4 *3 (-517)) (-5 *1 (-903 *3 *2))
- (-4 *2 (-1150 *3))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-429)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1174 *5)) (-5 *3 (-713)) (-5 *4 (-1039)) (-4 *5 (-327))
- (-5 *1 (-495 *5)))))
-(((*1 *1 *1) (-5 *1 (-501))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1075)) (-5 *1 (-284)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -2841 *1) (|:| -4245 *1) (|:| |associate| *1)))
- (-4 *1 (-517)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789))
- (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789))
- (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-856))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-314 *4 *5 *6 *7)) (-4 *4 (-13 (-346) (-341)))
- (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5))) (-4 *7 (-320 *4 *5 *6))
- (-5 *2 (-713)) (-5 *1 (-370 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-775 (-856)))))
- ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-977))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-977))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4))
- (-4 *4 (-1150 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-683 *4 *3)) (-4 *4 (-977))
- (-4 *3 (-789))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-683 *4 *3)) (-4 *4 (-977)) (-4 *3 (-789))
- (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-840 *3)) (-4 *3 (-1020))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4))
- (-4 *6 (-1150 *5)) (-4 *7 (-1150 (-385 *6)))
- (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-968 (-525))))
- (-5 *2 (-713)) (-5 *1 (-846 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6))
- (-4 *4 (-1150 (-385 (-525)))) (-4 *5 (-1150 (-385 *4)))
- (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-713))
- (-5 *1 (-847 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-314 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-341))
- (-4 *7 (-1150 *6)) (-4 *4 (-1150 (-385 *7))) (-4 *8 (-320 *6 *7 *4))
- (-4 *9 (-13 (-346) (-341))) (-5 *2 (-713))
- (-5 *1 (-950 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1150 *3)) (-4 *3 (-977)) (-4 *3 (-517)) (-5 *2 (-713))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734))))
- ((*1 *2 *1) (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))))
-(((*1 *1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1196 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-160))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1020))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-761 *3)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-977))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1020)) (-5 *1 (-898 *3 *2)) (-4 *3 (-1020)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))
- (-5 *2 (-1088 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))
- (-5 *2 (-1088 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-385 (-525))) (-4 *4 (-968 (-525)))
- (-4 *4 (-13 (-789) (-517))) (-5 *1 (-31 *4 *2)) (-4 *2 (-408 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-128)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-205)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 *3))
- (-4 *5 (-1165 *4)) (-5 *1 (-257 *4 *5 *2)) (-4 *2 (-1136 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 *3))
- (-4 *5 (-1134 *4)) (-5 *1 (-258 *4 *5 *2 *6)) (-4 *2 (-1157 *4 *5))
- (-4 *6 (-916 *5))))
- ((*1 *1 *1 *1) (-4 *1 (-263)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1020))))
- ((*1 *1 *1 *1) (-5 *1 (-357)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-364 *2)) (-4 *2 (-1020))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-1032))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1174 *4)) (-5 *3 (-525)) (-4 *4 (-327))
- (-5 *1 (-495 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-501))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-501))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *4 (-1020))
- (-5 *1 (-625 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-341))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-977))
- (-5 *1 (-633 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (-4 *3 (-977)) (-5 *1 (-657 *3 *4))
- (-4 *4 (-594 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-4 *4 (-977))
- (-5 *1 (-657 *4 *5)) (-4 *5 (-594 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-856))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-761 *2)) (-4 *2 (-789))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-776 *3)) (-4 *3 (-977))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-5 *1 (-776 *4)) (-4 *4 (-977))))
- ((*1 *1 *1 *1) (-5 *1 (-798)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-827 *3)) (-4 *3 (-1020))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-934)) (-5 *2 (-385 (-525)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-856))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-1042 *3 *4 *5 *6)) (-4 *4 (-977))
- (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)) (-4 *4 (-341))))
- ((*1 *2 *2 *2)
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
+ (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
+ ((*1 *1 *1) (-4 *1 (-466)))
+ ((*1 *2 *2)
(-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
(-5 *1 (-1078 *3))))
- ((*1 *2 *2 *2)
+ ((*1 *2 *2)
(-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1165 *4)) (-5 *1 (-1167 *4 *2))
- (-4 *4 (-37 (-385 (-525)))))))
-(((*1 *1) (-4 *1 (-327)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4))
- (-4 *4 (-13 (-517) (-789) (-138)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-592 (-1088 *5)))
- (|:| |prim| (-1088 *5))))
- (-5 *1 (-410 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-517) (-789) (-138)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1088 *3))
- (|:| |pol2| (-1088 *3)) (|:| |prim| (-1088 *3))))
- (-5 *1 (-410 *4 *3)) (-4 *3 (-27)) (-4 *3 (-408 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-887 *5)) (-5 *4 (-1092)) (-4 *5 (-13 (-341) (-138)))
- (-5 *2
- (-2 (|:| |coef1| (-525)) (|:| |coef2| (-525))
- (|:| |prim| (-1088 *5))))
- (-5 *1 (-894 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-592 (-1092)))
- (-4 *5 (-13 (-341) (-138)))
- (-5 *2
- (-2 (|:| -3244 (-592 (-525))) (|:| |poly| (-592 (-1088 *5)))
- (|:| |prim| (-1088 *5))))
- (-5 *1 (-894 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 (-887 *6))) (-5 *4 (-592 (-1092))) (-5 *5 (-1092))
- (-4 *6 (-13 (-341) (-138)))
- (-5 *2
- (-2 (|:| -3244 (-592 (-525))) (|:| |poly| (-592 (-1088 *6)))
- (|:| |prim| (-1088 *6))))
- (-5 *1 (-894 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1088 *7)) (-5 *3 (-525)) (-4 *7 (-884 *6 *4 *5))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977))
- (-5 *1 (-299 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1092)) (-5 *5 (-1015 (-205))) (-5 *2 (-862))
- (-5 *1 (-860 *3)) (-4 *3 (-567 (-501)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1092)) (-5 *2 (-862)) (-5 *1 (-860 *3))
- (-4 *3 (-567 (-501)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-862))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
- (-5 *1 (-862)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-592 (-159)))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-517)) (-4 *2 (-429)) (-5 *1 (-903 *2 *3))
- (-4 *3 (-1150 *2)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-878 (-205))) (-5 *4 (-809)) (-5 *2 (-1179))
- (-5 *1 (-445))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-977)) (-4 *1 (-913 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-878 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-977)) (-4 *1 (-1053 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1053 *3)) (-4 *3 (-977))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *1 (-1053 *3)) (-4 *3 (-977))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-878 *3)) (-4 *1 (-1053 *3)) (-4 *3 (-977))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1125)) (-5 *3 (-205)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-812 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-814 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-817 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-232 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-789))
- (-4 *5 (-735)) (-4 *2 (-245 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))))
-(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-520)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
- (-4 *3 (-13 (-341) (-1114) (-934))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-713)))))
-(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-146))))
- ((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-789))) (-5 *2 (-157 *5))
- (-5 *1 (-554 *4 *5 *3)) (-4 *5 (-13 (-408 *4) (-934) (-1114)))
- (-4 *3 (-13 (-408 (-157 *4)) (-934) (-1114))))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429))))
- ((*1 *1 *1 *1) (-4 *1 (-429))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-592 (-592 (-205)))) (-5 *4 (-205))
- (-5 *2 (-592 (-878 *4))) (-5 *1 (-1125)) (-5 *3 (-878 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1150 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-205) (-205) (-205)))
- (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined"))
- (-5 *5 (-1015 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1052 (-205)))
- (-5 *1 (-639))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-205)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-639))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1052 (-205))) (-5 *3 (-1 (-878 (-205)) (-205) (-205)))
- (-5 *4 (-1015 (-205))) (-5 *5 (-592 (-242))) (-5 *1 (-639)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095))))
- ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1096)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1092))
- (-4 *4 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-404 *4 *2)) (-4 *2 (-13 (-1114) (-29 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092)) (-4 *5 (-138))
- (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))
- (-5 *2 (-294 *5)) (-5 *1 (-545 *5)))))
+ (-5 *1 (-1079 *3)))))
(((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
(((*1 *2)
(-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
(-4 *5 (-1150 (-385 *4))) (-5 *2 (-632 (-385 *4))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1092)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-991 *4 *5 *6))
- (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *1 (-910 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1975 *4)))
- (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-127)) (-5 *3 (-713)) (-5 *2 (-1179)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-5 *1 (-308)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-565 *5)) (-4 *5 (-408 *4)) (-4 *4 (-968 (-525)))
- (-4 *4 (-13 (-789) (-517))) (-5 *2 (-1088 *5)) (-5 *1 (-31 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-565 *1)) (-4 *1 (-977)) (-4 *1 (-281))
- (-5 *2 (-1088 *1)))))
-(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-713)) (-5 *1 (-522)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-5 *2 (-1 (-108) *5))
- (-5 *1 (-825 *4 *5)) (-4 *5 (-1128)))))
+ (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1150 *4))
+ (-5 *2 (-2 (|:| |radicand| (-385 *5)) (|:| |deg| (-713))))
+ (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1150 (-385 *5))))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-385 (-525))))) (-5 *1 (-242))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-242)))))
(((*1 *1 *1)
(-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
(-4 *4 (-789)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-37 (-385 (-525))))
+ (-4 *2 (-160)))))
+(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1128))
+ (-4 *5 (-351 *4)) (-4 *3 (-351 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1088 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8)))
+ (-4 *7 (-789)) (-4 *8 (-286)) (-4 *9 (-884 *8 *6 *7)) (-4 *6 (-735))
+ (-5 *2
+ (-2 (|:| |upol| (-1088 *8)) (|:| |Lval| (-592 *8))
+ (|:| |Lfact|
+ (-592 (-2 (|:| -4201 (-1088 *8)) (|:| -2168 (-525)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-685 *6 *7 *8 *9)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789))
+ (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 *4)))))
+(((*1 *1 *1) (-4 *1 (-91)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2)))))
+(((*1 *1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -3626 (-592 (-798))) (|:| -1525 (-592 (-798)))
+ (|:| |presup| (-592 (-798))) (|:| -3563 (-592 (-798)))
+ (|:| |args| (-592 (-798)))))
+ (-5 *1 (-1092))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 (-798)))) (-5 *1 (-1092)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
(((*1 *2 *3)
(-12
(-5 *3
(-592
- (-2 (|:| -3622 (-713))
+ (-2 (|:| -3085 (-713))
(|:| |eqns|
(-592
(-2 (|:| |det| *7) (|:| |rows| (-592 (-525)))
@@ -9452,1019 +14232,56 @@
(-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138)))
(-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-713))
(-5 *1 (-859 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-592 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *6)))
- (-4 *6 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-518 *6 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4259)) (-4 *1 (-224 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1128))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-597 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1092)) (-4 *5 (-341)) (-5 *2 (-1073 (-1073 (-887 *5))))
- (-5 *1 (-1182 *5)) (-5 *4 (-1073 (-887 *5))))))
-(((*1 *2) (-12 (-5 *2 (-592 *3)) (-5 *1 (-1006 *3)) (-4 *3 (-127)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-920 (-385 (-525)) (-800 *3) (-220 *4 (-713))
- (-227 *3 (-385 (-525)))))
- (-14 *3 (-592 (-1092))) (-14 *4 (-713)) (-5 *1 (-919 *3 *4)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1020))
- (-4 *4 (-126))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-339 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-364 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-595 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-2 (|:| -3284 *4) (|:| -3398 (-525)))))
- (-4 *4 (-1020)) (-5 *2 (-1 *4)) (-5 *1 (-949 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-385 *5))
- (|:| |c2| (-385 *5)) (|:| |deg| (-713))))
- (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1150 (-385 *5))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-991 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-259)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-977)) (-5 *1 (-1146 *3 *2)) (-4 *2 (-1150 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-716)) (-5 *1 (-51)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-108))
- (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2563 *4))))
- (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
- ((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-341)) (-4 *7 (-1150 *5)) (-4 *4 (-667 *5 *7))
- (-5 *2 (-2 (|:| -3407 (-632 *6)) (|:| |vec| (-1174 *5))))
- (-5 *1 (-753 *5 *6 *7 *4 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-681)))))
-(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176))))
- ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-1088 *3))
- (-4 *3 (-13 (-408 *6) (-27) (-1114)))
- (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2 (-2 (|:| -1642 *3) (|:| |coeff| *3)))
- (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1088 *3)))
- (-4 *3 (-13 (-408 *6) (-27) (-1114)))
- (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2 (-2 (|:| -1642 *3) (|:| |coeff| *3)))
- (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020)))))
-(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-270)))
- ((*1 *1) (-5 *1 (-798)))
- ((*1 *1)
- (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735))
- (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-884 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1007)))
- ((*1 *1)
- (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
- (-4 *3 (-13 (-1020) (-33)))))
- ((*1 *1) (-5 *1 (-1095))) ((*1 *1) (-5 *1 (-1096))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-798)))))
-(((*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1088 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-159))))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-385 (-1088 (-294 *3)))) (-4 *3 (-13 (-517) (-789)))
- (-5 *1 (-1049 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1111 *3)) (-4 *3 (-977)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1075)) (-5 *4 (-1039)) (-5 *2 (-108)) (-5 *1 (-763)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-977)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1150 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1150 *4))
- (-4 *5 (-1150 (-385 *3))) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4))
- (-4 *4 (-327))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4))
- (-4 *4 (-327))))
- ((*1 *1) (-4 *1 (-346)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-856)) (-5 *2 (-1174 *4)) (-5 *1 (-495 *4))
- (-4 *4 (-327))))
- ((*1 *1 *1) (-4 *1 (-510))) ((*1 *1) (-4 *1 (-510)))
- ((*1 *1 *1) (-5 *1 (-525))) ((*1 *1 *1) (-5 *1 (-713)))
- ((*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-5 *2 (-840 *4)) (-5 *1 (-839 *4))
- (-4 *4 (-1020))))
- ((*1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-510)) (-4 *2 (-517)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763)))))
-(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-800 *3)) (-14 *3 (-592 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-900 *3)) (-4 *3 (-901))))
- ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-922))))
- ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1013 *3)) (-4 *3 (-1128))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1152 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
- (-5 *2 (-1092))))
- ((*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1170 *3)) (-14 *3 *2))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-592 (-525)))
- (|:| |cols| (-592 (-525)))))
- (-5 *4 (-632 *12)) (-5 *5 (-592 (-385 (-887 *9))))
- (-5 *6 (-592 (-592 *12))) (-5 *7 (-713)) (-5 *8 (-525))
- (-4 *9 (-13 (-286) (-138))) (-4 *12 (-884 *9 *11 *10))
- (-4 *10 (-13 (-789) (-567 (-1092)))) (-4 *11 (-735))
- (-5 *2
- (-2 (|:| |eqzro| (-592 *12)) (|:| |neqzro| (-592 *12))
- (|:| |wcond| (-592 (-887 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1174 (-385 (-887 *9))))
- (|:| -3094 (-592 (-1174 (-385 (-887 *9)))))))))
- (-5 *1 (-859 *9 *10 *11 *12)))))
-(((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-5 *2 (-632 (-385 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1132))
- (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5)))
- (-5 *2 (-2 (|:| |num| (-632 *5)) (|:| |den| *5))))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525))))
- (-5 *4 (-294 (-157 (-357)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525))))
- (-5 *4 (-294 (-357))) (-5 *1 (-308))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525))))
- (-5 *4 (-294 (-525))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-157 (-357)))))
- (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-357)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-525)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-157 (-357)))))
- (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-357)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-525)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-157 (-357)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-357))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-525))) (-5 *1 (-308))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525))))
- (-5 *4 (-294 (-636))) (-5 *1 (-308))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525))))
- (-5 *4 (-294 (-641))) (-5 *1 (-308))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525))))
- (-5 *4 (-294 (-643))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-636)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-641)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-643)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-636)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-641)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-643)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-636))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-641))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-643))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-636))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-641))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-643))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-636))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-641))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-643))) (-5 *1 (-308))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1075)) (-5 *1 (-308))))
- ((*1 *1 *1 *1) (-5 *1 (-798))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -2563 *9))))
- (-5 *4 (-713)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8))
- (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1179))
- (-5 *1 (-994 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -2563 *9))))
- (-5 *4 (-713)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8))
- (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1179))
- (-5 *1 (-1062 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3))
- (-4 *3 (-996 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-592 (-1088 *13))) (-5 *3 (-1088 *13))
- (-5 *4 (-592 *12)) (-5 *5 (-592 *10)) (-5 *6 (-592 *13))
- (-5 *7 (-592 (-592 (-2 (|:| -2087 (-713)) (|:| |pcoef| *13)))))
- (-5 *8 (-592 (-713))) (-5 *9 (-1174 (-592 (-1088 *10))))
- (-4 *12 (-789)) (-4 *10 (-286)) (-4 *13 (-884 *10 *11 *12))
- (-4 *11 (-735)) (-5 *1 (-650 *11 *12 *10 *13)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))))
-(((*1 *1) (-5 *1 (-108))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-510))))
- ((*1 *1 *1) (-4 *1 (-986))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-1185 *4 *5 *6 *7)))
- (-5 *1 (-1185 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 *9)) (-5 *4 (-1 (-108) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-991 *6 *7 *8)) (-4 *6 (-517))
- (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-592 (-1185 *6 *7 *8 *9)))
- (-5 *1 (-1185 *6 *7 *8 *9)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *6))
- (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-632 (-385 (-887 (-525)))))
- (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-962)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
- (-5 *2 (-108)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-259))))
+(((*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1039)) (-5 *2 (-1179)) (-5 *1 (-773)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789))
+ (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-592 (-713)))))
((*1 *2 *1)
- (-12 (-5 *2 (-3 (-525) (-205) (-1092) (-1075) (-1097)))
- (-5 *1 (-1097)))))
-(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-414)))))
-(((*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499))))
- ((*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1020)))))
-(((*1 *1 *1 *1) (-4 *1 (-510))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-565 *3)) (-4 *3 (-789)))))
-(((*1 *2) (-12 (-5 *2 (-1052 (-205))) (-5 *1 (-1112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-632 *6)) (-5 *5 (-1 (-396 (-1088 *6)) (-1088 *6)))
- (-4 *6 (-341))
- (-5 *2
- (-592
- (-2 (|:| |outval| *7) (|:| |outmult| (-525))
- (|:| |outvect| (-592 (-632 *7))))))
- (-5 *1 (-498 *6 *7 *4)) (-4 *7 (-341)) (-4 *4 (-13 (-341) (-787))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-977))
- (-5 *2 (-457 *4 *5)) (-5 *1 (-879 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-351 *3)) (-4 *3 (-1128)) (-4 *3 (-789)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-351 *4)) (-4 *4 (-1128))
- (-5 *2 (-108)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499))))
- ((*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1020)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-702)))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1023 *3 *4 *5 *6 *2)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-880 *4 *3))
- (-4 *3 (-1150 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-592 *4)) (-4 *4 (-1020)) (-4 *4 (-1128)) (-5 *2 (-108))
- (-5 *1 (-1073 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-862)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-1092)) (-5 *1 (-501))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1092)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501)))))
- ((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1092)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501)))))
- ((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1092)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-592 (-1092))) (-5 *2 (-1092)) (-5 *1 (-647 *3))
- (-4 *3 (-567 (-501))))))
-(((*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1128)) (-4 *2 (-789))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1128))))
+ (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789))
+ (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 (-713))))))
+(((*1 *1 *1) (-4 *1 (-91)))
((*1 *2 *2)
- (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-840 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789))
- (-4 *6 (-991 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -2487 *1) (|:| |upper| *1)))
- (-4 *1 (-909 *4 *5 *3 *6)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-385 *5)) (-4 *4 (-1132)) (-4 *5 (-1150 *4))
- (-5 *1 (-139 *4 *5 *2)) (-4 *2 (-1150 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1094 (-385 (-525)))) (-5 *2 (-385 (-525)))
- (-5 *1 (-172))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-632 (-294 (-205)))) (-5 *3 (-592 (-1092)))
- (-5 *4 (-1174 (-294 (-205)))) (-5 *1 (-187))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-273 *3))) (-4 *3 (-288 *3)) (-4 *3 (-1020))
- (-4 *3 (-1128)) (-5 *1 (-273 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-288 *2)) (-4 *2 (-1020)) (-4 *2 (-1128))
- (-5 *1 (-273 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-592 *1))) (-4 *1 (-281))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 (-1 *1 (-592 *1))))
- (-4 *1 (-281))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-1 *1 (-592 *1))) (-4 *1 (-281))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-592 (-1 *1 (-592 *1))))
- (-4 *1 (-281))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-273 *3))) (-4 *1 (-288 *3)) (-4 *3 (-1020))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-273 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1020))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-525))) (-5 *4 (-1094 (-385 (-525))))
- (-5 *1 (-289 *2)) (-4 *2 (-37 (-385 (-525))))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 *1)) (-4 *1 (-352 *4 *5))
- (-4 *4 (-789)) (-4 *5 (-160))))
- ((*1 *1 *1 *2 *1)
- (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1092)) (-5 *3 (-713)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-977))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1092)) (-5 *3 (-713)) (-5 *4 (-1 *1 (-592 *1)))
- (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-977))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-592 (-713)))
- (-5 *4 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-408 *5)) (-4 *5 (-789))
- (-4 *5 (-977))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-592 (-713)))
- (-5 *4 (-592 (-1 *1 *1))) (-4 *1 (-408 *5)) (-4 *5 (-789))
- (-4 *5 (-977))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 *1)) (-5 *4 (-1092))
- (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-567 (-501)))))
- ((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1092)) (-4 *1 (-408 *4)) (-4 *4 (-789))
- (-4 *4 (-567 (-501)))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-567 (-501)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-1092))) (-4 *1 (-408 *3)) (-4 *3 (-789))
- (-4 *3 (-567 (-501)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789))
- (-4 *3 (-567 (-501)))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1128))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 *5)) (-4 *1 (-486 *4 *5))
- (-4 *4 (-1020)) (-4 *5 (-1128))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-775 *3)) (-4 *3 (-341)) (-5 *1 (-661 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1020))))
- ((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-385 (-887 *4))) (-5 *3 (-1092)) (-4 *4 (-517))
- (-5 *1 (-973 *4))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-592 (-1092))) (-5 *4 (-592 (-385 (-887 *5))))
- (-5 *2 (-385 (-887 *5))) (-4 *5 (-517)) (-5 *1 (-973 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-273 (-385 (-887 *4)))) (-5 *2 (-385 (-887 *4)))
- (-4 *4 (-517)) (-5 *1 (-973 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 (-273 (-385 (-887 *4))))) (-5 *2 (-385 (-887 *4)))
- (-4 *4 (-517)) (-5 *1 (-973 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1152 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1073 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1075)) (-5 *1 (-653)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-456)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
-(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1075)) (-5 *1 (-728)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1088 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517)))
- (-5 *1 (-31 *4 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)))))
-(((*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))))
-(((*1 *2)
- (-12 (-5 *2 (-1179)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020))
- (-4 *4 (-1020)))))
-(((*1 *1 *1) (-5 *1 (-989))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-632 *11)) (-5 *4 (-592 (-385 (-887 *8))))
- (-5 *5 (-713)) (-5 *6 (-1075)) (-4 *8 (-13 (-286) (-138)))
- (-4 *11 (-884 *8 *10 *9)) (-4 *9 (-13 (-789) (-567 (-1092))))
- (-4 *10 (-735))
- (-5 *2
- (-2
- (|:| |rgl|
- (-592
- (-2 (|:| |eqzro| (-592 *11)) (|:| |neqzro| (-592 *11))
- (|:| |wcond| (-592 (-887 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1174 (-385 (-887 *8))))
- (|:| -3094 (-592 (-1174 (-385 (-887 *8))))))))))
- (|:| |rgsz| (-525))))
- (-5 *1 (-859 *8 *9 *10 *11)) (-5 *7 (-525)))))
-(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1099)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))
- (-5 *2 (-966)) (-5 *1 (-691)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1110))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1110)))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
- (-4 *3 (-991 *6 *7 *8))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4))))
- (-5 *1 (-1028 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -2563 *9))))
- (-5 *5 (-108)) (-4 *8 (-991 *6 *7 *4)) (-4 *9 (-996 *6 *7 *4 *8))
- (-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789))
- (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -2563 *9))))
- (-5 *1 (-1028 *6 *7 *4 *8 *9)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *2 (-517)) (-5 *1 (-903 *2 *4))
- (-4 *4 (-1150 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-525)) (-5 *4 (-396 *2)) (-4 *2 (-884 *7 *5 *6))
- (-5 *1 (-685 *5 *6 *7 *2)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-286)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-592 (-800 *4)))
- (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *1 (-448 *4 *5 *6))
- (-4 *6 (-429)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-1088 (-887 *4))) (-5 *1 (-394 *3 *4))
- (-4 *3 (-395 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341))
- (-5 *2 (-1088 (-887 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1088 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1061)) (-5 *2 (-1141 (-525))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1030)))))
-(((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *2 (-789))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-735)) (-4 *5 (-977)) (-4 *6 (-884 *5 *4 *2))
- (-4 *2 (-789)) (-5 *1 (-885 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-341)
- (-10 -8 (-15 -1217 ($ *6)) (-15 -3114 (*6 $))
- (-15 -3123 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517))
- (-5 *2 (-1092)) (-5 *1 (-973 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-502 *4 *2))
- (-4 *2 (-1165 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 *3)))
- (-4 *5 (-1150 *4)) (-4 *6 (-667 *4 *5)) (-5 *1 (-506 *4 *5 *6 *2))
- (-4 *2 (-1165 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 *3)))
- (-5 *1 (-507 *4 *2)) (-4 *2 (-1165 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1073 *4)) (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138)))
- (-5 *1 (-1069 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1150 (-47))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-5 *2 (-892 (-1088 *4))) (-5 *1 (-335 *4))
- (-5 *3 (-1088 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-104))) (-5 *1 (-162)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1150 (-385 *2)))
- (-4 *2 (-1150 *4)) (-5 *1 (-319 *3 *4 *2 *5))
- (-4 *3 (-320 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1132))
- (-4 *4 (-1150 (-385 *2))) (-4 *2 (-1150 *3)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -3244 *3) (|:| |gap| (-713)) (|:| -2829 (-724 *3))
- (|:| -1607 (-724 *3))))
- (-5 *1 (-724 *3)) (-4 *3 (-977))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789))
- (-5 *2
- (-2 (|:| -3244 *1) (|:| |gap| (-713)) (|:| -2829 *1)
- (|:| -1607 *1)))
- (-4 *1 (-991 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2
- (-2 (|:| -3244 *1) (|:| |gap| (-713)) (|:| -2829 *1)
- (|:| -1607 *1)))
- (-4 *1 (-991 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789))
- (-5 *2 (-2 (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-884 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-977)) (-5 *2 (-2 (|:| -2829 *1) (|:| -1607 *1)))
- (-4 *1 (-1150 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1020))
- (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))
- (-5 *2 (-592 (-999 *3 *4 *5))) (-5 *1 (-1000 *3 *4 *5))
- (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246))))
- ((*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1051 *4 *2))
- (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4258) (-6 -4259))))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
((*1 *2 *2)
- (-12 (-4 *3 (-789)) (-4 *3 (-1128)) (-5 *1 (-1051 *3 *2))
- (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4258) (-6 -4259)))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-977))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-146))))
- ((*1 *2 *1) (-12 (-5 *2 (-146)) (-5 *1 (-809))))
- ((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
-(((*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-968 *2))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1023 *3 *4 *2 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))))
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))))
- (-5 *2 (-592 (-205))) (-5 *1 (-284)))))
+ (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-4 *5 (-1150 *4))
+ (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -1537 *5))))
+ (-5 *1 (-751 *4 *5 *3 *6)) (-4 *3 (-602 *5))
+ (-4 *6 (-602 (-385 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-1092))) (-4 *4 (-13 (-286) (-138)))
- (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735))
- (-5 *2 (-592 (-385 (-887 *4)))) (-5 *1 (-859 *4 *5 *6 *7))
- (-4 *7 (-884 *4 *6 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-798)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713))
- (-14 *4 (-713)) (-4 *5 (-160)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205)))
- (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205))))
- (|:| |ub| (-592 (-782 (-205))))))
- (-5 *1 (-246)))))
-(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))))
+ (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3))
+ (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-884 *6 *4 *5)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525)))))
- (-4 *2 (-13 (-789) (-21))))))
-(((*1 *1 *1 *1) (-5 *1 (-205)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970))))
- ((*1 *1 *1 *1) (-4 *1 (-1056))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-592
- (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1088 *2))
- (|:| |logand| (-1088 *2)))))
- (-5 *4 (-592 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-341)) (-5 *1 (-542 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1073 (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1077 *4))
- (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-977)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092))
- (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5))))
- (-5 *1 (-1048 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-13 (-286) (-789) (-138)))
- (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1048 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-273 (-385 (-887 *5)))) (-5 *4 (-1092))
- (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5))))
- (-5 *1 (-1048 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-273 (-385 (-887 *4))))
- (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *4))))
- (-5 *1 (-1048 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1092)))
- (-4 *5 (-13 (-286) (-789) (-138)))
- (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1048 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-385 (-887 *4))))
- (-4 *4 (-13 (-286) (-789) (-138)))
- (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1048 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-273 (-385 (-887 *5))))) (-5 *4 (-592 (-1092)))
- (-4 *5 (-13 (-286) (-789) (-138)))
- (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1048 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-273 (-385 (-887 *4)))))
- (-4 *4 (-13 (-286) (-789) (-138)))
- (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1048 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-551 *3)) (-4 *3 (-977))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-906 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-734))
- (-4 *5 (-789)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-782 (-205)))) (-5 *4 (-205)) (-5 *2 (-592 *4))
- (-5 *1 (-246)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-174)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1023 *3 *2 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128)))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-525))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1150 *5))
- (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3094 (-592 *4))))
- (-5 *1 (-752 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-599 (-385 *6))) (-4 *6 (-1150 *5))
- (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
- (-5 *2 (-2 (|:| -3094 (-592 (-385 *6))) (|:| -3407 (-632 *5))))
- (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1150 *5))
- (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3094 (-592 *4))))
- (-5 *1 (-752 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-600 *6 (-385 *6))) (-4 *6 (-1150 *5))
- (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
- (-5 *2 (-2 (|:| -3094 (-592 (-385 *6))) (|:| -3407 (-632 *5))))
- (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1174 *4)) (-4 *4 (-588 (-525)))
- (-5 *2 (-1174 (-385 (-525)))) (-5 *1 (-1199 *4)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-878 (-205)) (-878 (-205)))) (-5 *1 (-242))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1174 *1)) (-4 *1 (-307 *4)) (-4 *4 (-341))
- (-5 *2 (-632 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1174 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
- (-5 *2 (-632 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
- (-5 *2 (-1174 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160))
- (-4 *5 (-1150 *4)) (-5 *2 (-632 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160))
- (-4 *5 (-1150 *4)) (-5 *2 (-1174 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1174 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-160))
- (-4 *5 (-1150 *4)) (-5 *2 (-632 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1150 *3))
- (-5 *2 (-1174 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1174 *1)) (-4 *1 (-395 *4)) (-4 *4 (-160))
- (-5 *2 (-632 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1174 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-632 *5))) (-5 *3 (-632 *5)) (-4 *5 (-341))
- (-5 *2 (-1174 *5)) (-5 *1 (-1008 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-762)) (-14 *5 (-1092)) (-5 *2 (-592 (-1147 *5 *4)))
- (-5 *1 (-1034 *4 *5)) (-5 *3 (-1147 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-735))
- (-4 *5 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $))))) (-4 *6 (-517))
- (-5 *2 (-2 (|:| -3167 (-887 *6)) (|:| -3211 (-887 *6))))
- (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-884 (-385 (-887 *6)) *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
- (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735))
- (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
- (-5 *2 (-632 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4))
- (-4 *3 (-395 *4))))
- ((*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-565 (-47)))) (-5 *1 (-47))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-565 (-47))) (-5 *1 (-47))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1088 (-47))) (-5 *3 (-592 (-565 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1088 (-47))) (-5 *3 (-565 (-47))) (-5 *1 (-47))))
- ((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3))
- (-4 *3 (-1150 (-157 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-856)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))))
- ((*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1150 *2)) (-4 *2 (-160))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1150 *2)) (-4 *2 (-925 *3)) (-5 *1 (-391 *3 *2 *4 *5))
- (-4 *3 (-286)) (-4 *5 (-13 (-387 *2 *4) (-968 *2)))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1150 *2)) (-4 *2 (-925 *3))
- (-5 *1 (-392 *3 *2 *4 *5 *6)) (-4 *3 (-286)) (-4 *5 (-387 *2 *4))
- (-14 *6 (-1174 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-856)) (-4 *5 (-977))
- (-4 *2 (-13 (-382) (-968 *5) (-341) (-1114) (-263)))
- (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1150 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-565 (-468)))) (-5 *1 (-468))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-565 (-468))) (-5 *1 (-468))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1088 (-468))) (-5 *3 (-592 (-565 (-468))))
- (-5 *1 (-468))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1088 (-468))) (-5 *3 (-565 (-468))) (-5 *1 (-468))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1174 *4)) (-5 *3 (-856)) (-4 *4 (-327))
- (-5 *1 (-495 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-667 *4 *2)) (-4 *2 (-1150 *4))
- (-5 *1 (-717 *4 *2 *5 *3)) (-4 *3 (-1150 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
- ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160))))
- ((*1 *1 *1) (-4 *1 (-986))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-565 *3)) (-5 *5 (-1 (-1088 *3) (-1088 *3)))
- (-4 *3 (-13 (-27) (-408 *6))) (-4 *6 (-13 (-789) (-517)))
- (-5 *2 (-542 *3)) (-5 *1 (-512 *6 *3)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-525))))
- (-4 *4 (-13 (-1150 *3) (-517) (-10 -8 (-15 -2589 ($ $ $)))))
- (-4 *3 (-517)) (-5 *1 (-1153 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1088 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3))
- (-4 *3 (-1020)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1092))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-592 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -1642 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1114) (-27) (-408 *8)))
- (-4 *8 (-13 (-429) (-789) (-138) (-968 *3) (-588 *3)))
- (-5 *3 (-525)) (-5 *2 (-592 *4)) (-5 *1 (-946 *8 *4)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *6 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-592 (-1092))) (-4 *4 (-1020))
- (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4))))
- (-5 *1 (-999 *4 *5 *2))
- (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4))))))
- ((*1 *1 *2 *2)
- (-12 (-4 *3 (-1020))
- (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))
- (-5 *1 (-999 *3 *4 *2))
- (-4 *2 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1073 *4)) (-5 *3 (-525)) (-4 *4 (-977))
- (-5 *1 (-1077 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-525)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-977))
- (-14 *4 (-1092)) (-14 *5 *3))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-517)) (-4 *2 (-977))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1150 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *3 (-991 *4 *5 *6))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *1))))
- (-4 *1 (-996 *4 *5 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-395 *4)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-308)))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-108)) (-5 *1 (-771)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-977))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1125))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-977)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1073 *7))) (-4 *6 (-789))
- (-4 *7 (-884 *5 (-497 *6) *6)) (-4 *5 (-977))
- (-5 *2 (-1 (-1073 *7) *7)) (-5 *1 (-1045 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-335 *3)) (-4 *3 (-327)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
- (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
- (-4 *7 (-925 *4)) (-4 *2 (-630 *7 *8 *9))
- (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6))
- (-4 *8 (-351 *7)) (-4 *9 (-351 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
- (-4 *4 (-351 *2)) (-4 *2 (-286))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2))
- (-4 *2 (-630 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-980 *2 *3 *4 *5 *6)) (-4 *4 (-977))
- (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *2 *4)) (-4 *4 (-286)))))
+ (-12 (-5 *3 (-592 (-1092))) (-5 *2 (-1092)) (-5 *1 (-308)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
(((*1 *2 *1)
- (-12 (-14 *3 (-592 (-1092))) (-4 *4 (-160))
- (-4 *5 (-218 (-3522 *3) (-713)))
- (-14 *6
- (-1 (-108) (-2 (|:| -3555 *2) (|:| -4193 *5))
- (-2 (|:| -3555 *2) (|:| -4193 *5))))
- (-4 *2 (-789)) (-5 *1 (-438 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-884 *4 *5 (-800 *3))))))
-(((*1 *1 *1) (-4 *1 (-34)))
+ (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128)))))
+(((*1 *2 *3) (-12 (-5 *3 (-385 (-525))) (-5 *2 (-205)) (-5 *1 (-284)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-565 *1)) (-4 *1 (-281)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-849 *3)) (-4 *3 (-286)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *1 *1) (-4 *1 (-91)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
(-4 *2 (-13 (-408 *3) (-934)))))
@@ -10480,719 +14297,132 @@
((*1 *2 *2)
(-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
(-5 *1 (-1079 *3)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-592 (-592 *7)))
- (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735))
- (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-592 (-592 *8)))
- (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-592
- (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205)))))
- (-5 *1 (-520))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-5 *2 (-592 *3))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-592
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205)))))
- (-5 *1 (-745)))))
-(((*1 *2 *1)
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205))
+ (-5 *2 (-966)) (-5 *1 (-699)))))
+(((*1 *2)
(-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4)))
- (-5 *2 (-2 (|:| |num| (-1174 *4)) (|:| |den| *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1128)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-308)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-878 *3))) (-4 *3 (-977)) (-4 *1 (-1053 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-878 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-157 *5)) (-4 *5 (-13 (-408 *4) (-934) (-1114)))
- (-4 *4 (-13 (-517) (-789)))
- (-4 *2 (-13 (-408 (-157 *4)) (-934) (-1114)))
- (-5 *1 (-554 *4 *5 *2)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-525)) (-5 *5 (-1075)) (-5 *6 (-632 (-205)))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))))
- (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))
- (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-592
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-735)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789))
- (-5 *1 (-426 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-966)) (-5 *3 (-1092)) (-5 *1 (-174)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1075))
- (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-108)) (-5 *1 (-204 *4 *5)) (-4 *5 (-13 (-1114) (-29 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977))
- (-14 *4 (-592 (-1092)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-525)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789)))
- (-14 *4 (-592 (-1092)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789))
- (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-254))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1088 *8)) (-5 *4 (-592 *6)) (-4 *6 (-789))
- (-4 *8 (-884 *7 *5 *6)) (-4 *5 (-735)) (-4 *7 (-977))
- (-5 *2 (-592 (-713))) (-5 *1 (-299 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-856))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
- (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-160)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4))
- (-4 *4 (-1150 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-977)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-977)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-840 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *6)) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-884 *4 *5 *3)) (-4 *4 (-977)) (-4 *5 (-735))
- (-4 *3 (-789)) (-5 *2 (-713))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-906 *3 *2 *4)) (-4 *3 (-977)) (-4 *4 (-789))
- (-4 *2 (-734))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-713))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1136 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1165 *3))
- (-5 *2 (-525))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1134 *3))
- (-5 *2 (-385 (-525)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-856)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1193 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
- (-5 *2 (-713)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1174 *6)) (-5 *4 (-1174 (-525))) (-5 *5 (-525))
- (-4 *6 (-1020)) (-5 *2 (-1 *6)) (-5 *1 (-949 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 (-1 *6 (-592 *6))))
- (-4 *5 (-37 (-385 (-525)))) (-4 *6 (-1165 *5)) (-5 *2 (-592 *6))
- (-5 *1 (-1167 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-108))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-844)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-396 (-1088 *7)))
- (-5 *1 (-841 *4 *5 *6 *7)) (-5 *3 (-1088 *7))))
+ (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1075)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-242)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1110)))))
+(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-1055))))
((*1 *2 *3)
- (-12 (-4 *4 (-844)) (-4 *5 (-1150 *4)) (-5 *2 (-396 (-1088 *5)))
- (-5 *1 (-842 *4 *5)) (-5 *3 (-1088 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-632 *2)) (-4 *4 (-1150 *2))
- (-4 *2 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $)))))
- (-5 *1 (-472 *2 *4 *5)) (-4 *5 (-387 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
- (-4 *5 (-218 *3 *2)) (-4 *2 (-977)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
- (-4 *4 (-13 (-789) (-517))))))
-(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-525)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-396 *2)) (-4 *2 (-517)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1092)) (-4 *4 (-429)) (-4 *4 (-789))
- (-5 *1 (-534 *4 *2)) (-4 *2 (-263)) (-4 *2 (-408 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-592 (-713)))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-713)) (-4 *5 (-327)) (-4 *6 (-1150 *5))
- (-5 *2
- (-592
- (-2 (|:| -3094 (-632 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-632 *6)))))
- (-5 *1 (-471 *5 *6 *7))
- (-5 *3
- (-2 (|:| -3094 (-632 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-632 *6))))
- (-4 *7 (-1150 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *1) (-5 *1 (-308))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1088 *3)) (-4 *3 (-346)) (-4 *1 (-307 *3))
- (-4 *3 (-341)))))
-(((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-51)))))
-(((*1 *1) (-5 *1 (-1176))))
-(((*1 *2 *2) (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977))
- (-5 *2 (-592 (-592 (-878 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-592 (-592 (-878 *4)))) (-5 *3 (-108)) (-4 *4 (-977))
- (-4 *1 (-1053 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-592 (-878 *3)))) (-4 *3 (-977))
- (-4 *1 (-1053 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-108))
- (-4 *1 (-1053 *4)) (-4 *4 (-977))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-592 (-592 (-878 *4)))) (-5 *3 (-108))
- (-4 *1 (-1053 *4)) (-4 *4 (-977))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-592 (-159)))
- (-5 *4 (-159)) (-4 *1 (-1053 *5)) (-4 *5 (-977))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-592 (-592 (-878 *5)))) (-5 *3 (-592 (-159)))
- (-5 *4 (-159)) (-4 *1 (-1053 *5)) (-4 *5 (-977)))))
+ (-12 (-5 *3 (-592 (-798))) (-5 *2 (-1179)) (-5 *1 (-1055)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-592 *4)) (-4 *4 (-789))
+ (-5 *1 (-1100 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1092)) (-5 *5 (-592 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *6)))
+ (-4 *6 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-518 *6 *3)))))
(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4259)) (-4 *4 (-341)) (-4 *5 (-351 *4))
- (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-492 *4 *5 *6 *3))
- (-4 *3 (-630 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4259)) (-4 *4 (-517)) (-4 *5 (-351 *4))
- (-4 *6 (-351 *4)) (-4 *7 (-925 *4)) (-4 *8 (-351 *7))
- (-4 *9 (-351 *7)) (-5 *2 (-592 *6))
- (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-630 *4 *5 *6))
- (-4 *10 (-630 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-592 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4))
- (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-631 *4 *5 *6 *3))
- (-4 *3 (-630 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517))
- (-5 *2 (-592 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-764)) (-5 *2 (-51)) (-5 *1 (-771)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *3 (-592 (-809)))
- (-5 *4 (-592 (-856))) (-5 *5 (-592 (-242))) (-5 *1 (-445))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *3 (-592 (-809)))
- (-5 *4 (-592 (-856))) (-5 *1 (-445))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-445))))
- ((*1 *1 *1) (-5 *1 (-445))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-798)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-1150 *4)) (-4 *4 (-977))
- (-5 *2 (-1174 *4)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357)))
- (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091))))
- (-5 *1 (-1091)))))
+ (|partial| -12 (-4 *2 (-1020)) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1020)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
- (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4))
- (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3))
- (-4 *3 (-630 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517))
- (-5 *2 (-713)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-713)) (-4 *6 (-1020)) (-4 *7 (-835 *6))
- (-5 *2 (-632 *7)) (-5 *1 (-634 *6 *7 *3 *4)) (-4 *3 (-351 *7))
- (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4258)))))))
-(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-236)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
-(((*1 *2)
- (-12 (-5 *2 (-1174 (-1021 *3 *4))) (-5 *1 (-1021 *3 *4))
- (-14 *3 (-856)) (-14 *4 (-856)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
- (-5 *2
- (-2 (|:| -3284 *4) (|:| -1213 *4) (|:| |totalpts| (-525))
- (|:| |success| (-108))))
- (-5 *1 (-731)) (-5 *5 (-525)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-632 *7)) (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *6 *5))
- (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092))))
- (-4 *6 (-735)) (-5 *1 (-859 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-4 *1 (-1061))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357)))
- (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091))))
- (-5 *1 (-1091)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1092)) (-5 *4 (-887 (-525))) (-5 *2 (-308))
- (-5 *1 (-310))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1092)) (-5 *4 (-1013 (-887 (-525)))) (-5 *2 (-308))
- (-5 *1 (-310))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-977)) (-4 *3 (-1020)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1128))
- (-4 *4 (-351 *2)) (-4 *5 (-351 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4259)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1020))
- (-4 *2 (-1128)))))
+ (-12 (-5 *3 (-592 (-1092))) (-5 *2 (-1179)) (-5 *1 (-1095))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1179))
+ (-5 *1 (-1095))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-592 (-1092))) (-5 *3 (-1092)) (-5 *2 (-1179))
+ (-5 *1 (-1095)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-110)) (-5 *4 (-713)) (-4 *5 (-429)) (-4 *5 (-789))
- (-4 *5 (-968 (-525))) (-4 *5 (-517)) (-5 *1 (-40 *5 *2))
- (-4 *2 (-408 *5))
- (-4 *2
- (-13 (-341) (-281)
- (-10 -8 (-15 -3114 ((-1044 *5 (-565 $)) $))
- (-15 -3123 ((-1044 *5 (-565 $)) $))
- (-15 -1217 ($ (-1044 *5 (-565 $))))))))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-887 (-525))) (-5 *3 (-1092))
- (-5 *4 (-1015 (-385 (-525)))) (-5 *1 (-30)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1150 *6))
- (-4 *6 (-13 (-341) (-138) (-968 *4))) (-5 *4 (-525))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108))))
- (|:| -3025
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-947 *6 *3)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-977)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789))))
- ((*1 *1) (-4 *1 (-1068))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1061)) (-5 *3 (-135)) (-5 *2 (-108)))))
+ (-12 (-4 *4 (-37 (-385 (-525))))
+ (-5 *2 (-2 (|:| -1781 (-1073 *4)) (|:| -1792 (-1073 *4))))
+ (-5 *1 (-1079 *4)) (-5 *3 (-1073 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN)))) (-5 *2 (-966))
+ (-5 *1 (-689)))))
+(((*1 *1 *1) (-5 *1 (-989))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
- (-14 *6 (-592 (-1092))) (-5 *2 (-592 (-974 *5 *6)))
- (-5 *1 (-577 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-525)) (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-1125)))))
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1020))
+ (-4 *2 (-789)))))
(((*1 *1 *1)
(-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1092))
- (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-174))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1092))
- (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1124 *3)) (-4 *3 (-907)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-5 *2 (-1101 (-592 *4))) (-5 *1 (-1100 *4))
- (-5 *3 (-592 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3377 *4)))
- (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357)))
- (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091))))
- (-5 *1 (-1091)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-525))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819)))) (-5 *2 (-966))
- (-5 *1 (-691)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4259)) (-4 *1 (-464 *3))
- (-4 *3 (-1128)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-899))) (-5 *1 (-104))))
- ((*1 *2 *1) (-12 (-5 *2 (-44 (-1075) (-716))) (-5 *1 (-110)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -3843 (-592 (-2 (|:| |irr| *10) (|:| -1616 (-525)))))))
- (-5 *6 (-592 *3)) (-5 *7 (-592 *8)) (-4 *8 (-789)) (-4 *3 (-286))
- (-4 *10 (-884 *3 *9 *8)) (-4 *9 (-735))
- (-5 *2
- (-2 (|:| |polfac| (-592 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-592 (-1088 *3)))))
- (-5 *1 (-575 *8 *9 *3 *10)) (-5 *4 (-592 (-1088 *3))))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-273 *6)) (-5 *4 (-110)) (-4 *6 (-408 *5))
- (-4 *5 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
- (-5 *1 (-295 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-592 *7))
- (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501))))
- (-5 *2 (-51)) (-5 *1 (-295 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-592 (-273 *7))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7))
- (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501))))
- (-5 *2 (-51)) (-5 *1 (-295 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-592 (-273 *8))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *8))
- (-5 *6 (-592 *8)) (-4 *8 (-408 *7))
- (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
- (-5 *1 (-295 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7))
- (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501))))
- (-5 *2 (-51)) (-5 *1 (-295 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-110))) (-5 *6 (-592 (-273 *8)))
- (-4 *8 (-408 *7)) (-5 *5 (-273 *8))
- (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
- (-5 *1 (-295 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-273 *5)) (-5 *4 (-110)) (-4 *5 (-408 *6))
- (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
- (-5 *1 (-295 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6))
- (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
- (-5 *1 (-295 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6))
- (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
- (-5 *1 (-295 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-5 *6 (-592 *3))
- (-4 *3 (-408 *7)) (-4 *7 (-13 (-789) (-517) (-567 (-501))))
- (-5 *2 (-51)) (-5 *1 (-295 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1134 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-592 *2) *2 *2 *2)) (-4 *2 (-1020))
- (-5 *1 (-98 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1020)) (-5 *1 (-98 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-878 *4)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
- (-4 *4 (-977)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-713)) (-4 *5 (-160))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
+ (-4 *4 (-160))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
+ (-4 *4 (-351 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-977)) (-4 *1 (-630 *3 *2 *4)) (-4 *2 (-351 *3))
+ (-4 *4 (-351 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-713)) (-4 *3 (-977)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-1101 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-542 *3)) (-4 *3 (-341)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-294 (-525))) (|:| -3819 (-294 (-357)))
- (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091))))
- (-5 *1 (-1091)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-113 *3)) (-14 *3 (-525))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1073 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-385 *3)) (-4 *3 (-286)) (-5 *1 (-161 *3))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-161 (-525))) (-5 *1 (-708 *3)) (-4 *3 (-382))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-806 *3)) (-14 *3 (-525))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-525)) (-5 *2 (-161 (-385 (-525))))
- (-5 *1 (-807 *3 *4)) (-4 *4 (-804 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-1015 (-205))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1088 *2)) (-4 *2 (-884 (-385 (-887 *6)) *5 *4))
- (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-735))
- (-4 *4 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $)))))
- (-4 *6 (-517)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517))
- (-5 *2 (-1088 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1094 (-385 (-525)))) (-5 *2 (-385 (-525)))
- (-5 *1 (-172)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1020)) (-5 *2 (-108)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))))
-(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1099)))))
-(((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-970)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-827 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1020))
- (-4 *5 (-1128)) (-5 *1 (-825 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-827 *4)) (-5 *3 (-592 (-1 (-108) *5))) (-4 *4 (-1020))
- (-4 *5 (-1128)) (-5 *1 (-825 *4 *5))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-827 *5)) (-5 *3 (-592 (-1092)))
- (-5 *4 (-1 (-108) (-592 *6))) (-4 *5 (-1020)) (-4 *6 (-1128))
- (-5 *1 (-825 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1128)) (-4 *4 (-789))
- (-5 *1 (-872 *4 *2 *5)) (-4 *2 (-408 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 (-1 (-108) *5))) (-4 *5 (-1128)) (-4 *4 (-789))
- (-5 *1 (-872 *4 *2 *5)) (-4 *2 (-408 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1092)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1128))
- (-5 *2 (-294 (-525))) (-5 *1 (-873 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1092)) (-5 *4 (-592 (-1 (-108) *5))) (-4 *5 (-1128))
- (-5 *2 (-294 (-525))) (-5 *1 (-873 *5))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-1092))) (-5 *3 (-1 (-108) (-592 *6)))
- (-4 *6 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))) (-4 *4 (-1020))
- (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4))))
- (-5 *1 (-999 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-429)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-592 (-1092))) (-14 *5 (-713))
- (-5 *2
- (-592
- (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4)
- (-227 *4 (-385 (-525))))))
- (-5 *1 (-478 *4 *5))
- (-5 *3
- (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4)
- (-227 *4 (-385 (-525))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-592 (-592 (-525)))) (-5 *1 (-904))
- (-5 *3 (-592 (-525))))))
-(((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1015 (-205)))))
- ((*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-1015 (-205))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-501)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132))
- (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))))))
-(((*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-977)) (-4 *3 (-789))
- (-4 *4 (-245 *3)) (-4 *5 (-735)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-592
- (-2 (|:| -3622 (-713))
- (|:| |eqns|
- (-592
- (-2 (|:| |det| *7) (|:| |rows| (-592 (-525)))
- (|:| |cols| (-592 (-525))))))
- (|:| |fgb| (-592 *7)))))
- (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138)))
- (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735)) (-5 *2 (-713))
- (-5 *1 (-859 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *2 (-1059 *3 *4)) (-14 *3 (-856)) (-4 *4 (-341))
+ (-5 *1 (-926 *3 *4)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
(-12 (-5 *4 (-525)) (-5 *6 (-1 (-1179) (-1174 *5) (-1174 *5) (-357)))
(-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179))
(-5 *1 (-730)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1174 *5)) (-4 *5 (-734)) (-5 *2 (-108))
- (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-567 (-827 (-525))))
- (-4 *5 (-821 (-525)))
- (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-528 *5 *3)) (-4 *3 (-578))
- (-4 *3 (-13 (-27) (-1114) (-408 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1092)) (-5 *4 (-782 *2)) (-4 *2 (-1056))
- (-4 *2 (-13 (-27) (-1114) (-408 *5)))
- (-4 *5 (-567 (-827 (-525)))) (-4 *5 (-821 (-525)))
- (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525))))
- (-5 *1 (-528 *5 *2)))))
-(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1177)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095)))))
-(((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1015 (-205)))))
- ((*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-1015 (-205))))))
-(((*1 *1) (-4 *1 (-327))))
-(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-138)) (-4 *2 (-286)) (-4 *2 (-429)) (-4 *3 (-789))
- (-4 *4 (-735)) (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-884 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-294 (-525))) (-5 *1 (-1038))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-395 *4)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -1642 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1150 *7))
- (-5 *3 (-385 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-535 *7 *8)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1092)) (-5 *6 (-592 (-565 *3)))
- (-5 *5 (-565 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *7)))
- (-4 *7 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-2 (|:| -1642 *3) (|:| |coeff| *3)))
- (-5 *1 (-518 *7 *3)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-713)) (-4 *3 (-517)) (-5 *1 (-903 *3 *2))
- (-4 *2 (-1150 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-824 *4 *3))
- (-4 *3 (-1020)))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-809))))
- ((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-341)) (-4 *6 (-1150 (-385 *2)))
+ (-4 *2 (-1150 *5)) (-5 *1 (-196 *5 *2 *6 *3))
+ (-4 *3 (-320 *5 *2 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1150 (-525))) (-5 *1 (-461 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-391 *3 *4 *5 *6)) (-4 *6 (-968 *4)) (-4 *3 (-286))
- (-4 *4 (-925 *3)) (-4 *5 (-1150 *4)) (-4 *6 (-387 *4 *5))
- (-14 *7 (-1174 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1174 *6)) (-4 *6 (-387 *4 *5)) (-4 *4 (-925 *3))
- (-4 *5 (-1150 *4)) (-4 *3 (-286)) (-5 *1 (-392 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-694)))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1022 *3)) (-5 *1 (-840 *3)) (-4 *3 (-346))
- (-4 *3 (-1020)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-999 *3 *4 *5))) (-4 *3 (-1020))
- (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))
- (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3))))
- (-5 *1 (-1000 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341))
- (-5 *2
- (-2 (|:| |ir| (-542 (-385 *6))) (|:| |specpart| (-385 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-977))))
- ((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-977)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2))
- (-4 *5 (-351 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1128))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *2 *6 *7))
- (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-977)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-694)))))
+ (-12 (-5 *2 (-1022 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1022 *3)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4260)) (-4 *1 (-224 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-592 *11))
+ (|:| |todo| (-592 (-2 (|:| |val| *3) (|:| -1285 *11))))))
+ (-5 *6 (-713))
+ (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -1285 *11))))
+ (-5 *3 (-592 *10)) (-5 *4 (-592 *11)) (-4 *10 (-991 *7 *8 *9))
+ (-4 *11 (-996 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-735))
+ (-4 *9 (-789)) (-5 *1 (-994 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-592 *11))
+ (|:| |todo| (-592 (-2 (|:| |val| *3) (|:| -1285 *11))))))
+ (-5 *6 (-713))
+ (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -1285 *11))))
+ (-5 *3 (-592 *10)) (-5 *4 (-592 *11)) (-4 *10 (-991 *7 *8 *9))
+ (-4 *11 (-1029 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-735))
+ (-4 *9 (-789)) (-5 *1 (-1062 *7 *8 *9 *10 *11)))))
+(((*1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-346))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1174 *4)) (-5 *1 (-495 *4))
+ (-4 *4 (-327))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-789)) (-5 *1 (-656 *2 *3 *4)) (-4 *3 (-1020))
+ (-14 *4
+ (-1 (-108) (-2 (|:| -1722 *2) (|:| -2168 *3))
+ (-2 (|:| -1722 *2) (|:| -2168 *3)))))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-162)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 (-592 *5))) (-4 *5 (-1165 *4))
+ (-4 *4 (-37 (-385 (-525))))
+ (-5 *2 (-1 (-1073 *4) (-592 (-1073 *4)))) (-5 *1 (-1167 *4 *5)))))
(((*1 *2)
(-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
(-4 *3 (-345 *4))))
((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525)))))
- (-4 *5 (-1150 *4))
- (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -3025 *5))))
- (-5 *1 (-751 *4 *5 *3 *6)) (-4 *3 (-602 *5))
- (-4 *6 (-602 (-385 *5))))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205))
- (-5 *2 (-966)) (-5 *1 (-699)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-341)) (-4 *6 (-1150 (-385 *2)))
- (-4 *2 (-1150 *5)) (-5 *1 (-196 *5 *2 *6 *3))
- (-4 *3 (-320 *5 *2 *6)))))
(((*1 *2 *3)
(-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-801 *4 *5 *6 *7))
(-4 *4 (-977)) (-14 *5 (-592 (-1092))) (-14 *6 (-592 *3))
@@ -11202,1082 +14432,179 @@
(-14 *8 (-592 *5)) (-5 *2 (-1179))
(-5 *1 (-1184 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-884 *4 *6 *5))
(-14 *9 (-592 *3)) (-14 *10 *3))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-878 (-205)) (-205) (-205)))
- (-5 *3 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-234)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1097)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-764)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2))
- (-4 *2 (-1150 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1150 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-789)))
- (-4 *2 (-13 (-408 *4) (-934) (-1114))) (-5 *1 (-554 *4 *2 *3))
- (-4 *3 (-13 (-408 (-157 *4)) (-934) (-1114))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-721 *4))
- (-4 *4 (-13 (-341) (-787))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-632 (-294 (-205))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))))
- (-5 *1 (-187)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1020)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1150 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-856))
- (-5 *2
- (-3 (-1088 *4)
- (-1174 (-592 (-2 (|:| -3284 *4) (|:| -3555 (-1039)))))))
- (-5 *1 (-324 *4)) (-4 *4 (-327)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-713))
- (-4 *3 (-13 (-286) (-10 -8 (-15 -2669 ((-396 $) $)))))
- (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-500 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-501)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-1174 *4))
- (-5 *1 (-756 *4 *3)) (-4 *3 (-602 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-592 *1)) (-4 *1 (-408 *4))
- (-4 *4 (-789))))
- ((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789))))
- ((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1092)) (-4 *1 (-408 *3)) (-4 *3 (-789)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1094 (-385 (-525))))
- (-5 *1 (-172)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-445)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4))
- (-5 *2 (-2 (|:| -3244 (-385 *5)) (|:| |poly| *3)))
- (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1150 (-385 *5))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 (-592 (-592 *4)))) (-5 *2 (-592 (-592 *4)))
- (-4 *4 (-789)) (-5 *1 (-1100 *4)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *3 *2))
- (-4 *2 (-13 (-27) (-1114) (-408 (-157 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1174 *4)) (-5 *3 (-713)) (-4 *4 (-327))
- (-5 *1 (-495 *4)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-713)) (-4 *4 (-286)) (-4 *6 (-1150 *4))
- (-5 *2 (-1174 (-592 *6))) (-5 *1 (-432 *4 *6)) (-5 *5 (-592 *6)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-977)) (-5 *1 (-1146 *4 *2))
- (-4 *2 (-1150 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-789)) (-5 *1 (-864 *3 *2)) (-4 *2 (-408 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1092)) (-5 *2 (-294 (-525))) (-5 *1 (-865)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953)))
- (-14 *5 (-592 (-1092))) (-5 *2 (-592 (-592 (-955 (-385 *4)))))
- (-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-592 (-1092)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-787) (-286) (-138) (-953)))
- (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1198 *5 *6 *7))
- (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-787) (-286) (-138) (-953)))
- (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1198 *5 *6 *7))
- (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-887 *4)))
- (-4 *4 (-13 (-787) (-286) (-138) (-953)))
- (-5 *2 (-592 (-592 (-955 (-385 *4))))) (-5 *1 (-1198 *4 *5 *6))
- (-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-341)) (-4 *4 (-517)) (-4 *5 (-1150 *4))
- (-5 *2 (-2 (|:| -1293 (-573 *4 *5)) (|:| -2748 (-385 *5))))
- (-5 *1 (-573 *4 *5)) (-5 *3 (-385 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4))
- (-14 *3 (-856)) (-4 *4 (-977))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-429)) (-4 *3 (-977))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1150 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-878 (-205)) (-878 (-205)))) (-5 *3 (-592 (-242)))
- (-5 *1 (-240))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1 (-878 (-205)) (-878 (-205)))) (-5 *1 (-242))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-457 *5 *6))) (-5 *3 (-457 *5 *6))
- (-14 *5 (-592 (-1092))) (-4 *6 (-429)) (-5 *2 (-1174 *6))
- (-5 *1 (-580 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-977)) (-4 *2 (-630 *4 *5 *6))
- (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1150 *4)) (-4 *5 (-351 *4))
- (-4 *6 (-351 *4)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-856)) (-5 *2 (-713)) (-5 *1 (-1021 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-296)) (-5 *3 (-205)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-135))) (-5 *1 (-132))))
- ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-132)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1092))
- (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
- (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-893))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1174 (-294 (-205)))) (-5 *4 (-592 (-1092)))
- (-5 *2 (-632 (-294 (-205)))) (-5 *1 (-187))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1020)) (-4 *6 (-835 *5)) (-5 *2 (-632 *6))
- (-5 *1 (-634 *5 *6 *3 *4)) (-4 *3 (-351 *6))
- (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4258)))))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-713)) (-4 *1 (-1150 *3)) (-4 *3 (-977)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-977))
- (-4 *4 (-734)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-396 *5)) (-4 *5 (-517))
- (-5 *2
- (-2 (|:| -4193 (-713)) (|:| -3244 *5) (|:| |radicand| (-592 *5))))
- (-5 *1 (-298 *5)) (-5 *4 (-713))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-934)) (-5 *2 (-525)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-396 (-1088 (-525)))) (-5 *1 (-173)) (-5 *3 (-525)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33)))
- ((*1 *1)
- (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
- (-4 *4 (-160))))
- ((*1 *1) (-4 *1 (-669))) ((*1 *1) (-5 *1 (-1092))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-855)) (-5 *2 (-2 (|:| -3244 (-592 *1)) (|:| -3409 *1)))
- (-5 *3 (-592 *1)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4258)) (-4 *1 (-558 *4 *3)) (-4 *4 (-1020))
- (-4 *3 (-1128)) (-4 *3 (-1020)) (-5 *2 (-108)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-525) (-525))) (-5 *1 (-339 *3)) (-4 *3 (-1020))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-713) (-713))) (-5 *1 (-364 *3)) (-4 *3 (-1020))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4259)) (-4 *1 (-351 *2)) (-4 *2 (-1128))
- (-4 *2 (-789))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4259))
- (-4 *1 (-351 *3)) (-4 *3 (-1128)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-396 *2)) (-4 *2 (-286)) (-5 *1 (-849 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092))
- (-4 *5 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-850 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-396 (-887 *6))) (-5 *5 (-1092)) (-5 *3 (-887 *6))
- (-4 *6 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-850 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-286)) (-4 *6 (-351 *5)) (-4 *4 (-351 *5))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3094 (-592 *4))))
- (-5 *1 (-1043 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1174 (-294 (-205))))
- (-5 *2
- (-2 (|:| |additions| (-525)) (|:| |multiplications| (-525))
- (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))))
- (-5 *1 (-284)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-966)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1150 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-848 *4 *3))
- (-4 *3 (-1150 (-385 *4))))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-205)))
- (-5 *2 (-966)) (-5 *1 (-698)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-592 (-713))) (-5 *1 (-903 *4 *3))
- (-4 *3 (-1150 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8))) (-4 *7 (-789))
- (-4 *8 (-286)) (-4 *6 (-735)) (-4 *9 (-884 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-592 (-2 (|:| -2770 (-1088 *9)) (|:| -4193 (-525)))))))
- (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1088 *9)))))
-(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-565 *4)) (-5 *1 (-564 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-789)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-966))
- (-5 *1 (-699)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-160)) (-4 *2 (-23)) (-5 *1 (-268 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1150 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-654 *3 *2 *4 *5 *6)) (-4 *3 (-160))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *2 (-1150 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-977))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-658 *3 *2 *4 *5 *6)) (-4 *3 (-160))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1097))) (-5 *1 (-1097))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-1097))) (-5 *1 (-1097)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159)))))
-(((*1 *1 *1) (-4 *1 (-578)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934) (-1114))))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-341) (-138) (-968 (-525))))
- (-4 *5 (-1150 *4)) (-5 *2 (-592 (-385 *5))) (-5 *1 (-948 *4 *5))
- (-5 *3 (-385 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-977)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-308)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-341) (-787)))
- (-5 *2 (-592 (-2 (|:| -3843 (-592 *3)) (|:| -1213 *5))))
- (-5 *1 (-167 *5 *3)) (-4 *3 (-1150 (-157 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-341) (-787)))
- (-5 *2 (-592 (-2 (|:| -3843 (-592 *3)) (|:| -1213 *4))))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))))
-(((*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1088 (-385 (-525)))) (-5 *1 (-877)) (-5 *3 (-525)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-592 (-385 *7)))
- (-4 *7 (-1150 *6)) (-5 *3 (-385 *7)) (-4 *6 (-341))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-535 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-415)) (-5 *1 (-1096)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4))))
- (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-341))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-535 *5 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
- ((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517))
- (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8))))
- (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-592 *8)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818))
- (-5 *3 (-592 (-525)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818))
- (-5 *3 (-592 (-525))))))
-(((*1 *2 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-901)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-1075)) (-5 *5 (-632 (-205)))
- (-5 *2 (-966)) (-5 *1 (-690)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-445)) (-5 *3 (-592 (-242))) (-5 *1 (-1175))))
- ((*1 *1 *1) (-5 *1 (-1175))))
(((*1 *2 *1)
- (-12 (-5 *2 (-159)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
- (-4 *4 (-977)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-592 (-273 *4))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
- (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-862))
- (-5 *2
- (-2 (|:| |brans| (-592 (-592 (-878 (-205)))))
- (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))))
- (-5 *1 (-144))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-385 (-525)))
- (-5 *2
- (-2 (|:| |brans| (-592 (-592 (-878 (-205)))))
- (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))))
- (-5 *1 (-144))))
- ((*1 *2 *3)
(-12
(-5 *2
- (-2 (|:| |brans| (-592 (-592 (-878 (-205)))))
- (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))))
- (-5 *1 (-144)) (-5 *3 (-592 (-878 (-205))))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-592 (-592 (-878 (-205)))))
- (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))))
- (-5 *1 (-144)) (-5 *3 (-592 (-592 (-878 (-205)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-632 *4)) (-4 *4 (-341)) (-5 *2 (-1088 *4))
- (-5 *1 (-498 *4 *5 *6)) (-4 *5 (-341)) (-4 *6 (-13 (-341) (-787))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-856)) (-4 *4 (-346)) (-4 *4 (-341)) (-5 *2 (-1088 *1))
- (-4 *1 (-307 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1088 *3))))
+ (-592
+ (-2
+ (|:| -1556
+ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (|:| -3448
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1073 (-205)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1777
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-520))))
((*1 *2 *1)
- (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *3 (-341))
- (-4 *2 (-1150 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1174 *4)) (-4 *4 (-327)) (-5 *2 (-1088 *4))
- (-5 *1 (-495 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-713)) (-4 *5 (-977)) (-4 *2 (-1150 *5))
- (-5 *1 (-1168 *5 *2 *6 *3)) (-4 *6 (-602 *2)) (-4 *3 (-1165 *5)))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
+ (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1128))
+ (-5 *2 (-592 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-878 (-205)))) (-5 *1 (-1175)))))
+(((*1 *1 *1) (-5 *1 (-501))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1092)))
- (-4 *5 (-517)) (-5 *2 (-592 (-592 (-887 *5)))) (-5 *1 (-1098 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1092)) (-4 *4 (-977)) (-4 *4 (-789))
- (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -4193 (-525))))
- (-4 *1 (-408 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-110)) (-4 *4 (-977)) (-4 *4 (-789))
- (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -4193 (-525))))
- (-4 *1 (-408 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1032)) (-4 *3 (-789))
- (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -4193 (-525))))
- (-4 *1 (-408 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-827 *3)) (|:| -4193 (-713))))
- (-5 *1 (-827 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-2 (|:| |var| *5) (|:| -4193 (-713))))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977))
- (-4 *7 (-884 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -4193 (-525))))
- (-5 *1 (-885 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-341)
- (-10 -8 (-15 -1217 ($ *7)) (-15 -3114 (*7 $))
- (-15 -3123 (*7 $))))))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-698)))))
-(((*1 *2)
- (-12 (-5 *2 (-892 (-1039))) (-5 *1 (-321 *3 *4)) (-14 *3 (-856))
- (-14 *4 (-856))))
- ((*1 *2)
- (-12 (-5 *2 (-892 (-1039))) (-5 *1 (-322 *3 *4)) (-4 *3 (-327))
- (-14 *4 (-1088 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-892 (-1039))) (-5 *1 (-323 *3 *4)) (-4 *3 (-327))
- (-14 *4 (-856)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1092)) (-5 *2 (-1 (-1088 (-887 *4)) (-887 *4)))
- (-5 *1 (-1182 *4)) (-4 *4 (-341)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |polnum| (-724 *3)) (|:| |polden| *3) (|:| -3047 (-713))))
- (-5 *1 (-724 *3)) (-4 *3 (-977))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3047 (-713))))
- (-4 *1 (-991 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-592 (-565 *6))) (-5 *4 (-1092)) (-5 *2 (-565 *6))
- (-4 *6 (-408 *5)) (-4 *5 (-789)) (-5 *1 (-534 *5 *6)))))
+ (-12 (-5 *3 (-1092)) (-4 *5 (-341)) (-5 *2 (-1073 (-1073 (-887 *5))))
+ (-5 *1 (-1182 *5)) (-5 *4 (-1073 (-887 *5))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4))
- (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-414)))))
+ (-12 (-5 *4 (-1 (-592 *5) *6))
+ (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *6 (-1150 *5))
+ (-5 *2 (-592 (-2 (|:| -2247 *5) (|:| -1537 *3))))
+ (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6))
+ (-4 *7 (-602 (-385 *6))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1092)) (-4 *5 (-1132)) (-4 *6 (-1150 *5))
- (-4 *7 (-1150 (-385 *6))) (-5 *2 (-592 (-887 *5)))
- (-5 *1 (-319 *4 *5 *6 *7)) (-4 *4 (-320 *5 *6 *7))))
+ (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1150 *4))
+ (-4 *5 (-1150 (-385 *3))) (-5 *2 (-108))))
((*1 *2 *3)
- (-12 (-5 *3 (-1092)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1132))
- (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5))) (-4 *4 (-341))
- (-5 *2 (-592 (-887 *4))))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2 (-2 (|:| -4188 (-110)) (|:| |w| (-205)))) (-5 *1 (-186)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4258)) (-4 *1 (-464 *3)) (-4 *3 (-1128))
- (-4 *3 (-1020)) (-5 *2 (-713))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4258)) (-4 *1 (-464 *4))
- (-4 *4 (-1128)) (-5 *2 (-713)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-525))) (-5 *5 (-1 (-1073 *4))) (-4 *4 (-341))
- (-4 *4 (-977)) (-5 *2 (-1073 *4)) (-5 *1 (-1077 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-157 (-205))) (-5 *4 (-525)) (-5 *2 (-966))
- (-5 *1 (-701)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1150 *4)) (-4 *4 (-1132))
- (-4 *6 (-1150 (-385 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-320 *4 *5 *6)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-1103 *2)) (-4 *2 (-341)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1057 *5 *6)) (-5 *4 (-1 (-108) *6 *6))
- (-4 *5 (-13 (-1020) (-33))) (-4 *6 (-13 (-1020) (-33)))
- (-5 *2 (-108)) (-5 *1 (-1058 *5 *6)))))
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-294 *3)) (-4 *3 (-13 (-977) (-789)))
+ (-5 *1 (-203 *3 *4)) (-14 *4 (-592 (-1092))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-341) (-138) (-968 (-525)))) (-4 *5 (-1150 *4))
+ (-5 *2 (-2 (|:| |ans| (-385 *5)) (|:| |nosol| (-108))))
+ (-5 *1 (-947 *4 *5)) (-5 *3 (-385 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1088 *4)) (-5 *1 (-495 *4))
+ (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-544 *4))
(-4 *4 (-327)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-477 *3 *4 *5 *6))) (-4 *3 (-341)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-5 *2 (-525)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1073 (-525))) (-5 *1 (-1077 *4)) (-4 *4 (-977))
+ (-5 *3 (-525)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-592 (-565 *4))) (-4 *4 (-408 *3)) (-4 *3 (-789))
+ (-5 *1 (-534 *3 *4))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
- (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-996 *4 *5 *6 *7))
- (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-996 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1))
- (-4 *1 (-996 *4 *5 *6 *3))))
+ (-12 (-5 *1 (-824 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020))))
((*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-308)))))
-(((*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-713)) (-4 *5 (-517))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-903 *5 *3)) (-4 *3 (-1150 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-98 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-920 (-385 (-525)) (-800 *3) (-220 *4 (-713))
+ (-227 *3 (-385 (-525)))))
+ (-14 *3 (-592 (-1092))) (-14 *4 (-713)) (-5 *1 (-919 *3 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1088 *6)) (-5 *3 (-525)) (-4 *6 (-286)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-205))))
- ((*1 *1 *1) (-4 *1 (-510)))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-548 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-4 *1 (-1020)) (-5 *2 (-1039)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
- (-4 *4 (-351 *2)))))
-(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -4188 (-110)) (|:| |arg| (-592 (-827 *3)))))
- (-5 *1 (-827 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-827 *4)))
- (-5 *1 (-827 *4)) (-4 *4 (-1020)))))
+ (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
+ (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1097))) (-5 *1 (-169)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-429)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4)))
- (-5 *2 (-2 (|:| |num| (-1174 *4)) (|:| |den| *4))))))
-(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-146)))))
+ (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-5 *2 (-108)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-856)) (-5 *1 (-963 *2))
- (-4 *2 (-13 (-1020) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092))))
- (-4 *6 (-735)) (-4 *7 (-884 *4 *6 *5))
- (-5 *2
- (-2 (|:| |sysok| (-108)) (|:| |z0| (-592 *7)) (|:| |n0| (-592 *7))))
- (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *5)) (-5 *4 (-856)) (-4 *5 (-789))
- (-5 *2 (-592 (-617 *5))) (-5 *1 (-617 *5)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1088 *1)) (-4 *1 (-944)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-525))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-735)) (-4 *4 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789))
- (-5 *1 (-426 *5 *6 *7 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1122 *4 *5 *3 *6)) (-4 *4 (-517)) (-4 *5 (-735))
- (-4 *3 (-789)) (-4 *6 (-991 *4 *5 *3)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2 (-357)) (-5 *1 (-174)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-800 *5))
- (-14 *5 (-592 (-1092))) (-5 *2 (-457 *5 *6)) (-5 *1 (-580 *5 *6))
- (-4 *6 (-429))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-800 *5))
- (-14 *5 (-592 (-1092))) (-5 *2 (-457 *5 *6)) (-5 *1 (-580 *5 *6))
- (-4 *6 (-429)))))
-(((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-592 (-592 (-878 (-205)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-592 (-592 (-878 (-205))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *5)) (-5 *4 (-856)) (-4 *5 (-789))
- (-5 *2 (-57 (-592 (-617 *5)))) (-5 *1 (-617 *5)))))
+ (-12 (-5 *2 (-1 (-878 (-205)) (-205) (-205)))
+ (-5 *3 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-234)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-789)) (-5 *1 (-1100 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
- (-4 *4 (-351 *2)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-519 *2)) (-4 *2 (-510)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-305 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-488 *3 *4))
- (-14 *4 (-525)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+ (-12 (-4 *1 (-1042 *3 *4 *2 *5)) (-4 *4 (-977)) (-4 *5 (-218 *3 *4))
+ (-4 *2 (-218 *3 *4)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *2 (-966)) (-5 *1 (-695)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-525))) (-4 *3 (-977)) (-5 *1 (-550 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-126))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1134 *3)) (-4 *3 (-977))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-339 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1165 *3)) (-4 *3 (-977)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-364 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-595 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-341)) (-4 *1 (-307 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1150 *4)) (-4 *4 (-1132))
- (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1150 (-385 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1174 *4)) (-5 *3 (-1174 *1)) (-4 *4 (-160))
- (-4 *1 (-345 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1174 *4)) (-5 *3 (-1174 *1)) (-4 *4 (-160))
- (-4 *1 (-348 *4 *5)) (-4 *5 (-1150 *4))))
+ (-12 (-5 *2 (-1187 (-1092) *3)) (-4 *3 (-977)) (-5 *1 (-1194 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4))
- (-4 *4 (-1150 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3)))))
-(((*1 *1)
- (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
- (-4 *4 (-160)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |mval| (-632 *3)) (|:| |invmval| (-632 *3))
- (|:| |genIdeal| (-477 *3 *4 *5 *6))))
- (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))))
-(((*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-592 (-110))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1020)) (-4 *5 (-1020))
- (-5 *2 (-1 *5)) (-5 *1 (-626 *4 *5)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789))
- (-5 *2 (-2 (|:| -3244 (-525)) (|:| |var| (-565 *1))))
- (-4 *1 (-408 *3)))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4260 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2))
- (-4 *2 (-977)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1150 *2))
- (-4 *4 (-630 *2 *5 *6)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1174 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517))
- (-5 *2 (-1174 *4)) (-5 *1 (-587 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-429) (-138))) (-5 *2 (-396 *3))
- (-5 *1 (-95 *4 *3)) (-4 *3 (-1150 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-13 (-429) (-138)))
- (-5 *2 (-396 *3)) (-5 *1 (-95 *5 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-977)) (-5 *1 (-1146 *3 *2)) (-4 *2 (-1150 *3)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *2 (-966)) (-5 *1 (-695)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-778))
- (-5 *3
- (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205)))
- (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205))))
- (|:| |ub| (-592 (-782 (-205))))))
- (-5 *2 (-966))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-778))
- (-5 *3
- (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))
- (-5 *2 (-966)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1128)) (-4 *2 (-977))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-798))))
- ((*1 *1 *1) (-5 *1 (-798)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-878 (-205))) (-5 *2 (-205)) (-5 *1 (-1125))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1128)) (-4 *2 (-977)))))
+ (-12 (-5 *2 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
+ (-5 *1 (-1196 *3 *4)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-429)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-989)))))
-(((*1 *1) (-5 *1 (-135)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-242))) (-5 *2 (-1052 (-205))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-1052 (-205))) (-5 *1 (-242)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1150 *5))
- (-5 *2 (-592 *3)) (-5 *1 (-719 *4 *5 *6 *3 *7)) (-4 *3 (-1150 *6))
- (-14 *7 (-856)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1179))
- (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-966)) (-5 *1 (-284))))
- ((*1 *2 *3) (-12 (-5 *3 (-592 (-966))) (-5 *2 (-966)) (-5 *1 (-284))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-597 *3)) (-4 *3 (-1128))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *1) (-5 *1 (-989)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1073 (-1073 *4))) (-5 *2 (-1073 *4)) (-5 *1 (-1070 *4))
- (-4 *4 (-1128))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-525)) (-4 *5 (-327)) (-5 *2 (-396 (-1088 (-1088 *5))))
- (-5 *1 (-1127 *5)) (-5 *3 (-1088 (-1088 *5))))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *2 (-966)) (-5 *1 (-695)))))
-(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
- ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-305 *3)) (-4 *3 (-1128))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1128))
- (-14 *4 (-525)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-699)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1073 (-205)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -3196
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-520)))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4260 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2))
- (-4 *2 (-977)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1150 *2))
- (-4 *4 (-630 *2 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
- ((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
-(((*1 *1 *1 *1) (-4 *1 (-510))))
-(((*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-423)) (-5 *3 (-525)))))
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1020))
- (-4 *2 (-13 (-408 *4) (-821 *3) (-567 (-827 *3))))
- (-5 *1 (-999 *3 *4 *2))
- (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1020)) (-5 *1 (-1082 *3 *2)) (-4 *3 (-1020)))))
-(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
- (-4 *3 (-13 (-341) (-1114) (-934))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4))
- (-4 *4 (-977))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-977))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713))))
- ((*1 *1 *1) (-4 *1 (-213)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4))
- (-4 *4 (-1150 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3))
- (-4 *3 (-1150 *2))))
- ((*1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-835 *4))
- (-4 *4 (-1020))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-835 *2)) (-4 *2 (-1020))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *1 (-835 *3)) (-4 *3 (-1020))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1020)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341))
- (-4 *7 (-1150 (-385 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -3563 *3)))
- (-5 *1 (-523 *5 *6 *7 *3)) (-4 *3 (-320 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341))
- (-5 *2
- (-2 (|:| |answer| (-385 *6)) (|:| -3563 (-385 *6))
- (|:| |specpart| (-385 *6)) (|:| |polypart| *6)))
- (-5 *1 (-524 *5 *6)) (-5 *3 (-385 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-632 (-385 (-887 (-525)))))
- (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-962))
- (-5 *3 (-294 (-525))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3377 *4)))
- (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
+ (-12 (-4 *4 (-341)) (-5 *2 (-856)) (-5 *1 (-306 *3 *4))
+ (-4 *3 (-307 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-341)) (-5 *2 (-775 (-856))) (-5 *1 (-306 *3 *4))
+ (-4 *3 (-307 *4))))
+ ((*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-856))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-856))))))
+(((*1 *1) (-5 *1 (-415))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1097)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-780)) (-5 *4 (-989)) (-5 *2 (-966)) (-5 *1 (-779))))
- ((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-966)) (-5 *1 (-779))))
- ((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-592 (-357))) (-5 *5 (-592 (-782 (-357))))
- (-5 *6 (-592 (-294 (-357)))) (-5 *3 (-294 (-357))) (-5 *2 (-966))
- (-5 *1 (-779))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357)))
- (-5 *5 (-592 (-782 (-357)))) (-5 *2 (-966)) (-5 *1 (-779))))
+ (|partial| -12 (-5 *4 (-273 (-775 *3)))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-775 *3)) (-5 *1 (-585 *5 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357))) (-5 *2 (-966))
- (-5 *1 (-779))))
+ (-12 (-5 *4 (-273 (-775 (-887 *5)))) (-4 *5 (-429))
+ (-5 *2 (-775 (-385 (-887 *5)))) (-5 *1 (-586 *5))
+ (-5 *3 (-385 (-887 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357)))
- (-5 *2 (-966)) (-5 *1 (-779)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-290)) (-5 *1 (-771)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-977)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1150 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-294 (-205))) (-5 *2 (-385 (-525))) (-5 *1 (-284)))))
-(((*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1020))
- (-4 *2 (-13 (-408 *4) (-821 *3) (-567 (-827 *3))))
- (-5 *1 (-999 *3 *4 *2))
- (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1020)) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1020)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1075)) (-5 *1 (-922))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *3 (-1015 *4)) (-4 *4 (-1128))
- (-5 *1 (-1013 *4)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-525)) (-5 *5 (-157 (-205))) (-5 *6 (-1075))
- (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-977)) (-4 *7 (-977))
- (-4 *6 (-1150 *5)) (-5 *2 (-1088 (-1088 *7)))
- (-5 *1 (-474 *5 *6 *4 *7)) (-4 *4 (-1150 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)) (-4 *2 (-341))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2))
- (-4 *2 (-602 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-228)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4258)) (-4 *1 (-464 *3)) (-4 *3 (-1128))
- (-4 *3 (-1020)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-840 *4)) (-4 *4 (-1020)) (-5 *2 (-108))
- (-5 *1 (-839 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-856)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
+ (-12 (-5 *4 (-273 (-385 (-887 *5)))) (-5 *3 (-385 (-887 *5)))
+ (-4 *5 (-429)) (-5 *2 (-775 *3)) (-5 *1 (-586 *5)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (-5 *2 (-357)) (-5 *1 (-187)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-341) (-281)
- (-10 -8 (-15 -3114 ((-1044 *3 (-565 $)) $))
- (-15 -3123 ((-1044 *3 (-565 $)) $))
- (-15 -1217 ($ (-1044 *3 (-565 $))))))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-408 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3))
- (-4 *3 (-1020))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-592 *1)) (-4 *1 (-884 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977))
- (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-592 *3))
- (-5 *1 (-885 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-341)
- (-10 -8 (-15 -1217 ($ *7)) (-15 -3114 (*7 $))
- (-15 -3123 (*7 $))))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-341)) (-4 *3 (-977))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3409 *1)))
- (-4 *1 (-791 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-1175))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1150 *4)) (-5 *1 (-749 *4 *2 *3 *5))
- (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2))
- (-4 *5 (-602 (-385 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1150 *4)) (-5 *1 (-749 *4 *2 *5 *3))
- (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-602 *2))
- (-4 *3 (-602 (-385 *2))))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-1 (-108) *5 *5))
- (-5 *4 (-592 *5)) (-4 *5 (-789)) (-5 *1 (-1100 *5)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-456)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *2 (-789))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 *1)) (-5 *4 (-1174 *1)) (-4 *1 (-588 *5))
- (-4 *5 (-977))
- (-5 *2 (-2 (|:| -3407 (-632 *5)) (|:| |vec| (-1174 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-632 *1)) (-4 *1 (-588 *4)) (-4 *4 (-977))
- (-5 *2 (-632 *4)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6))
- (-4 *5 (-13 (-1020) (-33))) (-4 *6 (-13 (-1020) (-33)))
- (-5 *2 (-108)) (-5 *1 (-1057 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818))
- (-5 *3 (-592 (-525))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-592 (-724 *3))) (-5 *1 (-724 *3)) (-4 *3 (-517))
- (-4 *3 (-977)))))
-(((*1 *1 *1 *1) (-4 *1 (-450))) ((*1 *1 *1 *1) (-4 *1 (-704))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-713)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-977)) (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
- (-4 *5 (-218 *3 *2)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 (-887 *3))) (-4 *3 (-429)) (-5 *1 (-338 *3 *4))
- (-14 *4 (-592 (-1092)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-427 *3 *4 *5 *6))))
+ (-12 (-5 *3 (-592 (-2 (|:| -2219 *4) (|:| -4016 (-525)))))
+ (-4 *4 (-1020)) (-5 *2 (-1 *4)) (-5 *1 (-949 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-735))
+ (-4 *3 (-13 (-789) (-10 -8 (-15 -2069 ((-1092) $))))) (-4 *5 (-517))
+ (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-884 (-385 (-887 *5)) *4 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 *7)) (-5 *3 (-1075)) (-4 *7 (-884 *4 *5 *6))
- (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *1 (-427 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-592 *7)) (-5 *3 (-1075)) (-4 *7 (-884 *4 *5 *6))
- (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *1 (-427 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
- (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-592 (-722 *3 (-800 *4)))) (-4 *3 (-429))
- (-14 *4 (-592 (-1092))) (-5 *1 (-577 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1150 (-525))) (-5 *1 (-461 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1092))
- (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
- (-4 *4 (-13 (-29 *6) (-1114) (-893)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -3094 (-592 *4))))
- (-5 *1 (-743 *6 *4 *3)) (-4 *3 (-602 *4)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2))
- (-4 *2 (-1150 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-297 *3 *4 *5))
- (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1092)) (-14 *5 *3))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-142 *2))
- (-4 *2 (-1128)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977))
- (-5 *2 (-592 (-592 (-592 (-713))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-838 *3)) (-4 *3 (-1020)) (-5 *2 (-1022 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1020)) (-5 *2 (-1022 (-592 *4))) (-5 *1 (-839 *4))
- (-5 *3 (-592 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1020)) (-5 *2 (-1022 (-1022 *4))) (-5 *1 (-839 *4))
- (-5 *3 (-1022 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-1022 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-525))
- (-5 *6
- (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2393 (-357))))
- (-5 *7 (-1 (-1179) (-1174 *5) (-1174 *5) (-357)))
- (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179))
- (-5 *1 (-730))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-525))
- (-5 *6
- (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2393 (-357))))
- (-5 *7 (-1 (-1179) (-1174 *5) (-1174 *5) (-357)))
- (-5 *3 (-1174 (-357))) (-5 *5 (-357)) (-5 *2 (-1179))
- (-5 *1 (-730)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1020))
- (-4 *6 (-1020)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-627 *4 *5 *6)))))
+ (-12 (-4 *4 (-977)) (-4 *5 (-735))
+ (-4 *3
+ (-13 (-789)
+ (-10 -8 (-15 -2069 ((-1092) $))
+ (-15 -3469 ((-3 $ "failed") (-1092))))))
+ (-5 *1 (-917 *4 *5 *3 *2)) (-4 *2 (-884 (-887 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 *6))
+ (-4 *6
+ (-13 (-789)
+ (-10 -8 (-15 -2069 ((-1092) $))
+ (-15 -3469 ((-3 $ "failed") (-1092))))))
+ (-4 *4 (-977)) (-4 *5 (-735)) (-5 *1 (-917 *4 *5 *6 *2))
+ (-4 *2 (-884 (-887 *4) *5 *6)))))
(((*1 *1 *2)
(|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5))
(-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
@@ -12286,342 +14613,36 @@
(|partial| -12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8))
(-5 *4 (-1 *8 *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517))
(-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1185 *5 *6 *7 *8)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-153 *3 *2)) (-4 *3 (-154 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *2 *4)) (-4 *4 (-1150 *2))
- (-4 *2 (-160))))
- ((*1 *2)
- (-12 (-4 *4 (-1150 *2)) (-4 *2 (-160)) (-5 *1 (-386 *3 *2 *4))
- (-4 *3 (-387 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1150 *2)) (-4 *2 (-160))))
- ((*1 *2)
- (-12 (-4 *3 (-1150 *2)) (-5 *2 (-525)) (-5 *1 (-710 *3 *4))
- (-4 *4 (-387 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *2 (-789)) (-4 *3 (-160))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-517)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1150 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-160)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1092))
- (-5 *1 (-241 *2)) (-4 *2 (-1128))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1092)) (-5 *2 (-51))
- (-5 *1 (-242)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1073 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-525))) (-5 *4 (-525)) (-5 *2 (-51))
- (-5 *1 (-937)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1174 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517))
- (-5 *2 (-108)) (-5 *1 (-587 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-284)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 (-157 (-385 (-525)))))
- (-5 *2
- (-592
- (-2 (|:| |outval| (-157 *4)) (|:| |outmult| (-525))
- (|:| |outvect| (-592 (-632 (-157 *4)))))))
- (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |k| (-617 *3)) (|:| |c| *4))))
- (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
- (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1150 *9)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-286))
- (-4 *10 (-884 *9 *7 *8))
- (-5 *2
- (-2 (|:| |deter| (-592 (-1088 *10)))
- (|:| |dterm|
- (-592 (-592 (-2 (|:| -2087 (-713)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-592 *6)) (|:| |nlead| (-592 *10))))
- (-5 *1 (-720 *6 *7 *8 *9 *10)) (-5 *3 (-1088 *10)) (-5 *4 (-592 *6))
- (-5 *5 (-592 *10)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -1642 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-341)) (-4 *7 (-1150 *6))
- (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6)))
- (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-887 (-525)))) (-5 *1 (-415))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1092)) (-5 *4 (-632 (-205))) (-5 *2 (-1024))
- (-5 *1 (-702))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1092)) (-5 *4 (-632 (-525))) (-5 *2 (-1024))
- (-5 *1 (-702)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-592 (-1174 *4))) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517))
- (-5 *2 (-592 (-1174 *3))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-108))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1122 *5 *6 *7 *3))
- (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7))
- (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
- (-5 *1 (-31 *4 *5)) (-4 *5 (-408 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
- (-5 *1 (-147 *4 *5)) (-4 *5 (-408 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
- (-5 *1 (-255 *4 *5)) (-4 *5 (-13 (-408 *4) (-934)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-280 *4)) (-4 *4 (-281))))
- ((*1 *2 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *5 (-789)) (-5 *2 (-108))
- (-5 *1 (-407 *4 *5)) (-4 *4 (-408 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
- (-5 *1 (-409 *4 *5)) (-4 *5 (-408 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
- (-5 *1 (-579 *4 *5)) (-4 *5 (-13 (-408 *4) (-934) (-1114))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-565 *4)) (-4 *4 (-789)) (-4 *2 (-789))
- (-5 *1 (-564 *2 *4)))))
-(((*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1114))))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-4 *1 (-102 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-884 *4 *6 *5)) (-4 *4 (-429))
- (-4 *5 (-789)) (-4 *6 (-735)) (-5 *1 (-920 *4 *5 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-632 (-385 (-887 *4)))) (-4 *4 (-429))
- (-5 *2 (-592 (-3 (-385 (-887 *4)) (-1082 (-1092) (-887 *4)))))
- (-5 *1 (-271 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-986)) (-4 *3 (-1114))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-525)) (-5 *5 (-108)) (-5 *6 (-632 (-205)))
- (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-698)))))
(((*1 *2)
(-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
(-4 *3 (-345 *4))))
((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-977) (-789)))
- (-14 *3 (-592 (-1092))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 *8)) (-5 *4 (-713)) (-4 *8 (-884 *5 *7 *6))
- (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092))))
- (-4 *7 (-735))
- (-5 *2
- (-592
- (-2 (|:| |det| *8) (|:| |rows| (-592 (-525)))
- (|:| |cols| (-592 (-525))))))
- (-5 *1 (-859 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-592 *6) "failed") (-525) *6 *6)) (-4 *6 (-341))
- (-4 *7 (-1150 *6))
- (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6)))
- (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-592 (-108))) (-5 *5 (-632 (-205)))
- (-5 *6 (-632 (-525))) (-5 *7 (-205)) (-5 *3 (-525)) (-5 *2 (-966))
- (-5 *1 (-697)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1073 *3))) (-5 *2 (-1073 *3)) (-5 *1 (-1077 *3))
- (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-327)) (-5 *2 (-1174 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-136)) (-4 *1 (-844))
- (-5 *2 (-1174 *1)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-525))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966))
- (-5 *1 (-691)))))
+ (-12 (|has| *1 (-6 -4259)) (-4 *1 (-142 *2)) (-4 *2 (-1128))
+ (-4 *2 (-1020)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-357)) (-5 *1 (-989)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205)))
- (|:| |lb| (-592 (-782 (-205))))
- (|:| |cf| (-592 (-294 (-205))))
- (|:| |ub| (-592 (-782 (-205))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-592 (-294 (-205))))
- (|:| -2295 (-592 (-205)))))))
- (-5 *2 (-592 (-1075))) (-5 *1 (-246)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-273 (-782 *3))) (-4 *3 (-13 (-27) (-1114) (-408 *5)))
- (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2
- (-3 (-782 *3)
- (-2 (|:| |leftHandLimit| (-3 (-782 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-782 *3) "failed")))
- "failed"))
- (-5 *1 (-585 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-273 *3)) (-5 *5 (-1075))
- (-4 *3 (-13 (-27) (-1114) (-408 *6)))
- (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-782 *3)) (-5 *1 (-585 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-273 (-782 (-887 *5)))) (-4 *5 (-429))
- (-5 *2
- (-3 (-782 (-385 (-887 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-782 (-385 (-887 *5))) "failed")))
- "failed"))
- (-5 *1 (-586 *5)) (-5 *3 (-385 (-887 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-273 (-385 (-887 *5)))) (-5 *3 (-385 (-887 *5)))
- (-4 *5 (-429))
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
+ (-4 *4 (-13 (-789) (-517))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108))
+ (-5 *2 (-966)) (-5 *1 (-688)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2772 *3)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))))
+(((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-977)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4))
(-5 *2
- (-3 (-782 *3)
- (-2 (|:| |leftHandLimit| (-3 (-782 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-782 *3) "failed")))
- "failed"))
- (-5 *1 (-586 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-273 (-385 (-887 *6)))) (-5 *5 (-1075))
- (-5 *3 (-385 (-887 *6))) (-4 *6 (-429)) (-5 *2 (-782 *3))
- (-5 *1 (-586 *6)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-510))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-856)) (-5 *2 (-1179)) (-5 *1 (-195 *4))
- (-4 *4
- (-13 (-789)
- (-10 -8 (-15 -3406 ((-1075) $ (-1092))) (-15 -2736 (*2 $))
- (-15 -1934 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1179)) (-5 *1 (-195 *3))
- (-4 *3
- (-13 (-789)
- (-10 -8 (-15 -3406 ((-1075) $ (-1092))) (-15 -2736 (*2 $))
- (-15 -1934 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-475)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7))
- (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735))
- (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-994 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7))
- (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735))
- (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-105))))
- ((*1 *2 *1) (-12 (-4 *1 (-127)) (-5 *2 (-713))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-351 *3)) (-4 *3 (-1128))
- (-4 *3 (-1020))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-351 *3)) (-4 *3 (-1128)) (-4 *3 (-1020))
- (-5 *2 (-525))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-351 *4)) (-4 *4 (-1128))
- (-5 *2 (-525))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-525)) (-5 *3 (-132))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-525)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1174 *4)) (-4 *4 (-977)) (-4 *2 (-1150 *4))
- (-5 *1 (-421 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-385 (-1088 (-294 *5)))) (-5 *3 (-1174 (-294 *5)))
- (-5 *4 (-525)) (-4 *5 (-13 (-517) (-789))) (-5 *1 (-1049 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-525)) (|has| *1 (-6 -4249)) (-4 *1 (-382))
- (-5 *2 (-856)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
- (-5 *1 (-1043 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-341))
- (-5 *1 (-492 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2))
- (|has| *2 (-6 (-4260 "*"))) (-4 *2 (-977))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160))
- (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
- (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4260 "*"))) (-4 *2 (-977)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-525)) (-5 *1 (-221))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-525)) (-5 *1 (-221)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1128))
- (-4 *5 (-351 *4)) (-4 *3 (-351 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-565 *1)) (-4 *1 (-281)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-592 *4)) (-4 *4 (-789))
- (-5 *1 (-1100 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-592 *11))
- (|:| |todo| (-592 (-2 (|:| |val| *3) (|:| -2563 *11))))))
- (-5 *6 (-713))
- (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -2563 *11))))
- (-5 *3 (-592 *10)) (-5 *4 (-592 *11)) (-4 *10 (-991 *7 *8 *9))
- (-4 *11 (-996 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-735))
- (-4 *9 (-789)) (-5 *1 (-994 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-592 *11))
- (|:| |todo| (-592 (-2 (|:| |val| *3) (|:| -2563 *11))))))
- (-5 *6 (-713))
- (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -2563 *11))))
- (-5 *3 (-592 *10)) (-5 *4 (-592 *11)) (-4 *10 (-991 *7 *8 *9))
- (-4 *11 (-1029 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-735))
- (-4 *9 (-789)) (-5 *1 (-1062 *7 *8 *9 *10 *11)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-294 *3)) (-4 *3 (-13 (-977) (-789)))
- (-5 *1 (-203 *3 *4)) (-14 *4 (-592 (-1092))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
- (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5))
- (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-1185 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517))
- (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1185 *5 *6 *7 *8)))))
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-385 *5))
+ (|:| |c2| (-385 *5)) (|:| |deg| (-713))))
+ (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1150 (-385 *5))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-632 *8)) (-4 *8 (-884 *5 *7 *6))
(-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1092))))
@@ -12632,7 +14653,7 @@
(|:| |wcond| (-592 (-887 *5)))
(|:| |bsoln|
(-2 (|:| |partsol| (-1174 (-385 (-887 *5))))
- (|:| -3094 (-592 (-1174 (-385 (-887 *5))))))))))
+ (|:| -2103 (-592 (-1174 (-385 (-887 *5))))))))))
(-5 *1 (-859 *5 *6 *7 *8)) (-5 *4 (-592 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-632 *8)) (-5 *4 (-592 (-1092))) (-4 *8 (-884 *5 *7 *6))
@@ -12644,7 +14665,7 @@
(|:| |wcond| (-592 (-887 *5)))
(|:| |bsoln|
(-2 (|:| |partsol| (-1174 (-385 (-887 *5))))
- (|:| -3094 (-592 (-1174 (-385 (-887 *5))))))))))
+ (|:| -2103 (-592 (-1174 (-385 (-887 *5))))))))))
(-5 *1 (-859 *5 *6 *7 *8))))
((*1 *2 *3)
(-12 (-5 *3 (-632 *7)) (-4 *7 (-884 *4 *6 *5))
@@ -12656,7 +14677,7 @@
(|:| |wcond| (-592 (-887 *4)))
(|:| |bsoln|
(-2 (|:| |partsol| (-1174 (-385 (-887 *4))))
- (|:| -3094 (-592 (-1174 (-385 (-887 *4))))))))))
+ (|:| -2103 (-592 (-1174 (-385 (-887 *4))))))))))
(-5 *1 (-859 *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-632 *9)) (-5 *5 (-856)) (-4 *9 (-884 *6 *8 *7))
@@ -12668,7 +14689,7 @@
(|:| |wcond| (-592 (-887 *6)))
(|:| |bsoln|
(-2 (|:| |partsol| (-1174 (-385 (-887 *6))))
- (|:| -3094 (-592 (-1174 (-385 (-887 *6))))))))))
+ (|:| -2103 (-592 (-1174 (-385 (-887 *6))))))))))
(-5 *1 (-859 *6 *7 *8 *9)) (-5 *4 (-592 *9))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-632 *9)) (-5 *4 (-592 (-1092))) (-5 *5 (-856))
@@ -12680,7 +14701,7 @@
(|:| |wcond| (-592 (-887 *6)))
(|:| |bsoln|
(-2 (|:| |partsol| (-1174 (-385 (-887 *6))))
- (|:| -3094 (-592 (-1174 (-385 (-887 *6))))))))))
+ (|:| -2103 (-592 (-1174 (-385 (-887 *6))))))))))
(-5 *1 (-859 *6 *7 *8 *9))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-632 *8)) (-5 *4 (-856)) (-4 *8 (-884 *5 *7 *6))
@@ -12692,7 +14713,7 @@
(|:| |wcond| (-592 (-887 *5)))
(|:| |bsoln|
(-2 (|:| |partsol| (-1174 (-385 (-887 *5))))
- (|:| -3094 (-592 (-1174 (-385 (-887 *5))))))))))
+ (|:| -2103 (-592 (-1174 (-385 (-887 *5))))))))))
(-5 *1 (-859 *5 *6 *7 *8))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-632 *9)) (-5 *4 (-592 *9)) (-5 *5 (-1075))
@@ -12723,96 +14744,51 @@
(-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138)))
(-4 *7 (-13 (-789) (-567 (-1092)))) (-4 *8 (-735)) (-5 *2 (-525))
(-5 *1 (-859 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641)))))
-(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
- ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1092)) (-5 *1 (-620 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1165 *3)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4258)) (-4 *1 (-142 *2)) (-4 *2 (-1128))
- (-4 *2 (-1020)))))
-(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-592 (-2 (|:| |func| *2) (|:| |pole| (-108)))))
- (-4 *2 (-13 (-408 *4) (-934))) (-4 *4 (-13 (-789) (-517)))
- (-5 *1 (-255 *4 *2)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789)))))
-(((*1 *2 *1) (-12 (-4 *3 (-977)) (-5 *2 (-592 *1)) (-4 *1 (-1053 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160))
- (-4 *5 (-1150 *4)) (-5 *2 (-632 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1150 *3))
- (-5 *2 (-632 *3)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-592 *9)) (-5 *3 (-1 (-108) *9))
- (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-991 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789))
- (-5 *1 (-910 *6 *7 *8 *9)))))
-(((*1 *1 *1 *1) (-5 *1 (-798))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-592 (-887 *6))) (-5 *4 (-592 (-1092))) (-4 *6 (-429))
- (-5 *2 (-592 (-592 *7))) (-5 *1 (-503 *6 *7 *5)) (-4 *7 (-341))
- (-4 *5 (-13 (-341) (-787))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095))))
- ((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1095)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-51)) (-5 *1 (-771)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357))
- (|:| |expense| (-357)) (|:| |accuracy| (-357))
- (|:| |intermediateResults| (-357))))
- (-5 *2 (-966)) (-5 *1 (-284)))))
-(((*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1128)))))
(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1020)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357)))))
-(((*1 *2)
- (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
- (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179))
- (-5 *1 (-997 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
- (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179))
- (-5 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3))
- (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1092))
- (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3))
- (-4 *3 (-13 (-1114) (-29 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-517)) (-4 *3 (-977))
- (-5 *2 (-2 (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-791 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-977))
- (-5 *2 (-2 (|:| -2829 *3) (|:| -1607 *3))) (-5 *1 (-792 *5 *3))
- (-4 *3 (-791 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-840 *4)) (-4 *4 (-1020)) (-5 *2 (-592 (-713)))
- (-5 *1 (-839 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977))))
- ((*1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))))
-(((*1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))))
+(((*1 *1)
+ (-12 (-4 *3 (-1020)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1020))
+ (-4 *4 (-612 *3))))
+ ((*1 *1) (-12 (-5 *1 (-824 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-286) (-138)))
+ (-4 *5 (-13 (-789) (-567 (-1092)))) (-4 *6 (-735))
+ (-5 *2
+ (-592
+ (-2 (|:| |eqzro| (-592 *7)) (|:| |neqzro| (-592 *7))
+ (|:| |wcond| (-592 (-887 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1174 (-385 (-887 *4))))
+ (|:| -2103 (-592 (-1174 (-385 (-887 *4))))))))))
+ (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-680 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1020))))
+ ((*1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2))
+ (-4 *2 (-1150 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1150 *3)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
+ ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
+ ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-357)) (-5 *1 (-989)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-991 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977))
+ (-4 *2 (-429))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 *4)) (-4 *4 (-1150 (-525))) (-5 *2 (-592 (-525)))
+ (-5 *1 (-461 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-429))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789)) (-4 *3 (-429)))))
+(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
(((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
((*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
((*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-789))))
@@ -12822,63 +14798,43 @@
((*1 *1 *1 *2)
(-12 (-5 *2 (-713)) (-4 *1 (-1162 *3)) (-4 *3 (-1128))))
((*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-977))
- (-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263)))
- (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1150 *4)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-408 *3) (-934))) (-5 *1 (-255 *3 *2))
- (-4 *3 (-13 (-789) (-517))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1088 *1)) (-4 *1 (-429))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1088 *6)) (-4 *6 (-884 *5 *3 *4)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *5 (-844)) (-5 *1 (-434 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1088 *1)) (-4 *1 (-844)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
- (-5 *1 (-610 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-610 *3 *4)) (-5 *1 (-1192 *3 *4))
- (-4 *3 (-789)) (-4 *4 (-160)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1020))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-1115 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-592 (-1115 *2))) (-5 *1 (-1115 *2)) (-4 *2 (-1020)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1101 (-592 *4))) (-4 *4 (-789))
- (-5 *2 (-592 (-592 *4))) (-5 *1 (-1100 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3407 (-632 (-385 (-887 *4))))
- (|:| |vec| (-592 (-385 (-887 *4)))) (|:| -3622 (-713))
- (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))
- (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092))))
- (-4 *6 (-735))
+(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
(-5 *2
- (-2 (|:| |partsol| (-1174 (-385 (-887 *4))))
- (|:| -3094 (-592 (-1174 (-385 (-887 *4)))))))
- (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
- (-5 *2 (-2 (|:| -2719 (-592 *6)) (|:| -3459 (-592 *6)))))))
+ (-2 (|:| -2219 *4) (|:| -2188 *4) (|:| |totalpts| (-525))
+ (|:| |success| (-108))))
+ (-5 *1 (-731)) (-5 *5 (-525)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-592 *6)) (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
+ (-4 *3 (-517)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1075)) (-5 *2 (-195 (-475))) (-5 *1 (-777)))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966))
- (-5 *1 (-691)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-592 (-1088 *4))) (-5 *3 (-1088 *4))
- (-4 *4 (-844)) (-5 *1 (-609 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
- ((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ (-12 (-4 *4 (-13 (-517) (-789)))
+ (-4 *2 (-13 (-408 *4) (-934) (-1114))) (-5 *1 (-554 *4 *2 *3))
+ (-4 *3 (-13 (-408 (-157 *4)) (-934) (-1114))))))
+(((*1 *2 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286))))
+ ((*1 *2 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286))))
+ ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-286))))
+ ((*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-525)))))
+(((*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1128))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *1 *1) (-4 *1 (-1056))))
+ (-12 (-4 *3 (-977)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1150 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1075)) (-5 *5 (-632 (-205))) (-5 *6 (-205))
+ (-5 *7 (-632 (-525))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
(((*1 *2 *1)
(-12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1020)) (-4 *3 (-789))
(-4 *2 (-1128))))
@@ -12893,142 +14849,53 @@
((*1 *1 *1 *2)
(-12 (-5 *2 (-713)) (-4 *1 (-1162 *3)) (-4 *3 (-1128))))
((*1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
-(((*1 *2)
- (-12 (-4 *3 (-977)) (-5 *2 (-892 (-655 *3 *4))) (-5 *1 (-655 *3 *4))
- (-4 *4 (-1150 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-1096)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-592 (-1088 *11))) (-5 *3 (-1088 *11))
- (-5 *4 (-592 *10)) (-5 *5 (-592 *8)) (-5 *6 (-592 (-713)))
- (-5 *7 (-1174 (-592 (-1088 *8)))) (-4 *10 (-789))
- (-4 *8 (-286)) (-4 *11 (-884 *8 *9 *10)) (-4 *9 (-735))
- (-5 *1 (-650 *9 *10 *8 *11)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-385 *2)) (-4 *2 (-1150 *5))
- (-5 *1 (-749 *5 *2 *3 *6))
- (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525)))))
- (-4 *3 (-602 *2)) (-4 *6 (-602 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-385 *2))) (-4 *2 (-1150 *5))
- (-5 *1 (-749 *5 *2 *3 *6))
- (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2))
- (-4 *6 (-602 (-385 *2))))))
-(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-702)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-169)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-5 *2 (-1179)) (-5 *1 (-1095))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1092))
- (-5 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-5 *2 (-1179))
- (-5 *1 (-1095))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1092))
- (-5 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-5 *2 (-1179))
- (-5 *1 (-1095)))))
-(((*1 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-510)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-862)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-385 (-525))) (-4 *1 (-515 *3))
- (-4 *3 (-13 (-382) (-1114)))))
- ((*1 *1 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517))
- (-5 *2 (-1088 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1092)) (-5 *1 (-620 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-699)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1174 (-713))) (-5 *1 (-620 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-445)) (-5 *4 (-856)) (-5 *2 (-1179)) (-5 *1 (-1175)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3377 *3) (|:| |coef2| (-724 *3))))
- (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-977)) (-5 *1 (-655 *3 *4))
- (-4 *4 (-1150 *3)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3))
- (-4 *3 (-13 (-408 *6) (-27) (-1114)))
- (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1020)))))
+ (-12 (-5 *2 (-592 (-273 *3))) (-5 *1 (-273 *3)) (-4 *3 (-517))
+ (-4 *3 (-1128)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-721 *4))
+ (-4 *4 (-13 (-341) (-787))))))
(((*1 *2 *3)
(-12
(-5 *3
- (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4)
- (-227 *4 (-385 (-525)))))
- (-14 *4 (-592 (-1092))) (-14 *5 (-713)) (-5 *2 (-108))
- (-5 *1 (-478 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525)))))
-(((*1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1) (-5 *1 (-798)))
- ((*1 *1 *1) (-4 *1 (-901))) ((*1 *1 *1) (-5 *1 (-1039))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1097)))))
-(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1095))))
- ((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1020))
- (-4 *2 (-789)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
- (-5 *2 (-632 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))))
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))))
+ (-5 *1 (-187)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-412)) (-4 *5 (-789))
+ (-5 *1 (-1026 *5 *4)) (-4 *4 (-408 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205)))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1))))
+ (-5 *2 (-966)) (-5 *1 (-696)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3801 *4)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-977)) (-5 *1 (-1146 *3 *2)) (-4 *2 (-1150 *3)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-1128)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-385 (-887 *4))) (-5 *3 (-1092))
- (-4 *4 (-13 (-517) (-968 (-525)) (-138))) (-5 *1 (-531 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1092)) (-5 *5 (-1015 (-205))) (-5 *2 (-862))
- (-5 *1 (-860 *3)) (-4 *3 (-567 (-501)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1092)) (-5 *5 (-1015 (-205))) (-5 *2 (-862))
- (-5 *1 (-860 *3)) (-4 *3 (-567 (-501)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
- (-5 *1 (-861))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
- (-5 *1 (-861))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
- (-5 *1 (-862))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
- (-5 *1 (-862))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1015 (-205)))
- (-5 *1 (-862))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1015 (-205)))
- (-5 *1 (-862))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
- (-5 *1 (-862))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
- (-5 *1 (-862)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-855)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+ (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1165 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5)))
+ (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-713)))))
+(((*1 *2 *1) (-12 (-5 *2 (-396 *3)) (-5 *1 (-849 *3)) (-4 *3 (-286)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-132))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-135)))))
(((*1 *2 *3 *3)
(-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
(-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
@@ -13037,16 +14904,114 @@
(-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
(-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
(-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
- ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-856)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-242)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
-(((*1 *2 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-962)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
+ (-5 *2
+ (-2 (|:| -2219 *4) (|:| -2188 *4) (|:| |totalpts| (-525))
+ (|:| |success| (-108))))
+ (-5 *1 (-731)) (-5 *5 (-525)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132))
+ (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-764)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1092)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-108))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1285 *4))))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-991 *4 *5 *6)) (-4 *4 (-517))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *2)))))
+ (|partial| -12
+ (-5 *3 (-592 (-2 (|:| |func| *2) (|:| |pole| (-108)))))
+ (-4 *2 (-13 (-408 *4) (-934))) (-4 *4 (-13 (-789) (-517)))
+ (-5 *1 (-255 *4 *2)))))
+(((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-1075)) (-5 *1 (-1175))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1175))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1175))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-1075)) (-5 *1 (-1176))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1176))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1176)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-132))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-135)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-966))
+ (-5 *1 (-697)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-862))
+ (-5 *2
+ (-2 (|:| |brans| (-592 (-592 (-878 (-205)))))
+ (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))))
+ (-5 *1 (-144))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-862)) (-5 *4 (-385 (-525)))
+ (-5 *2
+ (-2 (|:| |brans| (-592 (-592 (-878 (-205)))))
+ (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))))
+ (-5 *1 (-144)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-49 *3 *4)) (-4 *3 (-977))
+ (-14 *4 (-592 (-1092)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1) (-4 *1 (-263)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
+ (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-5 *1 (-576 *3 *4 *5))
+ (-14 *5 (-856))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1079 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *4 (-13 (-977) (-660 (-385 (-525)))))
+ (-4 *5 (-789)) (-5 *1 (-1188 *4 *5 *2)) (-4 *2 (-1193 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-1192 *3 *4))
+ (-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-878 (-205))) (-5 *4 (-809)) (-5 *5 (-856))
+ (-5 *2 (-1179)) (-5 *1 (-445))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-878 (-205))) (-5 *2 (-1179)) (-5 *1 (-445))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-592 (-878 (-205)))) (-5 *4 (-809)) (-5 *5 (-856))
+ (-5 *2 (-1179)) (-5 *1 (-445)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-878 *3))) (-4 *3 (-977)) (-4 *1 (-1053 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-878 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977)))))
(((*1 *2)
(-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-713))
(-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5))))
@@ -13073,73 +15038,85 @@
((*1 *2 *1)
(-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3))
(-4 *3 (-1150 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-30))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1088 (-1088 *4))))
+ (-5 *1 (-1127 *4)) (-5 *3 (-1088 (-1088 *4))))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1088 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
+(((*1 *1)
+ (-12 (-4 *1 (-382)) (-3272 (|has| *1 (-6 -4250)))
+ (-3272 (|has| *1 (-6 -4242)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1020)) (-4 *2 (-789))))
+ ((*1 *1 *1 *1) (-4 *1 (-789)))
+ ((*1 *2 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-789))))
+ ((*1 *1) (-5 *1 (-1039))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517)))))
+(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1075)) (-5 *1 (-653)))))
+(((*1 *1 *1) (-4 *1 (-134)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-878 *5)) (-5 *3 (-713)) (-4 *5 (-977))
+ (-5 *1 (-1081 *4 *5)) (-14 *4 (-856)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-632 (-205))) (-5 *6 (-108)) (-5 *7 (-632 (-525)))
+ (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS))))
+ (-5 *3 (-525)) (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-696)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286))
+ (-5 *1 (-851 *3 *4 *5 *2)) (-4 *2 (-884 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1088 *6)) (-4 *6 (-884 *5 *3 *4)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-851 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *6 *4 *5))
+ (-5 *1 (-851 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-4 *6 (-286)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1075)) (-5 *2 (-592 (-1097))) (-5 *1 (-1054)))))
+(((*1 *2 *1) (-12 (-4 *3 (-977)) (-5 *2 (-592 *1)) (-4 *1 (-1053 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-632 *4)) (-5 *3 (-856)) (|has| *4 (-6 (-4261 "*")))
+ (-4 *4 (-977)) (-5 *1 (-959 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-396 *4) *4)) (-4 *4 (-517)) (-5 *2 (-396 *4))
- (-5 *1 (-397 *4))))
- ((*1 *1 *1) (-5 *1 (-861)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861))))
- ((*1 *1 *1) (-5 *1 (-862)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))
- (-5 *4 (-385 (-525))) (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))
- (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))
- (-5 *4 (-385 (-525))) (-5 *1 (-952 *3)) (-4 *3 (-1150 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))
- (-5 *1 (-952 *3)) (-4 *3 (-1150 (-385 (-525))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3))
- (-4 *3 (-1150 *2)))))
-(((*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-108)))))
+ (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-856))
+ (|has| *4 (-6 (-4261 "*"))) (-4 *4 (-977)) (-5 *1 (-959 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-713)) (|:| -2158 *4))) (-5 *5 (-713))
+ (-4 *4 (-884 *6 *7 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
+ (-5 *2
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-426 *6 *7 *8 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
+ (-12 (-5 *3 (-632 (-294 (-205))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))))
+ (-5 *1 (-187)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
(-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-37 (-385 (-525))))
- (-5 *2 (-2 (|:| -2780 (-1073 *4)) (|:| -2794 (-1073 *4))))
- (-5 *1 (-1079 *4)) (-5 *3 (-1073 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092))
- (-14 *4 *2))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429))
- (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-910 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-593 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1092)) (-5 *2 (-1096)) (-5 *1 (-1095)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-592 (-1092))) (-5 *2 (-1092)) (-5 *1 (-308)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1073 (-887 *4)) (-1073 (-887 *4))))
- (-5 *1 (-1182 *4)) (-4 *4 (-341)))))
-(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))))
(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1020)) (-4 *2 (-835 *5)) (-5 *1 (-634 *5 *2 *3 *4))
- (-4 *3 (-351 *2)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4258)))))))
+ (-12 (-4 *5 (-341)) (-4 *7 (-1150 *5)) (-4 *4 (-667 *5 *7))
+ (-5 *2 (-2 (|:| -4108 (-632 *6)) (|:| |vec| (-1174 *5))))
+ (-5 *1 (-753 *5 *6 *7 *4 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 *4)))))
+(((*1 *1 *1) (-4 *1 (-578)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934) (-1114))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
(((*1 *2 *3 *4 *2)
(-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-594 *5)) (-4 *5 (-977))
(-5 *1 (-52 *5 *2 *3)) (-4 *3 (-791 *5))))
@@ -13149,629 +15126,867 @@
((*1 *2 *3 *2 *2 *4 *5)
(-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-977))
(-5 *1 (-792 *2 *3)) (-4 *3 (-791 *2)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-525))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-735)) (-4 *4 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789))
- (-5 *1 (-426 *5 *6 *7 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-369)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *6)) (-4 *5 (-1020))
+ (-4 *6 (-1128)) (-5 *2 (-1 *6 *5)) (-5 *1 (-589 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1020))
+ (-4 *2 (-1128)) (-5 *1 (-589 *5 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 *5)) (-4 *6 (-1020))
+ (-4 *5 (-1128)) (-5 *2 (-1 *5 *6)) (-5 *1 (-589 *6 *5))))
+ ((*1 *2 *3 *4 *5 *2)
+ (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1020))
+ (-4 *2 (-1128)) (-5 *1 (-589 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-592 *5)) (-5 *4 (-592 *6))
+ (-4 *5 (-1020)) (-4 *6 (-1128)) (-5 *1 (-589 *5 *6))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1020)) (-4 *2 (-1128)) (-5 *1 (-589 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1061)) (-5 *3 (-135)) (-5 *2 (-713)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160))
+ (-4 *5 (-1150 *4)) (-5 *2 (-632 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1150 *3))
+ (-5 *2 (-632 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1075))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-966))
+ (-5 *1 (-693)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1150 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-856)) (-4 *1 (-1152 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-734))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-385 (-525))) (-4 *1 (-1155 *3)) (-4 *3 (-977)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-903 *4 *2))
+ (-4 *2 (-1150 *4)))))
+(((*1 *2 *1)
+ (-12
(-5 *2
- (-2 (|:| |solns| (-592 *5))
- (|:| |maps| (-592 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1047 *3 *5)) (-4 *3 (-1150 *5)))))
-(((*1 *2 *3 *4 *4 *3)
+ (-3 (|:| |nullBranch| "null")
+ (|:| |assignmentBranch|
+ (-2 (|:| |var| (-1092))
+ (|:| |arrayIndex| (-592 (-887 (-525))))
+ (|:| |rand|
+ (-2 (|:| |ints2Floats?| (-108)) (|:| -3423 (-798))))))
+ (|:| |arrayAssignmentBranch|
+ (-2 (|:| |var| (-1092)) (|:| |rand| (-798))
+ (|:| |ints2Floats?| (-108))))
+ (|:| |conditionalBranch|
+ (-2 (|:| |switch| (-1091)) (|:| |thenClause| (-308))
+ (|:| |elseClause| (-308))))
+ (|:| |returnBranch|
+ (-2 (|:| -3479 (-108))
+ (|:| -2219
+ (-2 (|:| |ints2Floats?| (-108)) (|:| -3423 (-798))))))
+ (|:| |blockBranch| (-592 (-308)))
+ (|:| |commentBranch| (-592 (-1075))) (|:| |callBranch| (-1075))
+ (|:| |forBranch|
+ (-2 (|:| -1777 (-1013 (-887 (-525))))
+ (|:| |span| (-887 (-525))) (|:| -2418 (-308))))
+ (|:| |labelBranch| (-1039))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1091)) (|:| -2418 (-308))))
+ (|:| |commonBranch|
+ (-2 (|:| -2411 (-1092)) (|:| |contents| (-592 (-1092)))))
+ (|:| |printBranch| (-592 (-798)))))
+ (-5 *1 (-308)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-955 *3))
+ (-4 *3 (-13 (-787) (-341) (-953)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3))
+ (-4 *3 (-1150 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-993 *2 *3)) (-4 *2 (-13 (-787) (-341)))
+ (-4 *3 (-1150 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176))))
+ ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1176)))))
+(((*1 *2 *3 *4 *3)
(-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-694)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1128))
- (-4 *5 (-351 *4)) (-4 *2 (-351 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *6 *7 *2)) (-4 *6 (-977))
- (-4 *7 (-218 *5 *6)) (-4 *2 (-218 *4 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-909 *4 *5 *6 *3)) (-4 *4 (-977)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-4 *4 (-517))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
- (-4 *3 (-13 (-341) (-1114) (-934)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1150 (-385 *2)))
- (-4 *2 (-1150 *4)) (-5 *1 (-319 *3 *4 *2 *5))
- (-4 *3 (-320 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1132))
- (-4 *4 (-1150 (-385 *2))) (-4 *2 (-1150 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1015 (-782 (-357)))) (-5 *2 (-1015 (-782 (-205))))
- (-5 *1 (-284)))))
-(((*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1179)) (-5 *1 (-938)))))
+ (-5 *1 (-690)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-592 *9)) (-5 *3 (-1 (-108) *9))
+ (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-991 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789))
+ (-5 *1 (-910 *6 *7 *8 *9)))))
(((*1 *1 *1 *1)
(-12 (-5 *1 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-1128)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1088 *3)) (-4 *3 (-977)) (-4 *1 (-1150 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1533 (-357)) (|:| -3257 (-1075))
- (|:| |explanations| (-592 (-1075)))))
- (-5 *2 (-966)) (-5 *1 (-284))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1533 (-357)) (|:| -3257 (-1075))
- (|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))))
- (-5 *2 (-966)) (-5 *1 (-284)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525))
- (-14 *6 (-713)) (-4 *7 (-160)) (-4 *8 (-160))
- (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *9)) (-4 *9 (-977)) (-4 *5 (-789)) (-4 *6 (-735))
- (-4 *8 (-977)) (-4 *2 (-884 *9 *7 *5))
- (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-735))
- (-4 *4 (-884 *8 *6 *5)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1092)) (-5 *2 (-501)) (-5 *1 (-500 *4))
- (-4 *4 (-1128)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
- (-4 *3 (-13 (-341) (-1114) (-934))))))
-(((*1 *2 *1) (-12 (-4 *1 (-233 *3)) (-4 *3 (-1128)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-713))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-977))
- (-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263)))
- (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1150 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-565 *3)) (-4 *3 (-789))))
- ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 *4)) (-5 *1 (-1058 *3 *4))
+ (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-367)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1175))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1176)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-592 (-592 *7)))
- (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735))
- (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-592 (-592 *8)))
- (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-592 (-592 *7)))
- (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735))
- (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-592 (-592 *8)))
- (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-138))
- (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-910 *3 *4 *5 *6)))))
+ (-12 (-4 *4 (-429)) (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3875 *4)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-415)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-824 *4 *5)) (-5 *3 (-824 *4 *6)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-612 *5)) (-5 *1 (-820 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-1088 *3))
+ (-4 *3 (-13 (-408 *6) (-27) (-1114)))
+ (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2 (-2 (|:| -3991 *3) (|:| |coeff| *3)))
+ (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1088 *3)))
+ (-4 *3 (-13 (-408 *6) (-27) (-1114)))
+ (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2 (-2 (|:| -3991 *3) (|:| |coeff| *3)))
+ (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020)))))
(((*1 *1 *1 *1)
(-12 (-5 *1 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-1128)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-385 (-887 *6)) (-1082 (-1092) (-887 *6))))
- (-5 *5 (-713)) (-4 *6 (-429)) (-5 *2 (-592 (-632 (-385 (-887 *6)))))
- (-5 *1 (-271 *6)) (-5 *4 (-632 (-385 (-887 *6))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-385 (-887 *5)) (-1082 (-1092) (-887 *5))))
- (|:| |eigmult| (-713)) (|:| |eigvec| (-592 *4))))
- (-4 *5 (-429)) (-5 *2 (-592 (-632 (-385 (-887 *5)))))
- (-5 *1 (-271 *5)) (-5 *4 (-632 (-385 (-887 *5)))))))
-(((*1 *1 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-901)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517))
- (-4 *8 (-884 *7 *5 *6))
- (-5 *2 (-2 (|:| -4193 (-713)) (|:| -3244 *3) (|:| |radicand| *3)))
- (-5 *1 (-888 *5 *6 *7 *8 *3)) (-5 *4 (-713))
- (-4 *3
- (-13 (-341)
- (-10 -8 (-15 -3114 (*8 $)) (-15 -3123 (*8 $)) (-15 -1217 ($ *8))))))))
-(((*1 *1 *1) (-4 *1 (-804 *2))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-308))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-308)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-592 (-887 *6))) (-5 *4 (-592 (-1092))) (-4 *6 (-429))
+ (-5 *2 (-592 (-592 *7))) (-5 *1 (-503 *6 *7 *5)) (-4 *7 (-341))
+ (-4 *5 (-13 (-341) (-787))))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1129 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-700)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1150 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-525))) (-4 *3 (-977)) (-5 *1 (-94 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-94 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-94 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-517) (-138)))
+ (-5 *2 (-2 (|:| -3436 *3) (|:| -3446 *3))) (-5 *1 (-1144 *4 *3))
+ (-4 *3 (-1150 *4)))))
+(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-270)))
+ ((*1 *1) (-5 *1 (-798)))
+ ((*1 *1)
+ (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735))
+ (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-884 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1007)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33)))))
+ ((*1 *1) (-5 *1 (-1095))) ((*1 *1) (-5 *1 (-1096))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092)) (-4 *4 (-517)) (-4 *4 (-789))
+ (-5 *1 (-534 *4 *2)) (-4 *2 (-408 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-445))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1175))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1176)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-1179)) (-5 *1 (-1095))))
+ ((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1095)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-809)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 *5)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))
- (-14 *4 (-713)) (-4 *5 (-160)))))
-(((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-254)))))
+ (-12 (-5 *1 (-623 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))))
(((*1 *1 *1 *1)
(-12 (-5 *1 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-1128)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5)) (-4 *5 (-341))
- (-5 *2 (-2 (|:| -1642 (-385 *6)) (|:| |coeff| (-385 *6))))
- (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1073 *4)) (-4 *4 (-37 *3)) (-4 *4 (-977))
- (-5 *3 (-385 (-525))) (-5 *1 (-1077 *4)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-286))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3409 *1)))
- (-4 *1 (-286)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-592 *5) *6))
- (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
- (-4 *6 (-1150 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-599 (-385 *7))) (-5 *4 (-1 (-592 *6) *7))
- (-5 *5 (-1 (-396 *7) *7))
- (-4 *6 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
- (-4 *7 (-1150 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-592 *5) *6))
- (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
- (-4 *6 (-1150 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-600 *7 (-385 *7))) (-5 *4 (-1 (-592 *6) *7))
- (-5 *5 (-1 (-396 *7) *7))
- (-4 *6 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
- (-4 *7 (-1150 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-599 (-385 *5))) (-4 *5 (-1150 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
- (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-396 *6) *6))
- (-4 *6 (-1150 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
- (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-600 *5 (-385 *5))) (-4 *5 (-1150 *4)) (-4 *4 (-27))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-27))
(-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
- (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-396 *6) *6))
- (-4 *6 (-1150 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
- (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))))
+ (-4 *5 (-1150 *4)) (-5 *2 (-592 (-599 (-385 *5))))
+ (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5))))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-713)) (-4 *2 (-1020))
+ (-5 *1 (-622 *2)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 (-457 *3 *4))) (-14 *3 (-592 (-1092)))
+ (-4 *4 (-429)) (-5 *1 (-580 *3 *4)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *2 (-966)) (-5 *1 (-694)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
(((*1 *1 *1)
(-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *2 (-1020)) (-4 *3 (-1020))
(-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-809))
- (-5 *5 (-856)) (-5 *6 (-592 (-242))) (-5 *2 (-1175))
- (-5 *1 (-1178))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-592 (-242)))
- (-5 *2 (-1175)) (-5 *1 (-1178)))))
-(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-827 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1128)) (-5 *2 (-713)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1092))
- (-4 *4 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-518 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))))
+ (-12 (-5 *1 (-623 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-429))
- (-5 *2 (-457 *4 *5)) (-5 *1 (-580 *4 *5)))))
-(((*1 *1) (-5 *1 (-445))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-98 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-4 *6 (-320 *3 *4 *5))
- (-5 *2 (-391 *4 (-385 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1174 *6)) (-4 *6 (-13 (-387 *4 *5) (-968 *4)))
- (-4 *4 (-925 *3)) (-4 *5 (-1150 *4)) (-4 *3 (-286))
- (-5 *1 (-391 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-341))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-510)) (-5 *1 (-148 *2)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-856))
+ (-5 *2
+ (-3 (-1088 *4)
+ (-1174 (-592 (-2 (|:| -2219 *4) (|:| -1722 (-1039)))))))
+ (-5 *1 (-324 *4)) (-4 *4 (-327)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-887 *5)) (-4 *5 (-977)) (-5 *2 (-227 *4 *5))
+ (-5 *1 (-879 *4 *5)) (-14 *4 (-592 (-1092))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-798)))))
+(((*1 *1 *2)
+ (-12 (-4 *3 (-977)) (-5 *1 (-769 *2 *3)) (-4 *2 (-651 *3)))))
(((*1 *1 *1)
(-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *2 (-1020)) (-4 *3 (-1020))
(-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-215 *3))))
- ((*1 *1) (-12 (-4 *1 (-215 *2)) (-4 *2 (-1020)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934)))
- (-5 *1 (-163 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-135)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-728)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *2 (-966))
- (-5 *1 (-692)))))
-(((*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-1092)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-691)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-51)) (-5 *1 (-771)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1132)) (-4 *5 (-1150 *3)) (-4 *6 (-1150 (-385 *5)))
+ (-5 *2 (-108)) (-5 *1 (-319 *4 *3 *5 *6)) (-4 *4 (-320 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-1096)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-395 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-840 *3))) (-4 *3 (-1020)) (-5 *1 (-839 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-5 *6 (-1088 *3))
- (-4 *3 (-13 (-408 *7) (-27) (-1114)))
- (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1020))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3))
- (-5 *6 (-385 (-1088 *3))) (-4 *3 (-13 (-408 *7) (-27) (-1114)))
- (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1020)))))
-(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-357)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-284))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |num| (-827 *3)) (|:| |den| (-827 *3))))
- (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
-(((*1 *1 *1 *1) (-4 *1 (-286))) ((*1 *1 *1 *1) (-5 *1 (-713)))
- ((*1 *1 *1 *1) (-5 *1 (-798))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-127)) (-5 *1 (-1006 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-525) *2 *2)) (-4 *2 (-127)) (-5 *1 (-1006 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1092))
- (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4)))))
- ((*1 *1 *1) (-5 *1 (-357)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4))))
- (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))))
-(((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-335 *3)) (-4 *3 (-327)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-798))))
- ((*1 *1 *1) (-5 *1 (-798))))
-(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
-(((*1 *2 *2 *3)
(-12
- (-5 *2
- (-2 (|:| |partsol| (-1174 (-385 (-887 *4))))
- (|:| -3094 (-592 (-1174 (-385 (-887 *4)))))))
- (-5 *3 (-592 *7)) (-4 *4 (-13 (-286) (-138)))
- (-4 *7 (-884 *4 *6 *5)) (-4 *5 (-13 (-789) (-567 (-1092))))
- (-4 *6 (-735)) (-5 *1 (-859 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-110)))))
-(((*1 *1 *1) (-4 *1 (-510))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2563 *4))))
- (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-735)) (-4 *2 (-884 *4 *5 *6)) (-5 *1 (-426 *4 *5 *6 *2))
+ (-4 *4 (-429)) (-4 *6 (-789)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-713))
+ (-4 *3 (-13 (-286) (-10 -8 (-15 -3586 ((-396 $) $)))))
+ (-4 *4 (-1150 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-592 *7)) (-5 *3 (-525)) (-4 *7 (-884 *4 *5 *6))
+ (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *1 (-426 *4 *5 *6 *7)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-809)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1030)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))))
-(((*1 *1 *1 *1) (-4 *1 (-286))) ((*1 *1 *1 *1) (-5 *1 (-713)))
- ((*1 *1 *1 *1) (-5 *1 (-798))))
-(((*1 *2 *3 *4 *5)
+ (-12 (-5 *2 (-592 (-357))) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-809)) (-5 *2 (-1179)) (-5 *1 (-1175))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175)))))
+(((*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114)))))
+ ((*1 *1 *1 *1) (-4 *1 (-735))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735))
+ (-4 *9 (-789)) (-4 *3 (-991 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4))))))
+ (-5 *1 (-994 *7 *8 *9 *3 *4)) (-4 *4 (-996 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
(-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
(-4 *3 (-991 *6 *7 *8))
(-5 *2
(-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4))))))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4))))))
(-5 *1 (-994 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3))))
((*1 *2 *3 *4)
(-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
(-4 *3 (-991 *5 *6 *7))
(-5 *2
(-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4))))))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4))))))
(-5 *1 (-994 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735))
+ (-4 *9 (-789)) (-4 *3 (-991 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4))))))
+ (-5 *1 (-1062 *7 *8 *9 *3 *4)) (-4 *4 (-1029 *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
(-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
(-4 *3 (-991 *6 *7 *8))
(-5 *2
(-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4))))))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4))))))
(-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1029 *6 *7 *8 *3))))
((*1 *2 *3 *4)
(-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
(-4 *3 (-991 *5 *6 *7))
(-5 *2
(-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4))))))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1285 *4))))))
(-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1029 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-798)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-942 *3)) (-4 *3 (-1128)) (-4 *3 (-1020))
- (-5 *2 (-108)))))
-(((*1 *1 *2)
+(((*1 *2 *1)
+ (-12 (-4 *2 (-884 *3 *5 *4)) (-5 *1 (-920 *3 *4 *5 *2))
+ (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)))))
+(((*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-1092)))))
+(((*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1088 *3)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-592
- (-2
- (|:| -3364
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1174 (-294 (-205))))
- (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205)))
- (|:| |g| (-294 (-205))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (|:| -4201
- (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357))
- (|:| |expense| (-357)) (|:| |accuracy| (-357))
- (|:| |intermediateResults| (-357)))))))
- (-5 *1 (-745)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-301 *2 *4)) (-4 *4 (-126))
- (-4 *2 (-1020))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1020))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-364 *2)) (-4 *2 (-1020))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *2 (-1020)) (-5 *1 (-595 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-761 *2)) (-4 *2 (-789)))))
+ (-5 *3
+ (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357))
+ (|:| |expense| (-357)) (|:| |accuracy| (-357))
+ (|:| |intermediateResults| (-357))))
+ (-5 *2 (-966)) (-5 *1 (-284)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-694)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-5 *2 (-2 (|:| -3364 *3) (|:| -4201 *4))))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-761 *3)) (|:| |rm| (-761 *3))))
- (-5 *1 (-761 *3)) (-4 *3 (-789))))
- ((*1 *1 *1 *1) (-5 *1 (-798))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-1075)) (-5 *1 (-174))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966))
- (-5 *1 (-698)))))
-(((*1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1177)))))
+ (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4259)) (-4 *1 (-464 *4))
+ (-4 *4 (-1128)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-1081 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1052 (-205))) (-5 *1 (-1176))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1052 (-205))) (-5 *1 (-1176)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-1174 *4))
+ (-5 *1 (-756 *4 *3)) (-4 *3 (-602 *4)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735))
- (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-884 *2 *4 *3)))))
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-592 (-958 *5 *6 *7 *3))) (-5 *1 (-958 *5 *6 *7 *3))
+ (-4 *3 (-991 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-592 *6)) (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-996 *3 *4 *5 *2)) (-4 *3 (-429)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-592 (-1063 *5 *6 *7 *3))) (-5 *1 (-1063 *5 *6 *7 *3))
+ (-4 *3 (-991 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020))
- (-5 *2 (-592 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |k| (-828 *3)) (|:| |c| *4))))
- (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
- (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-617 *3))) (-5 *1 (-828 *3)) (-4 *3 (-789)))))
+ (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-159))))))
+(((*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1128)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1092))
- (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-746 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1114) (-893))))))
-(((*1 *2 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-1162 *3)) (-4 *3 (-1128))))
- ((*1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-798)))) (-5 *1 (-798))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1059 *3 *4)) (-5 *1 (-926 *3 *4)) (-14 *3 (-856))
- (-4 *4 (-341))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *5))) (-4 *5 (-977))
- (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *6 (-218 *4 *5))
- (-4 *7 (-218 *3 *5)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-517))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-304 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734))
- (-4 *2 (-517))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-517)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977))
- (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-517))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-713)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-517))))
- ((*1 *1 *1 *1) (-5 *1 (-798)))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1174 *4)) (-4 *4 (-1150 *3)) (-4 *3 (-517))
- (-5 *1 (-903 *3 *4))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-980 *3 *4 *2 *5 *6)) (-4 *2 (-977))
- (-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-517))))
+ (-12 (-5 *3 (-632 (-385 (-887 (-525))))) (-5 *2 (-592 (-294 (-525))))
+ (-5 *1 (-962)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-242))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160))))
+ ((*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-353 *4 *2))
+ (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4260)))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-108)))))
+(((*1 *1 *1) (-5 *1 (-989))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-385 (-1088 (-294 *3)))) (-4 *3 (-13 (-517) (-789)))
+ (-5 *1 (-1049 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357)))))
+(((*1 *1) (-5 *1 (-146))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1073 (-592 (-525)))) (-5 *3 (-592 (-525)))
+ (-5 *1 (-818)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-1073 *4) (-1073 *4))) (-5 *2 (-1073 *4))
+ (-5 *1 (-1197 *4)) (-4 *4 (-1128))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-592 (-1073 *5)) (-592 (-1073 *5)))) (-5 *4 (-525))
+ (-5 *2 (-592 (-1073 *5))) (-5 *1 (-1197 *5)) (-4 *5 (-1128)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-113 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-525))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-806 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-806 *2)) (-14 *2 (-525))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-525)) (-14 *3 *2) (-5 *1 (-807 *3 *4))
+ (-4 *4 (-804 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-525)) (-5 *1 (-807 *2 *3)) (-4 *3 (-804 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-525)) (-4 *1 (-1136 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-1165 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1136 *2 *3)) (-4 *2 (-977)) (-4 *3 (-1165 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1094 (-385 (-525))))
+ (-5 *1 (-172)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1075)) (-5 *2 (-716)) (-5 *1 (-110))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1024)) (-5 *1 (-899)))))
+(((*1 *1 *1 *1) (-4 *1 (-134)))
((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966))
- (-5 *1 (-699)))))
-(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))))
-(((*1 *2 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510))))
+ ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-975))
+ (-5 *3 (-525)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1092)))
- (-4 *5 (-429))
- (-5 *2
- (-2 (|:| |gblist| (-592 (-227 *4 *5)))
- (|:| |gvlist| (-592 (-525)))))
- (-5 *1 (-580 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 (-887 *4))) (-5 *3 (-592 (-1092))) (-4 *4 (-429))
- (-5 *1 (-853 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-357))))
- ((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-357)))))
+ (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1111 *3)) (-4 *3 (-977)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-429))
- (-5 *2
- (-592
- (-2 (|:| |eigval| (-3 (-385 (-887 *4)) (-1082 (-1092) (-887 *4))))
- (|:| |geneigvec| (-592 (-632 (-385 (-887 *4))))))))
- (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-887 *4)))))))
-(((*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177))))
- ((*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1177)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-695)))))
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-1150 *4)) (-5 *1 (-504 *4 *2 *5 *6))
+ (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713))))))
+(((*1 *2)
+ (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179))
+ (-5 *1 (-997 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179))
+ (-5 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-308)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-840 *4)) (-4 *4 (-1020)) (-5 *2 (-592 (-713)))
+ (-5 *1 (-839 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-856))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-651 *3)) (-5 *1 (-769 *2 *3)) (-4 *3 (-977)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-445)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-113 *4)) (-14 *4 *3)
+ (-5 *3 (-525))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-806 *4)) (-14 *4 *3)
+ (-5 *3 (-525))))
+ ((*1 *2 *1 *3)
+ (-12 (-14 *4 *3) (-5 *2 (-385 (-525))) (-5 *1 (-807 *4 *5))
+ (-5 *3 (-525)) (-4 *5 (-804 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-944)) (-5 *2 (-385 (-525)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-993 *2 *3)) (-4 *2 (-13 (-787) (-341)))
+ (-4 *3 (-1150 *2))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1152 *2 *3)) (-4 *3 (-734))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4100 (*2 (-1092))))
+ (-4 *2 (-977)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *2 (-592 *3)) (-5 *1 (-910 *4 *5 *6 *3))
+ (-4 *3 (-991 *4 *5 *6)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1075)) (-5 *4 (-1039)) (-5 *2 (-108)) (-5 *1 (-763)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3))
+ (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2772 (-724 *3)) (|:| |coef1| (-724 *3))))
+ (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-2 (|:| -2772 *1) (|:| |coef1| *1)))
+ (-4 *1 (-991 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735))
- (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-592 *3))
- (-5 *1 (-547 *5 *6 *7 *8 *3)) (-4 *3 (-1029 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138)))
- (-5 *2
- (-592 (-2 (|:| -2706 (-1088 *5)) (|:| -2387 (-592 (-887 *5))))))
- (-5 *1 (-1001 *5 *6)) (-5 *3 (-592 (-887 *5)))
- (-14 *6 (-592 (-1092)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-286) (-138)))
- (-5 *2
- (-592 (-2 (|:| -2706 (-1088 *4)) (|:| -2387 (-592 (-887 *4))))))
- (-5 *1 (-1001 *4 *5)) (-5 *3 (-592 (-887 *4)))
- (-14 *5 (-592 (-1092)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138)))
- (-5 *2
- (-592 (-2 (|:| -2706 (-1088 *5)) (|:| -2387 (-592 (-887 *5))))))
- (-5 *1 (-1001 *5 *6)) (-5 *3 (-592 (-887 *5)))
- (-14 *6 (-592 (-1092))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205))))
- (-5 *2 (-966)) (-5 *1 (-697)))))
-(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4258)) (-4 *1 (-142 *2)) (-4 *2 (-1128))
+ (-12 (-5 *4 (-713)) (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4))
+ (-5 *2 (-2 (|:| -2681 (-385 *5)) (|:| |poly| *3)))
+ (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1150 (-385 *5))))))
+(((*1 *2)
+ (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1129 *2))
(-4 *2 (-1020))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4258)) (-4 *1 (-142 *3))
- (-4 *3 (-1128))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-619 *3)) (-4 *3 (-1128))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1020))
- (-5 *1 (-680 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1020))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
- (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1058 *3 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-735))
- (-4 *3 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $))))) (-4 *5 (-517))
- (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-884 (-385 (-887 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-977)) (-4 *5 (-735))
- (-4 *3
- (-13 (-789)
- (-10 -8 (-15 -3210 ((-1092) $))
- (-15 -2499 ((-3 $ "failed") (-1092))))))
- (-5 *1 (-917 *4 *5 *3 *2)) (-4 *2 (-884 (-887 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 *6))
- (-4 *6
- (-13 (-789)
- (-10 -8 (-15 -3210 ((-1092) $))
- (-15 -2499 ((-3 $ "failed") (-1092))))))
- (-4 *4 (-977)) (-4 *5 (-735)) (-5 *1 (-917 *4 *5 *6 *2))
- (-4 *2 (-884 (-887 *4) *5 *6)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-789))
+ (-5 *1 (-1129 *2)))))
(((*1 *2 *2 *3)
(-12 (-4 *3 (-977)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1150 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1075)) (-5 *1 (-653)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1092))
+ (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3))
+ (-4 *3 (-13 (-1114) (-29 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1141 *3)) (-4 *3 (-1128)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 (-592 (-592 *4)))) (-5 *2 (-592 (-592 *4)))
+ (-4 *4 (-789)) (-5 *1 (-1100 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *2) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-632 (-525))) (-5 *5 (-108)) (-5 *7 (-632 (-205)))
+ (-5 *3 (-525)) (-5 *6 (-205)) (-5 *2 (-966)) (-5 *1 (-697)))))
+(((*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763)))))
+(((*1 *1 *1) (|partial| -4 *1 (-136))) ((*1 *1 *1) (-4 *1 (-327)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-136)) (-4 *1 (-844)))))
+(((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-385 *5)) (-4 *5 (-1150 *4)) (-4 *4 (-517))
- (-4 *4 (-977)) (-4 *2 (-1165 *4)) (-5 *1 (-1168 *4 *5 *6 *2))
- (-4 *6 (-602 *5)))))
+ (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1150 *4))
+ (-4 *5 (-1150 (-385 *3))) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-907)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-878 (-205))) (-5 *2 (-1179)) (-5 *1 (-445)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)))))
+(((*1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *1 *1 *1) (-4 *1 (-510))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-517)) (-4 *3 (-977))
+ (-5 *2 (-2 (|:| -1416 *1) (|:| -3681 *1))) (-4 *1 (-791 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-977))
+ (-5 *2 (-2 (|:| -1416 *3) (|:| -3681 *3))) (-5 *1 (-792 *5 *3))
+ (-4 *3 (-791 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-977)) (-14 *3 (-592 (-1092)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-977) (-789)))
+ (-14 *3 (-592 (-1092)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-977)) (-4 *3 (-1020))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-592 (-1092))) (-4 *3 (-160))
+ (-4 *5 (-218 (-2827 *2) (-713)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -1722 *4) (|:| -2168 *5))
+ (-2 (|:| -1722 *4) (|:| -2168 *5))))
+ (-5 *1 (-438 *2 *3 *4 *5 *6 *7)) (-4 *4 (-789))
+ (-4 *7 (-884 *3 *5 (-800 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-789))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1150 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-977))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-678 *2 *3)) (-4 *3 (-789)) (-4 *2 (-977))
+ (-4 *3 (-669))))
+ ((*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-4 *2 (-977)) (-4 *3 (-785)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1075) (-716))) (-5 *1 (-110)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *3 *2))
+ (-4 *2 (-13 (-27) (-1114) (-408 (-157 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-728)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
+ (-5 *2 (-357)) (-5 *1 (-187)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735))
+ (-5 *2
+ (-2 (|:| |mval| (-632 *4)) (|:| |invmval| (-632 *4))
+ (|:| |genIdeal| (-477 *4 *5 *6 *7))))
+ (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-1174
+ (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205))
+ (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -2764 (-525))
+ (|:| -2471 (-525)) (|:| |spline| (-525)) (|:| -3797 (-525))
+ (|:| |axesColor| (-809)) (|:| -1526 (-525))
+ (|:| |unitsColor| (-809)) (|:| |showing| (-525)))))
+ (-5 *1 (-1175)))))
+(((*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-840 *4)) (-4 *4 (-1020)) (-5 *2 (-592 (-713)))
+ (-5 *1 (-839 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3))
+ (-4 *3 (-1150 (-157 *2)))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3))
+ (-4 *3 (-1150 (-157 *2))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-884 *3 *4 *5)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138)))
+ (-5 *1 (-1144 *4 *2)) (-4 *2 (-1150 *4)))))
(((*1 *2 *3 *4)
(-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-997 *5 *6 *7 *3 *4))
+ (-4 *4 (-996 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
(-4 *3 (-991 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *4))))
- (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-713)) (-5 *5 (-592 *3)) (-4 *3 (-286)) (-4 *6 (-789))
- (-4 *7 (-735)) (-5 *2 (-108)) (-5 *1 (-575 *6 *7 *3 *8))
- (-4 *8 (-884 *3 *7 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-764)))))
+ (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1285 *4))))
+ (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1174 *4)) (-5 *3 (-713)) (-4 *4 (-327))
+ (-5 *1 (-495 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5))
+ (-4 *3 (-1150 *4))
+ (-4 *5 (-13 (-382) (-968 *4) (-341) (-1114) (-263))))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-944)) (-5 *2 (-798)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092))
- (-14 *4 *2))))
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12
+ (-5 *3
+ (-2 (|:| |det| *12) (|:| |rows| (-592 (-525)))
+ (|:| |cols| (-592 (-525)))))
+ (-5 *4 (-632 *12)) (-5 *5 (-592 (-385 (-887 *9))))
+ (-5 *6 (-592 (-592 *12))) (-5 *7 (-713)) (-5 *8 (-525))
+ (-4 *9 (-13 (-286) (-138))) (-4 *12 (-884 *9 *11 *10))
+ (-4 *10 (-13 (-789) (-567 (-1092)))) (-4 *11 (-735))
+ (-5 *2
+ (-2 (|:| |eqzro| (-592 *12)) (|:| |neqzro| (-592 *12))
+ (|:| |wcond| (-592 (-887 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1174 (-385 (-887 *9))))
+ (|:| -2103 (-592 (-1174 (-385 (-887 *9)))))))))
+ (-5 *1 (-859 *9 *10 *11 *12)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-887 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-944))))
+ (-12 (-5 *2 (-157 (-357))) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-856)) (-5 *2 (-157 (-357))) (-5 *1 (-727 *3))
+ (-4 *3 (-567 (-357)))))
((*1 *2 *3)
- (-12 (-5 *3 (-887 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-944))))
- ((*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-944)) (-5 *2 (-592 *1))))
+ (-12 (-5 *3 (-157 *4)) (-4 *4 (-160)) (-4 *4 (-567 (-357)))
+ (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-157 *5)) (-5 *4 (-856)) (-4 *5 (-160))
+ (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-944))))
+ (-12 (-5 *3 (-887 (-157 *4))) (-4 *4 (-160)) (-4 *4 (-567 (-357)))
+ (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-887 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-160))
+ (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-944))))
- ((*1 *2 *3) (-12 (-5 *3 (-1088 *1)) (-4 *1 (-944)) (-5 *2 (-592 *1))))
+ (-12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 (-357)))
+ (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977))
+ (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1150 *4)) (-5 *2 (-592 *1))
- (-4 *1 (-993 *4 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092))
- (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-294 *5)))
- (-5 *1 (-1048 *5))))
+ (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357)))
+ (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1092)))
- (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-294 *5))))
- (-5 *1 (-1048 *5)))))
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517))
+ (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-385 (-887 (-157 *4)))) (-4 *4 (-517))
+ (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 (-157 *5)))) (-5 *4 (-856)) (-4 *5 (-517))
+ (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789))
+ (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789))
+ (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789))
+ (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-517))
+ (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357)))
+ (-5 *1 (-727 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-977)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1092)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4))
+ (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1092)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1020)) (-4 *2 (-977))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-592 (-1092))) (-4 *5 (-218 (-2827 *3) (-713)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -1722 *4) (|:| -2168 *5))
+ (-2 (|:| -1722 *4) (|:| -2168 *5))))
+ (-4 *2 (-160)) (-5 *1 (-438 *3 *2 *4 *5 *6 *7)) (-4 *4 (-789))
+ (-4 *7 (-884 *2 *5 (-800 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1150 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-977))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-977)) (-5 *1 (-678 *2 *3)) (-4 *3 (-789))
+ (-4 *3 (-669))))
+ ((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-906 *2 *3 *4)) (-4 *3 (-734)) (-4 *4 (-789))
+ (-4 *2 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 (-592 *4))))
+ (-5 *1 (-1100 *4)) (-5 *3 (-592 (-592 *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1150 *4))
+ (-4 *5 (-1150 (-385 *3))) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-567 (-827 *3))) (-4 *3 (-821 *3))
+ (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
+ (-4 *2 (-567 (-827 *3))) (-4 *2 (-821 *3))
+ (-4 *2 (-13 (-408 *3) (-1114))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-592 (-1092)))
- (-5 *2 (-592 (-592 (-357)))) (-5 *1 (-954)) (-5 *5 (-357))))
+ (|partial| -12 (-5 *3 (-713)) (-4 *4 (-286)) (-4 *6 (-1150 *4))
+ (-5 *2 (-1174 (-592 *6))) (-5 *1 (-432 *4 *6)) (-5 *5 (-592 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (|has| *1 (-6 -4260)) (-4 *1 (-1162 *3))
+ (-4 *3 (-1128)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1114))) (-5 *2 (-108)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-525)) (-5 *1 (-221))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-592 (-1075))) (-5 *3 (-525)) (-5 *4 (-1075))
+ (-5 *1 (-221))))
+ ((*1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1152 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977))))
+ ((*1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))))
+(((*1 *2)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
+ (-4 *5 (-1150 (-385 *4))) (-5 *2 (-632 (-385 *4))))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734))))
+ ((*1 *2 *1) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-592 (-1092))) (-4 *4 (-160))
+ (-4 *6 (-218 (-2827 *3) (-713)))
+ (-14 *7
+ (-1 (-108) (-2 (|:| -1722 *5) (|:| -2168 *6))
+ (-2 (|:| -1722 *5) (|:| -2168 *6))))
+ (-5 *2 (-656 *5 *6 *7)) (-5 *1 (-438 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-789)) (-4 *8 (-884 *4 *6 (-800 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-669)) (-4 *2 (-789)) (-5 *1 (-678 *3 *2))
+ (-4 *3 (-977))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-906 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-734))
+ (-4 *4 (-789)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517))))
+ ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-929 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108))))
((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-940 *3)) (-4 *3 (-968 (-385 (-525)))))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-884 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
+ (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-713)) (-4 *4 (-977)) (-5 *1 (-1146 *4 *2))
+ (-4 *2 (-1150 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-713)) (-5 *4 (-525)) (-5 *1 (-422 *2)) (-4 *2 (-977)))))
+(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
+ ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *2 (-517)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *5 (-991 *2 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1132))
+ (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5)))
+ (-5 *2 (-2 (|:| |num| (-632 *5)) (|:| |den| *5))))))
+(((*1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))))
+(((*1 *2)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977))))
+ ((*1 *2 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))))
+(((*1 *2 *3)
(-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953)))
(-14 *5 (-592 (-1092))) (-5 *2 (-592 (-592 (-955 (-385 *4)))))
(-5 *1 (-1198 *4 *5 *6)) (-14 *6 (-592 (-1092)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-787) (-286) (-138) (-953)))
- (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1198 *5 *6 *7))
- (-14 *6 (-592 (-1092))) (-14 *7 (-592 (-1092)))))
((*1 *2 *3 *4 *4)
(-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108))
(-4 *5 (-13 (-787) (-286) (-138) (-953)))
@@ -13788,1004 +16003,1075 @@
(-5 *2 (-592 (-592 (-955 (-385 *4))))) (-5 *1 (-1198 *4 *5 *6))
(-14 *5 (-592 (-1092))) (-14 *6 (-592 (-1092))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1094 (-385 (-525))))
- (-5 *1 (-172)))))
+ (-12 (-5 *3 (-592 (-592 (-878 (-205)))))
+ (-5 *2 (-592 (-1015 (-205)))) (-5 *1 (-863)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7))))
- (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-977)) (-4 *3 (-789))
- (-5 *2 (-2 (|:| |val| *1) (|:| -4193 (-525)))) (-4 *1 (-408 *3))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-827 *3)) (|:| -4193 (-827 *3))))
- (-5 *1 (-827 *3)) (-4 *3 (-1020))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977))
- (-4 *7 (-884 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -4193 (-525))))
- (-5 *1 (-885 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-341)
- (-10 -8 (-15 -1217 ($ *7)) (-15 -3114 (*7 $))
- (-15 -3123 (*7 $))))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1061)) (-5 *2 (-108)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))))
+ (-12 (-5 *3 (-294 (-357))) (-5 *2 (-294 (-205))) (-5 *1 (-284)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-977))
+ (-4 *2 (-13 (-382) (-968 *4) (-341) (-1114) (-263)))
+ (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1150 *4)))))
(((*1 *2 *1)
(-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
- (-5 *2 (-592 *3))))
+ (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-592
+ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205)))))
+ (-5 *1 (-520))))
((*1 *2 *1)
- (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020))
+ (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020))
(-5 *2 (-592 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-551 *3)) (-4 *3 (-977))))
((*1 *2 *1)
- (-12 (-5 *2 (-592 *3)) (-5 *1 (-678 *3 *4)) (-4 *3 (-977))
- (-4 *4 (-669))))
- ((*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-977)) (-5 *2 (-592 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1165 *3)) (-4 *3 (-977)) (-5 *2 (-1073 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
- (-4 *4 (-160))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2))
- (-4 *2 (-408 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1013 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517)))
- (-5 *1 (-147 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1013 *1)) (-4 *1 (-149))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1092))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-160)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-991 *5 *6 *7))
- (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8))))
- (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-592 *8)))))
-(((*1 *1) (-5 *1 (-1007))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-695)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-525))) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-517)) (-4 *8 (-884 *7 *5 *6))
- (-5 *2 (-2 (|:| -4193 (-713)) (|:| -3244 *9) (|:| |radicand| *9)))
- (-5 *1 (-888 *5 *6 *7 *8 *9)) (-5 *4 (-713))
- (-4 *9
- (-13 (-341)
- (-10 -8 (-15 -3114 (*8 $)) (-15 -3123 (*8 $)) (-15 -1217 ($ *8))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *4)) (-4 *4 (-787)) (-4 *4 (-341)) (-5 *2 (-713))
- (-5 *1 (-880 *4 *5)) (-4 *5 (-1150 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4258)) (-4 *1 (-215 *3))
- (-4 *3 (-1020))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1128)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-2 (|:| -3364 *3) (|:| -4201 *4))))
- (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *1 (-1105 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1105 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
-(((*1 *2 *1) (-12 (-4 *1 (-968 (-525))) (-4 *1 (-281)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1061)) (-5 *2 (-108)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-787) (-341))) (-5 *2 (-108)) (-5 *1 (-987 *4 *3))
- (-4 *3 (-1150 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1020)))))
-(((*1 *1 *1) (-4 *1 (-34)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1075))
- (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *2 (-966)) (-5 *1 (-700)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-824 *4 *3))
- (-4 *3 (-1020)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
- (-14 *6 (-592 (-1092)))
+ (-12
(-5 *2
- (-592 (-1063 *5 (-497 (-800 *6)) (-800 *6) (-722 *5 (-800 *6)))))
- (-5 *1 (-577 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 *5)) (-4 *5 (-1150 *3)) (-4 *3 (-286))
- (-5 *2 (-108)) (-5 *1 (-432 *3 *5)))))
+ (-592
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205)))))
+ (-5 *1 (-745)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-161 *3)) (-4 *3 (-286))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-619 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-683 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-789))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *1 (-913 *3)) (-4 *3 (-977))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-996 *4 *5 *6 *7))
+ (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1))
+ (-4 *1 (-996 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1152 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *2 (-592 *4)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-1150 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *2 (-592 *3)) (-5 *1 (-1047 *4 *3)) (-4 *4 (-1150 *3)))))
+ (-12 (-4 *4 (-341)) (-4 *4 (-517)) (-4 *5 (-1150 *4))
+ (-5 *2 (-2 (|:| -1331 (-573 *4 *5)) (|:| -3068 (-385 *5))))
+ (-5 *1 (-573 *4 *5)) (-5 *3 (-385 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4))
+ (-14 *3 (-856)) (-4 *4 (-977))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-429)) (-4 *3 (-977))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1150 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1088 *3)) (-5 *1 (-849 *3)) (-4 *3 (-286)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-1115 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-592 (-1115 *2))) (-5 *1 (-1115 *2)) (-4 *2 (-1020)))))
+(((*1 *1 *1) (-5 *1 (-798))) ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1141 *2)) (-4 *2 (-1128)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-878 *4)) (-4 *4 (-977)) (-5 *1 (-1081 *3 *4))
- (-14 *3 (-856)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1020)) (-4 *2 (-789))
- (-5 *1 (-109 *2)))))
-(((*1 *1 *1) (-4 *1 (-34)))
+ (-12 (-5 *4 (-1092))
+ (-4 *5 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-542 *3)) (-5 *1 (-518 *5 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *5))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1174 (-1174 (-525)))) (-5 *3 (-856)) (-5 *1 (-443)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525))))
+ (-5 *4 (-294 (-157 (-357)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525))))
+ (-5 *4 (-294 (-357))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525))))
+ (-5 *4 (-294 (-525))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-157 (-357)))))
+ (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-357)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-525)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-157 (-357)))))
+ (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-357)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-525)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-157 (-357)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-357))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-525))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525))))
+ (-5 *4 (-294 (-636))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525))))
+ (-5 *4 (-294 (-641))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-887 (-525))))
+ (-5 *4 (-294 (-643))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-636)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-641)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-294 (-643)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-636)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-641)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-294 (-643)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-636))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-641))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-1174 (-643))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-636))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-641))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-632 (-643))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-636))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-641))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-294 (-643))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-1075)) (-5 *1 (-308))))
+ ((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-408 *3) (-934))) (-5 *1 (-255 *3 *2))
+ (-4 *3 (-13 (-789) (-517))))))
+(((*1 *1 *1) (-4 *1 (-223)))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1150 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (-2067 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1128)))
+ (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1128)))))
+ ((*1 *1 *1) (-4 *1 (-450)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-341)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-31 *3 *4))
+ (-4 *4 (-408 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1092)) (-5 *3 (-713)) (-5 *1 (-110))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-110))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *4))
+ (-4 *4 (-408 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1092)) (-5 *2 (-110)) (-5 *1 (-151))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *4))
+ (-4 *4 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-280 *3)) (-4 *3 (-281))))
+ ((*1 *2 *2) (-12 (-4 *1 (-281)) (-5 *2 (-110))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
+ (-12 (-5 *2 (-110)) (-4 *4 (-789)) (-5 *1 (-407 *3 *4))
+ (-4 *3 (-408 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *4))
+ (-4 *4 (-408 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-565 *3)) (-4 *3 (-789))))
((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1128)))))
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *4))
+ (-4 *4 (-13 (-408 *3) (-934) (-1114))))))
+(((*1 *1) (-5 *1 (-415))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1056))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-878 (-205)) (-878 (-205)))) (-5 *3 (-592 (-242)))
+ (-5 *1 (-240))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-878 (-205)) (-878 (-205)))) (-5 *1 (-242))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-457 *5 *6))) (-5 *3 (-457 *5 *6))
+ (-14 *5 (-592 (-1092))) (-4 *6 (-429)) (-5 *2 (-1174 *6))
+ (-5 *1 (-580 *5 *6)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-931 *3)) (-4 *3 (-160)) (-5 *1 (-741 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-4 *2 (-977)) (-4 *3 (-785)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3))
+ (-4 *3 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1088 *1)) (-4 *1 (-429))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1088 *6)) (-4 *6 (-884 *5 *3 *4)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *5 (-844)) (-5 *1 (-434 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1088 *1)) (-4 *1 (-844)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-160))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-1193 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-977)))))
+ (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-764)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-977)) (-4 *2 (-630 *4 *5 *6))
+ (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1150 *4)) (-4 *5 (-351 *4))
+ (-4 *6 (-351 *4)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-108)) (-5 *1 (-106))))
+ ((*1 *2 *2) (-12 (-5 *2 (-856)) (|has| *1 (-6 -4250)) (-4 *1 (-382))))
+ ((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856)))))
+(((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103))))
+ ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198))))
+ ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462))))
+ ((*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-286))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525))))
+ ((*1 *1 *1) (-4 *1 (-986))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-592 (-1088 *13))) (-5 *3 (-1088 *13))
+ (-5 *4 (-592 *12)) (-5 *5 (-592 *10)) (-5 *6 (-592 *13))
+ (-5 *7 (-592 (-592 (-2 (|:| -2801 (-713)) (|:| |pcoef| *13)))))
+ (-5 *8 (-592 (-713))) (-5 *9 (-1174 (-592 (-1088 *10))))
+ (-4 *12 (-789)) (-4 *10 (-286)) (-4 *13 (-884 *10 *11 *12))
+ (-4 *11 (-735)) (-5 *1 (-650 *11 *12 *10 *13)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
+ (-5 *1 (-610 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-610 *3 *4)) (-5 *1 (-1192 *3 *4))
+ (-4 *3 (-789)) (-4 *4 (-160)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-294 (-525))) (|:| -1834 (-294 (-357)))
+ (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1091))))
+ (-5 *1 (-1091)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
- (-4 *4 (-13 (-789) (-517))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1162 *3)) (-4 *3 (-1128)) (-5 *2 (-713)))))
-(((*1 *2 *2) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1020)))))
-(((*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-787)) (-5 *1 (-282 *3)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1061)) (-5 *3 (-525)) (-5 *2 (-108)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1147 *4 *5)) (-5 *3 (-592 *5)) (-14 *4 (-1092))
- (-4 *5 (-341)) (-5 *1 (-858 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *5)) (-4 *5 (-341)) (-5 *2 (-1088 *5))
- (-5 *1 (-858 *4 *5)) (-14 *4 (-1092))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-592 *6)) (-5 *4 (-713)) (-4 *6 (-341))
- (-5 *2 (-385 (-887 *6))) (-5 *1 (-978 *5 *6)) (-14 *5 (-1092)))))
-(((*1 *1 *1) (-4 *1 (-34)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3)))))
-(((*1 *1 *1) (-5 *1 (-989))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *2 (-966)) (-5 *1 (-700)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-205) (-205) (-205)))
- (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined"))
- (-5 *5 (-1015 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1052 (-205)))
- (-5 *1 (-639)))))
+ (-12 (-5 *3 (-1092))
+ (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *4 *5))
+ (-4 *5 (-13 (-27) (-1114) (-408 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *4 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-385 (-525)))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *5 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5)))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525)))
+ (-4 *3 (-13 (-27) (-1114) (-408 *6)))
+ (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8))
+ (-5 *5 (-1141 (-385 (-525)))) (-5 *6 (-385 (-525)))
+ (-4 *8 (-13 (-27) (-1114) (-408 *7)))
+ (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-385 (-525))))
+ (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1114) (-408 *8)))
+ (-4 *8 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *8 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-385 (-525))) (-4 *4 (-977)) (-4 *1 (-1157 *4 *3))
+ (-4 *3 (-1134 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-713))))
+ (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510))
+ (-5 *2 (-385 (-525)))))
((*1 *2 *1)
- (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-713)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-789)) (-4 *5 (-844)) (-4 *6 (-735))
- (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-396 (-1088 *8)))
- (-5 *1 (-841 *5 *6 *7 *8)) (-5 *4 (-1088 *8))))
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510))
+ (-4 *3 (-517))))
+ ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-385 (-525)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510))
+ (-5 *2 (-385 (-525)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510))
+ (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510))
+ (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-929 *3)) (-4 *3 (-160)) (-4 *3 (-510))
+ (-5 *2 (-385 (-525)))))
((*1 *2 *3)
- (-12 (-4 *4 (-844)) (-4 *5 (-1150 *4)) (-5 *2 (-396 (-1088 *5)))
- (-5 *1 (-842 *4 *5)) (-5 *3 (-1088 *5)))))
-(((*1 *2 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341)))))
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-940 *3)) (-4 *3 (-968 *2)))))
(((*1 *2 *3)
- (-12 (-4 *2 (-1150 *4)) (-5 *1 (-751 *4 *2 *3 *5))
- (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2))
- (-4 *5 (-602 (-385 *2))))))
-(((*1 *1 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))))
-(((*1 *1 *1) (-4 *1 (-34)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525))
- (-5 *2 (-966)) (-5 *1 (-699)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-713)) (-4 *6 (-1020)) (-4 *3 (-835 *6))
- (-5 *2 (-632 *3)) (-5 *1 (-634 *6 *3 *7 *4)) (-4 *7 (-351 *3))
- (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4258)))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-305 *3)) (-4 *3 (-1128))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1128)) (-14 *4 *2))))
-(((*1 *1 *1 *1) (-5 *1 (-150)))
- ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-150)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))
- (-14 *4 (-713)) (-4 *5 (-160)))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1159 *4 *5 *6))
- (|:| |%expon| (-297 *4 *5 *6))
- (|:| |%expTerms|
- (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4))))))
- (|:| |%type| (-1075))))
- (-5 *1 (-1160 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-408 *3)))
- (-14 *5 (-1092)) (-14 *6 *4))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-713))))
+ (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-296)) (-5 *3 (-205)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
+ (-5 *2
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1043 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-525)) (-5 *5 (-1075)) (-5 *6 (-632 (-205)))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))))
+ (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-692)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1092))
+ (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *4 *5))
+ (-4 *5 (-13 (-27) (-1114) (-408 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *4 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-525)) (-4 *5 (-13 (-429) (-789) (-968 *4) (-588 *4)))
+ (-5 *2 (-51)) (-5 *1 (-293 *5 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5)))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *6)))
+ (-4 *6 (-13 (-429) (-789) (-968 *5) (-588 *5))) (-5 *5 (-525))
+ (-5 *2 (-51)) (-5 *1 (-293 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1141 (-525)))
+ (-4 *7 (-13 (-27) (-1114) (-408 *6)))
+ (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-525)))
+ (-4 *3 (-13 (-27) (-1114) (-408 *7)))
+ (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *7 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-525)) (-4 *4 (-977)) (-4 *1 (-1136 *4 *3))
+ (-4 *3 (-1165 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-713)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *1 *1) (-4 *1 (-34)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
+ (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1134 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-517)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1150 *2)))))
+(((*1 *2)
+ (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525)))))
((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-565 *3))
- (-4 *3 (-13 (-408 *5) (-27) (-1114)))
- (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2 (-2 (|:| -1642 *3) (|:| |coeff| *3)))
- (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1020)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1039)) (-5 *2 (-108)) (-5 *1 (-763)))))
+ (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429))
+ (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-910 *3 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-135))) (-5 *1 (-132))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-132)))))
+(((*1 *1 *1 *1) (-4 *1 (-286))) ((*1 *1 *1 *1) (-5 *1 (-713)))
+ ((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-565 *4)) (-5 *6 (-1092))
+ (-4 *4 (-13 (-408 *7) (-27) (-1114)))
+ (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2103 (-592 *4))))
+ (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1020)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2))
+ (-4 *2 (-408 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1013 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517)))
+ (-5 *1 (-147 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1013 *1)) (-4 *1 (-149))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1092)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1088 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6))
+ (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-887 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6))
+ (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1174 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160))
- (-4 *5 (-1150 *4)) (-5 *2 (-632 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-160)) (-4 *5 (-1150 *4)) (-5 *2 (-632 *4))
- (-5 *1 (-386 *3 *4 *5)) (-4 *3 (-387 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1150 *3))
- (-5 *2 (-632 *3)))))
+ (-12 (-5 *3 (-1101 (-592 *4))) (-4 *4 (-789))
+ (-5 *2 (-592 (-592 *4))) (-5 *1 (-1100 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-174))))
+ (-12 (-5 *3 (-1092))
+ (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *4 *5))
+ (-4 *5 (-13 (-27) (-1114) (-408 *4)))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-279))))
+ (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *4 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-713))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *5 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1114) (-408 *5)))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-273 *3)) (-5 *5 (-713))
+ (-4 *3 (-13 (-27) (-1114) (-408 *6)))
+ (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6))
+ (-4 *6 (-13 (-27) (-1114) (-408 *5)))
+ (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3))
+ (-4 *3 (-13 (-27) (-1114) (-408 *6)))
+ (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1141 (-713)))
+ (-4 *7 (-13 (-27) (-1114) (-408 *6)))
+ (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1092)) (-5 *5 (-273 *3)) (-5 *6 (-1141 (-713)))
+ (-4 *3 (-13 (-27) (-1114) (-408 *7)))
+ (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *7 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1165 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-429)) (-5 *2 (-108))
+ (-5 *1 (-338 *4 *5)) (-14 *5 (-592 (-1092)))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-284)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-977)) (-4 *2 (-630 *4 *5 *6))
- (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1150 *4)) (-4 *5 (-351 *4))
- (-4 *6 (-351 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))))
+ (-12 (-5 *3 (-592 (-722 *4 (-800 *5)))) (-4 *4 (-429))
+ (-14 *5 (-592 (-1092))) (-5 *2 (-108)) (-5 *1 (-577 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 *6)) (-4 *5 (-1132)) (-4 *6 (-1150 *5))
- (-5 *2 (-2 (|:| -4193 (-713)) (|:| -3244 *3) (|:| |radicand| *6)))
- (-5 *1 (-139 *5 *6 *7)) (-5 *4 (-713)) (-4 *7 (-1150 *3)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9))
- (-4 *9 (-991 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735))
- (-4 *8 (-789)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3412 (-592 *9))))
- (-5 *3 (-592 *9)) (-4 *1 (-1122 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-991 *5 *6 *7))
- (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -3412 (-592 *8))))
- (-5 *3 (-592 *8)) (-4 *1 (-1122 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205)))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-205))
- (-5 *2 (-966)) (-5 *1 (-698))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205)))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-366))
- (-5 *4 (-205)) (-5 *2 (-966)) (-5 *1 (-698)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-525)) (-5 *1 (-1073 *3)) (-4 *3 (-1128))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4259)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1) (-4 *1 (-119)))
+ (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *4 (-713))
+ (-5 *2 (-632 (-205))) (-5 *1 (-246)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856))
+ (-14 *4 (-856)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092))
+ (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-893))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-977)) (-14 *3 (-592 (-1092)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-977) (-789)))
+ (-14 *3 (-592 (-1092))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-385 (-525))) (-4 *4 (-968 (-525)))
+ (-4 *4 (-13 (-789) (-517))) (-5 *1 (-31 *4 *2)) (-4 *2 (-408 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-128)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-205)))
((*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 *3))
+ (-4 *5 (-1165 *4)) (-5 *1 (-257 *4 *5 *2)) (-4 *2 (-1136 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 *3))
+ (-4 *5 (-1134 *4)) (-5 *1 (-258 *4 *5 *2 *6)) (-4 *2 (-1157 *4 *5))
+ (-4 *6 (-916 *5))))
+ ((*1 *1 *1 *1) (-4 *1 (-263)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *1) (-5 *1 (-357)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-364 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-1032))))
((*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1174 *4)) (-5 *3 (-525)) (-4 *4 (-327))
+ (-5 *1 (-495 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-501))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-501))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *4 (-1020))
+ (-5 *1 (-625 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-341))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-977))
+ (-5 *1 (-633 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (-4 *3 (-977)) (-5 *1 (-657 *3 *4))
+ (-4 *4 (-594 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-4 *4 (-977))
+ (-5 *1 (-657 *4 *5)) (-4 *5 (-594 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-856))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713))))
((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-856)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
- (-5 *2
- (-2 (|:| -3284 *4) (|:| -1213 *4) (|:| |totalpts| (-525))
- (|:| |success| (-108))))
- (-5 *1 (-731)) (-5 *5 (-525)))))
-(((*1 *2 *1) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128)))))
-(((*1 *2)
- (-12 (-4 *3 (-977)) (-5 *2 (-892 (-655 *3 *4))) (-5 *1 (-655 *3 *4))
- (-4 *4 (-1150 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-192)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -3094 (-592 *1))))
- (-4 *1 (-345 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-430 *3 *4 *5 *6))
- (|:| -3094 (-592 (-430 *3 *4 *5 *6)))))
- (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
-(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-4 *2 (-1150 *4))
- (-5 *1 (-857 *4 *2)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-899))) (-5 *1 (-270)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-1174 *5))) (-5 *4 (-525)) (-5 *2 (-1174 *5))
- (-5 *1 (-960 *5)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-977)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *1 *1) (-4 *1 (-466)))
- ((*1 *2 *2)
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-761 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-776 *3)) (-4 *3 (-977))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-5 *1 (-776 *4)) (-4 *4 (-977))))
+ ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-827 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-934)) (-5 *2 (-385 (-525)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-856))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (-4 *1 (-1042 *3 *4 *5 *6)) (-4 *4 (-977))
+ (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)) (-4 *4 (-341))))
+ ((*1 *2 *2 *2)
(-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
(-5 *1 (-1078 *3))))
- ((*1 *2 *2)
+ ((*1 *2 *2 *2)
(-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-357)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-909 *4 *5 *6 *3)) (-4 *4 (-977)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-4 *4 (-517))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+ (-5 *1 (-1079 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-514)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-968 *2)))))
-(((*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1174 *1)) (-4 *1 (-345 *3)))))
+ (-12 (-5 *3 (-592 (-501))) (-5 *2 (-1092)) (-5 *1 (-501)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-395 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-525)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-286))
- (-4 *9 (-884 *8 *6 *7))
- (-5 *2 (-2 (|:| -3101 (-1088 *9)) (|:| |polval| (-1088 *8))))
- (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1088 *9)) (-5 *4 (-1088 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *1 *1) (-4 *1 (-466)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
-(((*1 *1 *1) (-5 *1 (-798))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1075)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *2 (-966)) (-5 *1 (-697)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -1642 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-341)) (-4 *7 (-1150 *6))
+ (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1150 (-525))))))
+(((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-510))))
+ ((*1 *1 *1) (-4 *1 (-986))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-713))))
+ ((*1 *1 *1) (-4 *1 (-380))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -4108 (-632 (-385 (-887 *4))))
+ (|:| |vec| (-592 (-385 (-887 *4)))) (|:| -3085 (-713))
+ (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))
+ (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092))))
+ (-4 *6 (-735))
(-5 *2
- (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6))
- (-2 (|:| -1642 (-385 *7)) (|:| |coeff| (-385 *7))) "failed"))
- (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-690)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-426 *3 *4 *5 *2)) (-4 *2 (-884 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372)))))
+ (-2 (|:| |partsol| (-1174 (-385 (-887 *4))))
+ (|:| -2103 (-592 (-1174 (-385 (-887 *4)))))))
+ (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
- (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *10))
- (-5 *1 (-574 *5 *6 *7 *8 *9 *10)) (-4 *9 (-996 *5 *6 *7 *8))
- (-4 *10 (-1029 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
- (-14 *6 (-592 (-1092))) (-5 *2 (-592 (-974 *5 *6)))
- (-5 *1 (-577 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
- (-14 *6 (-592 (-1092)))
- (-5 *2
- (-592 (-1063 *5 (-497 (-800 *6)) (-800 *6) (-722 *5 (-800 *6)))))
- (-5 *1 (-577 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
- (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-592 (-958 *5 *6 *7 *8))) (-5 *1 (-958 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
- (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-592 (-958 *5 *6 *7 *8))) (-5 *1 (-958 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
- (-14 *6 (-592 (-1092))) (-5 *2 (-592 (-974 *5 *6)))
- (-5 *1 (-974 *5 *6))))
+ (-12 (-5 *3 (-1174 (-294 (-205)))) (-5 *4 (-592 (-1092)))
+ (-5 *2 (-632 (-294 (-205)))) (-5 *1 (-187))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
- (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-996 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
- (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-592 (-1063 *5 *6 *7 *8))) (-5 *1 (-1063 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
- (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-592 (-1063 *5 *6 *7 *8))) (-5 *1 (-1063 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-1122 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-565 *4)) (-5 *6 (-1088 *4))
- (-4 *4 (-13 (-408 *7) (-27) (-1114)))
- (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3094 (-592 *4))))
- (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1020))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-565 *4)) (-5 *6 (-385 (-1088 *4)))
- (-4 *4 (-13 (-408 *7) (-27) (-1114)))
- (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3094 (-592 *4))))
- (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1020)))))
+ (-12 (-4 *5 (-1020)) (-4 *6 (-835 *5)) (-5 *2 (-632 *6))
+ (-5 *1 (-634 *5 *6 *3 *4)) (-4 *3 (-351 *6))
+ (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4259)))))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1073 (-205)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1777
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-520)))))
+(((*1 *1 *1 *1) (-4 *1 (-286))) ((*1 *1 *1 *1) (-5 *1 (-713)))
+ ((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1150 *3)) (-5 *1 (-377 *3 *2))
+ (-4 *3 (-13 (-341) (-138))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *1 *1) (-4 *1 (-466)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
+ (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092))
+ (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
+ (-5 *2 (-2 (|:| -2682 (-592 *6)) (|:| -2046 (-592 *6)))))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-713) *2)) (-5 *4 (-713)) (-4 *2 (-1020))
+ (-5 *1 (-622 *2))))
((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517))))
- ((*1 *1 *1) (|partial| -4 *1 (-665))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1020)) (-4 *6 (-1020))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-1020)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-108))
- (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-4 *3 (-13 (-27) (-1114) (-408 *6) (-10 -8 (-15 -1217 ($ *7)))))
- (-4 *7 (-787))
- (-4 *8
- (-13 (-1152 *3 *7) (-341) (-1114)
- (-10 -8 (-15 -3376 ($ $)) (-15 -1206 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))))
- (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1075)) (-4 *9 (-916 *8))
- (-14 *10 (-1092)))))
+ (-12 (-5 *2 (-1 *3 (-713) *3)) (-4 *3 (-1020)) (-5 *1 (-625 *3)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
(-4 *2 (-13 (-408 *3) (-934))))))
-(((*1 *2) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-771)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-713)) (-4 *1 (-1150 *3)) (-4 *3 (-977)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-108)) (-5 *1 (-827 *4))
+ (-4 *4 (-1020)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-690)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-713)) (-5 *4 (-856)) (-5 *2 (-1179)) (-5 *1 (-1175))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-713)) (-5 *4 (-856)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-761 *3)) (|:| |rm| (-761 *3))))
+ (-5 *1 (-761 *3)) (-4 *3 (-789))))
+ ((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-632 (-205))) (-5 *5 (-108)) (-5 *6 (-205))
+ (-5 *7 (-632 (-525)))
+ (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))
+ (-5 *3 (-525)) (-5 *2 (-966)) (-5 *1 (-696)))))
+(((*1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-346)) (-4 *2 (-1020)))))
+(((*1 *1 *2) (-12 (-5 *2 (-169)) (-5 *1 (-228)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
+ (-12 (-5 *3 (-1075)) (-5 *2 (-195 (-475))) (-5 *1 (-777)))))
+(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-305 *3)) (-4 *3 (-1128))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-713)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1128))
+ (-14 *4 (-525)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-880 *4 *3))
- (-4 *3 (-1150 *4)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-126))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1128)) (-4 *2 (-789))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1128))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-789))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-977))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1053 *3)) (-4 *3 (-977))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-1081 *3 *4))) (-5 *1 (-1081 *3 *4))
- (-14 *3 (-856)) (-4 *4 (-977))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1081 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734))
- (-4 *2 (-429))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1150 *2))
- (-4 *4 (-1150 (-385 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-429))))
+ (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-734)))))
+(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1075)) (-5 *1 (-284)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-228)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-517))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *2 (-789)) (-4 *3 (-429))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-884 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-429))))
+ (|partial| -12 (-4 *1 (-304 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734))
+ (-4 *2 (-517))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-517)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977))
+ (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-517))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-713)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-517))))
+ ((*1 *1 *1 *1) (-5 *1 (-798)))
((*1 *2 *2 *3)
- (-12 (-4 *3 (-286)) (-4 *3 (-517)) (-5 *1 (-1080 *3 *2))
- (-4 *2 (-1150 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
- (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
- ((*1 *1 *1) (-4 *1 (-466)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1020)) (-4 *2 (-346)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977))
- (-5 *2 (-592 (-592 (-592 (-878 *3))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-887 (-357))) (-5 *1 (-317 *3 *4 *5))
- (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1092)))
- (-14 *4 (-592 (-1092))) (-4 *5 (-365))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-385 (-887 (-357)))) (-5 *1 (-317 *3 *4 *5))
- (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1092)))
- (-14 *4 (-592 (-1092))) (-4 *5 (-365))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5))
- (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1092)))
- (-14 *4 (-592 (-1092))) (-4 *5 (-365))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-887 (-525))) (-5 *1 (-317 *3 *4 *5))
- (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1092)))
- (-14 *4 (-592 (-1092))) (-4 *5 (-365))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-385 (-887 (-525)))) (-5 *1 (-317 *3 *4 *5))
- (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1092)))
- (-14 *4 (-592 (-1092))) (-4 *5 (-365))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5))
- (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1092)))
- (-14 *4 (-592 (-1092))) (-4 *5 (-365))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1092)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 *2))
- (-14 *4 (-592 *2)) (-4 *5 (-365))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 *5)) (-4 *5 (-365)) (-5 *1 (-317 *3 *4 *5))
- (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092)))))
- ((*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-887 (-525))))) (-4 *1 (-362))))
- ((*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-887 (-357))))) (-4 *1 (-362))))
- ((*1 *1 *2) (-12 (-5 *2 (-632 (-887 (-525)))) (-4 *1 (-362))))
- ((*1 *1 *2) (-12 (-5 *2 (-632 (-887 (-357)))) (-4 *1 (-362))))
- ((*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-4 *1 (-362))))
- ((*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-357)))) (-4 *1 (-362))))
- ((*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-525)))) (-4 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-357)))) (-4 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-887 (-525))) (-4 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-887 (-357))) (-4 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-4 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-4 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-1174 (-385 (-887 (-525))))) (-4 *1 (-418))))
- ((*1 *1 *2) (-12 (-5 *2 (-1174 (-385 (-887 (-357))))) (-4 *1 (-418))))
- ((*1 *1 *2) (-12 (-5 *2 (-1174 (-887 (-525)))) (-4 *1 (-418))))
- ((*1 *1 *2) (-12 (-5 *2 (-1174 (-887 (-357)))) (-4 *1 (-418))))
- ((*1 *1 *2) (-12 (-5 *2 (-1174 (-294 (-525)))) (-4 *1 (-418))))
- ((*1 *1 *2) (-12 (-5 *2 (-1174 (-294 (-357)))) (-4 *1 (-418))))
- ((*1 *2 *1)
- (-12
+ (-12 (-5 *2 (-1174 *4)) (-4 *4 (-1150 *3)) (-4 *3 (-517))
+ (-5 *1 (-903 *3 *4))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-980 *3 *4 *2 *5 *6)) (-4 *2 (-977))
+ (-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-517))))
+ ((*1 *2 *2 *2)
+ (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414)))))
+(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177))))
+ ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1177)))))
+(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-341) (-787)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -2868 (-396 *3))))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966))
+ (-5 *1 (-691)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1075))
+ (-5 *3 (-205)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-395 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-396 *5)) (-4 *5 (-517))
(-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-294 (-205)))
- (|:| -3196 (-592 (-1015 (-782 (-205)))))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
- (-5 *1 (-711))))
- ((*1 *2 *1)
+ (-2 (|:| -2168 (-713)) (|:| -2681 *5) (|:| |radicand| (-592 *5))))
+ (-5 *1 (-298 *5)) (-5 *4 (-713))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-934)) (-5 *2 (-525)))))
+(((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (-5 *1 (-750))))
- ((*1 *2 *1)
+ (-592
+ (-2
+ (|:| -1556
+ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (|:| -3448
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1073 (-205)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1777
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-520)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-525) "failed") *5)) (-4 *5 (-977))
+ (-5 *2 (-525)) (-5 *1 (-508 *5 *3)) (-4 *3 (-1150 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-977))
+ (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1150 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-977))
+ (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1150 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-713))) (-5 *3 (-108)) (-5 *1 (-1081 *4 *5))
+ (-14 *4 (-856)) (-4 *5 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-599 (-385 *2))) (-4 *2 (-1150 *4)) (-5 *1 (-752 *4 *2))
+ (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-600 *2 (-385 *2))) (-4 *2 (-1150 *4))
+ (-5 *1 (-752 *4 *2))
+ (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-592 (-1088 *4))) (-5 *3 (-1088 *4))
+ (-4 *4 (-844)) (-5 *1 (-609 *4)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205)))
- (|:| |lb| (-592 (-782 (-205))))
- (|:| |cf| (-592 (-294 (-205))))
- (|:| |ub| (-592 (-782 (-205))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-592 (-294 (-205))))
- (|:| -2295 (-592 (-205)))))))
- (-5 *1 (-780))))
+ (-5 *3
+ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))
+ (-5 *2 (-592 (-1092))) (-5 *1 (-246))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1088 *7)) (-4 *7 (-884 *6 *4 *5)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-977)) (-5 *2 (-592 *5))
+ (-5 *1 (-299 *4 *5 *6 *7))))
((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-317 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 *2) (-4 *5 (-365))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-592 (-1092)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-592 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977))
+ (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-592 *5))
+ (-5 *1 (-885 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-341)
+ (-10 -8 (-15 -4100 ($ *7)) (-15 -4066 (*7 $)) (-15 -4080 (*7 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1022 (-1092))) (-5 *1 (-900 *3)) (-4 *3 (-901))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-906 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-734))
+ (-4 *5 (-789)) (-5 *2 (-592 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-1092)))
+ (-5 *1 (-973 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1092)) (-4 *5 (-341)) (-5 *2 (-592 (-1123 *5)))
+ (-5 *1 (-1182 *5)) (-5 *4 (-1123 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *4 *5 *6))
+ (-4 *4 (-567 (-501))) (-4 *5 (-1128)) (-4 *6 (-1128)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1020))
+ (-4 *6 (-1020)) (-4 *2 (-1020)) (-5 *1 (-624 *5 *6 *2)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092))
+ (-14 *4 *2))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357))
+ (|:| |expense| (-357)) (|:| |accuracy| (-357))
+ (|:| |intermediateResults| (-357))))
+ (-5 *1 (-745)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1020)) (-5 *2 (-1075)))))
+(((*1 *2 *3)
(-12
+ (-5 *3
+ (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
(-5 *2
- (-2 (|:| |pde| (-592 (-294 (-205))))
- (|:| |constraints|
- (-592
- (-2 (|:| |start| (-205)) (|:| |finish| (-205))
- (|:| |grid| (-713)) (|:| |boundaryType| (-525))
- (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205))))))
- (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075))
- (|:| |tol| (-205))))
- (-5 *1 (-833))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-977))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *1 (-909 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2)
- (-3254
- (-12 (-5 *2 (-887 *3))
- (-12 (-1850 (-4 *3 (-37 (-385 (-525)))))
- (-1850 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1092))))
- (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735))
- (-4 *5 (-789)))
- (-12 (-5 *2 (-887 *3))
- (-12 (-1850 (-4 *3 (-510))) (-1850 (-4 *3 (-37 (-385 (-525)))))
- (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1092))))
- (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735))
- (-4 *5 (-789)))
- (-12 (-5 *2 (-887 *3))
- (-12 (-1850 (-4 *3 (-925 (-525)))) (-4 *3 (-37 (-385 (-525))))
- (-4 *5 (-567 (-1092))))
- (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735))
- (-4 *5 (-789)))))
- ((*1 *1 *2)
- (-3254
- (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5))
- (-12 (-1850 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525)))
- (-4 *5 (-567 (-1092))))
- (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))
- (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5))
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092))))
- (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-887 (-385 (-525)))) (-4 *1 (-991 *3 *4 *5))
- (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1092))) (-4 *3 (-977))
- (-4 *4 (-735)) (-4 *5 (-789)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-5 *1 (-415)))))
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-174)))))
+(((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
+ ((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *1 *1) (-4 *1 (-1056))))
+(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1088 (-385 (-1088 *2)))) (-5 *4 (-565 *2))
+ (-4 *2 (-13 (-408 *5) (-27) (-1114)))
+ (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *1 (-521 *5 *2 *6)) (-4 *6 (-1020))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1088 *1)) (-4 *1 (-884 *4 *5 *3)) (-4 *4 (-977))
+ (-4 *5 (-735)) (-4 *3 (-789))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1088 *4)) (-4 *4 (-977)) (-4 *1 (-884 *4 *5 *3))
+ (-4 *5 (-735)) (-4 *3 (-789))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-1088 *2))) (-4 *5 (-735)) (-4 *4 (-789))
+ (-4 *6 (-977))
+ (-4 *2
+ (-13 (-341)
+ (-10 -8 (-15 -4100 ($ *7)) (-15 -4066 (*7 $)) (-15 -4080 (*7 $)))))
+ (-5 *1 (-885 *5 *4 *6 *7 *2)) (-4 *7 (-884 *6 *5 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-1088 (-385 (-887 *5))))) (-5 *4 (-1092))
+ (-5 *2 (-385 (-887 *5))) (-5 *1 (-973 *5)) (-4 *5 (-517)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1092)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1092)) (-5 *3 (-592 (-501))) (-5 *1 (-501)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4))
- (-4 *4 (-327)))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-977)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1092)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 (-856))) (-4 *2 (-341)) (-5 *1 (-143 *4 *2 *5))
- (-14 *4 (-856)) (-14 *5 (-926 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4))
- (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1092)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-126))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1020)) (-4 *2 (-977))))
- ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-341)) (-5 *1 (-956 *3 *2)) (-4 *2 (-602 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-341)) (-5 *2 (-2 (|:| -1537 *3) (|:| -1534 (-592 *5))))
+ (-5 *1 (-956 *5 *3)) (-5 *4 (-592 *5)) (-4 *3 (-602 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-108)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2772 *3)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1045 *4 *3 *5))) (-4 *4 (-37 (-385 (-525))))
+ (-4 *4 (-977)) (-4 *3 (-789)) (-5 *1 (-1045 *4 *3 *5))
+ (-4 *5 (-884 *4 (-497 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1123 *4))) (-5 *3 (-1092)) (-5 *1 (-1123 *4))
+ (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-977)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))))
+(((*1 *2)
+ (-12 (-4 *3 (-977)) (-5 *2 (-892 (-655 *3 *4))) (-5 *1 (-655 *3 *4))
+ (-4 *4 (-1150 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-592 (-856))) (-5 *1 (-143 *4 *2 *5)) (-14 *4 (-856))
+ (-4 *2 (-341)) (-14 *5 (-926 *4 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-656 *5 *6 *7)) (-4 *5 (-789))
+ (-4 *6 (-218 (-2827 *4) (-713)))
+ (-14 *7
+ (-1 (-108) (-2 (|:| -1722 *5) (|:| -2168 *6))
+ (-2 (|:| -1722 *5) (|:| -2168 *6))))
+ (-14 *4 (-592 (-1092))) (-4 *2 (-160))
+ (-5 *1 (-438 *4 *2 *5 *6 *7 *8)) (-4 *8 (-884 *2 *6 (-800 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-789))))
+ ((*1 *1 *2 *3)
(-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4))
(-4 *4 (-1150 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-977))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-977)) (-5 *1 (-678 *2 *3)) (-4 *3 (-669))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-977))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-678 *2 *3)) (-4 *2 (-977)) (-4 *3 (-669))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5))
(-4 *4 (-977)) (-4 *5 (-789))))
((*1 *1 *1 *2 *3)
(-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-977))
(-4 *2 (-789))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-977))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-977))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-884 *4 *5 *6))
(-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789))))
((*1 *1 *1 *2 *3)
(-12 (-5 *3 (-713)) (-4 *1 (-884 *4 *5 *2)) (-4 *4 (-977))
(-4 *5 (-735)) (-4 *2 (-789))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-4 *2 (-884 *4 (-497 *5) *5))
- (-5 *1 (-1045 *4 *5 *2)) (-4 *4 (-977)) (-4 *5 (-789))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-887 *4)) (-5 *1 (-1123 *4))
- (-4 *4 (-977)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429))
- (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-910 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-991 *4 *5 *6))
- (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *1 (-910 *4 *5 *6 *7)))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 *5)) (-4 *1 (-906 *4 *5 *6))
+ (-4 *4 (-977)) (-4 *5 (-734)) (-4 *6 (-789))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *1 (-906 *4 *3 *2)) (-4 *4 (-977)) (-4 *3 (-734))
+ (-4 *2 (-789)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862)))))
(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-592
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-713)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-735)) (-4 *6 (-884 *4 *3 *5)) (-4 *4 (-429)) (-4 *5 (-789))
- (-5 *1 (-426 *4 *3 *5 *6)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-1075)) (-5 *5 (-632 (-205)))
- (-5 *2 (-966)) (-5 *1 (-690)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1081 *3 *4)) (-14 *3 (-856))
- (-4 *4 (-977)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
- (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
- ((*1 *1 *1) (-4 *1 (-466)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1053 *3)) (-4 *3 (-977))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-385 *1)) (-4 *1 (-1150 *3)) (-4 *3 (-977))
- (-4 *3 (-517))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-517)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-592 *3)) (-5 *1 (-895 *3)) (-4 *3 (-510)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1088 *5)) (-4 *5 (-341)) (-5 *2 (-592 *6))
- (-5 *1 (-498 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
-(((*1 *2 *2 *2 *2)
+ (|partial| -12 (-5 *2 (-1174 *4)) (-5 *3 (-632 *4)) (-4 *4 (-341))
+ (-5 *1 (-613 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-341))
+ (-4 *5 (-13 (-351 *4) (-10 -7 (-6 -4260))))
+ (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4260))))
+ (-5 *1 (-614 *4 *5 *2 *3)) (-4 *3 (-630 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-592 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-341))
+ (-5 *1 (-756 *2 *3)) (-4 *3 (-602 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *1 (-1047 *3 *2)) (-4 *3 (-1150 *2)))))
+(((*1 *2 *2 *3 *2)
(-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1092)) (-5 *4 (-887 (-525))) (-5 *2 (-308))
- (-5 *1 (-310)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-713))
- (-4 *3 (-13 (-669) (-346) (-10 -7 (-15 ** (*3 *3 (-525))))))
- (-5 *1 (-226 *3)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -1642 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-341)) (-5 *1 (-535 *4 *2)) (-4 *2 (-1150 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-789)) (-5 *1 (-1100 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2589 *3)))
- (-5 *1 (-903 *4 *3)) (-4 *3 (-1150 *4)))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
- ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
- ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
- (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
- ((*1 *1 *1) (-4 *1 (-466)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3)))))
-(((*1 *2 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286))))
- ((*1 *2 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286))))
- ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-286))))
- ((*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-525)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205)))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1))))
- (-5 *2 (-966)) (-5 *1 (-696)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132))
- (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))))))
-(((*1 *1 *1) (-4 *1 (-134)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1172 *3)) (-4 *3 (-1128)) (-4 *3 (-977))
- (-5 *2 (-632 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-903 *4 *2))
- (-4 *2 (-1150 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-977)) (-14 *3 (-592 (-1092)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-977) (-789)))
- (-14 *3 (-592 (-1092))))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-690)))))
-(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1075)) (-5 *1 (-284)))))
-(((*1 *1 *1) (-4 *1 (-91)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3)))))
(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-525) "failed") *5)) (-4 *5 (-977))
- (-5 *2 (-525)) (-5 *1 (-508 *5 *3)) (-4 *3 (-1150 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-977))
- (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1150 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-977))
- (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1150 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-341)) (-5 *1 (-956 *3 *2)) (-4 *2 (-602 *3))))
+ (-12 (-5 *3 (-110)) (-5 *4 (-713)) (-4 *5 (-429)) (-4 *5 (-789))
+ (-4 *5 (-968 (-525))) (-4 *5 (-517)) (-5 *1 (-40 *5 *2))
+ (-4 *2 (-408 *5))
+ (-4 *2
+ (-13 (-341) (-281)
+ (-10 -8 (-15 -4066 ((-1044 *5 (-565 $)) $))
+ (-15 -4080 ((-1044 *5 (-565 $)) $))
+ (-15 -4100 ($ (-1044 *5 (-565 $))))))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-1020) (-33)))
+ (-4 *5 (-13 (-1020) (-33))) (-5 *2 (-108)) (-5 *1 (-1058 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *4)) (-4 *4 (-977)) (-5 *2 (-1174 *4))
+ (-5 *1 (-1093 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-341)) (-5 *2 (-2 (|:| -3025 *3) (|:| -4188 (-592 *5))))
- (-5 *1 (-956 *5 *3)) (-5 *4 (-592 *5)) (-4 *3 (-602 *5)))))
+ (-12 (-5 *4 (-856)) (-5 *2 (-1174 *3)) (-5 *1 (-1093 *3))
+ (-4 *3 (-977)))))
+(((*1 *1) (-5 *1 (-745))))
+(((*1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525))))
+ ((*1 *1 *1) (-5 *1 (-1039))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-887 (-385 (-525)))) (-5 *4 (-1092))
+ (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5))
+ (-4 *3 (-1150 *4))
+ (-4 *5 (-13 (-382) (-968 *4) (-341) (-1114) (-263))))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-887 (-525))) (-5 *3 (-1092))
+ (-5 *4 (-1015 (-385 (-525)))) (-5 *1 (-30)))))
(((*1 *2 *3)
(-12 (-5 *3 (-711))
(-5 *2
- (-2 (|:| -1533 (-357)) (|:| -3257 (-1075))
+ (-2 (|:| -1257 (-357)) (|:| -2411 (-1075))
(|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))))
(-5 *1 (-526))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-711)) (-5 *4 (-989))
(-5 *2
- (-2 (|:| -1533 (-357)) (|:| -3257 (-1075))
+ (-2 (|:| -1257 (-357)) (|:| -2411 (-1075))
(|:| |explanations| (-592 (-1075))) (|:| |extra| (-966))))
(-5 *1 (-526))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-729)) (-5 *3 (-989))
(-5 *4
(-2 (|:| |fn| (-294 (-205)))
- (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205))
+ (|:| -1777 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205))
(|:| |relerr| (-205))))
(-5 *2
- (-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))
+ (-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))
(|:| |extra| (-966))))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-729)) (-5 *3 (-989))
(-5 *4
(-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
(|:| |relerr| (-205))))
(-5 *2
- (-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))
+ (-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))
(|:| |extra| (-966))))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-742)) (-5 *3 (-989))
@@ -14794,41 +17080,41 @@
(|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
(|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
(|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (-5 *2 (-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))))))
+ (-5 *2 (-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))))))
((*1 *2 *3)
(-12 (-5 *3 (-750))
(-5 *2
- (-2 (|:| -1533 (-357)) (|:| -3257 (-1075))
+ (-2 (|:| -1257 (-357)) (|:| -2411 (-1075))
(|:| |explanations| (-592 (-1075)))))
(-5 *1 (-747))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-750)) (-5 *4 (-989))
(-5 *2
- (-2 (|:| -1533 (-357)) (|:| -3257 (-1075))
+ (-2 (|:| -1257 (-357)) (|:| -2411 (-1075))
(|:| |explanations| (-592 (-1075)))))
(-5 *1 (-747))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-778)) (-5 *3 (-989))
(-5 *4
- (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))
- (-5 *2 (-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))))))
+ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2948 (-592 (-205)))))
+ (-5 *2 (-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-778)) (-5 *3 (-989))
(-5 *4
- (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205)))
+ (-2 (|:| |fn| (-294 (-205))) (|:| -2948 (-592 (-205)))
(|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205))))
(|:| |ub| (-592 (-782 (-205))))))
- (-5 *2 (-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))))))
+ (-5 *2 (-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))))))
((*1 *2 *3)
(-12 (-5 *3 (-780))
(-5 *2
- (-2 (|:| -1533 (-357)) (|:| -3257 (-1075))
+ (-2 (|:| -1257 (-357)) (|:| -2411 (-1075))
(|:| |explanations| (-592 (-1075)))))
(-5 *1 (-779))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-780)) (-5 *4 (-989))
(-5 *2
- (-2 (|:| -1533 (-357)) (|:| -3257 (-1075))
+ (-2 (|:| -1257 (-357)) (|:| -2411 (-1075))
(|:| |explanations| (-592 (-1075)))))
(-5 *1 (-779))))
((*1 *2 *3 *4)
@@ -14842,3315 +17128,1030 @@
(|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205))))))
(|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075))
(|:| |tol| (-205))))
- (-5 *2 (-2 (|:| -1533 (-357)) (|:| |explanations| (-1075))))))
+ (-5 *2 (-2 (|:| -1257 (-357)) (|:| |explanations| (-1075))))))
((*1 *2 *3)
(-12 (-5 *3 (-833))
(-5 *2
- (-2 (|:| -1533 (-357)) (|:| -3257 (-1075))
+ (-2 (|:| -1257 (-357)) (|:| -2411 (-1075))
(|:| |explanations| (-592 (-1075)))))
(-5 *1 (-832))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-833)) (-5 *4 (-989))
(-5 *2
- (-2 (|:| -1533 (-357)) (|:| -3257 (-1075))
+ (-2 (|:| -1257 (-357)) (|:| -2411 (-1075))
(|:| |explanations| (-592 (-1075)))))
(-5 *1 (-832)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4))
- (-4 *4 (-327)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934)))
- (-5 *1 (-163 *3)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1196 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-160))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1020))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-761 *3)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-977))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
- (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
- (-4 *7 (-925 *4)) (-4 *2 (-630 *7 *8 *9))
- (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6))
- (-4 *8 (-351 *7)) (-4 *9 (-351 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977))
- (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-341)) (-4 *3 (-160)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2))
- (-4 *2 (-630 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-632 *2)) (-4 *2 (-341)) (-4 *2 (-977))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1042 *2 *3 *4 *5)) (-4 *3 (-977))
- (-4 *4 (-218 *2 *3)) (-4 *5 (-218 *2 *3)) (-4 *3 (-341))))
- ((*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-1100 *3)))))
-(((*1 *1) (-5 *1 (-132))) ((*1 *1 *1) (-5 *1 (-135)))
- ((*1 *1 *1) (-4 *1 (-1061))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1088 *4)) (-4 *4 (-327)) (-5 *2 (-108))
- (-5 *1 (-335 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1174 *4)) (-4 *4 (-327)) (-5 *2 (-108))
- (-5 *1 (-495 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1081 3 *3)) (-4 *3 (-977)) (-4 *1 (-1053 *3))))
- ((*1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-977)))))
-(((*1 *1 *1 *1) (-4 *1 (-607))) ((*1 *1 *1 *1) (-5 *1 (-1039))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1095)))))
-(((*1 *1 *1) (-4 *1 (-91)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-160)) (-4 *2 (-977)) (-5 *1 (-657 *2 *3))
- (-4 *3 (-594 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-977)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-977))
- (-4 *2 (-1134 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))
- (-5 *2 (-966)) (-5 *1 (-691)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *1 *1) (-4 *1 (-263)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-396 *4)) (-4 *4 (-517))
- (-5 *2 (-592 (-2 (|:| -3244 (-713)) (|:| |logand| *4))))
- (-5 *1 (-298 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
- (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-610 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
- (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-13 (-977) (-660 (-385 (-525)))))
- (-4 *5 (-789)) (-5 *1 (-1188 *4 *5 *2)) (-4 *2 (-1193 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-1192 *3 *4))
- (-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1150 *4))
- (-5 *2 (-2 (|:| |radicand| (-385 *5)) (|:| |deg| (-713))))
- (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1150 (-385 *5))))))
-(((*1 *2)
- (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
- (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179))
- (-5 *1 (-997 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
- (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1179))
- (-5 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179))
+ (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179))
+ (-5 *1 (-1028 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1075)) (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525)))
+ (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-700)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510))
- (-5 *2 (-385 (-525)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510))
- (-4 *3 (-517))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-510)) (-5 *2 (-385 (-525)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510))
- (-5 *2 (-385 (-525)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510))
- (-4 *3 (-1020))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510))
- (-4 *3 (-1020))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977))
+ (-14 *4 (-592 (-1092)))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-929 *3)) (-4 *3 (-160)) (-4 *3 (-510))
- (-5 *2 (-385 (-525)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-940 *3))
- (-4 *3 (-968 *2)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525))
+ (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789)))
+ (-14 *4 (-592 (-1092))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525))))
+ ((*1 *1 *1 *1) (-5 *1 (-1039))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))) (-5 *4 (-205))
(-5 *2 (-966)) (-5 *1 (-699)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1073 *4)) (-5 *3 (-1 *4 (-525))) (-4 *4 (-977))
- (-5 *1 (-1077 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-838 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-607))) ((*1 *1 *1 *1) (-5 *1 (-1039))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1073 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-174))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1073 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-279))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1073 (-205))) (-5 *2 (-592 (-1075))) (-5 *1 (-284)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *1 *1) (-4 *1 (-91)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
-(((*1 *1) (-5 *1 (-1005))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1075)) (-5 *4 (-157 (-205))) (-5 *5 (-525))
- (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-592 (-1092))) (-4 *2 (-160))
- (-4 *4 (-218 (-3522 *5) (-713)))
- (-14 *6
- (-1 (-108) (-2 (|:| -3555 *3) (|:| -4193 *4))
- (-2 (|:| -3555 *3) (|:| -4193 *4))))
- (-5 *1 (-438 *5 *2 *3 *4 *6 *7)) (-4 *3 (-789))
- (-4 *7 (-884 *2 *4 (-800 *5))))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1092)) (-5 *2 (-592 (-899))) (-5 *1 (-270)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1088 (-1088 *4))))
- (-5 *1 (-1127 *4)) (-5 *3 (-1088 (-1088 *4))))))
-(((*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))
- ((*1 *1 *1 *1) (-4 *1 (-450)))
- ((*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
- ((*1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-818))))
- ((*1 *1 *1) (-5 *1 (-904)))
- ((*1 *1 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1073 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1150 *5))
- (-4 *5 (-13 (-341) (-138) (-968 (-525))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |c| (-385 *6))
- (|:| -3200 *6)))
- (-5 *1 (-947 *5 *6)) (-5 *3 (-385 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7))))
- (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-690)))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
- ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
- ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-205)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
- (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
- ((*1 *1 *1 *1) (-5 *1 (-357)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1097))))
- ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1097))))
- ((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1097))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1097)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1092))))
- (-4 *5 (-735)) (-5 *1 (-859 *3 *4 *5 *2)) (-4 *2 (-884 *3 *5 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1094 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))
- ((*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1) (-4 *1 (-804 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-906 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-734))
- (-4 *4 (-789)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-694)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1092))) (-4 *5 (-977))
- (-5 *2 (-887 *5)) (-5 *1 (-879 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-357)) (-5 *1 (-92)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 (-878 *4))) (-4 *1 (-1053 *4)) (-4 *4 (-977))
- (-5 *2 (-713)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-412))
- (-5 *2
- (-592
- (-3 (|:| -3257 (-1092))
- (|:| |bounds| (-592 (-3 (|:| S (-1092)) (|:| P (-887 (-525)))))))))
- (-5 *1 (-1096)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-856)) (-5 *4 (-205)) (-5 *5 (-525)) (-5 *6 (-809))
- (-5 *2 (-1179)) (-5 *1 (-1175)))))
-(((*1 *1 *1) (-4 *1 (-91)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
- (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1128)) (-5 *2 (-713)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-632 (-525))) (-5 *3 (-592 (-525))) (-5 *1 (-1030)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *5) (-27) (-1114)))
- (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2 (-542 *3)) (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1020)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1174 *4)) (-5 *3 (-525)) (-4 *4 (-327))
- (-5 *1 (-495 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2)))))
(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1092))
- (-4 *4 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-536 *4 *2))
- (-4 *2 (-13 (-1114) (-893) (-1056) (-29 *4))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1024)) (-5 *1 (-259)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
- (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-592 (-958 *5 *6 *7 *8))) (-5 *1 (-958 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
- (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-592 (-1063 *5 *6 *7 *8))) (-5 *1 (-1063 *5 *6 *7 *8)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2))
- (-4 *2 (-1165 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1150 *3))
- (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1165 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2))
- (-4 *2 (-1165 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-517) (-138)))
- (-5 *1 (-1069 *3)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))))
-(((*1 *1 *1) (-4 *1 (-91)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1092)))
- (-14 *3 (-592 (-1092))) (-4 *4 (-365))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
+ (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525)))))
((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6))
- (-5 *2 (-592 (-2 (|:| -2719 *1) (|:| -3459 (-592 *7)))))
- (-5 *3 (-592 *7)) (-4 *1 (-1122 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-110)))
- ((*1 *1 *1) (-5 *1 (-159))) ((*1 *1 *1) (-4 *1 (-510)))
- ((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020))))
- ((*1 *1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-977))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
- (-4 *3 (-13 (-1020) (-33))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1020))
- (-4 *4 (-126)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-856)) (-5 *2 (-1179)) (-5 *1 (-1175))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-856)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-372))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 (-1075))) (-5 *1 (-1109)))))
+ (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1150 (-525))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
+ (-4 *4 (-13 (-1020) (-33))))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1150 *6))
+ (-4 *6 (-13 (-341) (-138) (-968 *4))) (-5 *4 (-525))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108))))
+ (|:| -1537
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-947 *6 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-632 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))))
+ (-12 (-5 *3 (-856)) (-5 *2 (-1088 *4)) (-5 *1 (-335 *4))
+ (-4 *4 (-327)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-565 *2)) (-4 *2 (-13 (-27) (-1114) (-408 *4)))
+ (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-256 *4 *2)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |k| (-1092)) (|:| |c| (-1194 *3)))))
- (-5 *1 (-1194 *3)) (-4 *3 (-977))))
+ (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-108))))
((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |k| *3) (|:| |c| (-1196 *3 *4)))))
- (-5 *1 (-1196 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))))
-(((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-970)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-113 *4)) (-14 *4 *3)
- (-5 *3 (-525))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-806 *4)) (-14 *4 *3)
- (-5 *3 (-525))))
- ((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-385 (-525))) (-5 *1 (-807 *4 *5))
- (-5 *3 (-525)) (-4 *5 (-804 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-944)) (-5 *2 (-385 (-525)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-993 *2 *3)) (-4 *2 (-13 (-787) (-341)))
- (-4 *3 (-1150 *2))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1152 *2 *3)) (-4 *3 (-734))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1217 (*2 (-1092))))
- (-4 *2 (-977)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-364 *3)) (|:| |mm| (-364 *3)) (|:| |rm| (-364 *3))))
- (-5 *1 (-364 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-761 *3)) (|:| |mm| (-761 *3)) (|:| |rm| (-761 *3))))
- (-5 *1 (-761 *3)) (-4 *3 (-789)))))
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-592 (-632 *4))) (-5 *2 (-632 *4)) (-4 *4 (-977))
+ (-5 *1 (-960 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525))))
+ ((*1 *1 *1 *1) (-5 *1 (-1039))))
+(((*1 *1 *1 *1) (-4 *1 (-450))) ((*1 *1 *1 *1) (-4 *1 (-704))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1150 *2)) (-4 *2 (-1150 *4)) (-5 *1 (-918 *4 *2 *3 *5))
- (-4 *4 (-327)) (-4 *5 (-667 *2 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-459 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))))
+ (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-396 (-1088 *1))) (-5 *1 (-294 *4)) (-5 *3 (-1088 *1))
- (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-844)) (-5 *2 (-396 (-1088 *1))) (-5 *3 (-1088 *1)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-934)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1165 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1136 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1134 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1157 *3 *4)) (-4 *5 (-916 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1078 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1079 *3))))
- ((*1 *1 *1) (-4 *1 (-1117))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1092))) (-5 *1 (-1096)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1088 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 *8))
- (-4 *7 (-789)) (-4 *8 (-977)) (-4 *9 (-884 *8 *6 *7)) (-4 *6 (-735))
- (-5 *2 (-1088 *8)) (-5 *1 (-299 *6 *7 *8 *9)))))
-(((*1 *1) (-5 *1 (-146))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-57 *3)) (-4 *3 (-1128))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-57 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-273 (-385 (-887 *5)))) (-5 *4 (-1092))
- (-4 *5 (-13 (-286) (-789) (-138)))
- (-5 *2 (-1082 (-592 (-294 *5)) (-592 (-273 (-294 *5)))))
- (-5 *1 (-1048 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092))
- (-4 *5 (-13 (-286) (-789) (-138)))
- (-5 *2 (-1082 (-592 (-294 *5)) (-592 (-273 (-294 *5)))))
- (-5 *1 (-1048 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
- (-5 *1 (-1043 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-798))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
+ (-5 *2 (-357)) (-5 *1 (-187)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
(-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-698)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1174 *4)) (-5 *3 (-1039)) (-4 *4 (-327))
- (-5 *1 (-495 *4)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1174 (-525))) (-5 *3 (-525)) (-5 *1 (-1030))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1174 (-525))) (-5 *3 (-592 (-525))) (-5 *4 (-525))
- (-5 *1 (-1030)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1073 *4)) (-5 *3 (-525)) (-4 *4 (-977))
- (-5 *1 (-1077 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-525)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-977))
- (-14 *4 (-1092)) (-14 *5 *3))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
-(((*1 *1) (-5 *1 (-308))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1174 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
- (-5 *2 (-592 (-887 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-592 (-887 *4))) (-5 *1 (-394 *3 *4))
- (-4 *3 (-395 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-592 (-887 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-592 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1174 (-430 *4 *5 *6 *7))) (-5 *2 (-592 (-887 *4)))
- (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-517)) (-4 *4 (-160))
- (-14 *5 (-856)) (-14 *6 (-592 (-1092))) (-14 *7 (-1174 (-632 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
- (-4 *3 (-13 (-341) (-1114) (-934))))))
+ (-5 *1 (-695)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-977)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1114) (-934)))
+ (-5 *1 (-163 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-592 (-108))) (-5 *7 (-632 (-205)))
+ (-5 *8 (-632 (-525))) (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108))
+ (-5 *2 (-966)) (-5 *1 (-697)))))
(((*1 *2 *1 *3 *3 *2)
(-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1128))
(-4 *4 (-351 *2)) (-4 *5 (-351 *2))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4259)) (-4 *1 (-115 *3))
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4260)) (-4 *1 (-115 *3))
(-4 *3 (-1128))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4259)) (-4 *1 (-115 *3))
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4260)) (-4 *1 (-115 *3))
(-4 *3 (-1128))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4259)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1020))
+ (-12 (|has| *1 (-6 -4260)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1020))
(-4 *2 (-1128))))
((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1092)) (-5 *1 (-581))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1141 (-525))) (|has| *1 (-6 -4259)) (-4 *1 (-597 *2))
+ (-12 (-5 *3 (-1141 (-525))) (|has| *1 (-6 -4260)) (-4 *1 (-597 *2))
(-4 *2 (-1128))))
((*1 *1 *1 *2 *2 *1)
(-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
(-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4259)) (-4 *1 (-942 *2))
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4260)) (-4 *1 (-942 *2))
(-4 *2 (-1128))))
((*1 *2 *1 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128))))
((*1 *2 *1 *3 *2)
(-12 (-4 *1 (-1105 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4259)) (-4 *1 (-1162 *2))
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4260)) (-4 *1 (-1162 *2))
(-4 *2 (-1128))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4259)) (-4 *1 (-1162 *3))
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4260)) (-4 *1 (-1162 *3))
(-4 *3 (-1128))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4259)) (-4 *1 (-1162 *2))
- (-4 *2 (-1128)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
- (-5 *2
- (-2 (|:| -3284 *4) (|:| -1213 *4) (|:| |totalpts| (-525))
- (|:| |success| (-108))))
- (-5 *1 (-731)) (-5 *5 (-525)))))
-(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1179)) (-5 *1 (-357))))
- ((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-357)))))
-(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
- ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *1 *1) (-4 *1 (-1056))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *2 (-789)) (-4 *5 (-991 *3 *4 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-122 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-51)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-991 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-592 (-1092))) (-4 *5 (-429))
- (-5 *2
- (-2 (|:| |glbase| (-592 (-227 *4 *5))) (|:| |glval| (-592 (-525)))))
- (-5 *1 (-580 *4 *5)) (-5 *3 (-592 (-227 *4 *5))))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1128)) (-4 *3 (-351 *2))
- (-4 *4 (-351 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4259)) (-4 *1 (-558 *3 *2)) (-4 *3 (-1020))
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4260)) (-4 *1 (-1162 *2))
(-4 *2 (-1128)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
- (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-4 *1 (-838 *3)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735))
- (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8))
- (-5 *2
- (-2 (|:| -3025 (-592 *9)) (|:| -2563 *4) (|:| |ineq| (-592 *9))))
- (-5 *1 (-921 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9))
- (-4 *4 (-996 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735))
- (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8))
- (-5 *2
- (-2 (|:| -3025 (-592 *9)) (|:| -2563 *4) (|:| |ineq| (-592 *9))))
- (-5 *1 (-1027 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9))
- (-4 *4 (-996 *6 *7 *8 *9)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735))
- (-5 *1 (-477 *4 *5 *6 *2)) (-4 *2 (-884 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-884 *3 *4 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-227 *3 *4))
- (-14 *3 (-592 (-1092))) (-4 *4 (-977))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-525))) (-14 *3 (-592 (-1092)))
- (-5 *1 (-431 *3 *4 *5)) (-4 *4 (-977))
- (-4 *5 (-218 (-3522 *3) (-713)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-457 *3 *4))
- (-14 *3 (-592 (-1092))) (-4 *4 (-977)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1150 *4)) (-4 *4 (-1132))
- (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1150 (-385 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1092)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *4 *5 *6 *7))
- (-4 *4 (-567 (-501))) (-4 *5 (-1128)) (-4 *6 (-1128))
- (-4 *7 (-1128)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1150 *6))
- (-4 *6 (-13 (-27) (-408 *5)))
- (-4 *5 (-13 (-789) (-517) (-968 (-525)))) (-4 *8 (-1150 (-385 *7)))
- (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3))
- (-4 *3 (-320 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1092))))
- (-4 *6 (-735)) (-5 *2 (-592 *3)) (-5 *1 (-859 *4 *5 *6 *3))
- (-4 *3 (-884 *4 *6 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1150 *4))
- (-4 *5 (-1150 (-385 *3))) (-5 *2 (-108))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-632 *4)) (-5 *3 (-856)) (-4 *4 (-977))
- (-5 *1 (-959 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-856)) (-4 *4 (-977))
- (-5 *1 (-959 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1128)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-765)) (-5 *1 (-764)))))
-(((*1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-1075)) (-5 *1 (-1175))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1175))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1175))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-1075)) (-5 *1 (-1176))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1176))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1176)))))
-(((*1 *2 *3)
- (-12
- (-5 *2
- (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))))
- (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525)))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))))
- (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525)))
- (-5 *4 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))))
- (-5 *1 (-951 *3)) (-4 *3 (-1150 (-525))) (-5 *4 (-385 (-525)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-385 (-525)))
- (-5 *2 (-592 (-2 (|:| -3507 *5) (|:| -3519 *5)))) (-5 *1 (-951 *3))
- (-4 *3 (-1150 (-525))) (-5 *4 (-2 (|:| -3507 *5) (|:| -3519 *5)))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))))
- (-5 *1 (-952 *3)) (-4 *3 (-1150 (-385 (-525))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-592 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525))))))
- (-5 *1 (-952 *3)) (-4 *3 (-1150 (-385 (-525))))
- (-5 *4 (-2 (|:| -3507 (-385 (-525))) (|:| -3519 (-385 (-525)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-385 (-525)))
- (-5 *2 (-592 (-2 (|:| -3507 *4) (|:| -3519 *4)))) (-5 *1 (-952 *3))
- (-4 *3 (-1150 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-385 (-525)))
- (-5 *2 (-592 (-2 (|:| -3507 *5) (|:| -3519 *5)))) (-5 *1 (-952 *3))
- (-4 *3 (-1150 *5)) (-5 *4 (-2 (|:| -3507 *5) (|:| -3519 *5))))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1073 (-525))) (-5 *1 (-1077 *4)) (-4 *4 (-977))
- (-5 *3 (-525)))))
-(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1099)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1030)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
- (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-665)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-669)) (-5 *2 (-108)))))
-(((*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1043 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-592 (-1092))) (|:| |pred| (-51))))
- (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-2 (|:| |deg| (-713)) (|:| -3724 *5))))
- (-4 *5 (-1150 *4)) (-4 *4 (-327)) (-5 *2 (-592 *5))
- (-5 *1 (-197 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-2 (|:| -2770 *5) (|:| -2343 (-525)))))
- (-5 *4 (-525)) (-4 *5 (-1150 *4)) (-5 *2 (-592 *5))
- (-5 *1 (-638 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-294 *4)) (-4 *4 (-13 (-770) (-789) (-977)))
- (-5 *2 (-1075)) (-5 *1 (-768 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 *5)) (-5 *4 (-108))
- (-4 *5 (-13 (-770) (-789) (-977))) (-5 *2 (-1075))
- (-5 *1 (-768 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-764)) (-5 *4 (-294 *5))
- (-4 *5 (-13 (-770) (-789) (-977))) (-5 *2 (-1179))
- (-5 *1 (-768 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-764)) (-5 *4 (-294 *6)) (-5 *5 (-108))
- (-4 *6 (-13 (-770) (-789) (-977))) (-5 *2 (-1179))
- (-5 *1 (-768 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-770)) (-5 *2 (-1075))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-108)) (-5 *2 (-1075))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *2 (-1179))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *4 (-108)) (-5 *2 (-1179)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-542 *2)) (-4 *2 (-13 (-29 *4) (-1114)))
- (-5 *1 (-540 *4 *2))
- (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-542 (-385 (-887 *4))))
- (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))
- (-5 *2 (-294 *4)) (-5 *1 (-545 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-108)) (-5 *3 (-887 *6)) (-5 *4 (-1092))
- (-5 *5 (-782 *7))
- (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-4 *7 (-13 (-1114) (-29 *6))) (-5 *1 (-204 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1088 *6)) (-5 *4 (-782 *6))
- (-4 *6 (-13 (-1114) (-29 *5)))
- (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *1 (-204 *5 *6)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-996 *4 *5 *6 *7))
- (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-996 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1))
- (-4 *1 (-996 *4 *5 *6 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-592 (-887 *3))) (-4 *3 (-429))
- (-5 *1 (-338 *3 *4)) (-14 *4 (-592 (-1092)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-592 (-722 *3 (-800 *4)))) (-4 *3 (-429))
- (-14 *4 (-592 (-1092))) (-5 *1 (-577 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281))))
- ((*1 *1 *1) (-4 *1 (-281))) ((*1 *1 *1) (-5 *1 (-798))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-1057 *4 *5))) (-5 *3 (-1 (-108) *5 *5))
- (-4 *4 (-13 (-1020) (-33))) (-4 *5 (-13 (-1020) (-33)))
- (-5 *1 (-1058 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-1057 *3 *4))) (-4 *3 (-13 (-1020) (-33)))
- (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1058 *3 *4)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3819)))) (-5 *3 (-205))
- (-5 *2 (-966)) (-5 *1 (-691)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-698)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 (-227 *4 *5))) (-5 *2 (-227 *4 *5))
- (-14 *4 (-592 (-1092))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-957 (-782 (-525))))
- (-5 *3 (-1073 (-2 (|:| |k| (-525)) (|:| |c| *4)))) (-4 *4 (-977))
- (-5 *1 (-550 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-565 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1092)))
- (-4 *2 (-13 (-408 *5) (-27) (-1114)))
- (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *1 (-527 *5 *2 *6)) (-4 *6 (-1020)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-1177))))
- ((*1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1177)))))
-(((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1165 *4))
- (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1073 *4) (-1073 *4)))
- (-5 *1 (-1167 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-789)) (-5 *1 (-864 *3 *2)) (-4 *2 (-408 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1092)) (-5 *2 (-294 (-525))) (-5 *1 (-865)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-341))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-108)) (-5 *5 (-1022 (-713))) (-5 *6 (-713))
- (-5 *2
- (-2 (|:| |contp| (-525))
- (|:| -3843 (-592 (-2 (|:| |irr| *3) (|:| -1616 (-525)))))))
- (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-37 (-385 (-525))))
- (-4 *2 (-160)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))))
-(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1179)) (-5 *1 (-1055))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-798))) (-5 *2 (-1179)) (-5 *1 (-1055)))))
-(((*1 *1 *1) (-5 *1 (-989))))
+ (-12 (-5 *2 (-713)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-977)) (-4 *1 (-1042 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
+ (-4 *5 (-218 *3 *2)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1022 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020))))
+ (-12 (-5 *2 (-592 (-2 (|:| -1556 (-1092)) (|:| -3448 *4))))
+ (-5 *1 (-824 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020))))
((*1 *2 *1)
- (-12 (-5 *2 (-1022 *3)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-592 (-1092))) (-4 *5 (-517))
- (-5 *2 (-592 (-592 (-273 (-385 (-887 *5)))))) (-5 *1 (-712 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-517))
- (-5 *2 (-592 (-592 (-273 (-385 (-887 *4)))))) (-5 *1 (-712 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-632 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3094 (-592 *6)))
- *7 *6))
- (-4 *6 (-341)) (-4 *7 (-602 *6))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1174 *6) "failed"))
- (|:| -3094 (-592 (-1174 *6)))))
- (-5 *1 (-755 *6 *7)) (-5 *4 (-1174 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1150 (-525))))))
-(((*1 *2 *3)
+ (-12 (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020))
+ (-4 *7 (-1020)) (-5 *2 (-592 *1)) (-4 *1 (-1023 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
(-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1092))
(-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205))
- (-5 *2 (-966)) (-5 *1 (-695)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1141 (-525))) (-4 *1 (-261 *3)) (-4 *3 (-1128))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1128)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1020))))
- ((*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1020)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4259)) (-4 *1 (-1162 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-910 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1128)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-887 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517))
- (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-910 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-713)) (-4 *5 (-517))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-903 *5 *3)) (-4 *3 (-1150 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-840 (-525))) (-5 *4 (-525)) (-5 *2 (-632 *4))
- (-5 *1 (-959 *5)) (-4 *5 (-977))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-959 *4))
- (-4 *4 (-977))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-840 (-525)))) (-5 *4 (-525))
- (-5 *2 (-592 (-632 *4))) (-5 *1 (-959 *5)) (-4 *5 (-977))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-592 (-525)))) (-5 *2 (-592 (-632 (-525))))
- (-5 *1 (-959 *4)) (-4 *4 (-977)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
-(((*1 *1 *1 *1) (-5 *1 (-798))))
-(((*1 *1)
- (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-108)) (-5 *1 (-771)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-525))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966))
- (-5 *1 (-691)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 (-565 *5))) (-5 *3 (-1092)) (-4 *5 (-408 *4))
- (-4 *4 (-789)) (-5 *1 (-534 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-327))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -3843 (-592 (-2 (|:| |irr| *3) (|:| -1616 (-525)))))))
- (-5 *1 (-197 *5 *3)) (-4 *3 (-1150 *5)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *3 (-525)) (-5 *1 (-221))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-592 (-1075))) (-5 *3 (-525)) (-5 *4 (-1075))
- (-5 *1 (-221))))
- ((*1 *1 *1) (-5 *1 (-798)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798))))
- ((*1 *2 *1) (-12 (-4 *1 (-1152 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-550 *3)) (-4 *3 (-37 *2))
- (-4 *3 (-977)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1106 *4 *5))
- (-4 *4 (-1020)) (-4 *5 (-1020)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3))
- (-5 *1 (-685 *5 *4 *6 *3)) (-4 *3 (-884 *6 *5 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-632 *5))) (-4 *5 (-286)) (-4 *5 (-977))
- (-5 *2 (-1174 (-1174 *5))) (-5 *1 (-960 *5)) (-5 *4 (-1174 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 (-1092))) (-4 *4 (-1020))
- (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4))))
- (-5 *1 (-53 *4 *5 *2))
- (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1032)) (-4 *3 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-408 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3))
- (-4 *3 (-1020))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-592 *1)) (-4 *1 (-884 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977))
- (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-592 *3))
- (-5 *1 (-885 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-341)
- (-10 -8 (-15 -1217 ($ *7)) (-15 -3114 (*7 $))
- (-15 -3123 (*7 $))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1174 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-108))
- (-5 *1 (-1199 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1150 *3)) (-4 *3 (-977)) (-5 *2 (-1088 *3)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-525))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966))
- (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735))
- (-4 *9 (-789)) (-4 *3 (-991 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4))))))
- (-5 *1 (-994 *7 *8 *9 *3 *4)) (-4 *4 (-996 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
- (-4 *3 (-991 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4))))))
- (-5 *1 (-994 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4))))))
- (-5 *1 (-994 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735))
- (-4 *9 (-789)) (-4 *3 (-991 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4))))))
- (-5 *1 (-1062 *7 *8 *9 *3 *4)) (-4 *4 (-1029 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
- (-4 *3 (-991 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4))))))
- (-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1029 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2563 *4))))))
- (-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1029 *5 *6 *7 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-1150 *4)) (-5 *1 (-504 *4 *2 *5 *6))
- (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713))))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-1174
- (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205))
- (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -2388 (-525))
- (|:| -3617 (-525)) (|:| |spline| (-525)) (|:| -3692 (-525))
- (|:| |axesColor| (-809)) (|:| -3306 (-525))
- (|:| |unitsColor| (-809)) (|:| |showing| (-525)))))
- (-5 *1 (-1175)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *2 (-517)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *5 (-991 *2 *3 *4)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-996 *6 *7 *8 *9))
- (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8))
- (-5 *2
- (-592
- (-2 (|:| -3025 (-592 *9)) (|:| -2563 *10) (|:| |ineq| (-592 *9)))))
- (-5 *1 (-921 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-996 *6 *7 *8 *9))
- (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8))
- (-5 *2
- (-592
- (-2 (|:| -3025 (-592 *9)) (|:| -2563 *10) (|:| |ineq| (-592 *9)))))
- (-5 *1 (-1027 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 *1)) (|has| *1 (-6 -4259)) (-4 *1 (-942 *3))
- (-4 *3 (-1128)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-592 (-525))) (-5 *3 (-108)) (-5 *1 (-1030)))))
-(((*1 *1) (-5 *1 (-1179))))
+ (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
+ (-14 *6 (-592 (-1092))) (-5 *2 (-592 (-974 *5 *6)))
+ (-5 *1 (-577 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-632 *4))
- (-5 *1 (-756 *4 *5)) (-4 *5 (-602 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-341))
- (-5 *2 (-632 *5)) (-5 *1 (-756 *5 *6)) (-4 *6 (-602 *5)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1092)) (-5 *1 (-259)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-856)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-242)))))
-(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))))
-(((*1 *2)
- (-12
+ (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4))
(-5 *2
- (-1174 (-592 (-2 (|:| -3284 (-845 *3)) (|:| -3555 (-1039))))))
- (-5 *1 (-329 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856))))
- ((*1 *2)
- (-12 (-5 *2 (-1174 (-592 (-2 (|:| -3284 *3) (|:| -3555 (-1039))))))
- (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1088 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1174 (-592 (-2 (|:| -3284 *3) (|:| -3555 (-1039))))))
- (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-856)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1150 *5))
- (-4 *5 (-13 (-27) (-408 *4)))
- (-4 *4 (-13 (-789) (-517) (-968 (-525))))
- (-4 *7 (-1150 (-385 *6))) (-5 *1 (-513 *4 *5 *6 *7 *2))
- (-4 *2 (-320 *5 *6 *7)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1092))
- (-5 *2 (-3 (|:| |fst| (-412)) (|:| -1316 "void"))) (-5 *1 (-1095)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1097))) (-5 *1 (-169)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-764)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
- (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-632 *2)) (-4 *2 (-160)) (-5 *1 (-137 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-160)) (-4 *2 (-1150 *4)) (-5 *1 (-164 *4 *2 *3))
- (-4 *3 (-667 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 (-385 (-887 *5)))) (-5 *4 (-1092))
- (-5 *2 (-887 *5)) (-5 *1 (-271 *5)) (-4 *5 (-429))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-632 (-385 (-887 *4)))) (-5 *2 (-887 *4))
- (-5 *1 (-271 *4)) (-4 *4 (-429))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1150 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-632 (-157 (-385 (-525)))))
- (-5 *2 (-887 (-157 (-385 (-525))))) (-5 *1 (-707 *4))
- (-4 *4 (-13 (-341) (-787)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *4 (-1092))
- (-5 *2 (-887 (-157 (-385 (-525))))) (-5 *1 (-707 *5))
- (-4 *5 (-13 (-341) (-787)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-887 (-385 (-525))))
- (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *4 (-1092))
- (-5 *2 (-887 (-385 (-525)))) (-5 *1 (-721 *5))
- (-4 *5 (-13 (-341) (-787))))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-698)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-856)) (-5 *1 (-728)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-173)) (-5 *3 (-525))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-160))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1088 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))))
-(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761 *3)) (-4 *3 (-789)))))
-(((*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1114)))))
- ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *2 (-789))))
+ (-3 (|:| |overq| (-1088 (-385 (-525))))
+ (|:| |overan| (-1088 (-47))) (|:| -1669 (-108))))
+ (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1150 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-202 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-4 *1 (-233 *3))))
+ ((*1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1196 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-160))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-565 *4)) (-5 *6 (-1092))
- (-4 *4 (-13 (-408 *7) (-27) (-1114)))
- (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-761 *3)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-205))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3094 (-592 *4))))
- (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1020)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1150 (-525))))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1150 *3)) (-5 *1 (-377 *3 *2))
- (-4 *3 (-13 (-341) (-138))))))
-(((*1 *1 *2) (-12 (-5 *2 (-169)) (-5 *1 (-228)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-787)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -3843 (-396 *3))))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1150 (-157 *4))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-977)) (-5 *1 (-1077 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1166 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1092))
- (-14 *4 *2))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1075)) (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525)))
- (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-700)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-884 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-429))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *3 (-991 *4 *5 *6))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2563 *1))))
- (-4 *1 (-996 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1132)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-517)) (-5 *1 (-1153 *3 *2))
- (-4 *2 (-13 (-1150 *3) (-517) (-10 -8 (-15 -2589 ($ $ $))))))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-977))
- (-5 *1 (-633 *4)))))
-(((*1 *1 *1) (-5 *1 (-47)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1128))
- (-4 *2 (-1128)) (-5 *1 (-56 *5 *2))))
- ((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1020)) (|has| *1 (-6 -4258))
- (-4 *1 (-142 *2)) (-4 *2 (-1128))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4258)) (-4 *1 (-142 *2))
- (-4 *2 (-1128))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4258)) (-4 *1 (-142 *2))
- (-4 *2 (-1128))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-977))
- (-5 *2 (-2 (|:| -3101 (-1088 *4)) (|:| |deg| (-856))))
- (-5 *1 (-201 *4 *5)) (-5 *3 (-1088 *4)) (-4 *5 (-13 (-517) (-789)))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-220 *5 *6)) (-14 *5 (-713))
- (-4 *6 (-1128)) (-4 *2 (-1128)) (-5 *1 (-219 *5 *6 *2))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-160)) (-5 *1 (-268 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1150 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-517)) (-4 *2 (-789))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-313 *2 *3 *4 *5)) (-4 *2 (-341)) (-4 *3 (-1150 *2))
- (-4 *4 (-1150 (-385 *3))) (-4 *5 (-320 *2 *3 *4))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1128)) (-4 *2 (-1128))
- (-5 *1 (-349 *5 *4 *2 *6)) (-4 *4 (-351 *5)) (-4 *6 (-351 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1020)) (-4 *2 (-1020))
- (-5 *1 (-401 *5 *4 *2 *6)) (-4 *4 (-403 *5)) (-4 *6 (-403 *2))))
- ((*1 *1 *1) (-5 *1 (-468)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-592 *5)) (-4 *5 (-1128))
- (-4 *2 (-1128)) (-5 *1 (-590 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-977)) (-4 *2 (-977))
- (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *8 (-351 *2))
- (-4 *9 (-351 *2)) (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-630 *5 *6 *7)) (-4 *10 (-630 *2 *8 *9))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-977)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1150 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1150 *3)) (-4 *3 (-341))
- (-4 *3 (-160)) (-4 *1 (-667 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-160)) (-4 *1 (-667 *3 *2)) (-4 *2 (-1150 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-892 *5)) (-4 *5 (-1128))
- (-4 *2 (-1128)) (-5 *1 (-891 *5 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-965 *3 *4 *5 *2 *6)) (-4 *2 (-884 *3 *4 *5))
- (-14 *6 (-592 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-977)) (-4 *2 (-977))
- (-14 *5 (-713)) (-14 *6 (-713)) (-4 *8 (-218 *6 *7))
- (-4 *9 (-218 *5 *7)) (-4 *10 (-218 *6 *2)) (-4 *11 (-218 *5 *2))
- (-5 *1 (-982 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-980 *5 *6 *7 *8 *9)) (-4 *12 (-980 *5 *6 *2 *10 *11))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1073 *5)) (-4 *5 (-1128))
- (-4 *2 (-1128)) (-5 *1 (-1071 *5 *2))))
- ((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2))
- (-4 *1 (-1122 *5 *6 *7 *2)) (-4 *5 (-517)) (-4 *6 (-735))
- (-4 *7 (-789)) (-4 *2 (-991 *5 *6 *7))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1174 *5)) (-4 *5 (-1128))
- (-4 *2 (-1128)) (-5 *1 (-1173 *5 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))
- (-5 *2 (-1088 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-341)) (-5 *2 (-2 (|:| -2829 *3) (|:| -1607 *3)))
- (-5 *1 (-709 *3 *4)) (-4 *3 (-651 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-341)) (-4 *3 (-977))
- (-5 *2 (-2 (|:| -2829 *1) (|:| -1607 *1))) (-4 *1 (-791 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-977))
- (-5 *2 (-2 (|:| -2829 *3) (|:| -1607 *3))) (-5 *1 (-792 *5 *3))
- (-4 *3 (-791 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-592 *2))) (-5 *4 (-592 *5))
- (-4 *5 (-37 (-385 (-525)))) (-4 *2 (-1165 *5))
- (-5 *1 (-1167 *5 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-1092))) (-5 *2 (-1179)) (-5 *1 (-1130))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 (-1092))) (-5 *2 (-1179)) (-5 *1 (-1130)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1013 (-887 (-525)))) (-5 *3 (-887 (-525)))
- (-5 *1 (-308))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1013 (-887 (-525)))) (-5 *1 (-308)))))
-(((*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-576 *2 *3 *4)) (-4 *2 (-789))
- (-4 *3 (-13 (-160) (-660 (-385 (-525))))) (-14 *4 (-856))))
- ((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
- ((*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
- ((*1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-856)) (-5 *1 (-1021 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
+ (-2 (|:| |brans| (-592 (-592 (-878 *4))))
+ (|:| |xValues| (-1015 *4)) (|:| |yValues| (-1015 *4))))
+ (-5 *1 (-144)) (-5 *3 (-592 (-592 (-878 *4)))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1022 (-1022 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
-(((*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-856)) (-5 *2 (-1174 *4)) (-5 *1 (-495 *4))
- (-4 *4 (-327)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132))
- (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-108))
- (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-408 (-157 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-108)) (-5 *1 (-1118 *4 *3))
- (-4 *3 (-13 (-27) (-1114) (-408 *4))))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205))
- (-5 *2 (-966)) (-5 *1 (-698)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-565 *6)) (-4 *6 (-13 (-408 *5) (-27) (-1114)))
- (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2 (-1088 (-385 (-1088 *6)))) (-5 *1 (-521 *5 *6 *7))
- (-5 *3 (-1088 *6)) (-4 *7 (-1020))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1150 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-977))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1150 *3))))
- ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1088 *11)) (-5 *6 (-592 *10))
- (-5 *7 (-592 (-713))) (-5 *8 (-592 *11)) (-4 *10 (-789))
- (-4 *11 (-286)) (-4 *9 (-735)) (-4 *5 (-884 *11 *9 *10))
- (-5 *2 (-592 (-1088 *5))) (-5 *1 (-685 *9 *10 *11 *5))
- (-5 *3 (-1088 *5))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-884 *3 *4 *5)) (-5 *1 (-965 *3 *4 *5 *2 *6))
- (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-14 *6 (-592 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517)))))
-(((*1 *1) (-5 *1 (-415))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179))
- (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1075)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1179))
- (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-789))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1128))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-261 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2)
- (-12
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *5 (-346))
+ (-5 *2 (-713)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
(-5 *2
- (-2
- (|:| -3364
- (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (|:| -4201
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1073 (-205)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -3196
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-520))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-637 *2)) (-4 *2 (-1020))))
+ (-2 (|:| -2219 *4) (|:| -2188 *4) (|:| |totalpts| (-525))
+ (|:| |success| (-108))))
+ (-5 *1 (-731)) (-5 *5 (-525)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-713)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -3364
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (|:| -4201
- (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357))
- (|:| |expense| (-357)) (|:| |accuracy| (-357))
- (|:| |intermediateResults| (-357))))))
- (-5 *1 (-745))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1179)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1020))
- (-4 *4 (-1020)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1124 *3)) (-4 *3 (-907)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1150 (-47)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3))))
- (-5 *1 (-117 *3)) (-4 *3 (-789))))
+ (-12 (-5 *2 (-713)) (-4 *1 (-1172 *3)) (-4 *3 (-23)) (-4 *3 (-1128)))))
+(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-643))))
+ ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-643)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 (-887 *3))) (-4 *3 (-429)) (-5 *1 (-338 *3 *4))
+ (-14 *4 (-592 (-1092)))))
((*1 *2 *2)
- (-12 (-5 *2 (-542 *4)) (-4 *4 (-13 (-29 *3) (-1114)))
- (-4 *3 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))
- (-5 *1 (-540 *3 *4))))
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-427 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-592 *7)) (-5 *3 (-1075)) (-4 *7 (-884 *4 *5 *6))
+ (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *1 (-427 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-592 *7)) (-5 *3 (-1075)) (-4 *7 (-884 *4 *5 *6))
+ (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *1 (-427 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
+ (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-542 (-385 (-887 *3))))
- (-4 *3 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))
- (-5 *1 (-545 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1150 *5)) (-4 *5 (-341))
- (-5 *2 (-2 (|:| -2687 *3) (|:| |special| *3))) (-5 *1 (-670 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1174 *5)) (-4 *5 (-341)) (-4 *5 (-977))
- (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5))
- (-5 *3 (-592 (-632 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1174 (-1174 *5))) (-4 *5 (-341)) (-4 *5 (-977))
- (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5))
- (-5 *3 (-592 (-632 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-592 *1)) (-4 *1 (-1061))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-592 *1)) (-4 *1 (-1061)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-341)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-278 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1015 (-782 (-205)))) (-5 *3 (-205)) (-5 *2 (-108))
- (-5 *1 (-284))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
- (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *3 (-205))
- (-5 *2 (-966)) (-5 *1 (-692)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
- (-4 *4 (-13 (-789) (-517))))))
-(((*1 *2 *3 *1)
- (-12
- (-5 *2
- (-2 (|:| |cycle?| (-108)) (|:| -2033 (-713)) (|:| |period| (-713))))
- (-5 *1 (-1073 *4)) (-4 *4 (-1128)) (-5 *3 (-713)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1150 *4))
- (-4 *5 (-1150 (-385 *3))) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1187 (-1092) *3)) (-4 *3 (-977)) (-5 *1 (-1194 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
- (-5 *1 (-1196 *3 *4)))))
+ (-12 (-5 *2 (-592 (-722 *3 (-800 *4)))) (-4 *3 (-429))
+ (-14 *4 (-592 (-1092))) (-5 *1 (-577 *3 *4)))))
(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1175))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-878 *3))) (-4 *3 (-977)) (-4 *1 (-1053 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-878 *3))) (-4 *1 (-1053 *3)) (-4 *3 (-977)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286))
- (-5 *1 (-851 *3 *4 *5 *2)) (-4 *2 (-884 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1088 *6)) (-4 *6 (-884 *5 *3 *4)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-851 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *6 *4 *5))
- (-5 *1 (-851 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789))
- (-4 *6 (-286)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-327)) (-4 *2 (-977)) (-5 *1 (-655 *2 *3))
- (-4 *3 (-1150 *2)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1092)) (-4 *5 (-567 (-827 (-525))))
- (-4 *5 (-821 (-525)))
- (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-528 *5 *3)) (-4 *3 (-578))
- (-4 *3 (-13 (-27) (-1114) (-408 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1092)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2))
- (-4 *2 (-408 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1092))))
- ((*1 *1 *1) (-4 *1 (-149))))
+ (-12 (-4 *3 (-1132)) (-4 *4 (-1150 *3)) (-4 *5 (-1150 (-385 *4)))
+ (-5 *2 (-1174 *1)) (-4 *1 (-320 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-991 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7))))
- (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-968 (-525)))
- (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3))
- (-4 *2
- (-13 (-341) (-281)
- (-10 -8 (-15 -3114 ((-1044 *3 (-565 $)) $))
- (-15 -3123 ((-1044 *3 (-565 $)) $))
- (-15 -1217 ($ (-1044 *3 (-565 $))))))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
- (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1174 (-632 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-525))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
-(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-643))))
- ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-643)))))
+ (-12 (-5 *3 (-525)) (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-1125)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-341) (-138) (-968 (-525))))
+ (-4 *5 (-1150 *4))
+ (-5 *2 (-2 (|:| -3991 (-385 *5)) (|:| |coeff| (-385 *5))))
+ (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-341))
+ (-5 *2 (-592 (-2 (|:| C (-632 *5)) (|:| |g| (-1174 *5)))))
+ (-5 *1 (-911 *5)) (-5 *3 (-632 *5)) (-5 *4 (-1174 *5)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))
+ ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-108))
(-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
- (-4 *3 (-13 (-27) (-1114) (-408 *6) (-10 -8 (-15 -1217 ($ *7)))))
+ (-4 *3 (-13 (-27) (-1114) (-408 *6) (-10 -8 (-15 -4100 ($ *7)))))
(-4 *7 (-787))
(-4 *8
(-13 (-1152 *3 *7) (-341) (-1114)
- (-10 -8 (-15 -3376 ($ $)) (-15 -1206 ($ $)))))
+ (-10 -8 (-15 -2702 ($ $)) (-15 -2367 ($ $)))))
(-5 *2
(-3 (|:| |%series| *8)
(|:| |%problem| (-2 (|:| |func| (-1075)) (|:| |prob| (-1075))))))
(-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1075)) (-4 *9 (-916 *8))
(-14 *10 (-1092)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1030)) (-5 *3 (-525)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 (-385 (-887 (-525))))) (-5 *4 (-592 (-1092)))
- (-5 *2 (-592 (-592 *5))) (-5 *1 (-358 *5))
- (-4 *5 (-13 (-787) (-341)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-887 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-358 *4))
- (-4 *4 (-13 (-787) (-341))))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-4 *1 (-142 *3))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-592 (-2 (|:| -4193 (-713)) (|:| -1340 *4) (|:| |num| *4))))
- (-4 *4 (-1150 *3)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-108)) (-5 *1 (-415))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-5 *3 (-592 (-1092))) (-5 *4 (-108)) (-5 *1 (-415))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1073 *3)) (-5 *1 (-555 *3)) (-4 *3 (-1128))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-160))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4))
- (-4 *4 (-160))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4))
- (-4 *4 (-160))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4))
- (-4 *4 (-160))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-592 (-592 *3)))) (-4 *3 (-1020))
- (-5 *1 (-620 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-656 *2 *3 *4)) (-4 *2 (-789)) (-4 *3 (-1020))
- (-14 *4
- (-1 (-108) (-2 (|:| -3555 *2) (|:| -4193 *3))
- (-2 (|:| -3555 *2) (|:| -4193 *3))))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-2 (|:| -3364 (-1092)) (|:| -4201 *4))))
- (-4 *4 (-1020)) (-5 *1 (-824 *3 *4)) (-4 *3 (-1020))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 *5)) (-4 *5 (-13 (-1020) (-33)))
- (-5 *2 (-592 (-1057 *3 *5))) (-5 *1 (-1057 *3 *5))
- (-4 *3 (-13 (-1020) (-33)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-2 (|:| |val| *4) (|:| -2563 *5))))
- (-4 *4 (-13 (-1020) (-33))) (-4 *5 (-13 (-1020) (-33)))
- (-5 *2 (-592 (-1057 *4 *5))) (-5 *1 (-1057 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2563 *4)))
- (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33)))
- (-5 *1 (-1057 *3 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
- (-4 *3 (-13 (-1020) (-33)))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
- (-4 *3 (-13 (-1020) (-33)))))
- ((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-1020) (-33)))
- (-5 *1 (-1058 *2 *3)) (-4 *2 (-13 (-1020) (-33)))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-1057 *2 *3))) (-4 *2 (-13 (-1020) (-33)))
- (-4 *3 (-13 (-1020) (-33))) (-5 *1 (-1058 *2 *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-1058 *2 *3))) (-5 *1 (-1058 *2 *3))
- (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
- (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1058 *3 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *8 (-991 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-592 *8)) (|:| |towers| (-592 (-958 *5 *6 *7 *8)))))
- (-5 *1 (-958 *5 *6 *7 *8)) (-5 *3 (-592 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *8 (-991 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-592 *8))
- (|:| |towers| (-592 (-1063 *5 *6 *7 *8)))))
- (-5 *1 (-1063 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-991 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2563 *4))))
- (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-1132)) (-4 *5 (-1150 *4)) (-4 *6 (-1150 (-385 *5)))
- (-5 *2 (-108)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1150 *3))
- (-4 *5 (-1150 (-385 *4))) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
- (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-977))
- (-4 *4 (-785)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-110))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1075)) (-4 *4 (-789)) (-5 *1 (-864 *4 *2))
- (-4 *2 (-408 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1092)) (-5 *4 (-1075)) (-5 *2 (-294 (-525)))
- (-5 *1 (-865)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1179)) (-5 *1 (-1176)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1114))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1114))) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341)))
- (-4 *3 (-1150 *4)) (-5 *2 (-108)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *5)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-517)) (-4 *2 (-884 *3 *5 *4))
- (-5 *1 (-675 *5 *4 *6 *2)) (-5 *3 (-385 (-887 *6))) (-4 *5 (-735))
- (-4 *4 (-13 (-789) (-10 -8 (-15 -3210 ((-1092) $))))))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-160))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-341)) (-14 *6 (-1174 (-632 *3)))
- (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-856)) (-14 *5 (-592 (-1092)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1044 (-525) (-565 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1128))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1174 (-317 (-1230 'JINT 'X 'ELAM) (-1230) (-641))))
- (-5 *1 (-59 *3)) (-14 *3 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1174 (-317 (-1230) (-1230 'XC) (-641))))
- (-5 *1 (-61 *3)) (-14 *3 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-317 (-1230 'X) (-1230) (-641))) (-5 *1 (-62 *3))
- (-14 *3 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-632 (-317 (-1230) (-1230 'X 'HESS) (-641))))
- (-5 *1 (-63 *3)) (-14 *3 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-317 (-1230) (-1230 'XC) (-641))) (-5 *1 (-64 *3))
- (-14 *3 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1174 (-317 (-1230 'X) (-1230 '-3418) (-641))))
- (-5 *1 (-69 *3)) (-14 *3 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1174 (-317 (-1230) (-1230 'X) (-641))))
- (-5 *1 (-72 *3)) (-14 *3 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1174 (-317 (-1230 'X 'EPS) (-1230 '-3418) (-641))))
- (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1092)) (-14 *4 (-1092))
- (-14 *5 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1174 (-317 (-1230 'EPS) (-1230 'YA 'YB) (-641))))
- (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1092)) (-14 *4 (-1092))
- (-14 *5 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-317 (-1230) (-1230 'X) (-641))) (-5 *1 (-75 *3))
- (-14 *3 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-317 (-1230) (-1230 'X) (-641))) (-5 *1 (-76 *3))
- (-14 *3 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1174 (-317 (-1230) (-1230 'XC) (-641))))
- (-5 *1 (-77 *3)) (-14 *3 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1174 (-317 (-1230) (-1230 'X) (-641))))
- (-5 *1 (-78 *3)) (-14 *3 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1174 (-317 (-1230) (-1230 'X) (-641))))
- (-5 *1 (-79 *3)) (-14 *3 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1174 (-317 (-1230 'X '-3418) (-1230) (-641))))
- (-5 *1 (-80 *3)) (-14 *3 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-632 (-317 (-1230 'X '-3418) (-1230) (-641))))
- (-5 *1 (-81 *3)) (-14 *3 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-632 (-317 (-1230 'X) (-1230) (-641)))) (-5 *1 (-82 *3))
- (-14 *3 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1174 (-317 (-1230 'X) (-1230) (-641))))
- (-5 *1 (-83 *3)) (-14 *3 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1174 (-317 (-1230 'X) (-1230 '-3418) (-641))))
- (-5 *1 (-84 *3)) (-14 *3 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-632 (-317 (-1230 'XL 'XR 'ELAM) (-1230) (-641))))
- (-5 *1 (-85 *3)) (-14 *3 (-1092))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-317 (-1230 'X) (-1230 '-3418) (-641))) (-5 *1 (-87 *3))
- (-14 *3 (-1092))))
- ((*1 *2 *1) (-12 (-5 *2 (-936 2)) (-5 *1 (-103))))
- ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103))))
- ((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-130 *3 *4 *5))) (-5 *1 (-130 *3 *4 *5))
- (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5))
- (-14 *3 (-525)) (-14 *4 (-713))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1059 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160))
- (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-220 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160))
- (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1174 (-632 *4))) (-4 *4 (-160))
- (-5 *2 (-1174 (-632 (-385 (-887 *4))))) (-5 *1 (-171 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *3))
- (-4 *3
- (-13 (-789)
- (-10 -8 (-15 -3406 ((-1075) $ (-1092))) (-15 -2736 ((-1179) $))
- (-15 -1934 ((-1179) $)))))
- (-5 *1 (-195 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-936 10)) (-5 *1 (-198))))
- ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-225 *3)) (-4 *3 (-789))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1013 (-294 *4)))
- (-4 *4 (-13 (-789) (-517) (-567 (-357)))) (-5 *2 (-1013 (-357)))
- (-5 *1 (-237 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1150 *3)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7))
- (-4 *3 (-160)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1159 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-408 *3)))
- (-14 *5 (-1092)) (-14 *6 *4)
- (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429)))
- (-5 *1 (-291 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-308))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-294 *5)) (-5 *1 (-317 *3 *4 *5))
- (-14 *3 (-592 (-1092))) (-14 *4 (-592 (-1092))) (-4 *5 (-365))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *3 *4 *2))
- (-4 *3 (-307 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *2 *4 *3))
- (-4 *3 (-307 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
- (-5 *2 (-1196 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
- (-5 *2 (-1187 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308)))))
- (-4 *1 (-361))))
- ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-361))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-361))))
- ((*1 *1 *2) (-12 (-5 *2 (-632 (-641))) (-4 *1 (-361))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308)))))
- (-4 *1 (-362))))
- ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-362))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-362))))
- ((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1075))))
- ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-367))))
- ((*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-371 *3)) (-4 *3 (-1020))))
- ((*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-372))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308)))))
- (-4 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-374))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-273 (-294 (-157 (-357))))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-273 (-294 (-357)))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-273 (-294 (-525)))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-357))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-525))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-273 (-294 (-636)))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-273 (-294 (-641)))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-273 (-294 (-643)))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-636))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-641))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-643))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308)))))
- (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092))
- (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-308))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1092)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-308)) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1092))
- (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1316 "void")))
- (-14 *5 (-592 (-1092))) (-14 *6 (-1096))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-309 *4)) (-4 *4 (-13 (-789) (-21)))
- (-5 *1 (-405 *3 *4)) (-4 *3 (-13 (-160) (-37 (-385 (-525)))))))
- ((*1 *1 *2)
- (-12 (-5 *1 (-405 *2 *3)) (-4 *2 (-13 (-160) (-37 (-385 (-525)))))
- (-4 *3 (-13 (-789) (-21)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-385 (-887 (-385 *3)))) (-4 *3 (-517)) (-4 *3 (-789))
- (-4 *1 (-408 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-887 (-385 *3))) (-4 *3 (-517)) (-4 *3 (-789))
- (-4 *1 (-408 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-385 *3)) (-4 *3 (-517)) (-4 *3 (-789))
- (-4 *1 (-408 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1044 *3 (-565 *1))) (-4 *3 (-977)) (-4 *3 (-789))
- (-4 *1 (-408 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-412))))
- ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-412))))
- ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-412))))
- ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-412))))
- ((*1 *1 *2) (-12 (-5 *2 (-412)) (-5 *1 (-415))))
- ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-415))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308)))))
- (-4 *1 (-417))))
- ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-417))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-417))))
- ((*1 *1 *2) (-12 (-5 *2 (-1174 (-641))) (-4 *1 (-417))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1096)) (|:| -3353 (-592 (-308)))))
- (-4 *1 (-418))))
- ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-418))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-418))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1174 (-385 (-887 *3)))) (-4 *3 (-160))
- (-14 *6 (-1174 (-632 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-14 *4 (-856)) (-14 *5 (-592 (-1092)))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-445))))
- ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-445))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-977)) (-14 *4 (-1092))
- (-14 *5 *3) (-5 *1 (-451 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-451 *3 *4 *5))
- (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-5 *2 (-936 16)) (-5 *1 (-462))))
- ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462))))
- ((*1 *1 *2) (-12 (-5 *2 (-1044 (-525) (-565 (-468)))) (-5 *1 (-468))))
- ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-475))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-341))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-125)) (-5 *1 (-559))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-160)) (-5 *1 (-560 *3 *2)) (-4 *2 (-687 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2) (-12 (-4 *1 (-570 *2)) (-4 *2 (-977))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1192 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
- (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1187 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
- (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-160)) (-5 *1 (-584 *3 *2)) (-4 *2 (-687 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-892 (-892 (-892 *3)))) (-5 *1 (-620 *3))
- (-4 *3 (-1020))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-892 (-892 (-892 *3)))) (-4 *3 (-1020))
- (-5 *1 (-620 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1020))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *2)) (-4 *4 (-351 *3))
- (-4 *2 (-351 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-636))))
- ((*1 *1 *2) (-12 (-5 *2 (-157 (-643))) (-5 *1 (-636))))
- ((*1 *1 *2) (-12 (-5 *2 (-157 (-641))) (-5 *1 (-636))))
- ((*1 *1 *2) (-12 (-5 *2 (-157 (-525))) (-5 *1 (-636))))
- ((*1 *1 *2) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-636))))
- ((*1 *1 *2) (-12 (-5 *2 (-643)) (-5 *1 (-641))))
- ((*1 *2 *1) (-12 (-5 *2 (-357)) (-5 *1 (-641))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-294 (-525))) (-5 *2 (-294 (-643))) (-5 *1 (-643))))
- ((*1 *1 *2) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1020))))
- ((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1075)) (-5 *1 (-653))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-160)) (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-977)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1150 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -3555 *3) (|:| -4193 *4)))
- (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-1020))
- (-14 *5 (-1 (-108) *2 *2))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| -3555 *3) (|:| -4193 *4))) (-4 *3 (-789))
- (-4 *4 (-1020)) (-5 *1 (-656 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-160)) (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-2 (|:| -3244 *3) (|:| -2938 *4)))) (-4 *3 (-977))
- (-4 *4 (-669)) (-5 *1 (-678 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-706))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-294 (-205)))
- (|:| -3196 (-592 (-1015 (-782 (-205)))))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
- (-5 *1 (-711))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-294 (-205)))
- (|:| -3196 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *1 (-711))))
- ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1150 (-525))) (-5 *1 (-461 *3)))))
+(((*1 *2 *3)
(-12
- (-5 *2
+ (-5 *3
(-2 (|:| |var| (-1092)) (|:| |fn| (-294 (-205)))
- (|:| -3196 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| -1777 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
(|:| |relerr| (-205))))
- (-5 *1 (-711))))
- ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-711))))
- ((*1 *2 *3) (-12 (-5 *2 (-716)) (-5 *1 (-715 *3)) (-4 *3 (-1128))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1174 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (-5 *1 (-750))))
- ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-750))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-835 *3)) (-5 *1 (-759 *3 *2 *4)) (-4 *3 (-1020))
- (-14 *4 *3)))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1020)) (-14 *4 *3) (-5 *1 (-759 *3 *2 *4))
- (-4 *2 (-835 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-766))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205)))
- (|:| |lb| (-592 (-782 (-205))))
- (|:| |cf| (-592 (-294 (-205))))
- (|:| |ub| (-592 (-782 (-205))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-592 (-294 (-205))))
- (|:| -2295 (-592 (-205)))))))
- (-5 *1 (-780))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2295 (-592 (-205)))))
- (-5 *1 (-780))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-294 (-205))) (|:| -2295 (-592 (-205)))
- (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205))))
- (|:| |ub| (-592 (-782 (-205))))))
- (-5 *1 (-780))))
- ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-780))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1170 *3)) (-14 *3 (-1092)) (-5 *1 (-794 *3 *4 *5 *6))
- (-4 *4 (-977)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-887 *3)) (-4 *3 (-977)) (-5 *1 (-801 *3 *4 *5 *6))
- (-14 *4 (-592 (-1092))) (-14 *5 (-592 (-713))) (-14 *6 (-713))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-887 *3)) (-5 *1 (-801 *3 *4 *5 *6)) (-4 *3 (-977))
- (-14 *4 (-592 (-1092))) (-14 *5 (-592 (-713))) (-14 *6 (-713))))
- ((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-887 (-47))) (-5 *2 (-294 (-525))) (-5 *1 (-810))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-385 (-887 (-47)))) (-5 *2 (-294 (-525)))
- (-5 *1 (-810))))
- ((*1 *1 *2) (-12 (-5 *1 (-828 *2)) (-4 *2 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-828 *3)) (-4 *3 (-789))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |pde| (-592 (-294 (-205))))
- (|:| |constraints|
- (-592
- (-2 (|:| |start| (-205)) (|:| |finish| (-205))
- (|:| |grid| (-713)) (|:| |boundaryType| (-525))
- (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205))))))
- (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1075))
- (|:| |tol| (-205))))
- (-5 *1 (-833))))
- ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-833))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1115 *3)) (-5 *1 (-836 *3)) (-4 *3 (-1020))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-840 *3))) (-4 *3 (-1020)) (-5 *1 (-839 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-840 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-385 (-396 *3))) (-4 *3 (-286)) (-5 *1 (-849 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-385 *3)) (-5 *1 (-849 *3)) (-4 *3 (-286))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-454)) (-5 *2 (-294 *4)) (-5 *1 (-854 *4))
- (-4 *4 (-13 (-789) (-517)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-900 *3)) (-4 *3 (-901))))
- ((*1 *1 *2) (-12 (-5 *1 (-900 *2)) (-4 *2 (-901))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-904))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525))))
- ((*1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *1 (-964 *3)) (-4 *3 (-1128))))
- ((*1 *2 *3) (-12 (-5 *3 (-290)) (-5 *1 (-964 *2)) (-4 *2 (-1128))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-965 *3 *4 *5 *2 *6)) (-4 *2 (-884 *3 *4 *5))
- (-14 *6 (-592 *2))))
- ((*1 *1 *2) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1128))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-973 *3)) (-4 *3 (-517))))
- ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-977))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-632 *5)) (-5 *1 (-981 *3 *4 *5)) (-14 *3 (-713))
- (-14 *4 (-713)) (-4 *5 (-977))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-977)) (-4 *4 (-789)) (-5 *1 (-1045 *3 *4 *2))
- (-4 *2 (-884 *3 (-497 *4) *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-977)) (-4 *2 (-789)) (-5 *1 (-1045 *3 *2 *4))
- (-4 *4 (-884 *3 (-497 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-977)) (-5 *2 (-798))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-632 *4)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-713))
- (-4 *4 (-977))))
- ((*1 *1 *2) (-12 (-5 *2 (-135)) (-4 *1 (-1061))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1128)) (-5 *1 (-1073 *3))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1073 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-977))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1083 *3 *4 *5))
- (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1089 *3 *4 *5))
- (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1090 *3 *4 *5))
- (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-977)) (-14 *4 (-1092))
- (-14 *5 *3) (-5 *1 (-1090 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1091))))
- ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1092))))
- ((*1 *2 *1) (-12 (-5 *2 (-1102 (-1092) (-415))) (-5 *1 (-1096))))
- ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1097))))
- ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1097))))
- ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1097))))
- ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1097))))
- ((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1097))))
- ((*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1097))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1097))))
- ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1097))))
- ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1101 *3)) (-4 *3 (-1020))))
- ((*1 *2 *3) (-12 (-5 *2 (-1109)) (-5 *1 (-1108 *3)) (-4 *3 (-1020))))
- ((*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1109))))
- ((*1 *1 *2) (-12 (-5 *2 (-887 *3)) (-4 *3 (-977)) (-5 *1 (-1123 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1092)) (-5 *1 (-1123 *3)) (-4 *3 (-977))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-892 *3)) (-4 *3 (-1128)) (-5 *1 (-1126 *3))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-977)) (-4 *1 (-1136 *3 *2)) (-4 *2 (-1165 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1138 *3 *4 *5))
- (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1015 *3)) (-4 *3 (-1128)) (-5 *1 (-1141 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1170 *3)) (-14 *3 (-1092)) (-5 *1 (-1147 *3 *4))
- (-4 *4 (-977))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-977)) (-4 *1 (-1157 *3 *2)) (-4 *2 (-1134 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1159 *3 *4 *5))
- (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1166 *3 *4 *5))
- (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-977)) (-14 *4 (-1092))
- (-14 *5 *3) (-5 *1 (-1166 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1092)) (-5 *1 (-1170 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1175))))
- ((*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-1175)) (-5 *1 (-1178))))
- ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1179))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4))
- (-5 *1 (-1184 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-884 *3 *5 *4))
- (-14 *7 (-592 (-713))) (-14 *8 (-713))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-884 *3 *5 *4)) (-5 *1 (-1184 *3 *4 *5 *2 *6 *7 *8))
- (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4))
- (-14 *7 (-592 (-713))) (-14 *8 (-713))))
- ((*1 *1 *2) (-12 (-4 *1 (-1186 *2)) (-4 *2 (-977))))
- ((*1 *1 *2) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-160))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1187 *3 *4)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-160))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
- (-5 *1 (-1192 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-1195 *3 *2)) (-4 *3 (-977)) (-4 *2 (-785)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-713)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205) (-205))) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-242)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
- (-5 *1 (-698)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-290)) (-5 *1 (-275))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-1075))) (-5 *2 (-290)) (-5 *1 (-275))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-290)) (-5 *1 (-275))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-1075))) (-5 *3 (-1075)) (-5 *2 (-290))
- (-5 *1 (-275)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
- (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020))
- (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-977))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-517)) (-5 *2 (-108)) (-5 *1 (-573 *3 *4))
- (-4 *4 (-1150 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-678 *3 *4)) (-4 *3 (-977))
- (-4 *4 (-669))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
- (-5 *2 (-108)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-341)) (-5 *1 (-831 *2 *3))
- (-4 *2 (-1150 *3)))))
-(((*1 *1) (-5 *1 (-765))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
- (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341)))
- (-4 *3 (-1150 *4)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-592 (-157 *4)))
- (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
- (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1013 (-782 *3))) (-4 *3 (-13 (-1114) (-893) (-29 *5)))
- (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
- (-5 *2
- (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-199 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1013 (-782 *3))) (-5 *5 (-1075))
- (-4 *3 (-13 (-1114) (-893) (-29 *6)))
- (-4 *6 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
- (-5 *2
- (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-199 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1013 (-782 (-294 *5))))
- (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
- (-5 *2
- (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-200 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-385 (-887 *6))) (-5 *4 (-1013 (-782 (-294 *6))))
- (-5 *5 (-1075))
- (-4 *6 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
- (-5 *2
- (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-200 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1013 (-782 (-385 (-887 *5))))) (-5 *3 (-385 (-887 *5)))
- (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
- (-5 *2
- (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-200 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1013 (-782 (-385 (-887 *6))))) (-5 *5 (-1075))
- (-5 *3 (-385 (-887 *6)))
- (-4 *6 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
- (-5 *2
- (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-200 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1092))
- (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
- (-5 *2 (-3 *3 (-592 *3))) (-5 *1 (-406 *5 *3))
- (-4 *3 (-13 (-1114) (-893) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-451 *3 *4 *5))
- (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357))))
- (-5 *5 (-357)) (-5 *6 (-989)) (-5 *2 (-966)) (-5 *1 (-526))))
- ((*1 *2 *3) (-12 (-5 *3 (-711)) (-5 *2 (-966)) (-5 *1 (-526))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357))))
- (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357))))
- (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357))))
- (-5 *2 (-966)) (-5 *1 (-526))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357)))))
- (-5 *2 (-966)) (-5 *1 (-526))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357)))))
- (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357)))))
- (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357)))))
- (-5 *5 (-357)) (-5 *6 (-989)) (-5 *2 (-966)) (-5 *1 (-526))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-782 (-357))))
- (-5 *5 (-1075)) (-5 *2 (-966)) (-5 *1 (-526))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-782 (-357))))
- (-5 *5 (-1092)) (-5 *2 (-966)) (-5 *1 (-526))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-138) (-968 (-525)))) (-4 *5 (-1150 *4))
- (-5 *2 (-542 (-385 *5))) (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1092)) (-4 *5 (-138))
- (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))
- (-5 *2 (-3 (-294 *5) (-592 (-294 *5)))) (-5 *1 (-545 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-683 *3 *2)) (-4 *3 (-977)) (-4 *2 (-789))
- (-4 *3 (-37 (-385 (-525))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1092)) (-5 *1 (-887 *3)) (-4 *3 (-37 (-385 (-525))))
- (-4 *3 (-977))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-4 *2 (-789))
- (-5 *1 (-1045 *3 *2 *4)) (-4 *4 (-884 *3 (-497 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1073 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977))
- (-5 *1 (-1077 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1083 *3 *4 *5))
- (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1089 *3 *4 *5))
- (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1090 *3 *4 *5))
- (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1092)) (-5 *1 (-1123 *3)) (-4 *3 (-37 (-385 (-525))))
- (-4 *3 (-977))))
- ((*1 *1 *1 *2)
- (-3254
- (-12 (-5 *2 (-1092)) (-4 *1 (-1134 *3)) (-4 *3 (-977))
- (-12 (-4 *3 (-29 (-525))) (-4 *3 (-893)) (-4 *3 (-1114))
- (-4 *3 (-37 (-385 (-525))))))
- (-12 (-5 *2 (-1092)) (-4 *1 (-1134 *3)) (-4 *3 (-977))
- (-12 (|has| *3 (-15 -2897 ((-592 *2) *3)))
- (|has| *3 (-15 -1206 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1134 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1138 *3 *4 *5))
- (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1150 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525))))))
- ((*1 *1 *1 *2)
- (-3254
- (-12 (-5 *2 (-1092)) (-4 *1 (-1155 *3)) (-4 *3 (-977))
- (-12 (-4 *3 (-29 (-525))) (-4 *3 (-893)) (-4 *3 (-1114))
- (-4 *3 (-37 (-385 (-525))))))
- (-12 (-5 *2 (-1092)) (-4 *1 (-1155 *3)) (-4 *3 (-977))
- (-12 (|has| *3 (-15 -2897 ((-592 *2) *3)))
- (|has| *3 (-15 -1206 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1155 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1159 *3 *4 *5))
- (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-3254
- (-12 (-5 *2 (-1092)) (-4 *1 (-1165 *3)) (-4 *3 (-977))
- (-12 (-4 *3 (-29 (-525))) (-4 *3 (-893)) (-4 *3 (-1114))
- (-4 *3 (-37 (-385 (-525))))))
- (-12 (-5 *2 (-1092)) (-4 *1 (-1165 *3)) (-4 *3 (-977))
- (-12 (|has| *3 (-15 -2897 ((-592 *2) *3)))
- (|has| *3 (-15 -1206 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1165 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170 *4)) (-14 *4 (-1092)) (-5 *1 (-1166 *3 *4 *5))
- (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1039)) (-5 *1 (-105)))))
-((-1205 . 726444) (-1206 . 719490) (-1207 . 719331) (-1208 . 719194)
- (-1209 . 718896) (-1210 . 718868) (-1211 . 718770) (-1212 . 718240)
- (-1213 . 717931) (-1214 . 717822) (-1215 . 717611) (-1216 . 717500)
- (-1217 . 694465) (-1218 . 694307) (-1219 . 694114) (-1220 . 694056)
- (-1221 . 693914) (-1222 . 693667) (-1223 . 693558) (-1224 . 693485)
- (-1225 . 693234) (-1226 . 692929) (-1227 . 692656) (-1228 . 692440)
- (-1229 . 691939) (-1230 . 689187) (-1231 . 688900) (-1232 . 688817)
- (-1233 . 688326) (-1234 . 688227) (-1235 . 688156) (-1236 . 688090)
- (-1237 . 687846) (-1238 . 687737) (-1239 . 687558) (-1240 . 687425)
- (-1241 . 687124) (-1242 . 686911) (-1243 . 686623) (-1244 . 686306)
- (-1245 . 686209) (-1246 . 685798) (-1247 . 685466) (-1248 . 685357)
- (-1249 . 685213) (-1250 . 685058) (-1251 . 684917) (-1252 . 684759)
- (-1253 . 684575) (-1254 . 684323) (-1255 . 684160) (-1256 . 684048)
- (-1257 . 683804) (-1258 . 683460) (-1259 . 683389) (-1260 . 682286)
- (-1261 . 682165) (-1262 . 679750) (-1263 . 679363) (-1264 . 679278)
- (-1265 . 679219) (-1266 . 679191) (-1267 . 678965) (-1268 . 678891)
- (-1269 . 678045) (-1270 . 677915) (-1271 . 677556) (-1272 . 677425)
- (-1273 . 677266) (-1274 . 677181) (-1275 . 677077) (-1276 . 676704)
- (-1277 . 676536) (-1278 . 676377) (-1279 . 676311) (-1280 . 676165)
- (-1281 . 676078) (-1282 . 675669) (-1283 . 675575) (-1284 . 671965)
- (-1285 . 671860) (-1286 . 671416) (-1287 . 671263) (-1288 . 670880)
- (-1289 . 670766) (-1290 . 670595) (-1291 . 670438) (-1292 . 670386)
- (-1293 . 670291) (-1294 . 670208) (-1295 . 669892) (-1296 . 669693)
- (-1297 . 669527) (-1298 . 669312) (-1299 . 669247) (-1300 . 669024)
- (-1301 . 668956) (-1302 . 668871) (-1303 . 668768) (-1304 . 667683)
- (-1305 . 667461) (-1306 . 667408) (-1307 . 667348) (-1308 . 667235)
- (-1309 . 666984) (-1310 . 666906) (-1311 . 666466) (-1312 . 666411)
- (-1313 . 666282) (-1314 . 666219) (-1315 . 665969) (-1316 . 665940)
- (-1317 . 665857) (-1318 . 665753) (-1319 . 665130) (-1320 . 665006)
- (-1321 . 664954) (-1322 . 664845) (-1323 . 664485) (-1324 . 664433)
- (-1325 . 664380) (-1326 . 664328) (-1327 . 664183) (-1328 . 664098)
- (-1329 . 662380) (-1330 . 662328) (-1331 . 662161) (-1332 . 662084)
- (-1333 . 661982) (-1334 . 661375) (-1335 . 661171) (-1336 . 661022)
- (-1337 . 660878) (-1338 . 660762) (-1339 . 660660) (-1340 . 660332)
- (-1341 . 660133) (-1342 . 660008) (-1343 . 659844) (-1344 . 659776)
- (-1345 . 659686) (-1346 . 659652) (-1347 . 659532) (-1348 . 659066)
- (-1349 . 658885) (-1350 . 658687) (-1351 . 658604) (-1352 . 658548)
- (-1353 . 658389) (-1354 . 658308) (-1355 . 658192) (-1356 . 658036)
- (-1357 . 657906) (-1358 . 657788) (-1359 . 657708) (-1360 . 657104)
- (-1361 . 656952) (-1362 . 656921) (-1363 . 656776) (-1364 . 656699)
- (-1365 . 656593) (-1366 . 656359) (-1367 . 656218) (-1368 . 656065)
- (-1369 . 655912) (-1370 . 655845) (-1371 . 655729) (-1372 . 655676)
- (-1373 . 655570) (-1374 . 655294) (-1375 . 655221) (-1376 . 655075)
- (-1377 . 654936) (-1378 . 654824) (-1379 . 654631) (-1380 . 654321)
- (-1381 . 654209) (-1382 . 654156) (-1383 . 653898) (-1384 . 653283)
- (-1385 . 652825) (-1386 . 652738) (-1387 . 652430) (-1388 . 651621)
- (-1389 . 651548) (-1390 . 651236) (-1391 . 651116) (-1392 . 651005)
- (-1393 . 650953) (-1394 . 650771) (-1395 . 650705) (-1396 . 650467)
- (-1397 . 650411) (-1398 . 650360) (-1399 . 650261) (-1400 . 650152)
- (-1401 . 650100) (-1402 . 650051) (-1403 . 648627) (-1404 . 648233)
- (-1405 . 648180) (-1406 . 648106) (-1407 . 648050) (-1408 . 647853)
- (-1409 . 647470) (-1410 . 647292) (-1411 . 647045) (-1412 . 646880)
- (-1413 . 646806) (-1414 . 646672) (-1415 . 646301) (-1416 . 646030)
- (-1417 . 645395) (-1418 . 645312) (-1419 . 645183) (-1420 . 644975)
- (-1421 . 644777) (-1422 . 644663) (-1423 . 644612) (-1424 . 644539)
- (-1425 . 644413) (-1426 . 644182) (-1427 . 644066) (-1428 . 643847)
- (-1429 . 643738) (-1430 . 642437) (-1431 . 642323) (-1432 . 641655)
- (-1433 . 641627) (-1434 . 641474) (-1435 . 641258) (-1436 . 641067)
- (-1437 . 640966) (-1438 . 640851) (-1439 . 640817) (-1440 . 640687)
- (-1441 . 640635) (-1442 . 640254) (-1443 . 640110) (-1444 . 640082)
- (-1445 . 639876) (-1446 . 639815) (-1447 . 639239) (-1448 . 639022)
- (-1449 . 638920) (-1450 . 638847) (-1451 . 638762) (-1452 . 638634)
- (-1453 . 638343) (-1454 . 637670) (-1455 . 637621) (-1456 . 637367)
- (-1457 . 637284) (-1458 . 637165) (-1459 . 637013) (-1460 . 636912)
- (-1461 . 636839) (-1462 . 636513) (-1463 . 636308) (-1464 . 636181)
- (-1465 . 635495) (-1466 . 635437) (-1467 . 634991) (-1468 . 634587)
- (-1469 . 634514) (-1470 . 634451) (-1471 . 634247) (-1472 . 634170)
- (-1473 . 634026) (-1474 . 633929) (-1475 . 633716) (-1476 . 633631)
- (-1477 . 633541) (-1478 . 633470) (-1479 . 632784) (-1480 . 632626)
- (-1481 . 632442) (-1482 . 632338) (-1483 . 632203) (-1484 . 632151)
- (-1485 . 632025) (-1486 . 631872) (-1487 . 631715) (-1488 . 631603)
- (-1489 . 631286) (-1490 . 631129) (-1491 . 630921) (-1492 . 630172)
- (-1493 . 630026) (-1494 . 629923) (-1495 . 629710) (-1496 . 629437)
- (-1497 . 629358) (-1498 . 629292) (-1499 . 629013) (-1500 . 628891)
- (-1501 . 628801) (-1502 . 628508) (-1503 . 628389) (-1504 . 628360)
- (-1505 . 628289) (-1506 . 627715) (-1507 . 627649) (-1508 . 627398)
- (-1509 . 627332) (-1510 . 627258) (-1511 . 627152) (-1512 . 627075)
- (-1513 . 626929) (-1514 . 626114) (-1515 . 625777) (-1516 . 625587)
- (-1517 . 624350) (-1518 . 624159) (-1519 . 624102) (-1520 . 624006)
- (-1521 . 623842) (-1522 . 623268) (-1523 . 623217) (-1524 . 623132)
- (-1525 . 623066) (-1526 . 622936) (-1527 . 622665) (-1528 . 622579)
- (-1529 . 621616) (-1530 . 621062) (-1531 . 620963) (-1532 . 620869)
- (-1533 . 617584) (-1534 . 617353) (-1535 . 617235) (-1536 . 616777)
- (-1537 . 616203) (-1538 . 616135) (-1539 . 616035) (-1540 . 615854)
- (-1541 . 615696) (-1542 . 615593) (-1543 . 615484) (-1544 . 615386)
- (-1545 . 615210) (-1546 . 615079) (-1547 . 614909) (-1548 . 614683)
- (-1549 . 613996) (-1550 . 613850) (-1551 . 613700) (-1552 . 613617)
- (-1553 . 613436) (-1554 . 613290) (-1555 . 613224) (-1556 . 613126)
- (-1557 . 613045) (-1558 . 612993) (-1559 . 612844) (-1560 . 612766)
- (-1561 . 612500) (-1562 . 611813) (-1563 . 611708) (-1564 . 611577)
- (-1565 . 611351) (-1566 . 611112) (-1567 . 610778) (-1568 . 609203)
- (-1569 . 609151) (-1570 . 609057) (-1571 . 608964) (-1572 . 603647)
- (-1573 . 603547) (-1574 . 603476) (-1575 . 602789) (-1576 . 602198)
- (-1577 . 601666) (-1578 . 601622) (-1579 . 601522) (-1580 . 601442)
- (-1581 . 601385) (-1582 . 601278) (-1583 . 600787) (-1584 . 600715)
- (-1585 . 600575) (-1586 . 600454) (-1587 . 599879) (-1588 . 599227)
- (-1589 . 597275) (-1590 . 597215) (-1591 . 597092) (-1592 . 596989)
- (-1593 . 596918) (-1594 . 596588) (-1595 . 596457) (-1596 . 596426)
- (-1597 . 596364) (-1598 . 596223) (-1599 . 595648) (-1600 . 595596)
- (-1601 . 595544) (-1602 . 595294) (-1603 . 595196) (-1604 . 595125)
- (-1605 . 595040) (-1606 . 594953) (-1607 . 594747) (-1608 . 594667)
- (-1609 . 594092) (-1610 . 593939) (-1611 . 593856) (-1612 . 593753)
- (-1613 . 593651) (-1614 . 593243) (-1615 . 593184) (-1616 . 593077)
- (-1617 . 593021) (-1618 . 592799) (-1619 . 592527) (-1620 . 592365)
- (-1621 . 591829) (-1622 . 591313) (-1623 . 591102) (-1624 . 591029)
- (-1625 . 590873) (-1626 . 590625) (-1627 . 590292) (-1628 . 590221)
- (-1629 . 589950) (-1630 . 589376) (-1631 . 589323) (-1632 . 589079)
- (-1633 . 588604) (-1634 . 588481) (-1635 . 588397) (-1636 . 588234)
- (-1637 . 588042) (-1638 . 587905) (-1639 . 587331) (-1640 . 587276)
- (-1641 . 587108) (-1642 . 587053) (-1643 . 586736) (-1644 . 586492)
- (-1645 . 586272) (-1646 . 586144) (-1647 . 586057) (-1648 . 586026)
- (-1649 . 585452) (-1650 . 585063) (-1651 . 584989) (-1652 . 584916)
- (-1653 . 584860) (-1654 . 584788) (-1655 . 584676) (-1656 . 584485)
- (-1657 . 584402) (-1658 . 584315) (-1659 . 583741) (-1660 . 583637)
- (-1661 . 583536) (-1662 . 583449) (-1663 . 583152) (-1664 . 583034)
- (-1665 . 582811) (-1666 . 582707) (-1667 . 582588) (-1668 . 582451)
- (-1669 . 581877) (-1670 . 581792) (-1671 . 581679) (-1672 . 581623)
- (-1673 . 581430) (-1674 . 581350) (-1675 . 581148) (-1676 . 580957)
- (-1677 . 580880) (-1678 . 580750) (-1679 . 580412) (-1680 . 580300)
- (-1681 . 580271) (-1682 . 580025) (-1683 . 579415) (-1684 . 578912)
- (-1685 . 578853) (-1686 . 578797) (-1687 . 578214) (-1688 . 578001)
- (-1689 . 577907) (-1690 . 576657) (-1691 . 576332) (-1692 . 575752)
- (-1693 . 575581) (-1694 . 575529) (-1695 . 575349) (-1696 . 575136)
- (-1697 . 575063) (-1698 . 574983) (-1699 . 574821) (-1700 . 574753)
- (-1701 . 574671) (-1702 . 574016) (-1703 . 573417) (-1704 . 573279)
- (-1705 . 572416) (-1706 . 572298) (-1707 . 572197) (-1708 . 571955)
- (-1709 . 571839) (-1710 . 571728) (-1711 . 571521) (-1712 . 571466)
- (-1713 . 571411) (-1714 . 571302) (-1715 . 570447) (-1716 . 570017)
- (-1717 . 569696) (-1718 . 569506) (-1719 . 569123) (-1720 . 569000)
- (-1721 . 568942) (-1722 . 568827) (-1723 . 568692) (-1724 . 568529)
- (-1725 . 568391) (-1726 . 567899) (-1727 . 567758) (-1728 . 567212)
- (-1729 . 567117) (-1730 . 567065) (-1731 . 567012) (-1732 . 565902)
- (-1733 . 565805) (-1734 . 565718) (-1735 . 565631) (-1736 . 565552)
- (-1737 . 565335) (-1738 . 565304) (-1739 . 565248) (-1740 . 564954)
- (-1741 . 564859) (-1742 . 564775) (-1743 . 564705) (-1744 . 564628)
- (-1745 . 564085) (-1746 . 563916) (-1747 . 563819) (-1748 . 563615)
- (-1749 . 563547) (-1750 . 562745) (-1751 . 562692) (-1752 . 562609)
- (-1753 . 562514) (-1754 . 562415) (-1755 . 562300) (-1756 . 562100)
- (-1757 . 562032) (-1758 . 561980) (-1759 . 561881) (-1760 . 561756)
- (-1761 . 561649) (-1762 . 561511) (-1763 . 561034) (-1764 . 560956)
- (-1765 . 560860) (-1766 . 560832) (-1767 . 560703) (-1768 . 560516)
- (-1769 . 560375) (-1770 . 560095) (-1771 . 559957) (-1772 . 559713)
- (-1773 . 557951) (-1774 . 557738) (-1775 . 557616) (-1776 . 557564)
- (-1777 . 557505) (-1778 . 557398) (-1779 . 557195) (-1780 . 557088)
- (-1781 . 557011) (-1782 . 556959) (-1783 . 556843) (-1784 . 556764)
- (-1785 . 556651) (-1786 . 556617) (-1787 . 556286) (-1788 . 556231)
- (-1789 . 555746) (-1790 . 555669) (-1791 . 555495) (-1792 . 555356)
- (-1793 . 554592) (-1794 . 554167) (-1795 . 554050) (-1796 . 553958)
- (-1797 . 553877) (-1798 . 553478) (-1799 . 553391) (-1800 . 553058)
- (-1801 . 552981) (-1802 . 552904) (-1803 . 552836) (-1804 . 552734)
- (-1805 . 552347) (-1806 . 552160) (-1807 . 552105) (-1808 . 551855)
- (-1809 . 551752) (-1810 . 551496) (-1811 . 551446) (-1812 . 551393)
- (-1813 . 551137) (-1814 . 550749) (-1815 . 550596) (-1816 . 550455)
- (-1817 . 550402) (-1818 . 550347) (-1819 . 550222) (-1820 . 550170)
- (-1821 . 550099) (-1822 . 550018) (-1823 . 549945) (-1824 . 549874)
- (-1825 . 549712) (-1826 . 549541) (-1827 . 549400) (-1828 . 549245)
- (-1829 . 549136) (-1830 . 549052) (-1831 . 548899) (-1832 . 548844)
- (-1833 . 547779) (-1834 . 546777) (-1835 . 546633) (-1836 . 546567)
- (-1837 . 546493) (-1838 . 546364) (-1839 . 546256) (-1840 . 545873)
- (-1841 . 545780) (-1842 . 545712) (-1843 . 545605) (-1844 . 544425)
- (-1845 . 544281) (-1846 . 544110) (-1847 . 544015) (-1848 . 543825)
- (-1849 . 543772) (-1850 . 543655) (-1851 . 543398) (-1852 . 543314)
- (-1853 . 543116) (-1854 . 542744) (-1855 . 542643) (-1856 . 542513)
- (-1857 . 542421) (-1858 . 542340) (-1859 . 542245) (-1860 . 542151)
- (-1861 . 541918) (-1862 . 541866) (-1863 . 541811) (-1864 . 541438)
- (-1865 . 541385) (-1866 . 541335) (-1867 . 540934) (-1868 . 540589)
- (-1869 . 540528) (-1870 . 540451) (-1871 . 540344) (-1872 . 539732)
- (-1873 . 539501) (-1874 . 539380) (-1875 . 539277) (-1876 . 539200)
- (-1877 . 539016) (-1878 . 538568) (-1879 . 538456) (-1880 . 538238)
- (-1881 . 538167) (-1882 . 537943) (-1883 . 537684) (-1884 . 537580)
- (-1885 . 537439) (-1886 . 537013) (-1887 . 536961) (-1888 . 536792)
- (-1889 . 536707) (-1890 . 536603) (-1891 . 536319) (-1892 . 536263)
- (-1893 . 536078) (-1894 . 535934) (-1895 . 535597) (-1896 . 535281)
- (-1897 . 535219) (-1898 . 535163) (-1899 . 534944) (-1900 . 534877)
- (-1901 . 534811) (-1902 . 534692) (-1903 . 534498) (-1904 . 534464)
- (-1905 . 534237) (-1906 . 534017) (-1907 . 533943) (-1908 . 533853)
- (-1909 . 533662) (-1910 . 533563) (-1911 . 533481) (-1912 . 533401)
- (-1913 . 533292) (-1914 . 533190) (-1915 . 529030) (-1916 . 528656)
- (-1917 . 528571) (-1918 . 528438) (-1919 . 528320) (-1920 . 527522)
- (-1921 . 527437) (-1922 . 527323) (-1923 . 527258) (-1924 . 527199)
- (-1925 . 527076) (-1926 . 526933) (-1927 . 526411) (-1928 . 526206)
- (-1929 . 526147) (-1930 . 526053) (-1931 . 525800) (-1932 . 525279)
- (-1933 . 524859) (-1934 . 524437) (-1935 . 524400) (-1936 . 523090)
- (-1937 . 522691) (-1938 . 522521) (-1939 . 522449) (-1940 . 522258)
- (-1941 . 522192) (-1942 . 522128) (-1943 . 522062) (-1944 . 521927)
- (-1945 . 521840) (-1946 . 521654) (-1947 . 521411) (-1948 . 521105)
- (-1949 . 521005) (-1950 . 520847) (-1951 . 520699) (-1952 . 520567)
- (-1953 . 520458) (-1954 . 520300) (-1955 . 520156) (-1956 . 520082)
- (-1957 . 520013) (-1958 . 519904) (-1959 . 519725) (-1960 . 518821)
- (-1961 . 518405) (-1962 . 518205) (-1963 . 517945) (-1964 . 517685)
- (-1965 . 517276) (-1966 . 517196) (-1967 . 517016) (-1968 . 516778)
- (-1969 . 516711) (-1970 . 516596) (-1971 . 516509) (-1972 . 516413)
- (-1973 . 516330) (-1974 . 516107) (-1975 . 515406) (-1976 . 515335)
- (-1977 . 514961) (-1978 . 514818) (-1979 . 514275) (-1980 . 513903)
- (-1981 . 513796) (-1982 . 513699) (-1983 . 513599) (-1984 . 513469)
- (-1985 . 513366) (-1986 . 513108) (-1987 . 513025) (-1988 . 512208)
- (-1989 . 511978) (-1990 . 511913) (-1991 . 511810) (-1992 . 511713)
- (-1993 . 511529) (-1994 . 511274) (-1995 . 511075) (-1996 . 510997)
- (-1997 . 510854) (-1998 . 510514) (-1999 . 510362) (-2000 . 510219)
- (-2001 . 509614) (-2002 . 509386) (-2003 . 509094) (-2004 . 508778)
- (-2005 . 508725) (-2006 . 508548) (-2007 . 508304) (-2008 . 508130)
- (-2009 . 508064) (-2010 . 507924) (-2011 . 507697) (-2012 . 507388)
- (-2013 . 507305) (-2014 . 507226) (-2015 . 507139) (-2016 . 507068)
- (-2017 . 506396) (-2018 . 506266) (-2019 . 506124) (-2020 . 506066)
- (-2021 . 505615) (-2022 . 504786) (-2023 . 504672) (-2024 . 504616)
- (-2025 . 504307) (-2026 . 504149) (-2027 . 504075) (-2028 . 504041)
- (-2029 . 503904) (-2030 . 503723) (-2031 . 502427) (-2032 . 502321)
- (-2033 . 502259) (-2034 . 502095) (-2035 . 501987) (-2036 . 501869)
- (-2037 . 501729) (-2038 . 501105) (-2039 . 500966) (-2040 . 500801)
- (-2041 . 500742) (-2042 . 500612) (-2043 . 500539) (-2044 . 500371)
- (-2045 . 500315) (-2046 . 500204) (-2047 . 499890) (-2048 . 499522)
- (-2049 . 499401) (-2050 . 499275) (-2051 . 499192) (-2052 . 499002)
- (-2053 . 498756) (-2054 . 498624) (-2055 . 498440) (-2056 . 498293)
- (-2057 . 498175) (-2058 . 498123) (-2059 . 498064) (-2060 . 497985)
- (-2061 . 497876) (-2062 . 497640) (-2063 . 497545) (-2064 . 496948)
- (-2065 . 496865) (-2066 . 496618) (-2067 . 496552) (-2068 . 496479)
- (-2069 . 496427) (-2070 . 496269) (-2071 . 496099) (-2072 . 496034)
- (-2073 . 495929) (-2074 . 495811) (-2075 . 495684) (-2076 . 495632)
- (-2077 . 495579) (-2078 . 495435) (-2079 . 495114) (-2080 . 494904)
- (-2081 . 494693) (-2082 . 494440) (-2083 . 494387) (-2084 . 494321)
- (-2085 . 494200) (-2086 . 493936) (-2087 . 493826) (-2088 . 493777)
- (-2089 . 493611) (-2090 . 493355) (-2091 . 493250) (-2092 . 493180)
- (-2093 . 492982) (-2094 . 492822) (-2095 . 492749) (-2096 . 492589)
- (-2097 . 492515) (-2098 . 492456) (-2099 . 491504) (-2100 . 491410)
- (-2101 . 491233) (-2102 . 491159) (-2103 . 490933) (-2104 . 490862)
- (-2105 . 490739) (-2106 . 490666) (-2107 . 490569) (-2108 . 490482)
- (-2109 . 490334) (-2110 . 490095) (-2111 . 489826) (-2112 . 489474)
- (-2113 . 489405) (-2114 . 489228) (-2115 . 489082) (-2116 . 488805)
- (-2117 . 488492) (-2118 . 488374) (-2119 . 488076) (-2120 . 487967)
- (-2121 . 486896) (-2122 . 486844) (-2123 . 486693) (-2124 . 486644)
- (-2125 . 486500) (-2126 . 486125) (-2127 . 485979) (-2128 . 485063)
- (-2129 . 484911) (-2130 . 484816) (-2131 . 484706) (-2132 . 484581)
- (-2133 . 484526) (-2134 . 484337) (-2135 . 484098) (-2136 . 483961)
- (-2137 . 483803) (-2138 . 483684) (-2139 . 483615) (-2140 . 483399)
- (-2141 . 483327) (-2142 . 483275) (-2143 . 482972) (-2144 . 482816)
- (-2145 . 482470) (-2146 . 482414) (-2147 . 482356) (-2148 . 482179)
- (-2149 . 482035) (-2150 . 481980) (-2151 . 481836) (-2152 . 481126)
- (-2153 . 481054) (-2154 . 480932) (-2155 . 480836) (-2156 . 480784)
- (-2157 . 480466) (-2158 . 480359) (-2159 . 480217) (-2160 . 480102)
- (-2161 . 480050) (-2162 . 479837) (-2163 . 479626) (-2164 . 479269)
- (-2165 . 479061) (-2166 . 478774) (-2167 . 478638) (-2168 . 478528)
- (-2169 . 478332) (-2170 . 478248) (-2171 . 478018) (-2172 . 477918)
- (-2173 . 477832) (-2174 . 477533) (-2175 . 477362) (-2176 . 477252)
- (-2177 . 477171) (-2178 . 477062) (-2179 . 476906) (-2180 . 476561)
- (-2181 . 476140) (-2182 . 475266) (-2183 . 475113) (-2184 . 475006)
- (-2185 . 474846) (-2186 . 474749) (-2187 . 474473) (-2188 . 474389)
- (-2189 . 474268) (-2190 . 474102) (-2191 . 474029) (-2192 . 473932)
- (-2193 . 473877) (-2194 . 473468) (-2195 . 473331) (-2196 . 473211)
- (-2197 . 473044) (-2198 . 472878) (-2199 . 472749) (-2200 . 472089)
- (-2201 . 471949) (-2202 . 471897) (-2203 . 471744) (-2204 . 471633)
- (-2205 . 471567) (-2206 . 471184) (-2207 . 471061) (-2208 . 470894)
- (-2209 . 470708) (-2210 . 470655) (-2211 . 470602) (-2212 . 470475)
- (-2213 . 470398) (-2214 . 470020) (-2215 . 469857) (-2216 . 469805)
- (-2217 . 469675) (-2218 . 469447) (-2219 . 469360) (-2220 . 469202)
- (-2221 . 469096) (-2222 . 468762) (-2223 . 468627) (-2224 . 468542)
- (-2225 . 468487) (-2226 . 468265) (-2227 . 468054) (-2228 . 467959)
- (-2229 . 467850) (-2230 . 467801) (-2231 . 467441) (-2232 . 467358)
- (-2233 . 467235) (-2234 . 467131) (-2235 . 467074) (-2236 . 466968)
- (-2237 . 466675) (-2238 . 466208) (-2239 . 466110) (-2240 . 465936)
- (-2241 . 465841) (-2242 . 465509) (-2243 . 465414) (-2244 . 465386)
- (-2245 . 465268) (-2246 . 465198) (-2247 . 464856) (-2248 . 464805)
- (-2249 . 464207) (-2250 . 464091) (-2251 . 463912) (-2252 . 463519)
- (-2253 . 463402) (-2254 . 463335) (-2255 . 463204) (-2256 . 463046)
- (-2257 . 462983) (-2258 . 462865) (-2259 . 462772) (-2260 . 462663)
- (-2261 . 462378) (-2262 . 462267) (-2263 . 461112) (-2264 . 461063)
- (-2265 . 461012) (-2266 . 460938) (-2267 . 460861) (-2268 . 460764)
- (-2269 . 460670) (-2270 . 460466) (-2271 . 460406) (-2272 . 459897)
- (-2273 . 459817) (-2274 . 459645) (-2275 . 459526) (-2276 . 459442)
- (-2277 . 459344) (-2278 . 459163) (-2279 . 459083) (-2280 . 457232)
- (-2281 . 456781) (-2282 . 456658) (-2283 . 456606) (-2284 . 456379)
- (-2285 . 456214) (-2286 . 456042) (-2287 . 455912) (-2288 . 455807)
- (-2289 . 455736) (-2290 . 455462) (-2291 . 455377) (-2292 . 455293)
- (-2293 . 455122) (-2294 . 455048) (-2295 . 454925) (-2296 . 454837)
- (-2297 . 454495) (-2298 . 454374) (-2299 . 454034) (-2300 . 453951)
- (-2301 . 453719) (-2302 . 453419) (-2303 . 453266) (-2304 . 453181)
- (-2305 . 453009) (-2306 . 452977) (-2307 . 452778) (-2308 . 452559)
- (-2309 . 452451) (-2310 . 452399) (-2311 . 452347) (-2312 . 452152)
- (-2313 . 451573) (-2314 . 451401) (-2315 . 451303) (-2316 . 451248)
- (-2317 . 450863) (-2318 . 450797) (-2319 . 449913) (-2320 . 449113)
- (-2321 . 449046) (-2322 . 449017) (-2323 . 448966) (-2324 . 448869)
- (-2325 . 448841) (-2326 . 448788) (-2327 . 448459) (-2328 . 448372)
- (-2329 . 448298) (-2330 . 448168) (-2331 . 448045) (-2332 . 447938)
- (-2333 . 447860) (-2334 . 447804) (-2335 . 447692) (-2336 . 447415)
- (-2337 . 447119) (-2338 . 446484) (-2339 . 446418) (-2340 . 446247)
- (-2341 . 446195) (-2342 . 446055) (-2343 . 443955) (-2344 . 443881)
- (-2345 . 443712) (-2346 . 443638) (-2347 . 443567) (-2348 . 443328)
- (-2349 . 442941) (-2350 . 442753) (-2351 . 442304) (-2352 . 442251)
- (-2353 . 442179) (-2354 . 442072) (-2355 . 441906) (-2356 . 441311)
- (-2357 . 440931) (-2358 . 440811) (-2359 . 440237) (-2360 . 439950)
- (-2361 . 439135) (-2362 . 439065) (-2363 . 438875) (-2364 . 438681)
- (-2365 . 438596) (-2366 . 438525) (-2367 . 438476) (-2368 . 438420)
- (-2369 . 438325) (-2370 . 437877) (-2371 . 437790) (-2372 . 437574)
- (-2373 . 437488) (-2374 . 437100) (-2375 . 437043) (-2376 . 436870)
- (-2377 . 436350) (-2378 . 436251) (-2379 . 436177) (-2380 . 435942)
- (-2381 . 435753) (-2382 . 433974) (-2383 . 433715) (-2384 . 433420)
- (-2385 . 433181) (-2386 . 433046) (-2387 . 431854) (-2388 . 431761)
- (-2389 . 431628) (-2390 . 430608) (-2391 . 430364) (-2392 . 430279)
- (-2393 . 430223) (-2394 . 430136) (-2395 . 429998) (-2396 . 429507)
- (-2397 . 429400) (-2398 . 429221) (-2399 . 427936) (-2400 . 427801)
- (-2401 . 427555) (-2402 . 427205) (-2403 . 427086) (-2404 . 427021)
- (-2405 . 426802) (-2406 . 426689) (-2407 . 426637) (-2408 . 426542)
- (-2409 . 426324) (-2410 . 426181) (-2411 . 425972) (-2412 . 425799)
- (-2413 . 425644) (-2414 . 425348) (-2415 . 425057) (-2416 . 424846)
- (-2417 . 424790) (-2418 . 424540) (-2419 . 424488) (-2420 . 423947)
- (-2421 . 423672) (-2422 . 423587) (-2423 . 423363) (-2424 . 423304)
- (-2425 . 423199) (-2426 . 423061) (-2427 . 422983) (-2428 . 422930)
- (-2429 . 422405) (-2430 . 422339) (-2431 . 421864) (-2432 . 421791)
- (-2433 . 421701) (-2434 . 421634) (-2435 . 421525) (-2436 . 421143)
- (-2437 . 421005) (-2438 . 420825) (-2439 . 420663) (-2440 . 420560)
- (-2441 . 420034) (-2442 . 419985) (-2443 . 419876) (-2444 . 419791)
- (-2445 . 419597) (-2446 . 419546) (-2447 . 418926) (-2448 . 418895)
- (-2449 . 418801) (-2450 . 418731) (-2451 . 418581) (-2452 . 418466)
- (-2453 . 418398) (-2454 . 418315) (-2455 . 418260) (-2456 . 418192)
- (-2457 . 414204) (-2458 . 413775) (-2459 . 413329) (-2460 . 413242)
- (-2461 . 413190) (-2462 . 413088) (-2463 . 412974) (-2464 . 412871)
- (-2465 . 412733) (-2466 . 412681) (-2467 . 412628) (-2468 . 412521)
- (-2469 . 412142) (-2470 . 411951) (-2471 . 411822) (-2472 . 411532)
- (-2473 . 411474) (-2474 . 411391) (-2475 . 411339) (-2476 . 411305)
- (-2477 . 411198) (-2478 . 411148) (-2479 . 410993) (-2480 . 410834)
- (-2481 . 410714) (-2482 . 410644) (-2483 . 410592) (-2484 . 410499)
- (-2485 . 410277) (-2486 . 409862) (-2487 . 409763) (-2488 . 409627)
- (-2489 . 409599) (-2490 . 409528) (-2491 . 409107) (-2492 . 408760)
- (-2493 . 408260) (-2494 . 405479) (-2495 . 405352) (-2496 . 405168)
- (-2497 . 405034) (-2498 . 404400) (-2499 . 403912) (-2500 . 403860)
- (-2501 . 403807) (-2502 . 403157) (-2503 . 402905) (-2504 . 402823)
- (-2505 . 402731) (-2506 . 402648) (-2507 . 402535) (-2508 . 402455)
- (-2509 . 402381) (-2510 . 402312) (-2511 . 402260) (-2512 . 401884)
- (-2513 . 401284) (-2514 . 401183) (-2515 . 401114) (-2516 . 400902)
- (-2517 . 400754) (-2518 . 400617) (-2519 . 400227) (-2520 . 400176)
- (-2521 . 400093) (-2522 . 400041) (-2523 . 399956) (-2524 . 399842)
- (-2525 . 399609) (-2526 . 399478) (-2527 . 399108) (-2528 . 398928)
- (-2529 . 398857) (-2530 . 398717) (-2531 . 398561) (-2532 . 398478)
- (-2533 . 398391) (-2534 . 398043) (-2535 . 397990) (-2536 . 397597)
- (-2537 . 397501) (-2538 . 397380) (-2539 . 397310) (-2540 . 397155)
- (-2541 . 396911) (-2542 . 396852) (-2543 . 396781) (-2544 . 396654)
- (-2545 . 396583) (-2546 . 396276) (-2547 . 396213) (-2548 . 396079)
- (-2549 . 395955) (-2550 . 395612) (-2551 . 395505) (-2552 . 395383)
- (-2553 . 394838) (-2554 . 394759) (-2555 . 394617) (-2556 . 394530)
- (-2557 . 394345) (-2558 . 394222) (-2559 . 394151) (-2560 . 394037)
- (-2561 . 393987) (-2562 . 393739) (-2563 . 393677) (-2564 . 393560)
- (-2565 . 393464) (-2566 . 393246) (-2567 . 393166) (-2568 . 392540)
- (-2569 . 392440) (-2570 . 392353) (-2571 . 392300) (-2572 . 391919)
- (-2573 . 391756) (-2574 . 390591) (-2575 . 390473) (** . 387396)
- (-2577 . 387194) (-2578 . 387117) (-2579 . 386563) (-2580 . 386461)
- (-2581 . 384214) (-2582 . 384108) (-2583 . 384001) (-2584 . 383933)
- (-2585 . 383792) (-2586 . 383761) (-2587 . 383645) (-2588 . 383497)
- (-2589 . 382397) (-2590 . 382324) (-2591 . 382234) (-2592 . 382141)
- (-2593 . 382048) (-2594 . 381995) (-2595 . 381771) (-2596 . 381668)
- (-2597 . 381634) (-2598 . 378726) (-2599 . 378339) (-2600 . 377978)
- (-2601 . 377869) (-2602 . 377699) (-2603 . 377615) (-2604 . 377443)
- (-2605 . 377391) (-2606 . 377251) (-2607 . 377198) (-2608 . 377103)
- (-2609 . 376897) (-2610 . 376869) (-2611 . 376785) (-2612 . 376575)
- (-2613 . 376356) (-2614 . 376302) (-2615 . 376196) (-2616 . 376127)
- (-2617 . 375933) (-2618 . 375881) (-2619 . 375827) (-2620 . 375704)
- (-2621 . 375603) (-2622 . 375535) (-2623 . 375440) (-2624 . 375390)
- (-2625 . 375329) (-2626 . 375255) (-2627 . 375163) (-2628 . 375065)
- (-2629 . 374975) (-2630 . 374644) (-2631 . 374394) (-2632 . 374281)
- (-2633 . 373760) (-2634 . 373694) (-2635 . 372897) (-2636 . 372815)
- (-2637 . 372723) (-2638 . 372444) (-2639 . 372226) (-2640 . 371995)
- (-2641 . 370997) (-2642 . 370860) (-2643 . 370647) (-2644 . 370514)
- (-2645 . 370419) (-2646 . 370333) (-2647 . 370195) (-2648 . 369819)
- (-2649 . 369676) (-2650 . 369580) (-2651 . 369374) (-2652 . 369346)
- (-2653 . 369293) (-2654 . 369227) (-2655 . 368954) (-2656 . 368903)
- (-2657 . 368866) (-2658 . 368138) (-2659 . 367833) (-2660 . 367805)
- (-2661 . 367698) (-2662 . 367574) (-2663 . 367136) (-2664 . 366991)
- (-2665 . 366867) (-2666 . 366414) (-2667 . 366363) (-2668 . 366311)
- (-2669 . 365041) (-2670 . 364988) (-2671 . 364825) (-2672 . 364776)
- (-2673 . 364742) (-2674 . 364555) (-2675 . 364500) (-2676 . 364390)
- (-2677 . 363939) (-2678 . 363824) (-2679 . 363675) (-2680 . 363611)
- (-2681 . 363487) (-2682 . 363415) (-2683 . 363238) (-2684 . 363183)
- (-2685 . 363112) (-2686 . 362591) (-2687 . 362514) (-2688 . 362305)
- (-2689 . 362195) (-2690 . 362108) (-2691 . 362048) (-2692 . 361758)
- (-2693 . 361671) (-2694 . 361498) (-2695 . 361151) (-2696 . 360630)
- (-2697 . 360425) (-2698 . 360300) (-2699 . 360215) (-2700 . 359990)
- (-2701 . 359896) (-2702 . 359603) (-2703 . 359532) (-2704 . 359445)
- (-2705 . 359389) (-2706 . 359074) (-2707 . 358994) (-2708 . 358896)
- (-2709 . 358486) (-2710 . 358428) (-2711 . 358232) (-2712 . 358030)
- (-2713 . 357978) (-2714 . 357905) (-2715 . 357832) (-2716 . 357635)
- (-2717 . 355505) (-2718 . 355406) (-2719 . 355247) (-2720 . 355147)
- (-2721 . 354970) (-2722 . 354841) (-2723 . 354755) (-2724 . 354623)
- (-2725 . 354464) (-2726 . 353649) (-2727 . 353596) (-2728 . 352989)
- (-2729 . 352916) (-2730 . 352831) (-2731 . 352765) (-2732 . 352680)
- (-2733 . 352536) (-2734 . 352474) (-2735 . 352351) (-2736 . 351597)
- (-2737 . 351531) (-2738 . 351234) (-2739 . 351079) (-2740 . 350854)
- (-2741 . 350752) (-2742 . 350674) (-2743 . 350155) (-2744 . 348754)
- (-2745 . 348659) (-2746 . 348520) (-2747 . 348408) (-2748 . 348241)
- (-2749 . 348041) (-2750 . 347885) (-2751 . 347593) (-2752 . 347441)
- (-2753 . 347297) (-2754 . 347186) (-2755 . 346807) (-2756 . 346313)
- (-2757 . 346127) (-2758 . 346053) (-2759 . 346000) (-2760 . 345948)
- (-2761 . 345849) (-2762 . 345646) (-2763 . 345501) (-2764 . 345405)
- (-2765 . 344341) (-2766 . 344268) (-2767 . 344195) (-2768 . 344051)
- (-2769 . 343996) (-2770 . 338488) (-2771 . 338293) (-2772 . 338220)
- (-2773 . 337908) (-2774 . 337749) (-2775 . 337641) (-2776 . 337508)
- (-2777 . 337181) (-2778 . 336902) (-2779 . 336747) (-2780 . 336006)
- (-2781 . 335969) (-2782 . 335581) (-2783 . 335444) (-2784 . 335335)
- (-2785 . 335007) (-2786 . 334885) (-2787 . 334814) (-2788 . 334786)
- (-2789 . 334701) (-2790 . 334546) (-2791 . 334391) (-2792 . 334266)
- (-2793 . 333934) (-2794 . 333193) (-2795 . 333141) (-2796 . 332688)
- (-2797 . 332494) (-2798 . 332289) (-2799 . 332150) (-2800 . 331938)
- (-2801 . 331864) (-2802 . 331367) (-2803 . 331293) (-2804 . 330605)
- (-2805 . 330553) (-2806 . 330206) (-2807 . 330088) (-2808 . 330003)
- (-2809 . 329693) (-2810 . 329528) (-2811 . 329438) (-2812 . 329264)
- (-2813 . 329113) (-2814 . 329039) (-2815 . 328463) (-2816 . 328383)
- (-2817 . 328275) (-2818 . 327840) (-2819 . 327757) (-2820 . 327708)
- (-2821 . 327433) (-2822 . 327069) (-2823 . 326999) (-2824 . 326823)
- (-2825 . 326741) (-2826 . 326713) (-2827 . 326521) (-2828 . 326425)
- (-2829 . 326175) (-2830 . 326057) (-2831 . 325927) (-2832 . 325858)
- (-2833 . 325778) (-2834 . 325651) (-2835 . 325354) (-2836 . 324778)
- (-2837 . 324670) (-2838 . 324381) (-2839 . 324252) (-2840 . 324155)
- (-2841 . 323966) (-2842 . 323854) (-2843 . 323631) (-2844 . 323553)
- (-2845 . 323457) (-2846 . 323354) (-2847 . 323189) (-2848 . 322944)
- (-2849 . 322910) (-2850 . 322824) (-2851 . 322737) (-2852 . 322664)
- (-2853 . 322399) (-2854 . 322293) (-2855 . 322240) (-2856 . 322188)
- (-2857 . 322114) (-2858 . 321783) (-2859 . 321724) (-2860 . 321535)
- (-2861 . 321377) (-2862 . 321276) (-2863 . 321188) (-2864 . 321115)
- (-2865 . 320836) (-2866 . 320701) (-2867 . 320594) (-2868 . 319715)
- (-2869 . 319547) (-2870 . 319089) (-2871 . 318827) (-2872 . 318690)
- (-2873 . 318595) (-2874 . 318327) (-2875 . 318163) (-2876 . 316544)
- (-2877 . 316364) (-2878 . 316239) (-2879 . 316134) (-2880 . 315773)
- (-2881 . 315671) (-2882 . 315366) (-2883 . 315292) (-2884 . 315209)
- (-2885 . 315181) (-2886 . 314942) (-2887 . 314081) (-2888 . 313906)
- (-2889 . 313812) (-2890 . 313652) (-2891 . 313378) (-2892 . 313237)
- (-2893 . 313140) (-2894 . 312972) (-2895 . 312222) (-2896 . 312128)
- (-2897 . 310761) (-2898 . 310635) (-2899 . 310475) (-2900 . 310348)
- (-2901 . 310225) (-2902 . 310139) (-2903 . 309998) (-2904 . 309846)
- (-2905 . 309705) (-2906 . 309634) (-2907 . 309461) (-2908 . 309340)
- (-2909 . 309124) (-2910 . 308876) (-2911 . 308789) (-2912 . 308528)
- (-2913 . 308080) (-2914 . 307979) (-2915 . 307895) (-2916 . 307796)
- (-2917 . 307653) (-2918 . 307523) (-2919 . 307494) (-2920 . 307385)
- (-2921 . 307202) (-2922 . 307149) (-2923 . 307078) (-2924 . 306440)
- (-2925 . 306201) (-2926 . 306089) (-2927 . 305993) (-2928 . 305965)
- (-2929 . 305901) (-2930 . 305808) (-2931 . 305665) (-2932 . 305529)
- (-2933 . 305401) (-2934 . 305280) (-2935 . 305197) (-2936 . 305042)
- (-2937 . 304897) (-2938 . 304624) (-2939 . 304543) (-2940 . 304483)
- (-2941 . 304343) (-2942 . 304206) (-2943 . 304042) (-2944 . 303852)
- (-2945 . 303717) (-2946 . 303455) (-2947 . 303300) (-2948 . 303123)
- (-2949 . 303053) (-2950 . 301225) (-2951 . 301072) (-2952 . 300647)
- (-2953 . 300518) (-2954 . 300418) (-2955 . 300238) (-2956 . 299843)
- (-2957 . 299749) (-2958 . 299662) (-2959 . 299454) (-2960 . 299335)
- (-2961 . 299205) (-2962 . 297704) (-2963 . 297599) (-2964 . 296824)
- (-2965 . 296746) (-2966 . 296610) (-2967 . 296537) (-2968 . 296457)
- (-2969 . 295969) (-2970 . 295852) (-2971 . 295768) (-2972 . 295740)
- (-2973 . 294200) (-2974 . 294101) (-2975 . 294049) (-2976 . 293940)
- (-2977 . 293853) (-2978 . 293755) (-2979 . 293569) (-2980 . 293495)
- (-2981 . 293428) (-2982 . 293346) (-2983 . 293293) (-2984 . 293199)
- (-2985 . 293056) (-2986 . 292786) (-2987 . 292734) (-2988 . 292462)
- (-2989 . 290210) (-2990 . 290176) (-2991 . 289865) (-2992 . 289809)
- (-2993 . 289730) (-2994 . 289623) (-2995 . 289522) (-2996 . 289324)
- (-2997 . 288588) (-2998 . 288406) (-2999 . 288114) (-3000 . 287970)
- (-3001 . 287856) (-3002 . 287804) (-3003 . 287705) (-3004 . 287648)
- (-3005 . 287504) (-3006 . 287434) (-3007 . 287273) (-3008 . 287117)
- (-3009 . 287058) (-3010 . 286942) (-3011 . 286782) (-3012 . 286748)
- (-3013 . 286615) (-3014 . 286553) (-3015 . 286330) (-3016 . 286177)
- (-3017 . 286058) (-3018 . 285863) (-3019 . 285737) (-3020 . 285669)
- (-3021 . 285568) (-3022 . 285516) (-3023 . 285485) (-3024 . 285305)
- (-3025 . 285149) (-3026 . 285050) (-3027 . 284871) (-3028 . 284748)
- (-3029 . 284624) (-3030 . 284569) (-3031 . 283931) (-3032 . 283407)
- (-3033 . 283164) (-3034 . 283031) (-3035 . 283003) (-3036 . 282902)
- (-3037 . 282831) (-3038 . 282675) (-3039 . 282412) (-3040 . 282254)
- (-3041 . 281675) (-3042 . 281458) (-3043 . 280298) (-3044 . 280158)
- (-3045 . 279949) (-3046 . 279855) (-3047 . 279757) (-3048 . 279652)
- (-3049 . 279523) (-3050 . 279470) (-3051 . 279397) (-3052 . 279283)
- (-3053 . 279174) (-3054 . 279047) (-3055 . 278928) (-3056 . 278495)
- (-3057 . 278404) (-3058 . 278250) (-3059 . 278105) (-3060 . 277846)
- (-3061 . 277766) (-3062 . 277699) (-3063 . 276576) (-3064 . 276502)
- (-3065 . 276362) (-3066 . 275815) (-3067 . 275490) (-3068 . 275459)
- (-3069 . 275428) (-3070 . 275103) (-3071 . 274805) (-3072 . 274569)
- (-3073 . 274514) (-3074 . 274415) (-3075 . 274332) (-3076 . 274248)
- (-3077 . 269727) (-3078 . 269635) (-3079 . 269044) (-3080 . 268891)
- (-3081 . 268839) (-3082 . 268457) (-3083 . 268161) (-3084 . 267801)
- (-3085 . 267703) (-3086 . 267464) (-3087 . 267346) (-3088 . 267269)
- (-3089 . 266991) (-3090 . 266963) (-3091 . 266668) (-3092 . 266562)
- (-3093 . 266489) (-3094 . 265624) (-3095 . 265406) (-3096 . 264196)
- (-3097 . 264095) (-3098 . 263936) (-3099 . 263678) (-3100 . 263601)
- (-3101 . 263503) (-3102 . 263429) (-3103 . 262826) (-3104 . 262494)
- (-3105 . 262387) (-3106 . 262227) (-3107 . 262154) (-3108 . 262035)
- (-3109 . 261790) (-3110 . 261705) (-3111 . 261596) (-3112 . 261511)
- (-3113 . 261424) (-3114 . 260725) (-3115 . 260632) (-3116 . 260389)
- (-3117 . 260165) (-3118 . 260104) (-3119 . 260010) (-3120 . 259952)
- (-3121 . 259869) (-3122 . 259585) (-3123 . 258908) (-3124 . 258791)
- (-3125 . 258312) (-3126 . 258182) (-3127 . 257880) (-3128 . 257709)
- (-3129 . 257571) (-3130 . 257462) (-3131 . 256807) (-3132 . 256700)
- (-3133 . 256503) (-3134 . 256371) (-3135 . 256283) (-3136 . 256125)
- (-3137 . 256039) (-3138 . 255982) (-3139 . 255890) (-3140 . 255625)
- (-3141 . 255591) (-3142 . 255433) (-3143 . 255224) (-3144 . 255158)
- (-3145 . 255103) (-3146 . 254947) (-3147 . 254885) (-3148 . 254744)
- (-3149 . 254637) (-3150 . 254603) (-3151 . 254551) (-3152 . 254396)
- (-3153 . 254179) (-3154 . 254089) (-3155 . 254040) (-3156 . 253951)
- (-3157 . 253889) (-3158 . 253635) (-3159 . 253493) (-3160 . 253311)
- (-3161 . 253156) (-3162 . 253015) (-3163 . 252695) (-3164 . 252664)
- (-3165 . 238601) (-3166 . 238516) (-3167 . 238415) (-3168 . 238289)
- (-3169 . 238174) (-3170 . 238016) (-3171 . 237964) (-3172 . 237661)
- (-3173 . 237354) (-3174 . 237294) (-3175 . 237241) (-3176 . 237119)
- (-3177 . 236792) (-3178 . 236739) (-3179 . 236589) (-3180 . 236482)
- (-3181 . 236411) (-3182 . 232349) (-3183 . 232191) (-3184 . 232118)
- (-3185 . 231616) (-3186 . 231504) (-3187 . 231409) (-3188 . 231310)
- (-3189 . 231243) (-3190 . 231136) (-3191 . 230957) (-3192 . 230826)
- (-3193 . 230685) (-3194 . 230651) (-3195 . 230476) (-3196 . 230337)
- (-3197 . 230096) (-3198 . 230001) (-3199 . 229903) (-3200 . 229831)
- (-3201 . 229523) (-3202 . 229432) (-3203 . 229310) (-3204 . 229228)
- (-3205 . 228697) (-3206 . 227401) (-3207 . 227299) (-3208 . 227200)
- (-3209 . 227134) (-3210 . 222431) (-3211 . 222362) (-3212 . 222121)
- (-3213 . 221871) (-3214 . 221788) (-3215 . 221711) (-3216 . 221605)
- (-3217 . 221165) (-3218 . 221095) (-3219 . 218750) (-3220 . 218697)
- (-3221 . 218639) (-3222 . 218457) (-3223 . 218385) (-3224 . 218304)
- (-3225 . 217917) (-3226 . 217757) (-3227 . 217483) (-3228 . 217348)
- (-3229 . 216923) (-3230 . 216779) (-3231 . 216350) (-3232 . 216194)
- (-3233 . 216145) (-3234 . 216059) (-3235 . 216006) (-3236 . 215956)
- (-3237 . 215208) (-3238 . 215142) (-3239 . 214896) (-3240 . 214681)
- (-3241 . 214629) (-3242 . 214354) (-3243 . 214155) (-3244 . 213800)
- (-3245 . 213733) (-3246 . 213585) (-3247 . 213321) (-3248 . 213142)
- (-3249 . 213046) (-3250 . 212990) (-3251 . 212814) (-3252 . 212263)
- (-3253 . 212197) (-3254 . 212025) (-3255 . 211942) (-3256 . 211695)
- (-3257 . 211183) (-3258 . 211073) (-3259 . 210874) (-3260 . 210771)
- (-3261 . 210701) (-3262 . 209132) (-3263 . 208979) (-3264 . 208853)
- (-12 . 208681) (-3266 . 208629) (-3267 . 208280) (-3268 . 208154)
- (-3269 . 208067) (-3270 . 208010) (-3271 . 207267) (-3272 . 207172)
- (-3273 . 206970) (-3274 . 206856) (-3275 . 206777) (-3276 . 206615)
- (-3277 . 206397) (-3278 . 206345) (-3279 . 206179) (-3280 . 206026)
- (-3281 . 205639) (-3282 . 205494) (-3283 . 205364) (-3284 . 205053)
- (-3285 . 204574) (-3286 . 204521) (-3287 . 204416) (-3288 . 204222)
- (-3289 . 203918) (-3290 . 203848) (-3291 . 203510) (-3292 . 203300)
- (-3293 . 203111) (-3294 . 202957) (-3295 . 202869) (-3296 . 201423)
- (-3297 . 201389) (-3298 . 201288) (-3299 . 201026) (-3300 . 200960)
- (-3301 . 200857) (-3302 . 200695) (-3303 . 199984) (-3304 . 199932)
- (-3305 . 199689) (-3306 . 199305) (-3307 . 199226) (-3308 . 199118)
- (-3309 . 199028) (-3310 . 198827) (-3311 . 198548) (-3312 . 198392)
- (-3313 . 198100) (-3314 . 197991) (-3315 . 197906) (-3316 . 197808)
- (-3317 . 197730) (-3318 . 197136) (-3319 . 196999) (-3320 . 196729)
- (-3321 . 196564) (-3322 . 196406) (-3323 . 196199) (-3324 . 195970)
- (-3325 . 195915) (-3326 . 195665) (-3327 . 195375) (-3328 . 195307)
- (-3329 . 195236) (-3330 . 194838) (-3331 . 194616) (-3332 . 194257)
- (-3333 . 194095) (-3334 . 193916) (-3335 . 193798) (-3336 . 193727)
- (-3337 . 193241) (-3338 . 192909) (-3339 . 192753) (-3340 . 192679)
- (-3341 . 191137) (-3342 . 191060) (-3343 . 190875) (-3344 . 190720)
- (-3345 . 190596) (-3346 . 190481) (-3347 . 190337) (* . 185814)
- (-3349 . 185643) (-3350 . 185509) (-3351 . 185414) (-3352 . 185342)
- (-3353 . 184161) (-3354 . 184133) (-3355 . 184032) (-3356 . 183937)
- (-3357 . 183833) (-3358 . 183764) (-3359 . 183517) (-3360 . 183403)
- (-3361 . 183245) (-3362 . 183033) (-3363 . 182967) (-3364 . 182813)
- (-3365 . 182696) (-3366 . 182412) (-3367 . 182335) (-3368 . 182231)
- (-3369 . 182179) (-3370 . 182005) (-3371 . 181862) (-3372 . 181662)
- (-3373 . 181527) (-3374 . 181287) (-3375 . 181180) (-3376 . 179028)
- (-3377 . 178647) (-3378 . 178561) (-3379 . 178318) (-3380 . 177802)
- (-3381 . 177356) (-3382 . 177300) (-3383 . 177172) (-3384 . 177141)
- (-3385 . 177039) (-3386 . 176599) (-3387 . 176502) (-3388 . 176324)
- (-3389 . 176172) (-3390 . 176065) (-3391 . 176006) (-3392 . 175828)
- (-3393 . 175408) (-3394 . 175356) (-3395 . 175109) (-3396 . 175035)
- (-3397 . 174980) (-3398 . 174544) (-3399 . 174268) (-3400 . 174133)
- (-3401 . 173940) (-3402 . 173876) (-3403 . 173816) (-3404 . 173475)
- (-3405 . 173096) (-3406 . 167996) (-3407 . 167892) (-3408 . 167822)
- (-3409 . 167213) (-3410 . 167113) (-3411 . 167053) (-3412 . 166996)
- (-3413 . 166291) (-3414 . 166221) (-3415 . 166150) (-3416 . 165527)
- (-3417 . 165496) (-3418 . 165227) (-3419 . 164797) (-3420 . 164626)
- (-3421 . 164267) (-3422 . 164214) (-3423 . 163918) (-3424 . 163756)
- (-3425 . 163677) (-3426 . 163592) (-3427 . 163418) (-3428 . 163204)
- (-3429 . 163007) (-3430 . 162880) (-3431 . 162656) (-3432 . 162533)
- (-3433 . 162377) (-3434 . 161794) (-3435 . 161653) (-3436 . 161566)
- (-3437 . 161396) (-3438 . 161308) (-3439 . 161181) (-3440 . 160962)
- (-3441 . 160848) (-3442 . 160754) (-3443 . 160575) (-3444 . 160474)
- (-3445 . 160446) (-3446 . 160202) (-3447 . 160125) (-3448 . 160054)
- (-3449 . 159683) (-3450 . 159649) (-3451 . 159506) (-3452 . 159423)
- (-3453 . 159353) (-3454 . 158989) (-3455 . 158911) (-3456 . 158787)
- (-3457 . 157575) (-3458 . 157434) (-3459 . 157260) (-3460 . 156846)
- (-3461 . 156255) (-3462 . 155501) (-3463 . 155449) (-3464 . 155347)
- (-3465 . 155207) (-3466 . 155037) (-3467 . 154846) (-3468 . 154694)
- (-3469 . 154596) (-3470 . 154432) (-3471 . 154241) (-3472 . 154188)
- (-3473 . 154081) (-3474 . 153994) (-3475 . 153922) (-3476 . 153709)
- (-3477 . 153322) (-3478 . 153032) (-3479 . 152923) (-3480 . 152849)
- (-3481 . 152744) (-3482 . 152043) (-3483 . 151987) (-3484 . 151903)
- (-3485 . 151806) (-3486 . 151647) (-3487 . 151529) (-3488 . 151343)
- (-3489 . 151096) (-3490 . 150987) (-3491 . 150921) (-3492 . 150776)
- (-3493 . 150284) (-3494 . 150181) (-3495 . 150036) (-3496 . 149904)
- (-3497 . 149762) (-3498 . 149569) (-3499 . 149503) (-3500 . 149420)
- (-3501 . 149313) (-3502 . 149257) (-3503 . 149184) (-3504 . 149121)
- (-3505 . 149093) (-3506 . 148844) (-3507 . 148507) (-3508 . 148160)
- (-3509 . 146696) (-3510 . 146572) (-3511 . 146540) (-3512 . 146178)
- (-3513 . 145973) (-3514 . 145818) (-3515 . 145740) (-3516 . 145610)
- (-3517 . 145542) (-3518 . 145443) (-3519 . 145106) (-3520 . 144846)
- (-3521 . 144648) (-3522 . 144332) (-3523 . 144249) (-3524 . 144120)
- (-3525 . 143913) (-3526 . 143787) (-3527 . 143555) (-3528 . 143357)
- (-3529 . 143277) (-3530 . 143136) (-3531 . 143020) (-3532 . 142844)
- (-3533 . 142630) (-3534 . 141978) (-3535 . 141949) (-3536 . 141855)
- (-3537 . 141760) (-3538 . 141636) (-3539 . 141512) (-3540 . 141153)
- (-3541 . 141066) (-3542 . 140950) (-3543 . 140839) (-3544 . 140669)
- (-3545 . 140511) (-3546 . 140440) (-3547 . 140264) (-3548 . 140173)
- (-3549 . 140121) (-3550 . 139914) (-3551 . 139861) (-3552 . 139784)
- (-3553 . 139668) (-3554 . 139340) (-3555 . 139013) (-3556 . 138815)
- (-3557 . 138398) (-3558 . 138293) (-3559 . 138226) (-3560 . 138044)
- (-3561 . 137991) (-3562 . 137819) (-3563 . 137641) (-3564 . 137584)
- (-3565 . 137462) (-3566 . 137211) (-3567 . 137046) (-3568 . 136894)
- (-3569 . 136816) (-3570 . 136684) (-3571 . 136629) (-3572 . 136478)
- (-3573 . 136380) (-3574 . 136232) (-3575 . 136160) (-3576 . 136100)
- (-3577 . 136019) (-3578 . 135912) (-3579 . 135810) (-3580 . 135710)
- (-3581 . 135653) (-3582 . 135505) (-3583 . 135398) (-3584 . 135324)
- (-3585 . 135265) (-3586 . 135208) (-3587 . 135135) (-3588 . 135082)
- (-3589 . 135002) (-3590 . 134729) (-3591 . 133845) (-3592 . 133658)
- (-3593 . 133522) (-3594 . 133470) (-3595 . 133367) (-3596 . 133196)
- (-3597 . 133093) (-3598 . 132424) (-3599 . 132368) (-3600 . 132272)
- (-3601 . 132153) (-3602 . 131681) (-3603 . 130685) (-3604 . 130388)
- (-3605 . 130242) (-3606 . 130095) (-3607 . 129655) (-3608 . 129584)
- (-3609 . 129471) (-3610 . 129421) (-3611 . 129096) (-3612 . 128976)
- (-3613 . 128788) (-3614 . 128589) (-3615 . 128362) (-3616 . 128219)
- (-3617 . 128126) (-3618 . 127889) (-3619 . 127816) (-3620 . 127613)
- (-3621 . 127476) (-3622 . 126229) (-3623 . 126177) (-3624 . 126078)
- (-3625 . 125994) (-3626 . 125699) (-3627 . 125378) (-3628 . 125030)
- (-3629 . 124884) (-3630 . 124811) (-3631 . 124728) (-3632 . 124633)
- (-3633 . 124548) (-3634 . 124433) (-3635 . 124228) (-3636 . 124194)
- (-3637 . 124065) (-3638 . 123863) (-3639 . 123794) (-3640 . 123635)
- (-3641 . 123576) (-3642 . 123523) (-3643 . 123495) (-3644 . 122843)
- (-3645 . 122720) (-3646 . 122638) (-3647 . 122353) (-3648 . 122220)
- (-3649 . 122105) (-3650 . 121959) (-3651 . 121859) (-3652 . 121715)
- (-3653 . 121436) (-3654 . 121366) (-3655 . 121303) (-3656 . 121241)
- (-3657 . 121058) (-3658 . 120679) (-3659 . 120612) (-3660 . 119957)
- (-3661 . 119833) (-3662 . 119553) (-3663 . 119446) (-3664 . 119193)
- (-3665 . 119138) (-3666 . 119043) (-3667 . 118989) (-3668 . 118915)
- (-3669 . 118862) (-3670 . 118807) (-3671 . 118736) (-3672 . 118627)
- (-3673 . 118238) (-3674 . 117923) (-3675 . 117823) (-3676 . 117746)
- (-3677 . 117672) (-3678 . 117445) (-3679 . 117267) (-3680 . 117211)
- (-3681 . 117100) (-3682 . 117026) (-3683 . 116941) (-3684 . 116889)
- (-3685 . 116767) (-3686 . 116658) (-3687 . 116488) (-3688 . 116439)
- (-3689 . 116365) (-3690 . 116183) (-3691 . 115989) (-3692 . 115735)
- (-3693 . 115131) (-3694 . 115016) (-3695 . 114957) (-3696 . 114533)
- (-3697 . 114473) (-3698 . 114442) (-3699 . 114249) (-3700 . 114200)
- (-3701 . 114147) (-3702 . 113916) (-3703 . 113856) (-3704 . 113712)
- (-3705 . 112978) (-3706 . 112788) (-3707 . 112661) (-3708 . 112606)
- (-3709 . 112032) (-3710 . 111896) (-3711 . 111027) (-3712 . 110838)
- (-3713 . 110786) (-3714 . 110640) (-3715 . 110325) (-3716 . 110211)
- (-3717 . 110088) (-3718 . 109763) (-3719 . 109163) (-3720 . 109080)
- (-3721 . 108948) (-3722 . 108818) (-3723 . 108443) (-3724 . 108346)
- (-3725 . 108218) (-3726 . 108123) (-3727 . 107907) (-3728 . 107666)
- (-3729 . 107552) (-3730 . 107427) (-3731 . 107372) (-3732 . 107198)
- (-3733 . 107103) (-3734 . 107004) (-3735 . 106847) (-3736 . 106643)
- (-3737 . 106399) (-3738 . 106185) (-3739 . 106097) (-3740 . 106069)
- (-3741 . 105756) (-3742 . 105183) (-3743 . 104869) (-3744 . 104813)
- (-3745 . 104410) (-3746 . 104373) (-3747 . 104318) (-3748 . 104212)
- (-3749 . 104115) (-3750 . 104047) (-3751 . 103042) (-3752 . 102965)
- (-3753 . 102895) (-3754 . 102057) (-3755 . 101980) (-3756 . 101464)
- (-3757 . 101220) (-3758 . 101192) (-3759 . 101085) (-3760 . 100918)
- (-3761 . 100771) (-3762 . 100674) (-3763 . 100592) (-3764 . 100480)
- (-3765 . 100313) (-3766 . 100239) (-3767 . 100077) (-3768 . 99776)
- (-3769 . 99588) (-3770 . 99451) (-3771 . 99357) (-3772 . 99079)
- (-3773 . 99012) (-3774 . 98845) (-3775 . 98759) (-3776 . 98459)
- (-3777 . 98264) (-3778 . 98042) (-3779 . 97974) (-3780 . 97659)
- (-3781 . 97436) (-3782 . 97308) (-3783 . 97235) (-3784 . 97155)
- (-3785 . 96669) (-3786 . 96505) (-3787 . 96193) (-3788 . 96092)
- (-3789 . 95993) (-3790 . 95912) (-3791 . 95792) (-3792 . 95582)
- (-3793 . 95401) (-3794 . 95197) (-3795 . 95117) (-3796 . 95016)
- (-3797 . 94839) (-3798 . 94771) (-3799 . 94655) (-3800 . 93691)
- (-3801 . 93506) (-3802 . 93311) (-3803 . 93205) (-3804 . 92777)
- (-3805 . 92622) (-3806 . 92548) (-3807 . 92493) (-3808 . 92352)
- (-3809 . 90498) (-3810 . 90445) (-3811 . 90303) (-3812 . 90269)
- (-3813 . 90156) (-3814 . 90020) (-3815 . 89598) (-3816 . 89486)
- (-3817 . 89385) (-3818 . 89230) (-3819 . 89153) (-3820 . 88966)
- (-3821 . 88558) (-3822 . 88435) (-3823 . 88358) (-3824 . 88263)
- (-3825 . 88235) (-3826 . 87907) (-3827 . 87804) (-3828 . 87616)
- (-3829 . 87565) (-3830 . 87379) (-3831 . 87095) (-3832 . 87015)
- (-3833 . 86918) (-3834 . 86815) (-3835 . 86759) (-3836 . 86541)
- (-3837 . 86461) (-3838 . 86114) (-3839 . 86044) (-3840 . 85529)
- (-3841 . 85249) (-3842 . 84902) (-3843 . 84450) (-3844 . 84408)
- (-3845 . 84058) (-3846 . 83498) (-3847 . 83406) (-3848 . 83065)
- (-3849 . 82951) (-3850 . 82829) (-3851 . 82699) (-3852 . 82482)
- (-3853 . 82385) (-3854 . 82327) (-3855 . 80962) (-3856 . 80728)
- (-3857 . 80568) (-3858 . 80445) (-3859 . 80364) (-3860 . 80238)
- (-3861 . 80126) (-3862 . 80033) (-3863 . 79924) (-3864 . 79808)
- (-3865 . 79514) (-3866 . 79223) (-3867 . 79045) (-3868 . 78947)
- (-3869 . 78819) (-3870 . 78708) (-3871 . 78565) (-3872 . 78341)
- (-3873 . 78136) (-3874 . 78034) (-3875 . 77904) (-3876 . 77832)
- (-3877 . 77717) (-3878 . 77548) (-3879 . 77401) (-3880 . 77277)
- (-3881 . 77224) (-3882 . 76802) (-3883 . 76729) (-3884 . 76570)
- (-3885 . 76501) (-3886 . 76424) (-3887 . 76325) (-3888 . 76187)
- (-3889 . 75970) (-3890 . 75677) (-3891 . 75428) (-3892 . 75222)
- (-3893 . 74651) (-3894 . 74321) (-3895 . 74255) (-3896 . 74182)
- (-3897 . 74083) (-3898 . 74030) (-3899 . 74002) (-3900 . 73888)
- (-3901 . 73761) (-3902 . 73695) (-3903 . 73618) (-3904 . 73514)
- (-3905 . 73462) (-3906 . 73301) (-3907 . 73160) (-3908 . 73059)
- (-3909 . 72654) (-3910 . 72571) (-3911 . 72400) (-3912 . 72321)
- (-3913 . 72228) (-3914 . 72200) (-3915 . 72096) (-3916 . 71964)
- (-3917 . 71108) (-3918 . 70959) (-3919 . 70818) (-3920 . 70746)
- (-3921 . 70280) (-3922 . 60750) (-3923 . 60716) (-3924 . 60554)
- (-3925 . 60355) (-3926 . 60005) (-3927 . 59853) (-3928 . 59743)
- (-3929 . 59658) (-3930 . 58622) (-3931 . 57436) (-3932 . 57362)
- (-3933 . 56714) (-3934 . 56462) (-3935 . 56074) (-3936 . 55911)
- (-3937 . 55855) (-3938 . 55783) (-3939 . 55693) (-3940 . 55589)
- (-3941 . 55540) (-3942 . 55466) (-3943 . 55359) (-3944 . 55235)
- (-3945 . 55181) (-3946 . 55097) (-3947 . 55031) (-3948 . 54962)
- (-3949 . 54910) (-3950 . 54631) (-3951 . 54378) (-3952 . 54256)
- (-3953 . 54143) (-3954 . 53801) (-3955 . 53533) (-3956 . 53463)
- (-3957 . 53362) (-3958 . 53143) (-3959 . 52716) (-3960 . 52604)
- (-3961 . 52576) (-3962 . 52465) (-3963 . 52371) (-3964 . 52204)
- (-3965 . 52142) (-3966 . 51656) (-3967 . 51376) (-3968 . 51224)
- (-3969 . 51152) (-3970 . 50786) (-3971 . 50567) (-3972 . 50441)
- (-3973 . 50260) (-3974 . 50190) (-3975 . 49975) (-3976 . 49896)
- (-3977 . 49795) (-3978 . 49489) (-3979 . 49376) (-3980 . 49206)
- (-3981 . 48665) (-3982 . 48562) (-3983 . 48392) (-3984 . 48207)
- (-3985 . 48092) (-3986 . 47973) (-3987 . 47886) (-3988 . 47458)
- (-3989 . 47294) (-3990 . 47235) (-3991 . 47166) (-3992 . 46993)
- (-3993 . 46892) (-3994 . 46730) (-3995 . 46672) (-3996 . 46601)
- (-3997 . 46551) (-3998 . 46480) (-3999 . 46321) (-4000 . 46268)
- (-4001 . 46002) (-4002 . 45925) (-4003 . 45683) (-4004 . 45596)
- (-4005 . 45501) (-4006 . 45446) (-4007 . 45339) (-4008 . 45213)
- (-4009 . 45115) (-4010 . 44956) (-4011 . 44869) (-4012 . 44814)
- (-4013 . 44300) (-4014 . 44247) (-4015 . 44149) (-4016 . 43798)
- (-4017 . 43697) (-4018 . 43251) (-4019 . 43086) (-4020 . 43013)
- (-4021 . 42906) (-4022 . 42575) (-4023 . 42516) (-4024 . 42442)
- (-4025 . 42065) (-4026 . 41979) (-4027 . 41801) (-4028 . 41643)
- (-4029 . 41282) (-4030 . 41064) (-4031 . 40923) (-4032 . 40819)
- (-4033 . 40731) (-4034 . 40564) (-4035 . 40490) (-4036 . 40251)
- (-4037 . 39959) (-4038 . 39757) (-4039 . 39686) (-4040 . 39568)
- (-4041 . 39457) (-4042 . 39394) (-4043 . 39269) (-4044 . 39174)
- (-4045 . 39090) (-4046 . 38983) (-4047 . 37799) (-4048 . 37727)
- (-4049 . 36808) (-4050 . 36697) (-4051 . 36615) (-4052 . 36125)
- (-4053 . 35932) (-4054 . 35876) (-4055 . 35738) (-4056 . 35595)
- (-4057 . 35500) (-4058 . 35170) (-4059 . 34851) (-4060 . 34749)
- (-4061 . 33571) (-4062 . 33391) (-4063 . 32889) (-4064 . 32861)
- (-4065 . 32810) (-4066 . 32584) (-4067 . 32338) (-4068 . 32223)
- (-4069 . 32139) (-4070 . 32108) (-4071 . 32028) (-4072 . 31974)
- (-4073 . 31946) (-4074 . 31876) (-4075 . 29678) (-4076 . 29612)
- (-4077 . 29245) (-4078 . 29162) (-4079 . 29067) (-4080 . 28993)
- (-4081 . 28900) (-4082 . 28791) (-4083 . 28354) (-4084 . 28130)
- (-4085 . 27829) (-4086 . 27763) (-4087 . 27735) (-4088 . 27598)
- (-4089 . 27442) (-4090 . 27199) (-4091 . 27115) (-4092 . 27030)
- (-4093 . 26639) (-4094 . 26605) (-4095 . 26479) (-4096 . 26427)
- (-4097 . 26357) (-4098 . 26253) (-4099 . 26036) (-4100 . 25884)
- (-4101 . 25829) (-4102 . 25642) (-4103 . 25403) (-4104 . 25197)
- (-4105 . 25127) (-4106 . 25006) (-4107 . 24760) (-4108 . 24602)
- (-4109 . 24016) (-4110 . 23943) (-4111 . 23858) (-4112 . 23747)
- (-4113 . 23632) (-4114 . 23552) (-4115 . 23333) (-4116 . 23281)
- (-4117 . 23188) (-4118 . 23067) (-4119 . 22982) (-4120 . 22844)
- (-4121 . 22697) (-4122 . 22444) (-4123 . 22327) (-4124 . 22230)
- (-4125 . 21744) (-4126 . 21635) (-4127 . 21579) (-4128 . 21499)
- (-4129 . 21406) (-4130 . 21335) (-4131 . 21210) (-4132 . 20873)
- (-4133 . 20759) (-4134 . 20679) (-4135 . 20572) (-4136 . 20507)
- (-4137 . 20367) (-4138 . 20258) (-4139 . 20115) (-4140 . 20012)
- (-4141 . 19671) (-4142 . 19618) (-4143 . 19495) (-4144 . 19182)
- (-4145 . 19098) (-4146 . 18787) (-4147 . 18690) (-4148 . 18410)
- (-4149 . 18244) (-4150 . 18083) (-4151 . 17737) (-4152 . 16979)
- (-4153 . 16768) (-4154 . 16232) (-4155 . 16109) (-4156 . 15883)
- (-4157 . 15548) (-4158 . 15511) (-4159 . 15343) (-4160 . 14930)
- (-4161 . 14827) (-4162 . 14674) (-4163 . 14646) (-4164 . 14568)
- (-4165 . 13695) (-4166 . 13480) (-4167 . 13423) (-4168 . 13317)
- (-4169 . 13138) (-4170 . 13013) (-4171 . 12684) (-4172 . 12515)
- (-4173 . 12358) (-4174 . 12251) (-4175 . 12130) (-4176 . 11839)
- (-4177 . 11734) (-4178 . 11063) (-4179 . 10929) (-4180 . 10782)
- (-4181 . 10697) (-4182 . 10644) (-4183 . 10535) (-4184 . 10452)
- (-4185 . 10339) (-4186 . 10259) (-4187 . 10190) (-4188 . 10112)
- (-4189 . 10033) (-4190 . 9871) (-4191 . 9604) (-4192 . 8423)
- (-4193 . 7942) (-4194 . 7890) (-4195 . 7824) (-4196 . 7740)
- (-4197 . 7496) (-4198 . 7399) (-4199 . 7284) (-4200 . 7201)
- (-4201 . 5999) (-4202 . 5905) (-4203 . 5776) (-4204 . 5220)
- (-4205 . 5044) (-4206 . 4985) (-4207 . 4763) (-4208 . 4655)
- (-4209 . 4559) (-4210 . 4289) (-4211 . 4139) (-4212 . 4089)
- (-4213 . 3973) (-4214 . 3885) (-4215 . 3833) (-4216 . 3700)
- (-4217 . 3647) (-4218 . 3616) (-4219 . 3446) (-4220 . 3309)
- (-4221 . 2993) (-4222 . 2863) (-4223 . 2741) (-4224 . 2685)
- (-4225 . 1345) (-4226 . 1274) (-4227 . 1186) (-4228 . 1112)
- (-4229 . 975) (-4230 . 841) (-4231 . 723) (-4232 . 624) (-4233 . 595)
- (-4234 . 357) (-4235 . 326) (-4236 . 240) (-4237 . 132) (-4238 . 30)) \ No newline at end of file
+ (-5 *2 (-108)) (-5 *1 (-279)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1165 *4))
+ (-4 *4 (-37 (-385 (-525))))
+ (-5 *2 (-1 (-1073 *4) (-1073 *4) (-1073 *4))) (-5 *1 (-1167 *4 *5)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205))
+ (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-138))
+ (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-910 *3 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+((-1205 . 726417) (-1206 . 726243) (-1207 . 726107) (-1208 . 725940)
+ (-1209 . 725730) (-1210 . 725647) (-1211 . 725156) (-1212 . 725057)
+ (-1213 . 724895) (-1214 . 724833) (-1215 . 724619) (-1216 . 724535)
+ (-1217 . 724461) (-1218 . 724333) (-1219 . 723516) (-1220 . 723417)
+ (-1221 . 723211) (-1222 . 722992) (-1223 . 722835) (-1224 . 722617)
+ (-1225 . 722063) (-1226 . 721866) (-1227 . 721627) (-1228 . 721456)
+ (-1229 . 721335) (-1230 . 721046) (-1231 . 720992) (-1232 . 720762)
+ (-1233 . 719461) (-1234 . 719257) (-1235 . 719186) (-1236 . 719134)
+ (-1237 . 719035) (-1238 . 718947) (-1239 . 718820) (-1240 . 718528)
+ (-1241 . 718445) (-1242 . 718380) (-1243 . 718288) (-1244 . 718182)
+ (-1245 . 717938) (-1246 . 717772) (-1247 . 717678) (-1248 . 717336)
+ (-1249 . 717213) (-1250 . 717058) (-1251 . 716856) (-1252 . 716764)
+ (-1253 . 716550) (-1254 . 716481) (-1255 . 716328) (-1256 . 715941)
+ (-1257 . 712656) (-1258 . 712535) (-1259 . 712379) (-1260 . 712234)
+ (-1261 . 712163) (-1262 . 712086) (-1263 . 712000) (-1264 . 711972)
+ (-1265 . 711778) (-1266 . 711395) (-1267 . 711250) (-1268 . 710910)
+ (-1269 . 710829) (-1270 . 710246) (-1271 . 710128) (-1272 . 708509)
+ (-1273 . 708402) (-1274 . 708350) (-1275 . 708037) (-1276 . 707907)
+ (-1277 . 707793) (-1278 . 707562) (-1279 . 707479) (-1280 . 707338)
+ (-1281 . 707258) (-1282 . 707198) (-1283 . 707135) (-1284 . 706274)
+ (-1285 . 706212) (-1286 . 706156) (-1287 . 705925) (-1288 . 705352)
+ (-1289 . 705298) (-1290 . 704819) (-1291 . 704648) (-1292 . 704530)
+ (-1293 . 704387) (-1294 . 704247) (-1295 . 704122) (-1296 . 702755)
+ (-1297 . 702634) (-1298 . 702320) (-1299 . 702197) (-1300 . 702144)
+ (-1301 . 701686) (-1302 . 700240) (-1303 . 700010) (-1304 . 699915)
+ (-1305 . 699778) (-1306 . 699675) (-1307 . 699518) (-1308 . 699462)
+ (-1309 . 699361) (-1310 . 699256) (-1311 . 698401) (-1312 . 698348)
+ (-1313 . 698280) (-1314 . 698180) (-1315 . 698146) (-1316 . 698062)
+ (-1317 . 697898) (-1318 . 697821) (-1319 . 697769) (-1320 . 697701)
+ (-1321 . 697298) (-1322 . 697135) (-1323 . 696941) (-1324 . 696841)
+ (-1325 . 696740) (-1326 . 696654) (-1327 . 696547) (-1328 . 696357)
+ (-1329 . 696173) (-1330 . 695869) (-1331 . 695774) (-1332 . 695677)
+ (-1333 . 694381) (-1334 . 694082) (-1335 . 694016) (-1336 . 693881)
+ (-1337 . 693809) (-1338 . 693361) (-1339 . 693277) (-1340 . 693178)
+ (-1341 . 693095) (-1342 . 693018) (-1343 . 692948) (** . 689871)
+ (-1345 . 689690) (-1346 . 689519) (-1347 . 689416) (-1348 . 689305)
+ (-1349 . 689043) (-1350 . 687215) (-1351 . 687103) (-1352 . 686808)
+ (-1353 . 686672) (-1354 . 686334) (-1355 . 686018) (-1356 . 685921)
+ (-1357 . 685811) (-1358 . 685649) (-1359 . 685494) (-1360 . 685412)
+ (-1361 . 683911) (-1362 . 683840) (-1363 . 683519) (-1364 . 683448)
+ (-1365 . 683238) (-1366 . 683157) (-1367 . 682446) (-1368 . 680906)
+ (-1369 . 680734) (-1370 . 680510) (-1371 . 680089) (-1372 . 679741)
+ (-1373 . 679552) (-1374 . 679353) (-1375 . 679197) (-1376 . 679145)
+ (-1377 . 679060) (-1378 . 678978) (-1379 . 678719) (-1380 . 678372)
+ (-1381 . 678226) (-1382 . 678072) (-1383 . 677727) (-1384 . 677484)
+ (-1385 . 677456) (-1386 . 676420) (-1387 . 675684) (-1388 . 675580)
+ (-1389 . 675507) (-1390 . 672726) (-1391 . 672638) (-1392 . 672446)
+ (-1393 . 672271) (-1394 . 672053) (-1395 . 671974) (-1396 . 671553)
+ (-1397 . 670367) (-1398 . 669772) (-1399 . 669611) (-1400 . 669470)
+ (-1401 . 669387) (-1402 . 669260) (-1403 . 669152) (-1404 . 668278)
+ (-1405 . 668204) (-1406 . 668108) (-1407 . 667982) (-1408 . 667887)
+ (-1409 . 667835) (-1410 . 667651) (-1411 . 667527) (-1412 . 667478)
+ (-1413 . 667370) (-1414 . 667280) (-1415 . 667173) (-1416 . 666923)
+ (-1417 . 666275) (-1418 . 665637) (-1419 . 665503) (-1420 . 665334)
+ (-1421 . 665249) (-1422 . 665197) (-1423 . 664869) (-1424 . 664780)
+ (-1425 . 664678) (-1426 . 664518) (-1427 . 664317) (-1428 . 664065)
+ (-1429 . 663947) (-1430 . 662787) (-1431 . 660657) (-1432 . 660572)
+ (-1433 . 660457) (-1434 . 659823) (-1435 . 659714) (-1436 . 659652)
+ (-1437 . 659496) (-1438 . 659399) (-1439 . 659011) (-1440 . 658881)
+ (-1441 . 658767) (-1442 . 658562) (-1443 . 658458) (-1444 . 658406)
+ (-1445 . 658046) (-1446 . 657792) (-1447 . 657500) (-1448 . 657224)
+ (-1449 . 657155) (-1450 . 656992) (-1451 . 655869) (-1452 . 655585)
+ (-1453 . 655551) (-1454 . 655498) (-1455 . 655356) (-1456 . 655303)
+ (-1457 . 655219) (-1458 . 655110) (-1459 . 655030) (-1460 . 654974)
+ (-1461 . 654722) (-1462 . 654666) (-1463 . 654537) (-1464 . 654485)
+ (-1465 . 654303) (-1466 . 654247) (-1467 . 654162) (-1468 . 654041)
+ (-1469 . 653914) (-1470 . 653842) (-1471 . 653657) (-1472 . 653575)
+ (-1473 . 653373) (-1474 . 653320) (-1475 . 653165) (-1476 . 652999)
+ (-1477 . 652901) (-1478 . 652811) (-1479 . 652514) (-1480 . 652462)
+ (-1481 . 652318) (-1482 . 652226) (-1483 . 652067) (-1484 . 651926)
+ (-1485 . 651253) (-1486 . 651180) (-1487 . 651102) (-1488 . 650994)
+ (-1489 . 650890) (-1490 . 650837) (-1491 . 650500) (-1492 . 650355)
+ (-1493 . 650272) (-1494 . 649952) (-1495 . 649799) (-1496 . 649741)
+ (-1497 . 649644) (-1498 . 649050) (-1499 . 648781) (-1500 . 648707)
+ (-1501 . 648610) (-1502 . 648582) (-1503 . 648266) (-1504 . 648181)
+ (-1505 . 648068) (-1506 . 648037) (-1507 . 647982) (-1508 . 647845)
+ (-1509 . 647656) (-1510 . 647549) (-1511 . 647493) (-1512 . 647413)
+ (-1513 . 646761) (-1514 . 646676) (-1515 . 646586) (-1516 . 646449)
+ (-1517 . 646179) (-1518 . 646055) (-1519 . 645943) (-1520 . 645724)
+ (-1521 . 645650) (-1522 . 645535) (-1523 . 645412) (-1524 . 643694)
+ (-1525 . 643593) (-1526 . 643209) (-1527 . 643044) (-1528 . 642877)
+ (-1529 . 642654) (-1530 . 642600) (-1531 . 642315) (-1532 . 642248)
+ (-1533 . 642110) (-1534 . 642032) (-1535 . 641963) (-1536 . 641837)
+ (-1537 . 641681) (-1538 . 641515) (-1539 . 641357) (-1540 . 641279)
+ (-1541 . 641195) (-1542 . 641115) (-1543 . 641049) (-1544 . 640911)
+ (-1545 . 640859) (-1546 . 640726) (-1547 . 640611) (-1548 . 640510)
+ (-1549 . 640303) (-1550 . 640174) (-1551 . 640078) (-1552 . 640012)
+ (-1553 . 639935) (-1554 . 639855) (-1555 . 639736) (-1556 . 639582)
+ (-1557 . 639467) (-1558 . 639091) (-1559 . 638933) (-1560 . 638704)
+ (-1561 . 638044) (-1562 . 637941) (-1563 . 637872) (-1564 . 637678)
+ (-1565 . 637601) (-1566 . 637001) (-1567 . 636855) (-1568 . 636803)
+ (-1569 . 636645) (-1570 . 636593) (-1571 . 636538) (-1572 . 636398)
+ (-1573 . 636233) (-1574 . 636127) (-1575 . 636068) (-1576 . 635945)
+ (-1577 . 635868) (-1578 . 635641) (-1579 . 635541) (-1580 . 635440)
+ (-1581 . 635137) (-1582 . 633956) (-1583 . 633853) (-1584 . 633801)
+ (-1585 . 633551) (-1586 . 633306) (-1587 . 633027) (-1588 . 632807)
+ (-1589 . 631934) (-1590 . 631546) (-1591 . 631476) (-1592 . 631332)
+ (-1593 . 631120) (-1594 . 631067) (-1595 . 630958) (-1596 . 630805)
+ (-1597 . 630515) (-1598 . 630481) (-1599 . 630228) (-1600 . 630154)
+ (-1601 . 630075) (-1602 . 629664) (-1603 . 629385) (-1604 . 629237)
+ (-1605 . 629115) (-1606 . 628939) (-1607 . 628871) (-1608 . 628760)
+ (-1609 . 628480) (-1610 . 628394) (-1611 . 628272) (-1612 . 628182)
+ (-1613 . 627180) (-1614 . 626848) (-1615 . 626778) (-1616 . 626641)
+ (-1617 . 626314) (-1618 . 625104) (-1619 . 624706) (-1620 . 624593)
+ (-1621 . 624527) (-1622 . 624417) (-1623 . 624330) (-1624 . 623936)
+ (-1625 . 623745) (-1626 . 623636) (-1627 . 623246) (-1628 . 623183)
+ (-1629 . 623130) (-1630 . 622999) (-1631 . 622777) (-1632 . 622394)
+ (-1633 . 622284) (-1634 . 622211) (-1635 . 621869) (-1636 . 621787)
+ (-1637 . 621725) (-1638 . 621642) (-1639 . 621492) (-1640 . 621322)
+ (-1641 . 621203) (-1642 . 620844) (-1643 . 620721) (-1644 . 620620)
+ (-1645 . 620514) (-1646 . 620434) (-1647 . 619822) (-1648 . 619678)
+ (-1649 . 619593) (-1650 . 619410) (-1651 . 619303) (-1652 . 619079)
+ (-1653 . 618853) (-1654 . 618686) (-1655 . 618524) (-1656 . 618305)
+ (-1657 . 618252) (-1658 . 618143) (-1659 . 617717) (-1660 . 617562)
+ (-1661 . 617183) (-1662 . 617069) (-1663 . 616998) (-1664 . 616852)
+ (-1665 . 616666) (-1666 . 616487) (-1667 . 616060) (-1668 . 616008)
+ (-1669 . 615840) (-1670 . 615778) (-1671 . 611618) (-1672 . 611477)
+ (-1673 . 611244) (-1674 . 611177) (-1675 . 611104) (-1676 . 610954)
+ (-1677 . 610836) (-1678 . 610783) (-1679 . 610671) (-1680 . 610597)
+ (-1681 . 610498) (-1682 . 610340) (-1683 . 609966) (-1684 . 609311)
+ (-1685 . 609180) (-1686 . 608678) (-1687 . 608607) (-1688 . 608554)
+ (-1689 . 608526) (-1690 . 608195) (-1691 . 608110) (-1692 . 607926)
+ (-1693 . 607556) (-1694 . 607432) (-1695 . 607320) (-1696 . 607237)
+ (-1697 . 607110) (-1698 . 606954) (-1699 . 606895) (-1700 . 606784)
+ (-1701 . 606724) (-1702 . 606617) (-1703 . 606484) (-1704 . 606304)
+ (-1705 . 605943) (-1706 . 605844) (-1707 . 605770) (-1708 . 605693)
+ (-1709 . 605599) (-1710 . 605410) (-1711 . 605292) (-1712 . 605040)
+ (-1713 . 604787) (-1714 . 604647) (-1715 . 604616) (-1716 . 604549)
+ (-1717 . 603007) (-1718 . 602629) (-1719 . 602471) (-1720 . 602304)
+ (-1721 . 602249) (-1722 . 601922) (-1723 . 601124) (-1724 . 601041)
+ (-1725 . 600889) (-1726 . 600782) (-1727 . 600619) (-1728 . 600434)
+ (-1729 . 600333) (-1730 . 599847) (-1731 . 599762) (-1732 . 599667)
+ (-1733 . 599580) (-1734 . 599549) (-1735 . 599370) (-1736 . 599318)
+ (-1737 . 599163) (-1738 . 598883) (-1739 . 598795) (-1740 . 598447)
+ (-1741 . 598345) (-1742 . 598231) (-1743 . 598086) (-1744 . 598032)
+ (-1745 . 597901) (-1746 . 597777) (-1747 . 597647) (-1748 . 597073)
+ (-1749 . 596921) (-1750 . 596848) (-1751 . 596783) (-1752 . 596709)
+ (-1753 . 596629) (-1754 . 596552) (-1755 . 596499) (-1756 . 596418)
+ (-1757 . 596277) (-1758 . 596049) (-1759 . 595934) (-1760 . 595360)
+ (-1761 . 595081) (-1762 . 595009) (-1763 . 594950) (-1764 . 594895)
+ (-1765 . 594502) (-1766 . 594468) (-1767 . 594381) (-1768 . 594103)
+ (-1769 . 593959) (-1770 . 593385) (-1771 . 593250) (-1772 . 592884)
+ (-1773 . 592761) (-1774 . 592690) (-1775 . 592584) (-1776 . 592488)
+ (-1777 . 592349) (-1778 . 592159) (-1779 . 592025) (-1780 . 591867)
+ (-1781 . 591180) (-1782 . 590961) (-1783 . 590854) (-1784 . 590711)
+ (-1785 . 590477) (-1786 . 590407) (-1787 . 590298) (-1788 . 590057)
+ (-1789 . 589866) (-1790 . 589760) (-1791 . 589665) (-1792 . 588978)
+ (-1793 . 588852) (-1794 . 587973) (-1795 . 587832) (-1796 . 587310)
+ (-1797 . 587155) (-1798 . 586766) (-1799 . 586671) (-1800 . 586536)
+ (-1801 . 586427) (-1802 . 586366) (-1803 . 585679) (-1804 . 585607)
+ (-1805 . 585550) (-1806 . 585382) (-1807 . 585201) (-1808 . 584957)
+ (-1809 . 584752) (-1810 . 584437) (-1811 . 584284) (-1812 . 584186)
+ (-1813 . 583975) (-1814 . 583890) (-1815 . 583862) (-1816 . 583287)
+ (-1817 . 583191) (-1818 . 583121) (-1819 . 582663) (-1820 . 582604)
+ (-1821 . 582545) (-1822 . 582478) (-1823 . 582378) (-1824 . 582070)
+ (-1825 . 581972) (-1826 . 581917) (-1827 . 581806) (-1828 . 581231)
+ (-1829 . 581130) (-1830 . 580966) (-1831 . 580704) (-1832 . 580489)
+ (-1833 . 580395) (-1834 . 580318) (-1835 . 580247) (-1836 . 580170)
+ (-1837 . 580079) (-1838 . 579984) (-1839 . 579826) (-1840 . 579604)
+ (-1841 . 579029) (-1842 . 578600) (-1843 . 578521) (-1844 . 578384)
+ (-1845 . 578131) (-1846 . 578004) (-1847 . 577930) (-1848 . 577814)
+ (-1849 . 577692) (-1850 . 577499) (-1851 . 577395) (-1852 . 577300)
+ (-1853 . 576726) (-1854 . 576675) (-1855 . 576574) (-1856 . 576479)
+ (-1857 . 576059) (-1858 . 575832) (-1859 . 575761) (-1860 . 575679)
+ (-1861 . 575621) (-1862 . 575463) (-1863 . 575394) (-1864 . 575309)
+ (-1865 . 575200) (-1866 . 574626) (-1867 . 574358) (-1868 . 574245)
+ (-1869 . 574041) (-1870 . 573863) (-1871 . 573556) (-1872 . 573025)
+ (-1873 . 572911) (-1874 . 572769) (-1875 . 572720) (-1876 . 572146)
+ (-1877 . 572016) (-1878 . 571852) (-1879 . 571682) (-1880 . 571605)
+ (-1881 . 571355) (-1882 . 571278) (-1883 . 571222) (-1884 . 571159)
+ (-1885 . 569863) (-1886 . 569705) (-1887 . 569561) (-1888 . 569201)
+ (-1889 . 568954) (-1890 . 568683) (-1891 . 568109) (-1892 . 567568)
+ (-1893 . 567443) (-1894 . 567340) (-1895 . 567196) (-1896 . 567062)
+ (-1897 . 566951) (-1898 . 566852) (-1899 . 566769) (-1900 . 566660)
+ (-1901 . 566448) (-1902 . 565874) (-1903 . 565224) (-1904 . 565138)
+ (-1905 . 565035) (-1906 . 564930) (-1907 . 564848) (-1908 . 564592)
+ (-1909 . 564495) (-1910 . 564371) (-1911 . 564297) (-1912 . 564231)
+ (-1913 . 564158) (-1914 . 563988) (-1915 . 563627) (-1916 . 563577)
+ (-1917 . 563234) (-1918 . 563149) (-1919 . 563080) (-1920 . 562903)
+ (-1921 . 561940) (-1922 . 561755) (-1923 . 561653) (-1924 . 561600)
+ (-1925 . 561387) (-1926 . 561280) (-1927 . 561228) (-1928 . 560987)
+ (-1929 . 560841) (-1930 . 560536) (-1931 . 560421) (-1932 . 560116)
+ (-1933 . 559860) (-1934 . 555339) (-1935 . 555254) (-1936 . 555132)
+ (-1937 . 555023) (-1938 . 554773) (-1939 . 554658) (-1940 . 554385)
+ (-1941 . 554108) (-1942 . 553989) (-1943 . 553915) (-1944 . 553817)
+ (-1945 . 553664) (-1946 . 553574) (-1947 . 553491) (-1948 . 553275)
+ (-1949 . 552962) (-1950 . 552534) (-1951 . 552451) (-1952 . 552392)
+ (-1953 . 552311) (-1954 . 552170) (-1955 . 552099) (-1956 . 552046)
+ (-1957 . 551969) (-1958 . 551851) (-1959 . 551350) (-1960 . 551322)
+ (-1961 . 551158) (-1962 . 551053) (-1963 . 551001) (-1964 . 550843)
+ (-1965 . 550790) (-1966 . 550716) (-1967 . 550544) (-1968 . 550438)
+ (-1969 . 550140) (-1970 . 549853) (-1971 . 549794) (-1972 . 549555)
+ (-1973 . 549406) (-1974 . 549228) (-1975 . 549173) (-1976 . 549035)
+ (-1977 . 548979) (-1978 . 548539) (-1979 . 548430) (-1980 . 548352)
+ (-1981 . 548168) (-1982 . 548043) (-1983 . 547921) (-1984 . 547724)
+ (-1985 . 547654) (-1986 . 546583) (-1987 . 546500) (-1988 . 546357)
+ (-1989 . 546213) (-1990 . 546185) (-1991 . 545802) (-1992 . 545750)
+ (-1993 . 545697) (-1994 . 545446) (-1995 . 545388) (-1996 . 545237)
+ (-1997 . 545126) (-1998 . 544902) (-1999 . 544831) (-2000 . 544666)
+ (-2001 . 544141) (-2002 . 543959) (-2003 . 543910) (-2004 . 543705)
+ (-2005 . 543326) (-2006 . 543253) (-2007 . 543075) (-2008 . 543009)
+ (-2009 . 542857) (-2010 . 542783) (-2011 . 542639) (-2012 . 542537)
+ (-2013 . 542043) (-2014 . 541965) (-2015 . 541894) (-2016 . 527831)
+ (-2017 . 527584) (-2018 . 527109) (-2019 . 526988) (-2020 . 526628)
+ (-2021 . 526253) (-2022 . 526123) (-2023 . 525937) (-2024 . 525772)
+ (-2025 . 525610) (-2026 . 525550) (-2027 . 525495) (-2028 . 525422)
+ (-2029 . 525131) (-2030 . 525033) (-2031 . 524887) (-2032 . 524813)
+ (-2033 . 524741) (-2034 . 524667) (-2035 . 524043) (-2036 . 523872)
+ (-2037 . 523721) (-2038 . 523631) (-2039 . 523392) (-2040 . 523287)
+ (-2041 . 523235) (-2042 . 522319) (-2043 . 522204) (-2044 . 522151)
+ (-2045 . 522017) (-2046 . 521843) (-2047 . 521702) (-2048 . 521604)
+ (-2049 . 521495) (-2050 . 521361) (-2051 . 521243) (-2052 . 521091)
+ (-2053 . 521039) (-2054 . 520870) (-2055 . 520671) (-2056 . 520289)
+ (-2057 . 520134) (-2058 . 520067) (-2059 . 519919) (-2060 . 519772)
+ (-2061 . 519695) (-2062 . 519600) (-2063 . 519501) (-2064 . 519354)
+ (-2065 . 519294) (-2066 . 518923) (-2067 . 518751) (-2068 . 518642)
+ (-2069 . 513939) (-2070 . 513753) (-2071 . 513615) (-2072 . 513530)
+ (-2073 . 513235) (-2074 . 513032) (-2075 . 512922) (-2076 . 512798)
+ (-2077 . 512523) (-12 . 512351) (-2079 . 512267) (-2080 . 512087)
+ (-2081 . 512006) (-2082 . 511900) (-2083 . 511847) (-2084 . 511798)
+ (-2085 . 511767) (-2086 . 511642) (-2087 . 511589) (-2088 . 511444)
+ (-2089 . 511393) (-2090 . 511286) (-2091 . 511133) (-2092 . 510971)
+ (-2093 . 510909) (-2094 . 510800) (-2095 . 510727) (-2096 . 510672)
+ (-2097 . 510576) (-2098 . 510503) (-2099 . 510432) (-2100 . 510377)
+ (-2101 . 510275) (-2102 . 510172) (-2103 . 509307) (-2104 . 509224)
+ (-2105 . 509035) (-2106 . 507971) (-2107 . 507812) (-2108 . 507778)
+ (-2109 . 506713) (-2110 . 506613) (-2111 . 506087) (-2112 . 505974)
+ (-2113 . 505756) (-2114 . 505575) (-2115 . 505336) (-2116 . 505267)
+ (-2117 . 505194) (-2118 . 505050) (-2119 . 504902) (-2120 . 504853)
+ (-2121 . 504773) (-2122 . 504672) (-2123 . 504549) (-2124 . 504403)
+ (-2125 . 504266) (-2126 . 504211) (-2127 . 504112) (-2128 . 504046)
+ (-2129 . 503939) (-2130 . 503830) (-2131 . 503761) (-2132 . 503602)
+ (-2133 . 503357) (-2134 . 503199) (-2135 . 503061) (-2136 . 502866)
+ (-2137 . 502792) (-2138 . 502707) (-2139 . 502551) (-2140 . 502477)
+ (-2141 . 502219) (-2142 . 502140) (-2143 . 502074) (-2144 . 501955)
+ (-2145 . 501738) (-2146 . 501665) (-2147 . 501536) (-2148 . 501342)
+ (-2149 . 501283) (-2150 . 501206) (-2151 . 501044) (-2152 . 500975)
+ (-2153 . 500682) (-2154 . 500370) (-2155 . 500262) (-2156 . 500189)
+ (-2157 . 500138) (-2158 . 500040) (-2159 . 498859) (-2160 . 498643)
+ (-2161 . 498394) (-2162 . 498235) (* . 493712) (-2164 . 493329)
+ (-2165 . 493276) (-2166 . 492656) (-2167 . 492053) (-2168 . 491572)
+ (-2169 . 491544) (-2170 . 491472) (-2171 . 491266) (-2172 . 491158)
+ (-2173 . 490885) (-2174 . 490792) (-2175 . 490573) (-2176 . 490542)
+ (-2177 . 490490) (-2178 . 490158) (-2179 . 490106) (-2180 . 489891)
+ (-2181 . 489320) (-2182 . 489187) (-2183 . 489119) (-2184 . 488235)
+ (-2185 . 488141) (-2186 . 488034) (-2187 . 487968) (-2188 . 487659)
+ (-2189 . 487356) (-2190 . 487026) (-2191 . 486699) (-2192 . 486592)
+ (-2193 . 486488) (-2194 . 486418) (-2195 . 486231) (-2196 . 486071)
+ (-2197 . 485987) (-2198 . 485831) (-2199 . 485580) (-2200 . 485514)
+ (-2201 . 485235) (-2202 . 485100) (-2203 . 483920) (-2204 . 483784)
+ (-2205 . 483634) (-2206 . 483561) (-2207 . 483317) (-2208 . 482971)
+ (-2209 . 482934) (-2210 . 482861) (-2211 . 482638) (-2212 . 482494)
+ (-2213 . 482442) (-2214 . 482327) (-2215 . 482275) (-2216 . 482190)
+ (-2217 . 482093) (-2218 . 482037) (-2219 . 481726) (-2220 . 481627)
+ (-2221 . 481490) (-2222 . 481319) (-2223 . 481193) (-2224 . 481125)
+ (-2225 . 481022) (-2226 . 480907) (-2227 . 480798) (-2228 . 480740)
+ (-2229 . 480687) (-2230 . 480578) (-2231 . 480483) (-2232 . 480330)
+ (-2233 . 480247) (-2234 . 480076) (-2235 . 479993) (-2236 . 479908)
+ (-2237 . 479776) (-2238 . 479675) (-2239 . 479563) (-2240 . 479386)
+ (-2241 . 479058) (-2242 . 479030) (-2243 . 478833) (-2244 . 478778)
+ (-2245 . 478588) (-2246 . 478485) (-2247 . 478075) (-2248 . 477981)
+ (-2249 . 477894) (-2250 . 477837) (-2251 . 477723) (-2252 . 477649)
+ (-2253 . 477505) (-2254 . 477390) (-2255 . 477268) (-2256 . 477086)
+ (-2257 . 477052) (-2258 . 476895) (-2259 . 476842) (-2260 . 476774)
+ (-2261 . 476105) (-2262 . 475976) (-2263 . 475883) (-2264 . 475828)
+ (-2265 . 475762) (-2266 . 475728) (-2267 . 475657) (-2268 . 475530)
+ (-2269 . 475496) (-2270 . 475239) (-2271 . 475183) (-2272 . 475096)
+ (-2273 . 474853) (-2274 . 474297) (-2275 . 474269) (-2276 . 474139)
+ (-2277 . 473995) (-2278 . 473757) (-2279 . 473691) (-2280 . 473607)
+ (-2281 . 473555) (-2282 . 473459) (-2283 . 473283) (-2284 . 473059)
+ (-2285 . 472938) (-2286 . 472853) (-2287 . 472143) (-2288 . 472087)
+ (-2289 . 472010) (-2290 . 471812) (-2291 . 471710) (-2292 . 471591)
+ (-2293 . 471497) (-2294 . 471438) (-2295 . 471386) (-2296 . 471320)
+ (-2297 . 471248) (-2298 . 471144) (-2299 . 470989) (-2300 . 470617)
+ (-2301 . 470145) (-2302 . 470031) (-2303 . 469973) (-2304 . 469751)
+ (-2305 . 469699) (-2306 . 469577) (-2307 . 469333) (-2308 . 468952)
+ (-2309 . 468797) (-2310 . 468746) (-2311 . 468645) (-2312 . 467649)
+ (-2313 . 467546) (-2314 . 467463) (-2315 . 467355) (-2316 . 467211)
+ (-2317 . 467050) (-2318 . 466954) (-2319 . 466845) (-2320 . 466746)
+ (-2321 . 466621) (-2322 . 466491) (-2323 . 466439) (-2324 . 466142)
+ (-2325 . 465858) (-2326 . 465762) (-2327 . 465734) (-2328 . 465555)
+ (-2329 . 465503) (-2330 . 465309) (-2331 . 465168) (-2332 . 465059)
+ (-2333 . 464580) (-2334 . 464499) (-2335 . 464446) (-2336 . 464300)
+ (-2337 . 464205) (-2338 . 463935) (-2339 . 463796) (-2340 . 463590)
+ (-2341 . 463272) (-2342 . 463220) (-2343 . 463119) (-2344 . 463024)
+ (-2345 . 462936) (-2346 . 462789) (-2347 . 462410) (-2348 . 462280)
+ (-2349 . 462130) (-2350 . 462074) (-2351 . 462005) (-2352 . 461872)
+ (-2353 . 461765) (-2354 . 461360) (-2355 . 461311) (-2356 . 461099)
+ (-2357 . 461005) (-2358 . 460814) (-2359 . 460634) (-2360 . 460194)
+ (-2361 . 459189) (-2362 . 459139) (-2363 . 458837) (-2364 . 458536)
+ (-2365 . 458394) (-2366 . 458333) (-2367 . 451379) (-2368 . 451296)
+ (-2369 . 451222) (-2370 . 451051) (-2371 . 450818) (-2372 . 450747)
+ (-2373 . 450618) (-2374 . 450451) (-2375 . 450335) (-2376 . 450276)
+ (-2377 . 450063) (-2378 . 449948) (-2379 . 448524) (-2380 . 448027)
+ (-2381 . 447856) (-2382 . 447718) (-2383 . 447666) (-2384 . 447376)
+ (-2385 . 447263) (-2386 . 447175) (-2387 . 447008) (-2388 . 446956)
+ (-2389 . 446668) (-2390 . 446509) (-2391 . 446457) (-2392 . 446380)
+ (-2393 . 446328) (-2394 . 446249) (-2395 . 446140) (-2396 . 446085)
+ (-2397 . 446035) (-2398 . 445977) (-2399 . 445491) (-2400 . 445439)
+ (-2401 . 444610) (-2402 . 444397) (-2403 . 444080) (-2404 . 443943)
+ (-2405 . 443825) (-2406 . 443732) (-2407 . 443407) (-2408 . 443354)
+ (-2409 . 442981) (-2410 . 442898) (-2411 . 442386) (-2412 . 441731)
+ (-2413 . 441598) (-2414 . 441300) (-2415 . 441089) (-2416 . 441004)
+ (-2417 . 440976) (-2418 . 440924) (-2419 . 440874) (-2420 . 440754)
+ (-2421 . 440702) (-2422 . 440595) (-2423 . 440542) (-2424 . 440445)
+ (-2425 . 440417) (-2426 . 440200) (-2427 . 439843) (-2428 . 439533)
+ (-2429 . 439429) (-2430 . 439028) (-2431 . 438840) (-2432 . 438806)
+ (-2433 . 438775) (-2434 . 438643) (-2435 . 438541) (-2436 . 438333)
+ (-2437 . 438235) (-2438 . 438103) (-2439 . 437938) (-2440 . 437593)
+ (-2441 . 437543) (-2442 . 437344) (-2443 . 437256) (-2444 . 437086)
+ (-2445 . 436875) (-2446 . 436802) (-2447 . 436515) (-2448 . 435659)
+ (-2449 . 435569) (-2450 . 435508) (-2451 . 435281) (-2452 . 435126)
+ (-2453 . 434968) (-2454 . 434831) (-2455 . 434746) (-2456 . 434610)
+ (-2457 . 434080) (-2458 . 433906) (-2459 . 433757) (-2460 . 433614)
+ (-2461 . 433484) (-2462 . 433325) (-2463 . 433009) (-2464 . 432923)
+ (-2465 . 432795) (-2466 . 432685) (-2467 . 432534) (-2468 . 432393)
+ (-2469 . 432337) (-2470 . 432217) (-2471 . 432124) (-2472 . 431994)
+ (-2473 . 431937) (-2474 . 431646) (-2475 . 431450) (-2476 . 431378)
+ (-2477 . 431304) (-2478 . 431010) (-2479 . 430940) (-2480 . 430867)
+ (-2481 . 430745) (-2482 . 430653) (-2483 . 430569) (-2484 . 430520)
+ (-2485 . 430054) (-2486 . 429946) (-2487 . 429851) (-2488 . 429799)
+ (-2489 . 429596) (-2490 . 429438) (-2491 . 429382) (-2492 . 429263)
+ (-2493 . 429009) (-2494 . 428574) (-2495 . 428465) (-2496 . 418935)
+ (-2497 . 418851) (-2498 . 418758) (-2499 . 418621) (-2500 . 418412)
+ (-2501 . 417072) (-2502 . 416925) (-2503 . 416599) (-2504 . 416516)
+ (-2505 . 416433) (-2506 . 416399) (-2507 . 416329) (-2508 . 416277)
+ (-2509 . 416055) (-2510 . 415984) (-2511 . 415918) (-2512 . 415800)
+ (-2513 . 415766) (-2514 . 415647) (-2515 . 415598) (-2516 . 415436)
+ (-2517 . 415359) (-2518 . 415260) (-2519 . 414845) (-2520 . 414790)
+ (-2521 . 414702) (-2522 . 414650) (-2523 . 414442) (-2524 . 414224)
+ (-2525 . 414072) (-2526 . 413873) (-2527 . 413598) (-2528 . 413055)
+ (-2529 . 412899) (-2530 . 412825) (-2531 . 412766) (-2532 . 412668)
+ (-2533 . 411431) (-2534 . 411330) (-2535 . 410966) (-2536 . 410616)
+ (-2537 . 410447) (-2538 . 410381) (-2539 . 410191) (-2540 . 410129)
+ (-2541 . 409992) (-2542 . 409913) (-2543 . 409843) (-2544 . 409691)
+ (-2545 . 409589) (-2546 . 409521) (-2547 . 409438) (-2548 . 409244)
+ (-2549 . 409103) (-2550 . 408969) (-2551 . 408900) (-2552 . 408791)
+ (-2553 . 408718) (-2554 . 408542) (-2555 . 408432) (-2556 . 407630)
+ (-2557 . 407523) (-2558 . 407438) (-2559 . 407386) (-2560 . 407268)
+ (-2561 . 407032) (-2562 . 406827) (-2563 . 406692) (-2564 . 406639)
+ (-2565 . 406568) (-2566 . 406512) (-2567 . 406357) (-2568 . 406258)
+ (-2569 . 406163) (-2570 . 406036) (-2571 . 405827) (-2572 . 405774)
+ (-2573 . 405724) (-2574 . 405641) (-2575 . 405592) (-2576 . 405519)
+ (-2577 . 405302) (-2578 . 405225) (-2579 . 405196) (-2580 . 404599)
+ (-2581 . 404512) (-2582 . 404370) (-2583 . 403924) (-2584 . 403373)
+ (-2585 . 403278) (-2586 . 403222) (-2587 . 403159) (-2588 . 402921)
+ (-2589 . 402831) (-2590 . 402797) (-2591 . 402714) (-2592 . 402654)
+ (-2593 . 402250) (-2594 . 402094) (-2595 . 401995) (-2596 . 401900)
+ (-2597 . 401872) (-2598 . 401625) (-2599 . 401512) (-2600 . 401222)
+ (-2601 . 401022) (-2602 . 400574) (-2603 . 400227) (-2604 . 400074)
+ (-2605 . 399959) (-2606 . 399872) (-2607 . 399806) (-2608 . 399670)
+ (-2609 . 399597) (-2610 . 399529) (-2611 . 399442) (-2612 . 399318)
+ (-2613 . 399199) (-2614 . 398980) (-2615 . 398061) (-2616 . 397988)
+ (-2617 . 397815) (-2618 . 397393) (-2619 . 397341) (-2620 . 397309)
+ (-2621 . 397093) (-2622 . 397041) (-2623 . 396846) (-2624 . 396794)
+ (-2625 . 396614) (-2626 . 396168) (-2627 . 396056) (-2628 . 395709)
+ (-2629 . 395610) (-2630 . 395524) (-2631 . 395162) (-2632 . 395094)
+ (-2633 . 395001) (-2634 . 394843) (-2635 . 394322) (-2636 . 394221)
+ (-2637 . 394096) (-2638 . 393891) (-2639 . 393834) (-2640 . 393713)
+ (-2641 . 393612) (-2642 . 393542) (-2643 . 393372) (-2644 . 393167)
+ (-2645 . 393012) (-2646 . 392905) (-2647 . 392732) (-2648 . 392577)
+ (-2649 . 392492) (-2650 . 392440) (-2651 . 392375) (-2652 . 392188)
+ (-2653 . 392063) (-2654 . 391586) (-2655 . 391508) (-2656 . 390988)
+ (-2657 . 390850) (-2658 . 390819) (-2659 . 390714) (-2660 . 390629)
+ (-2661 . 390221) (-2662 . 387876) (-2663 . 387798) (-2664 . 387668)
+ (-2665 . 387569) (-2666 . 387422) (-2667 . 387242) (-2668 . 386427)
+ (-2669 . 386309) (-2670 . 386084) (-2671 . 385961) (-2672 . 385865)
+ (-2673 . 385791) (-2674 . 385723) (-2675 . 385624) (-2676 . 385371)
+ (-2677 . 385277) (-2678 . 385150) (-2679 . 385090) (-2680 . 385013)
+ (-2681 . 384658) (-2682 . 384499) (-2683 . 384471) (-2684 . 384236)
+ (-2685 . 384137) (-2686 . 383958) (-2687 . 383841) (-2688 . 383789)
+ (-2689 . 383496) (-2690 . 383401) (-2691 . 383324) (-2692 . 383195)
+ (-2693 . 383006) (-2694 . 382746) (-2695 . 382623) (-2696 . 382526)
+ (-2697 . 382473) (-2698 . 381874) (-2699 . 381846) (-2700 . 381775)
+ (-2701 . 381021) (-2702 . 378869) (-2703 . 378682) (-2704 . 376903)
+ (-2705 . 376705) (-2706 . 376581) (-2707 . 376095) (-2708 . 375951)
+ (-2709 . 375623) (-2710 . 375536) (-2711 . 375256) (-2712 . 375173)
+ (-2713 . 374914) (-2714 . 374859) (-2715 . 374750) (-2716 . 374429)
+ (-2717 . 374373) (-2718 . 374052) (-2719 . 373949) (-2720 . 373705)
+ (-2721 . 373461) (-2722 . 373332) (-2723 . 373037) (-2724 . 372981)
+ (-2725 . 372457) (-2726 . 372383) (-2727 . 372245) (-2728 . 372035)
+ (-2729 . 371720) (-2730 . 371532) (-2731 . 371288) (-2732 . 369526)
+ (-2733 . 369287) (-2734 . 369080) (-2735 . 368837) (-2736 . 368744)
+ (-2737 . 368664) (-2738 . 368453) (-2739 . 368366) (-2740 . 368315)
+ (-2741 . 368102) (-2742 . 367976) (-2743 . 367841) (-2744 . 367708)
+ (-2745 . 367637) (-2746 . 367581) (-2747 . 367328) (-2748 . 367142)
+ (-2749 . 367044) (-2750 . 366889) (-2751 . 366806) (-2752 . 366684)
+ (-2753 . 366452) (-2754 . 365260) (-2755 . 365232) (-2756 . 365107)
+ (-2757 . 365049) (-2758 . 364996) (-2759 . 364937) (-2760 . 364653)
+ (-2761 . 364601) (-2762 . 364549) (-2763 . 364478) (-2764 . 364385)
+ (-2765 . 364187) (-2766 . 364131) (-2767 . 363794) (-2768 . 363738)
+ (-2769 . 363542) (-2770 . 363476) (-2771 . 363396) (-2772 . 362296)
+ (-2773 . 362216) (-2774 . 362157) (-2775 . 361889) (-2776 . 361626)
+ (-2777 . 361493) (-2778 . 361334) (-2779 . 361220) (-2780 . 361192)
+ (-2781 . 361071) (-2782 . 360974) (-2783 . 360772) (-2784 . 360665)
+ (-2785 . 360558) (-2786 . 359538) (-2787 . 359397) (-2788 . 359239)
+ (-2789 . 359158) (-2790 . 359106) (-2791 . 358842) (-2792 . 358779)
+ (-2793 . 358676) (-2794 . 358473) (-2795 . 358242) (-2796 . 358126)
+ (-2797 . 357882) (-2798 . 357817) (-2799 . 357238) (-2800 . 356973)
+ (-2801 . 356863) (-2802 . 356807) (-2803 . 356734) (-2804 . 356618)
+ (-2805 . 356489) (-2806 . 356382) (-2807 . 356295) (-2808 . 356210)
+ (-2809 . 356034) (-2810 . 355894) (-2811 . 355677) (-2812 . 355628)
+ (-2813 . 355555) (-2814 . 355475) (-2815 . 355423) (-2816 . 355209)
+ (-2817 . 355050) (-2818 . 354894) (-2819 . 354807) (-2820 . 354698)
+ (-2821 . 354558) (-2822 . 354505) (-2823 . 354339) (-2824 . 354142)
+ (-2825 . 350154) (-2826 . 349807) (-2827 . 349491) (-2828 . 349000)
+ (-2829 . 348921) (-2830 . 348834) (-2831 . 348182) (-2832 . 348052)
+ (-2833 . 347909) (-2834 . 347700) (-2835 . 347648) (-2836 . 347392)
+ (-2837 . 347322) (-2838 . 347223) (-2839 . 347120) (-2840 . 347086)
+ (-2841 . 346979) (-2842 . 346950) (-2843 . 346832) (-2844 . 346738)
+ (-2845 . 346707) (-2846 . 346581) (-2847 . 346476) (-2848 . 346376)
+ (-2849 . 346096) (-2850 . 345755) (-2851 . 345424) (-2852 . 345330)
+ (-2853 . 345151) (-2854 . 345071) (-2855 . 344973) (-2856 . 344903)
+ (-2857 . 344726) (-2858 . 344379) (-2859 . 344324) (-2860 . 343140)
+ (-2861 . 341855) (-2862 . 341760) (-2863 . 341631) (-2864 . 341578)
+ (-2865 . 341433) (-2866 . 341273) (-2867 . 341144) (-2868 . 340692)
+ (-2869 . 340568) (-2870 . 340083) (-2871 . 338905) (-2872 . 338852)
+ (-2873 . 338717) (-2874 . 338594) (-2875 . 337990) (-2876 . 337917)
+ (-2877 . 337831) (-2878 . 337789) (-2879 . 337615) (-2880 . 335417)
+ (-2881 . 335293) (-2882 . 335047) (-2883 . 334974) (-2884 . 334661)
+ (-2885 . 334388) (-2886 . 334228) (-2887 . 334096) (-2888 . 333746)
+ (-2889 . 333542) (-2890 . 333403) (-2891 . 333044) (-2892 . 332694)
+ (-2893 . 332585) (-2894 . 332501) (-2895 . 332360) (-2896 . 332286)
+ (-2897 . 332127) (-2898 . 331567) (-2899 . 330803) (-2900 . 330684)
+ (-2901 . 330597) (-2902 . 330286) (-2903 . 330159) (-2904 . 330100)
+ (-2905 . 330047) (-2906 . 329955) (-2907 . 329862) (-2908 . 329745)
+ (-2909 . 329680) (-2910 . 329564) (-2911 . 329467) (-2912 . 329348)
+ (-2913 . 328396) (-2914 . 327789) (-2915 . 327448) (-2916 . 327356)
+ (-2917 . 327137) (-2918 . 327026) (-2919 . 326746) (-2920 . 326313)
+ (-2921 . 326219) (-2922 . 326146) (-2923 . 326032) (-2924 . 325607)
+ (-2925 . 325526) (-2926 . 325356) (-2927 . 325243) (-2928 . 325152)
+ (-2929 . 324986) (-2930 . 324934) (-2931 . 324757) (-2932 . 324635)
+ (-2933 . 324550) (-2934 . 324125) (-2935 . 324038) (-2936 . 323880)
+ (-2937 . 323828) (-2938 . 323674) (-2939 . 323513) (-2940 . 323346)
+ (-2941 . 323272) (-2942 . 323055) (-2943 . 322989) (-2944 . 322894)
+ (-2945 . 322561) (-2946 . 322302) (-2947 . 322231) (-2948 . 322108)
+ (-2949 . 321762) (-2950 . 321685) (-2951 . 321459) (-2952 . 321374)
+ (-2953 . 321277) (-2954 . 321200) (-2955 . 321024) (-2956 . 320806)
+ (-2957 . 320726) (-2958 . 319968) (-2959 . 319866) (-2960 . 319795)
+ (-2961 . 319737) (-2962 . 319614) (-2963 . 319546) (-2964 . 319403)
+ (-2965 . 319312) (-2966 . 319245) (-2967 . 319034) (-2968 . 318911)
+ (-2969 . 318239) (-2970 . 318173) (-2971 . 316808) (-2972 . 316706)
+ (-2973 . 316654) (-2974 . 316481) (-2975 . 316407) (-2976 . 315871)
+ (-2977 . 315264) (-2978 . 315191) (-2979 . 314957) (-2980 . 314660)
+ (-2981 . 314273) (-2982 . 314066) (-2983 . 313911) (-2984 . 313685)
+ (-2985 . 313545) (-2986 . 313341) (-2987 . 313289) (-2988 . 313192)
+ (-2989 . 313032) (-2990 . 312877) (-2991 . 312690) (-2992 . 312637)
+ (-2993 . 312341) (-2994 . 312006) (-2995 . 311459) (-2996 . 308551)
+ (-2997 . 308402) (-2998 . 308315) (-2999 . 308192) (-3000 . 307967)
+ (-3001 . 307912) (-3002 . 307621) (-3003 . 307544) (-3004 . 307507)
+ (-3005 . 307182) (-3006 . 307038) (-3007 . 306890) (-3008 . 306788)
+ (-3009 . 306707) (-3010 . 306651) (-3011 . 306535) (-3012 . 306122)
+ (-3013 . 306091) (-3014 . 305975) (-3015 . 305849) (-3016 . 305580)
+ (-3017 . 305246) (-3018 . 305168) (-3019 . 305055) (-3020 . 304727)
+ (-3021 . 304477) (-3022 . 304152) (-3023 . 304049) (-3024 . 303697)
+ (-3025 . 303614) (-3026 . 303502) (-3027 . 302983) (-3028 . 302790)
+ (-3029 . 302592) (-3030 . 302540) (-3031 . 302242) (-3032 . 302089)
+ (-3033 . 301810) (-3034 . 301715) (-3035 . 301613) (-3036 . 301544)
+ (-3037 . 301271) (-3038 . 301178) (-3039 . 301060) (-3040 . 300980)
+ (-3041 . 300875) (-3042 . 300458) (-3043 . 299917) (-3044 . 299889)
+ (-3045 . 299653) (-3046 . 299587) (-3047 . 299448) (-3048 . 299330)
+ (-3049 . 299221) (-3050 . 299030) (-3051 . 298755) (-3052 . 298650)
+ (-3053 . 298595) (-3054 . 298517) (-3055 . 298238) (-3056 . 298135)
+ (-3057 . 298019) (-3058 . 297907) (-3059 . 297829) (-3060 . 297769)
+ (-3061 . 297692) (-3062 . 297607) (-3063 . 297540) (-3064 . 297441)
+ (-3065 . 297226) (-3066 . 297104) (-3067 . 297007) (-3068 . 296840)
+ (-3069 . 296613) (-3070 . 296347) (-3071 . 296053) (-3072 . 295923)
+ (-3073 . 295741) (-3074 . 295597) (-3075 . 295514) (-3076 . 295290)
+ (-3077 . 295233) (-3078 . 295018) (-3079 . 294928) (-3080 . 294744)
+ (-3081 . 294512) (-3082 . 294407) (-3083 . 294229) (-3084 . 294029)
+ (-3085 . 292782) (-3086 . 292444) (-3087 . 292379) (-3088 . 292273)
+ (-3089 . 292189) (-3090 . 291934) (-3091 . 291836) (-3092 . 291705)
+ (-3093 . 291549) (-3094 . 291437) (-3095 . 291137) (-3096 . 291050)
+ (-3097 . 290871) (-3098 . 290779) (-3099 . 290556) (-3100 . 290263)
+ (-3101 . 290064) (-3102 . 289772) (-3103 . 289644) (-3104 . 289418)
+ (-3105 . 289389) (-3106 . 289219) (-3107 . 289066) (-3108 . 288941)
+ (-3109 . 288350) (-3110 . 288282) (-3111 . 288204) (-3112 . 288085)
+ (-3113 . 287846) (-3114 . 287694) (-3115 . 287583) (-3116 . 287555)
+ (-3117 . 287309) (-3118 . 287224) (-3119 . 287136) (-3120 . 286807)
+ (-3121 . 286654) (-3122 . 286625) (-3123 . 286482) (-3124 . 286148)
+ (-3125 . 285538) (-3126 . 285411) (-3127 . 285379) (-3128 . 285327)
+ (-3129 . 285242) (-3130 . 285073) (-3131 . 285002) (-3132 . 284662)
+ (-3133 . 284625) (-3134 . 284530) (-3135 . 283956) (-3136 . 282381)
+ (-3137 . 281878) (-3138 . 281764) (-3139 . 281565) (-3140 . 281408)
+ (-3141 . 281026) (-3142 . 280923) (-3143 . 280857) (-3144 . 280705)
+ (-3145 . 280655) (-3146 . 280600) (-3147 . 280548) (-3148 . 280426)
+ (-3149 . 280367) (-3150 . 280148) (-3151 . 280054) (-3152 . 279947)
+ (-3153 . 278862) (-3154 . 278566) (-3155 . 278423) (-3156 . 278317)
+ (-3157 . 278256) (-3158 . 278162) (-3159 . 277579) (-3160 . 277400)
+ (-3161 . 277292) (-3162 . 277070) (-3163 . 276819) (-3164 . 276570)
+ (-3165 . 275965) (-3166 . 275891) (-3167 . 275823) (-3168 . 275730)
+ (-3169 . 275517) (-3170 . 275354) (-3171 . 275302) (-3172 . 275201)
+ (-3173 . 274711) (-3174 . 274534) (-3175 . 274481) (-3176 . 274253)
+ (-3177 . 274155) (-3178 . 273317) (-3179 . 273217) (-3180 . 273105)
+ (-3181 . 273011) (-3182 . 272959) (-3183 . 272931) (-3184 . 272738)
+ (-3185 . 272668) (-3186 . 272376) (-3187 . 272286) (-3188 . 272209)
+ (-3189 . 272138) (-3190 . 271894) (-3191 . 271777) (-3192 . 270527)
+ (-3193 . 270332) (-3194 . 270088) (-3195 . 270032) (-3196 . 269879)
+ (-3197 . 269766) (-3198 . 269450) (-3199 . 268934) (-3200 . 268603)
+ (-3201 . 268012) (-3202 . 267668) (-3203 . 267343) (-3204 . 266764)
+ (-3205 . 266687) (-3206 . 266558) (-3207 . 266420) (-3208 . 266243)
+ (-3209 . 265993) (-3210 . 265749) (-3211 . 265686) (-3212 . 265154)
+ (-3213 . 264574) (-3214 . 264503) (-3215 . 264432) (-3216 . 264334)
+ (-3217 . 264191) (-3218 . 264091) (-3219 . 263847) (-3220 . 263819)
+ (-3221 . 263298) (-3222 . 263254) (-3223 . 263083) (-3224 . 261980)
+ (-3225 . 261609) (-3226 . 261554) (-3227 . 261374) (-3228 . 261279)
+ (-3229 . 261105) (-3230 . 261039) (-3231 . 260932) (-3232 . 260832)
+ (-3233 . 260447) (-3234 . 260395) (-3235 . 260274) (-3236 . 260191)
+ (-3237 . 259964) (-3238 . 259634) (-3239 . 259239) (-3240 . 259173)
+ (-3241 . 259099) (-3242 . 258932) (-3243 . 258135) (-3244 . 258055)
+ (-3245 . 257875) (-3246 . 255460) (-3247 . 255390) (-3248 . 255324)
+ (-3249 . 255230) (-3250 . 254911) (-3251 . 254771) (-3252 . 254699)
+ (-3253 . 254593) (-3254 . 254511) (-3255 . 254364) (-3256 . 254307)
+ (-3257 . 254094) (-3258 . 254034) (-3259 . 253794) (-3260 . 253407)
+ (-3261 . 252523) (-3262 . 252159) (-3263 . 252057) (-3264 . 251970)
+ (-3265 . 251863) (-3266 . 251780) (-3267 . 251703) (-3268 . 251394)
+ (-3269 . 251176) (-3270 . 251094) (-3271 . 250843) (-3272 . 250726)
+ (-3273 . 250653) (-3274 . 250568) (-3275 . 250490) (-3276 . 249690)
+ (-3277 . 249482) (-3278 . 248980) (-3279 . 248489) (-3280 . 248458)
+ (-3281 . 248379) (-3282 . 248233) (-3283 . 247924) (-3284 . 247693)
+ (-3285 . 247581) (-3286 . 247503) (-3287 . 247433) (-3288 . 247353)
+ (-3289 . 247229) (-3290 . 247162) (-3291 . 247134) (-3292 . 247004)
+ (-3293 . 246917) (-3294 . 246843) (-3295 . 245845) (-3296 . 245405)
+ (-3297 . 245333) (-3298 . 245063) (-3299 . 244901) (-3300 . 243689)
+ (-3301 . 243660) (-3302 . 243555) (-3303 . 243504) (-3304 . 243367)
+ (-3305 . 243296) (-3306 . 242481) (-3307 . 242384) (-3308 . 242222)
+ (-3309 . 242167) (-3310 . 242027) (-3311 . 241825) (-3312 . 241774)
+ (-3313 . 241706) (-3314 . 241480) (-3315 . 241339) (-3316 . 241226)
+ (-3317 . 240451) (-3318 . 240321) (-3319 . 239984) (-3320 . 239683)
+ (-3321 . 239470) (-3322 . 239349) (-3323 . 239252) (-3324 . 238629)
+ (-3325 . 238547) (-3326 . 238494) (-3327 . 238328) (-3328 . 237914)
+ (-3329 . 237836) (-3330 . 237590) (-3331 . 237448) (-3332 . 237260)
+ (-3333 . 237127) (-3334 . 236998) (-3335 . 236346) (-3336 . 235691)
+ (-3337 . 235638) (-3338 . 235047) (-3339 . 234911) (-3340 . 234796)
+ (-3341 . 234725) (-3342 . 234667) (-3343 . 234550) (-3344 . 234413)
+ (-3345 . 234318) (-3346 . 234255) (-3347 . 232303) (-3348 . 232165)
+ (-3349 . 231411) (-3350 . 231082) (-3351 . 231009) (-3352 . 230925)
+ (-3353 . 230593) (-3354 . 230142) (-3355 . 230048) (-3356 . 229910)
+ (-3357 . 229787) (-3358 . 229537) (-3359 . 228674) (-3360 . 228587)
+ (-3361 . 228535) (-3362 . 228455) (-3363 . 228375) (-3364 . 228204)
+ (-3365 . 228090) (-3366 . 227714) (-3367 . 227436) (-3368 . 227333)
+ (-3369 . 227250) (-3370 . 227132) (-3371 . 227030) (-3372 . 226956)
+ (-3373 . 226468) (-3374 . 226414) (-3375 . 226167) (-3376 . 226111)
+ (-3377 . 226044) (-3378 . 225901) (-3379 . 225797) (-3380 . 225726)
+ (-3381 . 225625) (-3382 . 225485) (-3383 . 225355) (-3384 . 225327)
+ (-3385 . 225210) (-3386 . 225137) (-3387 . 224979) (-3388 . 224893)
+ (-3389 . 224797) (-3390 . 224467) (-3391 . 224225) (-3392 . 224102)
+ (-3393 . 223932) (-3394 . 223779) (-3395 . 223695) (-3396 . 223625)
+ (-3397 . 223354) (-3398 . 223280) (-3399 . 223074) (-3400 . 222774)
+ (-3401 . 222643) (-3402 . 222020) (-3403 . 221904) (-3404 . 221797)
+ (-3405 . 221645) (-3406 . 221617) (-3407 . 221551) (-3408 . 221522)
+ (-3409 . 220887) (-3410 . 220853) (-3411 . 220658) (-3412 . 220630)
+ (-3413 . 220599) (-3414 . 220488) (-3415 . 220410) (-3416 . 220246)
+ (-3417 . 220147) (-3418 . 219780) (-3419 . 219697) (-3420 . 219560)
+ (-3421 . 219507) (-3422 . 219285) (-3423 . 219147) (-3424 . 219085)
+ (-3425 . 218878) (-3426 . 218822) (-3427 . 218631) (-3428 . 218536)
+ (-3429 . 218484) (-3430 . 218355) (-3431 . 213255) (-3432 . 213074)
+ (-3433 . 213006) (-3434 . 212940) (-3435 . 212799) (-3436 . 212462)
+ (-3437 . 212407) (-3438 . 212295) (-3439 . 212242) (-3440 . 212168)
+ (-3441 . 212059) (-3442 . 211953) (-3443 . 211902) (-3444 . 211587)
+ (-3445 . 211535) (-3446 . 211198) (-3447 . 211143) (-3448 . 209941)
+ (-3449 . 209834) (-3450 . 209557) (-3451 . 209470) (-3452 . 209377)
+ (-3453 . 209169) (-3454 . 209005) (-3455 . 208968) (-3456 . 208745)
+ (-3457 . 208693) (-3458 . 208584) (-3459 . 208497) (-3460 . 208201)
+ (-3461 . 208103) (-3462 . 207994) (-3463 . 207795) (-3464 . 207597)
+ (-3465 . 207489) (-3466 . 207361) (-3467 . 206633) (-3468 . 206383)
+ (-3469 . 205895) (-3470 . 205705) (-3471 . 205633) (-3472 . 204998)
+ (-3473 . 204561) (-3474 . 204487) (-3475 . 204362) (-3476 . 204248)
+ (-3477 . 204130) (-3478 . 204057) (-3479 . 203752) (-3480 . 203654)
+ (-3481 . 203537) (-3482 . 203154) (-3483 . 202941) (-3484 . 202875)
+ (-3485 . 202808) (-3486 . 202584) (-3487 . 202533) (-3488 . 202369)
+ (-3489 . 202341) (-3490 . 202284) (-3491 . 202144) (-3492 . 201298)
+ (-3493 . 201195) (-3494 . 201115) (-3495 . 200992) (-3496 . 200605)
+ (-3497 . 200434) (-3498 . 200133) (-3499 . 200051) (-3500 . 199983)
+ (-3501 . 199910) (-3502 . 199857) (-3503 . 199718) (-3504 . 196108)
+ (-3505 . 196001) (-3506 . 195837) (-3507 . 195779) (-3508 . 195489)
+ (-3509 . 195437) (-3510 . 195343) (-3511 . 195277) (-3512 . 195112)
+ (-3513 . 194988) (-3514 . 194676) (-3515 . 194561) (-3516 . 194487)
+ (-3517 . 194347) (-3518 . 194238) (-3519 . 194210) (-3520 . 194067)
+ (-3521 . 193977) (-3522 . 193851) (-3523 . 193792) (-3524 . 193681)
+ (-3525 . 193243) (-3526 . 193142) (-3527 . 193007) (-3528 . 192933)
+ (-3529 . 190833) (-3530 . 190696) (-3531 . 190644) (-3532 . 190610)
+ (-3533 . 190511) (-3534 . 190381) (-3535 . 190236) (-3536 . 189974)
+ (-3537 . 189900) (-3538 . 189408) (-3539 . 189136) (-3540 . 189031)
+ (-3541 . 188800) (-3542 . 188644) (-3543 . 188524) (-3544 . 188233)
+ (-3545 . 188160) (-3546 . 188036) (-3547 . 187955) (-3548 . 187786)
+ (-3549 . 187645) (-3550 . 187529) (-3551 . 186828) (-3552 . 184576)
+ (-3553 . 184333) (-3554 . 183867) (-3555 . 183699) (-3556 . 183579)
+ (-3557 . 183126) (-3558 . 183042) (-3559 . 182496) (-3560 . 182412)
+ (-3561 . 182338) (-3562 . 182119) (-3563 . 182085) (-3564 . 181904)
+ (-3565 . 181482) (-3566 . 181426) (-3567 . 181216) (-3568 . 181165)
+ (-3569 . 181070) (-3570 . 180999) (-3571 . 180902) (-3572 . 180817)
+ (-3573 . 180506) (-3574 . 180395) (-3575 . 180343) (-3576 . 180162)
+ (-3577 . 180106) (-3578 . 180053) (-3579 . 179814) (-3580 . 179655)
+ (-3581 . 179546) (-3582 . 179155) (-3583 . 178957) (-3584 . 178643)
+ (-3585 . 178439) (-3586 . 177169) (-3587 . 177055) (-3588 . 175945)
+ (-3589 . 175827) (-3590 . 175440) (-3591 . 175361) (-3592 . 175327)
+ (-3593 . 174959) (-3594 . 174906) (-3595 . 174826) (-3596 . 174719)
+ (-3597 . 174632) (-3598 . 174444) (-3599 . 174258) (-3600 . 173590)
+ (-3601 . 173464) (-3602 . 173343) (-3603 . 173180) (-3604 . 173079)
+ (-3605 . 172464) (-3606 . 172217) (-3607 . 172130) (-3608 . 172029)
+ (-3609 . 171580) (-3610 . 171427) (-3611 . 171375) (-3612 . 171326)
+ (-3613 . 171149) (-3614 . 171023) (-3615 . 170879) (-3616 . 170707)
+ (-3617 . 170249) (-3618 . 170170) (-3619 . 170117) (-3620 . 170047)
+ (-3621 . 169938) (-3622 . 169740) (-3623 . 169524) (-3624 . 169456)
+ (-3625 . 169373) (-3626 . 169339) (-3627 . 169167) (-3628 . 169080)
+ (-3629 . 168863) (-3630 . 168797) (-3631 . 168725) (-3632 . 168621)
+ (-3633 . 168439) (-3634 . 168252) (-3635 . 168062) (-3636 . 167946)
+ (-3637 . 167774) (-3638 . 167033) (-3639 . 166725) (-3640 . 166618)
+ (-3641 . 166473) (-3642 . 166282) (-3643 . 165990) (-3644 . 165773)
+ (-3645 . 164809) (-3646 . 164563) (-3647 . 164508) (-3648 . 164336)
+ (-3649 . 163595) (-3650 . 163207) (-3651 . 163136) (-3652 . 162970)
+ (-3653 . 162478) (-3654 . 162364) (-3655 . 162212) (-3656 . 162080)
+ (-3657 . 161895) (-3658 . 161444) (-3659 . 160756) (-3660 . 159947)
+ (-3661 . 159862) (-3662 . 159724) (-3663 . 159344) (-3664 . 159241)
+ (-3665 . 159186) (-3666 . 159087) (-3667 . 158903) (-3668 . 158708)
+ (-3669 . 158559) (-3670 . 158486) (-3671 . 158399) (-3672 . 158254)
+ (-3673 . 158134) (-3674 . 157947) (-3675 . 157890) (-3676 . 157784)
+ (-3677 . 157720) (-3678 . 157144) (-3679 . 156832) (-3680 . 156623)
+ (-3681 . 156417) (-3682 . 156130) (-3683 . 155998) (-3684 . 155759)
+ (-3685 . 155615) (-3686 . 155193) (-3687 . 155069) (-3688 . 154641)
+ (-3689 . 154521) (-3690 . 154441) (-3691 . 154299) (-3692 . 153484)
+ (-3693 . 153414) (-3694 . 153208) (-3695 . 153171) (-3696 . 153099)
+ (-3697 . 152944) (-3698 . 152368) (-3699 . 152257) (-3700 . 152104)
+ (-3701 . 152034) (-3702 . 151755) (-3703 . 151685) (-3704 . 151492)
+ (-3705 . 151336) (-3706 . 151064) (-3707 . 149754) (-3708 . 149577)
+ (-3709 . 149503) (-3710 . 149420) (-3711 . 149299) (-3712 . 149240)
+ (-3713 . 148841) (-3714 . 148786) (-3715 . 148731) (-3716 . 148679)
+ (-3717 . 148576) (-3718 . 148453) (-3719 . 148387) (-3720 . 148141)
+ (-3721 . 148025) (-3722 . 147855) (-3723 . 147714) (-3724 . 147643)
+ (-3725 . 147541) (-3726 . 147437) (-3727 . 147320) (-3728 . 147160)
+ (-3729 . 147002) (-3730 . 146930) (-3731 . 145076) (-3732 . 144555)
+ (-3733 . 144439) (-3734 . 144031) (-3735 . 143747) (-3736 . 143690)
+ (-3737 . 143104) (-3738 . 143070) (-3739 . 142879) (-3740 . 142820)
+ (-3741 . 142421) (-3742 . 142315) (-3743 . 142211) (-3744 . 142138)
+ (-3745 . 142005) (-3746 . 141953) (-3747 . 141887) (-3748 . 141342)
+ (-3749 . 141172) (-3750 . 141065) (-3751 . 140772) (-3752 . 140720)
+ (-3753 . 140658) (-3754 . 140573) (-3755 . 140509) (-3756 . 140430)
+ (-3757 . 140381) (-3758 . 139914) (-3759 . 139858) (-3760 . 139715)
+ (-3761 . 139541) (-3762 . 139318) (-3763 . 139207) (-3764 . 137743)
+ (-3765 . 137677) (-3766 . 137603) (-3767 . 137461) (-3768 . 137261)
+ (-3769 . 137039) (-3770 . 136941) (-3771 . 136698) (-3772 . 136645)
+ (-3773 . 136510) (-3774 . 136328) (-3775 . 136143) (-3776 . 135981)
+ (-3777 . 135807) (-3778 . 135672) (-3779 . 135603) (-3780 . 135428)
+ (-3781 . 135314) (-3782 . 134814) (-3783 . 134538) (-3784 . 134451)
+ (-3785 . 134328) (-3786 . 134134) (-3787 . 134039) (-3788 . 133503)
+ (-3789 . 133396) (-3790 . 133304) (-3791 . 133131) (-3792 . 133037)
+ (-3793 . 132984) (-3794 . 132798) (-3795 . 132725) (-3796 . 132654)
+ (-3797 . 132400) (-3798 . 131824) (-3799 . 131308) (-3800 . 130976)
+ (-3801 . 130595) (-3802 . 130435) (-3803 . 130334) (-3804 . 130091)
+ (-3805 . 129945) (-3806 . 129831) (-3807 . 129227) (-3808 . 128541)
+ (-3809 . 128330) (-3810 . 128235) (-3811 . 128149) (-3812 . 127875)
+ (-3813 . 127713) (-3814 . 127407) (-3815 . 127357) (-3816 . 127242)
+ (-3817 . 126633) (-3818 . 126561) (-3819 . 126420) (-3820 . 125734)
+ (-3821 . 125621) (-3822 . 125548) (-3823 . 125520) (-3824 . 125004)
+ (-3825 . 124946) (-3826 . 124880) (-3827 . 124780) (-3828 . 124641)
+ (-3829 . 124393) (-3830 . 123969) (-3831 . 123888) (-3832 . 123732)
+ (-3833 . 123635) (-3834 . 123189) (-3835 . 123119) (-3836 . 123053)
+ (-3837 . 122982) (-3838 . 122824) (-3839 . 122712) (-3840 . 122616)
+ (-3841 . 122556) (-3842 . 122169) (-3843 . 121921) (-3844 . 121865)
+ (-3845 . 121523) (-3846 . 121473) (-3847 . 121305) (-3848 . 121112)
+ (-3849 . 120964) (-3850 . 120746) (-3851 . 120715) (-3852 . 120555)
+ (-3853 . 119806) (-3854 . 119678) (-3855 . 119345) (-3856 . 118824)
+ (-3857 . 118773) (-3858 . 118023) (-3859 . 117952) (-3860 . 117466)
+ (-3861 . 117334) (-3862 . 117024) (-3863 . 116944) (-3864 . 116751)
+ (-3865 . 116692) (-3866 . 116418) (-3867 . 116347) (-3868 . 115749)
+ (-3869 . 115718) (-3870 . 115624) (-3871 . 115571) (-3872 . 115518)
+ (-3873 . 115409) (-3874 . 115360) (-3875 . 115260) (-3876 . 115232)
+ (-3877 . 114807) (-3878 . 114536) (-3879 . 114434) (-3880 . 114318)
+ (-3881 . 114158) (-3882 . 113892) (-3883 . 113734) (-3884 . 113681)
+ (-3885 . 113594) (-3886 . 113450) (-3887 . 113224) (-3888 . 112784)
+ (-3889 . 112731) (-3890 . 112675) (-3891 . 112496) (-3892 . 112369)
+ (-3893 . 112292) (-3894 . 112034) (-3895 . 111890) (-3896 . 111837)
+ (-3897 . 111606) (-3898 . 111532) (-3899 . 111103) (-3900 . 110628)
+ (-3901 . 110531) (-3902 . 110138) (-3903 . 109896) (-3904 . 109773)
+ (-3905 . 109699) (-3906 . 109318) (-3907 . 109258) (-3908 . 109102)
+ (-3909 . 109045) (-3910 . 108922) (-3911 . 108855) (-3912 . 108743)
+ (-3913 . 108565) (-3914 . 108478) (-3915 . 108392) (-3916 . 108272)
+ (-3917 . 108223) (-3918 . 108154) (-3919 . 107991) (-3920 . 107847)
+ (-3921 . 107717) (-3922 . 107645) (-3923 . 107561) (-3924 . 107430)
+ (-3925 . 107278) (-3926 . 106961) (-3927 . 106820) (-3928 . 106725)
+ (-3929 . 106697) (-3930 . 106611) (-3931 . 106502) (-3932 . 105337)
+ (-3933 . 104603) (-3934 . 104244) (-3935 . 104187) (-3936 . 104080)
+ (-3937 . 103917) (-3938 . 103759) (-3939 . 103602) (-3940 . 103547)
+ (-3941 . 103395) (-3942 . 103216) (-3943 . 103026) (-3944 . 102929)
+ (-3945 . 102811) (-3946 . 102680) (-3947 . 101932) (-3948 . 101740)
+ (-3949 . 101647) (-3950 . 101469) (-3951 . 101323) (-3952 . 101216)
+ (-3953 . 101075) (-3954 . 100171) (-3955 . 99969) (-3956 . 99842)
+ (-3957 . 99683) (-3958 . 99617) (-3959 . 99480) (-3960 . 99060)
+ (-3961 . 98951) (-3962 . 98880) (-3963 . 98754) (-3964 . 98338)
+ (-3965 . 98283) (-3966 . 98206) (-3967 . 97960) (-3968 . 97875)
+ (-3969 . 97820) (-3970 . 97768) (-3971 . 97483) (-3972 . 97385)
+ (-3973 . 97212) (-3974 . 97012) (-3975 . 96438) (-3976 . 95884)
+ (-3977 . 95817) (-3978 . 95714) (-3979 . 95509) (-3980 . 95341)
+ (-3981 . 95094) (-3982 . 94983) (-3983 . 94862) (-3984 . 94703)
+ (-3985 . 94601) (-3986 . 94341) (-3987 . 94205) (-3988 . 94057)
+ (-3989 . 93953) (-3990 . 93621) (-3991 . 93566) (-3992 . 93353)
+ (-3993 . 93155) (-3994 . 93081) (-3995 . 93032) (-3996 . 92977)
+ (-3997 . 92761) (-3998 . 92501) (-3999 . 91632) (-4000 . 89385)
+ (-4001 . 89121) (-4002 . 88882) (-4003 . 88609) (-4004 . 88292)
+ (-4005 . 88237) (-4006 . 88186) (-4007 . 87672) (-4008 . 87424)
+ (-4009 . 87233) (-4010 . 86824) (-4011 . 86718) (-4012 . 86529)
+ (-4013 . 86350) (-4014 . 86130) (-4015 . 86056) (-4016 . 85620)
+ (-4017 . 85567) (-4018 . 85480) (-4019 . 85400) (-4020 . 85293)
+ (-4021 . 85241) (-4022 . 85145) (-4023 . 85066) (-4024 . 84938)
+ (-4025 . 84662) (-4026 . 84585) (-4027 . 84487) (-4028 . 84226)
+ (-4029 . 83711) (-4030 . 83531) (-4031 . 83378) (-4032 . 83232)
+ (-4033 . 83164) (-4034 . 83108) (-4035 . 83021) (-4036 . 82924)
+ (-4037 . 82789) (-4038 . 82438) (-4039 . 81990) (-4040 . 81581)
+ (-4041 . 81343) (-4042 . 81229) (-4043 . 81088) (-4044 . 80912)
+ (-4045 . 80881) (-4046 . 80688) (-4047 . 80594) (-4048 . 80493)
+ (-4049 . 80392) (-4050 . 80325) (-4051 . 80209) (-4052 . 80086)
+ (-4053 . 80020) (-4054 . 79590) (-4055 . 79201) (-4056 . 79137)
+ (-4057 . 78933) (-4058 . 78849) (-4059 . 78403) (-4060 . 78078)
+ (-4061 . 77963) (-4062 . 77815) (-4063 . 77732) (-4064 . 77359)
+ (-4065 . 77044) (-4066 . 76345) (-4067 . 76292) (-4068 . 76219)
+ (-4069 . 76159) (-4070 . 75650) (-4071 . 75551) (-4072 . 75386)
+ (-4073 . 75149) (-4074 . 75062) (-4075 . 74851) (-4076 . 74251)
+ (-4077 . 74178) (-4078 . 74010) (-4079 . 73763) (-4080 . 73086)
+ (-4081 . 72745) (-4082 . 72673) (-4083 . 72566) (-4084 . 72486)
+ (-4085 . 72343) (-4086 . 72270) (-4087 . 72184) (-4088 . 72088)
+ (-4089 . 72005) (-4090 . 71912) (-4091 . 71753) (-4092 . 71643)
+ (-4093 . 71531) (-4094 . 71412) (-4095 . 71305) (-4096 . 70926)
+ (-4097 . 70819) (-4098 . 70689) (-4099 . 70606) (-4100 . 47571)
+ (-4101 . 47478) (-4102 . 47346) (-4103 . 47280) (-4104 . 47081)
+ (-4105 . 41764) (-4106 . 41499) (-4107 . 41308) (-4108 . 41204)
+ (-4109 . 41120) (-4110 . 40789) (-4111 . 40760) (-4112 . 40134)
+ (-4113 . 38979) (-4114 . 36227) (-4115 . 35526) (-4116 . 35473)
+ (-4117 . 35343) (-4118 . 35273) (-4119 . 35166) (-4120 . 35083)
+ (-4121 . 35013) (-4122 . 34915) (-4123 . 34856) (-4124 . 34747)
+ (-4125 . 34523) (-4126 . 34452) (-4127 . 34077) (-4128 . 33406)
+ (-4129 . 31837) (-4130 . 31691) (-4131 . 31604) (-4132 . 31423)
+ (-4133 . 31323) (-4134 . 31249) (-4135 . 31066) (-4136 . 30963)
+ (-4137 . 30589) (-4138 . 30492) (-4139 . 30225) (-4140 . 30072)
+ (-4141 . 29985) (-4142 . 29881) (-4143 . 29176) (-4144 . 29096)
+ (-4145 . 28719) (-4146 . 28666) (-4147 . 28523) (-4148 . 28489)
+ (-4149 . 28361) (-4150 . 27952) (-4151 . 27826) (-4152 . 27519)
+ (-4153 . 27457) (-4154 . 27356) (-4155 . 25505) (-4156 . 25434)
+ (-4157 . 25348) (-4158 . 25277) (-4159 . 24734) (-4160 . 24347)
+ (-4161 . 24252) (-4162 . 24158) (-4163 . 23809) (-4164 . 19747)
+ (-4165 . 19695) (-4166 . 19244) (-4167 . 19157) (-4168 . 19126)
+ (-4169 . 17725) (-4170 . 17547) (-4171 . 16909) (-4172 . 16537)
+ (-4173 . 16321) (-4174 . 16212) (-4175 . 16107) (-4176 . 15981)
+ (-4177 . 15684) (-4178 . 15254) (-4179 . 15202) (-4180 . 15044)
+ (-4181 . 14805) (-4182 . 14698) (-4183 . 14528) (-4184 . 14287)
+ (-4185 . 14200) (-4186 . 14082) (-4187 . 13911) (-4188 . 13746)
+ (-4189 . 13634) (-4190 . 13273) (-4191 . 13176) (-4192 . 13062)
+ (-4193 . 12978) (-4194 . 12921) (-4195 . 12477) (-4196 . 12259)
+ (-4197 . 12036) (-4198 . 11677) (-4199 . 11547) (-4200 . 11451)
+ (-4201 . 5943) (-4202 . 5843) (-4203 . 5703) (-4204 . 5578)
+ (-4205 . 4835) (-4206 . 4694) (-4207 . 4617) (-4208 . 4513)
+ (-4209 . 4217) (-4210 . 4112) (-4211 . 3724) (-4212 . 3696)
+ (-4213 . 3566) (-4214 . 3511) (-4215 . 3458) (-4216 . 3363)
+ (-4217 . 3244) (-4218 . 3082) (-4219 . 3011) (-4220 . 2558)
+ (-4221 . 2454) (-4222 . 2390) (-4223 . 2359) (-4224 . 2256)
+ (-4225 . 2161) (-4226 . 1987) (-4227 . 1785) (-4228 . 1511)
+ (-4229 . 1374) (-4230 . 1289) (-4231 . 1201) (-4232 . 1058)
+ (-4233 . 711) (-4234 . 453) (-4235 . 358) (-4236 . 274) (-4237 . 195)
+ (-4238 . 115) (-4239 . 30)) \ No newline at end of file